The present disclosure relates to electrosurgical instruments and, more particularly, to electrosurgical forceps for grasping, treating, and/or dividing tissue and methods for manufacturing the same.
A surgical forceps is a plier-like instrument which relies on mechanical action between its jaws to grasp tissue. Electrosurgical forceps utilize both mechanical clamping action and electrical energy to treat tissue, e.g., coagulate, cauterize, and/or seal tissue.
Typically, during assembly, an electrically conductive tissue sealing plate of each jaw member is mounted atop a jaw housing and is secured in place utilizing various manufacturing techniques.
As used herein, the term “distal” refers to the portion that is being described which is further from a surgeon, while the term “proximal” refers to the portion that is being described which is closer to a surgeon. Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.
As used herein, the terms parallel and perpendicular are understood to include relative configurations that are substantially parallel and substantially perpendicular up to about +/−10 degrees from true parallel and true perpendicular.
Aspects according to the present invention include a method of assembling a jaw member of an electrosurgical forceps, including: aligning in vertical registration an electrically conductive seal plate, an insulative spacer and a jaw support; stacking the seal plate atop the insulative spacer and the jaw support such that a flange depending from the seal plate seats within a corresponding cavity defined within a flange depending from the insulative spacer which, in turn, seats within a cavity defined within the jaw support; mechanically securing the seal plate, insulative spacer and jaw support to one another; and securing a jaw housing to surround the jaw support, the insulative spacer and the seal plate (or at least a portion thereof).
In aspects according to the present disclosure, one or more rivets or screws mechanically secure the seal plate, insulative spacer and jaw support to one another. In other aspects, the method includes feeding an electrical connection from the seal plate, through the insulative spacer and jaw structure and back to an electrical source.
In aspects according to the present disclosure, the jaw housing is secured by overmolding the jaw housing to surround the jaw support, the insulative spacer and the seal plate. In yet other aspects, the seal plate includes a peripheral edge that mechanically engages a corresponding lip of the jaw housing to secure the jaw housing to the seal plate.
In aspects according to the present disclosure, the seal plate includes a peripheral edge that mechanically engages the jaw housing during the overmolding process to secure the jaw housing to the seal plate. In still other aspects, the jaw housing is made from an insulative material. Yet in other aspects, the jaw support is made from metal.
Aspects according to the present invention include a method of assembling a jaw member of an electrosurgical forceps, including: aligning in vertical registration an electrically conductive seal plate, an insulative spacer and a jaw support; seating the seal plate atop the insulative spacer and the jaw support such that a flange depending from the seal plate depends generally perpendicular to the seal plate and is spaced relative to the insulative spacer in an initial, pre-overmold configuration; and overmolding a jaw housing to surround the seal plate, insulative spacer and jaw support wherein the overmolding forces the flange of the seal plate to mechanically engage the insulative spacer in a second, after-overmold configuration.
In aspects according to the present disclosure, the depending flange surrounds the periphery of the seal plate. In other aspects, the depending flange mechanically engages the insulative spacer on either side thereof to secure the seal plate thereon.
In still other aspects, the jaw housing is made from an insulative material. Yet in other aspects, the jaw support is made from metal.
Aspects according to the present invention include a method of assembling a jaw member of an electrosurgical forceps, including: aligning an electrically conductive seal plate having a mesh-like material engaged to a bottom surface thereof and a jaw support, the mesh-like material spacing the seal plate and the jaw support relative to one another; overmolding a first material to fill the mesh-like material and secure the seal plate and the jaw support in spaced relation relative to one another; and overmolding a jaw housing to surround the seal plate, mesh-like material and jaw support.
In aspects according to the present disclosure, the mesh-like material is bonded, welded, integrally associated with or mechanically engaged to the seal plate. In other aspects, the jaw housing is made from an insulative material. Yet in other aspects, the jaw support is made from metal.
Various aspects and features of the present disclosure are described hereinbelow with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views:
Referring generally to
An end effector assembly 200 of forceps 100 includes first and second jaw members 210, 220 extending from distal end portions 112b, 122b of shaft members 110, 120, respectively. Forceps 100 further includes a pivot member 130 pivotably coupling first and second shaft members 110, 120 with one another, a knife 140 (not shown), a knife deployment mechanism 150 for selectively deploying the knife relative to end effector assembly 200, a knife lockout 170 for inhibiting deployment of knife prior to sufficient closure of jaw members 210, 220, and a switch assembly 180 for enabling the selective supply of electrosurgical energy to end effector assembly 100. An electrosurgical cable 300 electrically couples forceps 100 to a source of energy (not shown), e.g., an electrosurgical generator, to enable the supply of electrosurgical energy to jaw members 210, 220 of end effector assembly 200 upon activation of switch assembly 180.
Continuing with reference to
Referring to
A distal portion 217a of insulative housing 216 of jaw member 210 extends about the periphery of tissue-contacting plate 214 and defines a main section 218a, a raised section 218b, and a beak section 218c. Main section 218a of distal portion 217a of insulative housing 216 extends on either side of tissue-contacting plate 214 and is offset relative thereto such that tissue-contacting plate 214 is raised relative to main section 218a. Raised section 218b of distal portion 217a of insulative housing 216 extends distally from main section 218a on either side of tissue-contacting plate 214 and is still recessed relative to tissue-contacting plate 214 but is closer to being co-planar with tissue-contacting plate 214 as compared to main section 218a. Beak section 218c of distal portion 217a of insulative housing 216 is disposed distally of tissue-contacting plate 214 and extends to or beyond tissue-contacting plate 214. Beak section 218c inhibits tissue from entering the area between jaw members 210, 220 of end effector assembly 200 when end effector assembly 200 is disposed in the closed position and utilized for blunt dissection.
Turning to
In embodiments, the seal plate 614 may include a peripheral edge 617 disposed therearound that is dimensioned to mechanically engage (snap-fit, friction fit, compression fit, etc.) a corresponding lip 619 of the jaw housing 616 to secure the jaw housing 616 to the seal plate 614. If the jaw housing 616 is overmolded to surround the seal plate 614, insulative spacer 691 and jaw support 671, the peripheral edge 617 of the seal plate 614 may be dimensioned to mechanically engages the jaw housing 616 during the overmolding process to secure the jaw housing 616 to the seal plate 614.
The various embodiments disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the surgeon and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the surgeon during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.
The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another surgeon (or group of surgeons) remotely control the instruments via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.
The robotic arms of the surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, etc.) which may complement the use of one or more of the embodiments described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).
The master handles may include various sensors to provide feedback to the surgeon relating to various tissue parameters or conditions, e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc. As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions. The master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon's ability to mimic actual operating conditions.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
D249549 | Pike | Sep 1978 | S |
D263020 | Rau, III | Feb 1982 | S |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
4763669 | Jaeger | Aug 1988 | A |
D298353 | Manno | Nov 1988 | S |
D299413 | DeCarolis | Jan 1989 | S |
5100420 | Green et al. | Mar 1992 | A |
5258001 | Corman | Nov 1993 | A |
D343453 | Noda | Jan 1994 | S |
5304203 | El-Mallawany et al. | Apr 1994 | A |
D348930 | Olson | Jul 1994 | S |
D349341 | Lichtman et al. | Aug 1994 | S |
5344424 | Roberts et al. | Sep 1994 | A |
D354564 | Medema | Jan 1995 | S |
D358887 | Feinberg | May 1995 | S |
5540685 | Parins et al. | Jul 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5611808 | Hossain et al. | Mar 1997 | A |
5618294 | Aust et al. | Apr 1997 | A |
D384413 | Zlock et al. | Sep 1997 | S |
5665100 | Yoon | Sep 1997 | A |
5752644 | Bolanos et al. | May 1998 | A |
H1745 | Paraschac | Aug 1998 | H |
5814043 | Shapeton | Sep 1998 | A |
D402028 | Grimm et al. | Dec 1998 | S |
D408018 | McNaughton | Apr 1999 | S |
5913874 | Berns et al. | Jun 1999 | A |
5960544 | Beyers | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
6050996 | Schmaltz et al. | Apr 2000 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
H1904 | Yates et al. | Oct 2000 | H |
6293954 | Fogarty et al. | Sep 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6329778 | Culp et al. | Dec 2001 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
D453923 | Olson | Feb 2002 | S |
D454951 | Bon | Mar 2002 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6406485 | Hossain et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6464704 | Schmaltz et al. | Oct 2002 | B2 |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
6511480 | Tetzlaff et al. | Jan 2003 | B1 |
6673092 | Bacher | Jan 2004 | B1 |
D493888 | Reschke | Aug 2004 | S |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
D502994 | Blake, III | Mar 2005 | S |
D509297 | Wells | Sep 2005 | S |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
7118570 | Tetzlaff et al. | Oct 2006 | B2 |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
D538932 | Malik | Mar 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
D541611 | Aglassinger | May 2007 | S |
D541938 | Kerr et al. | May 2007 | S |
D545432 | Watanabe | Jun 2007 | S |
D547154 | Lee | Jul 2007 | S |
7329257 | Kanehira et al. | Feb 2008 | B2 |
D564662 | Moses et al. | Mar 2008 | S |
D567943 | Moses et al. | Apr 2008 | S |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
7431730 | Viola | Oct 2008 | B2 |
D582038 | Swoyer et al. | Dec 2008 | S |
7641653 | Dalla Betta et al. | Jan 2010 | B2 |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
D621503 | Otten et al. | Aug 2010 | S |
D627462 | Kingsley | Nov 2010 | S |
D628289 | Romero | Nov 2010 | S |
D628290 | Romero | Nov 2010 | S |
7854185 | Zhang et al. | Dec 2010 | B2 |
D630324 | Reschke | Jan 2011 | S |
7896878 | Johnson et al. | Mar 2011 | B2 |
D649249 | Guerra | Nov 2011 | S |
D649643 | Allen, IV et al. | Nov 2011 | S |
8147489 | Moses et al. | Apr 2012 | B2 |
D661394 | Romero et al. | Jun 2012 | S |
8298233 | Mueller | Oct 2012 | B2 |
D670808 | Moua et al. | Nov 2012 | S |
8366709 | Schechter et al. | Feb 2013 | B2 |
8394096 | Moses et al. | Mar 2013 | B2 |
D680220 | Rachlin | Apr 2013 | S |
8409246 | Kerr et al. | Apr 2013 | B2 |
8409247 | Garrison et al. | Apr 2013 | B2 |
8425504 | Orton et al. | Apr 2013 | B2 |
8425511 | Olson | Apr 2013 | B2 |
8430877 | Kerr et al. | Apr 2013 | B2 |
8439913 | Horner et al. | May 2013 | B2 |
8469716 | Fedotov et al. | Jun 2013 | B2 |
8469991 | Kerr | Jun 2013 | B2 |
8469992 | Roy et al. | Jun 2013 | B2 |
8480671 | Mueller | Jul 2013 | B2 |
8491624 | Kerr et al. | Jul 2013 | B2 |
8491625 | Horner | Jul 2013 | B2 |
8491626 | Roy et al. | Jul 2013 | B2 |
8512336 | Couture | Aug 2013 | B2 |
8540749 | Garrison et al. | Sep 2013 | B2 |
8551091 | Couture et al. | Oct 2013 | B2 |
8556929 | Harper et al. | Oct 2013 | B2 |
8568397 | Horner et al. | Oct 2013 | B2 |
8568408 | Townsend et al. | Oct 2013 | B2 |
8585736 | Horner et al. | Nov 2013 | B2 |
8591510 | Allen, IV et al. | Nov 2013 | B2 |
8597295 | Kerr | Dec 2013 | B2 |
8623018 | Horner et al. | Jan 2014 | B2 |
8628557 | Collings et al. | Jan 2014 | B2 |
8641712 | Couture | Feb 2014 | B2 |
8647343 | Chojin et al. | Feb 2014 | B2 |
8652135 | Nau, Jr. | Feb 2014 | B2 |
8663222 | Anderson et al. | Mar 2014 | B2 |
8672939 | Garrison | Mar 2014 | B2 |
8679098 | Hart | Mar 2014 | B2 |
8685009 | Chernov et al. | Apr 2014 | B2 |
8685021 | Chernov et al. | Apr 2014 | B2 |
8685056 | Evans et al. | Apr 2014 | B2 |
8702737 | Chojin et al. | Apr 2014 | B2 |
8702749 | Twomey | Apr 2014 | B2 |
8734445 | Johnson et al. | May 2014 | B2 |
8740898 | Chojin et al. | Jun 2014 | B2 |
8745840 | Hempstead et al. | Jun 2014 | B2 |
8747434 | Larson et al. | Jun 2014 | B2 |
8756785 | Allen, IV et al. | Jun 2014 | B2 |
8784418 | Romero | Jul 2014 | B2 |
8795269 | Garrison | Aug 2014 | B2 |
8808288 | Reschke | Aug 2014 | B2 |
8814864 | Gilbert | Aug 2014 | B2 |
8840639 | Gerhardt, Jr. et al. | Sep 2014 | B2 |
8845636 | Allen, IV et al. | Sep 2014 | B2 |
8852185 | Twomey | Oct 2014 | B2 |
8852228 | Nau, Jr. | Oct 2014 | B2 |
8858553 | Chojin | Oct 2014 | B2 |
8864753 | Nau, Jr. et al. | Oct 2014 | B2 |
8864795 | Kerr et al. | Oct 2014 | B2 |
8887373 | Brandt et al. | Nov 2014 | B2 |
8888771 | Twomey | Nov 2014 | B2 |
8888775 | Nau, Jr. et al. | Nov 2014 | B2 |
8898888 | Brandt et al. | Dec 2014 | B2 |
8900232 | Ourada | Dec 2014 | B2 |
8906018 | Rooks et al. | Dec 2014 | B2 |
8920421 | Rupp | Dec 2014 | B2 |
8932293 | Chernov et al. | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8939972 | Twomey | Jan 2015 | B2 |
8945175 | Twomey | Feb 2015 | B2 |
8961504 | Hoarau et al. | Feb 2015 | B2 |
8968283 | Kharin | Mar 2015 | B2 |
8968305 | Dumbauld et al. | Mar 2015 | B2 |
8968316 | Roy et al. | Mar 2015 | B2 |
8968357 | Mueller | Mar 2015 | B2 |
8968359 | Kerr et al. | Mar 2015 | B2 |
9005200 | Roy et al. | Apr 2015 | B2 |
9017372 | Artale et al. | Apr 2015 | B2 |
9028484 | Craig | May 2015 | B2 |
9028492 | Kerr et al. | May 2015 | B2 |
9028495 | Mueller et al. | May 2015 | B2 |
9039704 | Joseph | May 2015 | B2 |
9039732 | Sims et al. | May 2015 | B2 |
9084608 | Larson et al. | Jul 2015 | B2 |
9113933 | Chernova et al. | Aug 2015 | B2 |
9113934 | Chernov et al. | Aug 2015 | B2 |
9161807 | Garrison | Oct 2015 | B2 |
9211657 | Ackley et al. | Dec 2015 | B2 |
9265568 | Chernov et al. | Feb 2016 | B2 |
9333002 | Garrison | May 2016 | B2 |
9381059 | Garrison | Jul 2016 | B2 |
9456870 | Chernov et al. | Oct 2016 | B2 |
9498278 | Couture et al. | Nov 2016 | B2 |
9498279 | Artale et al. | Nov 2016 | B2 |
9504519 | Kerr et al. | Nov 2016 | B2 |
9585709 | Krapohl | Mar 2017 | B2 |
9615877 | Tyrrell et al. | Apr 2017 | B2 |
9655672 | Artale et al. | May 2017 | B2 |
20030018332 | Schmaltz et al. | Jan 2003 | A1 |
20030109875 | Tetzlaff et al. | Jun 2003 | A1 |
20030199869 | Johnson et al. | Oct 2003 | A1 |
20030220637 | Truckai et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040092927 | Podhajsky et al. | May 2004 | A1 |
20050070889 | Nobis et al. | Mar 2005 | A1 |
20050107784 | Moses et al. | May 2005 | A1 |
20050113826 | Johnson et al. | May 2005 | A1 |
20050113828 | Shields et al. | May 2005 | A1 |
20050159745 | Truckai et al. | Jul 2005 | A1 |
20060253126 | Bjerken et al. | Nov 2006 | A1 |
20070062017 | Dycus et al. | Mar 2007 | A1 |
20070088356 | Moses et al. | Apr 2007 | A1 |
20070179499 | Garrison | Aug 2007 | A1 |
20070260241 | Dalla Betta et al. | Nov 2007 | A1 |
20080215048 | Hafner et al. | Sep 2008 | A1 |
20090131934 | Odom et al. | May 2009 | A1 |
20090171353 | Johnson et al. | Jul 2009 | A1 |
20090182327 | Unger | Jul 2009 | A1 |
20090240246 | Deville et al. | Sep 2009 | A1 |
20090302090 | Shah | Dec 2009 | A1 |
20090308909 | Nalagatla et al. | Dec 2009 | A1 |
20100016857 | McKenna et al. | Jan 2010 | A1 |
20100130977 | Garrison et al. | May 2010 | A1 |
20100179545 | Twomey et al. | Jul 2010 | A1 |
20100179547 | Cunningham et al. | Jul 2010 | A1 |
20100228250 | Brogna | Sep 2010 | A1 |
20100274244 | Heard | Oct 2010 | A1 |
20100292691 | Brogna | Nov 2010 | A1 |
20100305567 | Swanson | Dec 2010 | A1 |
20110054469 | Kappus et al. | Mar 2011 | A1 |
20110060314 | Wallace et al. | Mar 2011 | A1 |
20110060356 | Reschke et al. | Mar 2011 | A1 |
20110072638 | Brandt et al. | Mar 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110218530 | Reschke | Sep 2011 | A1 |
20110238065 | Hunt et al. | Sep 2011 | A1 |
20110238067 | Moses et al. | Sep 2011 | A1 |
20110257680 | Reschke et al. | Oct 2011 | A1 |
20110270245 | Horner et al. | Nov 2011 | A1 |
20110270251 | Horner et al. | Nov 2011 | A1 |
20110276049 | Gerhardt | Nov 2011 | A1 |
20110295313 | Kerr | Dec 2011 | A1 |
20120059372 | Johnson | Mar 2012 | A1 |
20120059409 | Reschke et al. | Mar 2012 | A1 |
20120083785 | Roy et al. | Apr 2012 | A1 |
20120083786 | Artale et al. | Apr 2012 | A1 |
20120083827 | Artale et al. | Apr 2012 | A1 |
20120123402 | Chernov et al. | May 2012 | A1 |
20120123404 | Craig | May 2012 | A1 |
20120123410 | Craig | May 2012 | A1 |
20120130367 | Garrison | May 2012 | A1 |
20120136354 | Rupp | May 2012 | A1 |
20120172868 | Twomey et al. | Jul 2012 | A1 |
20120172873 | Artale et al. | Jul 2012 | A1 |
20120172924 | Allen, IV | Jul 2012 | A1 |
20120184988 | Twomey et al. | Jul 2012 | A1 |
20120184989 | Twomey | Jul 2012 | A1 |
20120184990 | Twomey | Jul 2012 | A1 |
20120209263 | Sharp et al. | Aug 2012 | A1 |
20120215219 | Roy et al. | Aug 2012 | A1 |
20120239034 | Horner et al. | Sep 2012 | A1 |
20120253344 | Dumbauld et al. | Oct 2012 | A1 |
20120259331 | Garrison | Oct 2012 | A1 |
20120265241 | Hart et al. | Oct 2012 | A1 |
20120283727 | Twomey | Nov 2012 | A1 |
20120296205 | Chernov et al. | Nov 2012 | A1 |
20120296238 | Chernov et al. | Nov 2012 | A1 |
20120296239 | Chernov et al. | Nov 2012 | A1 |
20120296317 | Chernov et al. | Nov 2012 | A1 |
20120296323 | Chernov et al. | Nov 2012 | A1 |
20120296324 | Chernov et al. | Nov 2012 | A1 |
20120296334 | Kharin | Nov 2012 | A1 |
20120303025 | Garrison | Nov 2012 | A1 |
20120323238 | Tyrrell et al. | Dec 2012 | A1 |
20120330308 | Joseph | Dec 2012 | A1 |
20120330309 | Joseph | Dec 2012 | A1 |
20130018364 | Chernov et al. | Jan 2013 | A1 |
20130018372 | Sims | Jan 2013 | A1 |
20130018411 | Collings et al. | Jan 2013 | A1 |
20130022495 | Allen, IV et al. | Jan 2013 | A1 |
20130030432 | Garrison et al. | Jan 2013 | A1 |
20130041370 | Unger | Feb 2013 | A1 |
20130046295 | Kerr et al. | Feb 2013 | A1 |
20130046303 | Evans et al. | Feb 2013 | A1 |
20130046306 | Evans et al. | Feb 2013 | A1 |
20130046337 | Evans et al. | Feb 2013 | A1 |
20130060250 | Twomey et al. | Mar 2013 | A1 |
20130066318 | Kerr | Mar 2013 | A1 |
20130071282 | Fry | Mar 2013 | A1 |
20130072927 | Allen, IV et al. | Mar 2013 | A1 |
20130079760 | Twomey et al. | Mar 2013 | A1 |
20130079762 | Twomey et al. | Mar 2013 | A1 |
20130079774 | Whitney et al. | Mar 2013 | A1 |
20130085491 | Twomey et al. | Apr 2013 | A1 |
20130085496 | Unger et al. | Apr 2013 | A1 |
20130103030 | Garrison | Apr 2013 | A1 |
20130103031 | Garrison | Apr 2013 | A1 |
20130103035 | Horner et al. | Apr 2013 | A1 |
20130123837 | Roy et al. | May 2013 | A1 |
20130138101 | Kerr | May 2013 | A1 |
20130138102 | Twomey et al. | May 2013 | A1 |
20130138129 | Garrison et al. | May 2013 | A1 |
20130144284 | Behnke, II et al. | Jun 2013 | A1 |
20130178852 | Allen, IV et al. | Jul 2013 | A1 |
20130185922 | Twomey et al. | Jul 2013 | A1 |
20130190753 | Garrison et al. | Jul 2013 | A1 |
20130190760 | Allen, IV et al. | Jul 2013 | A1 |
20130197503 | Orszulak | Aug 2013 | A1 |
20130226177 | Brandt et al. | Aug 2013 | A1 |
20140221994 | Reschke | Aug 2014 | A1 |
20140221995 | Guerra et al. | Aug 2014 | A1 |
20140221999 | Cunningham et al. | Aug 2014 | A1 |
20140228842 | Dycus et al. | Aug 2014 | A1 |
20140230243 | Roy et al. | Aug 2014 | A1 |
20140236149 | Kharin et al. | Aug 2014 | A1 |
20140243811 | Reschke et al. | Aug 2014 | A1 |
20140243824 | Gilbert | Aug 2014 | A1 |
20140249528 | Hixson et al. | Sep 2014 | A1 |
20140250686 | Hempstead et al. | Sep 2014 | A1 |
20140257274 | Mccullough, Jr. et al. | Sep 2014 | A1 |
20140257283 | Johnson et al. | Sep 2014 | A1 |
20140257284 | Artale | Sep 2014 | A1 |
20140257285 | Moua | Sep 2014 | A1 |
20140276803 | Hart | Sep 2014 | A1 |
20140284313 | Allen, IV et al. | Sep 2014 | A1 |
20140288549 | Mckenna et al. | Sep 2014 | A1 |
20140288553 | Johnson et al. | Sep 2014 | A1 |
20140330308 | Hart et al. | Nov 2014 | A1 |
20140336635 | Hart et al. | Nov 2014 | A1 |
20140353188 | Reschke et al. | Dec 2014 | A1 |
20150018816 | Latimer | Jan 2015 | A1 |
20150025528 | Arts | Jan 2015 | A1 |
20150032106 | Rachlin | Jan 2015 | A1 |
20150051598 | Orszulak et al. | Feb 2015 | A1 |
20150051640 | Twomey et al. | Feb 2015 | A1 |
20150066026 | Hart et al. | Mar 2015 | A1 |
20150066076 | Kerr et al. | Mar 2015 | A1 |
20150080889 | Cunningham et al. | Mar 2015 | A1 |
20150082928 | Kappus et al. | Mar 2015 | A1 |
20150088122 | Jensen | Mar 2015 | A1 |
20150088126 | Duffin et al. | Mar 2015 | A1 |
20150088128 | Couture | Mar 2015 | A1 |
20150094714 | Lee et al. | Apr 2015 | A1 |
20150297288 | Joseph | Oct 2015 | A1 |
20160157925 | Artale et al. | Jun 2016 | A1 |
20160175031 | Boudreaux | Jun 2016 | A1 |
20170128120 | Cho et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
201299462 | Sep 2009 | CN |
202086577 | Dec 2011 | CN |
102525639 | Jul 2012 | CN |
2415263 | Oct 1975 | DE |
02514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
03423356 | Jan 1986 | DE |
3612646 | Apr 1987 | DE |
3627221 | Feb 1988 | DE |
8712328 | Mar 1988 | DE |
04303882 | Feb 1995 | DE |
04403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19738457 | Mar 1999 | DE |
19751108 | May 1999 | DE |
19946527 | Jul 2001 | DE |
10031773 | Nov 2001 | DE |
10045375 | Apr 2002 | DE |
20121161 | Apr 2002 | DE |
202007009165 | Aug 2007 | DE |
202007009317 | Aug 2007 | DE |
202007009318 | Aug 2007 | DE |
202007016233 | Jan 2008 | DE |
102004026179 | Jan 2009 | DE |
102008018406 | Jul 2009 | DE |
1281878 | Feb 2003 | EP |
1159926 | Mar 2003 | EP |
1532932 | May 2005 | EP |
2301468 | Mar 2011 | EP |
2353535 | Aug 2011 | EP |
2436327 | Apr 2012 | EP |
2436330 | Apr 2012 | EP |
2529681 | Dec 2012 | EP |
3072467 | Sep 2016 | EP |
61501068 | Sep 1984 | JP |
6502328 | Mar 1992 | JP |
55106 | Jan 1993 | JP |
H0540112 | Feb 1993 | JP |
6121797 | May 1994 | JP |
6285078 | Oct 1994 | JP |
6511401 | Dec 1994 | JP |
H06343644 | Dec 1994 | JP |
H07265328 | Oct 1995 | JP |
H0856955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
H08289895 | Nov 1996 | JP |
H08317934 | Dec 1996 | JP |
H08317936 | Dec 1996 | JP |
09000538 | Jan 1997 | JP |
H0910223 | Jan 1997 | JP |
9122138 | May 1997 | JP |
0010000195 | Jan 1998 | JP |
H1024051 | Jan 1998 | JP |
H10155798 | Jun 1998 | JP |
1147149 | Feb 1999 | JP |
H1147150 | Feb 1999 | JP |
H1170124 | Mar 1999 | JP |
H11169381 | Jun 1999 | JP |
H11192238 | Jul 1999 | JP |
H11244298 | Sep 1999 | JP |
2000102545 | Apr 2000 | JP |
2000135222 | May 2000 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001003400 | Jan 2001 | JP |
2001008944 | Jan 2001 | JP |
2001029355 | Feb 2001 | JP |
2001029356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
2001190564 | Jul 2001 | JP |
2002136525 | May 2002 | JP |
2002528166 | Sep 2002 | JP |
2003116871 | Apr 2003 | JP |
2003175052 | Jun 2003 | JP |
2003245285 | Sep 2003 | JP |
2004517668 | Jun 2004 | JP |
2004528869 | Sep 2004 | JP |
2005152663 | Jun 2005 | JP |
2005253789 | Sep 2005 | JP |
2005312807 | Nov 2005 | JP |
2006015078 | Jan 2006 | JP |
2006501939 | Jan 2006 | JP |
2006095316 | Apr 2006 | JP |
2008054926 | Mar 2008 | JP |
2011125195 | Jun 2011 | JP |
H0630945 | Nov 2016 | JP |
401367 | Oct 1973 | SU |
9400059 | Jan 1994 | WO |
9923933 | May 1999 | WO |
0024330 | May 2000 | WO |
0036986 | Jun 2000 | WO |
0059392 | Oct 2000 | WO |
0115614 | Mar 2001 | WO |
0154604 | Aug 2001 | WO |
0245589 | Jun 2002 | WO |
02080786 | Oct 2002 | WO |
02080793 | Oct 2002 | WO |
2006021269 | Mar 2006 | WO |
2005110264 | Apr 2006 | WO |
2008040483 | Apr 2008 | WO |
2011018154 | Feb 2011 | WO |
2013009758 | Jan 2013 | WO |
2013022928 | Feb 2013 | WO |
2013134044 | Sep 2013 | WO |
2015017991 | Feb 2015 | WO |
Entry |
---|
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.. (1 page). |
Vallfors et al., Automatically Controlled Bipolar Electrocoagulation—“COA-COMP”, Neurosurg. Rev. (1984), pp. 187-190. |
Examination Report No. 1 issued in corresponding Australian Application No. 2018201752 dated Aug. 8, 2018, 10 pages. |
Extended European Search Report issued in corresponding application No. 18171773.7 dated Oct. 8, 2018, 7 pages. |
Canadian Office Action issued in Canadian Application No. 2,997,771 dated Jan. 4, 2019, 3 pages. |
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler. |
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz, abandoned. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich, abandoned. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument”; Innovations That Work, Jun. 2003. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps”, Feb. 6, 1967 (Feb. 6, 1967), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center,Chariotte,NC; Date: Aug. 2003. |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12:876-878. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report” Innovations That Work, Feb. 2002. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al., “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surger” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999. |
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. (6 pages). |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. (1 page). |
Burdette et al. “In Vivo Probe Measurement Technique For Determining Dielectric Properties At VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. (4 pages). |
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001. (1 page). |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. (15 pages). |
Number | Date | Country | |
---|---|---|---|
20200297405 A1 | Sep 2020 | US |