Methods for making liquid molding compounds using diamines and dicyanates

Information

  • Patent Grant
  • 5587105
  • Patent Number
    5,587,105
  • Date Filed
    Monday, June 5, 1995
    29 years ago
  • Date Issued
    Tuesday, December 24, 1996
    28 years ago
Abstract
Low molecular weight resins that usually are aliphatic and that include crosslinking thermal functional groups are useful as liquid molding compounds for reaction injection molding or resin transfer molding. The compounds eliminate the need to handle solvents when preparing thermoset composites.
Description

TECHNICAL FIELD
The present invention relates to a family of relatively low-viscosity monomers that can be used in injection molding to fabricate high performance, advanced composites without the use of solvents. The composite parts are generally thermoset compositions with stable melts at moderate temperatures. Diamine diluents can be added to the monomers to prepare block copolymers upon curing.
BACKGROUND OF THE INVENTION
Recently, chemists have sought to synthesize oligomers for high performance advanced composites suitable for aerospace applications. These composites should exhibit solvent resistance; be tough, impact resistant, and strong; be easy to process; and be thermoplastic. Oligomers and composites that have thermo-oxidative stability and, accordingly, can be used at elevated temperatures are particularly desirable.
While epoxy-based composites are suitable for many applications, their brittle nature and susceptibility to thermal or hydrolytic degradation make them inadequate for many aerospace applications, especially those applications which require thermally stable, tough composites. Accordingly, research has recently focused on polyimide composites to achieve an acceptable balance between thermal stability, solvent resistance, and toughness. Still the maximum temperatures for use of the polyimide composites, such as PMR-15, are about 600.degree.-625.degree. F., since they have glass transition temperatures of about 690.degree. F. PMR-15 still suffers, however, from brittleness.
There has been a progression of polyimide sulfone compounds synthesized to provide unique properties or combinations of properties. For example, Kwiatkowski and Brode synthesized maleic-capped linear polyarylimides as disclosed in U.S. Pat. No. 3,839,287. Holub and Evans synthesized maleic- or nadic-capped, imido-substituted polyester compositions as disclosed in U.S. Pat. No. 3,729,446. We synthesized thermally stable polysulfone oligomers as disclosed in U.S. Pat. No. 4,476,184 or U.S. Pat. No. 4,536,559, and have continued to make advances with polyetherimidesulfones, polybenzoxazolesulfones, polybutadienesulfones, and "star" or "star-burst" multidimensional oligomers. We have shown surprisingly high glass transition temperatures yet reasonable processing and desirable physical properties in many of these oligomers and their composites.
Polybenzoxazoles and other heterocycle oligomers, such as those disclosed in U.S. Pat. Nos. 4,965,336 and 4,868,270, may be used at temperatures up to about 750.degree.-775.degree. F., since these composites have glass transition temperatures of about 840.degree. F. Some aerospace applications need composites which have even higher use temperatures while maintaining toughness, solvent resistance, ease of processing, formability, strength, and impact resistance.
Multidimensional oligomers, such as disclosed in our U.S. patent application Ser. No. 06/810,817 (now abandoned) and in U.S. Pat. No. 5,210,213, are easier to process than some advanced composite oligomers since they can be handled at lower temperatures. Upon curing, however, the oligomers crosslink (homopolymerize) through their end caps so that the thermal resistance of the resulting composite is markedly increased with only a minor loss of stiffness, matrix stress transfer (impact resistance), toughness, elasticity, and other mechanical properties. Glass transition temperatures above 950.degree. F. are achievable.
Commercial polyesters, when combined with well-known diluents, such as styrene, do not exhibit satisfactory thermal and oxidative resistance to be useful for aircraft or aerospace applications. Polyarylesters are often unsatisfactory, also, since the resins often are semicrystalline which may makes them insoluble in laminating solvents, intractable in fusion, and subject to shrinking or warping during composite fabrication. Those polyarylesters that are soluble in conventional laminating solvents remain so in composite form, thereby limiting their usefulness in structural composites. The high concentration of ester groups contributes to resin strength and tenacity, but also makes the resin susceptible to the damaging effects of water absorption. High moisture absorption by commercial polyesters can lead to distortion of the composite when it is loaded at elevated temperature.
High performance, aerospace, polyester advanced composites, however, can be prepared using crosslinkable, end capped polyester imide ether sulfone oligomers that have an acceptable combination of solvent resistance, toughness, impact resistance, strength, processibility, formability, and thermal resistance. By including Schiff base (--CH.dbd.N--), imidazole, thiazole, or oxazole linkages in the oligomer chain, the linear, advanced composites formed with polyester oligomers of our U.S. patent application Ser. No. 06/726,259 (now abandoned) can have semiconductive or conductive properties when appropriately doped.
Conductive and semiconductive plastics have been extensively studied (see, e.g., U.S. Pat. Nos. 4,375,427; 4,338,222; 3,966,987; 4,344,869; and 4,344,870), but these polymers do not possess the blend of properties which are essential for aerospace applications. That is, the conductive polymers do not possess the blend of (1) toughness, (2) stiffness, (3) elasticity, (4) ease of processing, (5) impact resistance (and other matrix stress transfer capabilities), (6) retention of properties over a broad range of temperatures, and (7) high temperature resistance that is desirable on aerospace advanced composites. The prior art composites are often too brittle.
Thermally stable multidimensional oligomers having semiconductive or conductive properties when doped with suitable dopants are also known and are described in our copending applications (including U.S. patent application Ser. No. 06/773,381 to Lubowitz, Sheppard and Torre). The linear arms of the oligomers contain conductive linkages, such as Schiff base (--N.dbd.CH--) linkages, between aromatic groups. Sulfone and ether linkages are interspersed in the arms. Each arm is terminated with a mono- or difunctional end cap (i.e. an end cap having one or two crosslinking functionalities) to allow controlled crosslinking upon heat-induced or chemically-induced curing. Other "semiconductive" oligomers are described in our other copending applications.
Polyamide oligomers and blends are described in our U.S. Pat. Nos. 4,935,523 and 4,847,333, and polyetherimide oligomers and blends are described in our U.S. Pat. No. 4,851,495.
Polyamideimides are generally injection-moldable, amorphous, engineering thermoplastics which absorb water (swell) when subjected to humid environments or immersed in water. Polyamideimides are generally described in the following patents: U.S. Pat. No. 3,658,938; U.S. Pat. Nos. 4,628,079; 4,599,383; 4,574,144; or 3,988,344. The thermal integrity and solvent-resistance can be greatly enhanced by capping amideimide backbones with monomers that present one or two crosslinking functionalities at each end of the oligomer, as described in U.S. patent application Ser. No. 07/092,740 (now abandoned); which resulted in U.S. Pat. No. 5,104,967, but the injection molding capability probably is lost.
The high performance resins that we described in our earlier applications and summarized here can be processed into prepregs, but require that solvents be used for this processing. The management of the solvent during the manufacturing process accordingly, presents problems, such as ease of handling, convenience, cost, waste management, and personal safety. These problems are alleviated in a process that can eliminate the solvents.
While prepreg layup and curing is cost effective for manufacturing one class of aerospace parts, an injection molding compound in liquid form would allow the manufacture of large parts (including complex curvature) quickly and with comparatively low investment. Composite molds may be used when the molding compounds cure at relatively low pressures. Reinforced parts can be made in the molds by including filaments or fabrics in the mold. Injection molding eliminates the high labor cost of prepreg layup that is incurred for complex shapes, especially those requiring precise shapes to within a close tolerance. Often milling is required to make such shapes, with the resultant equipment (capital) and labor costs.
Several resins for reaction injection molding (RIM) or resin transfer molding (RTM) have been developed, including urethanes, esters, ureas, acrylesterols, triazathanes, and cyclopentadienes (i.e., PDCPD, such as METTON polymers available from Hercules, Inc.). These molding resins, however, often exhibit premature gelling, a problem that is overcome with the family of liquid molding compounds of the present invention.
SUMMARY OF THE INVENTION
Liquid molding compounds of the present invention are suitable for reaction injection molding (RIM) or resin transfer molding (RTM) to form thermoset composites with or without fiber reinforcement. The compounds are free of solvents and can be quickly cured at modest temperatures and pressures to produce rigid composites that offer a wide range of flexibility and resilience. The liquid molding compounds are characterized by including crosslinking (i.e. unsaturated hydrocarbon) groups at the ends of the polymer backbone. The crosslinking groups generally are radicals selected from the group consisting of:
D.sub.i --.0.--
wherein
i=1 or 2 (i.e. mono- or difunctional);
.0.=phenyl;
D= ##STR1## R.sub.1 =lower alkyl, lower alkoxy, aryl, aryloxy, substituted alkyl, substituted aryl (the substituents including hydroxyl or halo groups), halogen, or mixtures thereof;
j=0, 1 or 2;
G=--CH.sub.2 --, --O--, --S--, --SO.sub.2 --, --SO--, --CO--, --CHR--, or --C(R).sub.2 --;
T=methallyl or allyl;
Me=methyl; and
R=hydrogen, lower alkyl, or phenyl
and, preferably, wherein D= ##STR2##
The phenyl group may be replaced with a pyrimidine group, but these compounds are not preferred.
The compounds are generally polyethers made from polyether diols or triols, such as polypropylene glycol triol of the general formula: ##STR3## condensed with an acid halide cap of the formula: D.sub.i --.0.--COX or a nitro cap of the formula D-.0.-NO.sub.2. Other suitable reactants, include esters, urethanes, amides, imides, ureas, and mixtures (or blends) thereof, especially those reactants, such as oxypropylene triamine, that have aliphatic backbones comparable to the triol described above. The cap may include a hydroxyl, an amine, an acid halide, or a nitro functionality as necessary to complete the reaction. Anhydrides containing the unsaturation of the D radical may also be used, especially with oxypropylene triamine.





BEST MODE CONTEMPLATED FOR MAKING AND USING THE INVENTION
The present invention of liquid molding resins describes a family of relatively low-viscosity oligomers that are suitable for reaction injection molding (RIM) or resin transfer molding (RTM) at modest temperatures and pressures to form high performance, thermoset composites without the use of the solvents that are customarily required to make comparable composites from prepregs. The composites are generally rigid but they offer a wide range of flexibility and resilience.
The liquid molding compounds include mono- or difunctional, crosslinking groups (i.e., groups having one or two crosslinking sites) of the same nature as our earlier high performance resins. These groups improve the solvent resistance and thermo-oxidative stability of the composites. The compounds also include polymeric backbones of ethers, esters, urethanes, amides, imides, ureas, or mixtures (i.e. blends) of two or more of these compounds. The liquid molding compounds are prepared by reacting the crosslinking end-cap monomers with polyether diols or triols, esters, or the like, or in simultaneous condensation reactions that include the precursors of such backbones and suitable end-cap monomers.
The crosslinking end cap monomers have hydrocarbon unsaturation and generally include a radical selected from the group consisting of:
D.sub.i --.0.--
wherein
i=1 or 2;
.0.=phenyl;
D= ##STR4## R.sub.1 =lower alkyl, lower alkoxy, aryl aryloxy, substituted alkyl, substituted aryl (the substituents including hydrozyl or halo groups), halogen, or mixtures thereof;
G=--SO.sub.2 --, --S--, --O--, --CH.sub.2 --, --CO--, --SO--, --CH(R)--, or --C(R).sub.2 --;
i=1 or 2;
j=0, 1 or 2;
T=methallyl or allyl;
Me=methyl; and
R=hydrogen, lower alkyl, or phenyl.
A particularly preferred end-cap is: ##STR5## because of its relatively low cost and its relatively low activation (i.e. curing) temperature. The resulting thermoset composites have relatively high thermal stability.
Suitable ether precursors are characterized by the aliphatic triol, polypropylene glycol triol of the general formula: ##STR6## diols or triols of this general type can be reacted with D.sub.i --.0.--COX to form capped ethers through the --OH/--COX ester condensation. Compounds of the formula: D.sub.i --.0.--COX are readily prepared from the corresponding anhydrides by condensation with amino- or diamino benzoic acid, as explained in U.S. Pat. No. 4,604,437. Alternatively, the ether precursors can be condensed with a nitro end cap monomer formed by reacting the anhydrides with nitroaniline to form an ether linkage between the precursor and the cap.
Although not preferred because of cost and complexity, the acid halide end-cap monomer can be made by condensing the anhydrides with a pyrimidine of the formula: ##STR7## The precursor amines are describes in U.S. Pat. No. 3,461,461. The resulting intermediate can be reacted with nitrobenzoic acid halide or halobenzoic acid halide to form an acid halide end-cap monomer of the formula: ##STR8##
Polyamines, such as polyoxypropylene triamine (a counterpart of the propylene glycol triol) can be reacted directly with the anhydrides to form imide caps. Alternately, the terminal amino groups can be condensed with --COX of the end cap monomer to form an amide linkage. The absence of a phenyl radical adjacent the hydrogen unsaturation in the polyamine/anhydride condensation may impact the performance and physical properties of the resulting composites.
Moldable ureas can also be prepared by reacting the anhydride used to form the D.sub.i --.0.-- groups with an aliphatic, or aromatic, or aliphatic and aromatic diamine, such as phenylenediamine, with: ##STR9## and a compound of the formula:
OCN--R.sub.1 --NCO
to form a capped reactive polyurea of the general formula: ##STR10## wherein i=1 or 2;
R.sub.2 =an aliphatic or aromatic residue of the diamine; (i.e., --.0.-- if phenylene diamine is used) and
R.sub.1 =an aliphatic or aromatic residue.
The OCN--R.sub.1 --NCO compounds are described in U.S. Pat. No. 4,599,383, and generally include aliphatic segments. Generally an aliphatic diamine would also be used.
Polyoxypropylene triamine can be reacted with OCN--R.sub.1 --NCO, a diamine, and a suitable end cap to form a liquid molding compound. In this case, R.sub.1 is generally a lower alkyl of less than about five carbon atoms, and the diamine is a lower alkyl diamine.
Preferably, any of the liquid molding compounds has an average formula weight below about 5000, and, generally, as low as about 1000.
The liquid molding compounds of the present invention can be improved by blending them with reactive diluents. Suitable diluents are aliphatic diamines, including, for example, 1,8-diaminooctane; 1,7-diaminoheptane; 1-5-diaminopentane; or 1,3-diaminopropane (i.e., diaminoalkyls). During curing, diamines of this type can react with the liquid molding compounds to form block copolymers.
The corresponding anhydrides used for direct reaction with the polyamines or for preparation of the nitro, acid halide, or phenol end cap monomers, of course, are selected from the group consisting of: ##STR11## wherein R.sub.1, G, Me, T, and j are as previously defined. In the direct condensation of the polyamines and anhydrides, only one crosslinking site is available at each chain terminus.
The polyols, such as polypropylene glycol triol, can have their chains extended by the nitro/phenol condensation using dinitro compounds. The end cap monomer in this case usually will be an imidophenol. Suitable dinitro compounds can be prepared, for example, by reacting MCTC (i.e., 5-(2,5-diketotetrahydrofuryl)-3-methyl-cyclohexene-1,2-dicarboxylic anhydride) with nitroaniline. Of course, other aliphatic dinitro compounds can be used, or an aromatic segment (particularly if it is short) may be incorporated into the liquid molding compound. Further chain extension can be achieved by adding dialcohols to the condensation mixture. Such chain extension, however, is likely to lead to the formation of undesirable, high-average-formula-weight oligomers. Therefore, usually the polyol will be condensed directly with the acid halide or nitro end cap monomer to form the product.
To limit the average formula weight of the products, the polyamines are generally condensed directly with the end cap anhydrides. Chain extension, however, can occur by using aliphatic dianhydrides, such as MCTC, and an imidophenylamine end cap monomer; by further extension with a dianhydride, a diamine, and a suitable end cap monomer; by using a dicarboxylic acid halide and an imidophenylamine end cap monomer, or in other ways known to those of ordinary skill in the art based upon this description.
It may be, possible to make liquid molding compounds simply by reacting the OCN--R.sub.1 --NCO compounds directly with imidophenylamine end cap monomers.
The liquid molding compounds of the present invention may be blends of the crosslinking oligomers and corresponding, compatible, noncrosslinking polymers. For example, the polyols can be condensed with a nitro end cap monomer and nitrobenzene to form a mixture of capped and uncapped molecules that still might provide the desired molding properties. It probably would be better, however, to blend the oligomer with a quenched polyol rather than to conduct the syntheses simultaneously.
The liquid molding compounds or blends can be mixed with reinforcing additives prior to or during injection to produce reinforced composites. The additives can be in continuous (fiber) or discontinuous (chopped or whisker) form and may be ceramic, organic, carbon (graphite), or glass as desired for the particular application.
Blends can improve the impact resistance of the cured composites without deleterious loss of solvent resistance (gained through the crosslinking caps). A 50--50 molar blend of the oligomer and polymer is probably the most desirable blend, but the ratio can be adjusted to provide the desired physical properties in the composite.
It is probably nonessential that the oligomer and polymer have identical repeating units. They need only be compatible when mixed. The polyethers might be mixed with polyesters, polyamides, or other polymers without loss of the molding properties.
While preferred embodiments have been described, those skilled in the art will recognize modifications or variations which might be made without departing from the inventive concept. Therefore, the description and claims should be interpreted liberally to cover the disclosed embodiments and their full range of equivalents with only such that limitation which is necessary in view of the pertinent prior art.
Claims
  • 1. A method for making a liquid molding compound of the formula ##STR12## comprising the step of simultaneously condensing an unsaturated anhydride selected from the group consisting of: ##STR13## wherein D=a hydrocarbon radical including an unsaturated functionality selected from the group consisting of: ##STR14## R.sub.1 =lower alkyl, aryl, substituted alkyl, substituted aryl, lower alkoxy, aryloxy, halogen, or mixtures thereof;
  • G=--CH.sub.2 --, --O--, --S--, --SO.sub.2 --, --SO--, --CO--, --CH(R)--, or --C(R).sub.2 --;
  • j=0, 1, or 2;
  • T=allyl or methallyl;
  • Me=methyl; and
  • R=hydrogen, lower alkyl, or phenyl,
  • with a diamine of the formula H.sub.2 N--R.sub.2 --NH.sub.2 and a compound of the formula OCN--R.sub.3 --NCO, wherein R.sub.3 is a hydrocarbon radical and R.sub.2 is a hydrocarbon radical.
  • 2. The method of claim 1 further comprising the step of blending the condensation product with an effective amount of a diluent.
  • 3. The method of claim 2 wherein the diluent is an aliphatic diamine.
  • 4. The method of claim 3 wherein the diluent is selected from the group consisting of:
  • 1,8-diaminooctane;
  • 1,7-diaminoheptane;
  • 1,5-diaminopentane; and
  • 1,3-diaminopropane.
  • 5. The method of claim 1 wherein the diamine is aliphatic.
  • 6. The method of claim 1 wherein the diamine is aromatic.
  • 7. The method of claim 1 wherein R.sub.3 is aliphatic.
  • 8. The method of claim 7 wherein the diamine is aliphatic.
  • 9. The method of claim 1 wherein the simultaneous condensation further includes polyoxypropylene triamine.
  • 10. The method of claim 1 wherein D is either ##STR15## wherein .phi.=phenylene.
REFERENCE TO RELATED APPLICATION

The present application is a divisional application based upon U.S. patent application Ser. No. 07/168,289 filed Mar. 15, 1988. The present application also claims the benefit of U.S. patent application Ser. No. 08/327,942, filed Oct. 21, 1994.

US Referenced Citations (454)
Number Name Date Kind
H183 Karasz et al. Jan 1987
RE29316 Bargain et al. Jul 1977
RE30922 Heilman et al. May 1982
3105839 Renner Oct 1963
3148173 Axelrood Sep 1964
3236705 Gilman et al. Feb 1966
3236808 Goldberg et al. Feb 1966
3262914 Goldberg et al. Jul 1966
3265708 Stiteler Aug 1966
3267081 Rudner et al. Aug 1966
3313783 Iwakura et al. Apr 1967
3354129 Edmonds et al. Nov 1967
3355272 D'Alessandro Nov 1967
3386969 Levine Jun 1968
3408349 Matsunaga Oct 1968
3431235 Lubowitz Mar 1969
3435003 Craven Mar 1969
3449442 Williams et al. Jun 1969
3450711 Megna et al. Jun 1969
3453236 Culbertson Jul 1969
3454673 Schmidt Jul 1969
3458486 Ray et al. Jul 1969
3461461 Anthony et al. Aug 1969
3525717 Butler et al. Aug 1970
3528950 Lubowitz Sep 1970
3530087 Hayes et al. Sep 1970
3536670 Aeiony et al. Oct 1970
3562223 Bargain et al. Feb 1971
3563951 Dormagen et al. Feb 1971
3565549 Lubowitz et al. Feb 1971
3592841 Broadhead Jul 1971
3598768 Bach Aug 1971
3598786 Yoda et al. Aug 1971
3609181 Lubowitz et al. Sep 1971
3616193 Lubowitz et al. Oct 1971
3624042 Lubowitz et al. Nov 1971
3631222 Vogel Dec 1971
3632428 Lubowitz et al. Jan 1972
3635428 Lubowitz et al. Jan 1972
3641207 Lauchlan Feb 1972
3647529 Lubowitz et al. Mar 1972
3652710 Holub Mar 1972
3658764 Bargain et al. Apr 1972
3658938 Kwiatkowski et al. Apr 1972
3663507 Vogel May 1972
3689464 Holub et al. Sep 1972
3697308 Lubowitz et al. Oct 1972
3697345 Lubowitz et al. Oct 1972
3699074 Lubowitz et al. Oct 1972
3699075 Lubowitz Oct 1972
3708370 Lubowitz et al. Jan 1973
3708439 Sayigh et al. Jan 1973
3708459 Lubowitz Jan 1973
3729446 Holub et al. Apr 1973
3745149 Serafini et al. Jul 1973
3748311 Burns et al. Jul 1973
3748312 Burns et al. Jul 1973
3749735 Loria Jul 1973
3757088 Osborn Sep 1973
3759777 Lubowitz et al. Sep 1973
3761441 D'Alessandro et al. Sep 1973
3763101 Jones et al. Oct 1973
3770697 Holub et al. Nov 1973
3772250 Economy et al. Nov 1973
3773718 Klebe et al. Nov 1973
3781240 Lubowitz et al. Dec 1973
3781249 Lubowitz Dec 1973
3784311 Burns et al. Jul 1973
3803081 Lubowitz Apr 1974
3812159 Lubowitz May 1974
3827927 Lubowitz et al. Aug 1974
3839287 Kwiatkowski et al. Oct 1974
3843593 Shell et al. Oct 1974
3847867 Heath et al. Nov 1974
3847869 Williams, III Nov 1974
3853815 Lubowitz Dec 1974
3859252 Cho Jan 1975
3879349 Bilow et al. Apr 1975
3879393 Havera Apr 1975
3879428 Heath et al. Apr 1975
3887582 Holub et al. Jun 1975
3890272 D'Alelio Jun 1975
3895064 Brode et al. Jul 1975
3896147 Stephen Jul 1975
3897395 D'Alelio Jul 1975
3909507 Betts et al. Sep 1975
3914334 Lubowitz et al. Oct 1975
3919177 Campbell Nov 1975
3920768 Kwiatkowski Nov 1975
3925324 Gerard Dec 1975
3933862 Williams, III Jan 1976
3935167 Marvel et al. Jan 1976
3935320 Chiu et al. Jan 1976
3941746 Stephen Mar 1976
3956320 Heath et al. May 1976
3957732 Hirooka et al. May 1976
3957862 Heath et al. May 1976
3966678 Gruffaz et al. Jun 1976
3966726 Toth et al. Jun 1976
3966987 Suzuki et al. Jun 1976
3970714 Bargain Jul 1976
3972902 Heath et al. Aug 1976
3988374 Brode et al. Oct 1976
3991026 Matsuda et al. Nov 1976
3993630 Darmory et al. Nov 1976
3998786 D'Alelio Dec 1976
4000146 Gerber Dec 1976
4005134 Markezich Jan 1977
4013600 Cassat Mar 1977
4020069 Johnson et al. Apr 1977
4026871 D'Alelio May 1977
4038261 Crouch et al. Jul 1977
4051177 Braden et al. Sep 1977
4055543 D'Alelio Oct 1977
4058505 D'Alelio Nov 1977
4060515 D'Alelio Nov 1977
4064289 Yokoyama et al. Dec 1977
4075171 D'Alelio Feb 1978
4097456 Barie Jun 1978
4100137 Lemieux et al. Jul 1978
4100138 Bilow et al. Jul 1978
4101488 Ishizuka et al. Jul 1978
4107147 Williams, III et al. Aug 1978
4107153 Akijama et al. Aug 1978
4107174 Baumann et al. Aug 1978
4108837 Johnson et al. Aug 1978
4108926 Arnold et al. Aug 1978
4111879 Mori et al. Sep 1978
4115231 Darms et al. Sep 1978
4115362 Inata et al. Sep 1978
4116937 Jones et al. Sep 1978
4124593 Gschwend et al. Nov 1978
4126619 Darms et al. Nov 1978
4128574 Markezich et al. Dec 1978
4132715 Roth Jan 1979
4132716 Kvita et al. Jan 1979
4134895 Roth et al. Jan 1979
4142870 Lovejoy Mar 1979
4158731 Baumann et al. Jun 1979
4166168 D'Alelio Aug 1979
4167663 Granzow et al. Sep 1979
4168366 D'Alelio Sep 1979
4172836 Baumann et al. Oct 1979
4174326 Baumann et al. Nov 1979
4175175 Johnson et al. Nov 1979
4176223 Irwin Nov 1979
4179551 Jones et al. Dec 1979
4183839 Gagliani Jan 1980
4187364 Darms et al. Feb 1980
4189560 Roth et al. Feb 1980
4193927 Baumann et al. Mar 1980
4197397 D'Alelio Apr 1980
4200731 Massey et al. Apr 1980
4206106 Heilman et al. Jun 1980
4218555 Antonoplos et al. Aug 1980
4221895 Woo Sep 1980
4225497 Baudouin et al. Sep 1980
4225498 Baudouin et al. Sep 1980
4231934 Oba et al. Nov 1980
4234712 Keller et al. Nov 1980
4237262 Jones Dec 1980
4237916 Jones Jun 1981
4239883 Stenzenberger Dec 1980
4244853 Serafini et al. Jan 1981
4250096 Kvita et al. Feb 1981
4251418 Chow et al. Feb 1981
4251419 Heilman et al. Feb 1981
4251420 Antonoplos et al. Feb 1981
4255313 Antonoplos et al. Mar 1981
4266047 Jablonski et al. May 1981
4269961 Jones et al. May 1981
4271079 Maeda et al. Jun 1981
4276407 Bilow et al. Jun 1981
4288583 Zahir et al. Sep 1981
4288607 Bier et al. Sep 1981
4289699 Oba et al. Sep 1981
4293670 Robeson et al. Oct 1981
4297472 Heiss Oct 1981
4297474 Williams, III et al. Oct 1981
4298720 Yamazaki et al. Nov 1981
4299750 Antonoplos et al. Nov 1981
4299946 Balme et al. Nov 1981
4302575 Takekoshi Nov 1981
4323662 Oba et al. Apr 1982
4338222 Limburg et al. Jul 1982
4338225 Sheppard Jul 1982
4344869 Blinne et al. Aug 1982
4344870 Blinne et al. Aug 1982
4351932 Street et al. Sep 1982
4358561 Keske et al. Nov 1982
4360644 Naarmann et al. Nov 1982
4365068 Darms et al. Dec 1982
4375427 Miller et al. Mar 1983
4376710 Gardos et al. Mar 1983
4381363 Reinhart, Jr. Apr 1983
4389504 St. Clair et al. Jun 1983
4393188 Takahashi et al. Jul 1983
4395497 Naarmann et al. Jul 1983
4400613 Popelish Aug 1983
4405770 Schoenberg et al. Sep 1983
4407739 Naarmann et al. Oct 1983
4409382 Keller Oct 1983
4410686 Hefner, Jr. et al. Oct 1983
4414269 Lubowitz et al. Nov 1983
4417039 Reinhardt et al. Nov 1983
4417044 Parekh Nov 1983
4418181 Monacelli Nov 1983
4423202 Choe Dec 1983
4429108 Stephens Jan 1984
4438273 Landis Mar 1984
4438280 Monacelli Mar 1984
4446191 Miyadera et al. May 1984
4448925 Hanson May 1984
4460783 Nishikawa et al. Jul 1984
4465809 Smith Aug 1984
4467011 Brooks et al. Aug 1984
4476184 Lubowitz et al. Oct 1984
4476295 Stephens Oct 1984
4482683 Quella et al. Nov 1984
4485140 Gannett et al. Nov 1984
4485231 Landis Nov 1984
4489027 St. Clair et al. Dec 1984
4504632 Holub et al. Mar 1985
4507466 Tomalia et al. Mar 1985
4510272 Loszewski Apr 1985
4515962 Renner May 1985
4519926 Basalay et al. May 1985
4520198 D'Alelio et al. May 1985
4526838 Fujioka et al. Jul 1985
4533692 Wolfe et al. Aug 1985
4533693 Wolfe et al. Aug 1985
4533724 Wolfe et al. Aug 1985
4535117 Mathis et al. Aug 1985
4536559 Lubowitz et al. Aug 1985
4547553 Lubowitz et al. Oct 1985
4555563 Hefner, Jr. et al. Nov 1985
4556697 Curatolo et al. Dec 1985
4556705 McCready Dec 1985
4558120 Tomalia et al. Dec 1985
4562231 Dean Dec 1985
4562232 Smith Dec 1985
4563498 Lucas Jan 1986
4563514 Liu et al. Jan 1986
4564553 Pellegrini et al. Jan 1988
4567216 Qureshi et al. Jan 1986
4567240 Hergenrother et al. Jan 1986
4568737 Tomalia et al. Feb 1986
4574144 Yates, III et al. Mar 1986
4574148 Wicker, Jr. et al. Mar 1986
4574154 Okamoto et al. Mar 1986
4576857 Gannett et al. Mar 1986
4577034 Durvasula Mar 1986
4578433 Muenstedt et al. Mar 1986
4578470 Webb Mar 1986
4584364 Lubowitz et al. Apr 1986
4587329 Tomalia et al. May 1986
4590363 Bernard May 1986
4599383 Satoji Jul 1986
4600769 Kumar et al. Jul 1986
4604437 Renner Aug 1986
4608414 Kitsunai et al. Aug 1986
4608426 Stern Aug 1986
4609683 Grigsby, Jr. et al. Sep 1986
4611022 Hefner, Jr. Sep 1986
4611048 Peters Sep 1986
4614767 Dean Sep 1986
4615832 Kress et al. Oct 1986
4616070 Zeiner et al. Oct 1986
4616071 Holubka Oct 1986
4617390 Hoppe et al. Oct 1986
4624888 St. Clair et al. Nov 1986
4628067 Chen, Sr. et al. Dec 1986
4628079 Zecher et al. Dec 1986
4629777 Pfeifer Dec 1986
4631337 Tomalia et al. Dec 1986
4638027 Mark et al. Jan 1987
4640944 Brooks Feb 1987
4649080 Fischer et al. Mar 1987
4654410 Kashiwame et al. Mar 1987
4657973 Endo et al. Apr 1987
4657977 Peters Apr 1987
4657987 Rock et al. Apr 1987
4657990 Daoust et al. Apr 1987
4660057 Watanabe et al. Apr 1987
4661604 Lubowitz et al. Apr 1987
4663378 Allen May 1987
4663399 Peters May 1987
4663423 Yamada et al. May 1987
4663424 Stix et al. May 1987
4663425 Evers et al. May 1987
4680326 Leland et al. Jul 1987
4680377 Matsumura et al. Jul 1987
4684714 Lubowitz et al. Aug 1987
4686242 Turner et al. Aug 1987
4690972 Johnson et al. Sep 1987
4691025 Domeier et al. Sep 1987
4694064 Tomalia et al. Sep 1987
4695610 Egli et al. Sep 1987
4699975 Katto et al. Oct 1987
4703081 Blackwell et al. Oct 1987
4708983 Liang Nov 1987
4709004 Dai Nov 1987
4709006 Tsai et al. Nov 1987
4709008 Shimp Nov 1987
4714768 Hemkielm et al. Dec 1987
4716212 Gaughan Dec 1987
4719283 Bartmann Jan 1988
4727118 Egami Feb 1988
4728742 Renner Mar 1988
4730030 Hahn et al. Mar 1988
4737550 Tomalia Apr 1988
4739030 Lubowitz et al. Apr 1988
4739075 Odagiri et al. Apr 1988
4739115 Byrd et al. Apr 1988
4740563 McCready et al. Apr 1988
4740564 McCready et al. Apr 1988
4740584 Shimp Apr 1988
4742166 Renner May 1988
4748227 Matzner et al. May 1988
4755584 Tomioka et al. Jul 1988
4755585 Hanson et al. Jul 1988
4757118 Das et al. Jul 1988
4757128 Domb et al. Jul 1988
4757150 Guggenheim et al. Jul 1988
4759986 Marikar et al. Jul 1988
4760106 Gardner et al. Jul 1988
4764427 Hara et al. Aug 1988
4766180 Wong Aug 1988
4766197 Clendinning et al. Aug 1988
4769424 Takekoshi et al. Sep 1988
4769426 Iwasaki et al. Sep 1988
4769436 Beck et al. Sep 1988
4774282 Qureshi Sep 1988
4777208 Hefner, Jr. Oct 1988
4778830 Streu et al. Oct 1988
4778859 Ai et al. Oct 1988
4778898 Vonlanthen et al. Oct 1988
4786669 Dewhirst Nov 1988
4786685 Takida et al. Nov 1988
4786713 Rule et al. Nov 1988
4798685 Yaniger Jan 1989
4798686 Hocker et al. Jan 1989
4798882 Petri Jan 1989
4801676 Hisgen et al. Jan 1989
4801677 Eckhardt et al. Jan 1989
4804722 Hesse et al. Feb 1989
4804724 Harris et al. Feb 1989
4806407 Skinner et al. Feb 1989
4808717 Saito et al. Feb 1989
4812518 Haubennestel et al. Mar 1989
4812534 Blakely Mar 1989
4812552 Cliffton et al. Mar 1989
4812588 Schrock Mar 1989
4814416 Poll Mar 1989
4814417 Sugimori Mar 1989
4814421 Rosenquist Mar 1989
4814472 Lau Mar 1989
4816503 Cunningham et al. Mar 1989
4816526 Bristowe et al. Mar 1989
4816527 Rock Mar 1989
4816556 Gay et al. Mar 1989
4820770 Schleifstein Apr 1989
4826927 Schmid et al. May 1989
4826997 Kirchhoff May 1989
4827000 Schwartz May 1989
4829138 Barthelemy May 1989
4835197 Mercer May 1989
4837256 Gardner et al. Jun 1989
4839378 Koyama et al. Jun 1989
4845150 Kovak et al. Jul 1989
4845167 Alston et al. Jul 1989
4845185 Teramoto et al. Jul 1989
4845278 Erhan Jul 1989
4847333 Lubowitz et al. Jul 1989
4851280 Gupta Jul 1989
4851287 Hartsing, Jr. Jul 1989
4851494 Eldin et al. Jul 1989
4851495 Sheppard et al. Jul 1989
4851496 Poll et al. Jul 1989
4851501 Lubowitz et al. Jul 1989
4851505 Hayes Jul 1989
4861855 Bockrath et al. Aug 1989
4861882 Hergenrother et al. Aug 1989
4861915 Clendinning et al. Aug 1989
4861924 Riggs Aug 1989
4868270 Lubowitz et al. Sep 1989
4871475 Lubowitz et al. Oct 1989
4874834 Higashi et al. Oct 1989
4876325 Olson et al. Oct 1989
4876328 Lubowitz et al. Oct 1989
4876330 Higashi et al. Oct 1989
4891167 Clendinning et al. Jan 1990
4891408 Newman-Evans Jan 1990
4891460 Ishii Jan 1990
4895892 Satake et al. Jan 1990
4895924 Satake et al. Jan 1990
4897527 Cripps et al. Jan 1990
4902335 Kume et al. Feb 1990
4902440 Takeyama et al. Feb 1990
4902769 Cassidy et al. Feb 1990
4902773 Bodnar et al. Feb 1990
4916210 Jackson Apr 1990
4916235 Tan et al. Apr 1990
4919992 Blundell et al. Apr 1990
4923752 Cornelia May 1990
4927899 Michaud et al. May 1990
4927900 Michaud et al. May 1990
4931531 Tamai et al. Jun 1990
4931540 Mueller et al. Jun 1990
4935523 Lubowitz et al. Jun 1990
4958031 Sheppard et al. Sep 1990
4965336 Lubowitz et al. Oct 1990
4973662 Odagiri et al. Nov 1990
4980481 Lubowitz et al. Dec 1990
4981922 Sheppard et al. Jan 1991
4985568 Lubowitz et al. Jan 1991
4990624 Sheppard et al. Feb 1991
4996101 Landis et al. Feb 1991
5003035 Tsai et al. Mar 1991
5011905 Lubowitz et al. Apr 1991
5066541 Lubowitz et al. Nov 1991
5066776 Russeler et al. Nov 1991
5071941 Lubowitz et al. Dec 1991
5075537 Lorenzen et al. Dec 1991
5082905 Lubowitz et al. Jan 1992
5086154 Camberlin et al. Feb 1992
5087701 Lubowitz et al. Feb 1992
5104967 Sheppard et al. Apr 1992
5109105 Lubowitz et al. Apr 1992
5111026 Ma May 1992
5112936 Okamoto May 1992
5112939 Lubowitz et al. May 1992
5115087 Sheppard et al. May 1992
5116935 Lubowitz et al. May 1992
5120819 Lubowitz et al. Jun 1992
5126410 Lubowitz et al. Jun 1992
5144000 Sheppard et al. Sep 1992
5151487 Lubowitz et al. Sep 1992
5155206 Lubowitz et al. Oct 1992
5159055 Sheppard et al. Oct 1992
5175233 Lubowitz et al. Dec 1992
5175234 Lubowitz et al. Dec 1992
5175304 Sheppard Dec 1992
5198526 Lubowitz et al. Mar 1993
5210213 Sheppard et al. May 1993
5216117 Sheppard et al. Jun 1993
5227461 Lubowitz et al. Jul 1993
5230956 Cole et al. Jul 1993
5239046 Lubowitz et al. Aug 1993
5254605 Kim et al. Oct 1993
5268519 Sheppard et al. Dec 1993
5286811 Lubowitz et al. Feb 1994
5338532 Tomalia et al. Aug 1994
5344894 Lubowitz Sep 1994
Foreign Referenced Citations (42)
Number Date Country
1175998 Sep 1984 CAX
1269576 May 1990 CAX
0152372 Jan 1985 EPX
0175484 Mar 1986 EPX
0067976 Mar 1987 EPX
0289695 Jan 1988 EPX
0283636 Jan 1988 EPX
0277476 Aug 1988 EPX
0292434 Nov 1988 EPX
0289798 Nov 1988 EPX
0292677 Nov 1988 EPX
0266662 Nov 1988 EPX
0294555 Dec 1988 EPX
0132547 Feb 1989 EPX
0305882 Mar 1989 EPX
0309649 Apr 1989 EPX
0310735 Apr 1989 EPX
0311735 Apr 1989 EPX
0317754 May 1989 EPX
0323540 Jul 1989 EPX
0336856 Oct 1989 EPX
0405128 Jan 1991 EPX
0418406 Mar 1991 EPX
0334778 Apr 1992 EPX
71.00975 Jan 1971 FRX
2166209 Aug 1973 FRX
2210635 Jul 1974 FRX
2272119 Dec 1975 FRX
2303818 Oct 1976 FRX
1951632 May 1971 DEX
57100111 JPX
1453625 Dec 1973 JPX
58059219 Oct 1981 JPX
1210408A Feb 1988 JPX
907105 Oct 1962 GBX
1069061 May 1967 GBX
1099096 Jan 1968 GBX
1453625 Oct 1976 GBX
2002387 Feb 1977 GBX
2002378 Mar 1982 GBX
8101855 Jul 1981 WOX
8404313 Nov 1984 WOX
Non-Patent Literature Citations (28)
Entry
St. Clair, et al., Additives Lower Pickup of Moisture by Polyimides, NASA Tech Briefs, 80-81 Apr., 1989.
Heidemann, "Oligomers", Encyclopedia of Polymer Science and Technology vol. 9 Molding to Petroleum Resins 485-506 1968.
Second-generation polymide raises continuous-use temperatures, Advanced Composites May/Jun., 1988.
Vanucci et al., 700.degree.F Properties of Autoclave Cured PMR-II Composites, NASA Tech. Memo 100923 Sep., 1988.
Vanucci, PMR Polyimide Compositions for Improved Perfomance at 371.degree.C, NTIS n87-16071 Apr., 1987.
Elsenbaumer et al., Highly Conductive Meta Derivatives of Poly(phenylene Sulfide), J. Polymer Sci: Polymer Phys. Ed., vol. 20, 1781-1787 1982.
Patel et al., Poly-Schiff Bases, I. Preparation of Poly-Schiff Bases from 4,4'-Diacetyl Diphenyl Ether (DDE) with Various Diamines, J. of Polymer Chem. Ed., vol. 20, 1985-1992 1982.
Walton, A New Conjugated Network Polymer as an Electrical Conductor and Thermally Stable Plastic, Am. Chem., Soc. Org. Coat Plast. Chem., vol. 42, 595-599 1980.
Serafini et al., Thermally Stable Polyimides from Solutions of Monomeric Reactants, Journal of Applied Polymer Science, vol. 16 pp. 905-915 1972.
Spillman et al., Coploymers of Poly(Para-Phenylene Terephthalamide) Containing a Thermally Activated Cross-Linking Agent, PMSE vol. 68, Spring Meetings 139-140 1993.
Radlmann, et al., New Synthesis of Poly(ether Ketones). (44195h), Chem Abstracts vol. 72, 1970, p. 44187 1970.
Bryant, et al., Synthesis and Properties of Phenylethnyl-Terminated Polyimides, Polymer PrePrints, vol. 34, No. 1, 566-567 Mar. 1993.
Crivello et al., Polyimidothioether-Polysulfide Block Polymers, Polymer Sci., Polymer Chem. Ed., vol. 13, pp. 1819-1842 1975.
Frazer, High Temperature Resistant Polymers, Interscience Publishers, John Wiley & Sons, Inc., 139-213 1968.
St. Clair et al., The Development of Aerospace Polyimide Adhesives, Mittal (ed), Polyimides-Synthesis Characterization and Applications, Plenum Press, NY, vol. 2, pp. 977-1041 1973.
Serafini, et al., A Review of Processable High Temperature Resistant Addition-type Laminating Resins, Mittal (ed), Polyimides-Synthesis, Characterization and Applications, Plenum Press, NY, vol. 1, PP. 89-95 1973.
Stenson, Polycyanurates Find Applications; Their Chemistry Remains Puzzling, Science/Technology, 208 ACS National Meeting, Washington, D.C., C&EN Northeast News Bureau 30-31 Sep. 1994.
Stoakley, et al., Low-Dielectric-Constant Polyimide/Glass Composites, NASA Tech. Briefs p. 24 Apr. 1994.
Bartolotta, Predicting Fatigue Lives of Metal-Matrix/Fiber Composites, Nasa Tech Briefs pp. 28,30 Apr. 1994.
Vannucci, et al., Improved PMR Polyimides for Heat-Stable Laminates, NASA Tech Briefs pp. 30-31 Apr. 1994.
Bryant, et al., Phenylethynyl End-Capping Reagents and Reactive Diluents, NASA Tech Briefs pp. 36-37 Apr. 1994.
Jensen, et al., Phenylethynyl-Terminated Ploy(Arylene Ethers), NASA Tech Briefs p. 37 Apr. 1994.
Buckley, et al., Processable Polyimides for High Temperature Applications, 36th International SAMPE Symposium pp. 1172-1181 Apr. 1991.
Edwards, et al. Constituents of the Higher Fungi. Part XIII..sup.1 2-Arly-3-methoxymaleic Anhydrides from Pulvinic Acid Derivatives. A Convenient Method for Determination of Structure of Fungaland Lichen Pulvinic Acid Derivatives, Journal of The Chemical Society pp.1538-1542 1973.
Kwiatkowski, et al., Thermosetting Diphenyl Sulfone-Based Malcimides, Journal of Polymer Science, vol. 13, pp. 961-972 1975.
Lyle, et al., Polyarylene Ethers: Maleimides, Nadimides and Blends, The Interdisciplinary Symposium on Recent Advances in Polymides and Other High Performance Polymers, San Diego, California pp. K-1-K-7, Jan. 1990.
Roberts, et al., Effect of Solution Concentration and Aging Conditions on PMR-15 Resin, SAMPE Journal, pp. 24-28, 213, Mar/Apr. 1986.
Southcott, et al., "The Development of Processable, Fully Imidized, Polyimides for High-Temperature Applications", High Perform. Polym. 6, pp. 1-12, Printed in UK, 1994.
Divisions (1)
Number Date Country
Parent 168289 Mar 1988