The present disclosure relates to methods for manufacturing a coil and a stator.
Hitherto, there is known a coil manufacturing method in which a cross section of a coil wire is formed. Such a stator is disclosed, for example, in Japanese Unexamined Patent Application Publication No. 2020-36427 (JP 2020-36427 A).
JP 2020-36427 A discloses a method for manufacturing a segment coil (coil) to be disposed in a stator. In the method for manufacturing the segment coil described in JP 2020-36427 A, a linear coil (coil wire) having an insulation coating formed in advance is subjected to a cross section forming step for forming (transforming) a cross section by using a press jig or a reduction roll so that individual parts of the coil wire have different sectional shapes. Specifically, the insulation coating formed on a part bent into a relatively complicated shape after the cross section forming to serve as a coil end portion is likely to deteriorate. To suppress a decrease in the thickness of the insulation coating formed on the part serving as the coil end portion, the cross section is formed so that the amount of transformation of the part serving as the coil end portion during the cross section forming is smaller than that of a part serving as a slot housing portion. In other words, in the method for manufacturing the segment coil described in JP 2020-36427 A, the cross section is formed so that the amount of transformation of the part serving as the slot housing portion during the cross section forming is relatively large. In this case, the insulation coating formed on the part serving as the slot housing portion becomes relatively thin (thinned) after the cross section forming.
In the method for manufacturing the segment coil described in JP 2020-36427 A, however, the insulation coating formed on the part serving as the slot housing portion becomes relatively thin (thinned) after the cross section forming. Therefore, it may be necessary to use a linear coil having a relatively thick insulation coating formed in advance in consideration of variation in the amount of transformation during the cross section forming. Thus, the part of the linear coil that serves as the slot housing portion after the cross section forming may be formed so that the thickness of the insulation coating is larger than necessary as compared to a thickness that can secure the insulation property of the slot housing portion. In this case, the occupation ratio of the insulation coating in a slot increases because the thickness of the insulation coating is larger than necessary. Therefore, the space factor of the slot housing portion in the slot decreases. In view of this, there is a demand for methods for manufacturing a coil and a stator that can improve the space factor of the slot housing portion in the slot.
The present disclosure has been made to solve the above problem, and one object of the present disclosure is to provide methods for manufacturing a coil and a stator that can improve the space factor of the slot housing portion in the slot while improving the insulation property of the coil end portion.
In order to achieve the above object, a method for manufacturing a coil according to a first aspect of the present disclosure is a method for manufacturing a coil to be disposed in a stator including slots. The method includes a bending step for bending a coil wire that is not subjected to an insulation coating process so that the coil wire is disposed in the stator, a cross section forming step for transforming an outer shape of a part to be housed in the slot in the coil wire that has a circular cross section and is not subjected to the insulation coating process, and an insulation step for performing, after the bending step and the cross section forming step, the insulation coating process on the coil wire after bending and cross section forming.
As described above, the method for manufacturing the coil according to the first aspect of the present disclosure includes the cross section forming step for transforming the outer shape of the part to be housed in the slot in the coil wire that is not subjected to the insulation coating process. As a result, the outer shape of the part of the coil wire that serves as the slot housing portion can be transformed into a desired shape for the disposition in the slot. As described above, the method for manufacturing the coil according to the first aspect includes the insulation step for performing, after the cross section forming step, the insulation coating process on the coil wire after the cross section forming. Accordingly, unlike a case where the insulation coating is formed on the coil wire in advance, there is no need to consider the thinning of the insulation coating in the cross section forming step. Thus, the thickness of the insulation coating need not be increased more than necessary. That is, the insulation coating process can be performed so that the insulation coating has an optimum thickness (minimum thickness that can secure the insulation property of the coil) for the part of the coil wire that serves as the slot housing portion with the outside diameter transformed into the desired shape for the disposition in the slot in the cross section forming step. Therefore, the thickness of the insulation coating does not increase more than necessary. Thus, an increase in the occupation ratio of the insulation coating in the slot can be prevented. As a result, the space factor of the slot housing portion in the slot can be improved. As described above, the method for manufacturing the coil according to the first aspect includes the insulation step for performing, after the bending step, the insulation coating process on the coil wire after the bending. Accordingly, unlike a case where the coil wire having the insulation coating formed in advance is bent at the part that serves as the coil end portion, the insulation coating does not deteriorate. Thus, the insulation property of the coil end portion can be improved. As a result, it is possible to improve the space factor of the slot housing portion in the slot while improving the insulation property of the coil end portion.
In order to achieve the above object, a method for manufacturing a stator according to a second aspect of the present disclosure is a method for manufacturing a stator including a stator core including slots and a coil disposed in the stator. The method includes a bending step for bending a coil wire that is not subjected to an insulation coating process so that the coil wire is disposed in the stator core, a cross section forming step for forming a cross section of the coil wire that has a circular cross section and is not subjected to the insulation coating process so that an outer shape of a part to face inner side surfaces of the slot conforms to the inner side surfaces of the slot, an insulation step for performing, after the bending step and the cross section forming step, the insulation coating process on the coil wire after bending and cross section forming, and a disposing step for disposing, after the insulation step, in the stator core, the coil formed from the coil wire after the bending, the cross section forming, and the insulation coating process.
As described above, the method for manufacturing the stator according to the second aspect of the present disclosure includes the cross section forming step and the insulation step similar to those of the method for manufacturing the coil according to the first aspect. Thus, the increase in the occupation ratio of the insulation coating in the slot can be prevented as in the method for manufacturing the coil according to the first aspect. As described above, the method for manufacturing the stator according to the second aspect includes the coil disposing step for disposing, in the stator core, the coil formed from the coil wire after the cross section forming and the insulation coating process. Thus, it is possible to dispose, in the stator core, the coil formed from the coil wire that can prevent the increase in the occupation ratio of the insulation coating in the slot. As a result, the space factor of the slot housing portion in the slot can be improved as in the method for manufacturing the coil according to the first aspect. As described above, the method for manufacturing the stator according to the second aspect includes the bending step and the insulation step similar to those of the method for manufacturing the coil according to the first aspect. Thus, the insulation property of the coil end portion can be improved as in the method for manufacturing the coil according to the first aspect.
According to the present disclosure, as described above, it is possible to provide the methods for manufacturing the coil and the stator that can improve the space factor of the slot housing portion in the slot and improve the insulation property of the coil end portion.
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
(Configuration of Stator)
First, the configuration of a stator 100 according to a first embodiment will be described with reference to
In the following description, an “axial direction” means a direction (Z direction) along a rotational axis (symbol 0) of a stator core 10 (see
As shown in
The stator 100 includes the stator core 10 and a coil 20. The stator core has a cylindrical shape with its central axis being the central axis 0 along the Z direction. The stator core 10 is formed by stacking a plurality of electromagnetic steel sheets (for example, silicon steel sheets) in the Z direction.
The stator core 10 includes an annular back yoke 11, a plurality of teeth 12 protruding from the back yoke 11 to the B1 side, and a plurality of slots 13 formed between the teeth 12 adjacent to each other in the A direction. As shown in
As shown in
As shown in
The coil end portions 32 are provided outside the stator core 10 in the axial direction. Specifically, the coil end portions 32 protrude from an end face 10a of the stator core 10 on the Z1 direction side in the axial direction and an end face 10b of the stator core on the Z2 direction side in the axial direction.
As shown in
The opening 13a has an opening width W1 in the circumferential direction. The opening width W1 is smaller than a circumferential width W2 of a part of the slot 13 where the coil 20 is disposed. That is, the slot 13 is structured as a semi-open slot. The width W2 of the slot 13 varies depending on radial positions. Specifically, the width W2 increases toward the radially outer side.
A plurality of (six in
The segment conductor 30 is covered (coated) with an insulation coating 40 provided for insulation. The insulation coating 40 is made of an insulating material such as a thermosetting resin.
As shown in
As a result, one and the other of the pair of slot housing portions 31 are disposed at different radial positions (lanes) (lanes are changed). For example, one of the pair of slot housing portions 31 is disposed in a first radially inner lane (innermost lane) of the slot 13, and the other of the pair of slot housing portions 31 is disposed in a second radially inner lane (second lane from the inner side) of the slot 13 that is different from the lane of the one of the pair of slot housing portions 31. In this manner, the segment conductor 30 (coil 20) is disposed in the stator core 10 such that one and the other of the pair of slot housing portions 31 are disposed in the lanes shifted from each other in the radial direction.
As shown in
As shown in
As shown in
(Method for Manufacturing Stator)
Next, a method for manufacturing the stator 100 will be described with reference to
<Preparation Step>
As shown in
<Straightening and Cutting Step>
Next, a straightening and cutting step for straightening and cutting the copper wire that is not subjected to the insulation coating process is performed in step S12. Specifically, the rolled copper wire is straightened in the straightening and cutting step (S12). Then, the straight copper wire is cut to the length of the segment conductor 30 (see
<Bending Step>
Next, a bending step for bending the copper wire (not subjected to the insulation coating process) cut to the length of the segment conductor 30 so that the copper wire can be disposed in the stator 100 is performed in step S13. Specifically, in the bending step (S13), the copper wire cut to the length of the segment conductor 30 is bent by a jig into a shape (substantial U-shape with the crank part 33) (see
<Forging Step>
Next, a cross section forming step for forming the cross section of the copper wire (having the circular cross section and not subjected to the insulation coating process) cut to the length of the segment conductor 30 by compressing the copper wire cut to the length of the segment conductor 30 is performed in step S14. The cross section forming step (S14) is a step of transforming the outer shape of a part of the copper wire (having the circular cross section and not subjected to the insulation coating process) to be housed in the slot 13. Specifically, the cross section forming step (S14) is a step of forming the cross section of the copper wire (cut to the length of the segment conductor 30) so that the outer shape of a part to face the inner side surfaces of the slot 13 (the wall portion 11a of the back yoke 11 and the circumferential side surfaces 12a of two teeth 12) conforms to the inner side surfaces of the slot 13. Specifically, in the cross section forming step (S14), the cross section of the copper wire (cut to the length of the segment conductor 30) is formed so that, when the plurality of slot housing portions 31 is housed in the slot 13 so as to be arranged in the B direction (radial direction) as shown in
The cross section forming step (S14) is performed after the bending step (S13). The bending step (S13) is performed by using a die. That is, the cross section forming step (S14) is a step of forming, after the bending step (S13), the cross section of the bent copper wire by die forging (die forming) so that the outer shape of the part to face the inner side surfaces of the slot 13 (the wall portion 11a of the back yoke 11 and the circumferential side surfaces 12a of two teeth 12) conforms to the inner side surfaces of the slot 13. Thus, the bending step (S13) is performed before the internal stress of the copper wire increases (work hardening) due to the compression in the cross section forming step (S14). As a result, it is possible to prevent damage (cracks, etc.) to the copper wire due to the bending step (S13) performed on the copper wire in a state in which the internal stress of the copper wire increases (work-hardened state). Unlike a case where the bending step (S13) is performed after the cross section forming step (S14), annealing for removing the internal stress (work hardening) of the copper wire need not be performed before the bending step (S13). Therefore, it is possible to easily realize a heat treatment step described later (common thermal step (S16) for performing both annealing of the copper wire for removing the internal stress (work hardening) of the segment conductor 30 and baking of the insulation coating 40). By the die forging (die forming), it is possible to easily form the cross section of the bent copper wire so that the outer shape of the part to face the inner side surfaces of the slot 13 (the wall portion 11a of the back yoke 11 and the circumferential side surfaces 12a of two teeth 12) conforms to the inner side surfaces of the slot 13. In the cross section forming step (S14), the cross section of the copper wire is formed by closed die forging.
The cross section forming step (S14) is a step of forming the cross section of the copper wire (cut to the length of the segment conductor 30) so that the sectional shape of a part that serves as one of the pair of slot housing portions 31 (
The cross section forming step (S14) is a step of forming the sectional shape of the copper wire (cut to the length of the segment conductor 30) so that the sectional shapes of the slot housing portions 31 (see
The cross section forming step (S14) is a step of forming the cross section of the copper wire so that the part to face the inner side surfaces of the slot 13 (the wall portion 11a of the back yoke 11 and the circumferential side surfaces 12a of two teeth 12) has the shape conforming to the inner side surfaces and a part to face the slot housing portion 31 adjacent in the B direction (radial direction) has a flat surface 31a (see
<Insulation Step>
Next, a coating step for applying the insulation coating 40 to the copper wire (not subjected to the insulation coating process) after the cross section forming is performed in step S15. That is, an insulation step (S15) for performing the insulation coating process on the copper wire after the bending and the cross section forming is performed in step S15. Accordingly, unlike a case where the insulation coating 40 is formed on the copper wire in advance, there is no need to consider thinning of the insulation coating 40 in the cross section forming step (S14). Thus, the thickness of the insulation coating 40 need not be increased more than necessary. That is, the insulation coating process can be performed so that the insulation coating 40 has an optimum thickness (minimum thickness that can secure the insulation property of the coil 20) for the part of the copper wire that serves as the slot housing portion 31 with the outside diameter transformed into the desired shape for the disposition in the slot 13 in the cross section forming step (S14). Therefore, the thickness of the insulation coating 40 does not increase more than necessary. Thus, an increase in the occupation ratio of the insulation coating 40 in the slot 13 can be prevented. As a result, the space factor of the slot housing portion 31 in the slot 13 can be improved. Unlike the case where the copper wire having the insulation coating 40 formed in advance is bent at the part that serves as the coil end portion 32, the insulation coating 40 does not deteriorate. Thus, the insulation property of the coil end portion 32 can be improved. As a result, it is possible to improve the space factor of the slot housing portion in the slot while improving the insulation property of the coil end portion.
The insulation step (S15) is a step of performing the insulation coating process by electrodeposition coating on the copper wire after the cross section forming. Specifically, the copper wire after the cross section forming is immersed in a liquid coating in the insulation step (S15). The liquid coating is a thermosetting resin. The thermosetting resin is, for example, polyimide or polyamideimide. By applying a voltage to the copper wire after the cross section forming that is immersed in the liquid coating, the liquid coating is deposited on the surface of the copper wire after the cross section forming. Then, the insulation coating 40 is formed on the surface of the copper wire after the cross section forming. Thus, it is possible to easily perform the insulation coating process by electrodeposition coating on the copper wire after the cross section forming so that the insulation coating 40 has the optimum thickness.
<Heat Treatment Step>
Next, a common heat treatment step is performed in step S16 to perform both annealing of the copper wire whose cross section has been formed in the cross section forming step (S14) and baking of the (liquid) insulation coating 40 applied (by electrodeposition coating) to the copper wire in the insulation step (S15). That is, the common heat treatment step (S16) is performed after the cross section forming step (S14) and the insulation step (S15).
The common heat treatment step (S16) is a step of performing heat treatment at a temperature at which the annealing of the copper wire whose cross section has been formed in the cross section forming step (S14) and the baking of the insulation coating 40 applied to the copper wire in the coating step (S15) can be performed. Specifically, the common heat treatment step (S16) is a step of performing the heat treatment at an annealing temperature of the copper wire that is higher than a curing temperature at which the thermosetting resin serving as the insulation coating 40 applied to the copper wire in the coating step (S15) is cured by baking.
Specifically, a general annealing temperature of copper (copper wire) used for the segment conductor 30 is 350° C. to 500° C. However, the temperature of 350° C. to 500° C. is a temperature at which the annealing effect on copper is relatively high. Even below 350° C. (for example, 300° C.), there is a certain annealing effect on copper. That is, the annealing temperature of copper covers a relatively wider range than the range of 350° C. to 500° C. The curing temperature of the thermosetting resin used for the insulation coating 40 is approximately 300° C. and approximately 250° C. in the case of, for example, polyimide and polyamideimide, respectively. The thermosetting resin such as polyimide or polyamideimide is cured at the curing temperature, but the elastic modulus decreases as the temperature increases above the curing temperature. That is, the thermosetting resin becomes more fragile against bending, stretching, or the like as the temperature increases above the curing temperature. Therefore, in the common heat treatment step (S16), it is preferable to perform the heat treatment at an annealing temperature that is higher than the curing temperature of the thermosetting resin serving as the insulation coating 40 but is not significantly higher than the curing temperature. For example, when polyimide and polyamideimide are used as the thermosetting resin, the heat treatment may be performed in the range of approximately 300° C. to approximately 350° C.
<Coil Disposing Step>
Next, a coil disposing step for disposing, in the stator core 10, the segment conductors (coil 20) formed from the copper wires after the bending step and the cross sectional forming and after the insulation coating process is performed in step S17. The coil disposing step (S17) is a step of housing the slot housing portions 31 of the segment conductor 30 in the slots 13 of the stator core 10 and disposing the coil end portion 32 of the segment conductor 30 outside the slots 13 of the stator core 10. In the disposing step (S17), the plurality of segment conductors 30 is disposed at predetermined positions in the stator core 10. Thus, it is possible to dispose, in the stator core 10, the coil 20 formed from the copper wires that can prevent the increase in the occupation ratio of the insulation coatings in the slots 13.
<Segment Conductor Joining Step>
Next, a joining step for joining the segment conductors 30 together is performed in step S18. Specifically, the plurality of segment conductors 30 disposed at the predetermined positions in the stator core 10 in the coil disposing step (S17) is joined together in the segment conductor joining step (S18). Specifically, the end of the slot housing portion 31 in the segment conductor 30 disposed on the Z1 side and the end of the slot housing portion 31 in the segment conductor 30 disposed on the Z2 side are joined together in the slot 13.
(Method for Manufacturing Stator)
Next, a method for manufacturing the stator 100 according to a second embodiment will be described with reference to
<Rolling Step>
As shown in
The cross section forming step (S22) is performed before the bending step (S25). The cross section forming step (S22) is performed by using a reduction roller. That is, the cross section forming step (S22) is a step of forming, before the bending step (S25), the cross section of the pre-bending copper wire by rolling so that the outer shape of the part to face the inner side surfaces of the slot 13 (the wall portion 11a of the back yoke 11 and the circumferential side surfaces 12a of two teeth 12) conforms to the inner side surfaces of the slot 13. By the rolling, it is possible to easily form the cross section of the part of the copper wire that serves as the slot housing portion 31 so that the outer shape of the part to face the inner side surfaces of the slot 13 (the wall portion 11a of the back yoke 11 and the circumferential side surfaces 12a of two teeth 12) conforms to the inner side surfaces of the slot 13.
<Annealing Step>
Next, an annealing step for annealing the copper wire after the cross section forming is performed in step S23. That is, the annealing step (S23) is a step of annealing, after the cross section forming step (S22) and before the bending step (S25), the copper wire after the cross section forming and before the bending. By annealing the copper wire after the cross section forming, a residual stress (work hardening) inside the copper wire due to the compression in the cross section forming step (S22) is removed. Thus, it is possible to prevent damage to the copper wire due to the bending step (S25) performed in the work-hardened state of the copper wire after the cross section forming.
<Baking Step>
A baking step for baking the (liquid) insulation coating 40 applied (by electrodeposition coating) to the bent copper wire is performed in step S27. In the baking step (S27), the (liquid) insulation coating 40 applied (by electrodeposition coating) to the bent copper wire is thermally cured by baking. Thus, the insulation coating 40 is formed on the surface of the bent copper wire.
Other configurations of the method for manufacturing the stator 100 in the second embodiment are the same as those of the method for manufacturing the stator 100 in the first embodiment.
The embodiments disclosed herein should be construed as illustrative and not restrictive in all respects. The scope of the present disclosure is defined by the claims rather than by the above description of the embodiments, and includes all changes (modifications) that fall within the meaning and scope equivalent to the claims.
For example, the first and second embodiments are directed to the example in which the insulation step (S15, S26) is the step of performing the insulation coating process by the electrodeposition coating on the copper wire (coil wire). However, the present disclosure is not limited to this example. In the present disclosure, the insulation step may be a step of performing the insulation coating process on the coil wire by a method other than the electrodeposition coating (for example, tape application, extrusion (resin molding), powder coating, spraying, or application).
The first and second embodiments are directed to the example in which the cross section forming step (S14, S22) is the step of forming the cross section of the copper wire (coil wire) so that the part to face the inner side surfaces of the slot 13 has the shape conforming to the inner side surfaces and the part to face the slot housing portion 31 adjacent in the radial direction has the flat surface 31a orthogonal to the radial direction when viewed in the axial direction. However, the present disclosure is not limited to this example. In the present disclosure, the cross section forming step may be a step of forming the cross section of the coil wire so that the part to face the inner side surfaces of the slot has the shape conforming to the inner side surfaces and the part to face the slot housing portion adjacent in the radial direction does not have the flat surface.
The first and second embodiments are directed to the example in which the sectional shape of the segment conductor 30 is the rectangular shape. However, the present disclosure is not limited to this example. In the present disclosure, the sectional shape of a segment conductor 330 (430) may be a shape other than the rectangular shape as in a stator 300 according to a first modification shown in
The first and second embodiments are directed to the example in which the cross section forming step (S14, S22) is the step of forming the cross section of the copper wire (coil wire) so that the sectional shapes of the slot housing portions 31 differ from the sectional shape of the coil end portion 32. However, the present disclosure is not limited to this example. In the present disclosure, the cross section forming step may be a step of forming the cross section of the coil wire so that the sectional shapes of the slot housing portions are the same as the sectional shape of the coil end portion.
The first and second embodiments are directed to the example in which the cross section forming step (S14, S22) is the step of forming the cross section of the copper wire (coil wire) so that the sectional shape of the part that serves as one of the pair of slot housing portions 31 differs from the sectional shape of the part that serves as the other of the pair of slot housing portions 31. However, the present disclosure is not limited to this example. In the present disclosure, the cross section forming step may be a step of forming the cross section of the coil wire so that the sectional shape of the part that serves as one of the pair of slot housing portions is the same as the sectional shape of the part that serves as the other of the pair of slot housing portions.
The method for manufacturing the stator 100 in the second embodiment is directed to the example in which the annealing step (S23) for annealing the copper wire (coil wire) after the cross section forming and before the bending is provided after the cross section forming step (S22) and before the bending step (S25). However, the present disclosure is not limited to this example. In the present disclosure, the annealing step may be omitted in the method for manufacturing the stator in the second embodiment.
The first and second embodiments are directed to the example in which the U-shape bending step and the lane change bending step are performed in sequence. However, the present disclosure is not limited to this example. In the present disclosure, the U-shape bending step and the lane change bending step may be performed with any other step (for example, the cross section forming step) interposed therebetween.
The method for manufacturing the stator 100 in the first embodiment is directed to the example in which the cross section forming step (S14) is performed after the bending step (S13). However, the present disclosure is not limited to this example. In the present disclosure, the cross section forming step (S33) may be performed before the bending step (S34) as in a method for manufacturing the stator 100 according to a third modification shown in
The method for manufacturing the stator 100 in the first embodiment is directed to the example in which the step of cutting the copper wire (hereinafter referred to as “cutting step”) in the straightening and cutting step (S12), the bending step (S13), and the cross section forming step (S14) (forging) are performed in this order. However, the present disclosure is not limited to this example. In the present disclosure, the cross section forming step (forging), the cutting step, and the bending step may be performed in this order. In this case, the cross section forming step (forging) is the partial die forging. The cross section forming step (forging), the bending step, and the cutting step may be performed in this order. In this case, the cross section forming step (forging) is the partial die forging. The bending step, the cutting step, and the cross section forming step (forging) may be performed in this order. In this case, the closed die forging is performed. The bending step, the cross section forming step (forging), and the cutting step may be performed in this order. In this case, the closed die forging is performed.
The method for manufacturing the stator 100 in the second embodiment is directed to the example in which the cross section forming step (S22) (rolling), the annealing step (S23), the step of cutting the copper wire (hereinafter referred to as “cutting step”) in the straightening and cutting step (S24), and the bending step (S25) are performed in this order. However, the present disclosure is not limited to this example. In the present disclosure, the cross section forming step (rolling), the cutting step, the annealing step, and the bending step may be performed in this order. The bending step, the cutting step, and the cross section forming step (rolling) may be performed in this order. In this case, the annealing step is omitted. The cutting step, the bending step, and the cross section forming step (rolling) may be performed in this order. In this case, the annealing step is omitted. The cutting step, the cross section forming step (rolling), the annealing step, and the bending step may be performed in this order.
The above embodiments are directed to the example in which the slot housing portions 31 of the different segment conductors 30 are joined together in the slot 13. However, the present disclosure is not limited to this example. In the present disclosure, the slot housing portions of the different segment conductors may be joined together outside the slot.
Number | Date | Country | Kind |
---|---|---|---|
2020-170168 | Oct 2020 | JP | national |
2020-207985 | Dec 2020 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2021/035731 | 9/28/2021 | WO |