This patent document relates to methods, devices and articles for an acoustic coupling medium useful for ultrasound imaging.
Acoustic imaging is an imaging modality that employs the properties of sound waves traveling through a medium to render a visual image. High frequency acoustic imaging has been used as an imaging modality for decades in a variety of biomedical fields to view internal structures and functions of animals and humans. High frequency acoustic waves used in biomedical imaging may operate in different frequencies, e.g., between 1 and 20 MHz, or even higher frequencies, and are often termed ultrasound waves. Some factors, including inadequate spatial resolution and tissue differentiation, can lead to less than desirable image quality using conventional techniques of ultrasound imaging, which can limit its use for many clinical indications or applications.
Disclosed are methods for manufacturing and packaging a semi-rigid acoustic coupling medium (SACM), which can be embodied as a semi-rigid hydrogel interface pad, that provides an acoustic coupling medium for ultrasound diagnostic and treatment techniques.
In some aspects, a method of manufacturing an acoustic coupling material includes (a) forming a staged solution by adding together a stock solution comprising a monomer and a polymer in deoxygenated water and a primed solution comprising a covalent crosslinking agent and a catalyst; (b) forming a gel-sol by mixing the staged solution with a first network activator solution comprising a monomer activator and a second network activator solution comprising a polymer activator; (c) dispensing the gel-sol into a mold; and (d) curing the gel-sol in the mold to produce a semi-rigid acoustic couplant, wherein the method is carried under an inert atmosphere.
In some aspects, a method of manufacturing a hydrogel includes (a) heating a first solution comprising a 1° network component and a 2° network component in deoxygenated water to lower a viscosity of the solution; (b) cooling the first solution to about 23° C. and adding a second solution comprising 1° network crosslinker and a catalyst to form a third solution; (c) optionally, adding a photoinitiator to the second solution prior to adding the second solution to the first solution; and (d) cooling the third solution to about 15° C. and adding a chilled 1° network activator solution and a chilled 2° network activator solution to the third solution simultaneously, wherein upon adding the chilled 1° network activator solution and a chilled 2° network activator solution, the 1° network component and the 2° network component polymerize to form a gel-sol; and (e) dispensing the gel-sol into a mold to form the hydrogel, wherein each of steps (a)-(e) are carried out under and inert atmosphere.
In some aspects, a method of manufacturing a hydrogel comprising sodium alginate block copolymer (P(SA)) and dimethylacrylamide monomer (DMAm) includes (a) preparing a solution comprising sodium alginate (SA) in deoxygenated water and preparing a solution comprising dimethylacrylamide (DMA) in deoxygenated water; (b) filtering the solution comprising the SA to remove aggregated SA and collecting a filtrate of the solution comprising SA; (c) adding the solution comprising DMA to the filtrate of the solution comprising SA to form a stock solution; (d) mixing the stock solution with a solution comprising N′,N′,N,N-tetramethylethylenediamine (TMED) and N,N′-methylene bisacrylamide (MBA) to form a staged solution; (e) adding to the staged solution a solution comprising a calcium sulfate (CA) and a solution comprising ammonium persulfate (APS) simultaneously, wherein the DMA and SA polymerize to form a gel-sol; (f) dispensing the gel-sol of the polymerized DMA and SA into a mold; (g) placing the mold into oven to cure the gel-sol and optionally, irradiating the gel-solution with light to accelerate curing to form the hydrogel; (h) sealing the hydrogel under an inert atmosphere; and (g) packing the hydrogel into a vehicle for shipment.
In some aspects, an acoustic coupling article includes a semi-rigid acoustic coupling medium (SACM) operable to conform to a receiving body to propagate an acoustic signal within the SACM to and from the receiving body; and a packaging container coupled to the external layer of the SACM, the packing container including a mold casing in which the SACM is produced therein to have at least a portion of its shape defined by the mold casing.
The subject matter described in this patent document can be implemented in specific ways that provide one or more of the following features.
Acoustic imaging can be performed by emitting an acoustic waveform (e.g., pulse) within a physical elastic medium, such as a biological medium, including tissue. The acoustic waveform is transmitted from a transducer element (e.g., of an array of transducer elements) toward a target volume of interest (VOI). Propagation of the acoustic waveform in the medium toward the target volume can encounter structures that cause the acoustic waveform to become partly reflected from a boundary between two mediums (e.g., differing biological tissue structures) and partially transmitted. The reflection of the transmitted acoustic waveform can depend on the acoustic impedance difference between the two mediums (e.g., at the interface between two different biological tissue types). For example, some of the acoustic energy of the transmitted acoustic waveform can be scattered back to the transducer at the interface to be received, and processed to extract information, while the remainder may travel on and to the next medium. In some instances, scattering of the reflection may occur as the result of two or more impedances contained in the reflective medium acting as a scattering center. Additionally, for example, the acoustic energy can be refracted, diffracted, delayed, and/or attenuated based on the properties of the medium and/or the nature of the acoustic wave.
Acoustic wave speed and acoustic impedance differences can exist at the interface between the transducer and the medium to receive the acoustic waveform, e.g., referred to as the receiving medium, for propagation of the acoustic waveform toward the target volume, which can disrupt the transmission of the acoustic signal for imaging, range-Doppler measurement, tissue characterization (e.g., Acoustic Radiation Force Impulse—ARFI), or therapeutic applications. Acoustic impedance differences caused due to differing material properties (e.g., material density) of the two mediums and the acoustic wave velocity, such that a substantial amount of the emitted acoustic energy will be reflected at the interface rather than transferred in full across the interface. In typical acoustic (e.g., ultrasound) imaging or therapy applications, for example, a transmission gel is applied to the receiving medium (i.e., the skin of a subject) at the interface where the transducers will make contact to improve the transfer of the acoustic waveform(s) from the transducer to the body and the reception of the returned acoustic waveform(s) from the body back to the transducer. In such applications without the ultrasound gel, the interface may include air as a component of the medium between the receiving medium (e.g., living skin tissue) and the transducer, and an acoustic impedance mismatch in the transducer-to-air and the air-to-body discontinuity causes the scattering (e.g., reflection) of the emitted acoustic energy.
Despite relatively good success in reducing acoustic impedance difference at the interface, when dispensed on the VOI, acoustic transmission gels may contain tiny packets of air that can disrupt the transmission of acoustic signals. Additionally, many patients complain of discomforts with the use of gels dispensed on their skin, e.g., such as temperature, stickiness, or other. More concerning, however, acoustic transmission gels can become contaminated during production or storage, which has led to infections within some patients. For subjects with hair on their skin at the location where the transducer is to be placed, these subjects typically must shave or otherwise remove the external hair which exasperates the trapping of air between the skin and gel.
For non-normal angles of incidence of the acoustic wave relative to the interface, the differences in the acoustic wave speed can result in refraction of the acoustic sound wave. Acoustic wave speed differences at the interface cause the propagation path of longitudinal acoustic waves to refract or change direction according to Snell's Law as a function of the angle of incidence and the acoustic wave speeds either side of the interface. Accumulations of infinitesimal amounts of refraction as the wave propagates in a heterogeneous material results in bending or curvature in the path of the acoustic wave.
As conventional ultrasound (US) imaging assumes that acoustic waves travel in straight lines, refraction along the acoustic path causes degradation and distortion in the resulting image due the ambiguity it creates for the arrival time and location of an acoustic waveform in space for both transmission and reception. A material that matches the acoustic wave speed at the interface significantly reduces the effects of refraction, resulting in a clearer and less ambiguous image. Additionally, a semi-rigid material that has a homogeneous acoustic wave speed throughout will minimize the potential for curvature of acoustic wave paths inside the material.
Ultrasound imaging gained interest in the medical imaging community for portability, multiple anatomic target modalities, safety, and relatively low cost when compared to X-ray, computerized tomography (CT), and magnetic resonance imaging (MRI) techniques. Some modalities focus entirely on cardiology and can create 4-D images of beating ventricles. Other modalities are dedicated calculators that compute fluid flow through tiny corpuscular capillaries in the liver and spleen whereas other modalities simply use the US as a general-purpose machine. Regardless how narrow or broad the application, all US machines suffer from the same limitations engendered from traditional ultrasound design, i.e., loss of image quality at depth and low near field resolution. While the image depth depends mostly on array design and transducer frequency, the obfuscated near field is the result of large impedance mismatch differences between the transducer interface and patient interface and the focal point of the transducer.
Near field convolution is an annoyance encountered in many US diagnostic techniques, especially for synovial joints which are bundles of tendon, fluid, bone, and muscle tightly bound together under a thin, sinewy veil of skin and tissue. This is a ubiquitous problem, and many clinicians have resorted to filling a nitrile rubber glove with tap water to act as a portable, quasi water bath that doubled as a standoff, e.g., any acoustic coupling material providing distance between the transducer interface and patient interface. Simple, cost effective, and fast to implement, this artifice was good enough solution for generating quick non-visceral US images with linear arrays.
Furthermore, for non-linear arrays and non-planar surfaces, technical issues become too challenging for simple water balloons to surmount. Take for an instance a semicircular array for Acoustic Coherent Tomography (ACT) which has several array elements that need to couple to a swath of variegated patient interface geometries during a multi-anatomic target examination. The first challenge with water balloons is contorting the tubular geometry to couple to the transducer interface without creasing on the patient interface, as shown in
For polymers with thick walls, high young modulus, and low strain before failure the load on the transducer side of the water balloon is directly transmitted to the patient interface without dispersing the load over a larger surface area and without conforming to the non-symmetric patient geometry. Low elastic modulus, high strain before failure, and thin walled polymers might deform more, but are not conformable enough to bridge large gaps between the rigid, symmetrical transducer interface and the asymmetric, deformable patient interface, and are more prone to bursting and rolling during examinations, as illustrated in
A more conformable and durable standoff was needed, so thin, semisolid, hydrogel pucks or sheets (e.g., ˜1.0-1.5 cm) have been developed to accommodate traditional US imaging in the near field. These hydrogel puck or sheet standoffs aim at minimizing the impedance mismatch between the rigid, symmetrical transducer interface and the asymmetrical, conformable patient interface for linear arrays. More conformable than water balloons, thin hydrogel sheets can fill in divots and escarpments along planar surfaces and form to eclectic curved topography. Additionally, depending on the hydrogel chemistry and morphology, hydrogels can either be sticky for long, static US diagnostic scans or generate a lubricating layer via syneresis when conducting short, dynamic scans under pressure.
Yet, despite greater conformability than water balloons, hydrogels on the current market have a large bulk modulus which increases hydrogel rigidity as the thickness increases. Coupled with low fracture toughness and paraben preservatives, the stiffness and brittleness, the ease of crack propagation, and the ambiguity of health safety render hydrogel standoffs useless in applications where a thick (e.g., >2 cm), tough, and conformable semi-rigid standoff is needed for non-linear arrays like the aforementioned ACT semicircular array.
Disclosed are methods for manufacturing and packaging a semi-rigid acoustic coupling medium (SACM), also referred to herein as a semi-rigid acoustic couplant (SAC) that provides an acoustic coupling medium for ultrasound diagnostic and treatment techniques. The methods in accordance with the embodiments disclosed herein include scalable, cost-effective, and rapid production techniques that can enable mass production of SACMs directly in a packaging ready for immediate use as an acoustic coupling medium, for direct shipment, and/or for long-term storage for later use. For example, the disclosed methods can minimize production surplus and be employable for just-in-time (JIT) operations. In some embodiments, the SACMs can include a hydrogel material to create a semi-rigid hydrogel interface pad, referred to as a “HIP” or “SHIP”. The disclosed SACMs offer advantages over conventional coupling mediums such as water baths and standoffs like water bags and puck or sheet hydrogels, e.g., including, but not limited to, offering superior acoustic and mechanical properties.
In some aspects, the disclosed SACMs include an engineered polymer network having the ability to form elaborate geometries and entrap water to a high percentage (e.g., 85% or greater) that provides acoustic impedance matching between ultrasound transducer elements and the target biological volume. The disclosed SACMs are semi-flexible, -stretchable and -bendable, for example, while also being semi-stiff, e.g., analogous to a bendable rubber. In some embodiments, the semi-flexible SACM is stiffer than a soft elastomer, but soft enough to stretch and bend considerably without breaking. The disclosed SACMs provide additional advantages in their manner of manufacture, distribution and application based on their low-cost of fabrication, simultaneous step of sterilization and curing, stable storage, and biocompatibility.
In some embodiments, a SACM article or acoustic probe devices incorporating a SACM in accordance with the present technology are operable to propagate acoustic signals with an acoustic impedance matching of 10 MRayls or less (e.g., more preferably 4 MRayls or less for certain applications, and capable of 2 MRayls or less or 1.6 MRayls or less). In such devices, the SACM conforms to the surfaces of both an acoustic probe device having one or more transducer elements and receiving body (having the target biological volume) based on its semi-rigidity, including a stretchability of 10% to 1000% elongation or greater, e.g., 2500%, compression of 20% to 99.99%, and a Young's modulus of 30 kPa to 500 kPa, or in some embodiments lower than 30 kPa, e.g., as low as 1 kPa.
Example Embodiments of a Semi-Rigid Acoustic Couplant
In some embodiments in accordance with the present technology, a semi-rigid acoustic coupling medium (SACM) includes a monomer, a polymer (e.g., a block copolymer), a dispersive phase, a covalent crosslinker agent, cationic crosslinking agent, catalyst, and/or a free radical initiator.
A function of the monomer is to serve as the primary, structural network for the hydrogel. In some embodiments, the monomer is an acrylamide. Non-limiting examples of acrylamide monomers include dimethylacrylamide (DMA), diethylacrylamide (DEAA), phenyl acrylamide, tert-butylacrylamide, octadecylacrylamide, isopropylacrylamide, or diphenylmethylacrylamide. The monomer is sometimes referred to as the “1° network”. In some embodiments, for example, the 1° network monomer includes DMA.
A function of the polymer is to provide a secondary, grafted sacrificial network for the hydrogel. In some embodiments, the polymer is a polysaccharide. Non-limiting examples of polysaccharides include sodium alginate (SA), potassium alginate, calcium alginate, ammonium alginate, low acetylated gellan gum, high acetylated gellan gum, modified starches, agar, k-Carrageenan, I-Carrageenan, low methoxy pectin, high methoxy pectin, methyl cellulose, hydroxypropyl methyl cellulose, cellulose/gelatin, or propylene glycol alginate. The polymer is sometimes referred to as the “2° network”. In some embodiments, for example, the polymer is composed of a SA block copolymer. In some embodiments, the polymer is a block copolymer, which can be referred to as the “2° network” with respect to the disclosed articles and methods for producing a semi-rigid acoustic coupling medium. In some embodiments, for example, the block copolymer is an alginate, such as the SA block copolymer.
In some embodiments, the dispersive phase is water (e.g., deionized water (DI H2O)), which can be present in an amount of about 75.65 wt % to about 95.98 wt % of the total weight of the hydrogel interface pad.
In some embodiments, the covalent crosslinker agent is an acrylamide. Non-limiting examples of acrylamide covalent crosslinkers include N′,N′-methylene bisacrylamide (MBA), bisacrylamide, ethylene bisacrylamide, piperazine diacrylamide, or ethylene glycol bisacrylamide. The covalent crosslinker agent is sometimes referred to as the 1° network crosslinker. In some embodiments, for example, the 1° network crosslinker includes MBA.
In some embodiments, the cationic crosslinking agent is a monovalent, divalent, trivalent metal. For example, a cationic crosslinking agent can be a transition metal, an alkali metal, or an alkaline earth metal where the metal is the 1+, 2+, or 3+ oxidation state. In some embodiments, the cationic crosslinking agent is lithium, sodium, potassium, magnesium, calcium, zinc, zirconium, iron, cobalt, nickel, titanium, or copper. In some embodiments, the cationic crosslinking agent is in the form of any monovalent divalent, or trivalent salt. For example, in some embodiments the cationic crosslinking agent is any sulfate, phosphate, chloride, bromide, triflate, amine, or carboxylate salt. In some embodiments, the cationic crosslinking agent is calcium sulfate (CA), calcium phosphate, calcium chloride, calcium bromide, or calcium triflate. The cationic crosslinking agent is sometimes referred to as the 2° network activator. In some embodiments, for example, the 2° network activator includes CA.
A function of the catalyst is to promote and/or increase the rate of the chemical reaction that forms the hydrogel composition. In some embodiments, the catalyst is an amine. Non-limiting examples of amine catalyst include aliphatic amines, N′,N′,N,N-tetramethylethylenediamine (TMED), benzyldimethylamine, methylamine, or triethyl amine.
A function of the free radical initiator is to generate free radicals that initiate the formation of the hydrogel polymer network. Non-limiting examples of free radical initiators includes ammonium persulfate (APS), peroxides such as dialkyl peroxides, hydroperoxides, diacyl periods, or azo-compounds (i.e., —N═N— moieties). In some embodiments, the initiator is a photoinitiator. Non-limiting examples of photo initiators include ribofalvin-5′-phosphate, ribofalvin-5′-phosphate sodium, ethyl (2,4,5-trimethylbenzoyl) phenyl phosphinate (TPO-L), bis-acylphosphine oxide (BAPO), 2-hydroxy-2-methyl propiophenone, methylbenzoyl formate, isoamyl 4-(dimethylamino) benzoate, 2-ethyl hexyl-4-(dimethylamino) benzoate, or diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO). Additional, non-limiting examples of suitable photo-initiators include 1-hydroxycyclohexyl phenyl ketone (Irgacure 184), 2,2-dimethoxy-2-phenylacetophenone (Irgacure 651), and 2-methyl-1-[4-(methylthio) phenyl]-2-(4-morpholinyl)-1-propanone (Irgacure 907), hydroxyacetophenone, phosphineoxide, benzophenone, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP). The free radical initiator is sometimes referred to as the 1° network activator. In some embodiments, for example, the 1° network activator includes TMED
In some exemplary embodiments of the present disclosure, a semi-rigid hydrogel interface pad is made up of two water soluble polymer networks: a primary (1° network) scaffold and a secondary (2° network) sacrificial graft. In some embodiments, the hydrogel interface pad includes a dimethyl acrylamide monomer (DMAm), a sodium alginate block copolymer (P(SA)), and water. For example, the DMA concentration can be engineered to affect the elasticity and conformability. In some embodiments, the hydrogel interface pad further comprises MBA, TMED, CA, and APS.
Example Methods for Fabricating SAC Compositions and Articles
Example embodiments of a method for scalable, cost-effective, and rapid fabrication of semi-rigid acoustic couplants are described, which in some embodiments, can produce SACMs directly in a packaging ready for immediate use as an acoustic coupling medium, for direct shipment, and/or for long-term storage for later use. The chemical and morphological characteristics of semi-rigid acoustic coupling medium as disclosed herein are not only dependent on the chemical constituents, but also on the physical interactions within the medium, at mold-solution interfaces, and a host of other phenomena. Thus, the way SACMs are fabricated and packaged adds additional layers of complexity to manufacturing.
Following DI-Dox production, the method 300 includes a process 302 to separate the DI DOX water into two vessels: DI Dox 1 and DI Dox 2. To the first DI-DOX water vessel (DI Dox 1), a monomer to provide the primary, structural network (i.e., 1° network, e.g., such as DMAm) of the stock solution is added at a process 303 of the method 300. Upon dissolution, for example, cooling occurs as the example DMA monomers disperse endothermically throughout the DI Dox 1 solvent. Simultaneously, the method 300 includes a process 304 to disperse a second constituent to provide a secondary, structural network (i.e., 2° network, e.g., such as SA) in the second DI-Dox water vessel (DI Dox 2) at 304, producing a viscous clear, or translucent-amber, solution. Dilute DMAm solutions have observed near-Newtonian behavior while dilute SA solutions exhibit thixotropic shear thinning and pseudoplastic behavior. When mixing SA, it is important to avoid fisheye formation.
Referring back to
Notably, from the stock solution, small batches of SACMs can be manufactured when needed; thus, surplus inventory is minimized, materials consumption decrease, waste is mitigated, and the overall Cost of Manufacturing (COM) is cut. Additionally, Fixed Capital Investment (FCI) and equipment maintenance are minimized by reducing the number of unit operations while increasing the process streams flexibility to produce a variety of SACM geometries, and acoustic and mechanical properties—achieved by changing the Dispensed Aliquot Volume (DAV) and the mold for the forming the SACM in a desired geometry, size and shape (e.g., such as a tray type), and the composition of the small batch respectively. Tray type refers to the mold used to manufacture the SACMs which enables curing, provides environmental protection, cleanliness, and/or sterility of the resulting SACM. As such, the tray serves a significant component of both the manufacturing and distribution process.
The method 500 can be implemented on-demand or just-in-time. For example, when a batch of SACMs are ordered, the stock solution 511 is added to a smaller vessel and degassed to remove air entrained during transport. Agitated, the stock solution 511 is sparged and blanketed with inert gas (e.g., N2, He, Ar, etc.) under vacuum (e.g., −15 inHg gauge) and elevated temperature (e.g., 50° C.), reducing the solution viscosity to flash-out gaseous oxygen and inert gas bubbles. Ensued sparging ensures Dissolved Oxygen (DO) is less than or equal to the minimum DO (e.g., DOmin=0.1 ppm). Oxygen quenches free radical initiation, degrades the catalyst, and obstructs efficient propagation, leading to excessive residual monomer (e.g., >0.03 ppm DMAm) remaining in the SACM, which is a toxic, possibly carcinogenic, irritant. Once oxygen is removed, the solution is cooled back to room temperature under an inert atmosphere before proceeding to the next series of processing steps.
In some implementations of the process 510, e.g., to prepare the primed solution 512, in a separate vessel, the 1° network crosslinking agent (e.g., MBA) and the catalyst (e.g., TMED) are dissolved in DI-DOX water under an inert atmosphere to make a “primed” admixture. The primed solution 512 is then fed into the stock solution to generate the “staged” solution. In some implementations of the process 520, for example, the staged solution 515 is capable of crosslinking immediately once both the 1° network activator (e.g., APS) and the 2° network activator (e.g., CA) are added to the staged solution. For example, because oxidation of TMED vitiates rapidly in aqueous mediums with DO, the staged solution cannot be stored for long durations like the stock solution, otherwise variable reaction rates will generate SACMs with variegated mechanical, acoustic and biocompatibility characteristics.
While mixing the staged solution, both the 1° network activator (e.g., APS) and 2° network activator (e.g., CA) solutions are formulated by dissolving the example constituents APS and CA in DI-DOX water, respectively. In some implementations, for example, both the 1° network activator and 2° network activator solutions are simultaneously fed into the staged solution 515 at the process 520 to produce a homogenous APS and CA dispersion, the gel-sol 525. Failure to do so can create reaction hotspots, resulting in SACMs with variable mechanical, acoustic, and biocompatibility characteristics per a single batch.
DMAm polymerization is exothermic and must be controlled to prevent a runaway reaction. For example, a runaway reaction occurs where heat generated from polymerizing and grafting increases the temperature of the solution, increasing the rate of reaction, and further increasing the temperature; thus, a positive feedback loop can be generated. Consequently, uncontrolled reactions generate extremely short 1° crosslinks that are unable to stretch and distribute forces under load, yielding a SACMs with low fracture toughness. Excessive heat can also degrade the P(SA) block copolymers as the solution increases in temperature (e.g., >75° C.), and warp the plastic packaging when dispensed into polyethylene terephthalate glycol (PETG) trays. Worst case scenarios can lead to premature gelling in the vessel, degradation of the final product, and a possible explosion from rapid temperature and pressure buildup.
Preventing critical failures requires excellent process control. Heat generated from the reaction can be removed via convective heat exchange and varying the agitation rate. Quenching agents, like monomethyl ether of hydroquinone (MEHQ), can also be added lower the rate of reaction and prevent a positive feedback loop from occurring. However, copious MEHQ, or other retarder, can also increase the amount of residual monomer and might impede effective 1° network crosslinking, yielding brittle and rigid SACMs. Reducing the batch volume also reduces the amount of reacting mass, reducing the risk and severity of a runaway reaction and improving heat exchange. Furthermore, as the amount of initiator and monomer increase, the rate of reaction increases, producing more heat as the number of effective number of polymerization reactions increase. As a result, adjusting the flow rate and temperature of added initiator, and the temperature and agitation rate of the staged solution, will control the amount of heat released. For example, slowly adding cold initiator to a cool, moderately agitated solution reduces the rate of heat generated while rapidly adding hot initiator to warm, vigorously agitated solution increases the rate of heat generated.
In some implementations of the method 500, for example, when both the 1° network activator and 2° network activator solutions are completely dispensed into the stage solution, the “gel-sol” is formed, which must be completely dispensed from the vessel before the potlife of 30 min is exceeded. In some embodiments, the resulting gel-sol 525 exhibits liquidity for long durations (e.g., has an increased pot-life). Liquidity refers to the viscosity of the gel-sol and by exhibiting liquidity, the gel-sol 525 maintains the characteristics of a liquid. Excessive crosslinking can suppress the liquidity of the gel-sol 525. Controlling the rate of reaction changes the duration the gel-sol remains as a liquid/suspension before crosslinking into a semi-solid hydrogel, or before the polymerizing gel-sol becomes too viscous to cast into a mold without the inclusion of air bubbles. Thus, the liquidity has important implications for large-scale and small-scale manufacture of hydrogel pads. For example, to minimize the formation of bubbles (e.g., micro-bubbles) that can become captured (e.g., “locked”) within the semi-solid hydrogel matrix, a challenge frequently encountered in hydrogel fabrication, the gel sol liquidity—when the gel-sol viscosity is low—can be prolonged by retarding and/or post-polymerizing the gel-solution 525. Notably, a failure to remove and/or prevent bubble formation can result in SACMs with properties associated with poor acoustic transmission. For example, the resulting SACMs with captured bubbles in the hydrogel matrix can have reduced acoustic performance due to increased attenuation, unwanted scattering, and/or obscured ultrasound images. Additionally, bubbles entrapped within the hydrogel matrix also compromise the mechanical properties of the SACMs, resulting in increased localized stress regions as well as a decreased elasticity and/or conformability.
Potlife further controls the batch size and the length of time before the gel-sol sets/gels. Gel-sol with a long potlife can yield large SAC batches while gel-sol with a short potlife can only be produced in small batches. The batch size is also dependent on the stepwise flow rate of gel-sol dispensed from the vessel into a tray/mould which is calculated from the rate of DAV per tray, DAV flow rate, and tray velocity. For example, if the stepwise flow rate is too low, then the gel-sol will exothermically gel inside the batch, rapidly increasing the pressure and temperature inside the vessel. Despite a relatively long potlife, small batch vessels (e.g., ≤150 L) are used instead of large batch vessels (e.g., >150 L) to mitigate the risks and severity of critical failures by increasing effective heat exchange (e.g., vessel surface area to gel-sol volume ratio), improving homogenous mixing, and reducing the amount of polymerizing mass. Small batches are also easier to degas, simpler to maintain, and less arduous to Clean in Place (CLIP), for example.
In some implementations of the process 530, the viscous gel-sol 525 is dispensed into molds (e.g., PETG trays) under a blanket of inert gas to prevent oxygen diffusion into the medium which can create cure gradients in the material as a function of thickness. The tray is made of vacuum formed, PETG which is UV, ion-beam, and γ-ray transparent, useful if sterilization and UV curing are desired, in which case photoinitiator is added to the 1° network activator (e.g., APS) solution before casting/dispensing. For example, PETG trays have high surface energy, which reduces the amount of oxygen trapped between the gel-sol and the tray wall during curing. If a low surface energy, or unwettable surface, material is used, then there is greater risk of oxygen adsorption and entrapment on the packaging surface, creating a significant curing gradient (e.g., ≥1 mm thick).
In some implementations, PETG trays are manufactured by first bead blasting extruded sheets of plastic to roughen the surface to vacate air when the plastic is pulled against a male or female mold, preventing wrinkling and creasing during suction. Then, a sheet of PETG plastic is then clamped over a sealed window in a class 100,000 clean room and heated past the glass transition temperature (To but below the melting temperature (Tm), making the plastic pliable enough to conform to the mold surface, but not too soft where it will excessively thin or rip. Molds with steep drafts and undercuts require positive pressure, vacuum snapback, and/or plug-assists to conform the plastic against the positive or negative mold. Cooled, the trays are then guillotined, and double-bagged afore shipment.
Once vacuum formed and shipped, PETG trays are “denested”—removed from one another when stacked. If PETG trays do not have denest features, then the trays may stick to one another during production, affecting SACM processing downstream. Features include permeating silicones or other lubricants after plastic extrusion or vacuum forming, and/or inorganic fillers like talcum or mica that break up the smooth surface to reduce the amount of contacting surface area between each tray. Illustrations for lubricating skin layers and slip-features are presented in
Table 1 describes example categories of techniques for preparing and/or properties of example materials that can be suitable for fabrication of the mold (e.g., tray).
In some implementations, the mold includes a plastic or a metal. In some examples, the plastic mold includes a thermally-formed plastic, an injection-molded plastic, a casted plastic, or a machined plastic. In some examples, the metallic mold includes a thermally-formed metal, an injection-molded metal, a casted metal, or a machined or drawn metal. PETG is one example of the plastics suitable for SAC manufacturing. Other amorphous, crystalline, and semi-crystalline elastomers, thermosets, or thermoplastics materials, e.g., ABSs, PETEs (PET), PEITs, PCs, PEs, PPs, PSs, XLPEs, HIPSs, Nylons, PUs, Silicones, TPUs, TPCs, and TPEs, are also suitable if certain conditions and parameters are met, e.g., such as those listed in Table 1. In some implementations, the mold can include a passivated or coated metal or metals meeting conditions and parameters like those in Table 1.
In some embodiments, the packaging for the SACM provides a sterile barrier against microbes, maintains the moisture of the SACM, and serves as the SACM mold. In some implementations, by combining the packaging and the mold (e.g., the PETG tray), the number of unit operations required can be reduced and the sanitation of the final product can be improved while simultaneously reducing the product cost and Turn Around Time (TAT).
In some implementations, the tray is comprised of a cost effective, sterile, and low oxygen adsorption packaging material such as a thermoplastic that has thermal stability, resists chemical attack (e.g., combination reactions, decomposition reactions, and/or combustion reactions, polymerization reactions) and/or endures radiological environments, and has a high surface energy coating. In some implementations, for example, the trays are rigid enough that once formed, they do not warp and bend at elevated temperatures when dispensing, gelling, and post curing the SACM. In some implementations, for example, the trays have a Heat Deflection Temperature (HDT) that is low enough such that the HDT that does not prohibit injection molding and vacuum thermoforming.
Another important consideration for the tray includes oxygen permeability. In some implementations, for example, the tray must allow for a controlled oxygen environment to minimize oxygen exposure in order to prevent quenching of free radical polymerization, which can generate residual monomer concentration gradients. Accordingly, in some implementations, the oxygen permeation through the packaging must be slower than the time to fully cure the SACM. In some implementations, the tray includes a material (e.g., like PETG) that minimizes water absorption and permeation and prevents embrittlement and excessive SACM swelling.
Blocking force, or the retaining force exerted by intramolecular attractions between the trays, and the coefficient of friction for stacked trays is an important consideration to minimize trays with high surface energy from sticking, otherwise the trays can become “glued” together. Non-stick features should be inert, non-toxic, and non-irritating to meet biocompatibility requirements. In some implementations, the trays are transparent to allow for observation of the SACM curing progress and to check for air bubbles during QA.
In some implementations of the method 500, while setting (potting, gelling) and/or sterilizing, the gelling SACM can be sealed in an inert atmosphere with an aluminum foil cover, or other metallic or plastic cover, for anti-tampering, microbe-barrier, and storage purposes. Once sealed, an additional retainer lid snap-fits on the tray to retain the foil seal and curing hydrogel. SACMs can have a dwell time (e.g., 8 hr), or “green” time, after potting before the specified mechanical and acoustic properties are developed. While green, SA grafts and networks orient themselves in the lowest energy conformation by forming ion-ion junctions around the divalent CA ions. Simultaneously, a UV post-cure can be implemented during the green stage to increases the extent of polymerization, significantly reducing the amount of residual monomer remaining via additional crosslinking and shortening the dwell time. After dwelling, the fully cured SACMs are packaged and shipped in non-transparent containers to prevent lysis of P(DMAm) which occurs after the green stage in direct UV-radiation.
The example SACMs described herein can be cured using numerous curing methods. Non-limiting examples of curing methods include redox-curing methods, radiation-curing methods, and/or thermo-curing methods.
Example Redox-Curing Methods
In some implementations, redox initiators such as lyse when dissolved in aqueous solution can, when promoted by a catalyst, initiate DMAm vinyl addition polymerization. For example, TMED catalyzes APS lysing into a bisulfate and a sulfate-radical, which is stable over a broad set of temperatures (e.g., 5-110° C.) and pH levels (e.g., 7-10 pH) ranges. In some implementations, the sulfate-radicals fully react to give bisulfate as a side product which has some effect on echinoderms such starfish, sea-cucumbers, crinoids, etc. but significantly, have zero impact on mammals. In some implementations, longer reaction times yield SACMs with long kinetic chain lengths on average, providing stretchy, strong, and pliable SACMs.
In some implementations, the example methods of manufacturing redox-initiated SACMs require less equipment, and therefore, an overall reduction in equipment costs and maintenance costs. For example, issues regarding solution viscosity can be mitigated because initiation occurs during agitation, improving initiator free radical diffusion and motility in the gel-sol, generating more successful free radical initiator collisions with the vinyl group on DMAm. Availability and low cost of most pharmaceutical and reagent grade redox-initiators for biomedical applications are important for JIT manufacturing.
Example Radiation-Curing Methods
In some implementations, methods of the present disclosure, use irradiation-initiation to manufacture the SACM to begin vinyl addition polymerization. Unlike a redox-initiated reaction, UV, Electron-Beam irradiation (EBI), and gamma (γ) radiation-initiated reactions do not begin polymerizing the gel-sol until incident radiation exposure. For UV initiated reactions, a UV emitter, like a high-pressure or low-pressure mercury lamp, radiates UV light at the target. The distance, frequency, intensity, and placement beneath the emitter determines the fluence rate (J/s)—flux-rate of incident UV light a given distance from the emitter and of a known emitter length—used to calculate the Dosage (J)—the amount of energy absorbed by the gel-sol. Fluence rate and the total dose will determine the gel time—the time it takes for the gel-sol to gel—and the mechanical, acoustic, and biocompatibility characteristics. In some implementations, UV-curing requires a photoinitiator that can absorb UV-light at a frequency not absorbed by other constituents which will lyse or sacrifice an alkene or alkyne to form a free radical. Once formed, radicalized photoinitiators rapidly initiate the reaction, using up almost all of the photoinitiator before gelation.
In some implementations of γ radiation-initiated reactions, initiation reactions induced by γ-radiation do not need an initiator since γ-radiation lyses water molecules into reactive hydroxide radicals, as process also known as radiolysis, which readily initiate vinyl addition polymerization. The process can eliminate the need for initiators and crosslinkers. In some implementations, the SACM mechanical characteristics are dependent on the dose (e.g., J/kg or Gy). Dose can be controlled by varying the gel-sol exposure to an isotope of cobalt, cobalt-60 (60Co), or other, by varying the intensity that is e.g., adjusting the lead aperture/shutter and duration of exposure, for example. Unlike most materials, water readily absorbs γ-rays, initiating vinyl addition polymerization homogenously throughout the bulk of the gel-sol.
In example implementations using EBI radiation curing, EBI is generated from an ionizing source composed of an emitter (e.g., cathode), grid (e.g., bias cup), and anode which make up the ion gun and high voltage field. The concentrated beam of electrons is accelerated through a magnetic field, focused using a magnetic focusing lens focusing or spreading the ionizing radiation while a magnetic deflection coil steers the ionizing radiation. Unlike γ-irradiation which knocks an electron loose when occasionally colliding with an atom, EBI directly bombards the gel-sol with a beam of electrons, generating for example, hydroxyl free radicals and DMAm free radicals, which can promote crosslinking without an initiator or crosslinker. In some implementations, the β-radiation is more interactive with the gel-sol and therefore, the thickness of the SAC needs to be accounted for when crosslinking the entire gel-sol. EBI dosage is similar to the γ-ray dosage (Gy) but is dependent on more factors: the energy of ionizing radiation (expressed in keV or MeV), the intensity of ionizing radiation (number of bombarding electrons), ion-acceleration and speed, and exposure time. Control over the dosage parameters can be exercised with EBI, significantly reducing the exposure time from minutes to seconds. Directional and focusing control also give EBI processes discrete crosslinking capabilities, crosslinking areas of the gel-sol more than others to create a functionally graded material.
In some implementations using either EBI or γ-irradiation, the methods may not include a chemical initiator or crosslinker and can ameliorate issues regarding the gel-sol viscosity's impact on the frequency factor. Dosimeters indicate irradiation has been applied and the product is fully crosslinked, giving an extra level of quality assurance. In some implementations, SACMs crosslinked using EBI or γ-irradiation result in a sterile product, and the methods can provide improved control over the polymerization of the product and mitigate auto-acceleration risks.
UV-crosslinking has many of the same advantages of EBI and γ-irradiation crosslinking methods. For example, bleaching indicators signify sterilization and crosslinking are complete, which can be well controlled and risks of auto-acceleration can be mitigated, for example, by eliminating the redox initiator. Unlike EBI and γ-irradiation, UV-crosslinking degrades polysaccharide constituents by several orders of magnitude less (e.g., 1000× less). In some implementations, the UV crosslinking methods can minimize the production of hazardous waste and operations coupled with dramatically lower fixed capital investment, utility, and can reduce costs associated with the generation of sterile SACMs.
In some implementations, the methods for producing SACMs include a hybrid method which can, for example, combine redox initiation with prolonged UV-post curing, or UV-redox curing. In some implementations, the combination of a slow redox-reaction coupled with a UV post cure produces a SACM with a high polymerization yield without high risk runaway polymerization. In some embodiments of the hybrid method, for example, by incorporating less redox-initiator (e.g., APS) than standalone redox-reactions and adding more photoinitiator (e.g., riboflavin 5′-phosphate (Rib)) than standalone UV-reactions to cooled staged solution (e.g., ≤15° C.) in the batch reactor significantly retards the rate of redox-polymerization and increases the potlife (e.g., >30 min). For example, after slowing mixing the polymerizing gel-sol, the gel-sol is quickly dispensed into the tray without incorporating bubbles, then promptly UV-cured by photoinitiating the excessive photoinitiator under a curtain of inert gas, reducing the gelation time. Once sealed, the SACs can go into a UV-post-cure-oven (e.g., inert atmosphere at <20° C.), which simultaneously sterilizes the packaging and SAC, and extensively decreases residual monomer at the SAC-tray and SAC-foil interfaces, reducing the dwell time (e.g., >8 hr) before the SAC is fully cured. The reduced dwell time and less arduous CLIP procedures improve the process TAT, reducing costly inventory and improving processing flexibility.
Below are Tables 2A and 2B which describe some example advantages associated with various curing techniques, such as UV-radiation, γ radiation, and electron beam irradiation (EBI), which may apply to some implementations of the described methods.
Table 2A describes example advantages associated with UV-Radiation, γ radiation, and EBI Curing Methods.
Table 2B describes example advantages associated with Redox and Redox-UV with curing methods.
In some embodiments, the Di-dox water is pumped into the system 1402, which includes a shear mixer vessel for agitating the water before SA is added. The Di-Dox water is heated to a temperature of 60° C. or more in system 1402. Agglomerated, crystalline or powdered SA is then added to the Di-Dox water in the system 1402. The Di-Dox water and the SA are then mixed in the system 1402 to form the 2° network solution. The 2° network solution is then pumped out of the system 1402 through an inline filter or other fisheye separator into the system 1404 to prepare the stock solution.
In some embodiments, the Di-DOX water is pumped into the system 1403 from the system 1401. Crystalline, powdered, agglomerated, or liquid DMA monomer is then added to the Di-Dox water in system 1403. The Di-Dox water and DMA are then mixed until the DMA is fully dispersed and solvated in the Di-Dox water to form the 1° network solution. The 1° network solution is then heated until it reaches room temperature (e.g., 25° C.) and then 1° network solution is then pumped into the system 1404.
The warm 2° network solution (e.g., >37° C.) and 1° network solution from the systems 1402 and 1403, respectively are then mixed until homogeneous in the system 1404 to produce the stock solution. The stock solution is gently stirred and maintained at room temperature for the subsequent processing steps. Each time new batch of the gel-sol is prepared, the stock solution is heated to reduce the solution viscosity (e.g., >37° C.) and then pumped to the system 1408.
In some embodiments, the Di-Dox water is pumped into the system 1405 from the system 1401 and sparged with inert gas under an inert atmosphere. TMED is then pumped and/or poured into the Di-Dox water under constant agitation (e.g., stirring and/or mixing). Agglomerated, crystalline, or powder MBA is then added to the TMED and Di-Dox solution. The TMED and MBA are then mixed until fully dissolved, resulting in the primed-solution. While mixing, the primed solution is sparged with inert gas under and inert atmosphere. The primed solution is then pumped to the system 1408 to form the staged solution. Optionally, the 1° network photoinitiator can be added to the staged solution to supplant and/or to be used with the 1° network redox-initiator.
In some embodiments, the Di-Dox water is pumped into the system 1406 and sparged with inert gas under an inert atmosphere from the system 1401. Agglomerated, powder, or crystalline APS is then added to the Di-Dox water in the system 1406. Under and inert atmosphere the APS is dissolved to make the 1° activator solution. The 1° activator solution is then chilled (e.g., <15° C.) before being pumped into the system 1408 to produce the gel-sol solution.
In some embodiments, the Di-Dox water is pumped into the system 1407 and sparged with inert gas under an inert atmosphere from the system 1401. CA is then added to the Di-Dox water in the system 1407. Under and inert atmosphere the CA is dissolved to make the 2° activator solution. The 2° activator solution is then chilled, heated, or maintained at room temperature before being pumped into the system 1408 to make the gel-sol solution.
Each of the solutions prepared in systems 1404, 1405, 1406, and 1407 are pumped into the system 1408 to form the gel-sol solution. As enumerated above, the warmed stock solution (e.g., >37° C.) is pumped into the system 1408 from the system 1404 and then sparged with inert gas under vacuum while heated (e.g., >50° C.) to remove exogenous oxygen. Next, the solution is cooled in the system 1408, while the primed solution is pumped into the system 1408 from the system 1405 to from the staged solution under an inert atmosphere. The staged solution is then cooled (e.g., >20° C.) while being continuously stirred. The 1° activator solution (e.g., >15° C.) is then pumped into the system 1408 from the system from the system 1407. The 1° activator solution and 2° activator solution are then homogenously dispersed throughout the staged solution in the system 1408 to produce the crosslinked gel-sol solution.
A PETG tray with a desired geometry is then placed in a chamber of system 1409 with a dispensing mechanism. The chamber is then flushed with inert gas to remove oxygen.
The gel-sol is then dispensed into PETG trays via DAV dispensing. The PETG trays are then moved from the system 1409 and into the curing oven of system 1410. The oven of system 1410 is continuously flushed with inert gas. The temperature of the oven is then increased to crosslink the dispensed gel-sol from the system 1409. The gel-sol in the oven can be optionally irradiated with UV-light, □-radiation, or EBI to expedite curing and/or to replace the redox reaction step. The hydrogel matrix is then formed via accelerated crosslinking but is not fully cured (i.e., the hydrogel is still “green”). Next, a foil barrier and PETG lids are placed over the hydrogel matrix to seal the trays and to prevent adventitious materials and/or microbes from contaminating the hydrogel matrix.
The hydrogel matrix is then transferred to system 1411 where it is post cured in a UV-chamber to react any residual DMA monomer and to sterilize the hydrogel. After post curing, the hydrogel is fully cured, forming the SACM. Next, the SACMs are inspected for detritus and/or bubbles as well as tested for residual monomer, acoustic properties, and/or mechanical characteristics. The SACMs are then packed in system 1412 and shipped to a vendor and/or customer.
Table 3A shows a legend for an example embodiment of the process unit-operations shown in the diagram of
Table 3B shows the legend for the process streams shown in the diagram of
Example Implementations of SACMs
The example embodiments described above can be used to produce a variety of semi-rigid acoustic couplant materials, such as hydrogel interface pads (HIP), in some implementations. Examples implementations of SACMs are described below.
The mesh size of a hydrogel is dependent on various parameters to include the reaction rate, chain length, stereochemistry, intramolecular interactions, and reaction conditions such as temperature, pressure, and the atmosphere.
In some implementations of the method 300, 500, and 800, for example, an important consideration in making a SACM involves a judicious choice in the quantity of the both the cationic crosslinking agent and the covalent crosslinking agent. For example, in the present exemplary method of making the SACM, the addition of too much of CA (i.e., cationic crosslinking agent) results in the formation of super-aggregates whereas too little CA results in the formation super-dispersions. The equilibrium of too little CA (e.g., super-dispersions) and too much CA (i.e., super-aggregates). Similarly, too much MBAm (i.e., covalent crosslinking agent) results in a tiny mesh size whereas too little MBAm results in too large of a mesh size. As such, the methods 300, 500 and/or 1300 may use 0.14-0.23 wt % of CA and 8.29-9.8 wt % of MBAm in the fabrication of some embodiments of the SACM provided an optimal degree of aggregation and mesh size.
An additional consideration, crucial to fabricating pliable and robust SACMs, is the degree of grafting that occurs upon reacting the secondary, grafted sacrificial network component (e.g., sodium alginate) and the primary, structural network component (e.g., DMAm). Grafting provides impact strength, energy dissipation, self-healing properties, mechanical hysteresis, and thermal hysteresis of the SACM. The exemplary SACM of the present disclosure exhibits and optimal degree of grafting between the SA and DMAm that affords the aforementioned characteristics.
In example implementations, the example SACM 1501 was used as a control hydrogel, composed of Poly(Acrylamide) (Poly(AA)) with low viscosity P(SA) 2° network with good elastic, conformability, and clarity properties. Rippling on SACM 1501 exposed surface was due to surface tension differentials during the gelation process. The example SACM 1503 was configured to have the same composition as SACM 1501 without surface rippling. The example SACM 1504 was configured to have the same composition of Poly(AA) and P(SA) components as SACM 1501 and SACM 1503; but, the example SACM 1504 supplements low viscosity P(SA) with high viscosity P(SA). The example SACM 1502 was configured to have the same composition of P(SA) as SACM 1501 and SACM 1503 while substituting Poly(DMAm) for Poly(AA). In these implementations, it was shown that all of the example SACMs had similar acoustic properties while only differentiating in elastic modulus (E) and Ultimate tensile strength (UTS).
For example, rippling on the transducer side of SACM 1501 was due to interfacial tension between the air and solution boundary during gelation, causing the gel surface to buckle and warp. SACM 1503 reduced the interfacial surface tension during gelation, negating all rippling. SACM 1504 supplemented low viscosity P(SA) with high viscosity P(SA) which reduced the elastic modulus considerably, yielding a softer, more pliable SACM. In these example implementations, the most pliable was the SACM 1502 which had the lowest elastic modulus while exhibiting similar toughness and acoustic energy transmission properties. By further tuning SACM 1502 crosslinking rate of reaction, processing variables, and the concentration and types of constituents, a variety of different mechanical properties can be achieved for a plethora of US examination applications without sacrificing good acoustic transmission. As an extreme example, a variant of SAM 1502 (SACM 1502′) had the same SOS, ATTN, and Z as SACM 1502 was overly crosslinked to yield a flexible, stiff hydrogel as shown in
Table 4 show tested acoustic and mechanical properties of the SACM samples 1502, 1503, and 1504 and for an example control hydrogel sample 1501. Note, in Table 4, “SOS” stands for speed of sound; “Z” is acoustic impedance, “ATTN” is attenuation, “E” is the Young's Modulus, and “ε” is the engineering strain.
The composition of the SACM has been tailored to create a soft, compliable hydrogel that can conform and envelop the target site to bridge the air acoustic impedance boundary and be tough for clinical applications, as demonstrated in
Example Implementations of the Chemistry Used for Fabricating Some Embodiments of SACMs
Mechanical properties are also affected by scaling up the of vinyl addition polymerization reaction. Free radical chain reactions are initiated when an initiator generates a free radical monomer or free radical chain intermediate that subsequently generates another free radical monomer or chain intermediate. This process continues until most of the free radicals react while the remaining free radicals are unable to react due to physical forces limiting their reaction. Initiation:
I→{dot over (R)}+{dot over (R)} (1)
M+{dot over (R)}→{dot over (M)}1(fast) (2)
vi=ki[l] (3)
Propagation:
Termination:
The initiation step is the fast step of the reaction where the initiator (I) dissociates and generates free radicals ({dot over (R)}) that further generate free radical monomers or chains ({dot over (M)}). The rate of initiation (vi) is the product of the initiation reaction constant (ki) and the initiator concentration.
During the propagation step, free radical chains react with other chains (Mn) or monomer (M) which in turn become radicalized. The steady state rate of propagation (
Termination can result in one of three ways: mutual termination, disproportionation, and chain transfer. Mutual termination results in longer chain lengths, and is thus the desired termination step. Disproportionation results in the termination of free radicals on both chains and results in shorter chain lengths. Chain transfer results in shorter chain lengths for the free radical donor while the free radical receiver becomes chemically active. By assuming chain transfer and disproportionation are minimal, the steady state rate of termination (
From the initiation, propagations, and termination steps a net, steady state reaction formula is generated.
Net Reaction:
The net rate of propagation (vp) is the product of the overall propagation reaction constant (kr), the concentration of the initiator, and the concentration of the chains or monomers present in the solution A 1½ order reaction indicates the intermediate propagation step in polymerization before terminating. Free radical lysis is the rate limiting step which dictates how much monomer will be consumed. Because free radicals react quickly with the monomer which is, in turn, less stable than the free radical initiators, the free radical chains react with one another faster than the initiator reacts with the free radical chains. Eventually the free radical initiator is consumed and the reaction proceeds until the radical ends of the long polymer chains mutually terminate.
From the rate of propagation, the degree of polymerization ((N)) and kinetic chain length (v) can be calculated.
Degree of Polymerization and Kinetic Chain Length
The kinetic chain length is the ratio of the rate of chain propagation and the rate production of free radicals that undergo polymerization (or, create “active centers”); ergo, increasing the concentration of free radical initiator with respect to the concentration of monomer chains will decreases the kinetic chain length since too much monomer will be initiated for free radical addition, causing growing chains to terminate more frequently as the monomer is rapidly expended. The degree of polymerization for linear chains is directly proportional to the kinetic chain length, yielding a two-fold increase in the degree of polymerization since the major mode of termination is recombination.
Because the 1° network is polymerized via vinyl addition reaction, the composition of constituents will have a significant impact on the hydrogel mechanical and acoustic properties. Too much initiator will yield SACMs with extremely short chains that increase the viscosity of the solution but will not create a semi-solid material. On the other hand, too little initiator reduces the rate of reaction to a crawl and can result in higher concentrations of residual monomer if the free radical vinyl addition reaction is quenched before completion.
In a similar manner, excessive catalyst intensifies the rate of initiation and propagation which results in shorter chains lengths resulting in brittle, inelastic SACMs. In turn, minute amounts of catalyst can increase the reaction duration from hours to days. While longer reaction durations can result in longer chain lengths in theory, the increase in solution viscosity during gelation will terminate and propagate less and increase the likelihood of oxygen quenching vinyl addition reactions, resulting in SACMs with significant concentrations of residual monomer and free radicals and greater variability in mechanical properties.
Inordinate amounts of 1° network monomer give SACMs long chain lengths and strength, but also retain considerable amounts of residual monomer as the reaction proceeds toward gelation because the frequency of monomer collisions that continue the propagation steps during polymerization decrease due to an increase in solution viscosity. On the other extreme, infinitesimal amounts of monomer will lower the rate of propagation and residual monomer concentrations, but generate stiff and brittle SACMs since the kinetic chain lengths will be small because not enough monomer is in solution to create long polymer chains.
When scaling up the vinyl addition reaction other factors must be taken into account during the processing. As the batch volume increases, so does the rate of polymerization and the rate of heat generated. If not controlled, auto-accelerated reactions can occur which will generate a positive feedback loop leading rapid temperature and pressure buildup and a possible explosion. Equations 19-21 are used to calculate the enthalpy of polymerization (ΔHp) by increasing the monomer (mmonomer) mass with a specific heat (Smonomer) at a constant water mass (mwater) and specific heat (Swater) while observing the change in temperature (AT). Molar enthalpies of polymerization
can be calculated by taking the ratio of the enthalpy of polymerization and moles of monomer (nmonomer) which is calculated from the mass of monomer and monomer molecular weight (MWmonomer).
Enthalpy of Polymerization
An enormous amount of heat can be generated from the exothermic polymerization of the monomer and the crosslinking reactions. For example, if the reaction conditions—like the reaction rate, temperature, pressure, quantity of reagent, and etc.—are not controlled, then the solution will generate more heat than what heat can be removed, leading to a massive rise in solution temperature. Effects of processing and constituent mass on the final product be further explicated by the Arrhenius equation.
Arrhenius equation:
Arrhenius, equations 22-23, states as the solution temperature increases (T), the kinetic energy of the solution increases (RT)—R is the universal gas constant—relative to the activation energy (Ea) which also changes based on how the catalyst promoting properties change with temperature. How steric interactions (ρ′) and the frequency of effective collisions (Z) effect the pre-exponential factor (A) determines the frequency of collisions in the correct orientation to initiate a reaction. Controllable solution properties that govern the pre-exponential factor are solution viscosity, density, and temperature. Thus, by increasing the temperature of the solution relative to the constant activation energy, the rate of reaction will increase as the kinetic energy of the monomers increase and intensify the number of reactive collisions in solution, increasing the viscosity and, eventually, lead to gelation.
In this non-limiting example, the housing structure 1901 includes a curved section where transducer elements (not shown) of an acoustic transmit and/or receive transducer array are positioned. The curved section of the housing structure 1901 can be configured to various sizes and/or curvatures tailored to a particular body region or part where the couplant device 1900 is to be applied in acoustic imaging, measurement, and/or therapy implementations. For example, the length, depth, and arc of the curved section of the housing structure 1901 can be configured to make complete contact with a region of interest on an anatomical structure, e.g., such as a breast, arm, leg, neck, throat, knee joint, hip joint, ankle, waist, shoulder, or other anatomical structure of a human or animal (e.g., canine) subject to image or apply ultrasonic treatment to target volumes within such structures, such as splenic masses, cancerous or noncancerous tumors, legions, sprains, tears, bone outlines and other signs of damage or maladies. For example, the curved section of the housing structure 1901 can include an aperture length in a range of a few centimeters to tens or hundreds of centimeters (e.g., such as an 18 cm baseline as depicted in
The acoustic coupling article 1905 is operable to conduct acoustic signals between the transducer elements of the probe device 1900 and a receiving medium (e.g., body region or part of the subject, e.g., such as the subject's midsection, head, or appendage) where the probe device 1900 is to be placed in contact to transmit and receive the acoustic signals propagating toward and from a target volume of interest in the subject. The acoustic coupling article 1905 is able to conform to the receiving medium to provide acoustic impedance matching between the transducer elements and the receiving medium (e.g., the skin of the subject, including body hair protruded from the skin).
In some embodiments of the probe device 1900, for example, the housing structure 1901 includes a flexible bracket 1902 that attaches to a portion of the housing structure 1901 body on the transducer facing side, e.g., the curved section of the housing structure 1901 body in the illustrative example in
As illustrated in
In some implementations, for example, the acoustic coupling article 1905 can be bonded or molded into the flexible bracket 1902 when cross-linking of SACM occurs. In some implementations, for example, the SACM of the acoustic coupling article 1905 can also be molded on the subject-facing side to smooth or curve the edges, e.g., which can allow the probe device 1900 to contact and release from the subject easier.
In some embodiments, the acoustic coupling article 1905 couples to the transducers of the probe device 1900 via a flexible, overmolded bracket. For example, the bracket is imbedded in gel-sol during pour-casting; and once the gel-sol cures, the overmolded bracket 1902 can then retain the acoustic coupling article 1905 to the probe device 1900 via snap fit features on the probe device housing.
The following examples are illustrative of several embodiments of the present technology. Other exemplary embodiments of the present technology may be presented prior to the following listed examples, or after the following listed examples.
In some embodiments in accordance with the present technology (example 1), a method of manufacturing an acoustic coupling material includes (a) forming a staged solution by adding together a stock solution comprising a monomer and a polymer in deoxygenated water and a primed solution comprising a covalent crosslinking agent and a catalyst; (b) forming a gel-sol by mixing the staged solution with a first network activator solution comprising a monomer activator and a second network activator solution comprising a polymer activator; (c) dispensing the gel-sol into a mold; and (d) curing the gel-sol in the mold to produce a semi-rigid acoustic couplant, wherein the method is carried under an inert atmosphere.
Example 2 includes the method of any of examples 1-23, wherein the primed solution is added to the stock solution at about 23° C.
Example 3 includes the method of any of examples 1-23, wherein the first network activator solution and the second network activator solution are added to the staged solution at about 15° C.
Example 4 includes the method of any of examples 1-23, wherein the mold includes a plastic or a metal.
Example 5 includes the method of any of examples 1-23, wherein the plastic mold includes thermally-formed plastic, an injection-molded plastic, a casted plastic, or a machined plastic.
Example 6 includes the method of any of examples 1-23, wherein the mold includes one or more of polyethylene terephthalate glycol (PETG), acrylonitrile butadiene styrene (ABS), polyethylene terephthalate (PET), amorphous polyethylene terephthalate (APET), polycarbonate (PC), polyethylene (PE), polypropylene (PP), polystyrene (PS), cross-linked polyethylene (XLPE), or thermoplastic polyurethane (TPU).
Example 7 includes the method of any of examples 1-23, further comprising, prior to step (d), heating the gel-sol to accelerate a gelling process.
Example 8 includes the method of any of examples 1-23, further comprising, irradiating the gel-sol with light.
Example 9 includes the method of any of examples 1-23, further comprising, sterilizing the gel-sol by applying radiation.
Example 10 includes the method of any of examples 1-23, further comprising, sealing the semi-rigid acoustic couplant under an inert atmosphere to prevent oxygen adsorption.
Example 11 includes the method of any of examples 1-23, wherein the curing comprises an additional post-curing step to accelerate curing of the semi-rigid acoustic couplant, reduce an amount of residual monomer in the semi-rigid acoustic couplant, and/or to sterilize the semi-rigid acoustic couplant.
Example 12 includes the method of any of examples 1-23, further comprising, packing the semi-rigid acoustic couplant into a vehicle for shipment.
Example 13 includes the method of any of examples 1-23, wherein the stock solution is stable after preparation for at least 30 minutes.
Example 14 includes the method of any of examples 1-23, wherein the semi-rigid acoustic couplant is manufacturable on a small scale, on a large scale or on both a small and large scale.
Example 15 includes the method of any of examples 1-23, wherein the monomer includes an acrylamide.
Example 16 includes the method of example 15, wherein the acrylamide is dimethylacrylamide (DMA).
Example 17 includes the method of any of examples 1-23, wherein the copolymer includes a block copolymer comprising an alginate.
Example 18 includes the method of example 17, wherein the alginate is sodium alginate (SA).
Example 19 includes the method of any of examples 1-23, wherein the covalent crosslinking agent includes an acrylamide.
Example 20 includes the method of example 19, wherein the acrylamide is N′,N′-methylene bisacrylamide (MBA).
Example 21 includes the method of any of examples 1-23, wherein the catalyst is tetramethylethylenediamine (TMED).
Example 22 includes the method of any of examples 1-23, wherein the monomer activator is ammonium persulfate (APS).
Example 23 includes the method of any of examples 1-22, wherein the polymer activator includes a block copolymer activator comprising calcium sulfate (CA).
In some embodiments in accordance with the present technology (example 24), a method of manufacturing a hydrogel includes (a) heating a first solution comprising a 1° network component and a 2° network component in deoxygenated water to lower a viscosity of the solution; (b) cooling the first solution to about 23° C. and adding a second solution comprising 1° network crosslinker and a catalyst to form a third solution; (c) optionally, adding a photoinitiator to the second solution prior to adding the second solution to the first solution; and (d) cooling the third solution to about 15° C. and adding a chilled 1° network activator solution and a chilled 2° network activator solution to the third solution simultaneously, wherein upon adding the chilled 1° network activator solution and a chilled 2° network activator solution, the 1° network component and the 2° network component polymerize to form a gel-sol; and (e) dispensing the gel-sol into a mold to form the hydrogel, wherein each of steps (a)-(e) are carried out under and inert atmosphere.
Example 25 includes the method of any of examples 24-38, wherein the solution comprising a 1° network activator and the solution comprising 2° network activator are added to the staged solution in step (c) at about 15° C.
Example 26 includes the method of any of examples 24-38, wherein the gel-sol in step (e) is dispensed into a polyethylene terephthalate glycol (PETG) tray.
Example 27 includes the method of any of examples 24-38, further comprising, placing the hydrogel into an oven and/or irradiating with light to accelerate a curing process.
Example 28 includes the method of any of examples 24-38, further comprising, sealing the hydrogel under an inert atmosphere to prevent oxygen adsorption.
Example 29 includes the method of any of examples 24-38, further comprising, packing the hydrogel packing into a vehicle for shipment.
Example 30 includes the method of any of examples 24-38, wherein the 1° network component includes an acrylamide.
Example 31 includes the method of example 30, wherein the acrylamide is dimethylacrylamide (DMA).
Example 32 includes the method of any of examples 24-38, wherein the 2° network component includes an alginate.
Example 33 includes the method of example 32, wherein the alginate is sodium alginate (SA).
Example 34 includes the method of any of examples 24-38, wherein the 1° network crosslinking agent includes an acrylamide.
Example 35 includes the method of example 34, wherein the acrylamide is N′,N′-methylene bisacrylamide (MBA).
Example 36 includes the method of any of examples 24-38, wherein the catalyst is tetramethylethylenediamine (TMED).
Example 37 includes the method of any of examples 24-38, wherein the 1° network activator is ammonium persulfate (APS).
Example 38 includes the method of any of examples 24-37, wherein the 2° network activator is calcium sulfate (CA).
In some embodiments in accordance with the present technology (example 39), a method of manufacturing a hydrogel comprising sodium alginate block copolymer (P(SA)) and dimethylacrylamide monomer (DMAm) includes (a) preparing a solution comprising sodium alginate (SA) in deoxygenated water and preparing a solution comprising dimethylacrylamide (DMA) in deoxygenated water; (b) filtering the solution comprising the SA to remove aggregated SA and collecting a filtrate of the solution comprising SA; (c) adding the solution comprising DMA to the filtrate of the solution comprising SA to form a stock solution; (d) mixing the stock solution with a solution comprising N′,N′,N,N-tetramethylethylenediamine (TMED) and N,N′-methylene bisacrylamide (MBA) to form a staged solution; (e) adding to the staged solution a solution comprising a calcium sulfate (CA) and a solution comprising ammonium persulfate (APS) simultaneously, wherein the DMA and SA polymerize to form a gel-sol; (f) dispensing the gel-sol of the polymerized DMA and SA into a mold; (g) placing the mold into oven to cure the gel-sol and optionally, irradiating the gel-solution with light to accelerate curing to form the hydrogel; (h) sealing the hydrogel under an inert atmosphere; and (g) packing the hydrogel into a vehicle for shipment.
Example 40 includes the method of any of examples 39-45, wherein the gel-sol is irradiated with UV-radiation, γ radiation, electron beam irradiation (EBI), or combination thereof.
Example 41 includes the method of any of examples 39-45, wherein the method manufactures the hydrogel to have at least one of the following properties: a speed of sound (SOS) of about 1549 m/s, an attenuation (ATTN) of about 0.14 dB/MHz·cm, an acoustic impedance (Z) of about 1.597 MRayls, a Young's Modulus (E) of about 32 kPa, or an engineering strain (c) of about −15 mm.
Example 42 includes the method of any of examples 39-45, wherein the method manufactures the hydrogel to have at least two of the following properties: a speed of sound (SOS) of about 1549 m/s, an attenuation (ATTN) of about 0.14 dB/MHz·cm, an acoustic impedance (Z) of about 1.597 MRayls, a Young's Modulus (E) of about 32 kPa, or an engineering strain (c) of about −15 mm.
Example 43 includes the method of any of examples 39-45, wherein the method manufactures the hydrogel to have at least three of the following properties: a speed of sound (SOS) of about 1549 m/s, an attenuation (ATTN) of about 0.14 dB/MHz·cm, an acoustic impedance (Z) of about 1.597 MRayls, a Young's Modulus (E) of about 32 kPa, or an engineering strain (c) of about −15 mm.
Example 44 includes the method of any of examples 39-45, wherein the method manufactures the hydrogel to have at least four of the following properties: a speed of sound (SOS) of about 1549 m/s, an attenuation (ATTN) of about 0.14 dB/MHz·cm, an acoustic impedance (Z) of about 1.597 MRayls, a Young's Modulus (E) of about 32 kPa, or an engineering strain (c) of about −15 mm.
Example 45 includes the method of any of examples 39-44, wherein the method manufactures the hydrogel to have the following properties: a speed of sound (SOS) of about 1549 m/s, an attenuation (ATTN) of about 0.14 dB/MHz·cm, an acoustic impedance (Z) of about 1.597 MRayls, a Young's Modulus (E) of about 32 kPa, and an engineering strain (c) of about −15 mm.
In some embodiments in accordance with the present technology (example 46), an acoustic coupling article includes a semi-rigid acoustic coupling medium (SACM) operable to conform to a receiving body to propagate an acoustic signal within the SACM to and from the receiving body; and a packaging container coupled to the external layer of the SACM, the packing container including a mold casing in which the SACM is produced therein to have at least a portion of its shape defined by the mold casing.
Example 47 includes the article of any of examples 46-57, wherein the SACM is molded and cured within the packaging container and ready for shipment thereafter.
Example 48 includes the article of any of examples 46-57, wherein the mold casing encompasses all but a portion of the SACM.
Example 49 includes the article of any of examples 46-57, wherein the packaging container includes a second component to cover the portion not encompassed by the casing component.
Example 50 includes the article of any of examples 46-57, wherein the SACM is operable to propagate the acoustic signal between the receiving body and the SACM with an acoustic impedance matching of 2 MRayls or less.
Example 51 includes the article of any of examples 46-57, wherein the SACM is operable to conform to both the receiving body and an acoustic probe device having one or more transducer elements without gaps in between the external layer of the SACM and the receiving body and one or more transducers.
Example 52 includes the article of any of examples 46-57, wherein the SACM is stretchable in a range of 10% to 1000% elongation.
Example 53 includes the article of any of examples 46-57, wherein the SACM is compressible in a range of 20% to 99.9%.
Example 54 includes the article of any of examples 46-57, wherein the SACM includes an elasticity with a Young's modulus in a range of 30 kPa to 500 kPa.
Example 55 includes the article of any of examples 46-57, wherein the SACM includes biocompatible materials.
Example 56 includes the article of any of examples 46-57, wherein the SACM is sterile within the packaging container.
Example 57 includes the article of any of examples 46-56, wherein the SACM is clean and non-sterile within the packaging container.
Example 58 includes the article of any of examples 46-57, wherein the article is manufactured by the method of any of examples 1-23.
Example 59 includes the article of any of examples 46-57, wherein the article is manufactured by the method of any of examples 24-38.
Example 60 includes the article of any of examples 46-57, wherein the article is manufactured by the method of any of examples 39-45.
All numerical designations, e.g., pH, temperature, time, concentration, and molecular weight, including ranges, are approximations which are varied (+) or (−) by increments of 1.0 or 0.1, as appropriate, or alternatively by a variation of +1-15%, or alternatively 10%, or alternatively 5%, or alternatively 2%. It is to be understood, although not always explicitly stated, that all numerical designations are preceded by the term “about.” It is to be understood that such range format is used for convenience and brevity and should be understood flexibly to include numerical values explicitly specified as limits of a range, but also to include all individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly specified. For example, a ratio in the range of about 1 to about 200 should be understood to include the explicitly recited limits of about 1 and about 200, but also to include individual ratios such as about 2, about 3, and about 4, and sub-ranges such as about 10 to about 50, about 20 to about 100, and so forth. It also is to be understood, although not always explicitly stated, that the reagents described herein are merely exemplary and that equivalents of such are known in the art.
The term “about,” as used herein when referring to a measurable value such as an amount or concentration and the like, is meant to encompass variations of 20%, 10%, 5%, 1%, 0.5%, or even 0.1% of the specified amount.
The terms or “acceptable,” “effective,” or “sufficient” when used to describe the selection of any components, ranges, dose forms, etc. disclosed herein intend that said component, range, dose form, etc. is suitable for the disclosed purpose.
“Comprising” or “comprises” is intended to mean that the compositions and methods include the recited elements, but not excluding others. “Consisting essentially of” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination for the stated purpose. Thus, a composition consisting essentially of the elements as defined herein would not exclude other materials or steps that do not materially affect the basic and novel characteristic(s) of the claimed invention. “Consisting of” shall mean excluding more than trace elements of other ingredients and substantial method steps. Embodiments defined by each of these transition terms are within the scope of this invention.
It is intended that the specification, together with the drawings, be considered exemplary only, where exemplary means an example. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Additionally, the use of “or” is intended to include “and/or”, unless the context clearly indicates otherwise.
While this patent document contains many specifics, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this patent document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Moreover, the separation of various system components in the embodiments described in this patent document should not be understood as requiring such separation in all embodiments.
Only a few implementations and examples are described and other implementations, enhancements and variations can be made based on what is described and illustrated in this patent document.
This patent document is a National Phase Application of International Patent Application No. PCT/US20/21456 titled “METHODS FOR MANUFACTURING AND DISTRIBUTING SEMI-RIGID ACOUSTIC COUPLING ARTICLES AND PACKAGING FOR ULTRASOUND IMAGING” filed on Mar. 6, 2020, which claims priorities to and benefits of U.S. Provisional Patent Application No. 62/814,835 titled “METHODS FOR MANUFACTURING AND DISTRIBUTING SEMI-RIGID ACOUSTIC COUPLING ARTICLES AND PACKAGING FOR ULTRASOUND IMAGING” filed on Mar. 6, 2019. The entire content of the aforementioned patent applications are incorporated by reference as part of the disclosure of this patent document.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/021456 | 3/6/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/181213 | 9/10/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4105018 | Greenleaf et al. | Aug 1978 | A |
4110755 | Zottl | Aug 1978 | A |
4159462 | Rocha et al. | Jun 1979 | A |
4277367 | Madsen et al. | Jul 1981 | A |
4437468 | Sorenson | Mar 1984 | A |
4463608 | Takeuchi et al. | Aug 1984 | A |
4620546 | Aida et al. | Nov 1986 | A |
4821206 | Arora | Apr 1989 | A |
4830015 | Okazaki | May 1989 | A |
4888746 | Wurster et al. | Dec 1989 | A |
5039774 | Shikinamie et al. | Aug 1991 | A |
5078149 | Katsumata | Jan 1992 | A |
5181513 | Touboul et al. | Jan 1993 | A |
5241964 | McQuilkin | Sep 1993 | A |
5269309 | Fort et al. | Dec 1993 | A |
5284143 | Rattner | Feb 1994 | A |
5329944 | Fabian et al. | Jul 1994 | A |
5394877 | Orr et al. | Mar 1995 | A |
5417218 | Spivey et al. | May 1995 | A |
5445144 | Wodicka et al. | Aug 1995 | A |
5465722 | Fort et al. | Nov 1995 | A |
5522878 | Montecalvo | Jun 1996 | A |
5533510 | Koch, III et al. | Jul 1996 | A |
5608690 | Hossack et al. | Mar 1997 | A |
5623928 | Wright et al. | Apr 1997 | A |
5753095 | Alpenfels et al. | May 1998 | A |
5793701 | Wright et al. | Aug 1998 | A |
5800356 | Criton et al. | Sep 1998 | A |
5803089 | Ferre et al. | Sep 1998 | A |
5806518 | Mittelstadt | Sep 1998 | A |
5829444 | Ferre et al. | Nov 1998 | A |
5868676 | McCabe et al. | Feb 1999 | A |
5873830 | Hossack et al. | Feb 1999 | A |
5882557 | Hayakawa et al. | Mar 1999 | A |
5902244 | Kobayashi et al. | May 1999 | A |
5913823 | Hedberg et al. | Jun 1999 | A |
5967980 | Ferre et al. | Oct 1999 | A |
6016285 | Wright et al. | Jan 2000 | A |
6039694 | Larson | Mar 2000 | A |
6045507 | Muzilla et al. | Apr 2000 | A |
6050945 | Peterson et al. | Apr 2000 | A |
6083164 | Oppelt et al. | Jul 2000 | A |
6106464 | Bass et al. | Aug 2000 | A |
6107365 | Bertozzi et al. | Aug 2000 | A |
6110114 | Nock et al. | Aug 2000 | A |
6113544 | Mo | Sep 2000 | A |
6123669 | Kanda | Sep 2000 | A |
6132375 | Napolitano | Oct 2000 | A |
6157592 | Kriz et al. | Dec 2000 | A |
6205411 | DiGioia, III et al. | Mar 2001 | B1 |
6231834 | Unger et al. | May 2001 | B1 |
6241676 | Savord | Jun 2001 | B1 |
6322567 | Mittelstadt et al. | Nov 2001 | B1 |
6338765 | Statnikov | Jan 2002 | B1 |
6340363 | Bolger et al. | Jan 2002 | B1 |
6341231 | Ferre et al. | Jan 2002 | B1 |
6402707 | Ernst | Jun 2002 | B1 |
6436045 | Rafter et al. | Aug 2002 | B1 |
6445943 | Ferre et al. | Sep 2002 | B1 |
6508766 | Sato et al. | Jan 2003 | B2 |
6537216 | Shifrin | Mar 2003 | B1 |
6583392 | Hershey et al. | Jun 2003 | B2 |
6585648 | Robinson | Jul 2003 | B1 |
6620101 | Azzam et al. | Sep 2003 | B2 |
6626916 | Yeung et al. | Sep 2003 | B1 |
6652461 | Levkovitz et al. | Nov 2003 | B1 |
6687531 | Ferre et al. | Feb 2004 | B1 |
6725082 | Sati et al. | Apr 2004 | B2 |
6736780 | Song et al. | May 2004 | B2 |
6757582 | Brisson et al. | Jun 2004 | B2 |
6785571 | Glossop | Aug 2004 | B2 |
6786097 | Song et al. | Sep 2004 | B2 |
6796988 | Melkent et al. | Sep 2004 | B2 |
6808494 | Shifrin | Oct 2004 | B2 |
6843957 | Statnikov | Jan 2005 | B2 |
6918877 | Hossack et al. | Jul 2005 | B2 |
6934575 | Ferre et al. | Aug 2005 | B2 |
6939300 | Petersen et al. | Sep 2005 | B2 |
6960173 | Babaev | Nov 2005 | B2 |
7004906 | Guracar et al. | Feb 2006 | B1 |
7066886 | Song et al. | Jun 2006 | B2 |
7207939 | Husher | Apr 2007 | B2 |
7226456 | O'Neil et al. | Jun 2007 | B2 |
7291119 | de Guise et al. | Nov 2007 | B1 |
7344609 | Statnikov | Mar 2008 | B2 |
7395181 | Foxlin | Jul 2008 | B2 |
7473250 | Makin et al. | Jan 2009 | B2 |
7532201 | Quistgaard et al. | May 2009 | B2 |
7542790 | Jensen et al. | Jun 2009 | B2 |
7566304 | Nakamura et al. | Jul 2009 | B2 |
7678049 | Tsoref et al. | Mar 2010 | B2 |
7719515 | Fujiwara et al. | May 2010 | B2 |
7719689 | Lee et al. | May 2010 | B2 |
7728487 | Adachi et al. | Jun 2010 | B2 |
7763035 | Melkent et al. | Jul 2010 | B2 |
7798585 | Oguri | Sep 2010 | B2 |
7806823 | Sakai et al. | Oct 2010 | B2 |
7826889 | David et al. | Nov 2010 | B2 |
7835778 | Foley et al. | Nov 2010 | B2 |
7835784 | Mire et al. | Nov 2010 | B2 |
7837625 | Abe | Nov 2010 | B2 |
RE42194 | Foley et al. | Mar 2011 | E |
7905836 | Dan | Mar 2011 | B2 |
7917317 | McKeon | Mar 2011 | B2 |
7938777 | Amiot et al. | May 2011 | B2 |
7938778 | Sakai | May 2011 | B2 |
7982362 | Adachi et al. | Jul 2011 | B2 |
8002705 | Napolitano et al. | Aug 2011 | B1 |
8038616 | Angelsen et al. | Oct 2011 | B2 |
8043220 | Okada et al. | Oct 2011 | B2 |
8103461 | Glaser et al. | Jan 2012 | B2 |
8105339 | Melkent et al. | Jan 2012 | B2 |
8126533 | Lavallee | Feb 2012 | B2 |
8147409 | Shifrin | Apr 2012 | B2 |
8152726 | Amiot et al. | Apr 2012 | B2 |
8165658 | Waynik et al. | Apr 2012 | B2 |
8241217 | Chiang et al. | Aug 2012 | B2 |
8251908 | Vortman et al. | Aug 2012 | B2 |
8253578 | Watabe et al. | Aug 2012 | B2 |
8311611 | Csavoy et al. | Nov 2012 | B2 |
8323200 | Kunita | Dec 2012 | B2 |
8372070 | Tanaka et al. | Feb 2013 | B2 |
8374674 | Gertner | Feb 2013 | B2 |
8409099 | Vitek et al. | Apr 2013 | B2 |
8409103 | Grunwald et al. | Apr 2013 | B2 |
8444564 | Mahfouz et al. | May 2013 | B2 |
8447388 | Igarashi | May 2013 | B2 |
8491476 | Iwama et al. | Jul 2013 | B2 |
8556834 | Gertner | Oct 2013 | B2 |
8565860 | Kimchy et al. | Oct 2013 | B2 |
8626267 | Lavallee | Jan 2014 | B2 |
8675939 | Moctezuma de la Barrera | Mar 2014 | B2 |
8771188 | Schers et al. | Jul 2014 | B2 |
8774900 | Buly et al. | Jul 2014 | B2 |
8814810 | Roche et al. | Aug 2014 | B2 |
8864686 | Roche et al. | Oct 2014 | B2 |
8880152 | Lavallee | Nov 2014 | B2 |
8909325 | Kimchy et al. | Dec 2014 | B2 |
8939909 | Wegner | Jan 2015 | B2 |
8986609 | Rau | Mar 2015 | B2 |
9060794 | Kang et al. | Jun 2015 | B2 |
9101394 | Arata et al. | Aug 2015 | B2 |
9174065 | Gertner | Nov 2015 | B2 |
9196046 | Meyer | Nov 2015 | B2 |
9220571 | Lavallee | Dec 2015 | B2 |
9244169 | Fan et al. | Jan 2016 | B2 |
9248001 | Colombet et al. | Feb 2016 | B2 |
9352171 | Gertner | May 2016 | B2 |
9387276 | Sun et al. | Jul 2016 | B2 |
9420999 | Wegner | Aug 2016 | B2 |
9572548 | Moctezuma de la Barrera | Feb 2017 | B2 |
9597058 | Kanayama et al. | Mar 2017 | B2 |
9844359 | Gerbaulet et al. | Dec 2017 | B2 |
9872667 | Wegner | Jan 2018 | B2 |
10085722 | Wegner | Oct 2018 | B2 |
10321889 | Wegner | Jun 2019 | B2 |
10336896 | Zheng | Jul 2019 | B2 |
10426429 | Kruse et al. | Oct 2019 | B2 |
10743838 | Freiburg | Aug 2020 | B2 |
10975205 | Illeperuma | Apr 2021 | B2 |
11154274 | Wegner | Oct 2021 | B2 |
20020068871 | Mendlein et al. | Jun 2002 | A1 |
20020099290 | Haddad | Jul 2002 | A1 |
20020122536 | Kerrien et al. | Sep 2002 | A1 |
20020188229 | Ryaby et al. | Dec 2002 | A1 |
20030036702 | Davidsen | Feb 2003 | A1 |
20030125628 | Song et al. | Jul 2003 | A1 |
20030233045 | Vaezy | Dec 2003 | A1 |
20040066708 | Ogawa | Apr 2004 | A1 |
20040236223 | Barnes et al. | Nov 2004 | A1 |
20050101861 | Satoh | May 2005 | A1 |
20050101867 | Johnson et al. | May 2005 | A1 |
20050113698 | Kristoffersen | May 2005 | A1 |
20050203399 | Vaezy | Sep 2005 | A1 |
20050215893 | Barnes et al. | Sep 2005 | A1 |
20060004290 | Smith et al. | Jan 2006 | A1 |
20060119223 | Ossman | Jun 2006 | A1 |
20060173305 | Asafusa et al. | Aug 2006 | A1 |
20070066897 | Sekins et al. | Mar 2007 | A1 |
20070156050 | Barnes et al. | Jul 2007 | A1 |
20070226976 | Zipparo et al. | Oct 2007 | A1 |
20070239001 | Mehi et al. | Oct 2007 | A1 |
20070239002 | Alam | Oct 2007 | A1 |
20070265690 | Lichtenstein et al. | Nov 2007 | A1 |
20070276238 | Sudol | Nov 2007 | A1 |
20080051655 | Sato | Feb 2008 | A1 |
20080110263 | Klessel et al. | May 2008 | A1 |
20080119737 | Urbano et al. | May 2008 | A1 |
20080200810 | Buchalter | Aug 2008 | A1 |
20080208055 | Bertram et al. | Aug 2008 | A1 |
20080281202 | Fraser et al. | Nov 2008 | A1 |
20080281237 | Slayton et al. | Nov 2008 | A1 |
20090043206 | Towfiq et al. | Feb 2009 | A1 |
20090093737 | Gerbaulet et al. | Apr 2009 | A1 |
20090124871 | Arshak et al. | May 2009 | A1 |
20090306497 | Manzke et al. | Dec 2009 | A1 |
20100029789 | Chen | Feb 2010 | A1 |
20100179425 | Zadicario | Jul 2010 | A1 |
20100204577 | Sekins et al. | Aug 2010 | A1 |
20100268072 | Hall et al. | Oct 2010 | A1 |
20100274139 | Fukukita et al. | Oct 2010 | A1 |
20100280379 | Satoh | Nov 2010 | A1 |
20100286518 | Lee et al. | Nov 2010 | A1 |
20100286527 | Cannon | Nov 2010 | A1 |
20110092862 | Chivers | Apr 2011 | A1 |
20110264012 | Lautzenhiser et al. | Oct 2011 | A1 |
20120029345 | Mahfouz et al. | Feb 2012 | A1 |
20120238875 | Savitsky et al. | Sep 2012 | A1 |
20120253071 | Rau et al. | Oct 2012 | A1 |
20120281507 | Rikoski | Nov 2012 | A1 |
20130060121 | Patwardhan et al. | Mar 2013 | A1 |
20130102875 | Dogra et al. | Apr 2013 | A1 |
20130123635 | Wegner | May 2013 | A1 |
20130144135 | Mahfouz et al. | Jun 2013 | A1 |
20130144166 | Specht et al. | Jun 2013 | A1 |
20130150863 | Baumgartner | Jun 2013 | A1 |
20130165005 | Berard-Anderson et al. | Jun 2013 | A1 |
20130218013 | Barthe et al. | Aug 2013 | A1 |
20140163377 | Kang et al. | Jun 2014 | A1 |
20140180116 | Lindekugel et al. | Jun 2014 | A1 |
20140353248 | Kuraray | Dec 2014 | A1 |
20150018682 | Schers et al. | Jan 2015 | A1 |
20150038613 | Sun et al. | Feb 2015 | A1 |
20150080725 | Wegner | Mar 2015 | A1 |
20150088040 | Barthe et al. | Mar 2015 | A1 |
20150133788 | Mauldin, Jr. et al. | May 2015 | A1 |
20150164467 | Suetoshi et al. | Jun 2015 | A1 |
20150182191 | Caluser et al. | Jul 2015 | A1 |
20150274805 | Annabi et al. | Oct 2015 | A1 |
20150313572 | Gerbaulet et al. | Nov 2015 | A1 |
20160000409 | Bruder et al. | Jan 2016 | A1 |
20160083574 | Zheng et al. | Mar 2016 | A1 |
20160100821 | Eggers et al. | Apr 2016 | A1 |
20160176128 | Zhao et al. | Jun 2016 | A1 |
20160242736 | Freiburg | Aug 2016 | A1 |
20160270763 | Hayes et al. | Sep 2016 | A1 |
20160354520 | Sun et al. | Dec 2016 | A1 |
20170100092 | Kruse et al. | Apr 2017 | A1 |
20170368333 | Loudin et al. | Dec 2017 | A1 |
20180126677 | Zhao et al. | May 2018 | A1 |
20180240366 | Felsinger et al. | Aug 2018 | A1 |
20180244858 | Illeperuma et al. | Aug 2018 | A1 |
20190070826 | Zhao | Mar 2019 | A1 |
20190167234 | Wegner | Jun 2019 | A1 |
20190200957 | Freiburg et al. | Jul 2019 | A1 |
20200138409 | Lindekugel et al. | May 2020 | A1 |
20200337674 | Wegner | Oct 2020 | A1 |
20210361259 | Wegner | Nov 2021 | A1 |
20220106424 | Staebler | Apr 2022 | A1 |
20220192634 | Freiburg | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
2427186 | May 2001 | CA |
2852801 | May 2013 | CA |
100354651 | Dec 2007 | CN |
101325913 | Dec 2008 | CN |
102258399 | Nov 2012 | CN |
104169739 | Nov 2014 | CN |
104311841 | Jan 2015 | CN |
105778125 | Jul 2016 | CN |
952461 | Oct 1999 | EP |
1707124 | Apr 2006 | EP |
1795917 | Jun 2007 | EP |
1854406 | Nov 2007 | EP |
1955668 | Aug 2008 | EP |
2033579 | Mar 2009 | EP |
2379392 | Mar 2003 | GB |
2472066 | Jan 2011 | GB |
232148 | Jul 2019 | IL |
55051351 | Apr 1980 | JP |
58195550 | Nov 1983 | JP |
60048736 | Mar 1985 | JP |
62117535 | May 1987 | JP |
H03114453 | May 1991 | JP |
8038473 | Feb 1996 | JP |
2000041980 | Feb 2000 | JP |
2000166922 | Jun 2000 | JP |
2000287988 | Oct 2000 | JP |
2001515924 | Sep 2001 | JP |
2003190157 | Jul 2003 | JP |
2004147852 | May 2004 | JP |
2005152608 | Jun 2005 | JP |
2005527336 | Sep 2005 | JP |
2010082425 | Apr 2010 | JP |
2011062531 | Mar 2011 | JP |
2011177461 | Sep 2011 | JP |
2012002586 | Jan 2012 | JP |
2013056156 | Mar 2013 | JP |
2018506416 | Mar 2018 | JP |
2002024094 | Mar 2002 | WO |
2007023477 | Mar 2007 | WO |
2007069156 | Jun 2007 | WO |
2009009064 | Jan 2009 | WO |
2009020617 | Feb 2009 | WO |
2009063421 | May 2009 | WO |
2013066821 | May 2013 | WO |
2013103956 | Jul 2013 | WO |
2014128593 | Aug 2014 | WO |
2014150780 | Sep 2014 | WO |
2014150961 | Sep 2014 | WO |
2014186904 | Nov 2014 | WO |
2015038554 | Mar 2015 | WO |
2016044830 | Mar 2016 | WO |
2016138257 | Sep 2016 | WO |
2016149427 | Sep 2016 | WO |
2017164902 | Sep 2017 | WO |
Entry |
---|
Laferrère, C. A., F. O. Andersson, and R. Roy. “[25] Syntheses of water-soluble polyacrylarnide-containing sialic acid.” Methods in Enzymology. Vol. 242. Academic Press, 1994. 271-280. (Year: 1994). |
Office Action mailed Jul. 12, 2022 in Chinese Patent Application No. 202080021490.7, with English translation, 18 pages. |
Office Action mailed Jul. 28, 2022 in Korean Patent Application No. 2017-7027091, machine translation obtained from USPTO Global Dossier at <https://globaldossier.uspto.gov/#/>, 28 pages. |
Sun, J.Y. et al., “Highly stretchable and tough hydrogels,” Nature, vol. 489, Sep. 6, 2012, 21 pages. |
Australian Exam Report mailed Nov. 1, 2019 for Australian Application No. 2016233279, filed on Mar. 16, 2016 (3 pages). |
Australian Exam Report mailed Oct. 18, 2019 for Australian Application No. 2016222637, filed on Feb. 25, 2016 (3 pages). |
Callow, H.J., “Signal Processing for Synthetic Aperture Sonar Image Enhancement,” Thesis for Ph.D. in Electrical and Electronic Engineering at the University of Canterbury, Christchurch, New Zealand, 273 pages, Apr. 2003. |
Cao, Z. et al., “Fabrication and properties of thermosensitive organic/inorganic hybrid hydrogel thin films,” Langmuir, American Chemical Society, vol. 24, No. 10, May 20, 2008, pp. 5543-5551. |
Chiao, R., “Coded Excitation for Diagnostic Ultrasound: A System Developer's Perspective,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(2):160-170, Feb. 2005. |
Choe, J.W., et al., “Volumetric real-time imaging using a CMUT ring array,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(6):1201-1211, Jun. 2012. |
Demi, L., et al., “In Vitro and In Vivo Tissue Harmonic Images Obtained With Parallel Transmit Beamforming by Means of Orthogonal Frequency Division Multiplexing,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62(1):230-235, Jan. 2015. |
European Search Report mailed on Apr. 19, 2017 for European Application No. 14844538.0, filed on Sep. 9, 2014 (10 pages). |
European Search Report mailed on Feb. 1, 2019 for European Application No. 16756353.5, filed on Feb. 25, 2016 (14 pages). |
European Search Report mailed on Jun. 29, 2015 for European Application No. 12845256.2, filed on Oct. 29, 2012 (8 pages). |
European Search Report mailed on Nov. 9, 2018 for European Application No. 16765701.4, filed on Mar. 16, 2016 (6 pages). |
Exam Report mailed Oct. 18, 2019 for Australian Application No. 2016222637, filed on Feb. 25, 2016 (3 pages). |
Exam Report mailed on Feb. 26, 2019 for Singapore Application No. 11201706953Y, filed on Feb. 25, 2016 (6 pages). |
Extended European Search Report mailed on Feb. 15, 2019 for European Application No. 16765701.4, filed on Mar. 16, 2016 (14 pages). |
Extended European Search Report mailed on Jul. 2, 2019 for European Application No. 16756353.5, filed on Feb. 25, 2016 (14 pages). |
Extended Search Report mailed on Jun. 18, 2019 for European Application No. 16854507.7, filed on Oct. 7, 2016 (11 pages). |
Hunter, A.J., et al., “A Comparison of Fast Factorised Back-Projection and Wavenumber Algorithms for SAS Image Reconstruction,” Proceedings of the World Congress on Ultrasonics, 4 pages, (2003). |
International Search Report and Written Opinion mailed Jul. 16, 2020 for International App. PCT/US20/29564 filed Apr. 23, 2020, 11 pages. |
International Search Report and Written Opinion mailed on Dec. 29, 2016 for International Application No. PCT/US2016/056159, filed on Oct. 7, 2016 (7 pages). |
International Search Report and Written Opinion mailed on Jul. 2, 2020 for International Application No. PCT/US2020/021456, filed on Mar. 6, 2020, 16 pages. |
International Search Report and Written Opinion mailed on Jul. 6, 2016 for International Application No. PCT/US2016/019554, filed on Feb. 25, 2016 (12 pages). |
International Search Report and Written Opinion mailed on Mar. 3, 2015 for International Application No. PCT/US2014/054855, filed on Sep. 9, 2014 (11 pages). |
International Search Report and Written Opinion mailed on May 15, 2013 for International Application No. PCT/US2012/062435, filed on Oct. 29, 2012 (9 pages). |
International Search Report and Written Opinion mailed on May 18, 2020 for International Application No. PCT/US20/18123, filed on Feb. 13, 2020 (11 pages). |
Ito, T., et al., “Evaluation of Acoustic Imaging System Using Correlation Division in Synthetic Transmit Aperture with Multicarrier Signals,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E94-A(10):1907-1919, Oct. 2011. |
Jensen, J.A., et al., “Synthetic Aperture Ultrasound Imaging,” Ultrasonics, 44(Suppl 1):e5-e15, Dec. 2006. |
Koch, A., et al., “An Ultasound Tomography System With Polyvinyl Alcohol (PVA) Moldings for Coupling: In Vivo Results for 3-D Pulse-Echo Imaging of the Female Breast,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62(2):266-279, Feb. 2015. |
Kundur, D., et al., “A Novel Blind Deconvolution Scheme for Image Restoration Using Recursive Filtering,” IEEE Transactions on Signal Processing, 46(2):375-390, Feb. 1998. |
Misaridis, T., “Use of Modulated Excitation Signals in Medical Ultrasound. Part I: Basic Concepts and Expected Benefits,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(2):177-191, Feb. 2005. |
Misaridis, T., “Use of Modulated Excitation Signals in Medical Ultrasound. Part II: Design and Performance for Medical Imaging Applications,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(2):192-207, Feb. 2005. |
Misaridis, T., “Use of Modulated Excitation Signals in Medical Ultrasound. Part III: High Frame Rate Imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(2):208-219, Feb. 2005. |
O'Donnell, M., “Coded Excitation for Synthetic Aperture Ultrasound Imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(2):171-176, Feb. 2005. |
Office Action mailed Jun. 4, 2019 for Japanese Application No. 2017-187288, filed on Oct. 29, 2012 (3 pages). |
Office Action mailed Oct. 29, 2019 for Japanese Application No. 2018-145683, filed on Sep. 9, 2014 (3 pages). |
Office Action mailed on Dec. 4, 2019 for Chinese Application No. 201680023999.9, filed on Feb. 25, 2016 (23 pages). |
Office Action mailed on Jul. 3, 2018 for Japanese Application No. 2017-187288, filed on Oct. 29, 2012 (6 pages). |
Office Action mailed on Sep. 13, 2016 for Japanese Application No. 2014-539114, filed on Oct. 29, 2012 (4 pages). |
Office Action mailed on Sep. 19, 2017 for Japanese Application No. 2016-542050, filed on Sep. 9, 2014 (15 pages). |
Office Action mailed on Sep. 2, 2015 for Chinese Application No. 201280065031.4, filed on Oct. 29, 2012 (26 pages). |
Office Action mailed Sep. 23, 2020 in Israel Patent Application No. 254158, 3 pages. |
Prokop A F et al., “Polyacrylamide gel as an acoustic coupling medium for focused ultrasound therapy.” Ultrasound in Medicine and Biol, New York, NY, US, vol. 29, No. 9, Sep. 1, 2003, pp. 1351-1358. |
Rui Silva, S., et al., “2 Synthetic Aperture Techniques for Sonar Systems,” Advances in Sonar Technology, edited by Sergio Rui Silva, publisher I-Tech Education and Publishing, ISBN 978-3-902613-48-6, pp. 15-42, Feb. 2009. |
Second Office Action issued Jul. 14, 2020 for Chinese Patent Application No. 201680023999.9 (41 pages). |
Singapore Exam Report mailed on Feb. 26, 2019 for Singapore Application No. 11201706953Y, filed on Feb. 25, 2016 (6 pages). |
Singapore Search Report mailed on Sep. 24, 2018 for Singapore Application No. 11201706953Y, filed on Feb. 25, 2016 (13 pages). |
Singapore Written Opinion mailed on Jul. 10, 2017 for Singapore Application No. 11201601906P, filed on Sep. 9, 2014 (8 pages). |
Singapore Written Opinion mailed on Jun. 21, 2018 for Singapore Application No. 11201707641P, filed on Mar. 16, 2016 (8 pages). |
Zhu, S., et al., “SAS Autofocus Based on Phase Gradient Autofocus,” IEEE 2011 Fourth International Workshop on Chaos-Fractals Theories and Applications (IWCFTA), pp. 298-301, Oct. 19-22, 2011. |
European Search Report mailed Oct. 26, 2022 in European Patent Application No. 20767211.4, 13 pages. |
European Search Report mailed on Oct. 17, 2022 in European Patent Application No. 20756147.3, 6 pages. |
Extended European Search Report mailed Jan. 26, 2023 for European Patent Application No. 20767211.4, 11 pages. |
Low, Z.W. et al., “The role of hydrogen bonding in alginate/poly(acrylamide-co-dimethylacrylamide) and alginate/poly(ethylene glycol) methyl ether methacrylate-based tough hybrid hydrogels.” Royal Society of Chemistry, 2015, 5, 8 pages. |
Low, Z.W. et al., Supporting Information. “The role of hydrogen bonding in alginate/poly(acrylamide-co-dimethylacrylamide) and alginate/poly(ethylene glycol) methyl ether methacrylate-based tough hybrid hydrogels.” Royal Society of Chemistry, 2015, 5, 5 pages. |
Office Action mailed Jan. 14, 2020 for Japanese Application No. 2017-563504, filed on Feb. 25, 2016 (14 pages). |
Second Office Action mailed Jan. 3, 2023 in Chinese Patent Application No. 202080021490.7, English translation, 16 pages. |
Office Action mailed Feb. 23, 2023 in Korean Patent Application No. 2017-7027091, 11 pages, with English Translation. |
Examination Report mailed Mar. 10, 2023 in Canadian Patent Application No. 2,977,975, 4 pages. |
Notice of Reasons for Rejection mailed Sep. 26, 2023 in Japanese Patent Application No. 2021-552570, English Translation, 4 pages. |
Notice of Requisition mailed Mar. 10, 2023 in Canadian Patent Application No. 2,977,975, 4 pages. |
Third Office Action mailed Jul. 10, 2023 in Chinese Patent Application No. 202080021490.7, English translation, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20220134608 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
62814835 | Mar 2019 | US |