METHODS FOR MODULATING INTESTINE CELLS OR TISSUE FUNCTION

Abstract
Macromolecule compositions and related methods that effect targeted delivery of therapeutic agents to effector targets in a desired cell, tissue and/or organ of interest while minimizing or avoiding undesirable delivery to other cells, tissues or organs are provided. Compositions and methods related to macromolecules, such as an ANDbody™, that include an effector target binding domain specific for an effector target, and an address binding domain specific for an address target are described.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in XML file format and is hereby incorporated by reference in its entirety. Said XML copy, created on Aug. 25, 2022, is named 51666-002003_SL.xml and is 116,519 bytes in size.


BACKGROUND OF THE INVENTION

Undesirable off-target effects are a problem for otherwise desirable therapeutic targets that are present in healthy as well as diseased tissues.


SUMMARY OF THE INVENTION

The present disclosure describes, in part, macromolecule compositions and related methods that effect targeted delivery of therapeutic agents to effector targets in a desired cell, tissue and/or organ of interest while minimizing or avoiding undesirable delivery to other cells, tissues or organs. Generally, compositions described herein comprise macromolecules, such as an ANDbody™, that include an effector target binding domain specific for an effector target, and an address binding domain specific for an address target. The address target is generally sufficiently restricted in the subject to target the macromolecule to the desired cell, tissue or organ. In some embodiments, the effector target binding domain does not influence an effector target in the absence of an address target binding domain. Moreover, the address target binding domain does not influence signaling upon binding the address target. However, localization of the effector target binding domain by the address target binding domain enables the effector target binding domain to bind the effector target sufficiently to elicit an influence on signaling by the effector target in the target cell or tissue. The compositions described herein can be used, e.g., to specifically deliver a therapeutic agent to a desired location, e.g., a cell, tissue or organ, in a subject, while avoiding undesirable off-target effects.


In one aspect, the present disclosure provides a method of localizing a macromolecule at a target tissue or cell of a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in the subject, and (b) the second binding site is specific for an address target expressed in the target tissue or cell in the subject; wherein: (i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell; (ii) the second binding site does not substantially influence signaling upon binding the address target; and (iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site; and allowing the macromolecule to localize at the target tissue or cell of the subject.


In some embodiments, at least 25% of the macromolecule detectable in the subject is detected at the target tissue or cell at a time point between 1 and 7 days following administration of the macromolecule to the subject.


In some embodiments, the potency of the first binding site at the target tissue or cell is substantially increased relative to a reference macromolecule lacking the second binding site.


In some embodiments, the first binding site has a low affinity for the effector target.


In some embodiments, the first binding site has a low avidity for the effector target.


In some embodiments, the affinity of the first binding site for the effector target is lower than the affinity of the second binding site for the address target.


In some embodiments, the avidity of the first binding site for the effector target is lower than the avidity of the second binding site for the address target.


In some embodiments, effector target signaling by the macromolecule in a non-target tissue or cell of the subject is substantially decreased relative to a reference macromolecule lacking the second binding site.


In some embodiments, the address target is regionally expressed in the subject. In some embodiments, the address target is locally expressed in the subject. In some embodiments, the expression of the address target is restricted to a cell type in the subject.


In some embodiments, the address target is expressed only by a cell in the subject when in a specific cell state.


In some embodiments, the address target is expressed only by a cell in the subject in a disease state.


In some embodiments, the first binding site or the second binding site comprises a polypeptide.


In some embodiments, the polypeptide is an antibody or antigen-binding fragment thereof.


In some embodiments, the macromolecule is an antibody comprising a first binding site that is specific for the effector target in the subject and a second binding site that is specific for the address target.


In some embodiments, the polypeptide is a ligand of the effector target or a ligand of the address target.


In some embodiments, (a) the first binding site comprises an antibody or antigen-binding fragment thereof and the second binding site comprises a ligand of the address target; or (b) the first binding site comprises a ligand of the effector target and the second binding site comprises an antibody or antigen-binding fragment thereof.


In some embodiments, the target tissue is skin and the second binding site is specific for desmoglein-1 (DSG-1).


In some embodiments, the target tissue is lung tissue and the second binding site is specific for RAGE.


In some embodiments, the target tissue is kidney tissue and the second binding site is specific for cadherin 16 (CDH16).


In some embodiments, the target tissue is intestine tissue and the second binding site is specific for cadherin 17 (CDH17).


In another aspect, the present disclosure provides a macromolecule comprising a first binding site and a second binding site, wherein: (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein (i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell; (ii) the second binding site does not substantially influence signaling upon binding the address target; and (iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site.


In another aspect, the present disclosure provides a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein: (i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell; (ii) the second binding site does not substantially influence signaling upon binding the address target; and (iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site; and wherein localization of the macromolecule to a non-target tissue or cell is substantially reduced relative to localization of a reference macromolecule lacking the second binding site.


In another aspect, the present disclosure provides a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein (i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell; (ii) the second binding site does not substantially influence signaling upon binding the address target; and (iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site; and wherein localization of the macromolecule to a target tissue or cell is substantially increased relative to localization of a reference macromolecule lacking the second binding site.


In another aspect, the present disclosure provides a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein (i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell; (ii) the second binding site does not substantially influence signaling upon binding the address target; and (iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site; and wherein at least 25% of the macromolecule administered to a subject is detected at the target tissue or cell at a time point between 1 and 7 days following administration.


In another aspect, the present disclosure provides a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein (i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell; (ii) the second binding site does not substantially influence signaling upon binding the address target; and (iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site; and wherein the affinity of the first binding site for the effector target is lower than the affinity of the second binding site for the address target.


In another aspect, the present disclosure provides a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein (i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell; (ii) the second binding site does not substantially influence signaling upon binding the address target; and (iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site; and wherein the avidity of the first binding site for the effector target is lower than the avidity of the second binding site for the address target.


In another aspect, the present disclosure provides a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein (i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell; (ii) the second binding site does not substantially influence signaling upon binding the address target; and (iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site; and wherein the potency of the first binding site at the target tissue or cell is substantially increased relative to a reference macromolecule lacking the second binding site.


In some embodiments, the first binding site has a low affinity for the effector target.


In some embodiments, the first binding site has a low avidity for the effector target.


In some embodiments, the affinity of the first binding site for the effector target is lower than the affinity of the second binding site for the address target.


In some embodiments, the avidity of the first binding site for the effector target is lower than the avidity of the second binding site for the address target.


In some embodiments, (a) the Kd of the first binding site for the effector target is higher than the Kd of the second binding site for the address target; (b) the EC50 of the first binding site for the effector target is higher than the EC50 of the second binding site for the address target; or (c) the IC50 of the first binding site for the effector target is higher than the IC50 of the second binding site for the address target.


In some embodiments, the first binding site has an affinity to the effector target of at least about 2 times, at least about 5 times, or at least about 10 times less than the affinity of the second binding site to the address target.


In some embodiments, the affinity of the second binding site to the address target has a Kd of greater than about 1 nM, greater than about 2 nM, or greater than about 50 nm.


In some embodiments, the effector target is a protein, lipid, or sugar.


In some embodiments, the effector target is a cell membrane-associated target.


In some embodiments, the effector target is a protein. In some embodiments, the effector target is a secreted protein.


In some embodiments, the effector target is encoded by a gene selected from the group consisting of the genes recited in Table 1.


In some embodiments, the macromolecule agonizes the effector target.


In some embodiments, the macromolecule antagonizes the effector target.


In some embodiments, the address target is a protein, lipid, or sugar.


In some embodiments, the address target is a protein.


In some embodiments, expression of the effector target or the address target is expression of an RNA sequence encoding the effector target or the address target.


In some embodiments, the expression level of the effector target or the address target is assessed by using a RNA sequence dataset.


In some embodiments, the RNA sequence dataset is a Genotype-Tissue Expression (GTEx) dataset or a Human Protein Atlas (HPA) dataset.


In some embodiments, expression of the effector target or the address target is protein expression.


In some embodiments, the effector target is systemically expressed in the subject.


In some embodiments, the effector target is regionally expressed in the subject.


In some embodiments, the effector target is locally expressed in the subject.


In some embodiments, the address target is regionally expressed in the subject.


In some embodiments, the address target is locally expressed in the subject.


In some embodiments, the expression of the address target is restricted to a cell type in the subject.


In some embodiments, the address target is a soluble protein or an extracellular matrix (ECM)-associated protein and is not present in detectable amounts on the cell surface.


In some embodiments, the address target is expressed in the ECM and is not present in detectable amounts elsewhere in the subject.


In some embodiments, the address target is expressed only by a cell in the subject when in a specific cell state.


In some embodiments, the address target is expressed only by a cell in the subject when in a disease state.


In some embodiments, the address target is not expressed in a tissue in which binding of the second binding site to the effector target is deleterious to the subject.


In some embodiments, the binding site for the address target does not bind in detectable amounts to the binding site of a natural ligand of the address target.


In some embodiments, expression of the effector target or address target includes expression in one or more of minor salivary gland, thyroid, lung, breast, mammary tissue, pancreas, adrenal gland, liver, kidney, kidney cortex, kidney medulla, adipose-visceral tissue, omentum, small intestine, terminal ileum, fallopian tube, ovary, uterus, skin, skin not sun exposed, suprapubic skin, cervix, endocervix, ectocervix, vagina, skin sun exposed, lower leg skin, eneanterior cingulate cortex, Brodmann area 24 (BA24), basal ganglia, caudate nucleus, putamen, nucleus acumbens, hypothalamus, amygdala, hippocampus, cerebellum, cerebellar hemisphere, substantia nigra, pituitary gland, spinal cord, cervical spinal cord, artery, aorta, heart, atrial appendage, coronary artery, left ventricle, esophagus, esophagus mucosa, esophagus muscularis, gastroesophageal junction, spleen, stomach, colon, transverse colon, sigmoid colon, testis, whole blood cells, EBV-transformed lymphocytes, artery-tibial, or nerve-tibial tissues.


In some embodiments, expression of the effector target or address target includes expression in skin tissue, lung tissue, kidney tissue, or intestine tissue. In some embodiments, expression of the address target is substantially higher in skin tissue, lung tissue, kidney tissue, or intestine tissue than in any other tissue.


In some embodiments, the effector target and/or the address target is expressed on a structural tissue in the subject.


In some embodiments, the effector target and address target are on the same cell.


In some embodiments, the effector target and address target are on different cells.


In some embodiments, the effector target and address target are on different cells of the same cell type.


In some embodiments, the effector target and address target are on different cells of different cell types.


In some embodiments, the effector target and address target are on different cells in the same tissue.


In some embodiments, (a) the effector target is on a circulating cell and the address target is on a tissue-restricted cell; or (b) the effector target is on a tissue-restricted cell and the address target is on a circulating cell.


In some embodiments, the effector target and address target are on different cells located within 100 nm of each other in the subject.


In some embodiments, either the effector target or the address target is present on a cell surface.


In some embodiments, the macromolecule is a DNA polynucleotide.


In some embodiments, the macromolecule comprises an RNA or RNA-polypeptide conjugate.


In some embodiments, the macromolecule comprises a polypeptide. In some embodiments, the macromolecule is a polypeptide.


In some embodiments, the polypeptide is an antibody or antigen-binding fragment thereof.


In some embodiments, the first binding site and the second binding site each comprise a VH and/or a VL.


In some embodiments, the macromolecule is an antibody comprising a first binding site that is specific for the effector target in the subject and a second binding site that is specific for the address target.


In some embodiments, the macromolecule is an asymmetric antibody or a symmetric antibody.


In some embodiments, the antibody or antigen-binding fragment thereof comprises an scFv, BsIgG, a BsAb fragment, a BiTE, a dual-affinity re-targeting protein (DART), a tandem diabody (TandAb), a diabody, an Fab2, a di-scFv, chemically linked F(ab′)2, an Ig molecule with 2, 3 or 4 different antigen binding sites, a DVI-IgG four-in-one, an ImmTac, an HSAbody, an IgG-IgG, a Cov-X-Body, an scFv1-PEG-scFv2, an appended IgG, an DVD-IgG, an affibody, an affilin, an affimer, an affitin, an alphabody, an anticalin, an avimer, a DARPin, a Fynomer, a monobody, a nanoCLAMP, a bis-Fab, an Fv, a Fab, a Fab′-SH, a linear antibody, an scFv, an antibody with only a heavy chain (Humabody), an ScFab, an IgG antibody fragment, a single-chain variable region antibody, a single-domain heavy chain antibody. a bispecific triplebody, a BiKE, a CrossMAb, a dsDb, an scDb, tandem a dAb/VHH, a triple dAb VHH, a tetravalent dAb/VHH, a Fab-scFv, a Fab-Fv, or a DART-Fc, an adnectin, a Kunitz-type inhibitor, or a receptor decoy.


In some embodiments, the polypeptide is a ligand of the effector target or a ligand of the address target.


In some embodiments, the ligand is a natural ligand, a modified ligand, or a synthetic ligand.


In some embodiments, the effector target or address target is a receptor and the polypeptide is a ligand thereof.


In some embodiments, the first binding site comprises an antibody or antigen-binding fragment thereof and the second binding site comprises a ligand of the address target.


In some embodiments, the first binding site comprises a ligand of the effector target and the second binding site comprises an antibody or antigen-binding fragment thereof.


In some embodiments, the amino acid sequences of the first and second binding sites are at least about 10% identical, at least about 20% identical, at least about 30% identical, at least about 40% identical, at least about 50% identical, at least about 60% identical, or at least about 70% identical.


In some embodiments, the address target has a Gini coefficient higher than about 0.4, about 0.5, about 0.57, about 0.65, about 0.7, about 0.85, about 0.90, or about 0.95.


In some embodiments, the address target has a Tau coefficient higher than about 0.67, about 0.75, about 0.8, about 0.85, about 0.90, or about 0.95.


In some embodiments, the effector target has a Gini coefficient lower than about 0.25, about 0.20, or about 0.15.


In some embodiments, the effector target has a Tau coefficient lower than about 0.25, about 0.20, or about 0.15.


In some embodiments, the macromolecule further comprises a third binding site. In some embodiments, the third binding site is the same as the first binding site. In some embodiments, the third binding site is the same as the second binding site.


In some embodiments, the first binding site and second binding site are directly joined to each other in the macromolecule.


In some embodiments, the first binding site and the second binding site in the macromolecule are joined by a stable domain.


In some embodiments, the effector target is Notch2 and the address target is RAGE.


In some embodiments, RAGE signaling is not influenced by the second site binding the RAGE address target.


In some embodiments, the effector target is Notch2 and the address target is uromodulin (UMOD).


In some embodiments, UMOD signaling is not influenced by the second site binding the UMOD address target.


In some embodiments, the effector target is Notch2 and the address target is meprin A subunit beta (MEP1B).


In some embodiments, MEP1B signaling is not influenced by the second site binding the MEP1B address target.


In some embodiments, the effector target is IL11Ra and the address target is RAGE. In some embodiments, RAGE signaling is not influenced by the second site binding the RAGE address target.


In some embodiments, the effector target is IL 11 Ra and the address target is UMOD. In some embodiments, UMOD signaling is not influenced by the second site binding the UMOD address target.


In some embodiments, the subject is a human.


In another aspect, the present disclosure provides a method of delivering a moiety to a target tissue or cell in a subject, comprising administering to the subject a macromolecule of any one of claims 1-86, wherein the target tissue comprises the address target.


In some embodiments, the moiety is a molecule.


In some embodiments, the moiety is not a toxin.


In some embodiments, the moiety is a cell.


In some embodiments, the moiety is not a T cell or an NK cell.


In some embodiments, the target tissue is not a tumor.


In another aspect, the present disclosure provides a method of modulating an effector target in a target tissue, comprising administering to the tissue a macromolecule of any one of claims 1-86, wherein the target tissue comprises the address target and the effector target.


In another aspect, the present disclosure provides a method of biasing a binding agent away from binding an effector target when the effector target is found in the heart or lungs, comprising administering the macromolecule of any one of claims 1-86, wherein the address target is not substantially expressed in the heart or lungs.


In another aspect, the present disclosure provides a method of modulating a target tissue in a subject, comprising administering to the subject a macromolecule of any one of claims 1-86, wherein the target tissue comprises the address target and the effector target.


In another aspect, the present disclosure provides a method of treating a subject having a disease or condition associated with an effector target, comprising administering to the subject a macromolecule of any one of claims 1-86, wherein the first binding site of the macromolecule binds the effector target.


In another aspect, the present disclosure provides a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell, wherein the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site, and wherein the second binding site does not bind to the binding site of the natural ligand of the address target.


In another aspect, the present disclosure provides a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell, wherein the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site, and wherein the first binding site and second binding site are directly joined to each other in the macromolecule.


In another aspect, the present disclosure provides a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell, wherein the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site, and wherein the first binding site and second binding are joined to each other by a stable domain.


In another aspect, the present disclosure provides a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell, wherein the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site, and wherein the effector target and/or the address target is expressed on a structural tissue in a host.


In another aspect, the present disclosure provides a pharmaceutical composition comprising the macromolecule of any one of the above embodiments.


In another aspect, the present disclosure provides a pharmaceutical composition comprising a macromolecule and one or more pharmaceutically acceptable excipients, wherein the macromolecule comprises a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell, and wherein the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site.


In some embodiments, the pharmaceutical composition is an RNA pharmaceutical composition.


In some embodiments, the pharmaceutical composition further comprises a carrier.


In some embodiments, the carrier is a lipid nanoparticle.


In some embodiments, the carrier is a viral vector.


In some embodiments, the carrier is a membrane-based carrier.


In some embodiments, the membrane-based carrier is a cell.


In some embodiments, the membrane-based carrier is a vesicle.


In another aspect, the present disclosure provides a method for modulating activity of an effector target in the skin of a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in the subject, and (b) the second binding site is specific for desmoglein-1 (DSG-1).


In another aspect, the present disclosure provides a method for modulating activity of an effector target in the lung of a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in the subject, and (b) the second binding site is specific for RAGE.


In another aspect, the present disclosure provides a method for modulating activity of an effector target in the kidney of a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in the subject, and (b) the second binding site is specific for cadherin 16 (CDH16).


In another aspect, the present disclosure provides a method for modulating activity of an effector target in the intestine of a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in the subject, and (b) the second binding site is specific for cadherin 17 (CDH17).


In another aspect, the present disclosure provides a method of localizing a macromolecule at a target tissue or cell of a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in the subject, and (b) the second binding site is specific for an address target expressed in the target tissue or cell in the subject; wherein: (i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell; (ii) the second binding site does not substantially influence signaling upon binding the address target; and (iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site; and allowing the macromolecule to localize at the target tissue or cell of the subject.


In another aspect, the present disclosure provides a method of concentrating a macromolecule in a target tissue or cell in a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein (a) the first binding site is specific for an effector target in a subject, and (b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein (i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell; (ii) the second binding site does not substantially influence signaling upon binding the address target; and (iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site; and allowing the macromolecule to concentrate at the target tissue or cell of the subject, wherein at least 25% of the macromolecule detectable in the subject is detected at the target tissue or cell at a time point between 1 and 7 days following administration of the macromolecule to the subject.


In some embodiments, the potency of the first binding site at the target tissue or cell is substantially increased relative to a reference macromolecule lacking the second binding site.


In some embodiments, effector target signaling by the macromolecule in a non-target tissue or cell of the subject is substantially decreased relative to a reference macromolecule lacking the second binding site.


In some embodiments, the macromolecule is a macromolecule of any one of the above embodiments.


The details of one or more embodiments of the invention are set forth in the description below. Other features or advantages of the present invention will be apparent from the following drawings and detailed description of several embodiments, and also from the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustrating exemplary ANDbody™ molecules and their use as logic-gated medicines. FIG. 1 shows broad distribution of a therapeutic target (right side), such as an effector target, in a human subject with no address targeting, and a localized and restricted distribution with address targeting (left side), which is provided by an address target binding domain. FIG. 1. also provides a representative bipartite structure of an ANDbody with an address target binding domain linked to an effector target binding domain, which includes a functional moiety, e.g., a moiety that modulates, e.g., agonizes or antagonizes, a target effector in an address targeted cell or tissue. The address target binding domain directs the ANDbody to a desired location, such as a targeted cell or tissue, allowing for the effector target binding domain to engage the therapeutic effector target in the localized and restricted distribution area. In some embodiments, high affinity of the effector domain for the target effector may not be required; localization of the effector target binding domain by the address target binding domain enables the effector target binding domain to bind the effector target sufficiently to elicit an influence on signaling by the effector target in the target cell or tissue despite low affinity of the effector domain for the effector target. The address target binding domain can alternatively be used to transport molecular or cellular cargos to a desired address.



FIG. 2 is a schematic map showing activity of exemplary effector targets that can be restricted to tissues or cells of interest by developing ANDbody therapeutics comprised of an effector targeting domain and an address targeting domain. These ANDbody biologics represent potent, address-restricted medicines according to the present technology.



FIG. 3 provides exemplary structures of ANDbody biologics that can be engineered according to the present technology, including (but not limited to): an asymmetric antibody, an dual-affinity re-targeting protein (DART), a tandem diabody (TandAb), a diabody, an Fab2, IgG(L,H)-Fv or a BiTE.



FIG. 4 demonstrates an EC50 curve of an exemplary single effector targeting domain (dashed line), such as a monospecific biologic (for example scFv) having a single binding domain to an effector target compared to an EC50 of an exemplary bispecific ANDbody biologic (for example di-scFc) with an address target binding domain and an effector target binding domain (solid line), such that single effector targeting domain (usually broadly expressed) is targeted/restricted to local, address target-specific tissues and/or cells, thus effectively increasing affinity of the effector target binding domain for the effector target binding site, as evidenced by a shift of the curve to the left (lower EC50, higher affinity).



FIG. 5A is a bar graph showing the level of fluorescence intensity detected in the indicated tissues in mice treated with the anti-DSG1 antibody PRO003 conjugated to IRDYE® 800CW. Data are shown as average of three mice. To control for differences in labeling efficiency, values are shown with the strongest signal set to 1.



FIG. 5B is a bar graph showing the level of fluorescence intensity detected in the indicated tissues in mice treated with the anti-DSG1 antibody PRO004 conjugated to IRDYE® 800CW or with a vehicle control (untreated). Data are shown as average of three mice. To control for differences in labeling efficiency, values are shown with the strongest signal set to 1.



FIG. 6A is a bar graph showing the level of fluorescence intensity detected in the indicated tissues in mice treated with the anti-RAGE antibody PRO001 conjugated to IRDYE® 800CW or with a vehicle control. Data are shown as average of three mice. To control for differences in labeling efficiency, values are shown with the strongest signal set to 1.



FIG. 6B is a bar graph showing the level of fluorescence intensity detected in the indicated tissues in mice treated with the anti-RAGE antibody PRO002 conjugated to IRDYE® 800CW or with a vehicle control. Data are shown as average of three mice. To control for differences in labeling efficiency, values are shown with the strongest signal set to 1.



FIG. 7 is a pair of photomicrographs showing representative IHC staining of an anti-human secondary antibody conjugated to horseradish peroxidase in lung tissue of Balb/C mice that were treated by tail vein injection with 3 mg/kg of the anti-RAGE antibody PRO002 (left panel) as compared to untreated mice (right panel). PRO002 comprises a human IgG1 backbone.



FIG. 8 is a bar graph showing the level of fluorescence intensity detected in the indicated tissues in mice treated with the anti-CDH16 antibody PRO056 conjugated to IRDYE® 800CW or with a vehicle control. Data are shown as average of three mice. To control for differences in labeling efficiency, values are shown with the strongest signal set to 1.



FIG. 9 is a bar graph showing the level of fluorescence intensity detected in the indicated tissues in mice treated with the anti-CDH17 antibody PRO061 conjugated to IRDYE® 800CW or with a vehicle control. Data are shown as average of three mice. To control for differences in labeling efficiency, values are shown with the strongest signal set to 1.



FIG. 10 is a set of photomicrographs showing staining for the Notch2 antagonistic mAbs PRO034, PRO035, and PRO036 and the corresponding RAGE-targeting ANDbodies PRO051, PRO052, and PRO053 on fresh frozen healthy mouse tissue microarray (FF TMA) sections. Lung sections are indicated by boxes.



FIG. 11 is a plot showing the concentration of PRO052, a control antibody that binds RAGE and respiratory syncytial virus (RSV) glycoprotein F (RAGE XT-4/Motavizumab), and a control antibody that binds Notch2 and RSV glycoprotein F (Notch2-2/Motavizumab), as detected by sandwich ELISA. Points show the average of three mice. Error bars show the standard deviation.



FIG. 12 is a set of schematic diagrams showing the design of the PRO023, PRO025, PRO024, PRO027, and PRO026 IL-10/DSG1 ANDbodies.



FIG. 13A is a bar graph showing the level of tumor necrosis factor alpha (TNFα) in peripheral blood mononuclear cell (PBMC) cell culture after pre-stimulation with hrIL-10 followed by treatment with lipopolysaccharide (LPS) for the indicated lengths of time.



FIG. 13B is a bar graph showing the level of TNFα in PBMC cell culture after pre-stimulation with an anti-DSG1 monoclonal antibody (mAb) followed by treatment with LPS for the indicated lengths of time.



FIG. 13C is a bar graph showing the level of TNFα in PBMC cell culture after pre-stimulation with the IL-10/DSG1 ANDbody PRO024 followed by treatment with LPS for the indicated lengths of time.



FIG. 13D is a bar graph showing the level of TNFα in PBMC cell culture after pre-stimulation with the IL-10/DSG1 ANDbody PRO026 followed by treatment with LPS for the indicated lengths of time.



FIG. 13E is a bar graph showing the level of TNFα in PBMC cell culture after pre-stimulation with the IL-10/DSG1 ANDbody PRO023 followed by treatment with LPS for the indicated lengths of time.



FIG. 13F is a bar graph showing the level of TNFα in PBMC cell culture after pre-stimulation with the IL-10/DSG1 ANDbody PRO025 followed by treatment with LPS for the indicated lengths of time.



FIG. 13G is a bar graph showing the level of TNFα in PBMC cell culture after pre-stimulation with the IL-10/DSG1 ANDbody PRO027 followed by treatment with LPS for the indicated lengths of time.



FIG. 14A is a bar graph showing the level of TNFα in primary macrophage cell culture cell culture after pre-stimulation with hrIL-10 followed by treatment with LPS for the indicated lengths of time.



FIG. 14B is a bar graph showing the level of TNFα in primary macrophage cell culture after pre-stimulation with the anti-DSG1 monoclonal antibody (mAb) PRO003 followed by treatment with LPS for the indicated lengths of time.



FIG. 14C is a bar graph showing the level of TNFα in primary macrophage cell culture after pre-stimulation with the IL-10/DSG1 ANDbody PRO024 followed by treatment with LPS for the indicated lengths of time.



FIG. 14D is a bar graph showing the level of TNFα in primary macrophage cell culture after pre-stimulation with the IL-10/DSG1 ANDbody PRO026 followed by treatment with LPS for the indicated lengths of time.



FIG. 14E is a bar graph showing the level of TNFα in primary macrophage cell culture after pre-stimulation with the IL-10/DSG1 ANDbody PRO023 followed by treatment with LPS for the indicated lengths of time.



FIG. 14F is a bar graph showing the level of TNFα in primary macrophage cell culture after pre-stimulation with the IL-10/DSG1 ANDbody PRO025 followed by treatment with LPS for the indicated lengths of time.



FIG. 14G is a bar graph showing the level of TNFα in primary macrophage cell culture after pre-stimulation with the IL-10/DSG1 ANDbody PRO027 followed by treatment with LPS for the indicated lengths of time.



FIG. 15 is a plot showing the level of IL-10 signaling detected in parental HEK-BLUE™ IL-10 cells or HEK-BLUE™ IL-10 cells stably expressing DSG1 (+DSG1 expression) that were treated overnight with the IL-10/DSG1 ANDbody PRO058 (functionally equivalent to PRO026) or a control antibody that comprises IL-10 and binds RSV glycoprotein F (IL-10/Motavizumab) at the indicated concentrations. IL-10 was measured using a colorimetric assay to detect expression of secreted embryonic alkaline phosphatase (SEAP). OD630: optical density at 630 nm. Curve fitting was performed using GraphPad Prism 9 to fit a 4-parameter log(agonist) vs. response.



FIG. 16A is a plot showing the concentration (ng/mL) of PRO003, PRO024, and PRO058 over time in serum samples from BALB/c mice dosed by tail vein injection with 3 mg/kg of the indicated antibody or ANDbody. The concentration of circulating molecules was measured by ELISA. Average concentration and standard deviation are shown. N=3.



FIG. 16B is a plot showing the concentration (ng of target protein per mg of total protein) of PRO003, PRO024, and PRO058 (functionally equivalent to PRO026) over time in skin tissue samples from BALB/c mice dosed by tail vein injection with 3 mg/kg of the indicated antibody or ANDbody. Skin samples were collected at the indicated time points and homogenized to extract proteins. Concentration was measured by ELISA. Average concentration and standard deviation are shown. N=3.



FIG. 17 is a set of schematic diagrams showing the design of the PRO070, PRO074, PRO075, and PRO077 TNFα-blocking anti-DSG1 ANDbodies.



FIG. 18A is a plot showing the level of IL-10 signaling detected in parental HEK-BLUE™ IL-10 cells that were treated overnight with PRO003, recombinant human IL-10 (rhIL-10), or recombinant human IL-10 fused to a human Fc domain (IL-10-Fc). IL-10 was measured using a colorimetric assay to detect expression of SEAP. OD630: optical density at 630 nm. Curve fitting was performed using GraphPad Prism 9 to fit a 4-parameter log(agonist) vs. response.



FIG. 18B is a plot showing the level of IL-10 signaling detected in parental HEK-BLUE™ IL-10 cells that were treated overnight with the IL-10/DSG1 ANDbodies PRO023, PRO024, PRO025, PRO026, and PRO027. IL-10 was measured using a colorimetric assay to detect expression of SEAP. OD630: optical density at 630 nm. Curve fitting was performed using GraphPad Prism 9 to fit a 4-parameter log(agonist) vs. response.





DETAILED DESCRIPTION OF THE INVENTION

Provided herein are ANDbody™ molecules that include a therapeutic effector target binding domain and an address target binding domain. The therapeutic effector target on the ANDbody molecule productively engages its therapeutic effector target only if the address target binding domain also engages an address target on a target tissue or cell to localize the effector target to the targeted cell or tissue, e.g., to form an AND-gate type of logic gate. For example, in some embodiments, an ANDbody is a macromolecule comprising at least (a) a first binding site specific for a therapeutic effector target that is expressed, e.g., broadly expressed, on a mammalian subject, e.g., on a cell surface; and (b) a second binding site specific for an address target. In embodiments, expression of the address target is restricted in vivo in a subject. In some embodiments, the binding of a first binding site to a therapeutic effector target is weaker than the binding of the second binding site to the address marker. The effector and address targets may be on the same cell, or in different cells or compartments within the same tissue.


In some embodiments, at least 25% of the macromolecule (e.g., ANDbody) detectable in the subject is detected at the target tissue or cell at a time point between 1 and 7 days (e.g., at 1 day, 2 days, 3 days, 4 days, 5, days, 6 days, and/or 7 days) following administration of the macromolecule (e.g., ANDbody) to the subject. For example, in some embodiments, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or 100% (e.g., 25-30%, 30-35%, 35-40%, 40-45%, 45-50%, 50-55%, 55-60%, 60-65%, 65-70%, 70-75%, 75-80%, 80-85%, 85-90%, 90-95%, or 95-100%) of the macromolecule detectable in the subject is detected at the target tissue or cell at a time point between 1 and 7 days following administration of the macromolecule the subject.


Effector Target

An ANDbody™ of the invention comprises an effector that modulates a therapeutic effector target in a subject, e.g., a mammalian subject such as a human, in need thereof. As used herein, an “effector target” is a discrete structure (e.g., a cell surface protein, a transmembrane protein, a receptor) of a cell or tissue of a subject, to which a therapeutic effector binding domain of an ANDbody can bind and exert a modulating effect, such as a therapeutic effect, on the subject. The ANDbody described herein has a binding site specific for an effector target. Upon binding of the effector binding domain to the effector target, the effector modulates the target cell or tissue to produce a biological response, such as a therapeutic effect, on the subject. However, in some embodiments, the effector target binding domain provided herein may not elicit a biological effect unless it is provided in conjunction with an address targeting domain to localize the effector to the desired target address in a targeted cell or tissue. In some embodiments, such therapeutic signaling may require the binding of multiple effector targets by multiple macromolecules according to the invention.


In some embodiments, an effector target binding domain may produce a small/weak biological effect when provided alone and provide a larger/stronger biological effect when provided in conjunction with an address targeting domain that localizes and concentrates/focuses the effector to the desired target address in a targeted cell or tissue. In some embodiments, an effector target binding domain may produce an acceptable biological effect when provided alone and provide an even larger/stronger biological effect when provided in conjunction with an address targeting domain to localize the effector target binding domain to a targeted cell or tissue. In some embodiments, an effector target binding domain may produce a strong biological effect when provided alone and provide a strong, or stronger, targeted effect when provided in conjunction with an address targeting domain to localize the effector target binding domain to a targeted cell or tissue. In some embodiments, an effector target binding domain may produce a biological effect with undesirable off target biological effects when provided alone, but can be targeted, concentrated, and focused to desired addresses in a targeted cell or tissue when provided in conjunction with an address targeting domain in order to decrease or eliminate undesirable off-target biological effects. Accordingly, effector target binding domains of the present technology provide superior therapeutic agents that provide stronger, targeted biological effects with less side effects, including less unintended off-target biological effects, when provided in conjunction with address target binding domains as described herein.


Examples of such therapeutic signaling effects include, but are not limited to:

    • blocking a signal transduction pathway that promotes or maintains a disease state;
    • (ii) activating a signal transduction pathway that reduces or prevents a disease state;
    • (iii) promoting antibody-dependent cellular cytotoxicity (ADCC);
    • (iv) inducing complement activation on the target cell or tissue;
    • (v) promoting phagocytosis;
    • (vi) blocking or activating a signal transduction pathway that promotes differentiation of a cell;
    • (vii) inducing tissue remodeling to reduce or prevent fibrosis.


In some embodiments, the therapeutic effector target is more broadly expressed than the address target in the subject. In some embodiments, the therapeutic effector target is expressed systemically, regionally, or locally in the organism. “Systemic expression” of a therapeutic effector target means that the therapeutic effector target is expressed at substantially the same levels in most parts of a subject organism body. Systemic expression involves a plurality of tissues “Regional expression” of a therapeutic effector target means that the therapeutic target is expressed in an area less than systemic expression but more than local expression. Regional expression is not limited to a single tissue but can occur in a plurality of different tissues. “Local expression” of a therapeutic effector target means that the therapeutic target is expressed in single or few tissue areas. Local expression is not limited to a single tissue but can occur in a plurality of different tissues.


In some embodiments, the effector target binding domain has a low affinity for the effector target. For example, a low affinity may be an affinity of greater than 10 nM (e.g., an affinity between 10 nM-1 μM, e.g., an affinity between 10 nM and 100 nM).


In some embodiments, the effector target binding domain has a low avidity for the effector target. Non-limiting examples of therapeutic effector targets that can be targeted with ANDbodies disclosed herein are listed in Table 1, along with the exemplary function for the effector targets.









TABLE 1







Exemplary Effector Targets










Sequence




Accession
Exemplary effector function


Target
number
for therapeutic effect





Notch 2
Q04721
Blocking Notch2 signaling, e.g., to treat




COPD, cancer


IL11RA
Q14626
Blocking IL11RA signaling, e.g., to treat




fibrosis


Endothelin
P25101
Blocking Endothelin Receptor A, e.g., to


Receptor A

treat IPF


b3 adrenergic
P13945
Agonizing b3AR, e.g., to treat obesity


receptor




FASR
P25445
agonize FASR mediated apoptotic




signaling cascades eg. To treat cancer


Integrin

Blocking Integrin alpha 4 to treat IBD


alpha4




GLP1R
P43220
Agonizing GLP1R to treat T2D or




obesity


LeptinR
P48357
block leptin signaling to suppress


(peptide)

appetite, eg. To treat weight gain


PTHR
U6CS43
Activate PTH with intermittent agonizing


(GPCR)

peptide. Eg. exposure to activating




peptide to stimulate bone growth in




osteoporosis


A4b7 (Integrin
P26010
Antagonize its interactions with


B7)

MAdCAM to prevent inflammation




associated with gut disease (eg. IBD)









Address Target

An ANDbody of the invention also comprises an address target binder that binds to an address target to provide targeted delivery of the effector. As used herein, an “address target” is a structure on a cell or tissue whose expression is sufficiently restricted in an organism to allow it to identify an organ, tissue, cell, or cell state of interest in an organism. The address target can be, e.g., a cell surface protein, or a structure localizing to the extracellular matrix. As used herein, “restricted” expression of an address target means that the address target has a differential, e.g., less broad, in vivo expression, as opposed to systemic expression. In certain embodiments, the address target is expressed, for example, in a single cell type, tissue or cell state in a mammalian subject, such as a human subject.


In some embodiments, the currently provided address target binding domains do not substantially influence biological signaling upon binding to the address target, e.g., does not modulate a signal transduction pathway or other biological response in the target cell or tissue. For example, the address target binder can be inert or inactive, in which it lacks any additional activity (other than binding), including lacking catalytic activity, after binding to the address target. For example, the address target binder binds a non-signaling site or motif of the address target. “Signal” is used herein to indicate a conformational, enzymatic, and/or electrical consequence occurs as a result of target binding. Accordingly, as described herein, address target binding domains do not signal upon address target binding. A domain that does not “substantially” influence biological signaling, as used herein, is a domain that modulates a signal transduction pathway or other biological response in the target cell or tissue to which it binds by no more than 25% relative to a control condition, e.g., relative to signaling in the absence of the domain. For example, the domain may modulate (e.g., increase or decrease) the signal transduction pathway or other biological response by less than 20%, less than 15%, less than 10%, less than 5%, less than 2%, or less than 1% (e.g., 20-25%, 15-20%, 10-15%, 5-10%, 2-5%, or 1-2%).


Similarly, an effector target binding domain may not substantially signal, or may not signal at all, when it is not localized by an address target binding domain. In embodiments, an effector target binding domain signals with higher potency (e.g., has higher avidity) when it is localized by an address target binding domain compared to the signal when it is not localized by an address target binding domain. When an effector target binding domain is localized to a targeted cell or tissue by an address target binding domain as part of the same macromolecule, effector target signaling can be influenced as discussed above.


In some embodiments, the address target is used for organ-specific addressing, tissue-specific addressing, or cell-specific addressing.


The specificity of address target binding domains for a cell or tissue can be detected using methods known in the art. In one embodiment, a Gini coefficient (GC) score, which is a method for assessing the expression variation of a particular gene in a data set, is used. (See O'Hagan et al., GeneGini: assessment via the Gini coefficient of reference “housekeeping” genes and diverse human transporter expression profiles. Cell systems 6, 230-244, https://doi.org/10.1016/j.cels.2018.01.003 (2018); Wright Muelas et al., The role and robustness of the Gini coefficient as an unbiased tool for the selection of Gini genes for normalising expression profiling data. Sci Rep 9, 17960 (2019). https://doi.org/10.1038/s41598-019-54288-7). Address target binders can be identified using cell expression data generated for address target binders as described herein (Table 2A and 2B). In some embodiments, address target markers exhibit Gini scores of greater than 0.4, such as between 0.74 and 1.00. Conversely, non-address markers that are expressed more systemically exhibit Gini Scores of between 0.15 to 0.19.


In one embodiment, a Tau score, which represents the expression variation of a particular gene in a data set, is used. Calculating Tau uses the information of expression of a gene in each tissue and its maximal expression over all tissues while also taking into account the number of tissues where expression is measured (see Itai Yanai, et al., Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification, Bioinformatics, Volume 21, Issue 5, 1 Mar. 2005, Pages 650-659; Kryuchkova-Mostacci N, Robinson-Rechavi M. A benchmark of gene expression tissue-specificity metrics. Brief Bioinform. 2017 Mar. 1; 18(2):205-214. doi: 10.1093/bib/bbw008). In some embodiments, address target markers exhibit Tau scores of greater than 0.6, such as between 0.74 and 1.00. Conversely, non-address markers that are expressed more systemically exhibit Tau Scores of below 0.3, such as 0.15 to 0.19.


In some embodiments, specificity of address target binding domains for a particular cell or tissue, such as that indicated by an appropriate Gini and/or Tau score, is determined with a tissue based analysis that does not include tissues having a natural biological separation barrier (i.e., blood-brain barrier). For example, in some embodiments, Gini and/or Tau scores may be calculated without data from tissues such as (but not limited to): central nervous system, brain, eye, and/or testis tissues. In some embodiments, an address target as provided herein identifies a cell state. As used herein a “cell state” refers to a given physiological condition of a cell. A cell state may be, e.g., a disease state (relative to a non-disease state or normal state of a cell or tissue); or an activated state (relative to a non-activated state of a cell). Exemplary disease states include inflammation, infection (e.g., bacterial, viral, or fungal infection), and states relating to cancer (e.g., precancerous or cancerous cell states). In some aspects, cell state reflects the fact that cells of a particular type can exhibit variability with regard to one or more features and/or can exist in a variety of different conditions, while retaining the features of their particular cell type and not gain features that would cause them to be classified as a different cell type. The different states or conditions in which a cell can exist may be characteristic of a particular cell type (e.g., may involve properties or characteristics exhibited only by that cell type and/or involve functions performed only or primarily by that cell type) or may occur in multiple different cell types. In some embodiments, a cell state reflects the capability of a cell to respond to a particular stimulus or environmental condition (e.g., whether or not the cell will respond, or the type of response that will be elicited) or is a condition of the cell brought about by a stimulus or environmental condition. Cells in different cell states may be distinguished from one another in a variety of ways. For example, they may express, produce, or secrete one or more different genes, proteins, or other molecules (“markers”, such as the address targets provided herein), exhibit differences in protein modifications such as phosphorylation, acetylation, etc., or may exhibit differences in appearance. Thus a cell state may be a condition of the cell in which the cell expresses, produces, or secretes one or more markers, exhibits particular protein modification(s), has a particular appearance, and/or will or will not exhibit one or more biological response(s) to a stimulus or environmental condition. Exemplary address targets of the present technology are provided in Tables 2A (HPA database analysis) and 2B (Gtex database analysis), below.









TABLE 2A







Exemplary Address Targets (HPA database analysis)

















Exemplary







tissue/cellular


Gene




localization of


symbol
Ensembl
Uniprot ID
Tau score
Gini score
address target















AADACL4
ENSG00000204518
Q5VUY2
0.9194
0.7852
epididymis


AATK
ENSG00000181409
Q6ZMQ8
0.7783
0.546
cerebral cortex


ABCA10
ENSG00000154263
Q8WWZ4
0.6792
0.4586
ovary


ABCA12
ENSG00000144452
Q86UK0
0.9539
0.8965
skin


ABCA13
ENSG00000179869
Q86UQ4
0.9202
0.6745
bone marrow


ABCA4
ENSG00000198691
P78363
0.8841
0.7214
epididymis


ABCB11
ENSG00000073734
O95342
0.9914
0.9671
liver


ABCB4
ENSG00000005471
P21439
0.8274
0.5034
liver


ABCB5
ENSG00000004846
Q2M3G0
0.9258
0.7265
epididymis


ABCC11
ENSG00000121270
Q96J66
0.9664
0.8631
breast


ABCC12
ENSG00000140798
Q96J65
0.974
0.97
breast


ABCC2
ENSG00000023839
Q92887
0.8356
0.6441
liver


ABCC6
ENSG00000091262
O95255
0.7146
0.4741
liver


ABCC8
ENSG00000006071
Q09428
0.8101
0.6626
cerebral cortex


ABCG4
ENSG00000172350
Q9H172
0.8977
0.6697
cerebral cortex


ABCG5
ENSG00000138075
Q9H222
0.9457
0.929
small intestine


ABCG8
ENSG00000143921
Q9H221
0.9273
0.8325
small intestine


ABHD16A
ENSG00000204427
O95870
0.875
0.7778
gallbladder


ACKR4
ENSG00000129048
Q9NPB9
0.6411
0.4466
duodenum


ACP4
ENSG00000142513
Q9BZG2
0.9708
0.9329
skin


ACVR1C
ENSG00000123612
Q8NER5
0.8594
0.5953
adipose tissue


ADAM11
ENSG00000073670
O75078
0.9234
0.7693
cerebral cortex


ADAM12
ENSG00000148848
O43184
0.8419
0.6349
placenta


ADAM2
ENSG00000104755
Q99965
1
1
breast


ADAM20
ENSG00000134007
O43506
0.9268
0.9268
cerebral cortex


ADAM21
ENSG00000139985
Q9UKJ8
0.9202
0.7532
cerebral cortex


ADAM22
ENSG00000008277
Q9P0K1
0.7283
0.4446
cerebral cortex


ADAM23
ENSG00000114948
O75077
0.7735
0.4184
parathyroid gland


ADAM29
ENSG00000168594
Q9UKF5
0.9508
0.919
endometrium


ADAM32
ENSG00000197140
Q8TC27
0.6516
0.4608
skin


ADAM33
ENSG00000149451
Q9BZ11
0.5621
0.4
endometrium


ADAM7
ENSG00000069206
Q9H2U9
0.99
0.9835
epididymis


ADCY1
ENSG00000164742
Q08828
0.8168
0.516
cerebral cortex


ADCY2
ENSG00000078295
Q08462
0.8139
0.5967
cerebral cortex


ADCY4
ENSG00000129467
Q8NFM4
0.6858
0.406
placenta


ADCY8
ENSG00000155897
P40145
0.9347
0.8854
epididymis


ADCYAP1R1
ENSG00000078549
P41586
0.8129
0.5539
cerebral cortex


ADGRA1
ENSG00000197177
Q86SQ6
0.9659
0.9383
cerebral cortex


ADGRB1
ENSG00000181790
O14514
0.9121
0.6453
cerebral cortex


ADGRB2
ENSG00000121753
O60241
0.8582
0.5438
cerebral cortex


ADGRB3
ENSG00000135298
O60242
0.8675
0.5458
cerebral cortex


ADGRD1
ENSG00000111452
Q6QNK2
0.6088
0.4
placenta


ADGRE1
ENSG00000174837
Q14246
0.8457
0.6051
granulocytes


ADGRE2
ENSG00000127507
Q9UHX3
0.7344
0.4061
monocytes


ADGRE3
ENSG00000131355
Q9BY15
0.8976
0.6734
granulocytes


ADGRF1
ENSG00000153292
Q5T601
0.837
0.7738
urinary bladder


ADGRF3
ENSG00000173567
Q8IZF5
0.7837
0.534
kidney


ADGRF4
ENSG00000153294
Q8IZF3
0.9132
0.7968
skin


ADGRG2
ENSG00000173698
Q8IZP9
0.8866
0.6442
epididymis


ADGRG3
ENSG00000182885
Q86Y34
0.8231
0.634
granulocytes


ADGRG4
ENSG00000156920
Q8IZF6
0.9554
0.9216
duodenum


ADGRG5
ENSG00000159618
Q8IZF4
0.8129
0.6296
granulocytes


ADGRG7
ENSG00000144820
Q96K78
0.9117
0.8692
small intestine


ADGRL3
ENSG00000150471
Q9HAR2
0.7403
0.4781
cerebral cortex


ADGRV1
ENSG00000164199
Q8WXG9
0.8353
0.5653
adrenal gland


ADIG
ENSG00000182035
Q0VDE8
0.9659
0.9504
epididymis


ADORA1
ENSG00000163485
P30542
0.7977
0.5357
cerebral cortex


ADORA2B
ENSG00000170425
P29275
0.7032
0.5341
granulocytes


ADRA1A
ENSG00000120907
P35348
0.7744
0.5909
liver


ADRA1B
ENSG00000170214
P35368
0.7861
0.5465
spleen


ADRA1D
ENSG00000171873
P25100
0.8478
0.733
prostate


ADRA2A
ENSG00000150594
P08913
0.5927
0.4122
cervix, uterine


ADRA2C
ENSG00000184160
P18825
0.769
0.5862
seminal vesicle


ADRB3
ENSG00000188778
P13945
0.9072
0.7684
ovary


ADTRP
ENSG00000111863
Q96IZ2
0.6807
0.4974
small intestine


AGER
ENSG00000204305
Q15109
0.942
0.6711
lung


(RAGE)







AGTR1
ENSG00000144891
P30556
0.7202
0.4443
placenta


AGTR2
ENSG00000180772
P50052
0.8982
0.8656
smooth muscle


AJAP1
ENSG00000196581
Q9UKB5
0.8534
0.6208
cerebral cortex


ALK
ENSG00000171094
Q9UM73
0.9357
0.7784
cerebral cortex


ALPP
ENSG00000163283
P05187
0.9534
0.8933
placenta


AMHR2
ENSG00000135409
Q16671
0.9219
0.8097
ovary


AMN
ENSG00000166126
Q9BXJ7
0.8765
0.7804
small intestine


ANKAR
ENSG00000151687
Q7Z5J8
0.7159
0.4233
parathyroid gland


ANO2
ENSG00000047617
Q9NQ90
0.6832
0.4454
placenta


ANO3
ENSG00000134343
Q9BYT9
0.9296
0.7809
epididymis


ANO4
ENSG00000151572
Q32M45
0.8429
0.7696
adrenal gland


ANO5
ENSG00000171714
Q75V66
0.7448
0.4641
parathyroid gland


ANO7
ENSG00000146205
Q6IWH7
0.8989
0.7931
prostate


ANO9
ENSG00000185101
A1A5B4
0.6923
0.4909
duodenum


APCDD1L
ENSG00000198768
Q8NCL9
0.8607
0.6756
salivary gland


APLNR
ENSG00000134817
P35414
0.6624
0.4032
spleen


APLP1
ENSG00000105290
P51693
0.8158
0.4277
cerebral cortex


AQP10
ENSG00000143595
Q96PS8
0.9493
0.8894
duodenum


AQP11
ENSG00000178301
Q8NBQ7
0.7626
0.4971
duodenum


AQP12A
ENSG00000184945
Q8IXF9
0.9956
0.9894
pancreas


AQP12B
ENSG00000185176
A6NM10
0.9956
0.9904
pancreas


AQP2
ENSG00000167580
P41181
0.9629
0.9304
kidney


AQP4
ENSG00000171885
P55087
0.9052
0.7745
cerebral cortex


AQP5
ENSG00000161798
P55064
0.8702
0.7198
salivary gland


AQP7
ENSG00000165269
O14520
0.7575
0.4682
adipose tissue


AQP9
ENSG00000103569
O43315
0.762
0.5304
granulocytes


AREG
ENSG00000109321
P15514
0.6962
0.4279
placenta


ARMCX4
ENSG00000196440
Q5H9R4
0.6554
0.4114
parathyroid gland


ARSH
ENSG00000205667
Q5FYA8
0.9463
0.9109
epididymis


ASAH2
ENSG00000188611
Q9NR71
0.8775
0.558
duodenum


ASGR1
ENSG00000141505
P07306
0.8114
0.461
liver


ASGR2
ENSG00000161944
P07307
0.8595
0.6116
liver


ASIC1
ENSG00000110881
P78348
0.8174
0.4887
cerebral cortex


ASIC2
ENSG00000108684
Q16515
0.9146
0.8482
cerebral cortex


ASIC3
ENSG00000213199
Q9UHC3
0.7375
0.4063
cerebral cortex


ASIC4
ENSG00000072182
Q96FT7
0.9852
0.9606
cerebral cortex


ASPHD1
ENSG00000174939
Q5U4P2
0.8855
0.6676
cerebral cortex


ASPRV1
ENSG00000244617
Q53RT3
0.8511
0.4144
skin


ASTN1
ENSG00000152092
O14525
0.8921
0.6976
cerebral cortex


ATP12A
ENSG00000075673
P54707
0.8957
0.8698
tonsil


ATP13A4
ENSG00000127249
Q4VNC1
0.7862
0.6789
parathyroid gland


ATP13A5
ENSG00000187527
Q4VNC0
0.9243
0.7622
breast


ATP1A2
ENSG00000018625
P50993
0.7206
0.4823
cerebral cortex


ATP1A3
ENSG00000105409
P13637
0.9301
0.78
cerebral cortex


ATP1A4
ENSG00000132681
Q13733
0.8721
0.7453
placenta


ATP1B2
ENSG00000129244
P14415
0.7556
0.4022
cerebral cortex


ATP2B2
ENSG00000157087
Q01814
0.9158
0.8334
cerebral cortex


ATP2B3
ENSG00000067842
Q16720
0.9545
0.9245
cerebral cortex


ATP2C2
ENSG00000064270
O75185
0.699
0.5908
rectum


ATP4A
ENSG00000105675
P20648
0.9883
0.958
stomach


ATP4B
ENSG00000186009
P51164
0.9822
0.9467
stomach


ATP6AP1L
ENSG00000205464
Q52LC2
0.7776
0.5805
skin


ATP6V0A4
ENSG00000105929
Q9HBG4
0.8975
0.7973
kidney


ATP8A2
ENSG00000132932
Q9NTI2
0.9234
0.6846
cerebral cortex


ATP8B4
ENSG00000104043
Q8TF62
0.7421
0.4466
bone marrow


ATRNL1
ENSG00000107518
Q5VV63
0.7727
0.572
cerebral cortex


AVPR1A
ENSG00000166148
P37288
0.7499
0.4988
adrenal gland


AVPR1B
ENSG00000198049
P47901
0.938
0.86
stomach


AVPR2
ENSG00000126895
P30518
0.7322
0.4842
adipose tissue


B3GAT1
ENSG00000109956
Q9P2W7
0.8956
0.6452
cerebral cortex


BAMBI
ENSG00000095739
Q13145
0.6256
0.4095
ovary


BDKRB1
ENSG00000100739
P46663
0.8144
0.6334
gallbladder


BDKRB2
ENSG00000168398
P30411
0.619
0.458
gallbladder


BEAN1
ENSG00000166546
Q3B7T3
0.7434
0.407
cerebral cortex


BEST2
ENSG00000039987
Q8NFU1
0.7958
0.4578
colon


BEST3
ENSG00000127325
Q8N1M1
0.88
0.6157
cerebral cortex


BEST4
ENSG00000142959
Q8NFU0
0.8121
0.5532
colon


BMPR1B
ENSG00000138696
O00238
0.7647
0.6117
cervix, uterine


BRS3
ENSG00000102239
P32247
0.9899
0.9704
epididymis


BSND
ENSG00000162399
Q8WZ55
0.9777
0.9343
kidney


BTBD11
ENSG00000151136
A6QL63
0.789
0.4599
parathyroid gland


BTC
ENSG00000174808
P35070
0.5619
0.4328
skin


BTLA
ENSG00000186265
Q7Z6A9
0.8055
0.5853
b-cells


BTN1A1
ENSG00000124557
Q13410
0.9711
0.8582
breast


BTNL2
ENSG00000204290
Q9UIR0
0.949
0.9175
prostate


BTNL3
ENSG00000168903
Q6UXE8
0.9075
0.8702
duodenum


BTNL8
ENSG00000113303
Q6UX41
0.8409
0.7188
granulocytes


BVES
ENSG00000112276
Q8NE79
0.6818
0.4488
smooth muscle


C10orf105
ENSG00000214688
Q8TEF2
0.8618
0.664
spleen


C11orf87
ENSG00000185742
Q6NUJ2
0.9758
0.9342
cerebral cortex


C14orf132
ENSG00000227051
Q9NPU4
0.6557
0.4353
cerebral cortex


C16orf54
ENSG00000185905
Q6UWD8
0.7006
0.4573
granulocytes


C1orf185
ENSG00000204006
Q5T7R7
0.9512
0.9512
adipose tissue


C1orf210
ENSG00000253313
Q8IVY1
0.5899
0.4638
duodenum


C20orf141
ENSG00000258713
Q9NUB4
0.9552
0.9318
placenta


C3orf20
ENSG00000131379
Q8ND61
0.8184
0.6937
lymph node


C3orf80
ENSG00000180044
F5H4A9
0.8604
0.6126
cerebral cortex


C5AR2
ENSG00000134830
Q9P296
0.7691
0.4073
granulocytes


C8A
ENSG00000157131
P07357
0.9864
0.9694
liver


C9
ENSG00000113600
P02748
0.9899
0.9808
liver


C9orf135
ENSG00000204711
Q5VTT2
0.9477
0.8632
fallopian tube


C9orf57
ENSG00000204669
Q5W0N0
1
1
parathyroid gland


CA12
ENSG00000074410
O43570
0.6732
0.4937
kidney


CA14
ENSG00000118298
Q9ULX7
0.8243
0.5757
seminal vesicle


CA9
ENSG00000107159
Q16790
0.9256
0.856
stomach


CABP7
ENSG00000100314
Q86V35
0.9258
0.8336
cerebral cortex


CACNA1A
ENSG00000141837
O00555
0.8763
0.5395
cerebral cortex


CACNA1B
ENSG00000148408
Q00975
0.9309
0.8096
cerebral cortex


CACNA1C
ENSG00000151067
Q13936
0.7159
0.4702
smooth muscle


CACNA1D
ENSG00000157388
Q01668
0.6777
0.4827
fallopian tube


CACNA1E
ENSG00000198216
Q15878
0.9383
0.8194
cerebral cortex


CACNA1G
ENSG00000006283
O43497
0.8372
0.5872
cerebral cortex


CACNA1H
ENSG00000196557
O95180
0.6199
0.4231
ovary


CACNA1I
ENSG00000100346
Q9P0X4
0.901
0.8161
cerebral cortex


CACNA1S
ENSG00000081248
Q13698
0.9826
0.953
skeletal muscle


CACNA2D3
ENSG00000157445
Q8IZS8
0.8617
0.6321
cerebral cortex


CACNA2D4
ENSG00000151062
Q7Z3S7
0.9147
0.8188
t-cells


CACNG1
ENSG00000108878
Q06432
0.9779
0.9486
skeletal muscle


CACNG2
ENSG00000166862
Q9Y698
0.9906
0.9792
cerebral cortex


CACNG3
ENSG00000006116
O60359
0.9935
0.9887
cerebral cortex


CACNG4
ENSG00000075461
Q9UBN1
0.8845
0.7714
cerebral cortex


CACNG5
ENSG00000075429
Q9UF02
0.9665
0.946
cerebral cortex


CACNG6
ENSG00000130433
Q9BXT2
0.9353
0.8716
skeletal muscle


CACNG7
ENSG00000105605
P62955
0.9961
0.9904
cerebral cortex


CADM2
ENSG00000175161
Q8N3J6
0.9024
0.6175
cerebral cortex


CADM3
ENSG00000162706
Q8N126
0.6988
0.4311
cerebral cortex


CALCR
ENSG00000004948
P30988
0.9218
0.7574
kidney


CALHM1
ENSG00000185933
Q8IU99
0.9283
0.7211
cerebral cortex


CALHM3
ENSG00000183128
Q86XJ0
0.9119
0.8789
dendritic cells


CALHM4
ENSG00000164451
Q5JW98
0.9932
0.9669
placenta


CALHM5
ENSG00000178033
Q8N5C1
0.6974
0.4378
placenta


CALN1
ENSG00000183166
Q9BXU9
0.9455
0.8658
cerebral cortex


CALY
ENSG00000130643
Q9NYX4
0.9377
0.8051
cerebral cortex


CASR
ENSG00000036828
P41180
0.9558
0.7864
parathyroid gland


CATSPER1
ENSG00000175294
Q8NEC5
0.9399
0.8835
granulocytes


CATSPERE
ENSG00000179397
Q5SY80
0.7595
0.5126
epididymis


CATSPERG
ENSG00000099338
Q6ZRH7
0.6892
0.4463
skin


CBARP
ENSG00000099625
Q8N350
0.9515
0.8475
cerebral cortex


CCDC188
ENSG00000234409
H7C350
0.7238
0.5424
spleen


CCKAR
ENSG00000163394
P32238
0.9647
0.9456
gallbladder


CCKBR
ENSG00000110148
P32239
0.9403
0.9019
stomach


CCR10
ENSG00000184451
P46092
0.8477
0.5315
t-cells


CCR3
ENSG00000183625
P51677
0.9375
0.6845
granulocytes


CCR4
ENSG00000183813
P51679
0.8177
0.4888
t-cells


CCR6
ENSG00000112486
P51684
0.7454
0.4983
t-cells


CCR7
ENSG00000126353
P32248
0.7939
0.5403
t-cells


CCR8
ENSG00000179934
P51685
0.9344
0.7641
t-cells


CCR9
ENSG00000173585
P51686
0.9086
0.7792
b-cells


CD101
ENSG00000134256
Q93033
0.7972
0.506
granulocytes


CD163L1
ENSG00000177675
Q9NR16
0.6974
0.4893
spleen


CD164L2
ENSG00000174950
Q6UWJ8
0.9023
0.7942
fallopian tube


CD180
ENSG00000134061
Q99467
0.7324
0.4903
b-cells


CD19
ENSG00000177455
P15391
0.8386
0.67
b-cells


CD1A
ENSG00000158477
P06126
0.8649
0.7269
skin


CD1B
ENSG00000158485
P29016
0.8813
0.7032
dendritic cells


CD1D
ENSG00000158473
P15813
0.7375
0.4226
dendritic cells


CD200R1L
ENSG00000206531
Q6Q8B3
0.9983
0.9937
granulocytes


CD207
ENSG00000116031
Q9UJ71
0.8544
0.5934
skin


CD209
ENSG00000090659
Q9NNX6
0.628
0.4093
adipose tissue


CD22
ENSG00000012124
P20273
0.6788
0.4436
lymph node


CD244
ENSG00000122223
Q9BZW8
0.809
0.5361
granulocytes


CD27
ENSG00000139193
P26842
0.6947
0.4212
t-cells


CD28
ENSG00000178562
P10747
0.7684
0.4953
t-cells


CD300C
ENSG00000167850
Q08708
0.7864
0.4942
monocytes


CD300E
ENSG00000186407
Q496F6
0.7976
0.5542
monocytes


CD300LB
ENSG00000178789
A8K4G0
0.8274
0.5806
granulocytes


CD300LD
ENSG00000204345
Q6UXZ3
0.8802
0.5851
granulocytes


CD300LF
ENSG00000186074
Q8TDQ1
0.7616
0.5162
granulocytes


CD300LG
ENSG00000161649
Q6UXG3
0.7808
0.4994
adipose tissue


CD3G
ENSG00000160654
P09693
0.804
0.4154
t-cells


CD40LG
ENSG00000102245
P29965
0.8186
0.5313
t-cells


CD5
ENSG00000110448
P06127
0.7439
0.4332
t-cells


CD6
ENSG00000013725
P30203
0.7028
0.4657
lymph node


CD7
ENSG00000173762
P09564
0.7469
0.4697
nk-cells


CD70
ENSG00000125726
P32970
0.867
0.6187
t-cells


CD72
ENSG00000137101
P21854
0.7585
0.4113
b-cells


CD79A
ENSG00000105369
P11912
0.6686
0.4153
b-cells


CD79B
ENSG00000007312
P40259
0.7013
0.4123
b-cells


CD80
ENSG00000121594
P33681
0.7816
0.6058
appendix


CDH10
ENSG00000040731
Q9Y6N8
0.9679
0.9117
cerebral cortex


CDH12
ENSG00000154162
P55289
0.8881
0.8058
cervix, uterine


CDH15
ENSG00000129910
P55291
0.9719
0.9079
skeletal muscle


CDH16
ENSG00000166589
O75309
0.9351
0.8659
kidney


CDH17
ENSG00000079112
Q12864
0.7727
0.5189
duodenum


CDH18
ENSG00000145526
Q13634
0.968
0.9189
cerebral cortex


CDH19
ENSG00000071991
Q9H159
0.6206
0.4289
heart muscle


CDH2
ENSG00000170558
P19022
0.7051
0.5105
parathyroid gland


CDH20
ENSG00000101542
Q9HBT6
0.9554
0.8643
cerebral cortex


CDH22
ENSG00000149654
Q9UJ99
0.9283
0.8231
cerebral cortex


CDH26
ENSG00000124215
Q8IXH8
0.8039
0.4825
prostate


CDH3
ENSG00000062038
P22223
0.6662
0.523
skin


CDH4
ENSG00000179242
P55283
0.9085
0.7865
cerebral cortex


CDH6
ENSG00000113361
P55285
0.6697
0.4549
kidney


CDH7
ENSG00000081138
Q9ULB5
0.9643
0.9296
cerebral cortex


CDH8
ENSG00000150394
P55286
0.9384
0.7675
cerebral cortex


CDH9
ENSG00000113100
Q9ULB4
0.8018
0.4357
cerebral cortex


CDHR1
ENSG00000148600
Q96JP9
0.8326
0.6175
skin


CDHR2
ENSG00000074276
Q9BYE9
0.8837
0.8041
duodenum


CDHR3
ENSG00000128536
Q6ZTQ4
0.838
0.4979
fallopian tube


CDHR4
ENSG00000187492
A6H8M9
0.9317
0.7328
fallopian tube


CDHR5
ENSG00000099834
Q9HBB8
0.8542
0.806
duodenum


CDON
ENSG00000064309
Q4KMG0
0.6369
0.4068
thyroid gland


CEACAM3
ENSG00000170956
P40198
0.9229
0.8046
granulocytes


CEACAM4
ENSG00000105352
O75871
0.8559
0.6729
granulocytes


CELSR1
ENSG00000075275
Q9NYQ6
0.6755
0.4933
fallopian tube


CELSR2
ENSG00000143126
Q9HCU4
0.7034
0.4656
cerebral cortex


CELSR3
ENSG00000008300
Q9NYQ7
0.9027
0.5699
cerebral cortex


CEND1
ENSG00000184524
Q8N111
0.9462
0.764
cerebral cortex


CFAP65
ENSG00000181378
Q6ZU64
0.9513
0.841
fallopian tube


CFTR
ENSG00000001626
P13569
0.7716
0.6409
gallbladder


CHODL
ENSG00000154645
Q9H9P2
0.778
0.4593
spleen


CHRFAM7A
ENSG00000166664
Q494W8
0.7671
0.4566
parathyroid gland


CHRM1
ENSG00000168539
P11229
0.8881
0.7732
prostate


CHRM2
ENSG00000181072
P08172
0.8564
0.7383
heart muscle


CHRM3
ENSG00000133019
P20309
0.7266
0.4916
cerebral cortex


CHRM4
ENSG00000180720
P08173
0.9191
0.8248
spleen


CHRM5
ENSG00000184984
P08912
0.8419
0.5754
cerebral cortex


CHRNA1
ENSG00000138435
P02708
0.8978
0.7471
skeletal muscle


CHRNA10
ENSG00000129749
Q9GZZ6
0.9216
0.4942
skeletal muscle


CHRNA2
ENSG00000120903
Q15822
0.9722
0.868
prostate


CHRNA3
ENSG00000080644
P32297
0.9161
0.7668
adrenal gland


CHRNA4
ENSG00000101204
P43681
0.9421
0.9079
parathyroid gland


CHRNA6
ENSG00000147434
Q15825
0.8564
0.764
t-cells


CHRNA7
ENSG00000175344
P36544
0.7674
0.5196
small intestine


CHRNA9
ENSG00000174343
Q9UGM1
0.9653
0.926
fallopian tube


CHRNB2
ENSG00000160716
P17787
0.9776
0.8975
cerebral cortex


CHRNB3
ENSG00000147432
Q05901
0.9675
0.9478
cerebral cortex


CHRNB4
ENSG00000117971
P30926
0.8944
0.6441
adrenal gland


CHRND
ENSG00000135902
Q07001
0.992
0.9835
skeletal muscle


CHRNE
ENSG00000108556
Q04844
0.9206
0.5626
heart muscle


CHRNG
ENSG00000196811
P07510
0.9922
0.9772
skeletal muscle


CHST9
ENSG00000154080
Q7L1S5
0.7933
0.6416
fallopian tube


CLCA2
ENSG00000137975
Q9UQC9
0.9003
0.8079
esophagus


CLCA4
ENSG00000016602
Q14CN2
0.8632
0.7863
esophagus


CLCN1
ENSG00000188037
P35523
0.9641
0.8257
skeletal muscle


CLCNKA
ENSG00000186510
P51800
0.9169
0.7845
kidney


CLCNKB
ENSG00000184908
P51801
0.9068
0.7137
kidney


CLDN1
ENSG00000163347
O95832
0.6574
0.4902
skin


CLDN10
ENSG00000134873
P78369
0.7168
0.5876
kidney


CLDN11
ENSG00000013297
O75508
0.8002
0.5644
cerebral cortex


CLDN14
ENSG00000159261
O95500
0.9525
0.8433
liver


CLDN17
ENSG00000156282
P56750
0.9872
0.9773
esophagus


CLDN18
ENSG00000066405
P56856
0.9317
0.7657
stomach


CLDN19
ENSG00000164007
Q8N6F1
0.9528
0.9125
kidney


CLDN2
ENSG00000165376
P57739
0.8305
0.7468
kidney


CLDN20
ENSG00000171217
P56880
0.8244
0.7053
skin


CLDN22
ENSG00000177300
Q8N7P3
0.9869
0.9699
fallopian tube


CLDN23
ENSG00000253958
Q96B33
0.6963
0.4432
stomach


CLDN24
ENSG00000185758
A6NM45
0.9842
0.952
kidney


CLDN3
ENSG00000165215
O15551
0.7346
0.585
small intestine


CLDN4
ENSG00000189143
O14493
0.5271
0.4219
colon


CLDN6
ENSG00000184697
P56747
0.9285
0.7482
placenta


CLDN8
ENSG00000156284
P56748
0.8092
0.7417
breast


CLDN9
ENSG00000213937
O95484
0.8802
0.7045
parathyroid gland


CLEC12A
ENSG00000172322
Q5QGZ9
0.7177
0.4406
granulocytes


CLEC12B
ENSG00000256660
Q2HXU8
0.9188
0.7737
skin


CLEC17A
ENSG00000187912
Q6ZS10
0.8431
0.6669
b-cells


CLEC1B
ENSG00000165682
Q9P126
0.9127
0.7923
liver


CLEC2A
ENSG00000188393
Q6UVW9
0.9857
0.9748
skin


CLEC2L
ENSG00000236279
P0C7M8
0.9206
0.7872
cerebral cortex


CLEC4C
ENSG00000198178
Q8WTT0
0.9151
0.6812
dendritic cells


CLEC4D
ENSG00000166527
Q8WXI8
0.8592
0.7041
granulocytes


CLEC4E
ENSG00000166523
Q9ULY5
0.7384
0.4538
granulocytes


CLEC4F
ENSG00000152672
Q8N1N0
0.6906
0.4672
small intestine


CLEC4G
ENSG00000182566
Q6UXB4
0.7874
0.5732
liver


CLEC4M
ENSG00000104938
Q9H2X3
0.9053
0.8054
liver


CLEC5A
ENSG00000258227
Q9NY25
0.8159
0.5412
bone marrow


CLEC6A
ENSG00000205846
Q6EIG7
0.9216
0.8336
monocytes


CLEC9A
ENSG00000197992
Q6UXN8
0.8203
0.5195
dendritic cells


CLECL1
ENSG00000184293
Q8IZS7
0.7301
0.4551
b-cells


CLIC3
ENSG00000169583
O95833
0.8114
0.5761
dendritic cells


CLIC5
ENSG00000112782
Q9NZA1
0.6392
0.4525
lung


CLIC6
ENSG00000159212
Q96NY7
0.7244
0.5014
stomach


CLRN1
ENSG00000163646
P58418
0.9812
0.9558
adrenal gland


CLRN2
ENSG00000249581
A0PK11
1
1
kidney


CLRN3
ENSG00000180745
Q8NCR9
0.8423
0.8068
small intestine


CLSTN2
ENSG00000158258
Q9H4D0
0.7843
0.5489
ovary


CLTRN
ENSG00000147003
Q9HBJ8
0.869
0.5739
kidney


CMTM2
ENSG00000140932
Q8TAZ6
0.8479
0.7435
granulocytes


CMTM5
ENSG00000166091
Q96DZ9
0.8645
0.4956
cerebral cortex


CNGA1
ENSG00000198515
P29973
0.6269
0.4383
liver


CNGA3
ENSG00000144191
Q16281
0.8049
0.7604
esophagus


CNGA4
ENSG00000132259
Q8IV77
0.9381
0.6384
fallopian tube


CNGB1
ENSG00000070729
Q14028
0.8773
0.6916
adrenal gland


CNGB3
ENSG00000170289
Q9NQW8
0.8828
0.703
bone marrow


CNIH2
ENSG00000174871
Q6PI25
0.9444
0.762
cerebral cortex


CNIH3
ENSG00000143786
Q8TBE1
0.8792
0.538
cerebral cortex


CNMD
ENSG00000136110
O75829
0.9375
0.9018
thyroid gland


CNNM1
ENSG00000119946
Q9NRU3
0.852
0.6167
cerebral cortex


CNR1
ENSG00000118432
P21554
0.7306
0.4309
cerebral cortex


CNR2
ENSG00000188822
P34972
0.851
0.7168
granulocytes


CNTNAP2
ENSG00000174469
Q9UHC6
0.9154
0.7375
cerebral cortex


CNTNAP3
ENSG00000106714
Q9BZ76
0.6749
0.452
esophagus


CNTNAP4
ENSG00000152910
Q9C0A0
0.9864
0.9545
cerebral cortex


CNTNAP5
ENSG00000155052
Q8WYK1
0.9775
0.9582
cerebral cortex


COL13A1
ENSG00000197467
Q5TAT6
0.7004
0.4352
epididymis


COL17A1
ENSG00000065618
Q9UMD9
0.7774
0.5608
skin


COL23A1
ENSG00000050767
Q86Y22
0.7673
0.4674
thyroid gland


COL25A1
ENSG00000188517
Q9BXS0
0.7203
0.5199
adipose tissue


COLEC12
ENSG00000158270
Q5KU26
0.6676
0.4039
placenta


CORIN
ENSG00000145244
Q9Y5Q5
0.8754
0.7183
heart muscle


CPT1C
ENSG00000169169
Q8TCG5
0.7878
0.5129
cerebral cortex


CR2
ENSG00000117322
P20023
0.8222
0.6599
lymph node


CRB1
ENSG00000134376
P82279
0.9456
0.7913
cerebral cortex


CRB2
ENSG00000148204
Q5IJ48
0.9209
0.7644
cerebral cortex


CRHR1
ENSG00000120088
P34998
0.9543
0.8524
cerebral cortex


CRHR2
ENSG00000106113
Q13324
0.8712
0.663
seminal vesicle


CRLF2
ENSG00000205755
Q9HC73
0.8401
0.6627
appendix


CRTAM
ENSG00000109943
O95727
0.8311
0.5369
nk-cells


CSF3R
ENSG00000119535
Q99062
0.7128
0.4267
granulocytes


CSMD1
ENSG00000183117
Q96PZ7
0.943
0.8207
cerebral cortex


CSMD2
ENSG00000121904
Q7Z408
0.9081
0.7275
cerebral cortex


CSMD3
ENSG00000164796
Q7Z407
0.98
0.9399
cerebral cortex


CSPG4
ENSG00000173546
Q6UVK1
0.6146
0.4138
adipose tissue


CSPG5
ENSG00000114646
O95196
0.9551
0.7032
cerebral cortex


CT83
ENSG00000204019
Q5H943
0.9896
0.9743
salivary gland


CTLA4
ENSG00000163599
P16410
0.7876
0.58
t-cells


CTXN1
ENSG00000178531
P60606
0.844
0.624
cerebral cortex


CTXN2
ENSG00000233932
P0C2S0
0.9893
0.9669
cerebral cortex


CTXN3
ENSG00000205279
Q4LDR2
0.9775
0.9544
kidney


CWH43
ENSG00000109182
Q9H720
0.8095
0.7094
prostate


CXCR1
ENSG00000163464
P25024
0.8736
0.6096
granulocytes


CXCR2
ENSG00000180871
P25025
0.8166
0.4876
granulocytes


CXCR3
ENSG00000186810
P49682
0.8056
0.565
dendritic cells


CXCR5
ENSG00000160683
P32302
0.8476
0.6776
b-cells


CXorf66
ENSG00000203933
Q5JRM2
1
1
liver


CYP26C1
ENSG00000187553
Q6V0L0
0.9617
0.9404
spleen


CYP46A1
ENSG00000036530
Q9Y6A2
0.8925
0.5676
cerebral cortex


DBH
ENSG00000123454
P09172
0.9353
0.7033
adrenal gland


DCC
ENSG00000187323
P43146
0.9127
0.7725
cerebral cortex


DCHS2
ENSG00000197410
Q6V1P9
0.8847
0.7649
endometrium


DCST1
ENSG00000163357
Q5T197
0.9423
0.7328
skin


DCST2
ENSG00000163354
Q5T1A1
0.8439
0.5085
skin


DCSTAMP
ENSG00000164935
Q9H295
0.9527
0.8384
lung


DIO2
ENSG00000211448
Q92813
0.7722
0.5472
thyroid gland


DIO3
ENSG00000197406
P55073
0.8138
0.6283
cervix, uterine


DISP2
ENSG00000140323
A7MBM2
0.8604
0.5382
cerebral cortex


DLK1
ENSG00000185559
P80370
0.8856
0.6954
placenta


DLK2
ENSG00000171462
Q6UY11
0.779
0.506
skin


DLL3
ENSG00000090932
Q9NYJ7
0.9855
0.9576
cerebral cortex


DNAJC22
ENSG00000178401
Q8N4W6
0.6981
0.5753
thyroid gland


DNER
ENSG00000187957
Q8NFT8
0.8426
0.6116
cerebral cortex


DPP10
ENSG00000175497
Q8N608
0.9034
0.763
cerebral cortex


DPP6
ENSG00000130226
P42658
0.8432
0.6837
cerebral cortex


DPY19L2
ENSG00000177990
Q6NUT2
0.5998
0.4219
parathyroid gland


DRD1
ENSG00000184845
P21728
0.9075
0.686
cerebral cortex


DRD2
ENSG00000149295
P14416
0.9091
0.7389
adrenal gland


DRD4
ENSG00000069696
P21917
0.9664
0.9315
dendritic cells


DRD5
ENSG00000169676
P21918
0.9548
0.9264
stomach


DSC1
ENSG00000134765
Q08554
0.9557
0.883
skin


DSC3
ENSG00000134762
Q14574
0.8758
0.719
skin


DSCAM
ENSG00000171587
O60469
0.9788
0.947
cerebral cortex


DSCAML1
ENSG00000177103
Q8TD84
0.834
0.4943
cerebral cortex


DSG1
ENSG00000134760
Q02413
0.9463
0.8739
skin


DSG3
ENSG00000134757
P32926
0.9166
0.8278
esophagus


DSG4
ENSG00000175065
Q86SJ6
0.9484
0.9276
duodenum


DUOX1
ENSG00000137857
Q9NRD9
0.7017
0.5701
skin


DUOX2
ENSG00000140279
Q9NRD8
0.8314
0.6573
gallbladder


DUOXA1
ENSG00000140254
Q1HG43
0.7335
0.5998
esophagus


ECEL1
ENSG00000171551
O95672
0.9213
0.7051
ovary


EDA2R
ENSG00000131080
Q9HAV5
0.5572
0.4466
thyroid gland


EDAR
ENSG00000135960
Q9UNE0
0.8266
0.6016
t-cells


EDNRA
ENSG00000151617
P25101
0.6316
0.4122
seminal vesicle


EFNB3
ENSG00000108947
Q15768
0.8052
0.5291
cerebral cortex


EGF
ENSG00000138798
P01133
0.8815
0.7105
kidney


ELFN1
ENSG00000225968
P0C7U0
0.8076
0.614
liver


ELFN2
ENSG00000166897
Q5R3F8
0.9753
0.9224
cerebral cortex


ENPEP
ENSG00000138792
Q07075
0.742
0.5254
small intestine


ENPP3
ENSG00000154269
O14638
0.7351
0.5526
small intestine


ENTPD2
ENSG00000054179
Q9Y5L3
0.6289
0.4853
duodenum


ENTPD8
ENSG00000188833
Q5MY95
0.837
0.7208
small intestine


EPCAM
ENSG00000119888
P16422
0.5686
0.4487
small intestine


EPGN
ENSG00000182585
Q6UW88
0.9242
0.7649
esophagus


EPHA1
ENSG00000146904
P21709
0.8606
0.5333
parathyroid gland


EPHA10
ENSG00000183317
Q5JZY3
0.7811
0.6473
colon


EPHA3
ENSG00000044524
P29320
0.6787
0.4576
prostate


EPHA5
ENSG00000145242
P54756
0.9169
0.7947
cerebral cortex


EPHA6
ENSG00000080224
Q9UF33
0.8422
0.6941
ovary


EPHA7
ENSG00000135333
Q15375
0.8538
0.5811
parathyroid gland


EPHA8
ENSG00000070886
P29322
0.955
0.9321
adrenal gland


EPHB1
ENSG00000154928
P54762
0.7204
0.4531
cerebral cortex


EPHB2
ENSG00000133216
P29323
0.6051
0.431
rectum


EPHB3
ENSG00000182580
P54753
0.6416
0.4106
skin


EPHX4
ENSG00000172031
Q8IUS5
0.8357
0.5897
cerebral cortex


ERBB4
ENSG00000178568
Q15303
0.8478
0.7284
fallopian tube


EREG
ENSG00000124882
O14944
0.8495
0.6461
bone marrow


ERVFRD-1
ENSG00000244476
P60508
0.9243
0.6874
placenta


ERVMER34-1
ENSG00000226887
Q9H9K5
0.8898
0.603
parathyroid gland


ERVW-1
ENSG00000242950
Q9UQF0
0.9025
0.4919
placenta


ESR1
ENSG00000091831
P03372
0.7662
0.5445
endometrium


ESYT3
ENSG00000158220
A0FGR9
0.8418
0.724
thyroid gland


EVC2
ENSG00000173040
Q86UK5
0.6373
0.4229
ovary


F2RL2
ENSG00000164220
O00254
0.7398
0.459
gallbladder


FAIM2
ENSG00000135472
Q9BWQ8
0.7616
0.4478
cerebral cortex


FAM151A
ENSG00000162391
Q8WW52
0.9047
0.7183
kidney


FAM155A
ENSG00000204442
B1AL88
0.8962
0.6476
cerebral cortex


FAM155B
ENSG00000130054
O75949
0.8664
0.6844
thyroid gland


FAM162B
ENSG00000183807
Q5T6X4
0.7169
0.4473
placenta


FAM163A
ENSG00000143340
Q96GL9
0.8844
0.6974
adrenal gland


FAM163B
ENSG00000196990
P0C2L3
0.9408
0.8145
cerebral cortex


FAM171A2
ENSG00000161682
A8MVW0
0.8564
0.6362
cerebral cortex


FAM171B
ENSG00000144369
Q6P995
0.7462
0.4187
cerebral cortex


FAM187B
ENSG00000177558
Q17R55
0.9745
0.9626
spleen


FAM189A1
ENSG00000104059
O60320
0.9036
0.8075
cerebral cortex


FAM189A2
ENSG00000135063
Q15884
0.6824
0.4629
thyroid gland


FAM205A
ENSG00000205108
Q6ZU69
1
1
skin


FAM209A
ENSG00000124103
Q5JX71
0.8871
0.5849
bone marrow


FAM209B
ENSG00000213714
Q5JX69
0.8429
0.4616
bone marrow


FAP
ENSG00000078098
Q12884
0.6894
0.5067
endometrium


FASLG
ENSG00000117560
P48023
0.8422
0.5348
t-cells


FAT2
ENSG00000086570
Q9NYQ8
0.8973
0.7615
skin


FAT3
ENSG00000165323
Q8TDW7
0.9323
0.8573
cerebral cortex


FAXC
ENSG00000146267
Q5TGI0
0.695
0.5034
cerebral cortex


FCAR
ENSG00000186431
P24071
0.9731
0.9395
bone marrow


FCER2
ENSG00000104921
P06734
0.8403
0.6096
b-cells


FCGR1A
ENSG00000150337
P12314
0.635
0.4073
epididymis


FCGR1B
ENSG00000198019
Q92637
0.7229
0.4751
epididymis


FCMR
ENSG00000162894
O60667
0.679
0.403
b-cells


FCRL1
ENSG00000163534
Q96LA6
0.8784
0.7758
b-cells


FCRL2
ENSG00000132704
Q96LA5
0.8088
0.675
lymph node


FCRL3
ENSG00000160856
Q96P31
0.8183
0.6984
lymph node


FCRL4
ENSG00000163518
Q96PJ5
0.9465
0.9099
tonsil


FCRL5
ENSG00000143297
Q96RD9
0.7691
0.622
tonsil


FCRL6
ENSG00000181036
Q6DN72
0.8083
0.4367
t-cells


FER1L6
ENSG00000214814
Q2WGJ9
0.919
0.8418
stomach


FFAR1
ENSG00000126266
O14842
0.8923
0.7677
bone marrow


FFAR2
ENSG00000126262
O15552
0.8519
0.5841
granulocytes


FFAR3
ENSG00000185897
O14843
0.8565
0.6858
appendix


FFAR4
ENSG00000186188
Q5NUL3
0.8454
0.6118
rectum


FGFR3
ENSG00000068078
P22607
0.7475
0.4729
skin


FGFR4
ENSG00000160867
P22455
0.6746
0.4789
lung


FIBCD1
ENSG00000130720
Q8N539
0.8997
0.7961
parathyroid gland


FLRT3
ENSG00000125848
Q9NZU0
0.6166
0.4585
lung


FLT3
ENSG00000122025
P36888
0.848
0.5553
dendritic cells


FMR1NB
ENSG00000176988
Q8N0W7
1
1
epididymis


FNDC10
ENSG00000228594
F2Z333
0.6928
0.4154
adrenal gland


FNDC4
ENSG00000115226
Q9H6D8
0.6724
0.4405
adrenal gland


FNDC5
ENSG00000160097
Q8NAU1
0.7674
0.5168
skeletal muscle


FNDC9
ENSG00000172568
Q8TBE3
0.9628
0.889
cerebral cortex


FOLH1
ENSG00000086205
Q04609
0.7895
0.5517
duodenum


FPR1
ENSG00000171051
P21462
0.7182
0.4011
granulocytes


FPR2
ENSG00000171049
P25090
0.8206
0.5174
granulocytes


FRAS1
ENSG00000138759
Q86XX4
0.7806
0.5116
thyroid gland


FRMD5
ENSG00000171877
Q7Z6J6
0.888
0.6285
heart muscle


FUT6
ENSG00000156413
P51993
0.7662
0.6658
esophagus


FXYD2
ENSG00000137731
P54710
0.806
0.4767
kidney


FXYD3
ENSG00000089356
Q14802
0.6079
0.4579
rectum


FXYD4
ENSG00000150201
P59646
0.9563
0.8703
kidney


FXYD7
ENSG00000221946
P58549
0.8706
0.6034
cerebral cortex


FZD10
ENSG00000111432
Q9ULW2
0.7846
0.6284
cervix, uterine


FZD8
ENSG00000177283
Q9H461
0.6885
0.4081
spleen


FZD9
ENSG00000188763
O00144
0.8597
0.7432
skeletal muscle


GABBR1
ENSG00000204681
Q9UBS5
0.717
0.4883
cerebral cortex


GABBR2
ENSG00000136928
O75899
0.964
0.8549
cerebral cortex


GABRA1
ENSG00000022355
P14867
0.99
0.9732
cerebral cortex


GABRA2
ENSG00000151834
P47869
0.8797
0.6296
cerebral cortex


GABRA3
ENSG00000011677
P34903
0.9595
0.868
cerebral cortex


GABRA4
ENSG00000109158
P48169
0.983
0.9548
cerebral cortex


GABRA5
ENSG00000186297
P31644
0.9786
0.9144
cerebral cortex


GABRA6
ENSG00000145863
Q16445
1
1
cerebral cortex


GABRB1
ENSG00000163288
P18505
0.9774
0.901
cerebral cortex


GABRB2
ENSG00000145864
P47870
0.9149
0.703
cerebral cortex


GABRB3
ENSG00000166206
P28472
0.8101
0.5443
cerebral cortex


GABRD
ENSG00000187730
O14764
0.9652
0.8236
cerebral cortex


GABRE
ENSG00000102287
P78334
0.798
0.578
adipose tissue


GABRG1
ENSG00000163285
Q8N1C3
0.9864
0.9539
cerebral cortex


GABRG2
ENSG00000113327
P18507
0.8558
0.4767
cerebral cortex


GABRG3
ENSG00000182256
Q99928
0.9072
0.7995
prostate


GABRR1
ENSG00000146276
P24046
0.9557
0.9056
placenta


GABRR2
ENSG00000111886
P28476
0.8049
0.8049
adrenal gland


GALR1
ENSG00000166573
P47211
0.8884
0.5863
adrenal gland


GALR2
ENSG00000182687
O43603
0.9673
0.9038
smooth muscle


GALR3
ENSG00000128310
O60755
0.9872
0.9833
cerebral cortex


GAPT
ENSG00000175857
Q8N292
0.7573
0.4356
granulocytes


GCGR
ENSG00000215644
P47871
0.929
0.8826
liver


GDPD2
ENSG00000130055
Q9HCC8
0.8694
0.7595
spleen


GDPD4
ENSG00000178795
Q6W3E5
0.9476
0.9104
placenta


GGT6
ENSG00000167741
Q6P531
0.6224
0.5347
colon


GHRHR
ENSG00000106128
Q02643
0.974
0.9693
adrenal gland


GHSR
ENSG00000121853
Q92847
0.9672
0.9543
nk-cells


GJA3
ENSG00000121743
Q9Y6H8
0.9227
0.8719
parathyroid gland


GJA8
ENSG00000121634
P48165
0.9756
0.9756
kidney


GJB1
ENSG00000169562
P08034
0.7185
0.5841
liver


GJB2
ENSG00000165474
P29033
0.7914
0.5439
esophagus


GJB3
ENSG00000188910
O75712
0.8277
0.6428
skin


GJB4
ENSG00000189433
Q9NTQ9
0.9322
0.8421
skin


GJB5
ENSG00000189280
O95377
0.8712
0.7508
skin


GJB6
ENSG00000121742
O95452
0.8647
0.7504
esophagus


GJB7
ENSG00000164411
Q6PEY0
0.9611
0.8877
fallopian tube


GJC2
ENSG00000198835
Q5T442
0.7813
0.4853
cerebral cortex


GJC3
ENSG00000176402
Q8NFK1
0.8521
0.6084
breast


GJD2
ENSG00000159248
Q9UKL4
0.9694
0.9223
adrenal gland


GJD3
ENSG00000183153
Q8N144
0.7774
0.537
spleen


GJD4
ENSG00000177291
Q96KN9
0.8018
0.5009
cerebral cortex


GLDN
ENSG00000186417
Q6ZMI3
0.7713
0.5463
cerebral cortex


GLP1R
ENSG00000112164
P43220
0.8591
0.8071
cerebral cortex


GLP2R
ENSG00000065325
O95838
0.8001
0.6416
gallbladder


GLRA1
ENSG00000145888
P23415
0.9931
0.9892
adrenal gland


GLRA2
ENSG00000101958
P23416
0.9522
0.898
cerebral cortex


GLRA3
ENSG00000145451
O75311
0.9665
0.9115
cerebral cortex


GLRB
ENSG00000109738
P48167
0.7101
0.4729
parathyroid gland


GLT6D1
ENSG00000204007
Q7Z4J2
1
1
epididymis


GNRHR
ENSG00000109163
P30968
0.9173
0.818
adrenal gland


GP1BA
ENSG00000185245
P07359
0.832
0.5932
lymph node


GP1BB
ENSG00000203618
P13224
0.9402
0.8534
granulocytes


GP5
ENSG00000178732
P40197
0.8588
0.7206
lymph node


GP6
ENSG00000088053
Q9HCN6
0.8762
0.7097
skin


GP9
ENSG00000169704
P14770
0.9436
0.8717
granulocytes


GPA33
ENSG00000143167
Q99795
0.8312
0.7357
rectum


GPBAR1
ENSG00000179921
Q8TDU6
0.859
0.5696
monocytes


GPM6A
ENSG00000150625
P51674
0.7844
0.4163
cerebral cortex


GPR1
ENSG00000183671
P46091
0.8154
0.5967
placenta


GPR101
ENSG00000165370
Q96P66
1
1
cerebral cortex


GPR119
ENSG00000147262
Q8TDV5
0.91
0.8962
pancreas


GPR12
ENSG00000132975
P47775
0.9499
0.8619
cerebral cortex


GPR135
ENSG00000181619
Q8IZ08
0.6903
0.4918
fallopian tube


GPR139
ENSG00000180269
Q6DWJ6
0.9911
0.987
endometrium


GPR141
ENSG00000187037
Q7Z602
0.7095
0.4316
bone marrow


GPR142
ENSG00000257008
Q7Z601
1
1
appendix


GPR143
ENSG00000101850
P51810
0.6504
0.4686
skin


GPR148
ENSG00000173302
Q8TDV2
1
1
stomach


GPR149
ENSG00000174948
Q86SP6
0.9983
0.9968
seminal vesicle


GPR15
ENSG00000154165
P49685
0.7845
0.6345
rectum


GPR150
ENSG00000178015
Q8NGU9
0.8726
0.6653
parathyroid gland


GPR152
ENSG00000175514
Q8TDT2
1
1
spleen


GPR156
ENSG00000175697
Q8NFN8
0.8933
0.7445
fallopian tube


GPR158
ENSG00000151025
Q5T848
0.9772
0.8937
cerebral cortex


GPR161
ENSG00000143147
Q8N6U8
0.6565
0.4207
smooth muscle


GPR17
ENSG00000144230
Q13304
0.7134
0.5483
spleen


GPR171
ENSG00000174946
O14626
0.7299
0.4017
t-cells


GPR174
ENSG00000147138
Q9BXC1
0.7059
0.4536
lymph node


GPR18
ENSG00000125245
Q14330
0.7504
0.5883
nk-cells


GPR182
ENSG00000166856
O15218
0.9283
0.7541
spleen


GPR19
ENSG00000183150
Q15760
0.8279
0.5477
cerebral cortex


GPR20
ENSG00000204882
Q99678
0.8085
0.5781
monocytes


GPR21
ENSG00000188394
Q99679
0.816
0.5364
cerebral cortex


GPR22
ENSG00000172209
Q99680
0.9266
0.9104
heart muscle


GPR25
ENSG00000170128
O00155
0.9611
0.8981
t-cells


GPR26
ENSG00000154478
Q8NDV2
1
1
cerebral cortex


GPR27
ENSG00000170837
Q9NS67
0.6935
0.4211
parathyroid gland


GPR3
ENSG00000181773
P46089
0.8521
0.572
cerebral cortex


GPR31
ENSG00000120436
O00270
0.9285
0.8677
lymph node


GPR32
ENSG00000142511
O75388
0.9944
0.9909
parathyroid gland


GPR35
ENSG00000178623
Q9HC97
0.6515
0.4276
small intestine


GPR37
ENSG00000170775
O15354
0.8774
0.6418
cerebral cortex


GPR37L1
ENSG00000170075
O60883
0.9761
0.8041
cerebral cortex


GPR39
ENSG00000183840
O43194
0.7671
0.572
parathyroid gland


GPR4
ENSG00000177464
P46093
0.67
0.405
adipose tissue


GPR42
ENSG00000126251
O15529
0.8996
0.8869
appendix


GPR45
ENSG00000135973
Q9Y5Y3
0.9977
0.9959
cerebral cortex


GPR50
ENSG00000102195
Q13585
0.9662
0.9264
placenta


GPR52
ENSG00000203737
Q9Y2T5
0.9877
0.9595
cerebral cortex


GPR55
ENSG00000135898
Q9Y2T6
0.7792
0.5548
spleen


GPR6
ENSG00000146360
P46095
1
1
cerebral cortex


GPR61
ENSG00000156097
Q9BZJ8
0.9662
0.9266
cerebral cortex


GPR62
ENSG00000180929
Q9BZJ7
0.974
0.8468
cerebral cortex


GPR65
ENSG00000140030
Q8IYL9
0.6899
0.427
t-cells


GPR75
ENSG00000119737
O95800
0.7644
0.4088
cerebral cortex


GPR82
ENSG00000171657
Q96P67
0.8403
0.5502
granulocytes


GPR83
ENSG00000123901
Q9NYM4
0.8845
0.5479
thyroid gland


GPR84
ENSG00000139572
Q9NQS5
0.7767
0.6001
bone marrow


GPR87
ENSG00000138271
Q9BY21
0.8488
0.7889
skin


GPR88
ENSG00000181656
Q9GZN0
0.8875
0.7724
spleen


GPRC5A
ENSG00000013588
Q8NFJ5
0.6952
0.4713
lung


GPRC5D
ENSG00000111291
Q9NZD1
0.8103
0.5153
b-cells


GPRC6A
ENSG00000173612
Q5T6X5
0.9604
0.9422
kidney


GRAMD2A
ENSG00000175318
Q8IUY3
0.8197
0.6383
placenta


GREB1
ENSG00000196208
Q4ZG55
0.7766
0.5349
ovary


GREB1L
ENSG00000141449
Q9C091
0.7258
0.5669
thyroid gland


GRIA1
ENSG00000155511
P42261
0.9521
0.8156
cerebral cortex


GRIA2
ENSG00000120251
P42262
0.8926
0.7656
cerebral cortex


GRIA3
ENSG00000125675
P42263
0.8277
0.5568
cerebral cortex


GRIA4
ENSG00000152578
P48058
0.9046
0.7143
cerebral cortex


GRID1
ENSG00000182771
Q9ULK0
0.8491
0.6075
cerebral cortex


GRID2
ENSG00000152208
O43424
0.9422
0.8808
cerebral cortex


GRIK1
ENSG00000171189
P39086
0.9038
0.7519
adrenal gland


GRIK2
ENSG00000164418
Q13002
0.821
0.4661
cerebral cortex


GRIK3
ENSG00000163873
Q13003
0.8602
0.5852
cerebral cortex


GRIK4
ENSG00000149403
Q16099
0.9149
0.7465
cerebral cortex


GRIK5
ENSG00000105737
Q16478
0.7345
0.4966
cerebral cortex


GRIN1
ENSG00000176884
Q05586
0.9873
0.9287
cerebral cortex


GRIN2A
ENSG00000183454
Q12879
0.9232
0.7076
cerebral cortex


GRIN2B
ENSG00000273079
Q13224
0.9866
0.954
cerebral cortex


GRIN2C
ENSG00000161509
Q14957
0.8804
0.6899
thyroid gland


GRIN2D
ENSG00000105464
O15399
0.8795
0.7124
cerebral cortex


GRIN3A
ENSG00000198785
Q8TCU5
0.9175
0.6785
cerebral cortex


GRIN3B
ENSG00000116032
O60391
0.9215
0.801
fallopian tube


GRM1
ENSG00000152822
Q13255
0.976
0.951
cerebral cortex


GRM2
ENSG00000164082
Q14416
0.9852
0.9288
cerebral cortex


GRM3
ENSG00000198822
Q14832
0.9833
0.9132
cerebral cortex


GRM4
ENSG00000124493
Q14833
0.9815
0.9072
cerebral cortex


GRM5
ENSG00000168959
P41594
0.9941
0.9737
cerebral cortex


GRM6
ENSG00000113262
O15303
0.8325
0.6712
cerebral cortex


GRM7
ENSG00000196277
Q14831
0.9033
0.8068
cerebral cortex


GRM8
ENSG00000179603
O00222
0.8539
0.7253
cerebral cortex


GRPR
ENSG00000126010
P30550
0.8554
0.6632
pancreas


GSDMA
ENSG00000167914
Q96QA5
0.8564
0.536
skin


GSDMB
ENSG00000073605
Q8TAX9
0.631
0.4023
small intestine


GSDMC
ENSG00000147697
Q9BYG8
0.9207
0.8956
skin


GSG1L
ENSG00000169181
Q6UXU4
0.8902
0.6614
cerebral cortex


GSG1L2
ENSG00000214978
A8MUP6
1
1
cerebral cortex


GUCY2C
ENSG00000070019
P25092
0.8489
0.6619
small intestine


GUCY2D
ENSG00000132518
Q02846
0.9883
0.9413
dendritic cells


GUCY2F
ENSG00000101890
P51841
0.9799
0.9704
fallopian tube


GYPA
ENSG00000170180
P02724
0.9768
0.9409
bone marrow


GYPB
ENSG00000250361
P06028
0.9821
0.9704
bone marrow


GYPE
ENSG00000197465
P15421
0.7884
0.4775
bone marrow


HAS1
ENSG00000105509
Q92839
0.8454
0.6662
adipose tissue


HAS2
ENSG00000170961
Q92819
0.739
0.5094
adipose tissue


HAS3
ENSG00000103044
O00219
0.7289
0.475
urinary bladder


HAVCR1
ENSG00000113249
Q96D42
0.8724
0.5896
kidney


HCAR1
ENSG00000196917
Q9BXC0
0.8615
0.5031
parathyroid gland


HCAR2
ENSG00000182782
Q8TDS4
0.7461
0.5438
granulocytes


HCAR3
ENSG00000255398
P49019
0.8063
0.6268
granulocytes


HCN1
ENSG00000164588
O60741
0.983
0.9586
cerebral cortex


HCN2
ENSG00000099822
Q9UL51
0.947
0.7854
cerebral cortex


HCN3
ENSG00000143630
Q9P1Z3
0.6334
0.4024
cerebral cortex


HCN4
ENSG00000138622
Q9Y3Q4
0.933
0.889
heart muscle


HCRTR1
ENSG00000121764
O43613
0.8759
0.7364
adrenal gland


HCRTR2
ENSG00000137252
O43614
0.9394
0.929
kidney


HEPACAM
ENSG00000165478
Q14CZ8
0.944
0.7786
cerebral cortex


HEPACAM2
ENSG00000188175
A8MVW5
0.8469
0.7401
rectum


HEPHL1
ENSG00000181333
Q6MZM0
0.976
0.9571
tonsil


HHLA2
ENSG00000114455
Q9UM44
0.8117
0.6586
small intestine


HIGD1C
ENSG00000214511
A8MV81
0.775
0.5121
parathyroid gland


HLA-DQA2
ENSG00000237541
P01906
0.9653
0.9494
tonsil


HLA-DQB2
ENSG00000232629
P05538
0.8479
0.6557
skin


HLA-G
ENSG00000204632
P17693
0.9752
0.8866
placenta


HPN
ENSG00000105707
P05981
0.7623
0.5742
liver


HRCT1
ENSG00000196196
Q6UXD1
0.6863
0.4662
adipose tissue


HRH3
ENSG00000101180
Q9Y5N1
0.9863
0.9609
cerebral cortex


HRH4
ENSG00000134489
Q9H3N8
0.962
0.6497
granulocytes


HRK
ENSG00000135116
O00198
0.9208
0.8061
cerebral cortex


HS6ST2
ENSG00000171004
Q96MM7
0.7604
0.5888
ovary


HS6ST3
ENSG00000185352
Q8IZP7
0.8866
0.723
cerebral cortex


HSD17B2
ENSG00000086696
P37059
0.7534
0.5811
placenta


HTR1A
ENSG00000178394
P08908
0.9834
0.9803
ovary


HTR1B
ENSG00000135312
P28222
0.899
0.7407
placenta


HTR1D
ENSG00000179546
P28221
0.9135
0.7041
duodenum


HTR1E
ENSG00000168830
P28566
0.923
0.8651
ovary


HTR1F
ENSG00000179097
P30939
0.843
0.5887
placenta


HTR2A
ENSG00000102468
P28223
0.9113
0.6449
cerebral cortex


HTR2B
ENSG00000135914
P41595
0.7424
0.4967
cervix, uterine


HTR3A
ENSG00000166736
P46098
0.8703
0.7821
dendritic cells


HTR3B
ENSG00000149305
O95264
0.8486
0.4438
cerebral cortex


HTR3C
ENSG00000178084
Q8WXA8
0.9841
0.9682
lung


HTR3E
ENSG00000186038
A5X5Y0
0.9455
0.9339
duodenum


HTR4
ENSG00000164270
Q13639
0.8898
0.8039
small intestine


HTR5A
ENSG00000157219
P47898
1
1
cerebral cortex


HTR6
ENSG00000158748
P50406
0.977
0.9482
cerebral cortex


HTR7
ENSG00000148680
P34969
0.9044
0.5659
parathyroid gland


HYAL4
ENSG00000106302
Q2M3T9
0.867
0.497
placenta


ICAM4
ENSG00000105371
Q14773
0.8454
0.4759
monocytes


ICAM5
ENSG00000105376
Q9UMF0
0.9843
0.9579
cerebral cortex


ICOS
ENSG00000163600
Q9Y6W8
0.8134
0.6544
t-cells


IER3
ENSG00000137331
P46695
0.8201
0.7179
appendix


IFITM10
ENSG00000244242
A6NMD0
0.9543
0.8357
adrenal gland


IFITM5
ENSG00000206013
A6NNB3
0.9239
0.8699
bone marrow


IGDCC3
ENSG00000174498
Q8IVU1
0.917
0.8218
parathyroid gland


IGDCC4
ENSG00000103742
Q8TDY8
0.7176
0.5429
ovary


IGSF1
ENSG00000147255
Q8N6C5
0.7444
0.5376
adrenal gland


IGSF11
ENSG00000144847
Q5DX21
0.8331
0.6085
cerebral cortex


IGSF23
ENSG00000216588
A1L1A6
0.9158
0.8474
small intestine


IGSF5
ENSG00000183067
Q9NSI5
0.7132
0.4364
placenta


IGSF6
ENSG00000140749
O95976
0.824
0.5122
granulocytes


IGSF9
ENSG00000085552
Q9P2J2
0.7633
0.5713
skin


IGSF9B
ENSG00000080854
Q9UPX0
0.7092
0.4747
cerebral cortex


IL12RB2
ENSG00000081985
Q99665
0.8055
0.4751
nk-cells


IL13RA2
ENSG00000123496
Q14627
0.7211
0.5956
prostate


IL17RD
ENSG00000144730
Q8NFM7
0.6713
0.5023
parathyroid gland


IL17RE
ENSG00000163701
Q8NFR9
0.6001
0.4393
small intestine


IL18RAP
ENSG00000115607
O95256
0.7749
0.5374
nk-cells


IL1R2
ENSG00000115590
P27930
0.6745
0.4111
granulocytes


IL1RAPL1
ENSG00000169306
Q9NZN1
0.9518
0.7378
cerebral cortex


IL1RAPL2
ENSG00000189108
Q9NP60
0.9314
0.8204
parathyroid gland


IL1RL1
ENSG00000115602
Q01638
0.7907
0.469
placenta


IL1RL2
ENSG00000115598
Q9HB29
0.7646
0.5332
skin


IL20RA
ENSG00000016402
Q9UHF4
0.6787
0.5026
skin


IL20RB
ENSG00000174564
Q6UXL0
0.927
0.8353
skin


IL21R
ENSG00000103522
Q9HBE5
0.7339
0.5311
lymph node


IL22RA1
ENSG00000142677
Q8N6P7
0.784
0.6542
skin


IL23R
ENSG00000162594
Q5VWK5
0.9487
0.7894
t-cells


IL2RA
ENSG00000134460
P01589
0.7733
0.4982
t-cells


IL31RA
ENSG00000164509
Q8NI17
0.8857
0.625
bone marrow


IL5RA
ENSG00000091181
Q01344
0.9003
0.5793
granulocytes


IL9R
ENSG00000124334
Q01113
0.8254
0.5829
urinary bladder


ILDR1
ENSG00000145103
Q86SU0
0.6806
0.475
parathyroid gland


IMPG2
ENSG00000081148
Q9BZV3
0.9714
0.7483
fallopian tube


INSRR
ENSG00000027644
P14616
0.9281
0.8545
adrenal gland


ISLR2
ENSG00000167178
Q6UXK2
0.843
0.4714
cerebral cortex


ITGA10
ENSG00000143127
O75578
0.668
0.407
cervix, uterine


ITGA11
ENSG00000137809
Q9UKX5
0.6997
0.4556
smooth muscle


ITGA2B
ENSG00000005961
P08514
0.8468
0.5862
granulocytes


ITGA8
ENSG00000077943
P53708
0.6175
0.4242
prostate


ITGAD
ENSG00000156886
Q13349
0.9298
0.772
spleen


ITGAE
ENSG00000083457
P38570
0.7801
0.5601
lung


ITGB3
ENSG00000259207
P05106
0.6934
0.4142
thyroid gland


ITGB6
ENSG00000115221
P18564
0.6863
0.5334
lung


IYD
ENSG00000009765
Q6PHW0
0.8931
0.6823
thyroid gland


IZUMO1
ENSG00000182264
Q8IYV9
0.8728
0.7902
lung


IZUMO2
ENSG00000161652
Q6UXV1
0.9385
0.9367
prostate


JAG2
ENSG00000184916
Q9Y219
0.7347
0.4239
skin


JPH1
ENSG00000104369
Q9HDC5
0.8392
0.5298
skeletal muscle


JPH2
ENSG00000149596
Q9BR39
0.6739
0.5031
skeletal muscle


JPH3
ENSG00000154118
Q8WXH2
0.9738
0.8806
cerebral cortex


JPH4
ENSG00000092051
Q96JJ6
0.7876
0.5622
cerebral cortex


KCNA1
ENSG00000111262
Q09470
0.9692
0.9064
cerebral cortex


KCNA10
ENSG00000143105
Q16322
1
1
spleen


KCNA2
ENSG00000177301
P16389
0.8905
0.5561
cerebral cortex


KCNA3
ENSG00000177272
P22001
0.672
0.437
t-cells


KCNA4
ENSG00000182255
P22459
0.9417
0.8738
adrenal gland


KCNA5
ENSG00000130037
P22460
0.8081
0.5462
heart muscle


KCNA6
ENSG00000151079
P17658
0.9512
0.9512
appendix


KCNA7
ENSG00000104848
Q96RP8
0.9616
0.6927
skeletal muscle


KCNB1
ENSG00000158445
Q14721
0.8187
0.618
cerebral cortex


KCNB2
ENSG00000182674
Q92953
0.9306
0.8475
spleen


KCNC1
ENSG00000129159
P48547
0.9087
0.5839
cerebral cortex


KCNC2
ENSG00000166006
Q96PR1
0.9801
0.9638
cerebral cortex


KCNC3
ENSG00000131398
Q14003
0.723
0.4768
parathyroid gland


KCND2
ENSG00000184408
Q9NZV8
0.8556
0.6652
cerebral cortex


KCND3
ENSG00000171385
Q9UK17
0.607
0.4304
cerebral cortex


KCNE1
ENSG00000180509
P15382
0.8903
0.6834
fallopian tube


KCNE2
ENSG00000159197
Q9Y6J6
0.935
0.5809
stomach


KCNE5
ENSG00000176076
Q9UJ90
0.8582
0.7018
cerebral cortex


KCNF1
ENSG00000162975
Q9H3M0
0.9708
0.7972
cerebral cortex


KCNG1
ENSG00000026559
Q9UIX4
0.7559
0.5741
endometrium


KCNG2
ENSG00000178342
Q9UJ96
0.9655
0.9142
cerebral cortex


KCNG3
ENSG00000171126
Q8TAE7
0.9217
0.8349
cerebral cortex


KCNG4
ENSG00000168418
Q8TDN1
0.8521
0.6923
adrenal gland


KCNH1
ENSG00000143473
O95259
0.9604
0.7711
cerebral cortex


KCNH2
ENSG00000055118
Q12809
0.7084
0.5165
bone marrow


KCNH3
ENSG00000135519
Q9ULD8
0.8975
0.6586
cerebral cortex


KCNH4
ENSG00000089558
Q9UQ05
0.9278
0.7565
cerebral cortex


KCNH5
ENSG00000140015
Q8NCM2
0.9803
0.9702
cerebral cortex


KCNH6
ENSG00000173826
Q9H252
0.8972
0.797
kidney


KCNH7
ENSG00000184611
Q9NS40
0.9699
0.8941
cerebral cortex


KCNH8
ENSG00000183960
Q96L42
0.8522
0.5871
cerebral cortex


KCNJ1
ENSG00000151704
P48048
0.9755
0.8648
kidney


KCNJ10
ENSG00000177807
P78508
0.9133
0.7408
cerebral cortex


KCNJ12
ENSG00000184185
Q14500
0.8194
0.5279
skeletal muscle


KCNJ13
ENSG00000115474
O60928
0.8975
0.7549
small intestine


KCNJ15
ENSG00000157551
Q99712
0.6824
0.4665
kidney


KCNJ16
ENSG00000153822
Q9NPI9
0.7928
0.6131
parathyroid gland


KCNJ3
ENSG00000162989
P48549
0.8023
0.6127
parathyroid gland


KCNJ4
ENSG00000168135
P48050
0.9682
0.9402
cerebral cortex


KCNJ5
ENSG00000120457
P48544
0.7996
0.4801
adrenal gland


KCNJ6
ENSG00000157542
P48051
0.9366
0.7923
cerebral cortex


KCNJ9
ENSG00000162728
Q92806
0.9974
0.9942
cerebral cortex


KCNK10
ENSG00000100433
P57789
0.873
0.7631
dendritic cells


KCNK12
ENSG00000184261
Q9HB15
0.9856
0.9436
cerebral cortex


KCNK13
ENSG00000152315
Q9HB14
0.8666
0.5491
parathyroid gland


KCNK16
ENSG00000095981
Q96T55
0.9377
0.8945
stomach


KCNK17
ENSG00000124780
Q96T54
0.8649
0.5428
dendritic cells


KCNK18
ENSG00000186795
Q7Z418
1
1
cerebral cortex


KCNK2
ENSG00000082482
O95069
0.8437
0.629
adrenal gland


KCNK3
ENSG00000171303
O14649
0.801
0.53
adrenal gland


KCNK4
ENSG00000182450
Q9NYG8
0.988
0.9601
cerebral cortex


KCNK5
ENSG00000164626
O95279
0.6158
0.4046
small intestine


KCNK7
ENSG00000173338
Q9Y2U2
0.8857
0.5634
skin


KCNK9
ENSG00000169427
Q9NPC2
0.9595
0.9396
cerebral cortex


KCNMB2
ENSG00000197584
Q9Y691
0.8134
0.6289
epididymis


KCNMB4
ENSG00000135643
Q86W47
0.7679
0.4047
cerebral cortex


KCNN1
ENSG00000105642
Q92952
0.9589
0.7325
cerebral cortex


KCNN2
ENSG00000080709
Q9H2S1
0.7821
0.5713
adrenal gland


KCNQ2
ENSG00000075043
O43526
0.9735
0.9336
cerebral cortex


KCNQ3
ENSG00000184156
O43525
0.9184
0.5983
cerebral cortex


KCNQ4
ENSG00000117013
P56696
0.7381
0.5498
smooth muscle


KCNQ5
ENSG00000185760
Q9NR82
0.8415
0.5809
cerebral cortex


KCNS1
ENSG00000124134
Q96KK3
0.9308
0.8631
cerebral cortex


KCNS2
ENSG00000156486
Q9ULS6
0.9041
0.7179
cerebral cortex


KCNT1
ENSG00000107147
Q5JUK3
0.917
0.8021
cerebral cortex


KCNT2
ENSG00000162687
Q6UVM3
0.7776
0.5365
ovary


KCNU1
ENSG00000215262
A8MYU2
0.9618
0.9541
adipose tissue


KCNV1
ENSG00000164794
Q6PIU1
0.9429
0.5772
cerebral cortex


KCNV2
ENSG00000168263
Q8TDN2
0.9756
0.9756
b-cells


KEL
ENSG00000197993
P23276
0.9256
0.8338
bone marrow


KIAA0319
ENSG00000137261
Q5VV43
0.935
0.7682
cerebral cortex


KIAA1549
ENSG00000122778
Q9HCM3
0.6803
0.4504
seminal vesicle


KIAA1549L
ENSG00000110427
Q6ZVL6
0.9459
0.8124
parathyroid gland


KIR2DL4
ENSG00000189013
Q99706
1
1
nk-cells


KIR3DL1
ENSG00000167633
P43629
0.9892
0.9822
t-cells


KIR3DL2
ENSG00000240403
P43630
1
1
t-cells


KIRREL3
ENSG00000149571
Q8IZU9
0.9044
0.6553
cerebral cortex


KISS1R
ENSG00000116014
Q969F8
0.9664
0.9119
cerebral cortex


KL
ENSG00000133116
Q9UEF7
0.8335
0.5447
parathyroid gland


KLB
ENSG00000134962
Q86Z14
0.9039
0.6768
adipose tissue


KLHDC7A
ENSG00000179023
Q5VTJ3
0.864
0.7067
kidney


KLRB1
ENSG00000111796
Q12918
0.7677
0.4149
t-cells


KLRC1
ENSG00000134545
P26715
0.8204
0.4208
nk-cells


KLRC3
ENSG00000205810
Q07444
0.9011
0.6979
nk-cells


KLRC4
ENSG00000183542
O43908
0.7286
0.4793
spleen


KLRF1
ENSG00000150045
Q9NZS2
0.8489
0.4614
nk-cells


KLRF2
ENSG00000256797
D3W0D1
0.94
0.8161
skin


KLRG2
ENSG00000188883
A4D1S0
0.8656
0.8029
thyroid gland


KREMEN2
ENSG00000131650
Q8NCW0
0.927
0.748
skin


L1CAM
ENSG00000198910
P32004
0.7264
0.4563
cerebral cortex


LAG3
ENSG00000089692
P18627
0.7239
0.5025
spleen


LAMP5
ENSG00000125869
Q9UJQ1
0.7748
0.4879
dendritic cells


LAX1
ENSG00000122188
Q8IWV1
0.6998
0.5126
tonsil


LCT
ENSG00000115850
P09848
0.9743
0.9664
duodenum


LDLRAD1
ENSG00000203985
Q5T700
0.9372
0.752
fallopian tube


LDLRAD2
ENSG00000187942
Q5SZI1
0.741
0.4888
adipose tissue


LEMD1
ENSG00000186007
Q68G75
0.9453
0.7786
epididymis


LGR5
ENSG00000139292
O75473
0.7737
0.5888
placenta


LGR6
ENSG00000133067
Q9HBX8
0.7406
0.5152
t-cells


LHCGR
ENSG00000138039
P22888
0.9155
0.8824
ovary


LHFPL1
ENSG00000182508
Q86WI0
0.8287
0.6423
cerebral cortex


LHFPL4
ENSG00000156959
Q7Z7J7
0.9777
0.9204
cerebral cortex


LHFPL5
ENSG00000197753
Q8TAF8
0.7749
0.4209
epididymis


LILRA1
ENSG00000104974
O75019
0.9511
0.8844
monocytes


LILRA5
ENSG00000187116
A6NI73
0.8829
0.7109
monocytes


LIM2
ENSG00000105370
P55344
0.981
0.9464
t-cells


LIME1
ENSG00000203896
Q9H400
0.814
0.612
dendritic cells


LINGO1
ENSG00000169783
Q96FE5
0.817
0.4679
cerebral cortex


LINGO2
ENSG00000174482
Q7L985
0.8559
0.748
smooth muscle


LINGO3
ENSG00000220008
P0C6S8
0.8984
0.8303
spleen


LINGO4
ENSG00000213171
Q6UY18
0.8889
0.6497
skeletal muscle


LMTK3
ENSG00000142235
Q96Q04
0.8839
0.6242
cerebral cortex


LPAR3
ENSG00000171517
Q9UBY5
0.8097
0.5882
fallopian tube


LPAR4
ENSG00000147145
Q99677
0.822
0.5977
ovary


LPCAT1
ENSG00000153395
Q8NF37
0.7879
0.4599
lung


LRFN1
ENSG00000128011
Q9P244
0.8453
0.4576
cerebral cortex


LRFN2
ENSG00000156564
Q9ULH4
0.9674
0.9055
cerebral cortex


LRFN5
ENSG00000165379
Q96NI6
0.8195
0.6066
parathyroid gland


LRIT2
ENSG00000204033
A6NDA9
0.9814
0.9602
skin


LRIT3
ENSG00000183423
Q3SXY7
0.8689
0.6618
kidney


LRP1B
ENSG00000168702
Q9NZR2
0.9029
0.7876
cerebral cortex


LRP2
ENSG00000081479
P98164
0.913
0.8631
parathyroid gland


LRP4
ENSG00000134569
O75096
0.7087
0.4445
skin


LRP8
ENSG00000157193
Q14114
0.7881
0.4515
thyroid gland


LRRC15
ENSG00000172061
Q8TF66
0.6834
0.5809
cervix, uterine


LRRC19
ENSG00000184434
Q9H756
0.863
0.8065
kidney


LRRC26
ENSG00000184709
Q2I0M4
0.9209
0.8594
dendritic cells


LRRC37A
ENSG00000176681
A6NMS7
0.7528
0.4355
skeletal muscle


LRRC38
ENSG00000162494
Q5VT99
0.9533
0.8611
adrenal gland


LRRC3B
ENSG00000179796
Q96PB8
0.9222
0.7338
cerebral cortex


LRRC3C
ENSG00000204913
A6NJW4
0.9591
0.9178
parathyroid gland


LRRC4
ENSG00000128594
Q9HBW1
0.7186
0.4284
cerebral cortex


LRRC4B
ENSG00000131409
Q9NT99
0.8376
0.568
cerebral cortex


LRRC4C
ENSG00000148948
Q9HCJ2
0.8489
0.5469
cerebral cortex


LRRC52
ENSG00000162763
Q8N7C0
0.9678
0.9506
parathyroid gland


LRRC55
ENSG00000183908
Q6ZSA7
0.8646
0.6325
cerebral cortex


LRRC66
ENSG00000188993
Q68CR7
0.8603
0.7096
duodenum


LRRN1
ENSG00000175928
Q6UXK5
0.7324
0.4796
cerebral cortex


LRRN2
ENSG00000170382
O75325
0.6768
0.4438
cerebral cortex


LRRN3
ENSG00000173114
Q9H3W5
0.6934
0.4958
thyroid gland


LRRN4
ENSG00000125872
Q8WUT4
0.9767
0.9317
lung


LRRN4CL
ENSG00000177363
Q8ND94
0.6509
0.4579
endometrium


LRRTM1
ENSG00000162951
Q86UE6
0.8861
0.6817
cerebral cortex


LRRTM2
ENSG00000146006
O43300
0.943
0.7453
cerebral cortex


LRRTM3
ENSG00000198739
Q86VH5
0.9607
0.9108
cerebral cortex


LRTM1
ENSG00000144771
Q9HBL6
0.8814
0.6793
skeletal muscle


LRTM2
ENSG00000166159
Q8N967
1
1
cerebral cortex


LTB
ENSG00000227507
Q06643
0.7932
0.6701
t-cells


LTK
ENSG00000062524
P29376
0.6759
0.5109
placenta


LVRN
ENSG00000172901
Q6Q4G3
0.9498
0.833
placenta


LY6G6F
ENSG00000204424
Q5SQ64
0.9401
0.9017
bone marrow


LY9
ENSG00000122224
Q9HBG7
0.7229
0.4772
t-cells


MADCAM1
ENSG00000099866
Q13477
0.8279
0.5918
appendix


MAG
ENSG00000105695
P20916
0.9472
0.8486
cerebral cortex


MARCO
ENSG00000019169
Q9UEW3
0.7384
0.4998
lung


MARVELD2
ENSG00000152939
Q8N4S9
0.6804
0.4561
thyroid gland


MAS1
ENSG00000130368
P04201
0.9377
0.7909
cerebral cortex


MAS1L
ENSG00000204687
P35410
0.8744
0.7078
cervix, uterine


MC2R
ENSG00000185231
Q01718
0.9865
0.9659
adrenal gland


MC4R
ENSG00000166603
P32245
0.9571
0.8937
fallopian tube


MC5R
ENSG00000176136
P33032
0.9843
0.961
epididymis


MCEMP1
ENSG00000183019
Q8IX19
0.8506
0.7534
lung


MCHR1
ENSG00000128285
Q99705
0.9341
0.7882
cerebral cortex


MCHR2
ENSG00000152034
Q969V1
0.9979
0.9943
cerebral cortex


MCOLN2
ENSG00000153898
Q8IZK6
0.6509
0.4273
dendritic cells


MCOLN3
ENSG00000055732
Q8TDD5
0.7659
0.5313
adrenal gland


MEGF10
ENSG00000145794
Q96KG7
0.9212
0.7039
cerebral cortex


MEGF11
ENSG00000157890
A6BM72
0.9427
0.8741
cerebral cortex


MEP1A
ENSG00000112818
Q16819
0.9082
0.8432
small intestine


MEP1B
ENSG00000141434
Q16820
0.9003
0.6451
small intestine


MFAP3L
ENSG00000198948
O75121
0.6233
0.4148
epididymis


MFRP
ENSG00000235718
Q9BY79
1
1
parathyroid gland


MFSD2A
ENSG00000168389
Q8NA29
0.6258
0.4075
epididymis


MFSD2B
ENSG00000205639
A6NFX1
0.9714
0.923
bone marrow


MFSD4A
ENSG00000174514
Q8N468
0.7568
0.5524
stomach


MGAM
ENSG00000257335
O43451
0.8462
0.7228
small intestine


MGAM2
ENSG00000257743
Q2M2H8
0.915
0.8281
duodenum


MICB
ENSG00000204516
Q29980
0.7297
0.4835
lymph node


MIP
ENSG00000135517
P30301
0.8991
0.8565
cerebral cortex


MLC1
ENSG00000100427
Q15049
0.8843
0.6848
cerebral cortex


MLNR
ENSG00000102539
O43193
0.9693
0.9106
thyroid gland


MME
ENSG00000196549
P08473
0.6103
0.4207
duodenum


MMEL1
ENSG00000142606
Q495T6
0.7688
0.6414
granulocytes


MMP16
ENSG00000156103
P51512
0.8139
0.5655
cerebral cortex


MMP23B
ENSG00000189409
O75900
0.7057
0.4499
dendritic cells


MMP24
ENSG00000125966
Q9Y5R2
0.7529
0.5117
cerebral cortex


MOG
ENSG00000204655
Q16653
1
1
cerebral cortex


MPIG6B
ENSG00000204420
O95866
0.9075
0.7976
nk-cells


MPL
ENSG00000117400
P40238
0.7722
0.4893
ovary


MPZ
ENSG00000158887
P25189
0.6402
0.4013
seminal vesicle


MRAP
ENSG00000170262
Q8TCY5
0.911
0.7895
adrenal gland


MRAP2
ENSG00000135324
Q96G30
0.6705
0.4606
cerebral cortex


MRGPRD
ENSG00000172938
Q8TDS7
0.9468
0.883
seminal vesicle


MRGPRE
ENSG00000184350
Q86SM8
0.8762
0.7484
cervix, uterine


MRGPRF
ENSG00000172935
Q96AM1
0.5848
0.4214
smooth muscle


MRGPRX2
ENSG00000183695
Q96LB1
0.9138
0.8541
breast


MRGPRX3
ENSG00000179826
Q96LB0
0.9028
0.7178
salivary gland


MROH7
ENSG00000184313
Q68CQ1
0.74
0.55
ovary


MS4A1
ENSG00000156738
P11836
0.7323
0.5145
tonsil


MS4A10
ENSG00000172689
Q96PG2
0.9594
0.8651
small intestine


MS4A12
ENSG00000071203
Q9NXJ0
0.9481
0.9211
rectum


MS4A14
ENSG00000166928
Q96JA4
0.6946
0.4546
spleen


MS4A15
ENSG00000166961
Q8N5U1
0.8253
0.5051
lung


MS4A18
ENSG00000214782
Q3C1V0
0.966
0.9538
duodenum


MS4A2
ENSG00000149534
Q01362
0.803
0.5073
granulocytes


MS4A5
ENSG00000166930
Q9H3V2
0.9872
0.9833
duodenum


MS4A6E
ENSG00000166926
Q96DS6
0.9437
0.876
appendix


MS4A8
ENSG00000166959
Q9BY19
0.8039
0.7146
fallopian tube


MSLNL
ENSG00000162006
Q96KJ4
0.9806
0.952
epididymis


MST1R
ENSG00000164078
Q04912
0.7262
0.5155
skin


MTNR1A
ENSG00000168412
P48039
0.9224
0.8431
kidney


MTNR1B
ENSG00000134640
P49286
0.9778
0.9525
placenta


MUC1
ENSG00000185499
P15941
0.608
0.4207
stomach


MUC12
ENSG00000205277
Q9UKN1
0.9557
0.9286
rectum


MUC13
ENSG00000173702
Q9H3R2
0.8227
0.7339
duodenum


MUC15
ENSG00000169550
Q8N387
0.8744
0.7307
epididymis


MUC16
ENSG00000181143
Q8WXI7
0.9503
0.9121
cervix, uterine


MUC17
ENSG00000169876
Q685J3
0.9551
0.9336
small intestine


MUC21
ENSG00000204544
Q5SSG8
0.9874
0.9765
esophagus


MUC22
ENSG00000261272
E2RYF6
0.9992
0.9985
esophagus


MUC4
ENSG00000145113
Q99102
0.9556
0.8949
colon


MUSK
ENSG00000030304
O15146
0.7693
0.6893
rectum


MYADML2
ENSG00000185105
A6NDP7
0.9741
0.9273
skeletal muscle


MYMK
ENSG00000187616
A6NI61
0.9329
0.9203
cerebral cortex


MYRFL
ENSG00000166268
Q96LU7
0.9248
0.7562
small intestine


NAALAD2
ENSG00000077616
Q9Y3Q0
0.6922
0.5092
adrenal gland


NAALADL2
ENSG00000177694
Q58DX5
0.7304
0.4312
parathyroid gland


NALCN
ENSG00000102452
Q8IZF0
0.7967
0.4599
cerebral cortex


NAT8L
ENSG00000185818
Q8N9F0
0.8855
0.6792
cerebral cortex


NCAM1
ENSG00000149294
P13591
0.6599
0.4035
cerebral cortex


NCAM2
ENSG00000154654
O15394
0.8649
0.5689
cerebral cortex


NCMAP
ENSG00000184454
Q5T1S8
0.7744
0.5474
gallbladder


NCR1
ENSG00000189430
O76036
0.9802
0.9454
spleen


NCR2
ENSG00000096264
O95944
0.9632
0.9079
dendritic cells


NCR3
ENSG00000204475
O14931
0.9371
0.8624
t-cells


NCR3LG1
ENSG00000188211
Q68D85
0.7446
0.4619
parathyroid gland


NECTIN4
ENSG00000143217
Q96NY8
0.7706
0.5933
skin


NETO1
ENSG00000166342
Q8TDF5
0.948
0.8266
cerebral cortex


NFAM1
ENSG00000235568
Q8NET5
0.7162
0.4392
granulocytes


NIPAL1
ENSG00000163293
Q6NVV3
0.6965
0.5014
skin


NIPAL4
ENSG00000172548
Q0D2K0
0.8609
0.6806
skin


NKAIN1
ENSG00000084628
Q4KMZ8
0.8874
0.7963
adrenal gland


NKAIN2
ENSG00000188580
Q5VXU1
0.9441
0.6405
cerebral cortex


NKAIN3
ENSG00000185942
Q8N8D7
0.9264
0.8723
adrenal gland


NKAIN4
ENSG00000101198
Q8IVV8
0.951
0.8012
cerebral cortex


NKPD1
ENSG00000179846
Q17RQ9
0.9695
0.8498
skin


NLGN1
ENSG00000169760
Q8N2Q7
0.7962
0.5518
cerebral cortex


NLGN3
ENSG00000196338
Q9NZ94
0.8258
0.5652
cerebral cortex


NLGN4X
ENSG00000146938
Q8N0W4
0.7084
0.4705
cerebral cortex


NLGN4Y
ENSG00000165246
Q8NFZ3
0.8089
0.6538
seminal vesicle


NMBR
ENSG00000135577
P28336
0.9486
0.8103
fallopian tube


NMUR1
ENSG00000171596
Q9HB89
0.7528
0.44
t-cells


NMUR2
ENSG00000132911
Q9GZQ4
0.9256
0.8519
stomach


NOMO1
ENSG00000103512
Q15155
0.5756
0.4604
thyroid gland


NOTCH4
ENSG00000204301
Q99466
0.8648
0.6619
lung


NOX1
ENSG00000007952
Q9Y5S8
0.9057
0.7242
rectum


NOX3
ENSG00000074771
Q9HBY0
1
1
adrenal gland


NOX4
ENSG00000086991
Q9NPH5
0.8662
0.5719
kidney


NOX5
ENSG00000255346
Q96PH1
0.9359
0.7661
spleen


NPBWR2
ENSG00000125522
P48146
0.9756
0.9756
adrenal gland


NPC1L1
ENSG00000015520
Q9UHC9
0.9233
0.8565
small intestine


NPFFR2
ENSG00000056291
Q9Y5X5
0.9176
0.7584
seminal vesicle


NPHS1
ENSG00000161270
O60500
0.9451
0.9045
kidney


NPR1
ENSG00000169418
P16066
0.6483
0.4094
adipose tissue


NPSR1
ENSG00000187258
Q6W5P4
0.9828
0.9597
stomach


NPY2R
ENSG00000185149
P49146
0.9279
0.8467
cerebral cortex


NPY5R
ENSG00000164129
Q15761
0.7905
0.5786
spleen


NRCAM
ENSG00000091129
Q92823
0.7837
0.5128
cerebral cortex


NRG2
ENSG00000158458
O14511
0.7334
0.5251
parathyroid gland


NRG3
ENSG00000185737
P56975
0.9264
0.7613
cerebral cortex


NRG4
ENSG00000169752
Q8WWG1
0.8997
0.8148
fallopian tube


NRSN1
ENSG00000152954
Q8IZ57
0.9525
0.7085
cerebral cortex


NRXN1
ENSG00000179915
Q9ULB1
0.857
0.5042
cerebral cortex


NRXN2
ENSG00000110076
Q9P2S2
0.8504
0.5482
cerebral cortex


NRXN3
ENSG00000021645
Q9Y4C0
0.7146
0.4647
cerebral cortex


NSG1
ENSG00000168824
P42857
0.6397
0.4208
skin


NSG2
ENSG00000170091
Q9Y328
0.9278
0.8113
cerebral cortex


NTRK1
ENSG00000198400
P04629
0.9497
0.7575
granulocytes


NTRK2
ENSG00000148053
Q16620
0.7032
0.4316
cerebral cortex


NTRK3
ENSG00000140538
Q16288
0.7303
0.4476
cerebral cortex


NTSR1
ENSG00000101188
P30989
0.941
0.9093
cerebral cortex


NTSR2
ENSG00000169006
O95665
0.992
0.982
cerebral cortex


NUP210L
ENSG00000143552
Q5VU65
0.9098
0.8718
seminal vesicle


NXPE2
ENSG00000204361
Q96DL1
0.9059
0.803
epididymis


OCLN
ENSG00000197822
Q16625
0.6232
0.4107
thyroid gland


OCSTAMP
ENSG00000149635
Q9BR26
0.9931
0.9892
dendritic cells


OLR1
ENSG00000173391
P78380
0.7517
0.4572
placenta


OPALIN
ENSG00000197430
Q96PE5
1
1
cerebral cortex


OPN1SW
ENSG00000128617
P03999
0.6951
0.5377
heart muscle


OPN4
ENSG00000122375
Q9UHM6
0.9364
0.8682
cerebral cortex


OPN5
ENSG00000124818
Q6U736
1
1
heart muscle


OPRD1
ENSG00000116329
P41143
0.8954
0.5128
cerebral cortex


OPRK1
ENSG00000082556
P41145
0.9538
0.8863
cerebral cortex


OPRL1
ENSG00000125510
P41146
0.802
0.504
cerebral cortex


OPRM1
ENSG00000112038
P35372
0.7979
0.5593
adrenal gland


OR10A3
ENSG00000170683
P58181
0.9742
0.9663
granulocytes


OR10A4
ENSG00000170782
Q9H209
1
1
dendritic cells


OR10G3
ENSG00000169208
Q8NGC4
0.9265
0.8037
granulocytes


OR10G4
ENSG00000254737
Q8NGN3
0.8366
0.6068
bone marrow


OR10J1
ENSG00000196184
P30954
0.9724
0.9352
granulocytes


OR10J3
ENSG00000196266
Q5JRS4
1
1
placenta


OR10P1
ENSG00000175398
Q8NGE3
0.9831
0.98
t-cells


OR10S1
ENSG00000196248
Q8NGN2
1
1
thyroid gland


OR10Z1
ENSG00000198967
Q8NGY1
0.9974
0.9953
bone marrow


OR13A1
ENSG00000256574
Q8NGR1
0.9302
0.8759
urinary bladder


OR13C8
ENSG00000186943
Q8NGS7
1
1
t-cells


OR14C36
ENSG00000177174
Q8NHC7
1
1
prostate


OR14I1
ENSG00000189181
A6ND48
0.9907
0.9843
cerebral cortex


OR14K1
ENSG00000153230
Q8NGZ2
1
1
fallopian tube


OR1F1
ENSG00000168124
O43749
0.9402
0.914
cerebral cortex


OR1J2
ENSG00000197233
Q8NGS2
0.9872
0.9833
urinary bladder


OR1N1
ENSG00000171505
Q8NGS0
1
1
cervix, uterine


OR2A5
ENSG00000221836
Q96R48
0.9024
0.9024
appendix


OR2AG2
ENSG00000188124
A6NM03
0.878
0.878
appendix


OR2AP1
ENSG00000179615
Q8NGE2
0.9024
0.9024
cerebral cortex


OR2B11
ENSG00000177535
Q5JQS5
0.9246
0.9122
appendix


OR2B6
ENSG00000124657
P58173
0.9246
0.9008
placenta


OR2H2
ENSG00000204657
O95918
0.9697
0.8626
epididymis


OR2L13
ENSG00000196071
Q8N349
0.934
0.831
cerebral cortex


OR2L2
ENSG00000203663
Q8NH16
0.6724
0.4039
bone marrow


OR2L3
ENSG00000198128
Q8NG85
0.9448
0.8091
prostate


OR2L5
ENSG00000197454
Q8NG80
0.9756
0.9756
bone marrow


OR2T10
ENSG00000184022
Q8NGZ9
0.9929
0.9774
kidney


OR2T33
ENSG00000177212
Q8NG76
0.811
0.7268
bone marrow


OR2V2
ENSG00000182613
Q96R30
0.8548
0.6345
granulocytes


OR2W3
ENSG00000238243
Q7Z3T1
0.8785
0.6888
thyroid gland


OR3A1
ENSG00000180090
P47881
0.9182
0.8532
t-cells


OR3A2
ENSG00000221882
P47893
0.8088
0.6479
cerebral cortex


OR3A3
ENSG00000159961
P47888
0.9848
0.9026
dendritic cells


OR4A47
ENSG00000237388
Q6IF82
1
1
t-cells


OR4C6
ENSG00000181903
Q8NH72
0.9512
0.9512
b-cells


OR4D1
ENSG00000141194
Q15615
0.9219
0.819
nk-cells


OR4D9
ENSG00000172742
Q8NGE8
0.7751
0.464
granulocytes


OR4F15
ENSG00000182854
Q8NGB8
0.9599
0.8786
granulocytes


OR4P4
ENSG00000181927
Q8NGL7
0.8875
0.8604
bone marrow


OR51B4
ENSG00000183251
Q9Y5P0
0.9024
0.9024
breast


OR51E2
ENSG00000167332
Q9H255
0.9085
0.6836
prostate


OR51T1
ENSG00000176900
Q8NGJ9
1
1
prostate


OR52A1
ENSG00000182070
Q9UKL2
0.7079
0.5011
granulocytes


OR52I1
ENSG00000232268
Q8NGK6
0.739
0.481
skin


OR52I2
ENSG00000226288
Q8NH67
1
1
epididymis


OR52K1
ENSG00000196778
Q8NGK4
0.7
0.417
bone marrow


OR52K2
ENSG00000181963
Q8NGK3
0.9869
0.9803
granulocytes


OR52N1
ENSG00000181001
Q8NH53
0.9024
0.9024
adipose tissue


OR52N4
ENSG00000181074
Q8NGI2
0.728
0.5138
spleen


OR52W1
ENSG00000175485
Q6IF63
1
1
bone marrow


OR56A4
ENSG00000183389
Q8NGH8
0.9745
0.9626
granulocytes


OR5AN1
ENSG00000176495
Q8NGI8
0.9745
0.9626
bone marrow


OR5AU1
ENSG00000169327
Q8NGC0
0.7646
0.5563
bone marrow


OR5B21
ENSG00000198283
A6NL26
1
1
urinary bladder


OR5P2
ENSG00000183303
Q8WZ92
1
1
skin


OR5P3
ENSG00000182334
Q8WZ94
0.9756
0.9756
epididymis


OR5T2
ENSG00000181718
Q8NGG2
0.9872
0.9833
skin


OR6B3
ENSG00000178586
Q8NGW1
0.9978
0.996
epididymis


OR6C2
ENSG00000179695
Q9NZP2
1
1
epididymis


OR6C4
ENSG00000179626
Q8NGE1
0.7696
0.5384
granulocytes


OR6N1
ENSG00000197403
Q8NGY5
0.9935
0.9898
granulocytes


OR6N2
ENSG00000188340
Q8NGY6
0.9814
0.9789
bone marrow


OR6T1
ENSG00000181499
Q8NGN1
1
1
pancreas


OR6X1
ENSG00000221931
Q8NH79
1
1
epididymis


OR7A17
ENSG00000185385
O14581
0.7494
0.5889
granulocytes


OR7A5
ENSG00000188269
Q15622
0.8984
0.7465
epididymis


OR7C1
ENSG00000127530
O76099
0.8511
0.5418
parathyroid gland


OR7D4
ENSG00000174667
Q8NG98
0.9112
0.6384
granulocytes


OR8A1
ENSG00000196119
Q8NGG7
0.7554
0.4787
parathyroid gland


OR8B8
ENSG00000197125
Q15620
0.7567
0.5074
skin


OR8D1
ENSG00000196341
Q8WZ84
0.9756
0.9756
epididymis


OR9A4
ENSG00000258083
Q8NGU2
0.9756
0.9756
bone marrow


OR9Q1
ENSG00000186509
Q8NGQ5
0.9756
0.9756
skeletal muscle


OTOF
ENSG00000115155
Q9HC10
0.9348
0.7627
bone marrow


OTOP1
ENSG00000163982
Q7RTM1
0.9872
0.9833
skin


OTOP2
ENSG00000183034
Q7RTS6
0.9586
0.9242
colon


OXGR1
ENSG00000165621
Q96P68
0.7366
0.5499
breast


OXTR
ENSG00000180914
P30559
0.9111
0.6361
breast


P2RX1
ENSG00000108405
P51575
0.6004
0.41
seminal vesicle


P2RX2
ENSG00000187848
Q9UBL9
0.8616
0.7141
epididymis


P2RX3
ENSG00000109991
P56373
0.9502
0.8705
heart muscle


P2RX5
ENSG00000083454
Q93086
0.7794
0.6037
lymph node


P2RX6
ENSG00000099957
O15547
0.8347
0.6838
cerebral cortex


P2RY10
ENSG00000078589
O00398
0.7558
0.5012
granulocytes


P2RY2
ENSG00000175591
P41231
0.6975
0.4126
granulocytes


P2RY4
ENSG00000186912
P51582
0.9553
0.8394
small intestine


P2RY6
ENSG00000171631
Q15077
0.778
0.4329
dendritic cells


PANX2
ENSG00000073150
Q96RD6
0.8492
0.5647
cerebral cortex


PANX3
ENSG00000154143
Q96QZ0
1
1
placenta


PAQR5
ENSG00000137819
Q9NXK6
0.729
0.4852
kidney


PAQR6
ENSG00000160781
Q6TCH4
0.8427
0.4182
cerebral cortex


PAQR9
ENSG00000188582
Q6ZVX9
0.9276
0.907
liver


PCDH10
ENSG00000138650
Q9P2E7
0.8557
0.7177
cerebral cortex


PCDH11X
ENSG00000102290
Q9BZA7
0.9198
0.8332
ovary


PCDH11Y
ENSG00000099715
Q9BZA8
0.9642
0.8435
cerebral cortex


PCDH12
ENSG00000113555
Q9NPG4
0.687
0.4012
placenta


PCDH15
ENSG00000150275
Q96QU1
0.9119
0.7677
adrenal gland


PCDH17
ENSG00000118946
O14917
0.7611
0.4945
spleen


PCDH19
ENSG00000165194
Q8TAB3
0.8636
0.6075
cerebral cortex


PCDH7
ENSG00000169851
O60245
0.5813
0.4438
cerebral cortex


PCDH8
ENSG00000136099
O95206
0.9919
0.9751
cerebral cortex


PCDH9
ENSG00000184226
Q9HC56
0.8268
0.4676
cerebral cortex


PCDHA1
ENSG00000204970
Q9Y5I3
0.9804
0.9344
cerebral cortex


PCDHA10
ENSG00000250120
Q9Y5I2
0.8342
0.6027
cerebral cortex


PCDHA11
ENSG00000249158
Q9Y5I1
0.9056
0.7359
cerebral cortex


PCDHA12
ENSG00000251664
Q9UN75
0.8544
0.747
lung


PCDHA13
ENSG00000239389
Q9Y5I0
0.9476
0.7811
parathyroid gland


PCDHA2
ENSG00000204969
Q9Y5H9
0.901
0.7794
cerebral cortex


PCDHA3
ENSG00000255408
Q9Y5H8
0.767
0.577
endometrium


PCDHA4
ENSG00000204967
Q9UN74
0.8016
0.4153
cerebral cortex


PCDHA5
ENSG00000204965
Q9Y5H7
0.9742
0.8747
cerebral cortex


PCDHA6
ENSG00000081842
Q9UN73
0.893
0.6789
cerebral cortex


PCDHA7
ENSG00000204963
Q9UN72
0.9297
0.6986
cerebral cortex


PCDHA8
ENSG00000204962
Q9Y5H6
0.9872
0.9775
cerebral cortex


PCDHA9
ENSG00000204961
Q9Y5H5
0.9308
0.7294
cerebral cortex


PCDHAC1
ENSG00000248383
Q9H158
0.9366
0.73
parathyroid gland


PCDHAC2
ENSG00000243232
Q9Y5I4
0.8931
0.6482
parathyroid gland


PCDHB1
ENSG00000171815
Q9Y5F3
0.7003
0.4239
fallopian tube


PCDHB10
ENSG00000120324
Q9UN67
0.7177
0.4821
cerebral cortex


PCDHB11
ENSG00000197479
Q9Y5F2
0.7826
0.403
parathyroid gland


PCDHB12
ENSG00000120328
Q9Y5F1
0.6989
0.4872
endometrium


PCDHB14
ENSG00000120327
Q9Y5E9
0.6367
0.4303
parathyroid gland


PCDHB15
ENSG00000113248
Q9Y5E8
0.6583
0.4206
cerebral cortex


PCDHB2
ENSG00000112852
Q9Y5E7
0.7427
0.4815
cerebral cortex


PCDHB3
ENSG00000113205
Q9Y5E6
0.6095
0.4663
endometrium


PCDHB4
ENSG00000081818
Q9Y5E5
0.6242
0.4281
endometrium


PCDHB7
ENSG00000113212
Q9Y5E2
0.7388
0.5031
endometrium


PCDHB8
ENSG00000120322
Q9UN66
0.7449
0.5383
endometrium


PCDHGA1
ENSG00000204956
Q9Y5H4
0.8128
0.4355
cerebral cortex


PCDHGA10
ENSG00000253846
Q9Y5H3
0.7948
0.4234
cerebral cortex


PCDHGA11
ENSG00000253873
Q9Y5H2
0.7177
0.4483
cerebral cortex


PCDHGA12
ENSG00000253159
O60330
0.6848
0.4452
cerebral cortex


PCDHGA3
ENSG00000254245
Q9Y5H0
0.7762
0.5422
cerebral cortex


PCDHGA4
ENSG00000262576
Q9Y5G9
0.7258
0.4894
cerebral cortex


PCDHGA5
ENSG00000253485
Q9Y5G8
0.6832
0.4648
cerebral cortex


PCDHGA6
ENSG00000253731
Q9Y5G7
0.5792
0.4047
endometrium


PCDHGA7
ENSG00000253537
Q9Y5G6
0.8012
0.5292
cerebral cortex


PCDHGA8
ENSG00000253767
Q9Y5G5
0.7213
0.4271
granulocytes


PCDHGB2
ENSG00000253910
Q9Y5G2
0.6751
0.4516
cerebral cortex


PCDHGB4
ENSG00000253953
Q9UN71
0.6459
0.4344
placenta


PCDHGC5
ENSG00000240764
Q9Y5F6
0.9689
0.8024
cerebral cortex


PCSK4
ENSG00000115257
Q6UW60
0.7894
0.4729
fallopian tube


PDCD1
ENSG00000188389
Q15116
0.8737
0.7137
lymph node


PHEX
ENSG00000102174
P78562
0.7949
0.6459
dendritic cells


PIANP
ENSG00000139200
Q8IYJ0
0.85
0.6013
cerebral cortex


PIEZO2
ENSG00000154864
Q9H5I5
0.6755
0.4761
lung


PIGR
ENSG00000162896
P01833
0.6844
0.5599
duodenum


PIRT
ENSG00000233670
P0C851
0.8546
0.821
adrenal gland


PKD1L1
ENSG00000158683
Q8TDX9
0.8081
0.5315
adipose tissue


PKD2L1
ENSG00000107593
Q9P0L9
0.8892
0.7104
spleen


PKDREJ
ENSG00000130943
Q9NTG1
0.8672
0.565
skin


PKHD1
ENSG00000170927
P08F94
0.9385
0.8592
kidney


PKHD1L1
ENSG00000205038
Q86WI1
0.8606
0.6404
thyroid gland


PLA2R1
ENSG00000153246
Q13018
0.6517
0.4002
thyroid gland


PLB1
ENSG00000163803
Q6P1J6
0.7647
0.4021
small intestine


PLD5
ENSG00000180287
Q8N7P1
0.7947
0.6287
seminal vesicle


PLN
ENSG00000198523
P26678
0.6573
0.4228
heart muscle


PLP1
ENSG00000123560
P60201
0.8036
0.4933
cerebral cortex


PLPP2
ENSG00000141934
O43688
0.5639
0.4073
fallopian tube


PLPP4
ENSG00000203805
Q5VZY2
0.8344
0.6443
cerebral cortex


PLPP7
ENSG00000160539
Q8NBV4
0.7813
0.4492
skeletal muscle


PLPPR1
ENSG00000148123
Q8TBJ4
0.9424
0.8988
cerebral cortex


PLPPR3
ENSG00000129951
Q6T4P5
0.9264
0.882
cerebral cortex


PLPPR4
ENSG00000117600
Q7Z2D5
0.8553
0.532
cerebral cortex


PLPPR5
ENSG00000117598
Q32ZL2
0.9873
0.9602
cerebral cortex


PLSCR2
ENSG00000163746
Q9NRY7
0.7914
0.4692
epididymis


PLXNA4
ENSG00000221866
Q9HCM2
0.7313
0.4975
adipose tissue


PLXNB3
ENSG00000198753
Q9ULL4
0.733
0.4715
cerebral cortex


PMEL
ENSG00000185664
P40967
0.82
0.4213
skin


PNPLA3
ENSG00000100344
Q9NST1
0.8733
0.6059
liver


POPDC2
ENSG00000121577
Q9HBU9
0.76
0.4634
heart muscle


POPDC3
ENSG00000132429
Q9HBV1
0.8935
0.7327
skeletal muscle


PPP1R3A
ENSG00000154415
Q16821
0.9667
0.956
skeletal muscle


PRIMA1
ENSG00000175785
Q86XR5
0.6391
0.478
smooth muscle


PRLHR
ENSG00000119973
P49683
0.927
0.9092
adrenal gland


PRLR
ENSG00000113494
P16471
0.7021
0.5318
placenta


PROKR1
ENSG00000169618
Q8TCW9
0.9658
0.9425
epididymis


PROKR2
ENSG00000101292
Q8NFJ6
0.964
0.9251
cerebral cortex


PROM1
ENSG00000007062
O43490
0.624
0.4688
cervix, uterine


PROM2
ENSG00000155066
Q8N271
0.6316
0.4945
skin


PRR7
ENSG00000131188
Q8TB68
0.7546
0.5063
cerebral cortex


PRRG3
ENSG00000130032
Q9BZD7
0.7336
0.4765
cerebral cortex


PRRT1
ENSG00000204314
Q99946
0.9829
0.9506
cerebral cortex


PRRT4
ENSG00000224940
C9JH25
0.8911
0.6251
bone marrow


PRSS8
ENSG00000052344
Q16651
0.5284
0.439
small intestine


PRTG
ENSG00000166450
Q2VWP7
0.8416
0.6137
thyroid gland


PSD2
ENSG00000146005
Q9BQI7
0.9699
0.8254
cerebral cortex


PTCHD1
ENSG00000165186
Q96NR3
0.8119
0.665
seminal vesicle


PTCHD4
ENSG00000244694
Q6ZW05
0.7537
0.556
seminal vesicle


PTCRA
ENSG00000171611
Q6ISU1
0.9503
0.8011
dendritic cells


PTGDR
ENSG00000168229
Q13258
0.8153
0.4775
nk-cells


PTGDR2
ENSG00000183134
Q9Y5Y4
0.8665
0.6091
granulocytes


PTGER1
ENSG00000160951
P34995
0.9001
0.7788
kidney


PTGER3
ENSG00000050628
P43115
0.6911
0.4703
endometrium


PTGFR
ENSG00000122420
P43088
0.68
0.4826
endometrium


PTH1R
ENSG00000160801
Q03431
0.7502
0.4656
kidney


PTH2R
ENSG00000144407
P49190
0.8088
0.7026
bone marrow


PTPRCAP
ENSG00000213402
Q14761
0.7318
0.4997
t-cells


PTPRD
ENSG00000153707
P23468
0.7603
0.5186
parathyroid gland


PTPRH
ENSG00000080031
Q9HD43
0.7928
0.6938
small intestine


PTPRN
ENSG00000054356
Q16849
0.9033
0.7277
cerebral cortex


PTPRO
ENSG00000151490
Q16827
0.6578
0.4226
rectum


PTPRR
ENSG00000153233
Q15256
0.8522
0.7643
cerebral cortex


PTPRT
ENSG00000196090
O14522
0.8989
0.7632
cerebral cortex


PTPRZ1
ENSG00000106278
P23471
0.888
0.629
cerebral cortex


PVRIG
ENSG00000213413
Q6DKI7
0.8516
0.6584
nk-cells


QRFPR
ENSG00000186867
Q96P65
0.8795
0.8335
heart muscle


RAET1E
ENSG00000164520
Q8TD07
0.8824
0.6399
esophagus


RAET1G
ENSG00000203722
Q6H3X3
0.8283
0.5924
esophagus


RARRES1
ENSG00000118849
P49788
0.543
0.4023
appendix


RDH8
ENSG00000080511
Q9NYR8
0.9971
0.9947
kidney


REEP1
ENSG00000068615
Q9H902
0.6543
0.4109
cerebral cortex


REEP2
ENSG00000132563
Q9BRK0
0.7712
0.4602
cerebral cortex


RET
ENSG00000165731
P07949
0.8487
0.451
parathyroid gland


RGR
ENSG00000148604
P47804
0.9543
0.6467
cerebral cortex


RGS9BP
ENSG00000186326
Q6ZS82
0.9538
0.8087
skeletal muscle


RGSL1
ENSG00000121446
A5PLK6
0.9816
0.9336
epididymis


RHAG
ENSG00000112077
Q02094
0.9792
0.9235
bone marrow


RHBDL1
ENSG00000103269
O75783
0.7795
0.4256
cerebral cortex


RHBDL2
ENSG00000158315
Q9NX52
0.6567
0.4468
skin


RHBDL3
ENSG00000141314
P58872
0.881
0.6614
cerebral cortex


RHCG
ENSG00000140519
Q9UBD6
0.928
0.8177
esophagus


RHD
ENSG00000187010
Q02161
0.8331
0.4732
bone marrow


RHO
ENSG00000163914
P08100
1
1
cerebral cortex


RNF112
ENSG00000128482
Q9ULX5
0.7934
0.5037
cerebral cortex


RNF148
ENSG00000235631
Q8N7C7
0.8243
0.6246
lung


RNF175
ENSG00000145428
Q8N4F7
0.7948
0.5438
cerebral cortex


RNF182
ENSG00000180537
Q8N6D2
0.8605
0.6404
cerebral cortex


RNF222
ENSG00000189051
A6NCQ9
0.952
0.8976
esophagus


RNF223
ENSG00000237330
E7ERA6
0.8817
0.6938
esophagus


RNF225
ENSG00000269855
M0QZC1
0.946
0.9147
esophagus


ROBO2
ENSG00000185008
Q9HCK4
0.7569
0.5148
cerebral cortex


ROBO3
ENSG00000154134
Q96MS0
0.8747
0.7313
smooth muscle


ROR2
ENSG00000169071
Q01974
0.6343
0.4484
parathyroid gland


ROS1
ENSG00000047936
P08922
0.9529
0.9008
epididymis


RPRM
ENSG00000177519
Q9NS64
0.7764
0.687
endometrium


RPRML
ENSG00000179673
Q8N4K4
0.9866
0.9637
cerebral cortex


RRH
ENSG00000180245
O14718
0.7327
0.566
breast


RTL1
ENSG00000254656
A6NKG5
0.9774
0.9698
placenta


RTP1
ENSG00000175077
P59025
0.9867
0.972
cerebral cortex


RTP2
ENSG00000198471
Q5QGT7
1
1
skeletal muscle


RTP3
ENSG00000163825
Q9BQQ7
0.9941
0.9836
liver


RTP5
ENSG00000188011
Q14D33
0.9897
0.9732
cerebral cortex


RXFP1
ENSG00000171509
Q9HBX9
0.8424
0.669
cerebral cortex


RXFP2
ENSG00000133105
Q8WXD0
0.9493
0.9222
monocytes


RXFP3
ENSG00000182631
Q9NSD7
1
1
adrenal gland


RXFP4
ENSG00000173080
Q8TDU9
0.9129
0.8636
rectum


RYR2
ENSG00000198626
Q92736
0.8859
0.6388
heart muscle


RYR3
ENSG00000198838
Q15413
0.8296
0.567
parathyroid gland


S1PR4
ENSG00000125910
O95977
0.7406
0.5629
granulocytes


S1PR5
ENSG00000180739
Q9H228
0.8568
0.5896
t-cells


SCN11A
ENSG00000168356
Q9UI33
0.8821
0.6541
spleen


SCN1A
ENSG00000144285
P35498
0.974
0.9633
cerebral cortex


SCN2A
ENSG00000136531
Q99250
0.9473
0.7604
cerebral cortex


SCN2B
ENSG00000149575
O60939
0.8563
0.5637
cerebral cortex


SCN3A
ENSG00000153253
Q9NY46
0.8293
0.4866
cerebral cortex


SCN3B
ENSG00000166257
Q9NY72
0.8692
0.4782
cerebral cortex


SCN4A
ENSG00000007314
P35499
0.9349
0.793
skeletal muscle


SCN4B
ENSG00000177098
Q8IWT1
0.6202
0.4058
adipose tissue


SCN5A
ENSG00000183873
Q14524
0.9437
0.7035
heart muscle


SCN7A
ENSG00000136546
Q01118
0.6636
0.4402
ovary


SCN8A
ENSG00000196876
Q9UQD0
0.9037
0.5596
cerebral cortex


SCN9A
ENSG00000169432
Q15858
0.7881
0.4445
dendritic cells


SCNN1A
ENSG00000111319
P37088
0.5277
0.4318
cervix, uterine


SCNN1B
ENSG00000168447
P51168
0.707
0.5506
cervix, uterine


SCNN1G
ENSG00000166828
P51170
0.8182
0.6521
kidney


SCTR
ENSG00000080293
P47872
0.878
0.7221
duodenum


SDK2
ENSG00000069188
Q58EX2
0.7795
0.5188
cervix, uterine


SEL1L2
ENSG00000101251
Q5TEA6
0.9617
0.9404
endometrium


SELE
ENSG00000007908
P16581
0.6892
0.5071
prostate


SEMA5B
ENSG00000082684
Q9P283
0.7593
0.4843
cerebral cortex


SEMA6B
ENSG00000167680
Q9H3T3
0.7045
0.4161
cerebral cortex


SERP2
ENSG00000151778
Q8N6R1
0.7751
0.4271
cerebral cortex


SERTM1
ENSG00000180440
A2A2V5
0.8446
0.7758
cerebral cortex


SEZ6
ENSG00000063015
Q53EL9
0.958
0.7217
cerebral cortex


SEZ6L2
ENSG00000174938
Q6UXD5
0.6797
0.4507
cerebral cortex


SFT2D3
ENSG00000173349
Q587I9
0.6691
0.5922
parathyroid gland


SGCA
ENSG00000108823
Q16586
0.7014
0.4472
skeletal muscle


SGCD
ENSG00000170624
Q92629
0.5904
0.4037
thyroid gland


SGCG
ENSG00000102683
Q13326
0.8438
0.6823
heart muscle


SGCZ
ENSG00000185053
Q96LD1
0.9608
0.9027
ovary


SHISA6
ENSG00000188803
Q6ZSJ9
0.8349
0.6684
cervix, uterine


SHISA7
ENSG00000187902
A6NL88
0.9922
0.9823
cerebral cortex


SHISA8
ENSG00000234965
B8ZZ34
0.9321
0.853
adrenal gland


SHISAL1
ENSG00000138944
Q3SXP7
0.7804
0.6151
smooth muscle


SHISAL2A
ENSG00000182183
Q6UWV7
0.7595
0.6059
b-cells


SHISAL2B
ENSG00000145642
A6NKW6
0.981
0.9632
stomach


SI
ENSG00000090402
P14410
0.9324
0.8998
duodenum


SIGLEC11
ENSG00000161640
Q96RL6
0.8723
0.5709
ovary


SIGLEC12
ENSG00000254521
Q96PQ1
0.8527
0.6937
spleen


SIGLEC14
ENSG00000254415
Q08ET2
0.7217
0.4751
granulocytes


SIGLEC15
ENSG00000197046
Q6ZMC9
0.9505
0.891
monocytes


SIGLEC5
ENSG00000105501
O15389
0.8471
0.6196
granulocytes


SIGLEC6
ENSG00000105492
O43699
0.8527
0.5153
placenta


SIGLEC7
ENSG00000168995
Q9Y286
0.7482
0.4953
granulocytes


SIGLEC8
ENSG00000105366
Q9NYZ4
0.8619
0.4837
granulocytes


SIGLEC9
ENSG00000129450
Q9Y336
0.702
0.4291
monocytes


SIGLECL1
ENSG00000179213
Q8N7X8
0.9411
0.9048
cervix, uterine


SIRPB1
ENSG00000101307
O00241
0.7715
0.4569
granulocytes


SIRPB2
ENSG00000196209
Q5JXA9
0.7054
0.4564
granulocytes


SIRPG
ENSG00000089012
Q9P1W8
0.816
0.5225
t-cells


SIT1
ENSG00000137078
Q9Y3P8
0.7848
0.533
t-cells


SLAMF1
ENSG00000117090
Q13291
0.7622
0.5084
t-cells


SLAMF9
ENSG00000162723
Q96A28
0.9497
0.8349
dendritic cells


SLC10A1
ENSG00000100652
Q14973
0.9905
0.9167
liver


SLC10A2
ENSG00000125255
Q12908
0.9535
0.9283
small intestine


SLC10A4
ENSG00000145248
Q96EP9
0.9021
0.7547
adrenal gland


SLC10A5
ENSG00000253598
Q5PT55
0.7628
0.5802
liver


SLC10A6
ENSG00000145283
Q3KNW5
0.8449
0.6271
skin


SLC11A1
ENSG00000018280
P49279
0.7876
0.5626
lung


SLC12A1
ENSG00000074803
Q13621
0.9907
0.9446
kidney


SLC12A3
ENSG00000070915
P55017
0.9631
0.8474
kidney


SLC12A5
ENSG00000124140
Q9H2X9
0.8701
0.4743
cerebral cortex


SLC12A8
ENSG00000221955
A0AV02
0.721
0.4524
thyroid gland


SLC13A1
ENSG00000081800
Q9BZW2
0.9694
0.956
kidney


SLC13A2
ENSG00000007216
Q13183
0.8838
0.8296
duodenum


SLC13A3
ENSG00000158296
Q8WWT9
0.8376
0.4803
kidney


SLC13A4
ENSG00000164707
Q9UKG4
0.9799
0.9409
placenta


SLC13A5
ENSG00000141485
Q86YT5
0.9527
0.8733
liver


SLC14A1
ENSG00000141469
Q13336
0.7642
0.4272
prostate


SLC14A2
ENSG00000132874
Q15849
0.8762
0.6362
kidney


SLC15A1
ENSG00000088386
P46059
0.8252
0.6239
small intestine


SLC15A5
ENSG00000188991
A6NIM6
0.9629
0.9604
adipose tissue


SLC16A11
ENSG00000174326
Q8NCK7
0.775
0.5095
parathyroid gland


SLC16A12
ENSG00000152779
Q6ZSM3
0.8255
0.6336
kidney


SLC16A8
ENSG00000100156
O95907
0.7056
0.558
prostate


SLC16A9
ENSG00000165449
Q7RTY1
0.6897
0.494
kidney


SLC17A1
ENSG00000124568
Q14916
0.9798
0.9596
kidney


SLC17A2
ENSG00000112337
O00624
0.9978
0.996
liver


SLC17A3
ENSG00000124564
O00476
0.9792
0.9549
kidney


SLC17A4
ENSG00000146039
Q9Y2C5
0.8613
0.8429
small intestine


SLC17A6
ENSG00000091664
Q9P2U8
1
1
cerebral cortex


SLC17A7
ENSG00000104888
Q9P2U7
0.9353
0.6051
cerebral cortex


SLC17A8
ENSG00000179520
Q8NDX2
0.9553
0.8749
small intestine


SLC17A9
ENSG00000101194
Q9BYT1
0.591
0.4005
stomach


SLC18A1
ENSG00000036565
P54219
0.9507
0.8657
adrenal gland


SLC18A3
ENSG00000187714
Q16572
0.9587
0.9372
placenta


SLC19A3
ENSG00000135917
Q9BZV2
0.7471
0.4282
adipose tissue


SLC1A1
ENSG00000106688
P43005
0.6164
0.4487
small intestine


SLC1A2
ENSG00000110436
P43004
0.9075
0.5781
cerebral cortex


SLC1A6
ENSG00000105143
P48664
0.8808
0.5326
cerebral cortex


SLC1A7
ENSG00000162383
O00341
0.8381
0.6539
gallbladder


SLC22A1
ENSG00000175003
O15245
0.9661
0.6918
liver


SLC22A10
ENSG00000184999
Q63ZE4
0.997
0.9925
liver


SLC22A11
ENSG00000168065
Q9NSA0
0.9595
0.9449
placenta


SLC22A12
ENSG00000197891
Q96S37
0.9964
0.9904
kidney


SLC22A13
ENSG00000172940
Q9Y226
0.9965
0.9922
kidney


SLC22A14
ENSG00000144671
Q9Y267
0.9226
0.7935
kidney


SLC22A16
ENSG00000004809
Q86VW1
0.8944
0.8282
parathyroid gland


SLC22A2
ENSG00000112499
O15244
0.9806
0.897
kidney


SLC22A24
ENSG00000197658
Q8N4F4
1
1
kidney


SLC22A25
ENSG00000196600
Q6T423
1
1
liver


SLC22A3
ENSG00000146477
O75751
0.5788
0.4105
seminal vesicle


SLC22A6
ENSG00000197901
Q4U2R8
0.9926
0.9867
kidney


SLC22A7
ENSG00000137204
Q9Y694
0.9738
0.9529
liver


SLC22A8
ENSG00000149452
Q8TCC7
0.9964
0.991
kidney


SLC22A9
ENSG00000149742
Q8IVM8
0.969
0.7552
liver


SLC23A3
ENSG00000213901
Q6PIS1
0.8547
0.5553
kidney


SLC24A2
ENSG00000155886
Q9UI40
0.9694
0.8602
cerebral cortex


SLC24A4
ENSG00000140090
Q8NFF2
0.8397
0.5774
monocytes


SLC26A1
ENSG00000145217
Q9H2B4
0.6166
0.4052
adrenal gland


SLC26A10
ENSG00000135502
Q8NG04
0.7903
0.598
endometrium


SLC26A3
ENSG00000091138
P40879
0.8347
0.7579
colon


SLC26A4
ENSG00000091137
O43511
0.9293
0.6932
thyroid gland


SLC26A5
ENSG00000170615
P58743
0.7588
0.637
breast


SLC26A8
ENSG00000112053
Q96RN1
0.944
0.8715
bone marrow


SLC26A9
ENSG00000174502
Q7LBE3
0.9203
0.8883
salivary gland


SLC27A2
ENSG00000140284
O14975
0.6902
0.4576
kidney


SLC27A6
ENSG00000113396
Q9Y2P4
0.7566
0.5881
fallopian tube


SLC28A1
ENSG00000156222
O00337
0.8985
0.8388
small intestine


SLC28A2
ENSG00000137860
O43868
0.8688
0.7571
small intestine


SLC28A3
ENSG00000197506
Q9HAS3
0.7837
0.6299
gallbladder


SLC2A12
ENSG00000146411
Q8TD20
0.699
0.4579
prostate


SLC2A14
ENSG00000173262
Q8TDB8
0.7432
0.4994
bone marrow


SLC2A2
ENSG00000163581
P11168
0.9418
0.9175
liver


SLC2A4
ENSG00000181856
P14672
0.7253
0.4887
skeletal muscle


SLC30A10
ENSG00000196660
Q6XR72
0.9328
0.9103
liver


SLC30A3
ENSG00000115194
Q99726
0.9512
0.9046
epididymis


SLC30A8
ENSG00000164756
Q8IWU4
0.8977
0.7099
pancreas


SLC34A1
ENSG00000131183
Q06495
0.9914
0.9633
kidney


SLC34A2
ENSG00000157765
O95436
0.8382
0.6518
lung


SLC34A3
ENSG00000198569
Q8N130
0.9429
0.8274
kidney


SLC35D3
ENSG00000182747
Q5M8T2
0.9532
0.9034
adrenal gland


SLC35F1
ENSG00000196376
Q5T1Q4
0.8889
0.5963
cerebral cortex


SLC35F3
ENSG00000183780
Q8IY50
0.8666
0.6339
cerebral cortex


SLC35F4
ENSG00000151812
A4IF30
0.9534
0.9027
seminal vesicle


SLC35G1
ENSG00000176273
Q2M3R5
0.8073
0.4033
duodenum


SLC35G5
ENSG00000177710
Q96KT7
0.8088
0.6445
dendritic cells


SLC36A2
ENSG00000186335
Q495M3
0.9483
0.8046
kidney


SLC38A11
ENSG00000169507
Q08AI6
0.7182
0.4802
epididymis


SLC38A4
ENSG00000139209
Q969I6
0.8838
0.5506
liver


SLC38A8
ENSG00000166558
A6NNN8
0.9681
0.9534
cerebral cortex


SLC39A12
ENSG00000148482
Q504Y0
0.9914
0.9706
cerebral cortex


SLC39A2
ENSG00000165794
Q9NP94
0.8727
0.7699
seminal vesicle


SLC39A4
ENSG00000147804
Q6P5W5
0.8882
0.7091
duodenum


SLC39A5
ENSG00000139540
Q6ZMH5
0.8324
0.7644
small intestine


SLC3A1
ENSG00000138079
Q07837
0.8372
0.6064
kidney


SLC44A4
ENSG00000204385
Q53GD3
0.7177
0.6109
duodenum


SLC44A5
ENSG00000137968
Q8NCS7
0.7016
0.4532
skin


SLC45A3
ENSG00000158715
Q96JT2
0.8204
0.4595
prostate


SLC46A2
ENSG00000119457
Q9BY10
0.8515
0.7783
cervix, uterine


SLC47A1
ENSG00000142494
Q96FL8
0.6863
0.4253
adrenal gland


SLC47A2
ENSG00000180638
Q86VL8
0.9503
0.892
kidney


SLC4A1
ENSG00000004939
P02730
0.8985
0.5254
bone marrow


SLC4A10
ENSG00000144290
Q6U841
0.915
0.7725
t-cells


SLC4A11
ENSG00000088836
Q8NBS3
0.7342
0.5459
thyroid gland


SLC4A3
ENSG00000114923
P48751
0.771
0.4927
heart muscle


SLC4A4
ENSG00000080493
Q9Y6R1
0.6589
0.5026
kidney


SLC4A8
ENSG00000050438
Q2Y0W8
0.7924
0.4355
cerebral cortex


SLC4A9
ENSG00000113073
Q96Q91
0.992
0.9786
kidney


SLC51A
ENSG00000163959
Q86UW1
0.8253
0.5723
small intestine


SLC51B
ENSG00000186198
Q86UW2
0.7683
0.5757
small intestine


SLC52A1
ENSG00000132517
Q9NWF4
0.8553
0.6142
duodenum


SLC52A3
ENSG00000101276
Q9NQ40
0.6844
0.4693
small intestine


SLC5A1
ENSG00000100170
P13866
0.8145
0.6105
duodenum


SLC5A10
ENSG00000154025
A0PJK1
0.9509
0.8327
kidney


SLC5A11
ENSG00000158865
Q8WWX8
0.9184
0.8684
small intestine


SLC5A12
ENSG00000148942
Q1EHB4
0.9238
0.7677
kidney


SLC5A2
ENSG00000140675
P31639
0.9861
0.9364
kidney


SLC5A4
ENSG00000100191
Q9NY91
0.8808
0.6648
small intestine


SLC5A5
ENSG00000105641
Q92911
0.9136
0.7865
stomach


SLC5A7
ENSG00000115665
Q9GZV3
0.7973
0.6496
thyroid gland


SLC5A8
ENSG00000256870
Q8N695
0.936
0.908
cervix, uterine


SLC5A9
ENSG00000117834
Q2M3M2
0.8998
0.7956
small intestine


SLC6A1
ENSG00000157103
P30531
0.8446
0.5297
cerebral cortex


SLC6A11
ENSG00000132164
P48066
0.9295
0.8563
cerebral cortex


SLC6A12
ENSG00000111181
P48065
0.7957
0.577
liver


SLC6A13
ENSG00000010379
Q9NSD5
0.9324
0.8286
kidney


SLC6A15
ENSG00000072041
Q9H2J7
0.9083
0.7324
cerebral cortex


SLC6A17
ENSG00000197106
Q9H1V8
0.9417
0.8011
cerebral cortex


SLC6A18
ENSG00000164363
Q96N87
1
1
kidney


SLC6A19
ENSG00000174358
Q695T7
0.9183
0.8875
small intestine


SLC6A2
ENSG00000103546
P23975
0.8853
0.769
adrenal gland


SLC6A20
ENSG00000163817
Q9NP91
0.8472
0.6098
duodenum


SLC6A3
ENSG00000142319
Q01959
0.9734
0.9491
thyroid gland


SLC6A4
ENSG00000108576
P31645
0.8909
0.7967
small intestine


SLC6A5
ENSG00000165970
Q9Y345
0.9973
0.9952
lung


SLC6A7
ENSG00000011083
Q99884
0.9483
0.9017
cerebral cortex


SLC7A10
ENSG00000130876
Q9NS82
0.9694
0.9141
adipose tissue


SLC7A11
ENSG00000151012
Q9UPY5
0.8173
0.5644
cerebral cortex


SLC7A13
ENSG00000164893
Q8TCU3
0.997
0.9881
kidney


SLC7A3
ENSG00000165349
Q8WY07
0.8603
0.7607
prostate


SLC7A4
ENSG00000099960
O43246
0.705
0.529
esophagus


SLC7A9
ENSG00000021488
P82251
0.9203
0.8334
small intestine


SLC8A2
ENSG00000118160
Q9UPR5
0.9233
0.7824
cerebral cortex


SLC8A3
ENSG00000100678
P57103
0.9136
0.666
cerebral cortex


SLC9A2
ENSG00000115616
Q9UBY0
0.7636
0.6095
stomach


SLC9A4
ENSG00000180251
Q6AI14
0.9138
0.6322
stomach


SLC9A5
ENSG00000135740
Q14940
0.8546
0.5252
spleen


SLC9C1
ENSG00000172139
Q4G0N8
0.9843
0.9563
skin


SLC9C2
ENSG00000162753
Q5TAH2
0.9657
0.9192
fallopian tube


SLCO1A2
ENSG00000084453
P46721
0.8637
0.5882
cerebral cortex


SLCO1B1
ENSG00000134538
Q9Y6L6
0.993
0.9794
liver


SLC01B3
ENSG00000111700
Q9NPD5
0.9723
0.9195
liver


SLCO1C1
ENSG00000139155
Q9NYB5
0.9569
0.7548
cerebral cortex


SLCO4C1
ENSG00000173930
Q6ZQN7
0.826
0.5574
kidney


SLCO5A1
ENSG00000137571
Q9H2Y9
0.8387
0.6516
prostate


SLCO6A1
ENSG00000205359
Q86UG4
1
1
placenta


SLITRK1
ENSG00000178235
Q96PX8
0.9945
0.9774
cerebral cortex


SLITRK2
ENSG00000185985
Q9H156
0.9077
0.7097
cerebral cortex


SLITRK3
ENSG00000121871
O94933
0.8165
0.6982
cerebral cortex


SLITRK4
ENSG00000179542
Q8IW52
0.7253
0.5213
adrenal gland


SLITRK5
ENSG00000165300
O94991
0.8948
0.7924
cerebral cortex


SLITRK6
ENSG00000184564
Q9H5Y7
0.7513
0.5855
urinary bladder


SMCO2
ENSG00000165935
A6NFE2
0.8786
0.8161
skin


SMCO3
ENSG00000179256
A2RU48
0.8201
0.6598
cervix, uterine


SMIM18
ENSG00000253457
P0DKX4
0.9462
0.8582
cerebral cortex


SMIM2
ENSG00000139656
Q9BVW6
0.783
0.526
epididymis


SMIM22
ENSG00000267795
K7EJ46
0.5943
0.4667
colon


SMIM23
ENSG00000185662
A6NLE4
1
1
spleen


SMIM24
ENSG00000095932
O75264
0.7921
0.6177
epididymis


SMIM28
ENSG00000262543
A0A1B0GU29
0.9147
0.8985
appendix


SMIM5
ENSG00000204323
Q71RC9
0.7747
0.4264
dendritic cells


SMIM6
ENSG00000259120
P0DI80
0.7505
0.5941
fallopian tube


SMLR1
ENSG00000256162
H3BR10
0.9504
0.9357
liver


SNORC
ENSG00000182600
Q6UX34
0.8447
0.5738
breast


SOGA3
ENSG00000214338
Q5TF21
0.8808
0.6291
cerebral cortex


SORCS1
ENSG00000108018
Q8WY21
0.767
0.4845
thyroid gland


SORCS2
ENSG00000184985
Q96PQ0
0.6845
0.4427
cerebral cortex


SORCS3
ENSG00000156395
Q9UPU3
0.9562
0.8303
cerebral cortex


SPACA3
ENSG00000141316
Q8IXA5
0.9161
0.5714
pancreas


SPATA9
ENSG00000145757
Q9BWV2
0.8682
0.6293
adipose tissue


SPNS3
ENSG00000182557
Q6ZMD2
0.9197
0.7735
granulocytes


SSMEM1
ENSG00000165120
Q8WWF3
0.9756
0.9756
lung


SSTR1
ENSG00000139874
P30872
0.7857
0.5928
stomach


SSTR4
ENSG00000132671
P31391
0.9921
0.9821
cerebral cortex


SSTR5
ENSG00000162009
P35346
0.9403
0.8624
adrenal gland


STAB2
ENSG00000136011
Q8WWQ8
0.8967
0.6423
spleen


STEAP1B
ENSG00000105889
Q6NZ63
0.7731
0.5256
b-cells


STOML3
ENSG00000133115
Q8TAV4
0.9811
0.9529
fallopian tube


STRA6
ENSG00000137868
Q9BX79
0.8446
0.7104
cervix, uterine


STUM
ENSG00000203685
Q69YW2
0.7731
0.4636
cerebral cortex


STX1A
ENSG00000106089
Q16623
0.7997
0.407
cerebral cortex


STX1B
ENSG00000099365
P61266
0.8793
0.4947
cerebral cortex


STYK1
ENSG00000060140
Q6J9G0
0.6552
0.4952
rectum


SUCNR1
ENSG00000198829
Q9BXA5
0.8119
0.5613
kidney


SUN3
ENSG00000164744
Q8TAQ9
0.9045
0.7731
placenta


SUSD2
ENSG00000099994
Q9UGT4
0.7536
0.4576
lung


SUSD4
ENSG00000143502
Q5VX71
0.6452
0.46
esophagus


SUSD5
ENSG00000173705
O60279
0.6387
0.4572
cerebral cortex


SV2A
ENSG00000159164
Q7L0J3
0.7621
0.4298
cerebral cortex


SV2B
ENSG00000185518
Q7L1I2
0.9342
0.5981
cerebral cortex


SV2C
ENSG00000122012
Q496J9
0.9086
0.7211
cerebral cortex


SVOP
ENSG00000166111
Q8N4V2
0.9738
0.8783
cerebral cortex


SVOPL
ENSG00000157703
Q8N434
0.8985
0.6747
parathyroid gland


SYNDIG1
ENSG00000101463
Q9H7V2
0.7711
0.5726
cerebral cortex


SYNDIG1L
ENSG00000183379
A6NDD5
0.9543
0.7651
epididymis


SYNGR3
ENSG00000127561
O43761
0.8556
0.5475
cerebral cortex


SYNGR4
ENSG00000105467
O95473
0.9564
0.8782
parathyroid gland


SYNPR
ENSG00000163630
Q8TBG9
0.9824
0.9232
cerebral cortex


SYP
ENSG00000102003
P08247
0.8395
0.4297
cerebral cortex


SYPL2
ENSG00000143028
Q5VXT5
0.8005
0.5181
skeletal muscle


SYT1
ENSG00000067715
P21579
0.8511
0.5748
cerebral cortex


SYT12
ENSG00000173227
Q8IV01
0.905
0.7293
parathyroid gland


SYT13
ENSG00000019505
Q7L8C5
0.8262
0.7027
cerebral cortex


SYT14
ENSG00000143469
Q8NB59
0.9598
0.8916
thyroid gland


SYT2
ENSG00000143858
Q8N9I0
0.8725
0.6758
cerebral cortex


SYT3
ENSG00000213023
Q9BQG1
0.9652
0.7863
cerebral cortex


SYT5
ENSG00000129990
O00445
0.9264
0.6625
cerebral cortex


SYT6
ENSG00000134207
Q5T7P8
0.9314
0.8261
cerebral cortex


SYT7
ENSG00000011347
O43581
0.7122
0.4306
cerebral cortex


SYT8
ENSG00000149043
Q8NBV8
0.8668
0.7587
skin


SYT9
ENSG00000170743
Q86SS6
0.856
0.7636
cerebral cortex


TAAR1
ENSG00000146399
Q96RJ0
0.9745
0.9279
stomach


TAAR6
ENSG00000146383
Q96RI8
1
1
kidney


TACR1
ENSG00000115353
P25103
0.7228
0.5325
cervix, uterine


TACR2
ENSG00000075073
P21452
0.7753
0.5562
smooth muscle


TACR3
ENSG00000169836
P29371
0.9573
0.9401
cerebral cortex


TACSTD2
ENSG00000184292
P09758
0.6326
0.4719
esophagus


TAS1R1
ENSG00000173662
Q7RTX1
0.7229
0.5737
gallbladder


TAS1R3
ENSG00000169962
Q7RTX0
0.8835
0.6039
epididymis


TAS2R1
ENSG00000169777
Q9NYW7
0.9734
0.9491
fallopian tube


TAS2R10
ENSG00000121318
Q9NYW0
0.8991
0.8565
breast


TAS2R14
ENSG00000212127
Q9NYV8
0.8207
0.457
epididymis


TAS2R19
ENSG00000212124
P59542
0.9617
0.9404
ovary


TAS2R20
ENSG00000255837
P59543
0.8718
0.6638
skin


TAS2R3
ENSG00000127362
Q9NYW6
0.8488
0.7448
ovary


TAS2R30
ENSG00000256188
P59541
0.7738
0.6885
endometrium


TAS2R31
ENSG00000256436
P59538
0.862
0.7756
endometrium


TAS2R38
ENSG00000257138
P59533
0.9498
0.9445
rectum


TAS2R4
ENSG00000127364
Q9NYW5
0.7348
0.4364
skin


TAS2R5
ENSG00000127366
Q9NYW4
0.7351
0.4339
skin


TCP11
ENSG00000124678
Q8WWU5
0.869
0.6076
fallopian tube


TECRL
ENSG00000205678
Q5HYJ1
0.9462
0.7504
heart muscle


TEDDM1
ENSG00000203730
Q5T9Z0
0.9895
0.9292
epididymis


TENM1
ENSG00000009694
Q9UKZ4
0.7365
0.5526
prostate


TENM2
ENSG00000145934
Q9NT68
0.8751
0.6913
heart muscle


TENM3
ENSG00000218336
Q9P273
0.6999
0.4995
placenta


TENM4
ENSG00000149256
Q6N022
0.8458
0.617
parathyroid gland


TEX29
ENSG00000153495
Q8N6K0
0.9195
0.591
cerebral cortex


TEX38
ENSG00000186118
Q6PEX7
0.8944
0.6462
parathyroid gland


TEX51
ENSG00000237524
A0A1B0GUA7
1
1
kidney


TFR2
ENSG00000106327
Q9UP52
0.9662
0.9341
liver


TGFBR3L
ENSG00000260001
H3BV60
0.8695
0.7942
small intestine


THSD7A
ENSG00000005108
Q9UPZ6
0.6632
0.4927
kidney


THSD7B
ENSG00000144229
Q9C0I4
0.886
0.7052
epididymis


TIGIT
ENSG00000181847
Q495A1
0.7953
0.4813
t-cells


TIMD4
ENSG00000145850
Q96H15
0.8194
0.6305
lymph node


TLR10
ENSG00000174123
Q9BXR5
0.7734
0.5508
lymph node


TM4SF19
ENSG00000145107
Q96DZ7
0.8432
0.4504
t-cells


TM4SF20
ENSG00000168955
Q53R12
0.9418
0.8281
duodenum


TM4SF4
ENSG00000169903
P48230
0.8854
0.7801
gallbladder


TM4SF5
ENSG00000142484
O14894
0.8803
0.8327
duodenum


TMC1
ENSG00000165091
Q8TDI8
0.9215
0.8429
cervix, uterine


TMC2
ENSG00000149488
Q8TDI7
0.937
0.8576
lung


TMC3
ENSG00000188869
Q7Z5M5
0.9456
0.6093
parathyroid gland


TMC5
ENSG00000103534
Q6UXY8
0.6831
0.5594
small intestine


TMC7
ENSG00000170537
Q7Z402
0.6989
0.4468
cerebral cortex


TMCO2
ENSG00000188800
Q7Z6W1
1
1
urinary bladder


TMCO5A
ENSG00000166069
Q8N6Q1
0.9646
0.9553
fallopian tube


TMEFF1
ENSG00000241697
Q8IYR6
0.9649
0.8661
cerebral cortex


TMEFF2
ENSG00000144339
Q9UIK5
0.8949
0.7835
prostate


TMEM100
ENSG00000166292
Q9NV29
0.6522
0.4322
lung


TMEM108
ENSG00000144868
Q6UXF1
0.6842
0.4661
cerebral cortex


TMEM114
ENSG00000232258
B3SHH9
0.9969
0.9933
seminal vesicle


TMEM121
ENSG00000184986
Q9BTD3
0.8174
0.4963
cerebral cortex


TMEM125
ENSG00000179178
Q96AQ2
0.6355
0.4566
lung


TMEM132B
ENSG00000139364
Q14DG7
0.9324
0.7198
cerebral cortex


TMEM132C
ENSG00000181234
Q8N3T6
0.7671
0.5363
adipose tissue


TMEM132D
ENSG00000151952
Q14C87
0.9839
0.9112
cerebral cortex


TMEM132E
ENSG00000181291
Q6IEE7
0.9061
0.7371
cerebral cortex


TMEM139
ENSG00000178826
Q8IV31
0.6635
0.4612
kidney


TMEM150B
ENSG00000180061
A6NC51
0.7577
0.5222
duodenum


TMEM151A
ENSG00000179292
Q8N4L1
0.978
0.9391
cerebral cortex


TMEM151B
ENSG00000178233
Q8IW70
0.9642
0.8543
cerebral cortex


TMEM156
ENSG00000121895
Q8N614
0.7119
0.4753
b-cells


TMEM158
ENSG00000249992
Q8WZ71
0.7111
0.5516
endometrium


TMEM163
ENSG00000152128
Q8TC26
0.6972
0.5342
lung


TMEM169
ENSG00000163449
Q96HH4
0.7746
0.402
cerebral cortex


TMEM171
ENSG00000157111
Q8WVE6
0.7486
0.6289
thyroid gland


TMEM178B
ENSG00000261115
H3BS89
0.8316
0.6226
parathyroid gland


TMEM179
ENSG00000258986
Q6ZVK1
0.9425
0.8058
cerebral cortex


TMEM184A
ENSG00000164855
Q6ZMB5
0.6607
0.4951
skin


TMEM190
ENSG00000160472
Q8WZ59
0.9519
0.8179
fallopian tube


TMEM196
ENSG00000173452
Q5HYL7
0.9489
0.8654
cerebral cortex


TMEM200A
ENSG00000164484
Q86VY9
0.6372
0.4026
endometrium


TMEM200B
ENSG00000253304
Q69YZ2
0.6313
0.435
endometrium


TMEM200C
ENSG00000206432
A6NKL6
0.8334
0.6523
cerebral cortex


TMEM207
ENSG00000198398
Q6UWW9
1
1
kidney


TMEM210
ENSG00000185863
A6NLX4
0.8708
0.7003
dendritic cells


TMEM211
ENSG00000206069
Q6ICI0
0.9168
0.8483
cervix, uterine


TMEM213
ENSG00000214128
A2RRL7
0.8895
0.5834
kidney


TMEM215
ENSG00000188133
Q68D42
0.9679
0.9477
endometrium


TMEM217
ENSG00000172738
Q8N7C4
0.8097
0.6135
adrenal gland


TMEM229A
ENSG00000234224
B2RXF0
0.8993
0.8089
duodenum


TMEM232
ENSG00000186952
C9JQI7
0.8214
0.5365
fallopian tube


TMEM233
ENSG00000224982
B4DJY2
0.8755
0.6497
thyroid gland


TMEM235
ENSG00000204278
A6NFC5
0.9992
0.9984
cerebral cortex


TMEM236
ENSG00000148483
Q5W0B7
0.8488
0.5784
small intestine


TMEM239
ENSG00000198326
Q8WW34
0.9512
0.9512
endometrium


TMEM240
ENSG00000205090
Q5SV17
0.7488
0.4689
cerebral cortex


TMEM244
ENSG00000203756
Q5VVB8
0.9039
0.7619
cerebral cortex


TMEM252
ENSG00000181778
Q8N6L7
0.8339
0.632
kidney


TMEM253
ENSG00000232070
P0C7T8
0.8508
0.6319
duodenum


TMEM255A
ENSG00000125355
Q5JRV8
0.7117
0.42
ovary


TMEM26
ENSG00000196932
Q6ZUK4
0.7492
0.5397
spleen


TMEM262
ENSG00000187066
E9PQX1
0.9745
0.9626
cervix, uterine


TMEM266
ENSG00000169758
Q2M3C6
0.9063
0.8506
cerebral cortex


TMEM270
ENSG00000175877
Q6UE05
1
1
duodenum


TMEM31
ENSG00000179363
Q5JXX7
0.745
0.5571
ovary


TMEM40
ENSG00000088726
Q8WWA1
0.8467
0.6879
esophagus


TMEM45B
ENSG00000151715
Q96B21
0.6284
0.4348
small intestine


TMEM52
ENSG00000178821
Q8NDY8
0.8125
0.5194
skeletal muscle


TMEM52B
ENSG00000165685
Q4KMG9
0.9367
0.6494
kidney


TMEM61
ENSG00000143001
Q8N0U2
0.7421
0.5896
parathyroid gland


TMEM63C
ENSG00000165548
Q9P1W3
0.7858
0.5453
cerebral cortex


TMEM72
ENSG00000187783
A0PK05
0.9511
0.8824
kidney


TMEM74B
ENSG00000125895
Q9NUR3
0.6474
0.4362
small intestine


TMEM82
ENSG00000162460
A0PJX8
0.9196
0.8958
duodenum


TMEM88B
ENSG00000205116
A6NKF7
0.9928
0.9593
cerebral cortex


TMEM92
ENSG00000167105
Q6UXU6
0.8017
0.6433
small intestine


TMIE
ENSG00000181585
Q8NEW7
0.7843
0.455
adrenal gland


TMIGD1
ENSG00000182271
Q6UXZ0
0.9385
0.9193
small intestine


TMIGD2
ENSG00000167664
Q96BF3
0.8416
0.64
t-cells


TMIGD3
ENSG00000121933
P0DMS9
0.862
0.5243
granulocytes


TMPRSS11B
ENSG00000185873
Q86T26
0.9709
0.9227
esophagus


TMPRSS11D
ENSG00000153802
O60235
0.9714
0.9602
esophagus


TMPRSS11E
ENSG00000087128
Q9UL52
0.9229
0.8539
esophagus


TMPRSS11F
ENSG00000198092
Q6ZWK6
0.9533
0.9353
esophagus


TMPRSS12
ENSG00000186452
Q86WS5
0.9713
0.9209
epididymis


TMPRSS13
ENSG00000137747
Q9BYE2
0.806
0.5436
skin


TMPRSS15
ENSG00000154646
P98073
0.9787
0.9274
duodenum


TMPRSS2
ENSG00000184012
O15393
0.6939
0.5219
prostate


TMPRSS4
ENSG00000137648
Q9NRS4
0.7007
0.6161
urinary bladder


TMPRSS5
ENSG00000166682
Q9H3S3
0.8756
0.5459
cerebral cortex


TMPRSS6
ENSG00000187045
Q8IU80
0.9215
0.72
liver


TMPRSS7
ENSG00000176040
Q7RTY8
0.9234
0.8185
fallopian tube


TMPRSS9
ENSG00000178297
Q7Z410
0.903
0.6829
spleen


TNF
ENSG00000232810
P01375
0.8625
0.6544
monocytes


TNFRSF11A
ENSG00000141655
Q9Y6Q6
0.6834
0.4509
duodenum


TNFRSF13B
ENSG00000240505
O14836
0.8115
0.6221
b-cells


TNFRSF13C
ENSG00000159958
Q96RJ3
0.7895
0.569
tonsil


TNFRSF17
ENSG00000048462
Q02223
0.7029
0.5256
dendritic cells


TNFRSF18
ENSG00000186891
Q9Y5U5
0.7812
0.5109
nk-cells


TNFRSF19
ENSG00000127863
Q9NS68
0.6707
0.4033
skin


TNFRSF4
ENSG00000186827
P43489
0.7814
0.5591
t-cells


TNFRSF8
ENSG00000120949
P28908
0.8899
0.6601
monocytes


TNFRSF9
ENSG00000049249
Q07011
0.7643
0.5105
t-cells


TNFSF11
ENSG00000120659
O14788
0.8312
0.6901
lymph node


TNFSF14
ENSG00000125735
O43557
0.7948
0.4852
granulocytes


TNFSF15
ENSG00000181634
O95150
0.6607
0.4575
duodenum


TNFSF18
ENSG00000120337
Q9UNG2
0.8426
0.6081
gallbladder


TNFSF9
ENSG00000125657
P41273
0.7236
0.5092
cerebral cortex


TNMD
ENSG00000000005
Q9H2S6
0.9008
0.7151
seminal vesicle


TPBGL
ENSG00000261594
P0DKB5
0.8978
0.7203
cerebral cortex


TPO
ENSG00000115705
P07202
0.9389
0.7179
thyroid gland


TRABD2A
ENSG00000186854
Q86V40
0.7433
0.5337
t-cells


TRABD2B
ENSG00000269113
A6NFA1
0.7693
0.4913
kidney


TRAT1
ENSG00000163519
Q6PIZ9
0.8336
0.5594
granulocytes


TRDN
ENSG00000186439
Q13061
0.8852
0.744
skeletal muscle


TREM1
ENSG00000124731
Q9NP99
0.7737
0.5353
granulocytes


TREM2
ENSG00000095970
Q9NZC2
0.6811
0.4447
lung


TREML1
ENSG00000161911
Q86YW5
0.8783
0.6138
granulocytes


TREML2
ENSG00000112195
Q5T2D2
0.794
0.6796
granulocytes


TRHDE
ENSG00000072657
Q9UKU6
0.7191
0.5526
cerebral cortex


TRHR
ENSG00000174417
P34981
0.9872
0.9833
thyroid gland


TRPA1
ENSG00000104321
O75762
0.834
0.6815
urinary bladder


TRPC3
ENSG00000138741
Q13507
0.8522
0.6691
smooth muscle


TRPC4
ENSG00000133107
Q9UBN4
0.8046
0.6247
endometrium


TRPC5
ENSG00000072315
Q9UL62
0.9918
0.9845
cerebral cortex


TRPC6
ENSG00000137672
Q9Y210
0.7054
0.4515
placenta


TRPC7
ENSG00000069018
Q9HCX4
0.9667
0.949
adrenal gland


TRPM1
ENSG00000134160
Q7Z4N2
0.9987
0.9975
skin


TRPM3
ENSG00000083067
Q9HCF6
0.8849
0.6614
kidney


TRPM5
ENSG00000070985
Q9NZQ8
0.8895
0.8472
duodenum


TRPM6
ENSG00000119121
Q9BX84
0.7984
0.5741
rectum


TRPM8
ENSG00000144481
Q7Z2W7
0.9746
0.9062
prostate


TRPV3
ENSG00000167723
Q8NET8
0.8549
0.6042
skin


TRPV4
ENSG00000111199
Q9HBA0
0.6971
0.5086
kidney


TSHR
ENSG00000165409
P16473
0.9193
0.478
thyroid gland


TSPAN11
ENSG00000110900
A1L157
0.5707
0.4003
cerebral cortex


TSPAN16
ENSG00000130167
Q9UKR8
0.9657
0.8961
granulocytes


TSPAN19
ENSG00000231738
P0C672
0.7643
0.4476
lung


TSPAN32
ENSG00000064201
Q96QS1
0.772
0.5576
nk-cells


TSPAN8
ENSG00000127324
P19075
0.6163
0.4484
rectum


TSPO2
ENSG00000112212
Q5TGU0
0.9632
0.8681
bone marrow


TTYH1
ENSG00000167614
Q9H313
0.9773
0.9012
cerebral cortex


TVP23A
ENSG00000166676
A6NH52
0.7612
0.4407
cerebral cortex


UGT2A3
ENSG00000135220
Q6UWM9
0.849
0.8059
small intestine


UGT3A1
ENSG00000145626
Q6NUS8
0.9396
0.9042
kidney


UGT3A2
ENSG00000168671
Q3SY77
0.9323
0.8459
skin


UGT8
ENSG00000174607
Q16880
0.7181
0.4897
cerebral cortex


UMODL1
ENSG00000177398
Q5DID0
0.9862
0.9525
fallopian tube


UNC5A
ENSG00000113763
Q6ZN44
0.9416
0.7625
cerebral cortex


UNC5C
ENSG00000182168
O95185
0.6989
0.4543
thyroid gland


UNC5CL
ENSG00000124602
Q8IV45
0.7915
0.5306
duodenum


UNC5D
ENSG00000156687
Q6UXZ4
0.8519
0.7835
cerebral cortex


UNC79
ENSG00000133958
Q9P2D8
0.9738
0.9173
cerebral cortex


UNC80
ENSG00000144406
Q8N2C7
0.9325
0.8017
cerebral cortex


UNC93A
ENSG00000112494
Q86WB7
0.8877
0.81
skin


UPK1A
ENSG00000105668
O00322
0.926
0.7878
urinary bladder


UPK1B
ENSG00000114638
O75841
0.8245
0.7324
urinary bladder


UPK2
ENSG00000110375
O00526
0.974
0.8701
urinary bladder


UPK3B
ENSG00000243566
Q9BT76
0.9267
0.8361
lung


USH2A
ENSG00000042781
O75445
0.9843
0.9665
liver


UTS2R
ENSG00000181408
Q9UKP6
0.9568
0.8471
thyroid gland


VIPR2
ENSG00000106018
P41587
0.6874
0.4614
seminal vesicle


VN1R1
ENSG00000178201
Q9GZP7
0.6791
0.4448
epididymis


VSIG1
ENSG00000101842
Q86XK7
0.9155
0.7056
stomach


VSIG10L
ENSG00000186806
Q86VR7
0.9317
0.8632
esophagus


VSIG2
ENSG00000019102
Q96IQ7
0.7055
0.4608
stomach


VSIG8
ENSG00000243284
P0DPA2
0.9382
0.8247
skin


VSTM1
ENSG00000189068
Q6UX27
0.9617
0.9334
granulocytes


VSTM2B
ENSG00000187135
A6NLU5
0.9854
0.96
cerebral cortex


VSTM5
ENSG00000214376
A8MXK1
0.8483
0.6388
placenta


VTCN1
ENSG00000134258
Q7Z7D3
0.8472
0.7231
breast


WSCD1
ENSG00000179314
Q658N2
0.7597
0.4749
cerebral cortex


WSCD2
ENSG00000075035
Q2TBF2
0.8152
0.656
thyroid gland


XCR1
ENSG00000173578
P46094
0.6896
0.4338
lymph node


XG
ENSG00000124343
P55808
0.8478
0.663
skin


XK
ENSG00000047597
P51811
0.6198
0.4369
rectum


XKR3
ENSG00000172967
Q5GH77
0.9933
0.9842
granulocytes


XKR4
ENSG00000206579
Q5GH76
0.9082
0.6061
cerebral cortex


XKR6
ENSG00000171044
Q5GH73
0.6236
0.4395
cerebral cortex


XKR7
ENSG00000260903
Q5GH72
0.9929
0.9845
cerebral cortex


XKR9
ENSG00000221947
Q5GH70
0.7604
0.4506
small intestine


XKRX
ENSG00000182489
Q6PP77
0.835
0.5806
skin


ZDHHC11B
ENSG00000206077
P0C7U3
0.6605
0.4713
cerebral cortex


ZDHHC15
ENSG00000102383
Q96MV8
0.6646
0.4601
cerebral cortex


ZP1
ENSG00000149506
P60852
0.9899
0.9687
dendritic cells


ZP2
ENSG00000103310
Q05996
0.9395
0.9097
placenta


ZP4
ENSG00000116996
Q12836
0.9745
0.9626
tonsil


ZPLD1
ENSG00000170044
Q8TCW7
0.958
0.8929
gallbladder









Table 2B contains address targets based on a Gtex database analysis:









TABLE 2B







Exemplary Address Targets (Gtex database analysis)

















Exemplary







tissue/cellular


Gene




localization of


symbol
Ensembl
Uniprot ID
Tau score
Gini score
address target





AADACL4
ENSG00000204518
Q5VUY2
0.8989
0.835
vagina


ABCA12
ENSG00000144452
Q86UK0
0.9572
0.9191
skin


ABCA13
ENSG00000179869
Q86UQ4
0.8778
0.7422
thyroid gland


ABCA4
ENSG00000198691
P78363
0.8822
0.6752
kidney


ABCB11
ENSG00000073734
O95342
0.9699
0.9393
liver


ABCB4
ENSG00000005471
P21439
0.8807
0.5882
liver


ABCB5
ENSG00000004846
Q2M3G0
0.8633
0.8033
cervix, uterine


ABCC11
ENSG00000121270
Q96J66
0.9143
0.8074
breast


ABCC12
ENSG00000140798
Q96J65
0.9753
0.9471
cerebral cortex


ABCC2
ENSG00000023839
Q92887
0.8753
0.5552
liver


ABCC3
ENSG00000108846
O15438
0.6722
0.4456
adrenal gland


ABCC6
ENSG00000091262
O95255
0.7202
0.4101
liver


ABCC8
ENSG00000006071
Q09428
0.7232
0.4722
cerebellum


ABCG4
ENSG00000172350
Q9H172
0.8477
0.6202
cerebellum


ABCG5
ENSG00000138075
Q9H222
0.9915
0.9853
liver


ABCG8
ENSG00000143921
Q9H221
0.9782
0.9514
liver


ACKR2
ENSG00000144648
O00590
0.7425
0.5222
adipose tissue


ACKR4
ENSG00000129048
Q9NPB9
0.6548
0.4434
adipose tissue


ACP4
ENSG00000142513
Q9BZG2
1
1
skin


ACVR1C
ENSG00000123612
Q8NER5
0.7767
0.5035
adipose tissue


ADAM11
ENSG00000073670
O75078
0.7977
0.5251
cerebellum


ADAM12
ENSG00000148848
O43184
0.735
0.4805
ovary


ADAM20
ENSG00000134007
O43506
0.8511
0.6232
cerebellum


ADAM21
ENSG00000139985
Q9UKJ8
0.7415
0.6204
adrenal gland


ADAM29
ENSG00000168594
Q9UKF5
0.9339
0.9072
cervix, uterine


ADCY1
ENSG00000164742
Q08828
0.6979
0.4014
cerebellum


ADCY2
ENSG00000078295
Q08462
0.6206
0.4319
cerebral cortex


ADCY8
ENSG00000155897
P40145
0.7714
0.7388
cerebellum


ADGRA1
ENSG00000197177
Q86SQ6
0.8153
0.7342
cerebral cortex


ADGRB1
ENSG00000181790
O14514
0.69
0.4802
cerebral cortex


ADGRB2
ENSG00000121753
O60241
0.718
0.5019
cerebral cortex


ADGRB3
ENSG00000135298
O60242
0.6602
0.4405
cerebellum


ADGRE1
ENSG00000174837
Q14246
0.9433
0.728
spleen


ADGRE2
ENSG00000127507
Q9UHX3
0.8197
0.4098
spleen


ADGRE3
ENSG00000131355
Q9BY15
0.9253
0.9025
spleen


ADGRF1
ENSG00000153292
Q5T601
0.7994
0.7451
esophagus


ADGRF3
ENSG00000173567
Q8IZF5
0.7853
0.5041
cerebellum


ADGRF4
ENSG00000153294
Q8IZF3
0.8768
0.7624
skin


ADGRG2
ENSG00000173698
Q8IZP9
0.7417
0.4908
fallopian tube


ADGRG3
ENSG00000182885
Q86Y34
0.822
0.5524
spleen


ADGRG5
ENSG00000159618
Q8IZF4
0.8999
0.6892
spleen


ADGRG7
ENSG00000144820
Q96K78
0.9151
0.7474
small intestine


ADGRV1
ENSG00000164199
Q8WXG9
0.8204
0.6182
adrenal gland


ADIG
ENSG00000182035
Q0VDE8
0.9763
0.9274
thyroid gland


ADORA1
ENSG00000163485
P30542
0.6015
0.4359
spinal cord


ADORA2B
ENSG00000170425
P29275
0.6191
0.4465
skin


ADRA1A
ENSG00000120907
P35348
0.7609
0.4698
liver


ADRA1D
ENSG00000171873
P25100
0.6935
0.4701
cervix, uterine


ADRB3
ENSG00000188778
P13945
0.8966
0.8098
ovary


ADTRP
ENSG00000111863
Q96IZ2
0.8265
0.7087
colon


AGTR2
ENSG00000180772
P50052
0.9248
0.849
lung


AJAP1
ENSG00000196581
Q9UKB5
0.6332
0.4242
cerebral cortex


ALK
ENSG00000171094
Q9UM73
0.8644
0.7105
pituitary gland


ALPP
ENSG00000163283
P05187
0.9749
0.9592
lung


AMHR2
ENSG00000135409
Q16671
0.9163
0.8041
adrenal gland


AMN
ENSG00000166126
Q9BXJ7
0.8347
0.6656
small intestine


ANO3
ENSG00000134343
Q9BYT9
0.922
0.742
basal ganglia


ANO4
ENSG00000151572
Q32M45
0.6904
0.6144
cervix, uterine


ANO7
ENSG00000146205
Q6IWH7
0.882
0.6368
prostate


ANO9
ENSG00000185101
A1A5B4
0.7384
0.56
small intestine


APCDD1L
ENSG00000198768
Q8NCL9
0.8561
0.7015
salivary gland


APLNR
ENSG00000134817
P35414
0.7974
0.5614
spinal cord


APLP1
ENSG00000105290
P51693
0.6626
0.4667
spinal cord


AQP10
ENSG00000143595
Q96PS8
0.9596
0.9353
fallopian tube


AQP12A
ENSG00000184945
Q8IXF9
0.9975
0.9938
pancreas


AQP12B
ENSG00000185176
A6NM10
0.9949
0.983
pancreas


AQP2
ENSG00000167580
P41181
0.9798
0.9418
kidney


AQP4
ENSG00000171885
P55087
0.72
0.6407
basal ganglia


AQP5
ENSG00000161798
P55064
0.7966
0.5051
salivary gland


AQP7
ENSG00000165269
O14520
0.7466
0.473
adipose tissue


AQP9
ENSG00000103569
O43315
0.8013
0.5358
liver


AREG
ENSG00000109321
P15514
0.6191
0.4843
esophagus


ARSH
ENSG00000205667
Q5FYA8
0.9688
0.9688
esophagus


ASGR2
ENSG00000161944
P07307
0.9297
0.5961
liver


ASIC1
ENSG00000110881
P78348
0.6609
0.4246
cerebellum


ASIC2
ENSG00000108684
Q16515
0.7764
0.7059
cerebellum


ASIC4
ENSG00000072182
Q96FT7
0.8687
0.7419
pituitary gland


ASPHD1
ENSG00000174939
Q5U4P2
0.6268
0.5052
cerebellum


ASTN1
ENSG00000152092
O14525
0.7137
0.6117
cerebral cortex


ATP12A
ENSG00000075673
P54707
0.9503
0.919
skin


ATP13A4
ENSG00000127249
Q4VNC1
0.6941
0.4676
thyroid gland


ATP13A5
ENSG00000187527
Q4VNC0
0.8887
0.7293
skin


ATP1A3
ENSG00000105409
P13637
0.7338
0.6684
cerebral cortex


ATP1A4
ENSG00000132681
Q13733
0.9581
0.8285
urinary bladder


ATP2B2
ENSG00000157087
Q01814
0.8001
0.6662
cerebellum


ATP2B3
ENSG00000067842
Q16720
0.8402
0.7707
cerebellum


ATP2C2
ENSG00000064270
O75185
0.6722
0.5135
colon


ATP4A
ENSG00000105675
P20648
0.9779
0.9161
stomach


ATP4B
ENSG00000186009
P51164
0.9749
0.8349
stomach


ATP6V0A4
ENSG00000105929
Q9HBG4
0.9177
0.8026
kidney


ATP8A2
ENSG00000132932
Q9NTI2
0.8268
0.7218
cerebellum


ATP8B4
ENSG00000104043
Q8TF62
0.8819
0.6168
fallopian tube


ATRNL1
ENSG00000107518
Q5VV63
0.7608
0.493
cerebral cortex


AVPR1A
ENSG00000166148
P37288
0.7667
0.5661
adrenal gland


AVPR1B
ENSG00000198049
P47901
0.9935
0.9849
pituitary gland


AVPR2
ENSG00000126895
P30518
0.6887
0.4753
adipose tissue


B3GAT1
ENSG00000109956
Q9P2W7
0.7055
0.5761
spinal cord


BDKRB1
ENSG00000100739
P46663
0.6817
0.5196
esophagus


BDKRB2
ENSG00000168398
P30411
0.6259
0.4487
cervix, uterine


BEST2
ENSG00000039987
Q8NFU1
0.94
0.9193
colon


BEST3
ENSG00000127325
Q8N1M1
0.8897
0.7282
skeletal muscle


BEST4
ENSG00000142959
Q8NFU0
0.789
0.5119
colon


BMPR1B
ENSG00000138696
O00238
0.6286
0.4094
prostate


BRS3
ENSG00000102239
P32247
0.8802
0.8064
fallopian tube


BSND
ENSG00000162399
Q8WZ55
0.9678
0.9248
kidney


BTBD11
ENSG00000151136
A6QL63
0.6655
0.4431
esophagus


BTC
ENSG00000174808
P35070
0.7263
0.4532
colon


BTLA
ENSG00000186265
Q7Z6A9
0.9309
0.7922
spleen


BTN1A1
ENSG00000124557
Q13410
0.9504
0.9049
breast


BTNL2
ENSG00000204290
Q9UIR0
0.8395
0.7937
hypothalamus


BTNL3
ENSG00000168903
Q6UXE8
0.9575
0.9205
small intestine


BTNL8
ENSG00000113303
Q6UX41
0.9053
0.7554
small intestine


C10orf105
ENSG00000214688
Q8TEF2
0.7844
0.6569
hypothalamus


C11orf87
ENSG00000185742
Q6NUJ2
0.8892
0.809
cerebral cortex


C16orf54
ENSG00000185905
Q6UWD8
0.8507
0.5709
spleen


C1orf210
ENSG00000253313
Q8IVY1
0.601
0.5385
colon


C20orf141
ENSG00000258713
Q9NUB4
0.9334
0.8893
endometrium


C3orf80
ENSG00000180044
F5H4A9
0.8005
0.5354
cerebral cortex


C8A
ENSG00000157131
P07357
0.9978
0.9948
liver


C9
ENSG00000113600
P02748
0.9938
0.982
liver


C9orf135
ENSG00000204711
Q5VTT2
0.8841
0.8073
pituitary gland


CA14
ENSG00000118298
Q9ULX7
0.7572
0.5196
spinal cord


CA9
ENSG00000107159
Q16790
0.9013
0.6825
stomach


CABP7
ENSG00000100314
Q86V35
0.8373
0.6335
hippocampal







formation


CACNA1A
ENSG00000141837
O00555
0.814
0.5316
cerebellum


CACNA1B
ENSG00000148408
Q00975
0.8321
0.7204
cerebellum


CACNA1E
ENSG00000198216
Q15878
0.8597
0.7723
basal ganglia


CACNA1F
ENSG00000102001
O60840
0.7955
0.4964
cerebellum


CACNA1G
ENSG00000006283
O43497
0.7611
0.5529
cerebellum


CACNA1I
ENSG00000100346
Q9P0X4
0.7978
0.6741
cerebellum


CACNA1S
ENSG00000081248
Q13698
0.9861
0.9524
skeletal muscle


CACNA2D4
ENSG00000151062
Q7Z3S7
0.7702
0.6706
cervix, uterine


CACNG1
ENSG00000108878
Q06432
0.9585
0.832
skeletal muscle


CACNG2
ENSG00000166862
Q9Y698
0.905
0.8191
cerebellum


CACNG3
ENSG00000006116
O60359
0.8861
0.8491
cerebral cortex


CACNG4
ENSG00000075461
Q9UBN1
0.7424
0.5817
basal ganglia


CACNG5
ENSG00000075429
Q9UF02
0.8959
0.8298
cerebral cortex


CACNG6
ENSG00000130433
Q9BXT2
0.9262
0.8218
skeletal muscle


CACNG7
ENSG00000105605
P62955
0.7979
0.7687
cerebellum


CADM2
ENSG00000175161
Q8N3J6
0.7098
0.5567
cerebral cortex


CALCR
ENSG00000004948
P30988
0.9673
0.9007
hypothalamus


CALHM1
ENSG00000185933
Q8IU99
0.9243
0.8662
cerebral cortex


CALHM3
ENSG00000183128
Q86XJ0
0.7812
0.7813
basal ganglia


CALHM4
ENSG00000164451
Q5JW98
0.9929
0.9796
skin


CALN1
ENSG00000183166
Q9BXU9
0.8276
0.6864
cerebellum


CALY
ENSG00000130643
Q9NYX4
0.7262
0.6046
hypothalamus


CASR
ENSG00000036828
P41180
0.9491
0.9043
kidney


CATSPER1
ENSG00000175294
Q8NEC5
0.9659
0.9348
lung


CATSPERB
ENSG00000133962
Q9H7T0
0.8538
0.6277
pancreas


CATSPERG
ENSG00000099338
Q6ZRH7
0.8309
0.4479
cerebellum


CBARP
ENSG00000099625
Q8N350
0.734
0.4897
pituitary gland


CCKAR
ENSG00000163394
P32238
0.9791
0.9379
stomach


CCKBR
ENSG00000110148
P32239
0.8408
0.7516
stomach


CCR2
ENSG00000121807
P41597
0.8123
0.5303
spleen


CCR3
ENSG00000183625
P51677
0.9223
0.8592
skin


CCR4
ENSG00000183813
P51679
0.8585
0.6996
spleen


CCR5
ENSG00000160791
P51681
0.7574
0.4025
spleen


CCR6
ENSG00000112486
P51684
0.929
0.7695
spleen


CCR7
ENSG00000126353
P32248
0.7273
0.4091
spleen


CCR8
ENSG00000179934
P51685
1
1
spleen


CCR9
ENSG00000173585
P51686
0.9832
0.9654
small intestine


CD101
ENSG00000134256
Q93033
0.7331
0.4345
lung


CD163L1
ENSG00000177675
Q9NR16
0.8456
0.488
spleen


CD164L2
ENSG00000174950
Q6UWJ8
0.79
0.6586
fallopian tube


CD180
ENSG00000134061
Q99467
0.8481
0.4806
spleen


CD19
ENSG00000177455
P15391
0.9325
0.8014
spleen


CD1A
ENSG00000158477
P06126
0.9497
0.8817
skin


CD1B
ENSG00000158485
P29016
0.9144
0.8504
skin


CD1C
ENSG00000158481
P29017
0.8465
0.6094
spleen


CD1D
ENSG00000158473
P15813
0.7386
0.44
spleen


CD2
ENSG00000116824
P06729
0.7241
0.445
spleen


CD207
ENSG00000116031
Q9UJ71
0.9176
0.7564
skin


CD209
ENSG00000090659
Q9NNX6
0.7338
0.4689
adipose tissue


CD22
ENSG00000012124
P20273
0.6676
0.4227
spleen


CD244
ENSG00000122223
Q9BZW8
0.8937
0.5888
spleen


CD27
ENSG00000139193
P26842
0.8136
0.5699
spleen


CD28
ENSG00000178562
P10747
0.7989
0.5927
spleen


CD300C
ENSG00000167850
Q08708
0.7726
0.4033
spleen


CD300E
ENSG00000186407
Q496F6
0.9673
0.9521
lung


CD300LB
ENSG00000178789
A8K4G0
0.8427
0.6226
spleen


CD300LD
ENSG00000204345
Q6UXZ3
1
1
spleen


CD300LF
ENSG00000186074
Q8TDQ1
0.8462
0.4747
spleen


CD300LG
ENSG00000161649
Q6UXG3
0.7617
0.501
adipose tissue


CD3D
ENSG00000167286
P04234
0.7248
0.4255
spleen


CD3E
ENSG00000198851
P07766
0.6996
0.4103
spleen


CD3G
ENSG00000160654
P09693
0.8741
0.6646
spleen


CD40LG
ENSG00000102245
P29965
0.83
0.6454
small intestine


CD5
ENSG00000110448
P06127
0.7783
0.4795
spleen


CD6
ENSG00000013725
P30203
0.795
0.4477
spleen


CD70
ENSG00000125726
P32970
0.8157
0.67
spleen


CD79A
ENSG00000105369
P11912
0.8114
0.5571
spleen


CD79B
ENSG00000007312
P40259
0.7786
0.4463
spleen


CD80
ENSG00000121594
P33681
0.9101
0.7655
lung


CD8B
ENSG00000172116
P10966
0.6817
0.4102
cervix, uterine


CD96
ENSG00000153283
P40200
0.6722
0.4813
spleen


CDCP1
ENSG00000163814
Q9H5V8
0.6613
0.4714
esophagus


CDH1
ENSG00000039068
P12830
0.5228
0.4193
esophagus


CDH10
ENSG00000040731
Q9Y6N8
0.8758
0.7872
cerebellum


CDH12
ENSG00000154162
P55289
0.7807
0.7068
pituitary gland


CDH15
ENSG00000129910
P55291
0.9365
0.8157
cerebellum


CDH16
ENSG00000166589
O75309
0.9707
0.9466
kidney


CDH17
ENSG00000079112
Q12864
0.9548
0.9
colon


CDH18
ENSG00000145526
Q13634
0.9024
0.8297
cerebellum


CDH20
ENSG00000101542
Q9HBT6
0.7348
0.6582
spinal cord


CDH22
ENSG00000149654
Q9UJ99
0.84
0.6067
cerebellum


CDH3
ENSG00000062038
P22223
0.618
0.4292
ovary


CDH4
ENSG00000179242
P55283
0.7382
0.5687
basal ganglia


CDH7
ENSG00000081138
Q9ULB5
0.9614
0.8965
cerebellum


CDH8
ENSG00000150394
P55286
0.8131
0.7176
cerebral cortex


CDH9
ENSG00000113100
Q9ULB4
0.9137
0.8766
cerebral cortex


CDHR1
ENSG00000148600
Q96JP9
0.8274
0.562
skin


CDHR2
ENSG00000074276
Q9BYE9
0.9281
0.8493
small intestine


CDHR3
ENSG00000128536
Q6ZTQ4
0.7865
0.4509
fallopian tube


CDHR4
ENSG00000187492
A6H8M9
0.9178
0.7427
fallopian tube


CDHR5
ENSG00000099834
Q9HBB8
0.9075
0.8039
small intestine


CEACAM1
ENSG00000079385
P13688
0.6625
0.45
colon


CEACAM3
ENSG00000170956
P40198
0.9395
0.8117
spleen


CEACAM4
ENSG00000105352
O75871
0.8741
0.5218
spleen


CELSR1
ENSG00000075275
Q9NYQ6
0.6442
0.4918
skin


CELSR3
ENSG00000008300
Q9NYQ7
0.8998
0.4722
pituitary gland


CEND1
ENSG00000184524
Q8N111
0.7386
0.6293
cerebellum


CFAP65
ENSG00000181378
Q6ZU64
0.8943
0.7567
fallopian tube


CFTR
ENSG00000001626
P13569
0.8847
0.7268
pancreas


CHODL
ENSG00000154645
Q9H9P2
0.6737
0.4448
hypothalamus


CHRM1
ENSG00000168539
P11229
0.8158
0.7203
cerebral cortex


CHRM2
ENSG00000181072
P08172
0.9428
0.9143
colon


CHRM3
ENSG00000133019
P20309
0.7198
0.4937
urinary bladder


CHRM4
ENSG00000180720
P08173
0.8309
0.6842
basal ganglia


CHRM5
ENSG00000184984
P08912
0.9148
0.7366
spinal cord


CHRNA1
ENSG00000138435
P02708
0.9387
0.8197
skeletal muscle


CHRNA2
ENSG00000120903
Q15822
0.9315
0.8106
prostate


CHRNA3
ENSG00000080644
P32297
0.8346
0.6794
adrenal gland


CHRNA4
ENSG00000101204
P43681
0.8178
0.703
liver


CHRNA6
ENSG00000147434
Q15825
0.948
0.8738
cerebellum


CHRNA9
ENSG00000174343
Q9UGM1
0.9579
0.9415
skin


CHRNB2
ENSG00000160716
P17787
0.8098
0.7622
cerebral cortex


CHRNB3
ENSG00000147432
Q05901
0.9521
0.9339
midbrain


CHRNB4
ENSG00000117971
P30926
0.8743
0.766
colon


CHRND
ENSG00000135902
Q07001
0.9977
0.9957
skeletal muscle


CHRNE
ENSG00000108556
Q04844
0.8408
0.4426
heart muscle


CHRNG
ENSG00000196811
P07510
0.9969
0.9924
skeletal muscle


CHST9
ENSG00000154080
Q7L1S5
0.7739
0.4625
salivary gland


CLCA2
ENSG00000137975
Q9UQC9
0.861
0.7963
esophagus


CLCA4
ENSG00000016602
Q14CN2
0.7943
0.6561
esophagus


CLCN1
ENSG00000188037
P35523
0.9742
0.8952
skeletal muscle


CLCNKA
ENSG00000186510
P51800
0.8866
0.7024
kidney


CLCNKB
ENSG00000184908
P51801
0.8865
0.6748
kidney


CLDN1
ENSG00000163347
O95832
0.6447
0.4024
skin


CLDN10
ENSG00000134873
P78369
0.6156
0.4714
pancreas


CLDN14
ENSG00000159261
O95500
0.961
0.908
liver


CLDN17
ENSG00000156282
P56750
0.9271
0.9133
vagina


CLDN18
ENSG00000066405
P56856
0.9418
0.7883
stomach


CLDN19
ENSG00000164007
Q8N6F1
0.9432
0.8148
kidney


CLDN2
ENSG00000165376
P57739
0.8898
0.8058
kidney


CLDN22
ENSG00000177300
Q8N7P3
0.9068
0.5104
salivary gland


CLDN23
ENSG00000253958
Q96B33
0.6008
0.4221
colon


CLDN24
ENSG00000185758
A6NM45
0.9659
0.9348
salivary gland


CLDN25
ENSG00000228607
C9JDP6
1
1
pituitary gland


CLDN3
ENSG00000165215
O15551
0.6637
0.5255
colon


CLDN4
ENSG00000189143
O14493
0.5427
0.4551
esophagus


CLDN6
ENSG00000184697
P56747
0.907
0.8192
cerebellum


CLDN7
ENSG00000181885
O95471
0.5513
0.4036
colon


CLDN9
ENSG00000213937
O95484
0.8093
0.5125
cerebellum


CLEC12A
ENSG00000172322
Q5QGZ9
0.8172
0.4773
spleen


CLEC12B
ENSG00000256660
Q2HXU8
0.9356
0.8836
spleen


CLEC17A
ENSG00000187912
Q6ZS10
0.9475
0.8684
spleen


CLEC1B
ENSG00000165682
Q9P126
0.9576
0.9305
liver


CLEC2A
ENSG00000188393
Q6UVW9
0.993
0.9734
skin


CLEC2L
ENSG00000236279
P0C7M8
0.8031
0.7071
cerebral cortex


CLEC4C
ENSG00000198178
Q8WTT0
1
1
spleen


CLEC4D
ENSG00000166527
Q8WXI8
0.9288
0.7879
spleen


CLEC4F
ENSG00000152672
Q8N1N0
0.7414
0.5147
spleen


CLEC4G
ENSG00000182566
Q6UXB4
0.7468
0.4562
cerebellum


CLEC4M
ENSG00000104938
Q9H2X3
0.9138
0.749
liver


CLEC6A
ENSG00000205846
Q6EIG7
1
1
lung


CLEC9A
ENSG00000197992
Q6UXN8
0.8512
0.6867
spinal cord


CLECL1
ENSG00000184293
Q8IZS7
0.8401
0.4617
spleen


CLIC3
ENSG00000169583
O95833
0.7265
0.5223
esophagus


CLIC5
ENSG00000112782
Q9NZA1
0.7142
0.4696
skeletal muscle


CLRN1
ENSG00000163646
P58418
0.9937
0.986
adrenal gland


CLRN3
ENSG00000180745
Q8NCR9
0.9148
0.8504
small intestine


CLTRN
ENSG00000147003
Q9HBJ8
0.8752
0.445
kidney


CMTM5
ENSG00000166091
Q96DZ9
0.7382
0.4918
spinal cord


CNGA1
ENSG00000198515
P29973
0.6656
0.4626
urinary bladder


CNGA3
ENSG00000144191
Q16281
0.8959
0.7568
pituitary gland


CNGA4
ENSG00000132259
Q8IV77
0.8702
0.5214
fallopian tube


CNGB1
ENSG00000070729
Q14028
0.9262
0.8284
hypothalamus


CNGB3
ENSG00000170289
Q9NQW8
0.9752
0.9511
fallopian tube


CNIH2
ENSG00000174871
Q6PI25
0.7562
0.5911
hippocampal







formation


CNIH3
ENSG00000143786
Q8TBE1
0.7254
0.4483
cerebral cortex


CNMD
ENSG00000136110
O75829
0.8366
0.7254
basal ganglia


CNNM1
ENSG00000119946
Q9NRU3
0.8366
0.6526
cerebellum


CNR2
ENSG00000188822
P34972
0.9766
0.9672
spleen


CNTNAP2
ENSG00000174469
Q9UHC6
0.8745
0.8133
spinal cord


CNTNAP3B
ENSG00000154529
Q96NU0
0.7863
0.4851
breast


CNTNAP4
ENSG00000152910
Q9C0A0
0.9269
0.8729
cerebellum


CNTNAP5
ENSG00000155052
Q8WYK1
0.9008
0.8446
cerebral cortex


COL13A1
ENSG00000197467
Q5TAT6
0.7396
0.41
cerebellum


COL17A1
ENSG00000065618
Q9UMD9
0.7538
0.5497
skin


COL25A1
ENSG00000188517
Q9BXS0
0.8455
0.5864
pituitary gland


CORIN
ENSG00000145244
Q9Y5Q5
0.8373
0.6117
heart muscle


CR2
ENSG00000117322
P20023
0.9618
0.9157
spleen


CRB1
ENSG00000134376
P82279
0.8149
0.7518
cerebellum


CRB2
ENSG00000148204
Q5IJ48
0.7767
0.706
basal ganglia


CRB3
ENSG00000130545
Q9BUF7
0.5596
0.4382
esophagus


CRHR1
ENSG00000120088
P34998
0.8456
0.6816
cerebellum


CRHR2
ENSG00000106113
Q13324
0.836
0.5029
pituitary gland


CRLF2
ENSG00000205755
Q9HC73
0.843
0.6956
lung


CRTAM
ENSG00000109943
O95727
0.9618
0.7549
cerebellum


CSMD1
ENSG00000183117
Q96PZ7
0.8515
0.7587
cerebral cortex


CSMD2
ENSG00000121904
Q7Z408
0.774
0.6539
cerebellum


CSMD3
ENSG00000164796
Q7Z407
0.8467
0.8064
basal ganglia


CSPG5
ENSG00000114646
O95196
0.7452
0.6423
cerebral cortex


CT83
ENSG00000204019
Q5H943
0.9972
0.9949
salivary gland


CTLA4
ENSG00000163599
P16410
0.7908
0.5171
small intestine


CTXN2
ENSG00000233932
P0C2S0
0.8038
0.7611
hypothalamus


CTXN3
ENSG00000205279
Q4LDR2
0.8686
0.8178
cerebral cortex


CWH43
ENSG00000109182
Q9H720
0.7916
0.7203
skin


CX3CR1
ENSG00000168329
P49238
0.7028
0.4454
spinal cord


CXCR1
ENSG00000163464
P25024
0.8905
0.5619
spleen


CXCR2
ENSG00000180871
P25025
0.7982
0.576
spleen


CXCR3
ENSG00000186810
P49682
0.8596
0.6327
spleen


CXCR5
ENSG00000160683
P32302
0.8137
0.5221
spleen


CXCR6
ENSG00000172215
Q00574
0.7626
0.4668
spleen


CYP46A1
ENSG00000036530
Q9Y6A2
0.7299
0.4964
basal ganglia


CYSLTR1
ENSG00000173198
Q9Y271
0.7058
0.4018
spleen


CYSLTR2
ENSG00000152207
Q9NS75
0.7776
0.4897
adrenal gland


DBH
ENSG00000123454
P09172
0.9069
0.6122
adrenal gland


DCC
ENSG00000187323
P43146
0.8342
0.7006
basal ganglia


DCHS2
ENSG00000197410
Q6V1P9
0.6957
0.5475
colon


DCST1
ENSG00000163357
Q5T197
0.9499
0.8397
skin


DCST2
ENSG00000163354
Q5T1A1
0.754
0.5165
skin


DCSTAMP
ENSG00000164935
Q9H295
0.9519
0.9188
lung


DIO2
ENSG00000211448
Q92813
0.6367
0.4297
thyroid gland


DIO3
ENSG00000197406
P55073
0.7628
0.5173
cervix, uterine


DISP2
ENSG00000140323
A7MBM2
0.8262
0.5491
cerebellum


DLK1
ENSG00000185559
P80370
0.8191
0.5867
adrenal gland


DLK2
ENSG00000171462
Q6UY11
0.6504
0.4945
prostate


DLL3
ENSG00000090932
Q9NYJ7
0.8117
0.7735
basal ganglia


DNAJC22
ENSG00000178401
Q8N4W6
0.8014
0.5869
liver


DNER
ENSG00000187957
Q8NFT8
0.6092
0.4844
hypothalamus


DPP10
ENSG00000175497
Q8N608
0.7894
0.6696
cerebral cortex


DPP4
ENSG00000197635
P27487
0.6865
0.4677
small intestine


DPP6
ENSG00000130226
P42658
0.6277
0.4764
endometrium


DRD1
ENSG00000184845
P21728
0.9102
0.6467
basal ganglia


DRD2
ENSG00000149295
P14416
0.8203
0.5983
pituitary gland


DRD5
ENSG00000169676
P21918
0.8907
0.8184
cerebral cortex


DSC1
ENSG00000134765
Q08554
0.9803
0.9427
skin


DSC2
ENSG00000134755
Q02487
0.7146
0.4509
esophagus


DSC3
ENSG00000134762
Q14574
0.8544
0.7665
skin


DSCAM
ENSG00000171587
O60469
0.7965
0.7756
hypothalamus


DSG1
ENSG00000134760
Q02413
0.9193
0.8369
skin


DSG2
ENSG00000046604
Q14126
0.5691
0.4327
colon


DSG3
ENSG00000134757
P32926
0.8883
0.8524
esophagus


DSG4
ENSG00000175065
Q86SJ6
0.9799
0.9545
skin


DUOX1
ENSG00000137857
Q9NRD9
0.6518
0.5116
lung


DUOX2
ENSG00000140279
Q9NRD8
0.7868
0.6292
thyroid gland


DUOXA1
ENSG00000140254
Q1HG43
0.6971
0.5608
esophagus


DYNAP
ENSG00000178690
Q8N1N2
0.9761
0.9483
esophagus


ECEL1
ENSG00000171551
O95672
0.7888
0.5018
ovary


EDAR
ENSG00000135960
Q9UNE0
0.8857
0.8186
esophagus


EFNB3
ENSG00000108947
Q15768
0.6495
0.4066
basal ganglia


EGF
ENSG00000138798
P01133
0.8386
0.6819
skeletal muscle


ELFN2
ENSG00000166897
Q5R3F8
0.8285
0.769
cerebral cortex


ENPEP
ENSG00000138792
Q07075
0.7491
0.4497
small intestine


ENPP1
ENSG00000197594
P22413
0.6634
0.4243
endometrium


ENPP3
ENSG00000154269
O14638
0.7105
0.5263
salivary gland


ENTPD8
ENSG00000188833
Q5MY95
0.8489
0.731
small intestine


EPGN
ENSG00000182585
Q6UW88
0.8985
0.8211
esophagus


EPHA1
ENSG00000146904
P21709
0.7307
0.5445
esophagus


EPHA10
ENSG00000183317
Q5JZY3
0.7465
0.5994
colon


EPHA5
ENSG00000145242
P54756
0.8268
0.6816
cerebral cortex


EPHA6
ENSG00000080224
Q9UF33
0.7922
0.5514
colon


EPHA7
ENSG00000135333
Q15375
0.7399
0.496
colon


EPHA8
ENSG00000070886
P29322
0.9028
0.7866
spleen


EPHB1
ENSG00000154928
P54762
0.7367
0.4094
cerebellum


EPHX4
ENSG00000172031
Q8IUS5
0.8213
0.5259
cerebral cortex


ERBB4
ENSG00000178568
Q15303
0.6627
0.5179
fallopian tube


EREG
ENSG00000124882
O14944
0.8382
0.7341
skin


ERVFRD-1
ENSG00000244476
P60508
0.6812
0.6136
adrenal gland


ERVMER34-
ENSG00000226887
Q9H9K5
0.7591
0.5227
ovary


1







ERVW-1
ENSG00000242950
Q9UQF0
0.9183
0.8644
cerebellum


ESR1
ENSG00000091831
P03372
0.7228
0.495
cervix, uterine


ESYT3
ENSG00000158220
A0FGR9
0.6935
0.4867
skin


EVC
ENSG00000072840
P57679
0.7282
0.5347
endometrium


F2RL2
ENSG00000164220
O00254
0.7389
0.5252
colon


F2RL3
ENSG00000127533
Q96RI0
0.7305
0.4611
lung


FAM151A
ENSG00000162391
Q8WW52
0.9455
0.9038
small intestine


FAM155A
ENSG00000204442
B1AL88
0.7277
0.5824
cerebral cortex


FAM155B
ENSG00000130054
O75949
0.8259
0.569
heart muscle


FAM163A
ENSG00000143340
Q96GL9
0.9253
0.7271
pituitary gland


FAM163B
ENSG00000196990
P0C2L3
0.8371
0.684
cerebral cortex


FAM171A2
ENSG00000161682
A8MVW0
0.681
0.4745
cerebellum


FAM171B
ENSG00000144369
Q6P995
0.6049
0.4019
cerebral cortex


FAM187B
ENSG00000177558
Q17R55
0.902
0.8341
spleen


FAM189A1
ENSG00000104059
O60320
0.7129
0.5345
hippocampal







formation


FAM209A
ENSG00000124103
Q5JX71
0.7554
0.4299
spleen


FAP
ENSG00000078098
Q12884
0.7726
0.513
endometrium


FASLG
ENSG00000117560
P48023
0.9253
0.6958
spleen


FAT2
ENSG00000086570
Q9NYQ8
0.8516
0.6952
cerebellum


FAT3
ENSG00000165323
Q8TDW7
0.7727
0.5779
basal ganglia


FCAR
ENSG00000186431
P24071
0.8301
0.5151
spleen


FCER1A
ENSG00000179639
P12319
0.7176
0.4535
skin


FCER2
ENSG00000104921
P06734
0.9142
0.7048
spleen


FCMR
ENSG00000162894
O60667
0.8118
0.4981
spleen


FCRL1
ENSG00000163534
Q96LA6
0.9534
0.9081
spleen


FCRL2
ENSG00000132704
Q96LA5
0.936
0.8364
spleen


FCRL3
ENSG00000160856
Q96P31
0.9569
0.8905
spleen


FCRL4
ENSG00000163518
Q96PJ5
0.9848
0.9795
small intestine


FCRL5
ENSG00000143297
Q96RD9
0.895
0.7421
spleen


FCRL6
ENSG00000181036
Q6DN72
0.8649
0.4642
spleen


FER1L6
ENSG00000214814
Q2WGJ9
0.9325
0.8828
stomach


FFAR1
ENSG00000126266
O14842
0.8687
0.738
ovary


FFAR2
ENSG00000126262
O15552
0.8748
0.6402
spleen


FFAR3
ENSG00000185897
O14843
0.8504
0.6178
adipose tissue


FFAR4
ENSG00000186188
Q5NUL3
0.8933
0.7082
pituitary gland


FIBCD1
ENSG00000130720
Q8N539
0.8896
0.729
hippocampal







formation


FLT3
ENSG00000122025
P36888
0.8835
0.6222
cerebellum


FNDC5
ENSG00000160097
Q8NAU1
0.7087
0.4366
cerebellum


FNDC9
ENSG00000172568
Q8TBE3
0.8491
0.7807
hypothalamus


FOLH1
ENSG00000086205
Q04609
0.7199
0.5144
spinal cord


FPR2
ENSG00000171049
P25090
0.8596
0.5311
spleen


FRAS1
ENSG00000138759
Q86XX4
0.8232
0.4932
thyroid gland


FRMD5
ENSG00000171877
Q7Z6J6
0.7123
0.596
spinal cord


FRRS1
ENSG00000156869
Q6ZNA5
0.6353
0.4465
esophagus


FUT6
ENSG00000156413
P51993
0.8254
0.7699
esophagus


FXYD2
ENSG00000137731
P54710
0.8746
0.5585
kidney


FXYD3
ENSG00000089356
Q14802
0.5752
0.4063
colon


FXYD4
ENSG00000150201
P59646
0.9483
0.8097
kidney


FXYD7
ENSG00000221946
P58549
0.7272
0.5279
cerebral cortex


FZD10
ENSG00000111432
Q9ULW2
0.7497
0.5184
esophagus


FZD9
ENSG00000188763
O00144
0.6263
0.4699
pituitary gland


GABBR2
ENSG00000136928
O75899
0.8414
0.774
cerebral cortex


GABRA1
ENSG00000022355
P14867
0.8723
0.8224
cerebellum


GABRA2
ENSG00000151834
P47869
0.7724
0.6364
cerebral cortex


GABRA3
ENSG00000011677
P34903
0.8469
0.7788
cerebral cortex


GABRA4
ENSG00000109158
P48169
0.8951
0.8263
basal ganglia


GABRA5
ENSG00000186297
P31644
0.8825
0.8281
basal ganglia


GABRA6
ENSG00000145863
Q16445
0.9874
0.9614
cerebellum


GABRB1
ENSG00000163288
P18505
0.8566
0.7934
basal ganglia


GABRB2
ENSG00000145864
P47870
0.8578
0.7178
cerebellum


GABRB3
ENSG00000166206
P28472
0.6826
0.4658
cerebral cortex


GABRD
ENSG00000187730
O14764
0.8541
0.6607
cerebellum


GABRE
ENSG00000102287
P78334
0.8923
0.746
hypothalamus


GABRG1
ENSG00000163285
Q8N1C3
0.8063
0.7803
basal ganglia


GABRG2
ENSG00000113327
P18507
0.828
0.7812
cerebral cortex


GABRG3
ENSG00000182256
Q99928
0.8362
0.7058
pituitary gland


GABRP
ENSG00000094755
O00591
0.7572
0.6659
breast


GABRR1
ENSG00000146276
P24046
0.9375
0.9375
esophagus


GALR1
ENSG00000166573
P47211
0.9152
0.7022
pituitary gland


GALR2
ENSG00000182687
O43603
0.931
0.8083
colon


GALR3
ENSG00000128310
O60755
0.9646
0.917
cerebellum


GAPT
ENSG00000175857
Q8N292
0.8353
0.4694
spleen


GCGR
ENSG00000215644
P47871
0.932
0.7647
liver


GDPD2
ENSG00000130055
Q9HCC8
0.8428
0.6784
spleen


GDPD4
ENSG00000178795
Q6W3E5
0.9361
0.9258
adrenal gland


GGT6
ENSG00000167741
Q6P531
0.6893
0.6128
skin


GHRHR
ENSG00000106128
Q02643
0.9953
0.9814
pituitary gland


GHSR
ENSG00000121853
Q92847
0.9874
0.9735
pituitary gland


GJA3
ENSG00000121743
Q9Y6H8
0.9627
0.8685
heart muscle


GJB1
ENSG00000169562
P08034
0.673
0.507
liver


GJB2
ENSG00000165474
P29033
0.776
0.5476
esophagus


GJB3
ENSG00000188910
O75712
0.8432
0.6709
skin


GJB4
ENSG00000189433
Q9NTQ9
0.9564
0.8901
skin


GJB5
ENSG00000189280
O95377
0.8284
0.6748
skin


GJB6
ENSG00000121742
O95452
0.7078
0.6111
esophagus


GJB7
ENSG00000164411
Q6PEY0
0.9692
0.9486
pituitary gland


GJC3
ENSG00000176402
Q8NFK1
0.7789
0.4855
salivary gland


GJD2
ENSG00000159248
Q9UKL4
0.912
0.8031
pituitary gland


GJD3
ENSG00000183153
Q8N144
0.7456
0.5963
urinary bladder


GJD4
ENSG00000177291
Q96KN9
0.9886
0.9833
cerebral cortex


GLDN
ENSG00000186417
Q6ZMI3
0.6649
0.4243
spinal cord


GLP1R
ENSG00000112164
P43220
0.934
0.8555
pancreas


GLP2R
ENSG00000065325
O95838
0.7814
0.6252
colon


GLRA1
ENSG00000145888
P23415
0.9452
0.9279
hypothalamus


GLRA2
ENSG00000101958
P23416
0.893
0.8292
cerebellum


GLRA3
ENSG00000145451
O75311
0.8658
0.8234
cerebral cortex


GNRHR
ENSG00000109163
P30968
0.972
0.8217
pituitary gland


GP5
ENSG00000178732
P40197
0.8871
0.8448
fallopian tube


GP6
ENSG00000088053
Q9HCN6
0.7625
0.4339
cerebellum


GP9
ENSG00000169704
P14770
0.9667
0.9286
spleen


GPA33
ENSG00000143167
Q99795
0.9605
0.9499
colon


GPBAR1
ENSG00000179921
Q8TDU6
0.7547
0.4867
adipose tissue


GPM6A
ENSG00000150625
P51674
0.6609
0.4441
cerebellum


GPR1
ENSG00000183671
P46091
0.7682
0.5848
vagina


GPR101
ENSG00000165370
Q96P66
0.9832
0.976
basal ganglia


GPR119
ENSG00000147262
Q8TDV5
1
1
pancreas


GPR12
ENSG00000132975
P47775
0.8467
0.7404
cerebellum


GPR139
ENSG00000180269
Q6DWJ6
0.9831
0.978
basal ganglia


GPR141
ENSG00000187037
Q7Z602
0.8654
0.5665
spleen


GPR142
ENSG00000257008
Q7Z601
1
1
cerebellum


GPR148
ENSG00000173302
Q8TDV2
0.9604
0.9483
cerebellum


GPR149
ENSG00000174948
Q86SP6
0.9592
0.9361
basal ganglia


GPR15
ENSG00000154165
P49685
0.8276
0.7181
colon


GPR150
ENSG00000178015
Q8NGU9
0.7823
0.4746
pancreas


GPR152
ENSG00000175514
Q8TDT2
0.9688
0.9688
small intestine


GPR156
ENSG00000175697
Q8NFN8
0.8632
0.7378
urinary bladder


GPR158
ENSG00000151025
Q5T848
0.9258
0.8411
cerebellum


GPR171
ENSG00000174946
O14626
0.724
0.519
spleen


GPR174
ENSG00000147138
Q9BXC1
0.8314
0.6287
spleen


GPR18
ENSG00000125245
Q14330
0.9105
0.644
spleen


GPR182
ENSG00000166856
O15218
0.9168
0.7009
spleen


GPR19
ENSG00000183150
Q15760
0.7766
0.6709
cerebellum


GPR20
ENSG00000204882
Q99678
0.7043
0.5179
cervix, uterine


GPR21
ENSG00000188394
Q99679
0.7192
0.5098
adipose tissue


GPR22
ENSG00000172209
Q99680
0.8477
0.7564
cerebral cortex


GPR25
ENSG00000170128
O00155
0.8161
0.7352
small intestine


GPR26
ENSG00000154478
Q8NDV2
0.9161
0.8789
cerebral cortex


GPR37
ENSG00000170775
O15354
0.7701
0.5764
spinal cord


GPR37L1
ENSG00000170075
O60883
0.7768
0.7402
cerebral cortex


GPR39
ENSG00000183840
O43194
0.7468
0.5772
urinary bladder


GPR42
ENSG00000126251
O15529
0.9233
0.874
adipose tissue


GPR45
ENSG00000135973
Q9Y5Y3
0.892
0.8426
hypothalamus


GPR50
ENSG00000102195
Q13585
0.9923
0.9828
pituitary gland


GPR52
ENSG00000203737
Q9Y2T5
0.9607
0.8847
basal ganglia


GPR55
ENSG00000135898
Q9Y2T6
0.8655
0.6735
basal ganglia


GPR6
ENSG00000146360
P46095
0.9506
0.9037
basal ganglia


GPR61
ENSG00000156097
Q9BZJ8
0.887
0.8248
cerebellum


GPR62
ENSG00000180929
Q9BZJ7
0.8459
0.704
spinal cord


GPR78
ENSG00000155269
Q96P69
0.9937
0.9895
esophagus


GPR82
ENSG00000171657
Q96P67
0.8607
0.6348
small intestine


GPR83
ENSG00000123901
Q9NYM4
0.9016
0.7456
cerebellum


GPR85
ENSG00000164604
P60893
0.6896
0.5482
cerebellum


GPR87
ENSG00000138271
Q9BY21
0.84
0.8133
esophagus


GPR88
ENSG00000181656
Q9GZN0
0.9049
0.6565
basal ganglia


GPRC5A
ENSG00000013588
Q8NFJ5
0.6311
0.4064
lung


GPRC5D
ENSG00000111291
Q9NZD1
0.8638
0.5143
skin


GPRC6A
ENSG00000173612
Q5T6X5
0.9927
0.9881
salivary gland


GRAMD1B
ENSG00000023171
Q3KR37
0.7086
0.4335
cerebellum


GRAMD2A
ENSG00000175318
Q8IUY3
0.7208
0.5538
fallopian tube


GREB1
ENSG00000196208
Q4ZG55
0.7032
0.4087
ovary


GREB1L
ENSG00000141449
Q9C091
0.6365
0.4494
fallopian tube


GRIA1
ENSG00000155511
P42261
0.7876
0.689
cerebellum


GRIA2
ENSG00000120251
P42262
0.7131
0.6071
cerebral cortex


GRIA3
ENSG00000125675
P42263
0.7195
0.5116
cerebral cortex


GRIA4
ENSG00000152578
P48058
0.8019
0.6615
cerebellum


GRID1
ENSG00000182771
Q9ULK0
0.7582
0.6447
basal ganglia


GRID2
ENSG00000152208
O43424
0.9194
0.8062
cerebellum


GRIK1
ENSG00000171189
P39086
0.7749
0.6756
hypothalamus


GRIK2
ENSG00000164418
Q13002
0.8032
0.5469
cerebellum


GRIK3
ENSG00000163873
Q13003
0.7189
0.5128
pituitary gland


GRIK4
ENSG00000149403
Q16099
0.679
0.608
cerebral cortex


GRIN1
ENSG00000176884
Q05586
0.8079
0.7595
cerebral cortex


GRIN2A
ENSG00000183454
Q12879
0.8674
0.7212
cerebral cortex


GRIN2B
ENSG00000273079
Q13224
0.896
0.8651
cerebral cortex


GRIN2C
ENSG00000161509
Q14957
0.832
0.6319
cerebellum


GRIN2D
ENSG00000105464
O15399
0.773
0.5131
hypothalamus


GRIN3A
ENSG00000198785
Q8TCU5
0.8259
0.5847
cerebral cortex


GRIN3B
ENSG00000116032
O60391
0.9012
0.6475
fallopian tube


GRM1
ENSG00000152822
Q13255
0.9279
0.8348
cerebellum


GRM2
ENSG00000164082
Q14416
0.8949
0.6648
cerebral cortex


GRM3
ENSG00000198822
Q14832
0.8189
0.7909
basal ganglia


GRM4
ENSG00000124493
Q14833
0.9429
0.8382
cerebellum


GRM5
ENSG00000168959
P41594
0.8985
0.8237
cerebral cortex


GRM6
ENSG00000113262
O15303
0.8504
0.6234
pituitary gland


GRM7
ENSG00000196277
Q14831
0.8487
0.7194
cerebral cortex


GRM8
ENSG00000179603
O00222
0.8196
0.6639
cerebral cortex


GRPR
ENSG00000126010
P30550
0.9489
0.8745
pancreas


GSDMA
ENSG00000167914
Q96QA5
0.9435
0.7313
skin


GSDMC
ENSG00000147697
Q9BYG8
0.8746
0.8415
esophagus


GSG1L
ENSG00000169181
Q6UXU4
0.7886
0.7249
basal ganglia


GSG1L2
ENSG00000214978
A8MUP6
1
1
cerebral cortex


GUCY2C
ENSG00000070019
P25092
0.9576
0.9313
small intestine


GUCY2D
ENSG00000132518
Q02846
0.9688
0.9688
esophagus


GUCY2F
ENSG00000101890
P51841
1
1
fallopian tube


GYPA
ENSG00000170180
P02724
0.9617
0.8728
spleen


GYPB
ENSG00000250361
P06028
0.977
0.9135
spleen


GYPE
ENSG00000197465
P15421
0.8154
0.5311
spleen


HAS1
ENSG00000105509
Q92839
0.7883
0.5166
adipose tissue


HAS2
ENSG00000170961
Q92819
0.725
0.4638
adipose tissue


HAS3
ENSG00000103044
O00219
0.6919
0.4244
esophagus


HAVCR1
ENSG00000113249
Q96D42
0.9701
0.8838
kidney


HCAR1
ENSG00000196917
Q9BXC0
0.9886
0.9833
breast


HCAR2
ENSG00000182782
Q8TDS4
0.7293
0.5939
esophagus


HCAR3
ENSG00000255398
P49019
0.7871
0.6554
spleen


HCN1
ENSG00000164588
O60741
0.8665
0.7716
cerebral cortex


HCN2
ENSG00000099822
Q9UL51
0.7282
0.65
spinal cord


HCN4
ENSG00000138622
Q9Y3Q4
0.9412
0.8441
heart muscle


HCRTR1
ENSG00000121764
O43613
0.8759
0.7665
hypothalamus


HCRTR2
ENSG00000137252
O43614
0.9406
0.8672
hypothalamus


HEPACAM
ENSG00000165478
Q14CZ8
0.7574
0.7147
cerebral cortex


HEPACAM2
ENSG00000188175
A8MVW5
0.8845
0.8389
colon


HEPHL1
ENSG00000181333
Q6MZM0
0.9171
0.904
esophagus


HHLA2
ENSG00000114455
Q9UM44
0.9206
0.8343
colon


HIGD1C
ENSG00000214511
A8MV81
0.853
0.7423
cervix, uterine


HLA-DQB2
ENSG00000232629
P05538
0.7445
0.4372
skin


HLA-G
ENSG00000204632
P17693
0.8905
0.5237
pituitary gland


HPN
ENSG00000105707
P05981
0.7194
0.4136
liver


HRH2
ENSG00000113749
P25021
0.6272
0.4281
heart muscle


HRH3
ENSG00000101180
Q9Y5N1
0.8476
0.8071
cerebellum


HRH4
ENSG00000134489
Q9H3N8
0.9062
0.9063
adipose tissue


HRK
ENSG00000135116
O00198
0.8603
0.7482
hippocampal







formation


HS6ST2
ENSG00000171004
Q96MM7
0.6839
0.4445
basal ganglia


HS6ST3
ENSG00000185352
Q8IZP7
0.8278
0.5859
cerebral cortex


HSD17B2
ENSG00000086696
P37059
0.7606
0.6499
urinary bladder


HTR1A
ENSG00000178394
P08908
0.9345
0.8929
cerebral cortex


HTR1B
ENSG00000135312
P28222
0.8025
0.5465
basal ganglia


HTR1D
ENSG00000179546
P28221
0.9696
0.957
small intestine


HTR1E
ENSG00000168830
P28566
0.8614
0.7582
cerebral cortex


HTR1F
ENSG00000179097
P30939
0.8265
0.6591
adipose tissue


HTR2A
ENSG00000102468
P28223
0.8761
0.6431
cerebral cortex


HTR2B
ENSG00000135914
P41595
0.765
0.5872
endometrium


HTR3A
ENSG00000166736
P46098
0.8713
0.7292
salivary gland


HTR3B
ENSG00000149305
O95264
0.9797
0.9102
cerebral cortex


HTR3C
ENSG00000178084
Q8WXA8
0.9933
0.978
lung


HTR3E
ENSG00000186038
A5X5Y0
0.9688
0.9687
colon


HTR4
ENSG00000164270
Q13639
0.895
0.8241
small intestine


HTR5A
ENSG00000157219
P47898
0.8999
0.8409
cerebellum


HTR6
ENSG00000158748
P50406
0.9656
0.915
basal ganglia


HTR7
ENSG00000148680
P34969
0.7577
0.4721
hypothalamus


HYAL4
ENSG00000106302
Q2M3T9
0.9624
0.9222
skeletal muscle


ICAM4
ENSG00000105371
Q14773
0.8794
0.6411
lung


ICAM5
ENSG00000105376
Q9UMF0
0.8386
0.7234
basal ganglia


ICOS
ENSG00000163600
Q9Y6W8
0.8638
0.7395
small intestine


IFITM10
ENSG00000244242
A6NMD0
0.8211
0.4075
adrenal gland


IFITM5
ENSG00000206013
A6NNB3
0.9589
0.8481
pancreas


IGDCC3
ENSG00000174498
Q8IVU1
0.8506
0.6279
cerebellum


IGDCC4
ENSG00000103742
Q8TDY8
0.6707
0.4077
ovary


IGSF1
ENSG00000147255
Q8N6C5
0.8291
0.4977
pituitary gland


IGSF11
ENSG00000144847
Q5DX21
0.6815
0.4547
spinal cord


IGSF23
ENSG00000216588
A1L1A6
0.9636
0.9463
liver


IGSF5
ENSG00000183067
Q9NSI5
0.7891
0.576
heart muscle


IGSF9
ENSG00000085552
Q9P2J2
0.6721
0.5287
skin


IL12RB1
ENSG00000096996
P42701
0.8087
0.4037
spleen


IL12RB2
ENSG00000081985
Q99665
0.779
0.5077
skeletal muscle


IL13RA2
ENSG00000123496
Q14627
0.7938
0.5348
pituitary gland


IL17RE
ENSG00000163701
Q8NFR9
0.7329
0.482
skin


IL18RAP
ENSG00000115607
O95256
0.8142
0.4937
spleen


IL1R2
ENSG00000115590
P27930
0.6544
0.4119
spleen


IL1RAPL1
ENSG00000169306
Q9NZN1
0.8728
0.7725
spinal cord


IL1RAPL2
ENSG00000189108
Q9NP60
0.9197
0.9001
cerebral cortex


IL1RL2
ENSG00000115598
Q9HB29
0.7549
0.4599
skin


IL20RB
ENSG00000174564
Q6UXL0
0.8489
0.706
skin


IL21R
ENSG00000103522
Q9HBE5
0.8724
0.6412
spleen


IL22RA1
ENSG00000142677
Q8N6P7
0.8178
0.6222
pancreas


IL23R
ENSG00000162594
Q5VWK5
1
1
adrenal gland


IL2RA
ENSG00000134460
P01589
0.8174
0.6083
spleen


IL2RB
ENSG00000100385
P14784
0.8081
0.4812
spleen


IL31RA
ENSG00000164509
Q8NI17
0.9443
0.9138
skin


IL5RA
ENSG00000091181
Q01344
0.8179
0.6165
fallopian tube


IL7R
ENSG00000168685
P16871
0.6827
0.4251
lung


IL9R
ENSG00000124334
Q01113
0.9354
0.9094
spleen


ILDR1
ENSG00000145103
Q86SU0
0.6575
0.5789
salivary gland


IMPG2
ENSG00000081148
Q9BZV3
0.9391
0.645
fallopian tube


INSRR
ENSG00000027644
P14616
0.803
0.6557
kidney


ISLR2
ENSG00000167178
Q6UXK2
0.738
0.4434
basal ganglia


ITGA11
ENSG00000137809
Q9UKX5
0.7224
0.4267
endometrium


ITGA2B
ENSG00000005961
P08514
0.6981
0.4019
spleen


ITGA4
ENSG00000115232
P13612
0.7513
0.4335
spleen


ITGAD
ENSG00000156886
Q13349
0.9882
0.9413
spleen


ITGAE
ENSG00000083457
P38570
0.8396
0.6669
lung


ITGB3
ENSG00000259207
P05106
0.6552
0.4053
thyroid gland


ITGB6
ENSG00000115221
P18564
0.7393
0.6172
urinary bladder


ITPRIPL1
ENSG00000198885
Q6GPH6
0.6527
0.407
cerebellum


IYD
ENSG00000009765
Q6PHW0
0.9648
0.9057
thyroid gland


IZUMO1
ENSG00000182264
Q8IYV9
0.8913
0.8269
lung


IZUMO2
ENSG00000161652
Q6UXV1
0.9062
0.9063
midbrain


JPH1
ENSG00000104369
Q9HDC5
0.7908
0.4363
skeletal muscle


JPH2
ENSG00000149596
Q9BR39
0.5991
0.4408
colon


JPH3
ENSG00000154118
Q8WXH2
0.7716
0.6968
cerebral cortex


JPH4
ENSG00000092051
Q96JJ6
0.6412
0.4812
cerebellum


KCNA1
ENSG00000111262
Q09470
0.9089
0.766
cerebellum


KCNA10
ENSG00000143105
Q16322
1
1
lung


KCNA2
ENSG00000177301
P16389
0.8284
0.6763
cerebellum


KCNA3
ENSG00000177272
P22001
0.7563
0.4651
lung


KCNA4
ENSG00000182255
P22459
0.8744
0.7585
basal ganglia


KCNA7
ENSG00000104848
Q96RP8
0.9897
0.9748
skeletal muscle


KCNB2
ENSG00000182674
Q92953
0.9062
0.8329
cerebral cortex


KCNC1
ENSG00000129159
P48547
0.9012
0.7854
cerebellum


KCNC2
ENSG00000166006
Q96PR1
0.888
0.8173
cerebral cortex


KCND2
ENSG00000184408
Q9NZV8
0.8448
0.605
cerebellum


KCNE1
ENSG00000180509
P15382
0.7597
0.5913
lung


KCNE2
ENSG00000159197
Q9Y6J6
0.9248
0.4234
stomach


KCNE4
ENSG00000152049
Q8WWG9
0.9104
0.7256
endometrium


KCNE5
ENSG00000176076
Q9UJ90
0.7705
0.5849
midbrain


KCNF1
ENSG00000162975
Q9H3M0
0.8289
0.7134
cerebral cortex


KCNG1
ENSG00000026559
Q9UIX4
0.7613
0.4602
endometrium


KCNG2
ENSG00000178342
Q9UJ96
0.8873
0.7214
hippocampal







formation


KCNG3
ENSG00000171126
Q8TAE7
0.8506
0.7951
basal ganglia


KCNG4
ENSG00000168418
Q8TDN1
0.8584
0.8073
midbrain


KCNH1
ENSG00000143473
O95259
0.9122
0.7757
cerebellum


KCNH3
ENSG00000135519
Q9ULD8
0.7507
0.5695
cerebral cortex


KCNH4
ENSG00000089558
Q9UQ05
0.9035
0.7533
basal ganglia


KCNH5
ENSG00000140015
Q8NCM2
0.9479
0.8973
cerebral cortex


KCNH6
ENSG00000173826
Q9H252
0.8628
0.783
pituitary gland


KCNH7
ENSG00000184611
Q9NS40
0.9514
0.9078
cerebellum


KCNH8
ENSG00000183960
Q96L42
0.7513
0.5737
pituitary gland


KCNJ1
ENSG00000151704
P48048
0.9594
0.778
kidney


KCNJ10
ENSG00000177807
P78508
0.7868
0.7152
spinal cord


KCNJ12
ENSG00000184185
Q14500
0.8054
0.4361
cerebellum


KCNJ13
ENSG00000115474
O60928
0.9437
0.6433
small intestine


KCNJ15
ENSG00000157551
Q99712
0.6926
0.5362
kidney


KCNJ16
ENSG00000153822
Q9NPI9
0.7824
0.5959
thyroid gland


KCNJ3
ENSG00000162989
P48549
0.8308
0.63
cerebellum


KCNJ4
ENSG00000168135
P48050
0.8502
0.7665
cerebral cortex


KCNJ5
ENSG00000120457
P48544
0.8368
0.5615
adrenal gland


KCNJ6
ENSG00000157542
P48051
0.97
0.9177
pituitary gland


KCNJ9
ENSG00000162728
Q92806
0.8281
0.7842
cerebellum


KCNK10
ENSG00000100433
P57789
0.7914
0.6725
cerebellum


KCNK12
ENSG00000184261
Q9HB15
0.8822
0.796
cerebellum


KCNK13
ENSG00000152315
Q9HB14
0.7547
0.5196
thyroid gland


KCNK16
ENSG00000095981
Q96T55
0.9896
0.978
pancreas


KCNK17
ENSG00000124780
Q96T54
0.8081
0.5573
lung


KCNK18
ENSG00000186795
Q7Z418
1
1
basal ganglia


KCNK2
ENSG00000082482
O95069
0.7791
0.4459
adrenal gland


KCNK4
ENSG00000182450
Q9NYG8
0.8665
0.8379
basal ganglia


KCNK5
ENSG00000164626
O95279
0.6005
0.4486
small intestine


KCNK9
ENSG00000169427
Q9NPC2
0.9534
0.8363
cerebellum


KCNMB1
ENSG00000145936
Q16558
0.6618
0.4612
colon


KCNMB2
ENSG00000197584
Q9Y691
0.6791
0.4511
ovary


KCNN1
ENSG00000105642
Q92952
0.8156
0.7028
hippocampal







formation


KCNN2
ENSG00000080709
Q9H2S1
0.6898
0.412
adrenal gland


KCNN4
ENSG00000104783
O15554
0.6544
0.4194
salivary gland


KCNQ1
ENSG00000053918
P51787
0.6744
0.4019
adrenal gland


KCNQ2
ENSG00000075043
O43526
0.7884
0.7263
cerebellum


KCNQ3
ENSG00000184156
O43525
0.7617
0.5624
cerebral cortex


KCNQ4
ENSG00000117013
P56696
0.7056
0.4525
colon


KCNQ5
ENSG00000185760
Q9NR82
0.8074
0.5949
cerebral cortex


KCNS1
ENSG00000124134
Q96KK3
0.9432
0.719
cerebral cortex


KCNS2
ENSG00000156486
Q9ULS6
0.8596
0.5625
cerebral cortex


KCNT1
ENSG00000107147
Q5JUK3
0.8171
0.653
cerebellum


KCNT2
ENSG00000162687
Q6UVM3
0.8046
0.4677
ovary


KCNU1
ENSG00000215262
A8MYU2
1
1
prostate


KCNV1
ENSG00000164794
Q6PIU1
0.9393
0.8616
cerebral cortex


KCNV2
ENSG00000168263
Q8TDN2
0.9034
0.758
cerebellum


KEL
ENSG00000197993
P23276
0.7848
0.4941
spleen


KIAA0319
ENSG00000137261
Q5VV43
0.788
0.6989
cerebellum


KIAA1549
ENSG00000122778
Q9HCM3
0.6062
0.4282
lung


KIAA1549L
ENSG00000110427
Q6ZVL6
0.9258
0.8636
cerebral cortex


KIR2DL3
ENSG00000243772
P43628
0.9791
0.9614
spleen


KIR2DL4
ENSG00000189013
Q99706
0.963
0.8841
spleen


KIR3DL1
ENSG00000167633
P43629
0.9859
0.9806
spleen


KIR3DL2
ENSG00000240403
P43630
0.9665
0.9409
spleen


KIRREL3
ENSG00000149571
Q8IZU9
0.7495
0.6258
basal ganglia


KISS1R
ENSG00000116014
Q969F8
0.8586
0.6747
hypothalamus


KITLG
ENSG00000049130
P21583
0.6473
0.4232
urinary bladder


KL
ENSG00000133116
Q9UEF7
0.7532
0.4399
kidney


KLB
ENSG00000134962
Q86Z14
0.8862
0.7648
adipose tissue


KLHDC7A
ENSG00000179023
Q5VTJ3
0.8447
0.6983
kidney


KLRB1
ENSG00000111796
Q12918
0.8018
0.5329
spleen


KLRC1
ENSG00000134545
P26715
0.7857
0.4381
spleen


KLRC3
ENSG00000205810
Q07444
0.7624
0.6769
amygdala


KLRC4
ENSG00000183542
O43908
0.7215
0.4204
spleen


KLRD1
ENSG00000134539
Q13241
0.848
0.4559
spleen


KLRF1
ENSG00000150045
Q9NZS2
0.969
0.952
spleen


KLRF2
ENSG00000256797
D3W0D1
1
1
skin


KLRG2
ENSG00000188883
A4D1S0
0.8622
0.7762
thyroid gland


KREMEN2
ENSG00000131650
Q8NCW0
0.8559
0.6241
skin


LAG3
ENSG00000089692
P18627
0.7344
0.5106
ovary


LAMP5
ENSG00000125869
Q9UJQ1
0.7729
0.5246
basal ganglia


LAX1
ENSG00000122188
Q8IWV1
0.8727
0.69
spleen


LCT
ENSG00000115850
P09848
0.9832
0.9782
small intestine


LDLRAD1
ENSG00000203985
Q5T700
0.9468
0.8963
fallopian tube


LEMD1
ENSG00000186007
Q68G75
0.8832
0.8108
cerebellum


LGR5
ENSG00000139292
O75473
0.7277
0.4632
skeletal muscle


LHCGR
ENSG00000138039
P22888
0.9324
0.827
ovary


LHFPL1
ENSG00000182508
Q86WI0
0.8639
0.7983
basal ganglia


LHFPL4
ENSG00000156959
Q7Z7J7
0.8374
0.7801
cerebellum


LHFPL5
ENSG00000197753
Q8TAF8
0.9173
0.8589
pancreas


LILRA1
ENSG00000104974
O75019
0.9039
0.5353
spleen


LILRA5
ENSG00000187116
A6NI73
0.8194
0.4406
spleen


LIM2
ENSG00000105370
P55344
1
1
spleen


LINGO2
ENSG00000174482
Q7L985
0.8828
0.687
endometrium


LINGO3
ENSG00000220008
P0C6S8
0.9056
0.8335
basal ganglia


LINGO4
ENSG00000213171
Q6UY18
0.9037
0.7406
skeletal muscle


LMTK3
ENSG00000142235
Q96Q04
0.6345
0.4375
cerebral cortex


LPAR3
ENSG00000171517
Q9UBY5
0.6669
0.5385
fallopian tube


LPAR4
ENSG00000147145
Q99677
0.8283
0.5001
ovary


LRFN2
ENSG00000156564
Q9ULH4
0.8782
0.7794
cerebral cortex


LRFN5
ENSG00000165379
Q96NI6
0.664
0.4403
cervix, uterine


LRIT2
ENSG00000204033
A6NDA9
0.9226
0.8081
skin


LRP1B
ENSG00000168702
Q9NZR2
0.647
0.5573
cerebral cortex


LRP2
ENSG00000081479
P98164
0.8131
0.7274
thyroid gland


LRRC15
ENSG00000172061
Q8TF66
0.9614
0.8791
skin


LRRC19
ENSG00000184434
Q9H756
0.946
0.9411
colon


LRRC26
ENSG00000184709
Q2I0M4
0.8847
0.7514
salivary gland


LRRC38
ENSG00000162494
Q5VT99
0.8952
0.7459
skeletal muscle


LRRC3B
ENSG00000179796
Q96PB8
0.7744
0.6552
cerebellum


LRRC3C
ENSG00000204913
A6NJW4
0.9688
0.9688
cervix, uterine


LRRC4C
ENSG00000148948
Q9HCJ2
0.6932
0.4728
cerebral cortex


LRRC52
ENSG00000162763
Q8N7C0
0.9566
0.9022
skeletal muscle


LRRC55
ENSG00000183908
Q6ZSA7
0.8304
0.7392
hypothalamus


LRRC8E
ENSG00000171017
Q6NSJ5
0.7422
0.5782
skin


LRRN3
ENSG00000173114
Q9H3W5
0.6609
0.4542
adrenal gland


LRRN4
ENSG00000125872
Q8WUT4
0.9221
0.8602
lung


LRRN4CL
ENSG00000177363
Q8ND94
0.5905
0.4325
endometrium


LRRTM1
ENSG00000162951
Q86UE6
0.7547
0.5412
basal ganglia


LRRTM2
ENSG00000146006
O43300
0.7881
0.6567
cerebral cortex


LRRTM3
ENSG00000198739
Q86VH5
0.8111
0.7531
cerebral cortex


LRRTM4
ENSG00000176204
Q86VH4
0.8543
0.698
cerebral cortex


LRTM1
ENSG00000144771
Q9HBL6
0.9824
0.968
spleen


LRTM2
ENSG00000166159
Q8N967
0.9029
0.8621
cerebral cortex


LTB
ENSG00000227507
Q06643
0.8217
0.4923
spleen


LTB4R2
ENSG00000213906
Q9NPC1
0.7607
0.5077
skin


LTK
ENSG00000062524
P29376
0.7801
0.457
lung


LVRN
ENSG00000172901
Q6Q4G3
0.9315
0.8118
adipose tissue


LY6G6F
ENSG00000204424
Q5SQ64
0.9668
0.9641
spleen


LY9
ENSG00000122224
Q9HBG7
0.8426
0.6146
spleen


MAG
ENSG00000105695
P20916
0.8025
0.6883
spinal cord


MARCO
ENSG00000019169
Q9UEW3
0.6975
0.4354
lung


MARVELD2
ENSG00000152939
Q8N4S9
0.637
0.4159
thyroid gland


MARVELD3
ENSG00000140832
Q96A59
0.7301
0.5439
small intestine


MAS1
ENSG00000130368
P04201
0.9253
0.9175
cerebral cortex


MAS1L
ENSG00000204687
P35410
0.8488
0.7765
adipose tissue


MBOAT1
ENSG00000172197
Q6ZNC8
0.6228
0.431
fallopian tube


MC2R
ENSG00000185231
Q01718
0.9938
0.9897
adrenal gland


MC3R
ENSG00000124089
P41968
1
1
hypothalamus


MC4R
ENSG00000166603
P32245
0.9136
0.8421
hypothalamus


MC5R
ENSG00000176136
P33032
0.9422
0.9222
esophagus


MCEMP1
ENSG00000183019
Q8IX19
0.882
0.5879
lung


MCHR1
ENSG00000128285
Q99705
0.7825
0.6211
cerebral cortex


MCHR2
ENSG00000152034
Q969V1
0.9836
0.9584
cerebral cortex


MCOLN2
ENSG00000153898
Q8IZK6
0.7471
0.558
adrenal gland


MCOLN3
ENSG00000055732
Q8TDD5
0.7898
0.509
adrenal gland


MCTP2
ENSG00000140563
Q6DN12
0.6535
0.4107
spleen


MEGF10
ENSG00000145794
Q96KG7
0.7753
0.6594
spinal cord


MEGF11
ENSG00000157890
A6BM72
0.8685
0.7207
cerebellum


MEP1A
ENSG00000112818
Q16819
0.9728
0.9544
small intestine


MEP1B
ENSG00000141434
Q16820
0.9909
0.9817
small intestine


MFSD2B
ENSG00000205639
A6NFX1
0.946
0.9354
lung


MFSD4A
ENSG00000174514
Q8N468
0.7339
0.5104
stomach


MGAM
ENSG00000257335
O43451
0.9255
0.7566
small intestine


MGAM2
ENSG00000257743
Q2M2H8
0.9174
0.8786
small intestine


MIP
ENSG00000135517
P30301
0.902
0.8341
liver


MLC1
ENSG00000100427
Q15049
0.7313
0.6646
basal ganglia


MLNR
ENSG00000102539
O43193
0.9773
0.9605
stomach


MME
ENSG00000196549
P08473
0.654
0.4729
small intestine


MMP16
ENSG00000156103
P51512
0.6457
0.4364
cerebral cortex


MMP23B
ENSG00000189409
O75900
0.6536
0.4411
cervix, uterine


MMP24
ENSG00000125966
Q9Y5R2
0.816
0.485
cerebellum


MOG
ENSG00000204655
Q16653
0.8399
0.7949
spinal cord


MPIG6B
ENSG00000204420
O95866
0.8347
0.5921
skin


MPL
ENSG00000117400
P40238
0.8317
0.6667
lung


MRAP
ENSG00000170262
Q8TCY5
0.876
0.6914
adrenal gland


MRGPRD
ENSG00000172938
Q8TDS7
0.8727
0.798
colon


MRGPRE
ENSG00000184350
Q86SM8
0.8976
0.8023
cervix, uterine


MRGPRX2
ENSG00000183695
Q96LB1
0.9237
0.8639
skin


MRGPRX3
ENSG00000179826
Q96LB0
0.9564
0.9276
salivary gland


MS4A1
ENSG00000156738
P11836
0.8504
0.6232
spleen


MS4A10
ENSG00000172689
Q96PG2
0.9954
0.9891
small intestine


MS4A12
ENSG00000071203
Q9NXJ0
0.9965
0.9892
colon


MS4A15
ENSG00000166961
Q8N5U1
0.9965
0.991
lung


MS4A18
ENSG00000214782
Q3C1V0
1
1
small intestine


MS4A2
ENSG00000149534
Q01362
0.7345
0.622
lung


MS4A4E
ENSG00000214787
Q96PG1
0.7206
0.5617
adipose tissue


MS4A6E
ENSG00000166926
Q96DS6
0.92
0.8902
spleen


MS4A8
ENSG00000166959
Q9BY19
0.856
0.7624
small intestine


MSLNL
ENSG00000162006
Q96KJ4
0.9565
0.9192
cerebral cortex


MST1R
ENSG00000164078
Q04912
0.6714
0.4971
skin


MTNR1A
ENSG00000168412
P48039
0.9691
0.9367
cerebellum


MTNR1B
ENSG00000134640
P49286
1
1
basal ganglia


MUC12
ENSG00000205277
Q9UKN1
0.971
0.959
colon


MUC13
ENSG00000173702
Q9H3R2
0.9732
0.9711
small intestine


MUC15
ENSG00000169550
Q8N387
0.8097
0.7161
thyroid gland


MUC16
ENSG00000181143
Q8WXI7
0.9092
0.8469
cervix, uterine


MUC17
ENSG00000169876
Q685J3
0.9923
0.9863
small intestine


MUC21
ENSG00000204544
Q5SSG8
0.9009
0.8207
esophagus


MUC22
ENSG00000261272
E2RYF6
0.9665
0.962
esophagus


MUC4
ENSG00000145113
Q99102
0.8067
0.7488
colon


MUSK
ENSG00000030304
O15146
0.85
0.7775
skeletal muscle


MYADML2
ENSG00000185105
A6NDP7
0.9032
0.7632
skeletal muscle


MYMK
ENSG00000187616
A6NI61
0.9442
0.911
skeletal muscle


MYRFL
ENSG00000166268
Q96LU7
0.9084
0.6059
small intestine


NALCN
ENSG00000102452
Q8IZF0
0.6951
0.539
cerebellum


NAT8L
ENSG00000185818
Q8N9F0
0.6882
0.5521
cerebral cortex


NCAM2
ENSG00000154654
O15394
0.6635
0.4905
cerebral cortex


NCMAP
ENSG00000184454
Q5T1S8
0.7822
0.6116
salivary gland


NCR1
ENSG00000189430
O76036
0.9745
0.9226
spleen


NCR2
ENSG00000096264
O95944
1
1
small intestine


NCR3
ENSG00000204475
O14931
0.9293
0.7449
spleen


NECTIN4
ENSG00000143217
Q96NY8
0.7844
0.6951
skin


NETO1
ENSG00000166342
Q8TDF5
0.8387
0.7363
cerebral cortex


NIPAL1
ENSG00000163293
Q6NVV3
0.7922
0.626
skin


NIPAL4
ENSG00000172548
Q0D2K0
0.7756
0.5606
skin


NKAIN1
ENSG00000084628
Q4KMZ8
0.8836
0.7673
cerebellum


NKAIN2
ENSG00000188580
Q5VXU1
0.8243
0.7041
spinal cord


NKAIN3
ENSG00000185942
Q8N8D7
0.8113
0.7247
amygdala


NKAIN4
ENSG00000101198
Q8IVV8
0.7368
0.6749
basal ganglia


NKPD1
ENSG00000179846
Q17RQ9
0.9225
0.7191
skin


NLGN1
ENSG00000169760
Q8N2Q7
0.6491
0.4314
cerebellum


NLGN3
ENSG00000196338
Q9NZ94
0.6402
0.4813
cerebellum


NLGN4Y
ENSG00000165246
Q8NFZ3
0.6204
0.438
cerebellum


NMBR
ENSG00000135577
P28336
0.9314
0.874
basal ganglia


NMUR1
ENSG00000171596
Q9HB89
0.6753
0.4881
spleen


NMUR2
ENSG00000132911
Q9GZQ4
0.8741
0.8221
spinal cord


NOX1
ENSG00000007952
Q9Y5S8
0.9707
0.8891
colon


NOX4
ENSG00000086991
Q9NPH5
0.7777
0.5032
kidney


NOX5
ENSG00000255346
Q96PH1
0.9474
0.6781
spleen


NPBWR2
ENSG00000125522
P48146
0.9783
0.9744
cerebral cortex


NPC1L1
ENSG00000015520
Q9UHC9
0.9191
0.612
liver


NPFFR1
ENSG00000148734
Q9GZQ6
0.9187
0.7889
cerebellum


NPFFR2
ENSG00000056291
Q9Y5X5
0.8887
0.8009
urinary bladder


NPHS1
ENSG00000161270
O60500
0.9659
0.9336
kidney


NPR3
ENSG00000113389
P17342
0.6036
0.4537
kidney


NPSR1
ENSG00000187258
Q6W5P4
1
1
hypothalamus


NPY2R
ENSG00000185149
P49146
0.8241
0.7534
hypothalamus


NPY5R
ENSG00000164129
Q15761
0.7209
0.4803
spleen


NRCAM
ENSG00000091129
Q92823
0.6811
0.4793
cerebral cortex


NRG3
ENSG00000185737
P56975
0.826
0.6709
cerebral cortex


NRG4
ENSG00000169752
Q8WWG1
0.9832
0.9614
cerebellum


NRSN1
ENSG00000152954
Q8IZ57
0.8056
0.7533
cerebral cortex


NRXN1
ENSG00000179915
Q9ULB1
0.7261
0.5362
cerebellum


NSG2
ENSG00000170091
Q9Y328
0.7634
0.675
basal ganglia


NTRK1
ENSG00000198400
P04629
0.6964
0.5304
basal ganglia


NTSR1
ENSG00000101188
P30989
0.9628
0.8823
colon


NTSR2
ENSG00000169006
O95665
0.8173
0.7803
basal ganglia


NUP210L
ENSG00000143552
Q5VU65
0.896
0.7679
pituitary gland


NXPE2
ENSG00000204361
Q96DL1
0.9528
0.9412
colon


ODF4
ENSG00000184650
Q2M2E3
0.9673
0.9521
esophagus


OLR1
ENSG00000173391
P78380
0.7508
0.4809
lung


OPALIN
ENSG00000197430
Q96PE5
0.817
0.8016
hippocampal







formation


OPN1SW
ENSG00000128617
P03999
0.7796
0.4889
endometrium


OPN4
ENSG00000122375
Q9UHM6
0.8161
0.6622
basal ganglia


OPN5
ENSG00000124818
Q6U736
1
1
heart muscle


OPRD1
ENSG00000116329
P41143
0.9706
0.9243
cerebral cortex


OPRK1
ENSG00000082556
P41145
0.8806
0.8114
basal ganglia


OPRM1
ENSG00000112038
P35372
0.9782
0.9532
cerebellum


OR10A3
ENSG00000170683
P58181
0.9688
0.9688
skin


OR10G3
ENSG00000169208
Q8NGC4
1
1
pituitary gland


OR10G4
ENSG00000254737
Q8NGN3
1
1
pancreas


OR10P1
ENSG00000175398
Q8NGE3
1
1
heart muscle


OR13A1
ENSG00000256574
Q8NGR1
0.8983
0.773
urinary bladder


OR14I1
ENSG00000189181
A6ND48
0.9778
0.9532
cerebral cortex


OR1F1
ENSG00000168124
O43749
0.9627
0.8976
cerebellum


OR1G1
ENSG00000183024
P47890
1
1
urinary bladder


OR2B11
ENSG00000177535
Q5JQS5
1
1
adipose tissue


OR2B6
ENSG00000124657
P58173
0.9556
0.9352
prostate


OR2H2
ENSG00000204657
O95918
0.8174
0.6287
cerebellum


OR2K2
ENSG00000171133
Q8NGT1
0.9578
0.9268
spinal cord


OR2L13
ENSG00000196071
Q8N349
0.8512
0.7924
spinal cord


OR2L2
ENSG00000203663
Q8NH16
0.9456
0.8467
spinal cord


OR2L3
ENSG00000198128
Q8NG85
0.9347
0.8943
cerebellum


OR2T10
ENSG00000184022
Q8NGZ9
1
1
kidney


OR2T33
ENSG00000177212
Q8NG76
0.9646
0.917
thyroid gland


OR2V2
ENSG00000182613
Q96R30
1
1
fallopian tube


OR2W3
ENSG00000238243
Q7Z3T1
0.8955
0.7434
thyroid gland


OR3A2
ENSG00000221882
P47893
0.8667
0.7823
pituitary gland


OR3A3
ENSG00000159961
P47888
0.9688
0.9688
cerebellum


OR4F17
ENSG00000176695
Q8NGA8
0.9688
0.9688
cervix, uterine


OR51B4
ENSG00000183251
Q9Y5P0
0.9688
0.9688
cervix, uterine


OR51E2
ENSG00000167332
Q9H255
0.9305
0.8026
prostate


OR52I1
ENSG00000232268
Q8NGK6
1
1
cerebellum


OR52N1
ENSG00000181001
Q8NH53
1
1
adipose tissue


OR52N4
ENSG00000181074
Q8NGI2
0.7646
0.5145
spleen


OR52N5
ENSG00000181009
Q8NH56
1
1
adipose tissue


OR5M11
ENSG00000255223
Q96RB7
1
1
urinary bladder


OR5P2
ENSG00000183303
Q8WZ92
0.9688
0.9688
skin


OR5P3
ENSG00000182334
Q8WZ94
0.9837
0.9785
skin


OR6B3
ENSG00000178586
Q8NGW1
0.951
0.9237
spinal cord


OR6T1
ENSG00000181499
Q8NGN1
1
1
pancreas


OR7A5
ENSG00000188269
Q15622
0.8354
0.7609
midbrain


OR7C1
ENSG00000127530
O76099
0.9114
0.7981
pituitary gland


OR9A2
ENSG00000179468
Q8NGT5
1
1
spinal cord


OR9G4
ENSG00000172457
Q8NGQ1
1
1
spleen


OTOF
ENSG00000115155
Q9HC10
0.9148
0.6449
basal ganglia


OTOP1
ENSG00000163982
Q7RTM1
0.9688
0.9688
esophagus


OTOP2
ENSG00000183034
Q7RTS6
0.977
0.9507
colon


OXGR1
ENSG00000165621
Q96P68
0.691
0.4619
salivary gland


OXTR
ENSG00000180914
P30559
0.8064
0.5619
breast


P2RX1
ENSG00000108405
P51575
0.7186
0.4753
urinary bladder


P2RX2
ENSG00000187848
Q9UBL9
0.7587
0.5725
prostate


P2RX3
ENSG00000109991
P56373
0.973
0.9366
heart muscle


P2RX5
ENSG00000083454
Q93086
0.8053
0.5566
spleen


P2RX6
ENSG00000099957
O15547
0.8771
0.6345
skeletal muscle


P2RY10
ENSG00000078589
O00398
0.8813
0.6755
spleen


P2RY12
ENSG00000169313
Q9H244
0.742
0.5473
spinal cord


P2RY13
ENSG00000181631
Q9BPV8
0.8286
0.4452
spleen


P2RY2
ENSG00000175591
P41231
0.6519
0.4201
esophagus


P2RY4
ENSG00000186912
P51582
0.9151
0.7566
small intestine


P2RY8
ENSG00000182162
Q86VZ1
0.7504
0.4916
spleen


PANX3
ENSG00000154143
Q96QZ0
0.9688
0.9688
basal ganglia


PAQR5
ENSG00000137819
Q9NXK6
0.6807
0.4044
kidney


PAQR6
ENSG00000160781
Q6TCH4
0.6795
0.4179
spinal cord


PAQR9
ENSG00000188582
Q6ZVX9
0.9029
0.8086
liver


PCDH10
ENSG00000138650
Q9P2E7
0.7298
0.58
basal ganglia


PCDH11X
ENSG00000102290
Q9BZA7
0.8861
0.7904
basal ganglia


PCDH11Y
ENSG00000099715
Q9BZA8
0.8923
0.8333
hypothalamus


PCDH15
ENSG00000150275
Q96QU1
0.7674
0.726
hypothalamus


PCDH19
ENSG00000165194
Q8TAB3
0.7349
0.5018
hypothalamus


PCDH8
ENSG00000136099
O95206
0.8504
0.7786
cerebral cortex


PCDH9
ENSG00000184226
Q9HC56
0.6771
0.48
cerebral cortex


PCDHA1
ENSG00000204970
Q9Y5I3
0.7796
0.714
cerebral cortex


PCDHA10
ENSG00000250120
Q9Y5I2
0.7553
0.5153
cerebellum


PCDHA11
ENSG00000249158
Q9Y5I1
0.8909
0.6662
cerebellum


PCDHA12
ENSG00000251664
Q9UN75
0.9013
0.7021
cerebellum


PCDHA13
ENSG00000239389
Q9Y5I0
0.896
0.691
cerebellum


PCDHA2
ENSG00000204969
Q9Y5H9
0.8499
0.5857
cerebellum


PCDHA3
ENSG00000255408
Q9Y5H8
0.6995
0.4266
cerebellum


PCDHA4
ENSG00000204967
Q9UN74
0.8115
0.5177
cerebellum


PCDHA5
ENSG00000204965
Q9Y5H7
0.9149
0.7574
cerebellum


PCDHA6
ENSG00000081842
Q9UN73
0.8321
0.6082
cerebellum


PCDHA7
ENSG00000204963
Q9UN72
0.8732
0.5785
cerebellum


PCDHA8
ENSG00000204962
Q9Y5H6
0.9577
0.8634
cerebellum


PCDHA9
ENSG00000204961
Q9Y5H5
0.9608
0.9203
cerebellum


PCDHAC1
ENSG00000248383
Q9H158
0.8091
0.6529
cerebral cortex


PCDHAC2
ENSG00000243232
Q9Y5I4
0.8384
0.6097
cerebellum


PCDHB1
ENSG00000171815
Q9Y5F3
0.9688
0.9688
fallopian tube


PCDHGC5
ENSG00000240764
Q9Y5F6
0.7226
0.4376
cerebral cortex


PDCD1
ENSG00000188389
Q15116
0.7717
0.513
spleen


PDCD1LG2
ENSG00000197646
Q9BQ51
0.6972
0.4692
spleen


PDZK1IP1
ENSG00000162366
Q13113
0.6818
0.4854
kidney


PHEX
ENSG00000102174
P78562
0.803
0.5587
lung


PIANP
ENSG00000139200
Q8IYJ0
0.6193
0.469
basal ganglia


PIGR
ENSG00000162896
P01833
0.7579
0.6337
salivary gland


PIRT
ENSG00000233670
P0C851
0.7994
0.7286
hypothalamus


PKD2L1
ENSG00000107593
Q9P0L9
0.9205
0.7534
spleen


PKDREJ
ENSG00000130943
Q9NTG1
0.7059
0.4633
ovary


PKHD1
ENSG00000170927
P08F94
0.9624
0.9358
kidney


PKHD1L1
ENSG00000205038
Q86WI1
0.7997
0.5803
thyroid gland


PLD5
ENSG00000180287
Q8N7P1
0.8055
0.5177
cerebellum


PLP1
ENSG00000123560
P60201
0.6674
0.4246
spinal cord


PLPP4
ENSG00000203805
Q5VZY2
0.7349
0.615
hypothalamus


PLPPR1
ENSG00000148123
Q8TBJ4
0.8028
0.7395
basal ganglia


PLPPR3
ENSG00000129951
Q6T4P5
0.793
0.7298
basal ganglia


PLPPR4
ENSG00000117600
Q7Z2D5
0.6792
0.5234
basal ganglia


PLPPR5
ENSG00000117598
Q32ZL2
0.8585
0.8181
cerebral cortex


PLSCR2
ENSG00000163746
Q9NRY7
0.9375
0.9375
fallopian tube


PMEL
ENSG00000185664
P40967
0.8657
0.6452
cervix, uterine


PNPLA3
ENSG00000100344
Q9NST1
0.8702
0.6163
liver


PODXL
ENSG00000128567
O00592
0.6626
0.4243
lung


POPDC2
ENSG00000121577
Q9HBU9
0.7461
0.4752
heart muscle


POPDC3
ENSG00000132429
Q9HBV1
0.8135
0.5652
skeletal muscle


PPP1R3A
ENSG00000154415
Q16821
0.9679
0.9599
skeletal muscle


PRLHR
ENSG00000119973
P49683
0.875
0.7717
pituitary gland


PRLR
ENSG00000113494
P16471
0.7547
0.5185
cervix, uterine


PROKR1
ENSG00000169618
Q8TCW9
0.9661
0.9512
adipose tissue


PROM1
ENSG00000007062
O43490
0.7574
0.4694
salivary gland


PROM2
ENSG00000155066
Q8N271
0.634
0.4492
esophagus


PRRG2
ENSG00000126460
O14669
0.5839
0.4027
pituitary gland


PRRG3
ENSG00000130032
Q9BZD7
0.642
0.4095
cerebral cortex


PRSS8
ENSG00000052344
Q16651
0.5791
0.491
salivary gland


PRTG
ENSG00000166450
Q2VWP7
0.8224
0.4546
thyroid gland


PSD2
ENSG00000146005
Q9BQI7
0.7797
0.7091
basal ganglia


PTCHD1
ENSG00000165186
Q96NR3
0.7997
0.5375
cerebellum


PTCHD4
ENSG00000244694
Q6ZW05
0.7552
0.5261
cervix, uterine


PTCRA
ENSG00000171611
Q6ISU1
0.9588
0.9093
spleen


PTGDR
ENSG00000168229
Q13258
0.713
0.4487
spleen


PTGDR2
ENSG00000183134
Q9Y5Y4
0.7024
0.4766
colon


PTGER1
ENSG00000160951
P34995
0.7926
0.5093
kidney


PTGER2
ENSG00000125384
P43116
0.6445
0.4674
cervix, uterine


PTGER3
ENSG00000050628
P43115
0.7204
0.4691
endometrium


PTGFR
ENSG00000122420
P43088
0.6227
0.4171
adipose tissue


PTH2R
ENSG00000144407
P49190
0.8732
0.7647
cerebral cortex


PTPRD
ENSG00000153707
P23468
0.6791
0.4507
cerebellum


PTPRH
ENSG00000080031
Q9HD43
0.7303
0.5359
small intestine


PTPRN
ENSG00000054356
Q16849
0.7354
0.6422
pituitary gland


PTPRO
ENSG00000151490
Q16827
0.6773
0.434
kidney


PTPRR
ENSG00000153233
Q15256
0.856
0.7111
cerebellum


PTPRT
ENSG00000196090
O14522
0.8515
0.6733
cerebral cortex


PTPRZ1
ENSG00000106278
P23471
0.6511
0.5129
amygdala


PVRIG
ENSG00000213413
Q6DKI7
0.8874
0.5625
spleen


QRFPR
ENSG00000186867
Q96P65
0.9068
0.7554
hypothalamus


RAET1E
ENSG00000164520
Q8TD07
0.828
0.6719
esophagus


RAET1G
ENSG00000203722
Q6H3X3
0.7884
0.5641
esophagus


RDH8
ENSG00000080511
Q9NYR8
1
1
kidney


RGR
ENSG00000148604
P47804
0.8858
0.7879
cerebral cortex


RGS9BP
ENSG00000186326
Q6ZS82
0.9115
0.6528
skeletal muscle


RHAG
ENSG00000112077
Q02094
0.8669
0.7284
spleen


RHBDL2
ENSG00000158315
Q9NX52
0.6836
0.5013
esophagus


RHBDL3
ENSG00000141314
P58872
0.6482
0.4579
cerebral cortex


RHCG
ENSG00000140519
Q9UBD6
0.8103
0.545
esophagus


RHD
ENSG00000187010
Q02161
0.87
0.5627
salivary gland


RHO
ENSG00000163914
P08100
0.9424
0.9299
cerebral cortex


RNF148
ENSG00000235631
Q8N7C7
0.7923
0.5921
cerebellum


RNF175
ENSG00000145428
Q8N4F7
0.6971
0.4973
cerebral cortex


RNF182
ENSG00000180537
Q8N6D2
0.7571
0.5487
cerebellum


RNF222
ENSG00000189051
A6NCQ9
0.9192
0.8943
esophagus


RNF223
ENSG00000237330
E7ERA6
0.8643
0.8014
esophagus


RNF225
ENSG00000269855
M0QZC1
0.9065
0.8865
esophagus


RNFT2
ENSG00000135119
Q96EX2
0.7117
0.5322
cerebellum


ROBO2
ENSG00000185008
Q9HCK4
0.6406
0.4936
cerebral cortex


ROR2
ENSG00000169071
Q01974
0.5841
0.4226
colon


ROS1
ENSG00000047936
P08922
0.9881
0.9638
lung


RPRM
ENSG00000177519
Q9NS64
0.5866
0.417
cervix, uterine


RPRML
ENSG00000179673
Q8N4K4
0.8648
0.7156
basal ganglia


RRH
ENSG00000180245
O14718
0.8631
0.4221
cerebellum


RTL1
ENSG00000254656
A6NKG5
0.9374
0.8457
hypothalamus


RTP1
ENSG00000175077
P59025
0.9441
0.8899
cerebral cortex


RTP2
ENSG00000198471
Q5QGT7
1
1
skeletal muscle


RTP3
ENSG00000163825
Q9BQQ7
0.993
0.9768
liver


RTP5
ENSG00000188011
Q14D33
0.8361
0.7338
hypothalamus


RXFP1
ENSG00000171509
Q9HBX9
0.8567
0.7037
cerebral cortex


RXFP2
ENSG00000133105
Q8WXD0
0.8799
0.8391
fallopian tube


RXFP3
ENSG00000182631
Q9NSD7
0.9786
0.9659
adrenal gland


RXFP4
ENSG00000173080
Q8TDU9
0.9643
0.9402
colon


RYR2
ENSG00000198626
Q92736
0.9627
0.871
heart muscle


RYR3
ENSG00000198838
Q15413
0.5951
0.4241
basal ganglia


S1PR4
ENSG00000125910
O95977
0.8022
0.4641
spleen


S1PR5
ENSG00000180739
Q9H228
0.6682
0.4864
spinal cord


SCARA5
ENSG00000168079
Q6ZMJ2
0.5492
0.4026
urinary bladder


SCIMP
ENSG00000161929
Q6UWF3
0.8173
0.4138
spleen


SCN11A
ENSG00000168356
Q9UI33
0.8948
0.6915
spleen


SCN1A
ENSG00000144285
P35498
0.8186
0.735
cerebral cortex


SCN2A
ENSG00000136531
Q99250
0.8486
0.6979
cerebellum


SCN2B
ENSG00000149575
O60939
0.7773
0.5859
cerebellum


SCN3A
ENSG00000153253
Q9NY46
0.7189
0.5172
cerebellum


SCN3B
ENSG00000166257
Q9NY72
0.6808
0.438
cerebral cortex


SCN4A
ENSG00000007314
P35499
0.8932
0.7638
skeletal muscle


SCN5A
ENSG00000183873
Q14524
0.9173
0.6151
heart muscle


SCN8A
ENSG00000196876
Q9UQD0
0.8201
0.5781
cerebellum


SCN9A
ENSG00000169432
Q15858
0.7594
0.4311
hypothalamus


SCNN1A
ENSG00000111319
P37088
0.548
0.4393
salivary gland


SCNN1B
ENSG00000168447
P51168
0.6311
0.5117
colon


SCNN1G
ENSG00000166828
P51170
0.6329
0.5589
kidney


SCTR
ENSG00000080293
P47872
0.9467
0.89
pancreas


SDC1
ENSG00000115884
P18827
0.5779
0.4185
skin


SDK2
ENSG00000069188
Q58EX2
0.8226
0.6812
hypothalamus


SDR42E1
ENSG00000184860
Q8WUS8
0.7108
0.456
skin


SERP2
ENSG00000151778
Q8N6R1
0.6979
0.5313
cerebral cortex


SERTM1
ENSG00000180440
A2A2V5
0.7674
0.6298
fallopian tube


SEZ6
ENSG00000063015
Q53EL9
0.8311
0.747
cerebellum


SFT2D3
ENSG00000173349
Q587I9
0.6865
0.405
pancreas


SGCG
ENSG00000102683
Q13326
0.832
0.6114
heart muscle


SGCZ
ENSG00000185053
Q96LD1
0.8585
0.6925
ovary


SHISA6
ENSG00000188803
Q6ZSJ9
0.649
0.486
cerebellum


SHISA7
ENSG00000187902
A6NL88
0.8127
0.7759
basal ganglia


SHISA8
ENSG00000234965
B8ZZ34
0.9488
0.8338
cerebellum


SHISA9
ENSG00000237515
B4DS77
0.8116
0.7384
basal ganglia


SHISAL1
ENSG00000138944
Q3SXP7
0.681
0.4924
endometrium


SHISAL2A
ENSG00000182183
Q6UWV7
0.7881
0.5214
spleen


SHISAL2B
ENSG00000145642
A6NKW6
0.9603
0.9284
hypothalamus


SI
ENSG00000090402
P14410
0.9904
0.9854
small intestine


SIGLEC11
ENSG00000161640
Q96RL6
0.8878
0.6231
ovary


SIGLEC12
ENSG00000254521
Q96PQ1
0.9394
0.7528
spleen


SIGLEC15
ENSG00000197046
Q6ZMC9
0.9911
0.9862
urinary bladder


SIGLEC5
ENSG00000105501
O15389
0.9532
0.9368
spleen


SIGLEC6
ENSG00000105492
O43699
0.8224
0.646
small intestine


SIGLEC7
ENSG00000168995
Q9Y286
0.8046
0.4169
spleen


SIGLEC8
ENSG00000105366
Q9NYZ4
0.743
0.4954
spinal cord


SIRPG
ENSG00000089012
Q9P1W8
0.8825
0.6602
spleen


SIT1
ENSG00000137078
Q9Y3P8
0.8928
0.6672
spleen


SLAMF1
ENSG00000117090
Q13291
0.7965
0.5653
spleen


SLAMF6
ENSG00000162739
Q96DU3
0.8351
0.5582
spleen


SLAMF7
ENSG00000026751
Q9NQ25
0.7907
0.5499
spleen


SLAMF9
ENSG00000162723
Q96A28
0.9425
0.8772
adipose tissue


SLC10A1
ENSG00000100652
Q14973
0.9978
0.9918
liver


SLC10A2
ENSG00000125255
Q12908
0.9943
0.9893
small intestine


SLC10A4
ENSG00000145248
Q96EP9
0.8394
0.614
midbrain


SLC10A6
ENSG00000145283
Q3KNW5
0.841
0.6839
skin


SLC12A1
ENSG00000074803
Q13621
0.9869
0.9366
kidney


SLC12A3
ENSG00000070915
P55017
0.9958
0.9901
kidney


SLC12A5
ENSG00000124140
Q9H2X9
0.8487
0.7987
cerebellum


SLC13A1
ENSG00000081800
Q9BZW2
0.9683
0.9669
small intestine


SLC13A2
ENSG00000007216
Q13183
0.9256
0.884
small intestine


SLC13A4
ENSG00000164707
Q9UKG4
0.8562
0.7569
cerebral cortex


SLC13A5
ENSG00000141485
Q86YT5
0.9022
0.6773
liver


SLC14A1
ENSG00000141469
Q13336
0.6315
0.4145
urinary bladder


SLC14A2
ENSG00000132874
Q15849
0.9361
0.9258
adipose tissue


SLC15A1
ENSG00000088386
P46059
0.8795
0.7362
small intestine


SLC15A5
ENSG00000188991
A6NIM6
0.9375
0.9375
amygdala


SLC16A12
ENSG00000152779
Q6ZSM3
0.6857
0.4072
thyroid gland


SLC17A1
ENSG00000124568
Q14916
0.9793
0.9721
kidney


SLC17A2
ENSG00000112337
O00624
0.9982
0.9965
liver


SLC17A3
ENSG00000124564
O00476
0.9728
0.9559
kidney


SLC17A4
ENSG00000146039
Q9Y2C5
0.903
0.8915
liver


SLC17A6
ENSG00000091664
Q9P2U8
0.9082
0.8513
hypothalamus


SLC17A7
ENSG00000104888
Q9P2U7
0.7704
0.5291
cerebral cortex


SLC17A8
ENSG00000179520
Q8NDX2
0.9479
0.8546
small intestine


SLC18A1
ENSG00000036565
P54219
0.9637
0.8965
adrenal gland


SLC18A3
ENSG00000187714
Q16572
0.8954
0.8381
basal ganglia


SLC19A3
ENSG00000135917
Q9BZV2
0.7705
0.4211
adipose tissue


SLC1A2
ENSG00000110436
P43004
0.7774
0.6405
basal ganglia


SLC1A6
ENSG00000105143
P48664
0.8923
0.7955
cerebellum


SLC22A1
ENSG00000175003
O15245
0.9571
0.6527
liver


SLC22A10
ENSG00000184999
Q63ZE4
0.998
0.9962
liver


SLC22A11
ENSG00000168065
Q9NSA0
0.998
0.9943
kidney


SLC22A12
ENSG00000197891
Q96S37
0.9979
0.9948
kidney


SLC22A13
ENSG00000172940
Q9Y226
0.9789
0.944
kidney


SLC22A14
ENSG00000144671
Q9Y267
0.8723
0.5431
cerebellum


SLC22A16
ENSG00000004809
Q86VW1
0.9443
0.8789
endometrium


SLC22A2
ENSG00000112499
O15244
0.9918
0.9606
kidney


SLC22A24
ENSG00000197658
Q8N4F4
0.9837
0.9785
kidney


SLC22A25
ENSG00000196600
Q6T423
1
1
liver


SLC22A6
ENSG00000197901
Q4U2R8
0.9426
0.8424
kidney


SLC22A7
ENSG00000137204
Q9Y694
0.9716
0.9457
liver


SLC22A8
ENSG00000149452
Q8TCC7
0.987
0.9668
kidney


SLC22A9
ENSG00000149742
Q8IVM8
0.9886
0.9808
liver


SLC23A3
ENSG00000213901
Q6PIS1
0.8232
0.5588
small intestine


SLC24A2
ENSG00000155886
Q9UI40
0.7915
0.7538
cerebral cortex


SLC24A4
ENSG00000140090
Q8NFF2
0.8115
0.6285
midbrain


SLC26A10
ENSG00000135502
Q8NG04
0.9414
0.8737
cerebellum


SLC26A3
ENSG00000091138
P40879
0.9514
0.8919
colon


SLC26A4
ENSG00000091137
O43511
0.9328
0.6563
thyroid gland


SLC26A5
ENSG00000170615
P58743
0.8818
0.7215
cerebellum


SLC26A8
ENSG00000112053
Q96RN1
0.9001
0.7564
cerebellum


SLC26A9
ENSG00000174502
Q7LBE3
0.9174
0.86
stomach


SLC27A2
ENSG00000140284
O14975
0.7567
0.459
liver


SLC27A6
ENSG00000113396
Q9Y2P4
0.6736
0.4638
adrenal gland


SLC28A1
ENSG00000156222
O00337
0.9411
0.9056
liver


SLC28A2
ENSG00000137860
O43868
0.9682
0.9388
small intestine


SLC28A3
ENSG00000197506
Q9HAS3
0.7948
0.685
salivary gland


SLC2A14
ENSG00000173262
Q8TDB8
0.8233
0.5152
adrenal gland


SLC2A2
ENSG00000163581
P11168
0.9653
0.9472
liver


SLC30A10
ENSG00000196660
Q6XR72
0.9271
0.802
liver


SLC30A3
ENSG00000115194
Q99726
0.8956
0.7413
cerebral cortex


SLC30A8
ENSG00000164756
Q8IWU4
0.9525
0.7575
pancreas


SLC34A1
ENSG00000131183
Q06495
0.997
0.9946
kidney


SLC34A2
ENSG00000157765
O95436
0.8391
0.6956
lung


SLC34A3
ENSG00000198569
Q8N130
0.9051
0.7644
kidney


SLC35D3
ENSG00000182747
Q5M8T2
0.9487
0.9103
basal ganglia


SLC35F1
ENSG00000196376
Q5T1Q4
0.7235
0.4976
cerebral cortex


SLC35F2
ENSG00000110660
Q8IXU6
0.9183
0.8644
skin


SLC35F3
ENSG00000183780
Q8IY50
0.7873
0.5775
cerebellum


SLC35F4
ENSG00000151812
A4IF30
0.9186
0.7746
cerebellum


SLC35G1
ENSG00000176273
Q2M3R5
0.7156
0.4045
small intestine


SLC36A2
ENSG00000186335
Q495M3
0.9742
0.9648
skeletal muscle


SLC38A4
ENSG00000139209
Q969I6
0.9105
0.6666
liver


SLC38A8
ENSG00000166558
A6NNN8
0.8913
0.8174
amygdala


SLC39A12
ENSG00000148482
Q504Y0
0.8546
0.8098
cerebral cortex


SLC39A2
ENSG00000165794
Q9NP94
0.8842
0.812
skin


SLC39A4
ENSG00000147804
Q6P5W5
0.8474
0.6092
small intestine


SLC39A5
ENSG00000139540
Q6ZMH5
0.8671
0.7687
pancreas


SLC3A1
ENSG00000138079
Q07837
0.859
0.6149
kidney


SLC44A4
ENSG00000204385
Q53GD3
0.6719
0.5517
colon


SLC46A1
ENSG00000076351
Q96NT5
0.7397
0.4087
adrenal gland


SLC46A2
ENSG00000119457
Q9BY10
0.9172
0.8199
skin


SLC47A2
ENSG00000180638
Q86VL8
0.8774
0.7711
kidney


SLC4A1
ENSG00000004939
P02730
0.946
0.8938
kidney


SLC4A10
ENSG00000144290
Q6U841
0.8472
0.7795
cerebral cortex


SLC4A11
ENSG00000088836
Q8NBS3
0.706
0.418
thyroid gland


SLC4A4
ENSG00000080493
Q9Y6R1
0.6167
0.4004
pancreas


SLC4A8
ENSG00000050438
Q2Y0W8
0.7774
0.602
pituitary gland


SLC4A9
ENSG00000113073
Q96Q91
0.9813
0.8701
kidney


SLC51A
ENSG00000163959
Q86UW1
0.7634
0.4172
small intestine


SLC51B
ENSG00000186198
Q86UW2
0.8555
0.5823
small intestine


SLC52A1
ENSG00000132517
Q9NWF4
0.89
0.744
small intestine


SLC5A1
ENSG00000100170
P13866
0.8558
0.7111
small intestine


SLC5A10
ENSG00000154025
A0PJK1
0.9252
0.7081
kidney


SLC5A11
ENSG00000158865
Q8WWX8
0.8487
0.7541
spinal cord


SLC5A12
ENSG00000148942
Q1EHB4
0.9475
0.9131
kidney


SLC5A2
ENSG00000140675
P31639
0.9936
0.9738
kidney


SLC5A4
ENSG00000100191
Q9NY91
0.7273
0.4623
small intestine


SLC5A5
ENSG00000105641
Q92911
0.9076
0.8553
stomach


SLC5A7
ENSG00000115665
Q9GZV3
0.8539
0.7331
colon


SLC5A8
ENSG00000256870
Q8N695
0.9279
0.8441
thyroid gland


SLC5A9
ENSG00000117834
Q2M3M2
0.9427
0.8587
small intestine


SLC6A1
ENSG00000157103
P30531
0.6343
0.4589
cerebral cortex


SLC6A11
ENSG00000132164
P48066
0.8041
0.6978
midbrain


SLC6A12
ENSG00000111181
P48065
0.6914
0.5438
kidney


SLC6A13
ENSG00000010379
Q9NSD5
0.796
0.5954
kidney


SLC6A15
ENSG00000072041
Q9H2J7
0.7513
0.5994
cerebellum


SLC6A17
ENSG00000197106
Q9H1V8
0.7883
0.6932
cerebral cortex


SLC6A18
ENSG00000164363
Q96N87
0.9949
0.9913
kidney


SLC6A19
ENSG00000174358
Q695T7
0.9624
0.9351
small intestine


SLC6A2
ENSG00000103546
P23975
0.859
0.7225
adrenal gland


SLC6A20
ENSG00000163817
Q9NP91
0.8719
0.6457
small intestine


SLC6A3
ENSG00000142319
Q01959
0.9714
0.8467
midbrain


SLC6A4
ENSG00000108576
P31645
0.946
0.814
lung


SLC6A5
ENSG00000165970
Q9Y345
0.9439
0.9368
cerebellum


SLC6A7
ENSG00000011083
Q99884
0.899
0.8075
cerebellum


SLC7A10
ENSG00000130876
Q9NS82
0.8027
0.6743
adipose tissue


SLC7A11
ENSG00000151012
Q9UPY5
0.63
0.4702
basal ganglia


SLC7A13
ENSG00000164893
Q8TCU3
1
1
kidney


SLC7A3
ENSG00000165349
Q8WY07
0.845
0.6827
endometrium


SLC7A9
ENSG00000021488
P82251
0.9136
0.5972
small intestine


SLC8A1
ENSG00000183023
P32418
0.6777
0.4375
heart muscle


SLC8A2
ENSG00000118160
Q9UPR5
0.8022
0.6044
cerebellum


SLC8A3
ENSG00000100678
P57103
0.7723
0.6112
skeletal muscle


SLC9A2
ENSG00000115616
Q9UBY0
0.8239
0.6318
colon


SLC9A3
ENSG00000066230
P48764
0.8074
0.6262
colon


SLC9A4
ENSG00000180251
Q6AI14
0.9693
0.9209
stomach


SLC9A5
ENSG00000135740
Q14940
0.744
0.4137
cerebellum


SLC9C2
ENSG00000162753
Q5TAH2
0.981
0.9527
fallopian tube


SLCO1A2
ENSG00000084453
P46721
0.8043
0.7425
hippocampal







formation


SLCO1B1
ENSG00000134538
Q9Y6L6
0.9984
0.9969
liver


SLCO1B3
ENSG00000111700
Q9NPD5
0.9687
0.9183
liver


SLCO1C1
ENSG00000139155
Q9NYB5
0.8438
0.7821
basal ganglia


SLCO4C1
ENSG00000173930
Q6ZQN7
0.9158
0.8424
kidney


SLCO5A1
ENSG00000137571
Q9H2Y9
0.8988
0.7538
skeletal muscle


SLITRK1
ENSG00000178235
Q96PX8
0.8578
0.7875
cerebral cortex


SLITRK2
ENSG00000185985
Q9H156
0.7748
0.6447
basal ganglia


SLITRK3
ENSG00000121871
O94933
0.7512
0.5757
fallopian tube


SLITRK4
ENSG00000179542
Q8IW52
0.8654
0.7019
adrenal gland


SLITRK5
ENSG00000165300
O94991
0.7519
0.5736
cerebral cortex


SLITRK6
ENSG00000184564
Q9H5Y7
0.8474
0.6578
urinary bladder


SMCO2
ENSG00000165935
A6NFE2
0.8776
0.7093
esophagus


SMCO3
ENSG00000179256
A2RU48
0.7385
0.5721
kidney


SMIM13
ENSG00000224531
P0DJ93
0.847
0.5643
skin


SMIM18
ENSG00000253457
P0DKX4
0.8321
0.7796
cerebellum


SMIM2
ENSG00000139656
Q9BVW6
0.9062
0.9063
colon


SMIM22
ENSG00000267795
K7EJ46
0.6129
0.4946
colon


SMIM23
ENSG00000185662
A6NLE4
1
1
cervix, uterine


SMIM24
ENSG00000095932
O75264
0.8306
0.6255
small intestine


SMIM28
ENSG00000262543
A0A1B0GU29
0.991
0.986
colon


SMIM3
ENSG00000256235
Q9BZL3
0.708
0.4962
adipose tissue


SMIM6
ENSG00000259120
P0DI80
0.7229
0.5605
kidney


SMLR1
ENSG00000256162
H3BR10
0.9746
0.9539
liver


SNORC
ENSG00000182600
Q6UX34
0.6868
0.406
spinal cord


SOGA3
ENSG00000214338
Q5TF21
0.7834
0.5599
spinal cord


SORCS3
ENSG00000156395
Q9UPU3
0.7995
0.697
basal ganglia


SPACA3
ENSG00000141316
Q8IXA5
0.9871
0.9361
pancreas


SPATA9
ENSG00000145757
Q9BWV2
0.9056
0.8257
adipose tissue


SPEM2
ENSG00000184560
Q0P670
0.9688
0.9688
breast


SPN
ENSG00000197471
P16150
0.786
0.4488
spleen


SPNS3
ENSG00000182557
Q6ZMD2
0.8849
0.7488
spinal cord


SPPL2C
ENSG00000185294
Q8IUH8
0.9759
0.9403
cerebellum


SSTR4
ENSG00000132671
P31391
0.948
0.9021
cerebellum


SSTR5
ENSG00000162009
P35346
0.9367
0.8741
pituitary gland


STAB2
ENSG00000136011
Q8WWQ8
0.9187
0.6395
spleen


STEAP1B
ENSG00000105889
Q6NZ63
0.6547
0.4009
spinal cord


STOML3
ENSG00000133115
Q8TAV4
0.9196
0.8472
fallopian tube


STRA6
ENSG00000137868
Q9BX79
0.8656
0.6643
cervix, uterine


STX1B
ENSG00000099365
P61266
0.8113
0.5745
cerebellum


STYK1
ENSG00000060140
Q6J9G0
0.6264
0.5154
prostate


SUCNR1
ENSG00000198829
Q9BXA5
0.9052
0.7854
thyroid gland


SV2A
ENSG00000159164
Q7L0J3
0.6219
0.4022
cerebellum


SV2B
ENSG00000185518
Q7L1I2
0.8503
0.6858
cerebellum


SV2C
ENSG00000122012
Q496J9
0.9163
0.8381
basal ganglia


SVOP
ENSG00000166111
Q8N4V2
0.9699
0.95
cerebellum


SVOPL
ENSG00000157703
Q8N434
0.8676
0.6357
salivary gland


SYNDIG1
ENSG00000101463
Q9H7V2
0.6676
0.4729
cerebellum


SYNDIG1L
ENSG00000183379
A6NDD5
0.9032
0.652
basal ganglia


SYNGR3
ENSG00000127561
O43761
0.7077
0.5612
hypothalamus


SYNGR4
ENSG00000105467
O95473
0.9533
0.7614
cerebellum


SYNPR
ENSG00000163630
Q8TBG9
0.8446
0.7911
basal ganglia


SYP
ENSG00000102003
P08247
0.6477
0.4304
cerebral cortex


SYT1
ENSG00000067715
P21579
0.7294
0.5434
cerebral cortex


SYT12
ENSG00000173227
Q8IV01
0.7991
0.5778
cerebellum


SYT13
ENSG00000019505
Q7L8C5
0.737
0.6057
cerebral cortex


SYT14
ENSG00000143469
Q8NB59
0.8711
0.7897
pituitary gland


SYT2
ENSG00000143858
Q8N9I0
0.9138
0.7227
cerebellum


SYT3
ENSG00000213023
Q9BQG1
0.8065
0.689
cerebellum


SYT5
ENSG00000129990
O00445
0.7731
0.6886
cerebral cortex


SYT6
ENSG00000134207
Q5T7P8
0.8891
0.7647
hypothalamus


SYT8
ENSG00000149043
Q8NBV8
0.8319
0.7243
urinary bladder


SYT9
ENSG00000170743
Q86SS6
0.8437
0.6675
cerebellum


TAAR1
ENSG00000146399
Q96RJ0
1
1
fallopian tube


TACR1
ENSG00000115353
P25103
0.6837
0.4932
adipose tissue


TACR2
ENSG00000075073
P21452
0.7779
0.5533
colon


TACR3
ENSG00000169836
P29371
0.9453
0.8839
urinary bladder


TACSTD2
ENSG00000184292
P09758
0.6687
0.523
esophagus


TAS1R1
ENSG00000173662
Q7RTX1
0.7989
0.6518
spleen


TAS1R2
ENSG00000179002
Q8TE23
1
1
skin


TAS1R3
ENSG00000169962
Q7RTX0
0.7485
0.4049
spleen


TAS2R1
ENSG00000169777
Q9NYW7
0.9688
0.9688
basal ganglia


TAS2R10
ENSG00000121318
Q9NYW0
0.6199
0.4368
adrenal gland


TAS2R13
ENSG00000212128
Q9NYV9
1
1
cerebellum


TAS2R3
ENSG00000127362
Q9NYW6
0.8865
0.7373
cerebellum


TAS2R30
ENSG00000256188
P59541
0.9688
0.9688
cerebellum


TAS2R38
ENSG00000257138
P59533
1
1
small intestine


TAS2R46
ENSG00000226761
P59540
0.902
0.8341
cerebellum


TAS2R50
ENSG00000212126
P59544
0.9837
0.9785
cerebellum


TECRL
ENSG00000205678
Q5HYJ1
0.9769
0.9584
heart muscle


TEDDM1
ENSG00000203730
Q5T9Z0
0.9183
0.8644
cerebellum


TENM2
ENSG00000145934
Q9NT68
0.9495
0.8425
heart muscle


TENM4
ENSG00000149256
Q6N022
0.7156
0.436
ovary


TEX38
ENSG00000186118
Q6PEX7
0.8148
0.4081
pituitary gland


TFR2
ENSG00000106327
Q9UP52
0.9643
0.8723
liver


TGFBR3L
ENSG00000260001
H3BV60
0.9326
0.6601
pituitary gland


THSD7B
ENSG00000144229
Q9C0I4
0.7062
0.5439
adipose tissue


TIGIT
ENSG00000181847
Q495A1
0.8507
0.5544
spleen


TIMD4
ENSG00000145850
Q96H15
0.8826
0.6597
spleen


TLCD2
ENSG00000185561
A6NGC4
0.5898
0.4102
adrenal gland


TLR10
ENSG00000174123
Q9BXR5
0.8935
0.6191
spleen


TM4SF19
ENSG00000145107
Q96DZ7
0.8477
0.7261
adipose tissue


TM4SF20
ENSG00000168955
Q53R12
0.9923
0.9855
small intestine


TM4SF4
ENSG00000169903
P48230
0.9259
0.8575
liver


TM4SF5
ENSG00000142484
O14894
0.9322
0.9018
liver


TMC1
ENSG00000165091
Q8TDI8
0.9347
0.8943
urinary bladder


TMC2
ENSG00000149488
Q8TDI7
0.9195
0.7355
cerebellum


TMC3
ENSG00000188869
Q7Z5M5
0.898
0.7965
vagina


TMC5
ENSG00000103534
Q6UXY8
0.7832
0.6727
small intestine


TMC7
ENSG00000170537
Q7Z402
0.6838
0.4708
spinal cord


TMCO5A
ENSG00000166069
Q8N6Q1
1
1
stomach


TMEFF1
ENSG00000241697
Q8IYR6
0.8178
0.7346
spinal cord


TMEFF2
ENSG00000144339
Q9UIK5
0.7204
0.6359
hypothalamus


TMEM114
ENSG00000232258
B3SHH9
0.978
0.9323
hypothalamus


TMEM132B
ENSG00000139364
Q14DG7
0.7703
0.5622
cerebral cortex


TMEM132C
ENSG00000181234
Q8N3T6
0.6529
0.4026
cervix, uterine


TMEM132D
ENSG00000151952
Q14C87
0.9078
0.825
cerebral cortex


TMEM132E
ENSG00000181291
Q6IEE7
0.8656
0.6522
cerebellum


TMEM145
ENSG00000167619
Q8NBT3
0.8388
0.6224
cerebellum


TMEM150B
ENSG00000180061
A6NC51
0.8425
0.6092
small intestine


TMEM151A
ENSG00000179292
Q8N4L1
0.7856
0.6987
spinal cord


TMEM151B
ENSG00000178233
Q8IW70
0.8271
0.654
cerebellum


TMEM154
ENSG00000170006
Q6P9G4
0.7948
0.6227
esophagus


TMEM156
ENSG00000121895
Q8N614
0.8434
0.5216
spleen


TMEM163
ENSG00000152128
Q8TC26
0.7006
0.4622
cerebellum


TMEM169
ENSG00000163449
Q96HH4
0.7776
0.5315
cerebellum


TMEM171
ENSG00000157111
Q8WVE6
0.7866
0.652
colon


TMEM178B
ENSG00000261115
H3BS89
0.6796
0.4807
cerebral cortex


TMEM179
ENSG00000258986
Q6ZVK1
0.7476
0.6587
pituitary gland


TMEM184A
ENSG00000164855
Q6ZMB5
0.6816
0.5286
esophagus


TMEM190
ENSG00000160472
Q8WZ59
0.8984
0.7845
fallopian tube


TMEM196
ENSG00000173452
Q5HYL7
0.861
0.7818
hypothalamus


TMEM200A
ENSG00000164484
Q86VY9
0.6863
0.435
endometrium


TMEM200C
ENSG00000206432
A6NKL6
0.6991
0.4245
salivary gland


TMEM207
ENSG00000198398
Q6UWW9
1
1
kidney


TMEM210
ENSG00000185863
A6NLX4
0.9786
0.9659
salivary gland


TMEM211
ENSG00000206069
Q6ICI0
0.9603
0.9136
salivary gland


TMEM212
ENSG00000186329
A6NML5
0.9798
0.9663
fallopian tube


TMEM213
ENSG00000214128
A2RRL7
0.9546
0.9152
kidney


TMEM215
ENSG00000188133
Q68D42
0.9076
0.8553
cervix, uterine


TMEM217
ENSG00000172738
Q8N7C4
0.9101
0.7129
adrenal gland


TMEM229A
ENSG00000234224
B2RXF0
0.7703
0.6957
spinal cord


TMEM232
ENSG00000186952
C9JQI7
0.7741
0.4475
fallopian tube


TMEM233
ENSG00000224982
B4DJY2
0.9113
0.6351
skeletal muscle


TMEM235
ENSG00000204278
A6NFC5
0.8266
0.8022
spinal cord


TMEM239
ENSG00000198326
Q8WW34
0.9062
0.9063
breast


TMEM244
ENSG00000203756
Q5VVB8
0.9701
0.9212
pituitary gland


TMEM252
ENSG00000181778
Q8N6L7
0.7819
0.6137
kidney


TMEM253
ENSG00000232070
P0C7T8
0.8315
0.4339
small intestine


TMEM26
ENSG00000196932
Q6ZUK4
0.8377
0.6028
spleen


TMEM266
ENSG00000169758
Q2M3C6
0.9307
0.7627
cerebellum


TMEM270
ENSG00000175877
Q6UE05
0.9006
0.8384
fallopian tube


TMEM30B
ENSG00000182107
Q3MIR4
0.6797
0.5177
thyroid gland


TMEM40
ENSG00000088726
Q8WWA1
0.8446
0.7586
esophagus


TMEM45B
ENSG00000151715
Q96B21
0.6524
0.506
small intestine


TMEM52B
ENSG00000165685
Q4KMG9
0.9756
0.8869
kidney


TMEM61
ENSG00000143001
Q8N0U2
0.7623
0.4747
pituitary gland


TMEM63C
ENSG00000165548
Q9P1W3
0.7216
0.4869
cerebellum


TMEM72
ENSG00000187783
A0PK05
0.9636
0.9052
kidney


TMEM82
ENSG00000162460
A0PJX8
0.932
0.9166
liver


TMEM88B
ENSG00000205116
A6NKF7
0.8445
0.764
spinal cord


TMEM92
ENSG00000167105
Q6UXU6
0.8144
0.6211
small intestine


TMIE
ENSG00000181585
Q8NEW7
0.6817
0.4376
pituitary gland


TMIGD1
ENSG00000182271
Q6UXZ0
0.9739
0.9688
small intestine


TMIGD2
ENSG00000167664
Q96BF3
0.8122
0.5306
spleen


TMPRSS11B
ENSG00000185873
Q86T26
0.9249
0.9074
esophagus


TMPRSS11D
ENSG00000153802
O60235
0.9193
0.915
vagina


TMPRSS11E
ENSG00000087128
Q9UL52
0.8835
0.8607
esophagus


TMPRSS11F
ENSG00000198092
Q6ZWK6
0.924
0.9039
esophagus


TMPRSS13
ENSG00000137747
Q9BYE2
0.8273
0.6626
skin


TMPRSS15
ENSG00000154646
P98073
0.996
0.9928
small intestine


TMPRSS2
ENSG00000184012
O15393
0.6925
0.5755
prostate


TMPRSS4
ENSG00000137648
Q9NRS4
0.7954
0.7045
esophagus


TMPRSS5
ENSG00000166682
Q9H3S3
0.6262
0.4203
spinal cord


TMPRSS6
ENSG00000187045
Q8IU80
0.9345
0.788
liver


TMPRSS7
ENSG00000176040
Q7RTY8
1
1
pituitary gland


TMPRSS9
ENSG00000178297
Q7Z410
0.8902
0.624
spleen


TNF
ENSG00000232810
P01375
0.8333
0.5721
spleen


TNFRSF11A
ENSG00000141655
Q9Y6Q6
0.6687
0.4204
salivary gland


TNFRSF13B
ENSG00000240505
O14836
0.912
0.7522
spleen


TNFRSF13C
ENSG00000159958
Q96RJ3
0.8653
0.5196
spleen


TNFRSF17
ENSG00000048462
Q02223
0.8645
0.7154
spleen


TNFRSF18
ENSG00000186891
Q9Y5U5
0.6867
0.4385
cervix, uterine


TNFRSF8
ENSG00000120949
P28908
0.816
0.5995
adipose tissue


TNFRSF9
ENSG00000049249
Q07011
0.944
0.8963
spleen


TNFSF11
ENSG00000120659
O14788
0.9505
0.7957
small intestine


TNFSF14
ENSG00000125735
O43557
0.7283
0.4245
liver


TNFSF15
ENSG00000181634
O95150
0.7614
0.6706
salivary gland


TNFSF18
ENSG00000120337
Q9UNG2
1
1
esophagus


TNFSF8
ENSG00000106952
P32971
0.8072
0.4803
spleen


TNFSF9
ENSG00000125657
P41273
0.6988
0.4278
cervix, uterine


TNMD
ENSG00000000005
Q9H2S6
0.9036
0.7414
adipose tissue


TPBGL
ENSG00000261594
P0DKB5
0.8006
0.5435
basal ganglia


TPO
ENSG00000115705
P07202
0.8903
0.56
thyroid gland


TRABD2A
ENSG00000186854
Q86V40
0.8179
0.5502
ovary


TRAT1
ENSG00000163519
Q6PIZ9
0.8555
0.6536
spleen


TRDN
ENSG00000186439
Q13061
0.8566
0.6494
skeletal muscle


TREM1
ENSG00000124731
Q9NP99
0.8308
0.4849
lung


TREML1
ENSG00000161911
Q86YW5
0.8246
0.5072
spleen


TREML2
ENSG00000112195
Q5T2D2
0.9619
0.902
spleen


TRHDE
ENSG00000072657
Q9UKU6
0.64
0.4173
cerebellum


TRHR
ENSG00000174417
P34981
1
1
pituitary gland


TRPA1
ENSG00000104321
O75762
0.9337
0.9021
urinary bladder


TRPC3
ENSG00000138741
Q13507
0.8383
0.6124
pituitary gland


TRPC4
ENSG00000133107
Q9UBN4
0.7854
0.4917
endometrium


TRPC5
ENSG00000072315
Q9UL62
0.9233
0.8898
cerebral cortex


TRPC6
ENSG00000137672
Q9Y210
0.7402
0.4443
lung


TRPC7
ENSG00000069018
Q9HCX4
0.9742
0.962
pituitary gland


TRPM1
ENSG00000134160
Q7Z4N2
0.9571
0.8828
skin


TRPM2
ENSG00000142185
O94759
0.6896
0.4051
cerebellum


TRPM3
ENSG00000083067
Q9HCF6
0.7819
0.5818
cerebellum


TRPM5
ENSG00000070985
Q9NZQ8
0.9048
0.8356
small intestine


TRPM6
ENSG00000119121
Q9BX84
0.8399
0.5254
colon


TRPM8
ENSG00000144481
Q7Z2W7
0.9742
0.9533
prostate


TRPV3
ENSG00000167723
Q8NET8
0.9569
0.8734
skin


TRPV4
ENSG00000111199
Q9HBA0
0.7071
0.5006
salivary gland


TSHR
ENSG00000165409
P16473
0.9723
0.7459
thyroid gland


TSPAN16
ENSG00000130167
Q9UKR8
0.913
0.8885
amygdala


TSPAN19
ENSG00000231738
P0C672
0.8803
0.7411
lung


TSPAN32
ENSG00000064201
Q96QS1
0.8633
0.6918
heart muscle


TSPO2
ENSG00000112212
Q5TGU0
0.9499
0.8765
spleen


TTYH1
ENSG00000167614
Q9H313
0.628
0.4757
basal ganglia


UGT2A3
ENSG00000135220
Q6UWM9
0.9119
0.8918
small intestine


UGT3A1
ENSG00000145626
Q6NUS8
0.9535
0.9401
kidney


UGT3A2
ENSG00000168671
Q3SY77
0.9703
0.9127
skin


UGT8
ENSG00000174607
Q16880
0.7692
0.5469
spinal cord


UMODL1
ENSG00000177398
Q5DID0
0.9944
0.9905
fallopian tube


UNC5A
ENSG00000113763
Q6ZN44
0.8644
0.7438
cerebellum


UNC5D
ENSG00000156687
Q6UXZ4
0.8161
0.719
pituitary gland


UNC79
ENSG00000133958
Q9P2D8
0.8482
0.751
cerebellum


UNC80
ENSG00000144406
Q8N2C7
0.8425
0.7327
cerebellum


UNC93A
ENSG00000112494
Q86WB7
0.9474
0.8875
skin


UPK1A
ENSG00000105668
O00322
0.8966
0.7984
urinary bladder


UPK1B
ENSG00000114638
O75841
0.911
0.7294
urinary bladder


UPK2
ENSG00000110375
O00526
0.9681
0.8269
urinary bladder


UPK3B
ENSG00000243566
Q9BT76
0.8058
0.6621
adipose tissue


USH2A
ENSG00000042781
O75445
0.9853
0.97
liver


UTS2R
ENSG00000181408
Q9UKP6
0.941
0.8312
thyroid gland


VSIG1
ENSG00000101842
Q86XK7
0.9562
0.8105
stomach


VSIG10L
ENSG00000186806
Q86VR7
0.8816
0.7676
esophagus


VSIG2
ENSG00000019102
Q96IQ7
0.7017
0.4572
stomach


VSIG8
ENSG00000243284
P0DPA2
0.8588
0.6674
skin


VSTM1
ENSG00000189068
Q6UX27
0.9317
0.8411
pituitary gland


VSTM2B
ENSG00000187135
A6NLU5
0.7787
0.7502
cerebellum


VSTM5
ENSG00000214376
A8MXK1
0.7864
0.5312
hypothalamus


VTCN1
ENSG00000134258
Q7Z7D3
0.8401
0.7564
breast


WSCD2
ENSG00000075035
Q2TBF2
0.8128
0.5399
cerebellum


XCR1
ENSG00000173578
P46094
0.933
0.8323
skin


XG
ENSG00000124343
P55808
0.8147
0.6858
skin


XKR3
ENSG00000172967
Q5GH77
1
1
spleen


XKR4
ENSG00000206579
Q5GH76
0.7925
0.6118
colon


XKR7
ENSG00000260903
Q5GH72
0.954
0.8965
cerebellum


XKR9
ENSG00000221947
Q5GH70
0.7779
0.4034
small intestine


XKRX
ENSG00000182489
Q6PP77
0.8727
0.6825
skin


ZACN
ENSG00000186919
Q401N2
0.9783
0.9744
colon


ZDHHC17
ENSG00000186908
Q8IUH5
0.8693
0.773
cervix, uterine


ZP1
ENSG00000149506
P60852
0.9836
0.9712
pituitary gland


ZP2
ENSG00000103310
Q05996
0.994
0.9796
cerebellum


ZP4
ENSG00000116996
Q12836
1
1
ovary


ZPLD1
ENSG00000170044
Q8TCW7
0.9773
0.9605
kidney









ANDbody Structures

In general, an ANDbody can be any macromolecule, such as a polypeptide or protein that contains both an effector target binding site or binding domain, and an address target binding site or binding domain. The binding sites may be present on the same polypeptide chain or different polypeptide chains that are linked together, e.g., through disulfide bonds.


In some embodiments, the binding site for the effector target and the binding site for the address target of the ANDbody each comprise an antibody heavy chain and/or a light chain domain. In some embodiments the ANDbody comprises a first antibody variable domain which has binding specificity for the effector target and a second antibody variable domain that has binding specificity for the address target. In other embodiments the ANDbody comprises a first antigen binding site of an antibody, which first antigen binding site has binding specificity for the effector target, and a second antigen binding site of an antibody, which second antigen binding site has binding specificity for the address target.


In some embodiments, the ANDbody may have the structure of an antibody molecule. The term “antibody” as used herein includes full-length antibodies and antigen binding antibody fragments (e.g., scFvs). In some embodiments, an antibody molecule has specificity for more than one. e.g., 2, 3, 4 antigens, e.g., the antibody molecule comprises a plurality of variable domain sequences, wherein a first variable domain sequence of the plurality has binding specificity for a first epitope the effector target) and a second variable domain sequence of the plurality has binding specificity for a second epitope (e.g., the address target) In some embodiments, the ANDbody is an antibody molecule that has an arm or domain that binds the effector target and an arm or domain that binds the address target. In embodiments, the ANDbody is an antibody molecule that comprises light chains that bind one of the effector target and address target, and heavy chains that bind the other of the effector target and address target.


In some embodiments, the ANDbody has the structure of an scFv, BsIgG, a BsAb fragment, a BiTE, a dual-affinity re-targeting protein (DART), a tandem diabody (TandAb), a diabody, an Fab2, a di-scFv, chemically linked F(ab′)2, an Ig molecule with 2, 3 or 4 different antigen binding sites, a DVI-IgG four-in-one, an ImmTac, an HSAbody, an IgG-IgG, a Cov-X-Body, an scFv1-PEG-scFv2, an appended IgG, an DVD-IgG, an affibody, an affilin, an affimer, an affitin, an alphabody, an anticalin, an avimer, a DARPin, a Fynomer, a monobody, a nanoCLAMP, a bis-Fab, an Fv, a Fab, a Fab′-SH, a linear antibody, an scFv, an antibody with only a heavy chain (Humabody), an ScFab, an IgG antibody fragment, a single-chain variable region antibody, a single-domain heavy chain antibody. a bispecific triplebody, a BiKE, a CrossMAb, a dsDb, an scDb, tandem a dAb/VHH, a triple dAb VHH, a tetravalent dAb/VHH, a Fab-scFv, a Fab-Fv, or a DART-Fc, an adnectin, a Kunitz-type inhibitor, or a receptor decoy.


The affinity of the effector target binding site and address target binding site of an ANDbody for their respective binding partners may differ. In some embodiments the affinity of the first binding site to the therapeutic effector target it binds is weaker than the affinity of the second binding site to the address target. In some embodiments the affinity of the first binding site to the therapeutic effector target it binds is more than 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 15-fold, 20-fold, 50-fold, 100-fold, 200-fold, 500-fold, 1000-fold weaker than the affinity of the second binding site to the address target.


The terms “binding affinity” and “binding activity” refer to the tendency of a macromolecule, e.g., a polypeptide molecule, to bind or not to bind to a target. For purposes of the present invention, which combines two binding sites, the relative affinities of the two binding sites can be determined by, for example, measuring their respective affinities when each binding site is present on a common scaffold, such as in the form of a single chain antibody. Such a comparison allows a comparison of the affinities of two binding sites while eliminating any interference from other binding sites present on the macromolecule of the present invention.


Binding affinity may be quantified by determining the dissociation constant (Kd) for a polypeptide and its binder. A lower Kd is indicative of a higher affinity for a binding partner. Similarly, the specificity of binding of a polypeptide to its binding partner may be defined in terms of the comparative dissociation constants (Kd) of the polypeptide for its binding partner as compared to the dissociation constant with respect to the polypeptide and another, non-target molecule.


The value of this dissociation constant can be determined by known methods. For example, the Kd may be established using a double-filter nitrocellulose filter binding assay such as that disclosed by Wong & Lohman (Proc. Natl. Acad. Sci. USA 90, 5428-5432, 1993). Other standard assays to evaluate the binding ability of ligands such as antibodies towards targets are known in the art, including for example, ELISAs, Western blots, RIAs, and flow cytometry analysis. The binding kinetics (e.g., binding affinity) of the antibody also can be assessed by standard assays known in the art, such as by Biacore™ system analysis.


As an alternative to Kd, EC50 or IC50 may be used to determine relative affinities. In this context EC50 indicates the concentration at which a polypeptide achieves 50% of its maximum binding to a fixed quantity of binding partner. IC50 indicates the concentration at which a polypeptide inhibits 50% of the maximum binding of a fixed quantity of competitor to a fixed quantity of binding partner. In both cases, a lower level of EC50 or IC50 indicates a higher affinity for a target. The EC50 and IC50 values of an ANDbody binding site for its binding partner can both be determined by well-known methods, for example ELISA.


In some embodiments the Kd of therapeutic effector target binder might be higher than about 1 pM, about 10 pM, about 100 pM, about 1 nM, about 10 nM, about 100 nM, about 500 nM, or about 1 uM (e.g., may be between 1 pM and 10 pM, between 10 pM and 100 pM, between 100 pM and 1 nM, between 1 nM and 10 nM, between 10 nM and 100 nM, between 100 nM and 500 nM, or between 500 nM and 1 uM). In some embodiments the Kd of the address target binder might be less than about 1 uM, about 500 nM, about 100 nM, about 10 nM, about 1 nM, about 100 pM, about 10 pM, or about 1 pM (e.g., may be between 1 uM and 500 nM, between 500 nM and 100 nM, between 100 nM and 10 nM, between 10 nM and 1 nM, between 1 nM and 100 pM, between 100 pM and 10 pM, or between 10 pM and 1 pM). In some embodiments, the Kd for the therapeutic effector target binder may be about 6-fold, about 5-fold, about 4-fold, about 3-fold, or about 2-fold higher than the Kd for the address target binder.


In some embodiments the EC50 of therapeutic effector target binder might be higher than about 1 pM, about 10 pM, about 100 pM, about 1 nM, about 10 nM, about 100 nM, about 500 nM, or about 1 uM (e.g., may be between 1 pM and 10 pM, between 10 pM and 100 pM, between 100 pM and 1 nM, between 1 nM and 10 nM, between 10 nM and 100 nM, between 100 nM and 500 nM, or between 500 nM and 1 uM). In some embodiments the EC50 of the address target binder might be less than about 1 uM, about 500 nM, about 100 nM, about 10 nM, about 1 nM, about 100 pM, about 10 pM, or about 1 pM (e.g., may be between 1 uM and 500 nM, between 500 nM and 100 nM, between 100 nM and 10 nM, between 10 nM and 1 nM, between 1 nM and 100 pM, between 100 pM and 10 pM, or between 10 pM and 1 pM). In some embodiments, the EC50 for the therapeutic effector target binder may be about 6-fold, about 5-fold, about 4-fold, about 3-fold, or about 2-fold higher than the EC50 for the address target binder.


In some embodiments the IC50 of therapeutic effector target binder might be higher than about 1 pM, about 10 pM, about 100 pM, about 1 nM, about 10 nM, about 100 nM, about 500 nM, or about 1 uM (e.g., may be between 1 pM and 10 pM, between 10 pM and 100 pM, between 100 pM and 1 nM, between 1 nM and 10 nM, between 10 nM and 100 nM, between 100 nM and 500 nM, or between 500 nM and 1 uM). In some embodiments the IC50 of the address target binder might be less than about 1 uM, about 500 nM, about 100 nM, about 10 nM, about 1 nM, about 100 pM, about 10 pM, or about 1 pM (e.g., may be between 1 uM and 500 nM, between 500 nM and 100 nM, between 100 nM and 10 nM, between 10 nM and 1 nM, between 1 nM and 100 pM, between 100 pM and 10 pM, or between 10 pM and 1 pM). In some embodiments, the IC50 for the therapeutic effector target binder may be about 6-fold, about 5-fold, about 4-fold, about 3-fold, or about 2-fold higher than the IC50 for the address target binder.


The cellular or tissue density of the effector target and address target bound by an ANDbody may differ. In embodiments, the density of the therapeutic effector target on a cell bound by the effector target binding site of an ANDbody is more than about 2-fold, about 3-fold, about 4-fold, about 5-fold, about 10-fold, about 15-fold, about 20-fold, about 50-fold, about 100-fold, about 200-fold, about 500-fold, about 1000-fold, about 10,000-fold, about 100,000-fold less than the density of the address target on a cell bound by the address target binding site.


In some embodiments, the affinity of the first binding site to the therapeutic effector target it binds is about one-half (½)×Kd less than the affinity of the second binding site to the address target it binds and the density of the therapeutic effector target on a cell bound by the first binding site is about one-half (½)×Kd less than the density of the address target on a cell bound by the second binding site.


In some embodiments, the ANDbody has both the affinity and density parameters as described hereinabove.


In some embodiments the first binding site and second binding site in the ANDbody are directly joined to each other. By directly joined is meant that the first binding site coding sequences abut the second binding site coding sequences and no sequences derived from other sequences (such as linkers) are present. In some embodiments the first binding site and second binding site in the ANDbody are not directly joined to each other.


An ANDbody, as disclosed herein, can be linked to an additional moiety or moieties, e.g., an extracellular component, an intracellular component, a soluble factor (e.g., an enzyme, hormone, cytokine, growth factor, toxin, venom, pollutant, etc.), or a transmembrane protein (e.g., a cell surface receptor).


Exemplary effector target and address target sequences for which ANDbodies of the present technology may have affinity are provided in Table 3 and in the Sequence Listing. In some instances, the sequences comprise full-length protein sequences and/or Fc fusion sequences with or without the signal peptide regions. In some embodiments, ANDbodies of the present technology include binding domains that bind address target or effector target proteins. In embodiments, binding domains of the present ANDbodies may bind protein sequences that include a signal peptide. In other embodiments, binding domains of the present ANDbodies may bind proteins that lack a signal protein. In some embodiments, binding domains of the present ANDbodies may bind full-length proteins. In other embodiments, binding domains of the present ANDbodies may bind protein fusions, such as full-length protein sequences, or peptide fragments thereof, with or without signal peptide regions, fused to other proteins, such as, for example, Fc sequences. In other embodiments, binding domains of the present ANDbodies may bind proteins that comprise less than the full-length protein sequence, such as a peptide fragment of the address target or effector target.









TABLE 3







Exemplary Effector Target and Address Target Sequences















Specie
Accession
Accession
Posi-


SEQ


Name
(M/H)
#
Location
tions
AA sequence
Notes
ID NO:





RAGE
H
Q15109
Uniprot
full
MAAGTAVGAWVLVLSLWGAVVG
AA 1-22
SEQ






length
AQNITARIGEPLVLKCKGAPKKPP
is the
ID NO:







QRLEWKLNTGRTEAWKVLSPQG
signal
1







GGPWDSVARVLPNGSLFLPAVGI
peptide








QDEGIFRCQAMNRNGKETKSNY









RVRVYQIPGKPEIVDSASELTAGV









PNKVGTCVSEGSYPAGTLSWHL









DGKPLVPNEKGVSVKEQTRRHP









ETGLFTLQSELMVTPARGGDPRP









TFSCSFSPGLPRHRALRTAPIQPR









VWEPVPLEEVQLVVEPEGGAVAP









GGTVTLTCEVPAQPSPQIHWMKD









GVPLPLPPSPVLILPEIGPQDQGT









YSCVATHSSHGPQESRAVSISIIE









PGEEGPTAGSVGGSGLGTLALAL









GILGGLGTAALLIGVILWQRRQRR









GEERKAPENQEEEEERAELNQS









EEPEAGESSTGGP







RAGE
M
Q62151
Uniprot
full
MPAGTAARAWVLVLALWGAVAG
AA 1-22
SEQ






length
GQNITARIGEPLVLSCKGAPKKPP
is the
ID NO:







QQLEWKLNTGRTEAWKVLSPQG
signal
2







GPWDSVARILPNGSLLLPATGIVD
peptide








EGTFRCRATNRRGKEVKSNYRV









RVYQIPGKPEIVDPASELTASVPN









KVGTCVSEGSYPAGTLSWHLDG









KLLIPDGKETLVKEETRRHPETGL









FTLRSELTVIPTQGGTHPTFSCSF









SLGLPRRRPLNTAPIQLRVREPG









PPEGIQLLVEPEGGIVAPGGTVTL









TCAISAQPPPQVHWIKDGAPLPLA









PSPVLLLPEVGHEDEGTYSCVAT









HPSHGPQESPPVSIRVTETGDEG









PAEGSVGESGLGTLALALGILGGL









GVVALLVGAILWRKRQPRREERK









APESQEDEEERAELNQSEEAEM









PENGAGGP







RAGE-
H
Q15109
uniprot
A23-
aqnitari geplvlkckg apkkppqrle
Sequence
SEQ


Fc,

(RAGE-H)
(RAGE)
A342
wklntgrtea wkvlspqggg pwdsvarvlp
is to full
ID NO:


extra-

DB01281
DrugBank
(RAGE)
ngslflpavg iqdegifrcq amnrngketk
RAGE-
3


cell-

(Abatacept)
(Abatacept)

snyrvrvyqi pgkpeivdsa seltagvpnk
Fc;



ular




vgtcvsegsy pagtlswhld gkplvpnekg
RAGE is



domain




vsvkeqtrrh petglftlqs elmvtpargg
lowercase








dprptfscsf spglprhral rtapiqprvw
and








epvpleevql vvepeggava pggtvtltce
from the








vpaqpspqih wmkdgvplpl ppspvlilpe
accession








igpqdqgtys cvathsshgp qesravsisi
ID at








iepgeegpta gsvggsglgt la
left, and








QEPKSSDKTHTSPPSPAPELLGG
the








SSVFLFPPKPKDTLMISRTPEVTC
modified








VVVDVSHED
human








PEVKFNWYVDGVEVHNAKTKPR
IgG1 Fc








EEQYNSTYRVVSVLTVLHQDWLN
region is








GKEYKCKVSNKALPA
in CAPS








PIEKTISKAKGQPREPQVYTLPPS
and is








RDELTKNQVSLTCLVKGFYPSDIA
taken








VEWESNGQPENN
from the








YKTTPPVLDSDGSFFLYSKLTVDK
sequence








SRWQQGNVFSCSVMHEALHNHY
for








TQKSLSLSPGK
Abatacept









(DrugBank









Online)






RAGE-
M
Q62151
uniprot
A23-
gqnitarigeplvlsckgapkkppqqlewklnt
lower
SEQ


Fc,

(RAGE-M)
(RAGE)
A340
grteawkvlspqggpwdsvarilpngslllpat
case is
ID NO:


extra-

DB01281
DrugBank
(RAGE)
givdegtfrcratnrrgkevksnyrvrvyqip
mouse
4


cell-

(Abatacept)
(Abatacept)

gkpeivdpaseltasvpnkvgtcvsegsypag
RAGE-



ular




tlswhldgkllipdgketlvkeetrrhpetgl
FC



domain




ftlrseltviptqggthptfscsfslglprrr
extra-








plntapiqlrvrepgppegiqllvepeggiva
cellular








pggtvtltcaisaqpppqvhwikdgaplplap
without








spvlllpevghedegtyscvathpshgpqesp
signal








pvsirvtetgdegpaegsvgesglgt
peptide








QEPKSSDKTHTSPPSPAPELLGG
and the








SSVFLFPPKPKDTLMISRTPEVTC
modified








VVVDVSHED
human








PEVKFNWYVDGVEVHNAKTKPR
IgG1 Fc








EEQYNSTYRVVSVLTVLHQDWLN
region is








GKEYKCKVSNKALPA
in CAPS








PIEKTISKAKGQPREPQVYTLPPS
and is








RDELTKNQVSLTCLVKGFYPSDIA
taken








VEWESNGQPENN
from the








YKTTPPVLDSDGSFFLYSKLTVDK
sequence








SRWQQGNVFSCSVMHEALHNHY
for








TQKSLSLSPGK
Abatacept









(DrugBank









Online)






Notch
H
Q04721
uniprot
full
MPALRPALLWALLALWLCCAAPA
1-25 is
SEQ


2



length
HA
signal
ID NO:







LQCRDGYEPCVNEGMCVTYHNG
peptide;
5







TGYCKCPEGFLGEYCQHRDPCE
26-1677








KNRCQNGGTCVAQAMLGKATCR
is








CASGFTGEDCQYSTSHPCFVSR
extra-








PCLNGGTCHMLSRDTYECTCQV
cellular;








GFTGKECQWTDACLSHPCANGS
1678-








TCTTVANQFSCKCLTGFTGQKCE
1698 is








TDVNECDIPGHCQHGGTCLNLPG
trans-








SYQCQCPQGFTGQYCDSLYVPC
mmebrane;








APSPCVNGGTCRQTGDFTFECN
1699-








CLPGFEGSTCERNIDDCPNHRCQ
2471 is








NGGVCVDGVNTYNCRCPPQWT
cyto-








GQFCTEDVDECLLQPNACQNGG
mplasic








TCANRNGGYGCVCVNGWSGDD









CSENIDDCAFASCTPGSTCIDRVA









SFSCMCPEGKAGLLCHLDDACIS









NPCHKGALCDTNPLNGQYICTCP









QGYKGADCTEDVDECAMANSNP









CEHAGKCVNTDGAFHCECLKGY









AGPRCEMDINECHSDPCQNDAT









CLDKIGGFTCLCMPGFKGVHCEL









EINECQSNPCVNNGQCVDKVNR









FQCLCPPGFTGPVCQIDIDDCSST









PCLNGAKCIDHPNGYECQCATGF









TGVLCEENIDNCDPDPCHHGQC









QDGIDSYTCICNPGYMGAICSDQI









DECYSSPCLNDGRCIDLVNGYQC









NCQPGTSGVNCEINFDDCASNPC









IHGICMDGINRYSCVCSPGFTGQ









RCNIDIDECASNPCRKGATCINGV









NGFRCICPEGPHHPSCYSQVNEC









LSNPCIHGNCTGGLSGYKCLCDA









GWVGINCEVDKNECLSNPCQNG









GTCDNLVNGYRCTCKKGFKGYN









CQVNIDECASNPCLNQGTCFDDI









SGYTCHCVLPYTGKNCQTVLAPC









SPNPCENAAVCKESPNFESYTCL









CAPGWQGQRCTIDIDECISKPCM









NHGLCHNTQGSYMCECPPGFSG









MDCEEDIDDCLANPCQNGGSCM









DGVNTFSCLCLPGFTGDKCQTD









MNECLSEPCKNGGTCSDYVNSY









TCKCQAGFDGVHCENNINECTES









SCFNGGTCVDGINSFSCLCPVGF









TGSFCLHEINECSSHPCLNEGTC









VDGLGTYRCSCPLGYTGKNCQTL









VNLCSRSPCKNKGTCVQKKAES









QCLCPSGWAGAYCDVPNVSCDI









AASRRGVLVEHLCQHSGVCINAG









NTHYCQCPLGYTGSYCEEQLDE









CASNPCQHGATCSDFIGGYRCE









CVPGYQGVNCEYEVDECQNQPC









QNGGTCIDLVNHFKCSCPPGTRG









LLCEENIDDCARGPHCLNGGQC









MDRIGGYSCRCLPGFAGERCEG









DINECLSNPCSSEGSLDCIQLTND









YLCVCRSAFTGRHCETFVDVCPQ









MPCLNGGTCAVASNMPDGFICR









CPPGFSGARCQSSCGQVKCRKG









EQCVHTASGPRCFCPSPRDCES









GCASSPCQHGGSCHPQRQPPYY









SCQCAPPFSGSRCELYTAPPSTP









PATCLSQYCADKARDGVCDEAC









NSHACQWDGGDCSLTMENPWA









NCSSPLPCWDYINNQCDELCNTV









ECLFDNFECQGNSKTCKYDKYCA









DHFKDNHCDQGCNSEECGWDG









LDCAADQPENLAEGTLVIVVLMPP









EQLLQDARSFLRALGTLLHTNLRI









KRDSQGELMVYPYYGEKSAAMK









KQRMTRRSLPGEQEQEVAGSKV









FLEIDNRQCVQDSDHCFKNTDAA









AALLASHAIQGTLSYPLVSVVSES









LTPERTQ









LLYLLAVAVVHLFIILLGVIMAKRKR









KHGSLWLPEGFTLRRDASNHKR









REPVGQDAVGLKNLSVQVSEANL









IGTGTSEHWVDDEGPQPKKVKAE









DEALLSEEDDPIDRRPWTQQHLE









AADIRRTPSLALTPPQAEQEVDVL









DVNVRGPDGCTPLMLASLRGGS









SDLSDEDEDAEDSSANIITDLVYQ









GASLQAQTDRTGEMALHLAARYS









RADAAKRLLDAGADANAQDNMG









RCPLHAAVAADAQGVFQILIRNRV









TDLDARMNDGTTPLILAARLAVEG









MVAELINCQADVNAVDDHGKSAL









HWAAAVNNVEATLLLLKNGANRD









MQDNKEETPLFLAAREGSYEAAK









ILLDHFANRDITDHMDRLPRDVAR









DRMHHDIVRLLDEYNVTPSPPGT









VLTSALSPVICGPNRSFLSLKHTP









MGKKSRRPSAKSTMPTSLPNLAK









EAKDAKGSRRKKSLSEKVQLSES









SVTLSPVDSLESPHTYVSDTTSSP









MITSPGILQASPNPMLATAAPPAP









VHAQHALSFSNLHEMQPLAHGAS









TVLPSVSQLLSHHHIVSPGSGSA









GSLSRLHPVPVPADWMNRMEVN









ETQYNEMFGMVLAPAEGTHPGIA









PQSRPPEGKHITTPREPLPPIVTF









QLIPKGSIAQPAGAPQPQSTCPP









AVAGPLPTMYQIPEMARLPSVAF









PTAMMPQQDGQVAQTILPAYHPF









PASVGKYPTPPSQHSYASSNAAE









RTPSHSGHLQGEHPYLTPSPESP









DQWSSSSPHSASDWSDVTTSPT









PGGAGGGQRGPGTHMSEPPHN









NMQVYA







Notch
M
035516
uniprot
full
MPALRPAALRALLWLWLCGAGP
1-25 is
SEQ


2



length
AHA
signal
ID NO:







LQCRGGQEPCVNEGTCVTYHNG
peptide;
6







TGFCRCPEGFLGEYCQHRDPCE
26-1679








KNRCQNGGTCVPQGMLGKATCR
is








CAPGFTGEDCQYSTSHPCFVSR
extra-








PCQNGGTCHMLSRDTYECTCQV
cellular;








GFTGKQCQWTDACLSHPCENGS
1680-








TCTSVASQFSCKCPAGLTGQKCE
1700 is








ADINECDIPGRCQHGGTCLNLPG
trans-








SYRCQCPQGFTGQHCDSPYVPC
membrane;








APSPCVNGGTCRQTGDFTFECN
1701-








CLPGFEGSTCERNIDDCPNHKCQ
2473 is








NGGVCVDGVNTYNCRCPPQWT
cyto-








GQFCTEDVDECLLQPNACQNGG
plasmic








TCTNRNGGYGCVCVNGWSGDD









CSENIDDCAYASCTPGSTCIDRVA









SFSCLCPEGKAGLLCHLDDACIS









NPCHKGALCDTNPLNGQYICTCP









QGYKGADCTEDVDECAMANSNP









CEHAGKCVNTDGAFHCECLKGY









AGPRCEMDINECHSDPCQNDAT









CLDKIGGFTCLCMPGFKGVHCEL









EVNECQSNPCVNNGQCVDKVNR









FQCLCPPGFTGPVCQIDIDDCSST









PCLNGAKCIDHPNGYECQCATGF









TGILCDENIDNCDPDPCHHGQCQ









DGIDSYTCICNPGYMGAICSDQID









ECYSSPCLNDGRCIDLVNGYQCN









CQPGTSGLNCEINFDDCASNPCM









HGVCVDGINRYSCVCSPGFTGQ









RCNIDIDECASNPCRKGATCINDV









NGFRCICPEGPHHPSCYSQVNEC









LSNPCIHGNCTGGLSGYKCLCDA









GWVGVNCEVDKNECLSNPCQNG









GTCNNLVNGYRCTCKKGFKGYN









CQVNIDECASNPCLNQGTCFDDV









SGYTCHCMLPYTGKNCQTVLAP









CSPNPCENAAVCKEAPNFESFSC









LCAPGWQGKRCTVDVDECISKP









CMNNGVCHNTQGSYVCECPPGF









SGMDCEEDINDCLANPCQNGGS









CVDHVNTFSCQCHPGFIGDKCQT









DMNECLSEPCKNGGTCSDYVNS









YTCTCPAGFHGVHCENNIDECTE









SSCFNGGTCVDGINSFSCLCPVG









FTGPFCLHDINECSSNPCLNAGT









CVDGLGTYRCICPLGYTGKNCQT









LVNLCSRSPCKNKGTCVQEKARP









HCLCPPGWDGAYCDVLNVSCKA









AALQKGVPVEHLCQHSGICINAG









NTHHCQCPLGYTGSYCEEQLDE









CASNPCQHGATCNDFIGGYRCE









CVPGYQGVNCEYEVDECQNQPC









QNGGTCIDLVNHFKCSCPPGTRG









LLCEENIDECAGGPHCLNGGQCV









DRIGGYTCRCLPGFAGERCEGDI









NECLSNPCSSEGSLDCVQLKNNY









NCICRSAFTGRHCETFLDVCPQK









PCLNGGTCAVASNMPDGFICRCP









PGFSGARCQSSCGQVKCRRGEQ









CIHTDSGPRCFCLNPKDCESGCA









SNPCQHGGTCYPQRQPPHYSCR









CPPSFGGSHCELYTAPTSTPPAT









CQSQYCADKARDGICDEACNSH









ACQWDGGDCSLTMEDPWANCT









STLRCWEYINNQCDEQCNTAECL









FDNFECQRNSKTCKYDKYCADH









FKDNHCDQGCNSEECGWDGLD









CASDQPENLAEGTLIIVVLLPPEQ









LLQDSRSFLRALGTLLHTNLRIKQ









DSQGALMVYPYFGEKSAAMKKQ









KMTRRSLPEEQEQEQEVIGSKIFL









EIDNRQCVQDSDQCFKNTDAAAA









LLASHAIQGTLSYPLVSVFSELES









PRNAQ









LLYLLAVAVVIILFFILLGVIMAKRK









RKHGFLWLPEGFTLRRDSSNHK









RREPVGQDAVGLKNLSVQVSEA









NLIGSGTSEHWVDDEGPQPKKAK









AEDEALLSEDDPIDRRPWTQQHL









EAADIRHTPSLALTPPQAEQEVDV









LDVNVRGPDGCTPLMLASLRGG









SSDLSDEDEDAEDSSANIITDLVY









QGASLQAQTDRTGEMALHLAAR









YSRADAAKRLLDAGADANAQDN









MGRCPLHAAVAADAQGVFQILIR









NRVTDLDARMNDGTTPLILAARLA









VEGMVAELINCQADVNAVDDHGK









SALHWAAAVNNVEATLLLLKNGA









NRDMQDNKEETPLFLAAREGSYE









AAKILLDHFANRDITDHMDRLPRD









VARDRMHHDIVRLLDEYNVTPSP









PGTVLTSALSPVLCGPNRSFLSLK









HTPMGKKARRPNTKSTMPTSLPN









LAKEAKDAKGSRRKKCLNEKVQL









SESSVTLSPVDSLESPHTYVSDA









TSSPMITSPGILQASPTPLLAAAA









PAAPVHTQHALSFSNLHDMQPLA









PGASTVLPSVSQLLSHHHIAPPGS









SSAGSLGRLHPVPVPADWMNRV









EMNETQYSEMFGMVLAPAEGAH









PGIAAPQSRPPEGKHMSTQREPL









PPIVTFQLIPKGSIAQAAGAPQTQ









SSCPPAVAGPLPSMYQIPEMPRL









PSVAFPPTMMPQQEGQVAQTIVP









TYHPFPASVGKYPTPPSQHSYAS









SNAAERTPSHGGHLQGEHPYLTP









SPESPDQWSSSSPHSASDWSDV









TTSPTPGGGGGGQRGPGTHMSE









PPHSNMQVYA







Notch
H
Q04721
uniprot
A26-
lqcrdgyepcvnegmcvtyhngtgyckcpe
Extra-
SEQ


2-Fc,

(Notch2)
(Notch2)
A1677
gflgeycqhrdpceknrcqnggtcvaqamlg
cellular
ID NO:


extra-

DB01281
DrugBank
(Notch2)
katcrcasgftgedcqystshpcfvsrpcln
domain
7


cllular

(Abatacept)
(Abatacept)

ggtchmlsrdtyectcqvgftgkecqwtdac
of Notch2



domain




lshpcangstcttvanqfsckcltgftgqkc
with








etdvnecdipghcqhggtclnlpgsyqcqcp
abatacept








qgftgqycdslyvpcapspcvnggtcrqtgd
Fc








ftfecnclpgfegstcerniddcpnhrcqng









gvcvdgvntyncrcppqwtgqfctedvdecl









iqpnacqnggtcanrnggygcvcvngwsgdd









cseniddcafasctpgstcidrvasfscmcp









egkagllchlddacisnpchkgalcdtnpln









gqyictcpqgykgadctedvdecamansnpc









ehagkcvntdgafhceclkgyagprcemdin









echsdpcqndatcldkiggftclcmpgfkgv









hceleinecqsnpcvnngqcvdkvnrfqclc









ppgftgpvcqididdcsstpclngakcidhp









ngyecqcatgftgvlceenidncdpdpchhg









qcqdgidsytcicnpgymgaicsdqidecys









spclndgrcidlvngyqcncqpgtsgvncei









nfddcasnpcihgicmdgi









nryscvcspgftgqrcnididecasnpcrkga









tcingvngfrcicpegphhpscysqvneclsn









pcihgnctgglsgykclcdagwvgincevdkn









eclsnpcqnggtcdnlvngyrctckkgfkgyn









cqvnidecasnpclnqgtcfddisgytchcvl









pytgkncqtvlapcspnpcenaavckespnfe









sytclcapgwqgqrctidideciskpcmnhgl









chntqgsymcecppgfsgmdceediddclan









pcqnggscmdgvntfsclclpgftgdkcqtd









mneclsepcknggtcsdyvnsytckcqagfd









gvhcenninectesscfnggtcvdginsfscl









cpvgftgsfclheinecsshpclnegtcvdgl









gtyrcscplgytgkncqtlvnlcsrspcknkg









tcvqkkaesqclcpsgwagaycdvpnvscdia









asrrgvlvehlcqhsgvcinagnthycqcplg









ytgsyceeqldecasnpcqhgatcsdfiggyr









cecvpgyqgvnceyevdecqnqpcqnggtcid









lvnhfkcscppgtrgllceeniddcargphcl









nggqcmdriggyscrclpgfagercegdinec









lsnpcssegsldciqltndylcvcrsaftgrh









cetfvdvcpqmpclnggtcavasnmpdgficr









cppgfsgarcqsscgqvkcrkgeqcvhtasgp









rcfcpsprdcesgcasspcqhggschpqrqpp









yyscqcappfsgsrcelytappstppatclsq









ycadkardgvcdeacnshacqwdggdcsltme









npwancssplpcwdyinnqcdelcntveclfd









nfecqg nsktckydkycadhfkdnhcdqgcn









seecgwdgldcaadqpenlaegtlvivvlmp









peqllqdarsflralgtllhtnlrikrdsqge









lmvypyygeksaamkkqrmtrrslpgeqeqev









agskvfleidnrqcvqdsdhcfkntdaaaall









ashaiqgtlsyplvsvvsesltpertqQEPKS









SDKTHTSPPSPAPELLGGSSVFLFPP









KPKDTLMISRTPEVTCVVVDVSH









EDPEVKFNWYVDGVEVHNAKTK









PREEQYNSTYRVVSVLTVLHQD









WLNGKEYKCKVSNKALPAPIEKTI









SKAKGQPREPQVYTLPPSRDELT









KNQVSLTCLVKGFYPSDIAVEWE









SNGQPENNYKTTPPVLDSDGSFF









LYSKLTVDKSRWQQGNVFSCSV









MHEALHNHYTQKSLSLSPGK







Notch
M
035516
uniprot
A26-
lqcrggqepcvnegtcvtyhngtgfcrcpegf
Extra-
SEQ


2-Fc,

(Notch2)
(Notch2)
A1679
lgeycqhrdpceknreqnggtcvpqgmlgkat
cellular
ID NO:


extra-

DB01281
DrugBank
(Notch2)
crcapgftgedcqystshpcfvsrpcqnggtc
domain
8


cllular

(Abatacept)
(Abatacept)

hmlsrdtyectcqvgftgkqcqwtdaclshpc
of Notch2



domain




engstctsvasqfsckcpagltgqkceadine
with








cdipgrcqhggtclnlpgsyrcqcpqgftgqh
abatacept








cdspyvpcapspcvnggtcrqtgdftfecncl
Fc








pgfegstcerniddcpnhkcqnggvcvdgvnt









yncrcppqwtgqfctedvdecllqpnacqng









gtctnrnggygcvcvngwsgddcseniddca









yasctpgstcidrvasfsclcpegkagllchl









ddacisnpchkgalcdtnplngqyictcpqgy









kgadctedvdecamansnpcehagkcvntdg









afhceclkgyagprcemdinechsdpcqnd









atcldkiggftclcmpgfkgvhcelevnecqs









npcvnngqcvdkvnrfqclcppgftgpvcqid









iddcsstpclngakcidhpngyecqcatgftg









ilcdenidncdpdpchhgqcqdgidsytcicn









pgymgaicsdqidecysspclndgrcidlvng









yqcncqpgtsglnceinfddcasnpcmhgvcv









dginryscvcspgftgqrcnididecasnpcr









kgatcindvngfrcicpegphhpscysqvnec









lsnpcihgnctgglsgykclcdagwvgvncev









dkneclsnpcqnggtcnnlvngyrctckkgfk









gyncqvnidecasnpclnqgtcfddvsgytch









cmlpytgkncqtvlapcspnpcenaavckeap









nfesfsclcapgwqgkrctvdvdeciskpcm









nngvchntqgsyvcecppgfsgmdceedin









dclanpcqnggscvdhvntfscqchpgfigdk









cqtdmneclsepcknggtcsdyvnsytctcp









agfhgvhcennidectesscfnggtcvdgins









fsclcpvgftgpfclhdinecssnpclnagtc









vdglgtyrcicplgytgkncqtlvnlcsrspc









knkgtcvqekarphclcppgwdgaycdvlnvs









ckaaalqkgvpvehlcqhsgicinagnthhcq









cplgytgsyceeqldecasnpcqhgatcndfi









ggyrcecvpgyqgvnceyevdecqnqpcqng









gtcidlvnhfkcscppgtrgllceenidecag









gphclnggqcvdriggytcrclpgfagerceg









dienclsnpcssegsldcvqlknnyncicrsa









ftgrhcetfldvcpqkpclnggtcavasnmpd









gficrcppgfsgarcqsscgqvkcrrgeqcih









tdsgprcfclnpkdcesgcasnpcqhggtcyp









qrqpphyscrcppsfggshcelytaptstppa









tcqsqycadkardgicdeacnshacqwdggdc









sltmedpwanctstlrcweyinnqcdeqcnta









ecifdnfecqrnsktckydkycadhfkdnhcd









qgcnseecgwdgldcasdqpenlaegtliivv









llppeqllqdsrsflralgtllhtnlrikqds









qgalmvypyfgeksaamkkqkmtrrslpeeqe









qeqevigskifleidnrqcvqdsdqcfkntda









aaallashaiqgtlsypivsvfselesprnaq









QEPKSSDKTHTSPPSPAPELLGGSSVFL









FPPKPKDTLMISRTPEVTCVVVDV









SHEDPEVKFNWYVDGVEVHNAK









TKPREEQYNSTYRVVSVLTVLHQ









DWLNGKEYKCKVSNKALPAPIEK









TISKAKGQPREPQVYTLPPSRDE









LTKNQVSLTCLVKGFYPSDIAVE









WESNGQPENNYKTTPPVLDSDG









SFFLYSKLTVDKSRWQQGNVFSC









SVMHEALHNHYTQKSLSLSPGK







Jagged-
H
Q9Y219
Uniprot
A27-
arpmgyfelqlsalrnvngellsgaccdgdgr
Lower
SEQ


2-Fc

(Jagged2)
(Jagged2)
A1080
ttraggcghdecdtyvrvclkeyqakvtptgp
Case is
ID NO:




DB01281
DrugBank
(Jagged
csyghgatpvlggnsfylppagaagdrarara
Jagged-2
9




(Abatacept)
(Abatacept)
2)
raggdqdpglvvipfqfawprsftliveawdw
extra-








dndttpneelliervshagminpedrwkslhf
cellular








sghvahlelqirvrcdenyysatcnkfcrprn
domain








dffghytcdqygnkacmdgwmgkeckeavckq
sequence








gcnllhggctvpgecrcsygwqgrfcdecvpy
without








pgcvhgscvepwqcncetnwggllcdkdlnyc
the signal








gshhpctnggtcinaepdqyrctcpdgysgrn
peptide








cekaehactsnpcanggschevpsgfechc
AA 24-








psgwsgptcaldidecasnpcaaggtcvdqv
1080.








dgfecicpeqwvgatcqldanecegkpclnaf
Uppercase








scknliggyycdcipgwkginchinvndcrgq
is Fc








cqhggtckdlvngyqcvcprgfggrhcelerd
from








ecasspchsgglcedladgfhchcpqgfsgpl
Abatacept








cevdvdlcepspcrngarcynlegdyycacp









ddfggkncsvprepcpggacrvidgcgsdag









pgmpgtaasgvcgphgrcvsqpggnfscic









dsgftgtycheniddclgqpcrnggtcidevd









afrcfcpsgwegelcdtnpndclpdpchsrgr









cydlvndfycacddgwkgktchsrefqcdayt









csnggtcydsgdtfrcacppgwkgstcavakn









ssclpnpcvnggtcvgsgasfscicrdgwegr









tcthntndcnplpcynggicvdgvnwfrceca









pgfagpdcrinidecqsspcaygatcvdeing









yrcscppgragprcqevigfgrscwsrgtpfp









hgsswvedcnscrcldgrrdcskvwcgwkpcl









lagqpealsaqcplgqrclekapgqclrppce









awgecgaeeppstpclprsghldnncarltlh









fnrdhvpqgttvgaicsgirsipatravardr









ilvllcdrassgasavevavsfspardlpdss









liqgaahaivaaitqrgnsslllavtevkvet









vvtggsstQEPKSSDKTHTSPPSPAPELLGG









SSVFLFPPKPKDTLMISRTPEVTC









VVVDVSHEDPEVKFNWYVDGVE









VHNAKTKPREEQYNSTYRVVSVL









TVLHQDWLNGKEYKCKVSNKALP









APIEKTISKAKGQPREPQVYTLPP









SRDELTKNQVSLTCLVKGFYPSDI









AVEWESNGQPENNYKTTPPVLD









SDGSFFLYSKLTVDKSRWQQGN









VFSCSVMHEALHNHYTQKSLSLS









PGK







UMOD
H
P07911
Uniprot
full
MGQPSLTWMLMVVVASWFITTA
1-24
SEQ






length
ATDTSEARWCSECHSNATCTED
signal
ID NO:







EAVTTCTCQEGFTGDGLTCVDLD
peptide;
10







ECAIPGAHNCSANSSCVNTPGSF
25-614








SCVCPEGFRLSPGLGCTDVDECA
uro








EPGLSHCHALATCVNVVGSYLCV
modulin;








CPAGYRGDGWHCECSPGSCGP
note:








GLDCVPEGDALVCADPCQAHRTL
25-587 is








DEYWRSTEYGEGYACDTDLRGW
secreted








YRFVGQGGARMAETCVPVLRCN
form;








TAAPMWLNGTHPSSDEGIVSRKA
615-640








CAHWSGHCCLWDASVQVKACA
is








GGYYVYNLTAPPECHLAYCTDPS
cleaved








SVEGTCEECSIDEDCKSNNGRW
in mature








HCQCKQDFNITDISLLEHRLECGA
form








NDMKVSLGKCQLKSLGFDKVFM









YLSDSRCSGFNDRDNRDWVSVV









TPARDGPCGTVLTRNETHATYSN









TLYLADEIIIRDLNIKINFACSYPLD









MKVSLKTALQPMVSALNIRVGGT









GMFTVRMALFQTPSYTQPYQGS









SVTLSTEAFLYVGTMLDGGDLSR









FALLMTNCYATPSSNATDPLKYFII









QDRCPHTRDSTIQVVENGESSQ









GRFSVQMFRFAGNYDLVYLHCE









VYLCDTMNEKCKPTCSGTRFRS









GSVIDQSRVLNLGPITRKGVQATV









SRAFSSLGLLKVWLPLLLSATLTL









TFQ







UMOD
M
Q91X17
Uniprot
full
MGIPLTWMLLVMMVTSWFTLAEA
1-24
SEQ






length
SNSTEARRCSECHNNATCTVDG
signal
ID NO:







VVTTCSCQTGFTGDGLVCEDMD
peptide;
11







ECATPWTHNCSNSSCVNTPGSF
25-618








KCSCQDGFRLTPELSCTDVDECS
uro-








EQGLSNCHALATCVNTEGDYLCV
modulin;








CPEGFTGDGWYCECSPGSCEPG
note:








LDCLPQGPDGKLVCQDPCNTYET
25-588 is








LTEYWRSTEYGVGYSCDAGLHG
secreted








WYRFTGQGGVRMAETCVPVLRC
form;








NTAAPMWLNGSHPSSSEGIVSRT
619-642








ACAHWSDQCCRWSTEIQVKACP
is








GGFYIYNLTAPPECNLAYCTDPSS
cleaved








VEGTCEECRVDEDCISDNGRWR
in mature








CQCKQDSNITDVSQLEYRLECGA
form








NDIKMSLRKCQLQSLGFMNVFMY









LNDRQCSGFSESDERDWMSIVT









PARNGPCGTVLRRNETHATYSNT









LYLANAIIIRDIIIRMNFECSYPLDM









KVSLKTSLQPMVSALNISLGGTGK









FTVRMALFQSPTYTQPHQGPSV









MLSTEAFLYVGTMLDGGDLSRFV









LLMTNCYATPSSNSTDPVKYFIIQ









DSCPRTEDTTIQVTENGESSQAR









FSVQMFRFAGNYDLVYLHCEVYL









CDSTSEQCKPTCSGTRFRSGNFI









DQTRVLNLGPITRQGVQASVSKA









ASSNLRLLSIWLLLFPSATLIFMVQ







MEP1B
H
Q16820
Uniprot
full
MDLWNLSWFLFLDALLVISGLATP
1-22
SEQ






length
ENFDVDGGMDQDIFDINEGLGLD
signal
ID NO:







LFEGDIRLDRAQIRNSIIGEKYRW
peptide;
12







PHTIPYVLEDSLEMNAKGVILNAF
23-652








ERYRLKTCIDFKPWAGETNYISVF
extra-








KGSGCWSSVGNRRVGKQELSIG
cellular;








ANCDRIATVQHEFLHALGFWHEQ
653-673








SRSDRDDYVRIMWDRILSGREHN
trans-








FNTYSDDISDSLNVPYDYTSVMH
membrane;








YSKTAFQNGTEPTIVTRISDFEDVI
674-701








GQRMDFSDSDLLKLNQLYNCSSS
cytosol








LSFMDSCSFELENVCGMIQSSGD









NADWQRVSQVPRGPESDHSNM









GQCQGSGFFMHFDSSSVNVGAT









AVLESRTLYPKRGFQCLQFYLYN









SGSESDQLNIYIREYSADNVDGNL









TLVEEIKEIPTGSWQLYHVTLKVT









KKFRVVFEGRKGSGASLGGLSID









DINLSETRCPHHIWHIRNFTQFIG









SPNGTLYSPPFYSSKGYAFQIYLN









LAHVTNAGIYFHLISGANDDQLQ









WPCPWQQATMTLLDQNPDIRQR









MSNQRSITTDPFMTTDNGNYFW









DRPSKVGTVALFSNGTQFRRGG









GYGTSAFITHERLKSRDFIKGDDV









YILLTVEDISHLNSTQIQLTPAPSV









QDLCSKTTCKNDGVCTVRDGKA









ECRCQSGEDWWYMGERCEKRG









STRDTIVIAVSSTVAVFALMLIITLV









SVYCTRKKYRERMSSNRPNLTP









QNQHAF







MEP1B
M
Q61847
Uniprot
full
MDARHQPWFLVFATFLLVSGLPA
1-20
SEQ






length
PEKFVKDIDGGIDQDIFDINQGLG
signal
ID NO:







LDLFEGDIKLEANGKNSIIGDHKR
peptide;
13







WPHTIPYVLEDSLEMNAKGVILNA
21-654








FERYRLKTCIDFKPWSGEANYISV
extra-








FKGSGCWSSVGNIHAGKQELSIG
cellular;








TNCDRIATVQHEFLHALGFWHEQ
655-678








SRADRDDYVIIVWDRIQPGKEHN
trans-








FNIYNDSVSDSLNVPYDYTSVMH
membrane;








YSKTAFQNGTESTIVTRISEFEDVI
679-704








GQRMDFSDYDLLKLNQLYNCTSS
cytosol








LSFMDSCDFELENICGMIQSSGD









SADWQRVSQVLSGPESDHSKMG









QCKDSGFFMHFNTSILNEGATAM









LESRLLYPKRGFQCLEFYLYNSG









SGNDQLNIYTREYTTGQQGGVLT









LQRQIKEVPIGSWQLHYVTLQVTK









KFRVVFEGLRGPGTSSGGLSIDDI









NLSETRCPHHIWHIQNFTQILGGQ









DTSVYSPPFYSSKGYAFQIYMDL









RSSTNVGIYFHLISGANDDQLQW









PCPWQQATMTLLDQNPDIRQRM









FNQRSITTDPTMTSDNGSYFWDR









PSKVGVTDVFPNGTQFSRGIGYG









TTVFITRERLKSREFIKGDDIYILLT









VEDISHLNSTSAVPDPVPTLAVHN









ACSEVVCQNGGICVVQDGRAEC









KCPAGEDWWYMGKRCEKRGST









RDTVIIAVSSTVTVFAVMLIITLVSV









YCTRRKYRKKARANTAAMTLENQ









HAF







IL11RA
H
Q14626
Uniprot
full
MSSSCSGLSRVLVAVATALVSAS
1-22 is
SEQ






length
SPCPQAWGPPGVQYGQPGRSV
signal
ID NO:







KLCCPGVTAGDPVSWFRDGEPK
peptide;
14







LLQGPDSGLGHELVLAQADSTDE
23-422 is








GTYICQTLDGALGGTVTLQLGYP
full








PARPVVSCQAADYENFSCTWSP
IL11Ra;








SQISGLPTRYLTSYRKKTVLGADS
371-391








QRRSPSTGPWPCPQDPLGAARC
is








VVHGAEFWSQYRINVTEVNPLGA
trans-








STRLLDVSLQSILRPDPPQGLRVE
membrane;








SVPGYPRRLRASWTYPASWPCQ
392-422








PHFLLKFRLQYRPAQHPAWSTVE
is








PAGLEEVITDAVAGLPHAVRVSA
cyto-








RDFLDAGTWSTWSPEAWGTPST
plasmic)








GTIPKEIPAWGQLHTQPEVEPQV









DSPAPPRPSLQPHPRLLDHRDSV









EQVAVLASLGILSFLGLVAGALAL









GLWLRLRRGGKDGSPKPGFLAS









VIPVDRRPGAPNL







IL11RA
M
Q64385
Uniprot
full
MSSSCSGLTRVLVAVATALVSSS
1-23 is
SEQ






length
SPCPQAWGPPGVQYGQPGRPV
signal
ID NO:







MLCCPGVSAGTPVSWFRDGDSR
peptide;
15







LLQGPDSGLGHRLVLAQVDSPDE
24-432 is








GTYVCQTLDGVSGGMVTLKLGFP
full








PARPEVSCQAVDYENFSCTWSP
IL11Ra;








GQVSGLPTRYLTSYRKKTLPGAE
373-393








SQRESPSTGPWPCPQDPLEASR
is








CVVHGAEFWSEYRINVTEVNPLG
trans-








ASTCLLDVRLQSILRPDPPQGLRV
membrane;








ESVPGYPRRLHASWTYPASWRR
394-432








QPHFLLKFRLQYRPAQHPAWSTV
is








EPIGLEEVITDAVAGLPHAVRVSA
cyto-








RDFLDAGTWSAWSPEAWGTPST
plasmic)








GPLQDEIPDWSQGHGQQLEAVV









AQEDSPAPARPSLQPDPRPLDHR









DPLEQVAVLASLGIFSCLGLAVGA









LALGLWLRLRRSGKDGPQKPGLL









APMIPVEKLPGIPNLQRTPENFS







IL11RA,
H
Q14626
Uniprot
A23-391
SSPCPQAWGPPGVQYGQPGRS

SEQ


extra-




VKLCCPGVTAGDPVSWFRDGEP

ID NO:


cell-




KLLQGPDSGLGHELVLAQADSTD

16


ular




EGTYICQTLDGALGGTVTLQLGY




domain




PPARPVVSCQAADYENFSCTWS









PSQISGLPTRYLTSYRKKTVLGAD









SQRRSPSTGPWPCPQDPLGAAR









CVVHGAEFWSQYRINVTEVNPLG









ASTRLLDVSLQSILRPDPPQGLRV









ESVPGYPRRLRASWTYPASWPC









QPHFLLKFRLQYRPAQHPAWSTV









EPAGLEEVITDAVAGLPHAVRVSA









RDFLDAGTWSTWSPEAWGTPST









GTIPKEIPAWGQLHTQPEVEPQV









DSPAPPRPSLQPHPRLLDHRDSV









EQVAVLA







IL11RA,
M
Q64385
Uniprot
A24-
SPCPQAWGPPGVQYGQPGRPV

SEQ


extra-



A393
MLCCPGVSAGTPVSWFRDGDSR

ID NO:


cell-




LLQGPDSGLGHRLVLAQVDSPDE

17


ular




GTYVCQTLDGVSGGMVTLKLGFP




domain




PARPEVSCQAVDYENFSCTWSP









GQVSGLPTRYLTSYRKKTLPGAE









SQRESPSTGPWPCPQDPLEASR









CVVHGAEFWSEYRINVTEVNPLG









ASTCLLDVRLQSILRPDPPQGLRV









ESVPGYPRRLHASWTYPASWRR









QPHFLLKFRLQYRPAQHPAWSTV









EPIGLEEVITDAVAGLPHAVRVSA









RDFLDAGTWSAWSPEAWGTPST









GPLQDEIPDWSQGHGQQLEAVV









AQEDSPAPARPSLQPDPRPLDHR









DPLEQVAV







IL11
H
P20809
Uniprot
full
MNCVCRLVLVVLSLWPDTAVAPG
1-22 is
SEQ






length
PPPGPPRVSPDPRAELDSTVLLT
signal
ID NO:







RSLLADTRQLAAQLRDKFPADGD
peptide;
18







HNLDSLPTLAMSAGALGALQLPG
23-199 is








VLTRLRADLLSYLRHVQWLRRAG
IL11








GSSLKTLEPELGTLQARLDRLLRR









LQLLMSRLALPQPPPDPPAPPLA









PPSSAWGGIRAAHAILGGLHLTLD









WAVRGLLLLKTRL









Production of ANDbody Compositions

Production of ANDbody polypeptides


ANDbody polypeptides of the invention may be produced by any suitable means. For example, all or part of the ANDbody may be expressed by a host cell comprising a nucleotide which encodes the ANDbody. Such methods of making a therapeutic polypeptide are routine in the art. See, in general, Smales & James (Eds.), Therapeutic Proteins: Methods and Protocols (Methods in Molecular Biology), Humana Press (2005); and Crommelin, Sindelar & Meibohm (Eds.), Pharmaceutical Biotechnology: Fundamentals and Applications, Springer (2013).


Methods for producing an ANDbody may involve expression in mammalian cells, although recombinant proteins can also be produced using insect cells, yeast, bacteria, or other cells under the control of appropriate promoters. Mammalian expression vectors may comprise nontranscribed elements such as an origin of replication, a suitable promoter and enhancer, and other 5′ or 3′ flanking nontranscribed sequences, and 5′ or 3′ nontranslated sequences such as necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, and termination sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the other genetic elements required for expression of a heterologous DNA sequence. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described in Green & Sambrook, Molecular Cloning: A Laboratory Manual (Fourth Edition), Cold Spring Harbor Laboratory Press (2012).


Various mammalian cell culture systems can be employed to express and manufacture an ANDbody described herein. Examples of mammalian expression systems include CHO cells, COS cells, HeLA and BHK cell lines. Processes of host cell culture for production of protein therapeutics are described in, e.g., Zhou and Kantardjieff (Eds.), Mammalian Cell Cultures for Biologics Manufacturing (Advances in Biochemical Engineering/Biotechnology), Springer (2014). Purification of protein therapeutics is described in Franks, Protein Biotechnology: Isolation, Characterization, and Stabilization, Humana Press (2013); and in Cutler, Protein Purification Protocols (Methods in Molecular Biology), Humana Press (2010). Formulation of protein therapeutics is described in Meyer (Ed.), Therapeutic Protein Drug Products: Practical Approaches to formulation in the Laboratory, Manufacturing, and the Clinic, Woodhead Publishing Series (2012).


Antibody production techniques are known. See, for example, Zhiqiang (Editor), Therapeutic Monoclonal Antibodies: From Bench to Clinic. 1st Edition. Wiley 2009; Greenfield (Ed.) Antibodies: A Laboratory Manual. (Second edition) Cold Spring Harbor Laboratory Press 2013; Ferrara et al. 2012. Using Phage and Yeast Display to Select Hundreds of Monoclonal Antibodies: Application to Antigen 85, a Tuberculosis Biomarker. PLoS ONE 7(11): e49535, for methods of making recombinant antibodies, including antibody engineering, use of degenerate oligonucleotides, 5′-RACE, phage display, and mutagenesis; antibody testing and characterization; antibody pharmacokinetics and pharmacodynamics; antibody purification and storage; and screening and labeling techniques.


Production of ANDbody RNAs


In some embodiments, ANDbodies RNAs may be produced, e.g., for delivery to a subject. Generally, therapeutic mRNAs are made by in vitro transcription. Modification such as incorporation of modified bases, 5′cap analogues, and polyA tails can optimize activity and function. For example, translation and stability of mRNA can be accomplished, by cap and poly A tail modifications. E.g., incorporation of cap analogs such as ARCA (anti-reverse cap analogs) and a poly(A) tail of 100-200 bp into in vitro transcribed (IVT) mRNAs improves expression and stability (Kaczmarek et al. Genome Medicine (2017) 9:60). New types of cap analogs, such as 1,2-dithiodiphosphate-modified caps, can further improve efficiency of translation (Strenkowska et al. Nucleic Acids Res. 2016; 44:9578-90). Codon optimization can also improve efficacy of protein synthesis and limit mRNA destabilization by rare codons (Presnyak et al. Cell. 2015; 160:1111-24.93; Thess et al. Mol Ther. 2015; 23: 1456-64). Modifying 3′ and 5′ untranslated regions (UTRs), which contain sequences responsible for recruiting RNA-binding proteins (RBPs) and miRNAs, can enhance the level of protein product (Kaczmarek). Further, UTRs can be modified to encode regulatory elements (e.g., K-turn motifs and miRNA binding sites), in order to control RNA expression in a cell-specific manner (Wroblewska et al. Nat Biotechnol. 2015; 33:839-41). RNA base modifications (e.g., pseudouridine incorporated mRNA, e.g., N1-methyl-pseudouridine) contribute to masking mRNA immune-stimulatory activity and increase mRNA translation by enhancing translation initiation (Andries et al. J Control Release. 2015; 217:337-44; Svitkin et al. Nucleic Acids Res. 2017; 45:6023-36). mRNA compositions and methods of their manufacture are known and are disclosed, e.g., in WO2016011306; WO2016014846; WO2016022914; WO2016077123; WO2016164762; WO2016201377; WO2017049275; U.S. Pat. Nos. 9,937,233; 8,710,200; U.S. Ser. No. 10/022,425; U.S. Pat. Nos. 9,878,056; 9,572,897; Jemielity et al. RNA. 2003; 9:1108-22. 90; Mockey et al. Biochem Biophys Res Commun. 2006; 340:1062-8. 91; Strenkowska et al. Nucleic Acids Res. 2016; 44:9578-90. 92; Presnyak et al. Cell. 2015; 160:1111-24. 93; Kaczmarek et al. Genome Medicine (2017) 9:60.


Production Of ANDbodies With Altered Affinities


ANDbodies with binding sites with altered affinities can be made using methods known in the art, e.g., an ANDbody can be engineered to have a target binding site that has decreased affinity for the effector target. See, e.g., U.S. Pat. No. 10,654,928. In general, an ANDBody may be modified to alter the affinity of an effector target binding site to its effector target or to alter the affinity of an address target binding site to its address target. The modification can increase or decrease affinity for the binding site's binding partner.


Assessment of Targets and Addresses

Expression of a therapeutic target can be assessed at either the RNA or protein level using methods known in the art. In embodiments, expression of the therapeutic target is assessed by measuring RNA expression, e.g., using an RNA sequence dataset as a proxy for protein expression levels. RNA datasets include those a genotype-Tissue Expression (GTEx) dataset (see, e.g., https://www.genome.gov/Funded-Programs-Projects/Genotype-Tissue-Expression-Project) or a Human Protein Atlas (HPA) dataset (https://www.proteinatlas.org/).


A non-limiting list of tissues in which expression of the therapeutic target can be assessed includes, e.g., the minor salivary gland, thyroid, lung, breast (mammary tissue), pancreas, adrenal gland, liver, kidney (cortex), kidney (medulla), adipose-viscaral (omentum), small intestine—terminal ileum, fallopian tube, ovary, uterus, skin not sun exposed (suprapubic); cervix—endocervix, cervix-ectocervix, vagina, skin sun exposed (lower leg), cells eneanterior cingulate cortex (BA24), caudate (basal ganglia), putamen (basal ganglia), nucleus acumbens (basal ganglia), hypothalamus, amygdala, hippocampus, cerebellum/cerebellar hemisphere, substantia nigra, pituitary, spinal cord (cervical), artery-aorta, heart-atrial appendage, artery-coronary-heart, left ventricle, esophagus-mucosa, esophagus-muscularis, esophagus-gastroesophageal junction, spleen, stomach, colon-transverse, colon—sigmoid, testis, whole blood, cells—(EBV-transformed lymphocytes, artery-tibial, or nerve-tibial tissues.


Address markers can be assessed using methods well known in the art, e.g., gene expression can be assessed at the mRNA level using Northern blots, cDNA or oligonucleotide microarrays, or sequencing (e.g., RNA-Seq), or at the level of protein expression using protein microarrays, Western blots, flow cytometry, immunohistochemistry, etc. Modifications can be assessed, e.g., using antibodies that are specific for a particular modified form of a protein, e.g., phospho-specific antibodies, or mass spectrometry.


Uses of ANDbodies

ANDbodies and their pharmaceutical compositions provided herein are suitable for administration to a subject in need thereof, wherein the subject is a human or a non-human animal, for example, suitable for human therapeutic or veterinary use.


Veterinary use includes use for treatment of mammals, including commercially relevant mammals, e.g., pet and live-stock animals, such as cattle, pigs, horses, sheep, goats, cats, dogs, mice, and/or rats; and/or birds, including commercially relevant birds such as parrots, poultry, chickens, ducks, geese, hens or roosters and/or turkeys; zoo animals, e.g., a feline; non-mammal animals, e.g., reptiles, fish, amphibians, etc.


The invention is further directed to a subject or subject cell comprising the ANDbody composition described herein. In some embodiments, the subject or subject cell is a plant, insect, bacteria, fungus, vertebrate, mammal (e.g., human), or other organism or cell.


In some embodiments, a subject or a subject cell is contacted with (e.g., delivered to or administered to) the ANDbody composition. In some embodiments, the subject is a mammal, such as a human. The amount of the ANDbody composition, expression product, or both in the subject can be measured at any time after administration.


Pharmaceutical Compositions

Polypeptide Pharmaceutical Compositions


The ANDbody compositions described herein (e.g., ANDbody polypeptide or RNA compositions) may be administered to a subject in need thereof. The invention includes pharmaceutical compositions that include an ANDbody composition in combination with one or more pharmaceutically acceptable excipients.


Formulation of protein therapeutics is routine. See, for example, Ribeiro et al., Insights on the Formulation of Recombinant Proteins. Adv Biochem Eng Biotechnol. 2020; 171:23-54. doi: 10.1007/10_2019_119. PMID: 31844925.


RNA Pharmaceutical Compositions


Nucleic acids (e.g., RNA) encoding an ANDBody can alternatively or additionally be administered to a subject. Generally, therapeutic mRNAs are made by in vitro transcription. Modification such as incorporation of modified bases, 5′cap analogues, and polyA tails can optimize activity and function. For example, translation and stability of mRNA can be accomplished, by cap and poly A tail modifications. E.g., incorporation of cap analogs such as ARCA (anti-reverse cap analogs) and a poly(A) tail of 100-200 bp into in vitro transcribed (IVT) mRNAs improves expression and stability (Kaczmarek et al. Genome Medicine (2017) 9:60). New types of cap analogs, such as 1,2-dithiodiphosphate-modified caps, can further improve efficiency of translation (Strenkowska et al. Nucleic Acids Res. 2016; 44:9578-90). Codon optimization can also improve efficacy of protein synthesis and limit mRNA destabilization by rare codons (Presnyak et al. Cell. 2015; 160:1111-24. 93; Thess et al. Mol Ther. 2015; 23: 1456-64). Modifying 3′ and 5′ untranslated regions (UTRs), which contain sequences responsible for recruiting RNA-binding proteins (RBPs) and miRNAs, can enhance the level of protein product (Kaczmarek). Further, UTRs can be modified to encode regulatory elements (e.g., K-turn motifs and miRNA binding sites), in order to control RNA expression in a cell-specific manner (Wroblewska et al. Nat Biotechnol. 2015; 33:839-41). RNA base modifications (e.g., pseudouridine incorporated mRNA, e.g., N1-methyl-pseudouridine) contribute to masking mRNA immune-stimulatory activity and increase mRNA translation by enhancing translation initiation (Andries et al. J Control Release. 2015; 217:337-44; Svitkin et al. Nucleic Acids Res. 2017; 45:6023-36). mRNA compositions and methods of their manufacture are known and are disclosed, e.g., in WO2016011306; WO2016014846; WO2016022914; WO2016077123; WO2016164762; WO2016201377; WO2017049275; U.S. Pat. Nos. 9,937,233; 8,710,200; U.S. Ser. No. 10/022,425; U.S. Pat. Nos. 9,878,056; 9,572,897; Jemielity et al. RNA. 2003; 9:1108-22. 90; Mockey et al. Biochem Biophys Res Commun. 2006; 340:1062-8. 91; Strenkowska et al. Nucleic Acids Res. 2016; 44:9578-90. 92; Presnyak et al. Cell. 2015; 160:1111-24. 93; Kaczmarek et al. Genome Medicine (2017) 9:60.


In embodiments, the RNA is a circular RNA. See, for example, WO2019118919, describing the expression of a therapeutic RNA, such as an antibody RNA, from a circular RNA. In some embodiments, the invention includes a circular polyribonucleotide that comprises (a) an internal ribosome entry site (IRES), (b) an expression sequence encoding a ANDbody described herein and lacking a poly-A sequence, and (c) a termination element. A circular RNA encoding an ANDbody described herein may be delivered naked (i.e., without formulation with a carrier) or with a carrier.


Carriers


Lipid Nanoparticles


Formulations of the compositions described herein (e.g., polypeptide or RNA ANDbody compositions) for in vivo delivery with a carrier include lipid nanoparticle (LNP) formulations. See, e.g., U.S. Pat. Nos. 9,764,036; 9,682,139; Kauffman et al. Nano Lett. 2015; 15: 7300-6. 37; Fenton et al. Adv Mater. 2016; 28:2939-43). LNPs, in some embodiments, comprise one or more ionic lipids, such as non-cationic lipids (e.g., neutral or anionic, or zwitterionic lipids); one or more conjugated lipids (such as PEG-conjugated lipids or lipids conjugated to polymers described in Table 5 of WO2019217941; incorporated herein by reference in its entirety); one or more sterols (e.g., cholesterol); and, optionally, one or more targeting molecules (e.g., conjugated receptors, receptor ligands, antibodies); or combinations of the foregoing.


Lipids that can be used in nanoparticle formations (e.g., lipid nanoparticles) include, for example those described in Table 4 of WO2019217941, which is incorporated herein by reference—e.g., a lipid-containing nanoparticle can comprise one or more of the lipids in Table 4 of WO2019217941. Lipid nanoparticles can include additional elements, such as polymers, such as the polymers described in Table 5 of WO2019217941, incorporated by reference.


In some embodiments, conjugated lipids, when present, can include one or more of PEG-diacylglycerol (DAG) (such as Kmonomethoxy-polyethyleneglycol)-2,3-dimyristoylglycerol (PEG-DMG)), PEG-dialkyloxypropyl (DAA), PEG-phospholipid, PEG-ceramide (Cer), a pegylated phosphatidylethanoloamine (PEG-PE), PEG succinate diacylglycerol (PEGS-DAG) (such as 4-0-(2′,3′-di(tetradecanoyloxy)propyl-I-0-(w-methoxy(polyethoxy)ethyl) butanedioate (PEG-S-DMG)), PEG dialkoxypropylcarbam, N-(carbonyl-methoxypoly ethylene glycol 2000)-1,2-distearoyl-sn-glycero phosphoethanolamine sodium salt, and those described in Table 2 of WO2019051289 (incorporated by reference), and combinations of the foregoing.


In some embodiments, sterols that can be incorporated into lipid nanoparticles include one or more of cholesterol or cholesterol derivatives, such as those in WO2009/127060 or US2010/0130588, which are incorporated by reference. Additional exemplary sterols include phytosterols, including those described in Eygeris et al (2020), dx.doi.org/10.1021/acs.nanolett.0c01386, incorporated herein by reference.


In some embodiments, the lipid particle comprises an ionizable lipid, a non-cationic lipid, a conjugated lipid that inhibits aggregation of particles, and a sterol. The amounts of these components can be varied independently and to achieve desired properties. For example, in some embodiments, the lipid nanoparticle comprises an ionizable lipid is in an amount from about 20 mol % to about 90 mol % of the total lipids (in other embodiments it may be 20-70% (mol), 30-60% (mol) or 40-50% (mol); about 50 mol % to about 90 mol % of the total lipid present in the lipid nanoparticle), a non-cationic lipid in an amount from about 5 mol % to about 30 mol % of the total lipids, a conjugated lipid in an amount from about 0.5 mol % to about 20 mol % of the total lipids, and a sterol in an amount from about 20 mol % to about 50 mol % of the total lipids. The ratio of total lipid to nucleic acid can be varied as desired. For example, the total lipid to nucleic acid (mass or weight) ratio can be from about 10:1 to about 30:1.


In some embodiments, the lipid to nucleic acid ratio (mass/mass ratio; w/w ratio) can be in the range of from about 1:1 to about 25:1, from about 10:1 to about 14:1, from about 3:1 to about 15:1, from about 4:1 to about 10:1, from about 5:1 to about 9:1, or about 6:1 to about 9:1. The amounts of lipids and nucleic acid can be adjusted to provide a desired N/P ratio, for example, N/P ratio of 3, 4, 5, 6, 7, 8, 9, 10 or higher. Generally, the lipid nanoparticle formulation's overall lipid content can range from about 5 mg/ml to about 30 mg/mL.


Some non-limiting example of lipid compounds that may be used (e.g., in combination with other lipid components) to form lipid nanoparticles for the delivery of compositions described herein, e.g., nucleic acid (e.g., RNA) described herein includes,




embedded image


In some embodiments an LNP comprising Formula (i) is used to deliver an ANDbody RNA composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (ii) is used to deliver an ANDbody RNA composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (iii) is used to deliver an ANDbody RNA composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (v) is used to deliver an ANDbody RNA composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (vi) is used to deliver an ANDbody RNA composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (viii) is used to deliver an ANDbody RNA composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (ix) is used to deliver an ANDbody RNA composition described herein to the liver and/or hepatocyte cells.




embedded image


wherein


X1 is O, NR1, or a direct bond, X2 is C2-5 alkylene, X3 is C(═O) or a direct bond, R1 is H or Me, R3 is C1-3 alkyl, R2 is C1-3 alkyl, or R2 taken together with the nitrogen atom to which it is attached and 1-3 carbon atoms of X2 form a 4-, 5-, or 6-membered ring, or X1 is NR1, R1 and R2 taken together with the nitrogen atoms to which they are attached form a 5- or 6-membered ring, or R2 taken together with R3 and the nitrogen atom to which they are attached form a 5-, 6-, or 7-membered ring, Y1 is C2-12 alkylene, Y2 is selected from




embedded image


(in either orientation),




embedded image


(in either orientation),




embedded image


(in either orientation),


n is 0 to 3, R4 is Ci-15 alkyl, Z1 is Ci-6 alkylene or a direct bond,


Z2 is




embedded image


(in either orientation) or absent, provided that if Z1 is a direct bond, Z2 is absent;


R5 is C5-9 alkyl or C6-10 alkoxy, R6 is C5-9 alkyl or C6-10 alkoxy, W is methylene or a direct bond, and R7 is H or Me, or a salt thereof, provided that if R3 and R2 are C2 alkyls, X1 is O, X2 is linear C3 alkylene, X3 is C(═O), Y1 is linear Ce alkylene, (Y2)n-R4 is




embedded image


R4 is linear C5 alkyl, Z1 is C2 alkylene, Z2 is absent, W is methylene, and R7 is H, then R5 and R6 are not Cx alkoxy.


In some embodiments an LNP comprising Formula (xii) is used to deliver an ANDbody RNA composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising Formula (xi) is used to deliver an ANDbody RNA composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprises a compound of Formula (xiii) and a compound of Formula (xiv).




embedded image


In some embodiments an LNP comprising Formula (xv) is used to deliver an ANDbody RNA composition described herein to the liver and/or hepatocyte cells.




embedded image


In some embodiments an LNP comprising a formulation of Formula (xvi) is used to deliver an ANDbody RNA composition described herein to the lung endothelial cells.




embedded image


In some embodiments, a lipid compound used to form lipid nanoparticles for the delivery of compositions described herein, e.g., nucleic acid (e.g., RNA) described herein is made by one of the following reactions:




embedded image


In some embodiments, a composition described herein (e.g., a nucleic acid or a protein) is provided in an LNP that comprises an ionizable lipid. In some embodiments, the ionizable lipid is heptadecan-9-yl 8-((2-hydroxyethyl)(6-oxo-6-(undecyloxy)hexyl)amino)octanoate (SM-102); e.g., as described in Example 1 of U.S. Pat. No. 9,867,888 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is 9Z,12Z)-3-((4,4-bis(octyloxy)butanoyl)oxy)-2-((((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl octadeca-9,12-dienoate (LP01), e.g., as synthesized in Example 13 of WO2015/095340 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is Di((Z)-non-2-en-1-yl) 9-((4-dimethylamino)butanoyl)oxy)heptadecanedioate (L319), e.g. as synthesized in Example 7, 8, or 9 of US2012/0027803 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is 1,1′-((2-(4-(2-((2-(Bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl) amino)ethyl)piperazin-1-yl)ethyl)azanediyl)bis(dodecan-2-ol) (C12-200), e.g., as synthesized in Examples 14 and 16 of WO2010/053572 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is Imidazole cholesterol ester (ICE) lipid (3S, 10R, 13R, 17R)-10, 13-dimethyl-17-((R)-6-methylheptan-2-yl)-2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 3-(1H-imidazol-4-yl)propanoate, e.g., Structure (I) from WO2020/106946 (incorporated by reference herein in its entirety).


In some embodiments, an ionizable lipid may be a cationic lipid, an ionizable cationic lipid, e.g., a cationic lipid that can exist in a positively charged or neutral form depending on pH, or an amine-containing lipid that can be readily protonated. In some embodiments, the cationic lipid is a lipid capable of being positively charged, e.g., under physiological conditions. Exemplary cationic lipids include one or more amine group(s) which bear the positive charge. In some embodiments, the lipid particle comprises a cationic lipid in formulation with one or more of neutral lipids, ionizable amine-containing lipids, biodegradable alkyne lipids, steroids, phospholipids including polyunsaturated lipids, structural lipids (e.g., sterols), PEG, cholesterol and polymer conjugated lipids. In some embodiments, the cationic lipid may be an ionizable cationic lipid. An exemplary cationic lipid as disclosed herein may have an effective pKa over 6.0. In embodiments, a lipid nanoparticle may comprise a second cationic lipid having a different effective pKa (e.g., greater than the first effective pKa), than the first cationic lipid. A lipid nanoparticle may comprise between 40 and 60 mol percent of a cationic lipid, a neutral lipid, a steroid, a polymer conjugated lipid, and a therapeutic agent, e.g., a nucleic acid (e.g., RNA) described herein, encapsulated within or associated with the lipid nanoparticle. In some embodiments, the nucleic acid is co-formulated with the cationic lipid. The nucleic acid may be adsorbed to the surface of an LNP, e.g., an LNP comprising a cationic lipid. In some embodiments, the nucleic acid may be encapsulated in an LNP, e.g., an LNP comprising a cationic lipid. In some embodiments, the lipid nanoparticle may comprise a targeting moiety, e.g., coated with a targeting agent. In embodiments, the LNP formulation is biodegradable. In some embodiments, a lipid nanoparticle comprising one or more lipid described herein, e.g., Formula (i), (ii), (ii), (vii) and/or (ix) encapsulates at least 1%, at least 5%, at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 92%, at least 95%, at least 97%, at least 98% or 100% of an RNA molecule.


Exemplary ionizable lipids that can be used in lipid nanoparticle formulations include, without limitation, those listed in Table 1 of WO2019051289, incorporated herein by reference. Additional exemplary lipids include, without limitation, one or more of the following formulae: X of US2016/0311759; I of US20150376115 or in US2016/0376224; I, II or III of US20160151284; I, IA, II, or IIA of US20170210967; I-c of US20150140070; A of US2013/0178541; I of US2013/0303587 or US2013/0123338; I of US2015/0141678; II, III, IV, or V of US2015/0239926; I of US2017/0119904; I or II of WO2017/117528; A of US2012/0149894; A of US2015/0057373; A of WO2013/116126; A of US2013/0090372; A of US2013/0274523; A of US2013/0274504; A of US2013/0053572; A of WO2013/016058; A of WO2012/162210; I of US2008/042973; I, II, III, or IV of US2012/01287670; I or II of US2014/0200257; I, II, or III of US2015/0203446; I or III of US2015/0005363; I, IA, IB, IC, ID, II, IIA, IIB, IIC, IID, or III-XXIV of US2014/0308304; of US2013/0338210; I, II, III, or IV of WO2009/132131; A of US2012/01011478; I or XXXV of US2012/0027796; XIV or XVII of US2012/0058144; of US2013/0323269; I of US2011/0117125; I, II, or III of US2011/0256175; I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII of US2012/0202871; I, II, III, IV, V, VI, VII, VIII, X, XII, XIII, XIV, XV, or XVI of US2011/0076335; I or II of US2006/008378; I of US2013/0123338; I or X-A-Y-Z of US2015/0064242; XVI, XVII, or XVIII of US2013/0022649; I, II, or III of US2013/0116307; I, II, or III of US2013/0116307; I or II of US2010/0062967; I-X of US2013/0189351; I of US2014/0039032; V of US2018/0028664; I of US2016/0317458; I of US2013/0195920; 5, 6, or 10 of U.S. Pat. No. 10,221,127; 111-3 of WO2018/081480;I-5 or I-8 of WO2020/081938; 18 or 25 of U.S. Pat. No. 9,867,888; A of US2019/0136231; II of WO2020/219876; 1 of US2012/0027803; OF-02 of US2019/0240349; 23 of U.S. Pat. No. 10,086,013; cKK-E12/A6 of Miao et al (2020); C12-200 of WO2010/053572; 7C1 of Dahlman et al (2017); 304-013 or 503-013 of Whitehead et al; TS-P4C2 of U.S. Pat. No. 9,708,628; I of WO2020/106946; I of WO2020/106946.


In some embodiments, the ionizable lipid is MC3 (6Z,9Z,28Z,3 IZ)-heptatriaconta-6,9,28,3 I-tetraen-19-yl-4-(dimethylamino) butanoate (DLin-MC3-DMA or MC3), e.g., as described in Example 9 of WO2019051289A9 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is the lipid ATX-002, e.g., as described in Example 10 of WO2019051289A9 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is (13Z,16Z)-A,A-dimethyl-3-nonyldocosa-13, 16-dien-1-amine (Compound 32), e.g., as described in Example 11 of WO2019051289A9 (incorporated by reference herein in its entirety). In some embodiments, the ionizable lipid is Compound 6 or Compound 22, e.g., as described in Example 12 of WO2019051289A9 (incorporated by reference herein in its entirety).


Exemplary non-cationic lipids include, but are not limited to, distearoyl-sn-glycero-phosphoethanolamine, distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylglycerol (DOPG), dipalmitoylphosphatidylglycerol (DPPG), dioleoyl-phosphatidylethanolamine (DOPE), palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE), dioleoyl-phosphatidylethanolamine 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (DOPE-mal), dipalmitoyl phosphatidyl ethanolamine (DPPE), dimyristoylphosphoethanolamine (DMPE), distearoyl-phosphatidyl-ethanolamine (DSPE), monomethyl-phosphatidylethanolamine (such as 16-O-monomethyl PE), dimethyl-phosphatidylethanolamine (such as 16-O-dimethyl PE), I8-I-trans PE, I-stearoyl-2-oleoyl-phosphatidyethanolamine (SOPE), hydrogenated soy phosphatidylcholine (HSPC), egg phosphatidylcholine (EPC), dioleoylphosphatidylserine (DOPS), sphingomyelin (SM), dimyristoyl phosphatidylcholine (DMPC), dimyristoyl phosphatidylglycerol (DMPG), distearoylphosphatidylglycerol (DSPG), dierucoylphosphatidylcholine (DEPC), palmitoyloleyolphosphatidylglycerol (POPG), dielaidoyl-phosphatidylethanolamine (DEPE), lecithin, phosphatidylethanolamine, lysolecithin, lysophosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, egg sphingomyelin (ESM), cephalin, cardiolipin, phosphatidicacid,cerebrosides, dicetylphosphate, lysophosphatidylcholine, dilinoleoylphosphatidylcholine, or mixtures thereof. It is understood that other diacylphosphatidylcholine and diacylphosphatidylethanolamine phospholipids can also be used. The acyl groups in these lipids are preferably acyl groups derived from fatty acids having C10-C24 carbon chains, e.g., lauroyl, myristoyl, paimitoyl, stearoyl, or oleoyl. Additional exemplary lipids, in certain embodiments, include, without limitation, those described in Kim et al. (2020) dx.doi.org/10.1021/acs.nanolett.0c01386, incorporated herein by reference. Such lipids include, in some embodiments, plant lipids found to improve liver transfection with mRNA (e.g., DGTS).


Other examples of non-cationic lipids suitable for use in the lipid nanoparticles include, without limitation, nonphosphorous lipids such as, e.g., stearylamine, dodeeylamine, hexadecylamine, acetyl palmitate, glycerol ricinoleate, hexadecyl stereate, isopropyl myristate, amphoteric acrylic polymers, triethanolamine-lauryl sulfate, alkyl-aryl sulfate polyethyloxylated fatty acid amides, dioctadecyl dimethyl ammonium bromide, ceramide, sphingomyelin, and the like. Other non-cationic lipids are described in WO2017/099823 or US patent publication US2018/0028664, the contents of which is incorporated herein by reference in their entirety.


In some embodiments, the non-cationic lipid is oleic acid or a compound of Formula I, II, or IV of US2018/0028664, incorporated herein by reference in its entirety. The non-cationic lipid can comprise, for example, 0-30% (mol) of the total lipid present in the lipid nanoparticle. In some embodiments, the non-cationic lipid content is 5-20% (mol) or 10-15% (mol) of the total lipid present in the lipid nanoparticle. In embodiments, the molar ratio of ionizable lipid to the neutral lipid ranges from about 2:1 to about 8:1 (e.g., about 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, or 8:1).


In some embodiments, the lipid nanoparticles do not comprise any phospholipids.


In some aspects, the lipid nanoparticle can further comprise a component, such as a sterol, to provide membrane integrity. One exemplary sterol that can be used in the lipid nanoparticle is cholesterol and derivatives thereof. Non-limiting examples of cholesterol derivatives include polar analogues such as 5a-choiestanol, 53-coprostanol, choiesteryl-(2,-hydroxy)-ethyl ether, choiesteryl-(4″-hydroxy)-butyl ether, and 6-ketocholestanol; non-polar analogues such as 5a-cholestane, cholestenone, 5a-cholestanone, 5p-cholestanone, and cholesteryl decanoate; and mixtures thereof. In some embodiments, the cholesterol derivative is a polar analogue, e.g., choiesteryl-(4′-hydroxy)-butyl ether. Exemplary cholesterol derivatives are described in PCT publication WO2009/127060 and US patent publication US2010/0130588, each of which is incorporated herein by reference in its entirety.


In some embodiments, the component providing membrane integrity, such as a sterol, can comprise 0-50% (mol) (e.g., 0-10%, 10-20%, 20-30%, 30-40%, or 40-50%) of the total lipid present in the lipid nanoparticle. In some embodiments, such a component is 20-50% (mol) 30-40% (mol) of the total lipid content of the lipid nanoparticle.


In some embodiments, the lipid nanoparticle can comprise a polyethylene glycol (PEG) or a conjugated lipid molecule. Generally, these are used to inhibit aggregation of lipid nanoparticles and/or provide steric stabilization. Exemplary conjugated lipids include, but are not limited to, PEG-lipid conjugates, polyoxazoline (POZ)-lipid conjugates, polyamide-lipid conjugates (such as ATTA-lipid conjugates), cationic-polymer lipid (CPL) conjugates, and mixtures thereof. In some embodiments, the conjugated lipid molecule is a PEG-lipid conjugate, for example, a (methoxy polyethylene glycol)-conjugated lipid.


Exemplary PEG-lipid conjugates include, but are not limited to, PEG-diacylglycerol (DAG) (such as I-(monomethoxy-polyethyleneglycol)-2,3-dimyristoylglycerol (PEG-DMG)), PEG-dialkyloxypropyl (DAA), PEG-phospholipid, PEG-ceramide (Cer), a pegylated phosphatidylethanoloamine (PEG-PE), PEG succinate diacylglycerol (PEGS-DAG) (such as 4-0-(2′,3′-di(tetradecanoyloxy)propyl-1-0-(w-methoxy(polyethoxy)ethyl) butanedioate (PEG-S-DMG)), PEG dialkoxypropylcarbam, N-(carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt, or a mixture thereof. Additional exemplary PEG-lipid conjugates are described, for example, in U.S. Pat. No. 5,885,6I3, U.S. Pat. No. 6,287,59I,


US2003/0077829, US2003/0077829, US2005/0175682, US2008/0020058, US2011/0117125, US2010/0130588, US2016/0376224, US2017/0119904, and US/099823, the contents of all of which are incorporated herein by reference in their entirety. In some embodiments, a PEG-lipid is a compound of Formula III, III-a-2, III-b-1, III-b-2, or V of US2018/0028664, the content of which is incorporated herein by reference in its entirety. In some embodiments, a PEG-lipid is of Formula II of US20150376115 or US2016/0376224, the content of both of which is incorporated herein by reference in its entirety. In some embodiments, the PEG-DAA conjugate can be, for example, PEG-dilauryloxypropyl, PEG-dimyristyloxypropyl, PEG-dipalmityloxypropyl, or PEG-distearyloxypropyl. The PEG-lipid can be one or more of PEG-DMG, PEG-dilaurylglycerol, PEG-dipalmitoylglycerol, PEG-disterylglycerol, PEG-dilaurylglycamide, PEG-dimyristylglycamide, PEG-dipalmitoylglycamide, PEG-disterylglycamide, PEG-cholesterol (I-[8′-(Cholest-5-en-3[beta]-oxy)carboxamido-3′,6′-dioxaoctanyl] carbamoyl-[omega]-methyl-poly(ethylene glycol), PEG-DMB (3,4-Ditetradecoxylbenzyl-[omega]-methyl-poly(ethylene glycol) ether), and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. In some embodiments, the PEG-lipid comprises PEG-DMG, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]. In some embodiments, the PEG-lipid comprises a structure selected from:




embedded image


In some embodiments, lipids conjugated with a molecule other than a PEG can also be used in place of PEG-lipid. For example, polyoxazoline (POZ)-lipid conjugates, polyamide-lipid conjugates (such as ATTA-lipid conjugates), and cationic-polymer lipid (GPL) conjugates can be used in place of or in addition to the PEG-lipid.


Exemplary conjugated lipids, i.e., PEG-lipids, (POZ)-lipid conjugates, ATTA-lipid conjugates and cationic polymer-lipids are described in the PCT and LIS patent applications listed in Table 2 of WO2019051289A9, the contents of all of which are incorporated herein by reference in their entirety.


In some embodiments, the PEG or the conjugated lipid can comprise 0-20% (mol) of the total lipid present in the lipid nanoparticle. In some embodiments, PEG or the conjugated lipid content is 0.5-10% or 2-5% (mol) of the total lipid present in the lipid nanoparticle. Molar ratios of the ionizable lipid, non-cationic-lipid, sterol, and PEG/conjugated lipid can be varied as needed. For example, the lipid particle can comprise 30-70% ionizable lipid by mole or by total weight of the composition, 0-60% cholesterol by mole or by total weight of the composition, 0-30% non-cationic-lipid by mole or by total weight of the composition and 1-10% conjugated lipid by mole or by total weight of the composition. Preferably, the composition comprises 30-40% ionizable lipid by mole or by total weight of the composition, 40-50% cholesterol by mole or by total weight of the composition, and 10-20% non-cationic-lipid by mole or by total weight of the composition. In some other embodiments, the composition is 50-75% ionizable lipid by mole or by total weight of the composition, 20-40% cholesterol by mole or by total weight of the composition, and 5 to 10% non-cationic-lipid, by mole or by total weight of the composition and 1-10% conjugated lipid by mole or by total weight of the composition. The composition may contain 60-70% ionizable lipid by mole or by total weight of the composition, 25-35% cholesterol by mole or by total weight of the composition, and 5-10% non-cationic-lipid by mole or by total weight of the composition. The composition may also contain up to 90% ionizable lipid by mole or by total weight of the composition and 2 to 15% non-cationic lipid by mole or by total weight of the composition. The formulation may also be a lipid nanoparticle formulation, for example comprising 8-30% ionizable lipid by mole or by total weight of the composition, 5-30% non-cationic lipid by mole or by total weight of the composition, and 0-20% cholesterol by mole or by total weight of the composition; 4-25% ionizable lipid by mole or by total weight of the composition, 4-25% non-cationic lipid by mole or by total weight of the composition, 2 to 25% cholesterol by mole or by total weight of the composition, 10 to 35% conjugate lipid by mole or by total weight of the composition, and 5% cholesterol by mole or by total weight of the composition; or 2-30% ionizable lipid by mole or by total weight of the composition, 2-30% non-cationic lipid by mole or by total weight of the composition, 1 to 15% cholesterol by mole or by total weight of the composition, 2 to 35% conjugate lipid by mole or by total weight of the composition, and 1-20% cholesterol by mole or by total weight of the composition; or even up to 90% ionizable lipid by mole or by total weight of the composition and 2-10% non-cationic lipids by mole or by total weight of the composition, or even 100% cationic lipid by mole or by total weight of the composition. In some embodiments, the lipid particle formulation comprises ionizable lipid, phospholipid, cholesterol and a PEG-ylated lipid in a molar ratio of 50:10:38.5:1.5. In some other embodiments, the lipid particle formulation comprises ionizable lipid, cholesterol and a PEG-ylated lipid in a molar ratio of 60:38.5:1.5.


In some embodiments, the lipid particle comprises ionizable lipid, non-cationic lipid (e.g. phospholipid), a sterol (e.g., cholesterol) and a PEG-ylated lipid, where the molar ratio of lipids ranges from 20 to 70 mole percent for the ionizable lipid, with a target of 40-60, the mole percent of non-cationic lipid ranges from 0 to 30, with a target of 0 to 15, the mole percent of sterol ranges from 20 to 70, with a target of 30 to 50, and the mole percent of PEG-ylated lipid ranges from 1 to 6, with a target of 2 to 5.


In some embodiments, the lipid particle comprises ionizable lipid/non-cationic-lipid/sterol/conjugated lipid at a molar ratio of 50:10:38.5:1.5.


In an aspect, the disclosure provides a lipid nanoparticle formulation comprising phospholipids, lecithin, phosphatidylcholine and phosphatidylethanolamine.


In some embodiments, one or more additional compounds can also be included. Those compounds can be administered separately, or the additional compounds can be included in the lipid nanoparticles of the invention. In other words, the lipid nanoparticles can contain other compounds in addition to the nucleic acid or at least a second nucleic acid, different than the first. Without limitations, other additional compounds can be selected from the group consisting of small or large organic or inorganic molecules, monosaccharides, disaccharides, trisaccharides, oligosaccharides, polysaccharides, peptides, proteins, peptide analogs and derivatives thereof, peptidomimetics, nucleic acids, nucleic acid analogs and derivatives, an extract made from biological materials, or any combinations thereof.


In some embodiments, LNPs are directed to specific tissues by the addition of LNP targeting domains. For example, biological ligands may be displayed on the surface of LNPs to enhance interaction with cells displaying cognate receptors, thus driving association with and cargo delivery to tissues wherein cells express the receptor. In some embodiments, the biological ligand may be a ligand that drives delivery to the liver, e.g., LNPs that display GalNAc result in delivery of nucleic acid cargo to hepatocytes that display asialoglycoprotein receptor (ASGPR). The work of Akinc et al. Mol Ther 18(7):1357-1364 (2010) teaches the conjugation of a trivalent GalNAc ligand to a PEG-lipid (GalNAc-PEG-DSG) to yield LNPs dependent on ASGPR for observable LNP cargo effect (see, e.g., FIG. 6 of Akinc et al. 2010, supra). Other ligand-displaying LNP formulations, e.g., incorporating folate, transferrin, or antibodies, are discussed in WO2017223135, which is incorporated herein by reference in its entirety, in addition to the references used therein, namely Kolhatkar et al., Curr Drug Discov Technol. 2011 8:197-206; Musacchio and Torchilin, Front Biosci. 2011 16:1388-1412; Yu et al., Mol Membr Biol. 2010 27:286-298; Patil et al., Crit Rev Ther Drug Carrier Syst. 2008 25:1-61; Benoit et al., Biomacromolecules. 2011 12:2708-2714; Zhao et al., Expert Opin Drug Deliv. 2008 5:309-319; Akinc et al., Mol Ther. 2010 18:1357-1364; Srinivasan et al., Methods Mol Biol. 2012 820:105-116; Ben-Arie et al., Methods Mol Biol. 2012 757:497-507; Peer 2010 J Control Release. 20:63-68; Peer et al., Proc Natl Acad Sci USA. 2007 104:4095-4100; Kim et al., Methods Mol Biol. 2011 721:339-353; Subramanya et al., Mol Ther. 2010 18:2028-2037; Song et al., Nat Biotechnol. 2005 23:709-717; Peer et al., Science. 2008 319:627-630; and Peer and Lieberman, Gene Ther. 2011 18:1127-1133.


In some embodiments, LNPs are selected for tissue-specific activity by the addition of a Selective ORgan Targeting (SORT) molecule to a formulation comprising traditional components, such as ionizable cationic lipids, amphipathic phospholipids, cholesterol and poly(ethylene glycol) (PEG) lipids. The teachings of Cheng et al. Nat Nanotechnol 15(4):313-320 (2020) demonstrate that the addition of a supplemental “SORT” component precisely alters the in vivo RNA delivery profile and mediates tissue-specific (e.g., lungs, liver, spleen) gene delivery and editing as a function of the percentage and biophysical property of the SORT molecule.


In some embodiments, the LNPs comprise biodegradable, ionizable lipids. In some embodiments, the LNPs comprise (9Z,I2Z)-3-((4,4-bis(octyloxy)butanoyl)oxy)-2-((((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl octadeca-9,I2-dienoate, also called 3-((4,4-bis(octyloxy)butanoyl)oxy)-2-((((3-(diethylamino)propoxy)carbonyl)oxy)methyl)propyl (9Z,12Z)-octadeca-9,12-dienoate) or another ionizable lipid. See, e.g, lipids of WO2019/067992, WO/2017/173054, WO2015/095340, and WO2014/136086, as well as references provided therein. In some embodiments, the term cationic and ionizable in the context of LNP lipids is interchangeable, e.g., wherein ionizable lipids are cationic depending on the pH.


In some embodiments, the average LNP diameter of the LNP formulation may be between 10s of nm and 100s of nm, e.g., measured by dynamic light scattering (DLS). In some embodiments, the average LNP diameter of the LNP formulation may be from about 40 nm to about 150 nm, such as about 40 nm, 45 nm, 50 nm, 55 nm, 60 nm, 65 nm, 70 nm, 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm, 110 nm, 115 nm, 120 nm, 125 nm, 130 nm, 135 nm, 140 nm, 145 nm, or 150 nm. In some embodiments, the average LNP diameter of the LNP formulation may be from about 50 nm to about 100 nm, from about 50 nm to about 90 nm, from about 50 nm to about 80 nm, from about 50 nm to about 70 nm, from about 50 nm to about 60 nm, from about 60 nm to about 100 nm, from about 60 nm to about 90 nm, from about 60 nm to about 80 nm, from about 60 nm to about 70 nm, from about 70 nm to about 100 nm, from about 70 nm to about 90 nm, from about 70 nm to about 80 nm, from about 80 nm to about 100 nm, from about 80 nm to about 90 nm, or from about 90 nm to about 100 nm. In some embodiments, the average LNP diameter of the LNP formulation may be from about 70 nm to about 100 nm. In a particular embodiment, the average LNP diameter of the LNP formulation may be about 80 nm. In some embodiments, the average LNP diameter of the LNP formulation may be about 100 nm. In some embodiments, the average LNP diameter of the LNP formulation ranges from about I mm to about 500 mm, from about 5 mm to about 200 mm, from about 10 mm to about 100 mm, from about 20 mm to about 80 mm, from about 25 mm to about 60 mm, from about 30 mm to about 55 mm, from about 35 mm to about 50 mm, or from about 38 mm to about 42 mm.


A LNP may, in some instances, be relatively homogenous. A polydispersity index may be used to indicate the homogeneity of a LNP, e.g., the particle size distribution of the lipid nanoparticles. A small (e.g., less than 0.3) polydispersity index generally indicates a narrow particle size distribution. A LNP may have a polydispersity index from about 0 to about 0.25, such as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, or 0.25. In some embodiments, the polydispersity index of a LNP may be from about 0.10 to about 0.20.


The zeta potential of a LNP may be used to indicate the electrokinetic potential of the composition. In some embodiments, the zeta potential may describe the surface charge of an LNP. Lipid nanoparticles with relatively low charges, positive or negative, are generally desirable, as more highly charged species may interact undesirably with cells, tissues, and other elements in the body. In some embodiments, the zeta potential of a LNP may be from about −10 mV to about +20 mV, from about −10 mV to about +15 mV, from about −10 mV to about +10 mV, from about −10 mV to about +5 mV, from about −10 mV to about 0 mV, from about −10 mV to about −5 mV, from about −5 mV to about +20 mV, from about −5 mV to about +15 mV, from about −5 mV to about +10 mV, from about −5 mV to about +5 mV, from about −5 mV to about 0 mV, from about 0 mV to about +20 mV, from about 0 mV to about +15 mV, from about 0 mV to about +10 mV, from about 0 mV to about +5 mV, from about +5 mV to about +20 mV, from about +5 mV to about +15 mV, or from about +5 mV to about +10 mV.


The efficiency of encapsulation of a protein and/or nucleic acid, describes the amount of protein and/or nucleic acid that is encapsulated or otherwise associated with a LNP after preparation, relative to the initial amount provided. The encapsulation efficiency is desirably high (e.g., close to 100%). The encapsulation efficiency may be measured, for example, by comparing the amount of protein or nucleic acid in a solution containing the lipid nanoparticle before and after breaking up the lipid nanoparticle with one or more organic solvents or detergents. An anion exchange resin may be used to measure the amount of free protein or nucleic acid (e.g., RNA) in a solution. Fluorescence may be used to measure the amount of free protein and/or nucleic acid (e.g., RNA) in a solution. For the lipid nanoparticles described herein, the encapsulation efficiency of a protein and/or nucleic acid may be at least 50%, for example 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%. In some embodiments, the encapsulation efficiency may be at least 80%. In some embodiments, the encapsulation efficiency may be at least 90%. In some embodiments, the encapsulation efficiency may be at least 95%.


A LNP may optionally comprise one or more coatings. In some embodiments, a LNP may be formulated in a capsule, film, or table having a coating. A capsule, film, or tablet including a composition described herein may have any useful size, tensile strength, hardness or density.


Additional exemplary lipids, formulations, methods, and characterization of LNPs are taught by WO2020061457, which is incorporated herein by reference in its entirety.


In some embodiments, in vitro or ex vivo cell lipofections are performed using Lipofectamine MessengerMax (Thermo Fisher) or TransIT-mRNA Transfection Reagent (Mirus Bio). In certain embodiments, LNPs are formulated using the GenVoy_ILM ionizable lipid mix (Precision NanoSystems). In certain embodiments, LNPs are formulated using 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA) or dilinoleylmethyl-4-dimethylaminobutyrate (DLin-MC3-DMA or MC3), the formulation and in vivo use of which are taught in Jayaraman et al. Angew Chem Int Ed Engl 51(34):8529-8533 (2012), incorporated herein by reference in its entirety.


LNP formulations optimized for the delivery of CRISPR-Cas systems, e.g., Cas9-g RNA RNP, gRNA, Cas9 mRNA, are described in WO2019067992 and WO2019067910, both incorporated by reference.


Additional specific LNP formulations useful for delivery of nucleic acids are described in U.S. Pat. Nos. 8,158,601 and 8,168,775, both incorporated by reference, which include formulations used in patisiran, sold under the name ONPATTRO.


Exemplary dosing of LNPs comprising the RNA compositions described herein may include about 0.1, 0.25, 0.3, 0.5, 1, 2, 3, 4, 5, 6, 8, 10, or 100 mg/kg (RNA). Exemplary dosing of AAV comprising a nucleic acid encoding one or more components of the system may include an MOI of about 1011, 1012, 1013, and 1014 vg/kg.


In some embodiments, the invention includes a lipid nanoparticle (LNP) comprising the ANDbody polypeptide (or RNA encoding the same), nucleic acid molecule, or DNA encoding an ANDbody described herein. In embodiments, the LNP comprises a cationic lipid. In some embodiments, the LNP further comprises one or more neutral lipid, e.g., DSPC, DPPC, DMPC, DOPC, POPC, DOPE, SM, a steroid, e.g., cholesterol, and/or one or more polymer conjugated lipid, e.g., a pegylated lipid, e.g., PEG-DAG, PEG-PE, PEG-S-DAG, PEG-cer or a PEG dialkyoxypropylcarbamate. In some embodiments, the cationic lipid of the LNP has a structure according to:




embedded image


For a review of LNP, see also, e.g., Li et al. 2017, Nanomaterials 7, 122; doi:10.3390/nano7060122.


Other Carriers

Viral Vectors


The compositions described herein (e.g., polypeptide or RNA ANDbody compositions), can be delivered by a viral vector (e.g., a viral vector expressing an RNA). A viral vector may be administered to a cell or to a subject (e.g., a human subject or non-human animal). A viral vector may be locally or systemically administered.


Examples of viral vectors include a retrovirus (e.g., Retroviridae family viral vector), adenovirus (e.g., Ad5, Ad26, Ad34, Ad35, and Ad48), parvovirus (e.g., adeno-associated viruses), coronavirus, negative strand RNA viruses such as orthomyxovirus (e.g., influenza virus), rhabdovirus (e.g., rabies and vesicular stomatitis virus), paramyxovirus (e.g., measles and Sendai), positive strand RNA viruses, such as picornavirus and alphavirus, and double stranded DNA viruses including adenovirus, herpesvirus (e.g., Herpes Simplex virus types 1 and 2, Epstein-Barr virus, cytomegalovirus, replication deficient herpes virus), and poxvirus (e.g., vaccinia, modified vaccinia Ankara (MVA), fowlpox and canarypox). Other viruses include Norwalk virus, togavirus, flavivirus, reoviruses, papovavirus, hepadnavirus, human papilloma virus, human foamy virus, and hepatitis virus, for example. Examples of retroviruses include: avian leukosis-sarcoma, avian C-type viruses, mammalian C-type, B-type viruses, D-type viruses, oncoretroviruses, HTLV-BLV group, lentivirus, alpharetrovirus, gammaretrovirus, spumavirus (Coffin, J. M., Retroviridae: The viruses and their replication, Virology (Third Edition) Lippincott-Raven, Philadelphia, 1996). Other examples include murine leukemia viruses, murine sarcoma viruses, mouse mammary tumor virus, bovine leukemia virus, feline leukemia virus, feline sarcoma virus, avian leukemia virus, human T-cell leukemia virus, baboon endogenous virus, Gibbon ape leukemia virus, Mason Pfizer monkey virus, simian immunodeficiency virus, simian sarcoma virus, Rous sarcoma virus and lentiviruses. Other examples of vectors are described, for example, in U.S. Pat. No. 5,801,030, the teachings of which are incorporated herein by reference.


Anellovirus vectors can also be used for delivering an ANDbody composition described herein. Anellovectors are known in the art and described, e.g., in WO2020123773, WO2020123816, WO2018232017, and WO2020123773. In certain embodiments, an anellovector composition comprises a genomic element that comprises a promoter operably linked to a nucleic acid sequence encoding an ANDbody described herein, the genetic element encapsulated by a proteinaceous exterior comprising an Anellovirus ORF1, e.g., an anellovirus capsid protein.


Cell and Vesicle-Based Carriers


A composition described herein (e.g., polypeptide or RNA ANDbody compositions), described herein can be administered to a cell in a cell, vesicle or other membrane-based carrier. In one embodiment, the compositions and systems described herein can be formulated in liposomes or other similar vesicles. Liposomes are spherical vesicle structures composed of a uni- or multilamellar lipid bilayer surrounding internal aqueous compartments and a relatively impermeable outer lipophilic phospholipid bilayer. Liposomes may be anionic, neutral or cationic. Liposomes are biocompatible, nontoxic, can deliver both hydrophilic and lipophilic drug molecules, protect their cargo from degradation by plasma enzymes, and transport their load across biological membranes and the blood brain barrier (BBB) (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review). Vesicles can be made from several different types of lipids; however, phospholipids are most commonly used to generate liposomes as drug carriers. Methods for preparation of multilamellar vesicle lipids are known in the art (see for example U.S. Pat. No. 6,693,086, the teachings of which relating to multilamellar vesicle lipid preparation are incorporated herein by reference). Although vesicle formation can be spontaneous when a lipid film is mixed with an aqueous solution, it can also be expedited by applying force in the form of shaking by using a homogenizer, sonicator, or an extrusion apparatus (see, e.g., Spuch and Navarro, Journal of Drug Delivery, vol. 2011, Article ID 469679, 12 pages, 2011. doi:10.1155/2011/469679 for review). Extruded lipids can be prepared by extruding through filters of decreasing size, as described in Templeton et al., Nature Biotech, 15:647-652, 1997, the teachings of which relating to extruded lipid preparation are incorporated herein by reference.


Exosomes can also be used as drug delivery vehicles for the compositions and systems described herein. For a review, see Ha et al. July 2016. Acta Pharmaceutica Sinica B. Volume 6, Issue 4, Pages 287-296; https://doi.org/10.1016/j.apsb.2016.02.001.


Ex vivo differentiated red blood cells can also be used as a carrier for an agent (e.g., an inhibitor) described herein, e.g., an antibody or a nucleic acid described herein. See, e.g., WO2015073587; WO2017123646; WO2017123644; WO2018102740; w02016183482; WO2015153102; WO2018151829; WO2018009838; Shi et al. 2014. Proc Natl Acad Sci USA. 111(28): 10131-10136; U.S. Pat. No. 9,644,180; Huang et al. 2017. Nature Communications 8: 423; Shi et al. 2014. Proc Natl Acad Sci USA. 111(28): 10131-10136.


Fusosome compositions, e.g., as described in WO2018208728, can also be used as carriers to deliver the [agent] or preparation described herein.


Plant nanovesicles and plant messenger packs (PMPs), e.g., as described in WO2011097480, WO2013070324, WO2017004526, or WO2020041784 can also be used as carriers to deliver the compositions described herein.


Without further elaboration, it is believed that one skilled in the art can, based on the above description, utilize the present invention to its fullest extent. The following specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. All publications and sections thereof cited herein are herein incorporated by reference for the purposes or subject matter referenced herein.


EXAMPLES

The invention will be further illustrated in the following non-limiting examples.












TABLE OF CONTENTS
















Example 1
ANDBODY BINDING MOUSE AND HUMAN RAGE AND NOTCH2


Example 2
ANDBODY BINDING MOUSE AND HUMAN UMOD AND NOTCH2


Example 3
ANDBODY BINDING MOUSE AND HUMAN MEP1B AND NOTCH2


Example 4
ANDBODY BINDING MOUSE AND HUMAN RAGE AND IL11RA


Example 5
ANDBODY BINDING MOUSE AND HUMAN UMOD AND IL11RA


Example 6
ANDBODY BINDING MOUSE AND HUMAN MEP1 B AND IL11RA


Example 7
EXEMPLARY ADDRESS-RESTRICTED BINDER FOR SKIN


Example 8
EXEMPLARY ADDRESS-RESTRICTED BINDER FOR LUNG


Example 9
EXEMPLARY ADDRESS-RESTRICTED BINDER FOR KIDNEY


Example 10
EXEMPLARY ADDRESS-RESTRICTED BINDER FOR INTESTINE


Example 11
TISSUE RESTRICTION OF PREDICTED ADDRESSES


Example 12
ANDBODY PRODUCTION AND USE


Example 13
ANDBODY PRODUCTION AND USE


Example 14
TNFA-BLOCKING MOLECULES COUPLED TO DSG1-TARGETING MOIETIES









Example 1. Andbody Binding Mouse and Human Rage and Notch2

1.1 Vaccination to Create Anti-RAGE Antibodies


Antibodies against human RAGE extracellular domain, an exemplary address target of the present technology, are created by immunization. The extracellular domain of human RAGE (NCBI protein accession 015109 positions N24-A344) (huRAGE) fused to the Fc region of human IgG1 (UniProt ID P01857 positions P100-K330) is expressed in HEK293F cells. Briefly, DNA sequences are codon optimized for mammalian expression and ordered in the pcDNA3.4-TOPO expression vector (ThermoFisher Scientific). Proteins are transiently transfected into HEK293 cells and purified using rProtein A Sepharose Fast Flow resin according to manufacturer's instructions (GE Healthcare) similar to prior methods (Rothschilds et al. 2019). 50 ug of the huRAGE-Fc fusion protein is used to immunize female BALB/c mice by i.p. injection in CFA/IFA (Millipore Sigma, catalog #F5881-10ML and F5506-10ML) adjuvant. Subsequently, hybridomas are generated (Listek et al. 2020). Clones are initially screened for IgG reactivity specific for the huRAGE-Fc fusion protein used for immunization in an ELISA format followed by flow cytometry studies using cells stably (CHO) or transiently (HEK293F) transfected with full-length huRAGE. Anti-RAGE hybridoma clones are next evaluated based on murine cross-reactivity. Flow cytometry studies are done using cells stably (CHO) or transiently (HEK293F) transfected with full-length mouse RAGE (mRAGE), and clones are selected that bind to mRAGE. Positive clones expressing anti-RAGE mAbs cross-reactive between human and mouse are then further purified by limited dilution cloning. The hybridomas are grown in DMEM/2% ultra low IgG serum and the mAbs are purified by protein G chromatography according to manufacturer's instructions using (Millipore Sigma, P3296-1 ML).


1.2 Selecting for Inert Anti-RAGE Antibodies


Address target binding sites of the present technology are designed to not influence signaling upon binding the address target, such as the exemplary RAGE address target. Accordingly, anti-RAGE hybridoma clones produces as described above are further evaluated based on their inability to block RAGE ligand binding. Human RAGE ligands tested included HMGB1 (full-length, from Creative BioMart catalog #HMGB1-29332TH), Advanced Glycation Endproduct (fused to bovine serum albumin, Millipore Sigma catalog #121800-10MG-M), S100A12 (full-length, from R&D Systems catalog #1052-ER-050), S100A1 (full-length, from R&D Systems catalog #9705-S1-100), S100A4 (R&D Systems catalog #4137-S4-050), S100A10 (full-length, from Creative BioMart catalog #S100A10-157H), S100A11 (R&D Systems catalog #9015-S11-050), S100A13 (R&D Systems catalog #4327-SA-050), S100B (R&D Systems catalog #1820-SB-050), amyloid-β-peptide (DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA (SEQ ID NO: 76) from NM_000484.2, Millipore Sigma catalog #AG912-1MG) and Mac-1 (F17-N1105 from NP_001139280 and Q23-N700 from UniProt P05107, R&D Systems catalog #4047-AM-050). ELISAs are used to quantify ability of ligands to bind in the presence of anti-RAGE antibodies. HuRAGE-Fc is adsorbed to ELISA plates, then after blocking, the plates are incubated with concentrations of 10 fM up to 10 uM of anti-RAGE antibody clones from the hybridomas (one condition per concentration and per clone). After washing the plates, ligands are each biotinylated according to manufacturer's instructions (ThermoFisher catalog #21435), and then incubated on the plates at concentrations ranging from 10 fM up to 10 uM. After washing, SA-linked HRP secondary antibodies are added, followed by TMB substrate and colorimetric readout quantified by absorbance. Ligand binding is compared within a given ligand with versus without anti-RAGE antibodies to isolate anti-RAGE clones that are inert and do not affect binding of one or more ligands.


The inability of anti-RAGE antibodies to inhibit IFNα-induced gene signature is also evaluated, and anti-RAGE hybridoma clones are chosen that do not change cellular signaling based on an IFNα-induced gene signature assay. PBMCs from healthy human donors are stimulated for 4 h with 50% sera from SLE patients. The assay is completed either in the presence of anti-RAGE antibodies or unrelated (negative) isotype control human IgG1 antibodies (Bio X Cell catalog #BE0297) at antibody concentrations ranging from 10 fM up to 10 uM. In addition a huRAGE-Fc fusion molecule is used as a positive control. Total RNA is purified and expression of type I IFN-inducible genes, including DDX58, G1P2, MXI, OAS3, RSAD2, IFITI, IF135 are measured by real-time qRT-PCR analysis as in prior methods (WO 2008/137552 A2, https://patentimages.storage.googleapis.com/94/26/c8/7b9f27f693c4b6/WO2008137552A2.pdf). The inhibition values of gene expression are normalized to the negative control Ab.


1.3 Vaccination to Create Anti-Notch2 Antibodies


Antibodies against the extracellular domain of human Notch2 (huNotch2) fused to the Fc region of human IgG1, an exemplary effector target of the present technology, are created by immunization similar to RAGE as described above. After immunization and hybridoma generation, clones are screened exactly as above but for binding to full length human and mouse Notch2 (instead of RAGE). Positive clones expressing anti-Notch2 mAbs cross-reactive between human and mouse are then further purified by limited dilution cloning. The hybridomas are grown in DMEM/2% ultra low IgG serum and the mAbs are purified by protein G chromatography.


1.4 Selecting for Active Anti-Notch2 Antibodies at Wide IC50 Ranges


Effector target binding sites of the present technology, such as Notch2, are designed to not influence signaling upon binding the effector target, unless they are localized to a target tissue by an address target binding site, such as RAGE. Accordingly, the binding affinities of effector target (e.g., Notch2) binding sites are analyzed. Specifically, the IC50 s of Notch2 antibodies on the ligand human Jagged-2-Fc fusion protein (Creative BioMart, JAG2-382H) binding to surface Notch2 are evaluated using flow cytometry to choose antibodies at IC50's ranging from less than 1 nM up to 5 uM. Jagged-2-Fc is labeled with alexa fluor 647 (AF647) according to manufacturer's instructions (ThermoFisher, A20186) and methods previously described (Tzeng et al. 2015).


HEK293F cells are transiently transfected with full-length huNotch2. The cells are incubated with anti-Notch2 antibodies at concentrations increasing from 1 pM up to 50 uM. Subsequently (and without washing the cells), the cells are then incubated for 1 hour at 4 degrees Celsius with a constant concentration of AF647 labeled Jagged-2-Fc, ranging (for different IC50 assays) from 1 pM up to 50 uM. For each IC50 assay, one constant concentration of AF647 Jagged-2-Fc is chosen with varied anti-Notch2. Binding of AF647 Jagged-2-Fc with increasing anti-Notch2 antibody concentrations is quantified on the cells by flow cytometry using a ThermoFisher Attune N×T (B2R3Y3V6).


1.5 Expressing and Purifying ANDbodies as Bispecifics


DNA sequences from 10 RAGE antibodies and 10 Notch2 antibodies ranging in IC50 (from <1 nM up to 5 uM) are cloned using In-Fusion HD Cloning (Takara Bio, catalog #638911) into human IgG1 framework with single matching point mutations in the CH3 domain Fc region according to the ‘Controlled Fab-Arm Exchange’ (cFAE) method (Labrijn et al. 2014). After separately expressing antibodies from transient HEK293 expressions and purifying each antibody using protein A affinity resin, parental antibodies (combinations of 1 RAGE antibody with 1 Notch2 antibody) are made into bispecific RAGE/Notch2 ANDbodies according to the cFAE method. Briefly, parental antibodies are mixed under permissive redox conditions to enable recombination of half-molecules. Subsequently, the reductant is removed to allow for reoxidation of interchain disulfide bonds. Lastly, exchange efficiency is quantified using chromatography-based or mass spectrometry-based methods. Around 100 variant ANDbodies of RAGE×Notch2 are made.


1.6 Affinity of Andbody Variants


To identify ANDbody™ variants that meet desired effector target and address target binding affinity criteria, SPR-based affinity measurements are carried out on BIAcore model 2000 or T100 (Biacore/GE Healthcare, Piscataway, N.J.) at 25° C. using HBS-EP+ buffer (Cytiva catalog #BR100669) with 0.1 mg/ml BSA (Millipore Sigma catalog #A9418) as a running buffer. A Sensor Chip Protein A (Cytiva catalog #29127557) is used to capture mouse RAGE-Fc, human RAGE-Fc, mouse Notch2-Fc, or human Notch2-Fc. ANDbody is injected in a 3-fold dilution series from 60 to 0.74 nM, and dissociation is monitored for 10 min for all proteins. Kinetic analysis is done by simultaneously fitting the association and dissociation phases of the sensorgram using the 1:1 Langmuir binding model in BIAevaluation software (Biacore) as supplied by the manufacturer. Double referencing is applied in each analysis to eliminate background responses from the reference surface and buffer only control.


This assay can quantitatively assess the affinities of every ANDbody variant for RAGE and Notch2. ANDbody variants with higher affinity for RAGE than Notch2 as well as variants with no affinity differences or higher affinity for Notch2 are used in subsequent in vitro and in vivo experiments.


1.7 In Vitro Assays for Notch2 Antagonism on Cells with or without RAGE Expression


To analyze ANDbody characteristics, in vitro, HEK293F cells are transiently transfected with full length huRAGE (R+) or full length huNotch2 (N+), or co-transfected with both (RN+). The many variant RAGE×Notch2 ANDbodies are fluorophore-labeled with alexa fluor 647 (AF647) according to manufacturer's instructions (ThermoFisher, A20186) and methods previously described (Tzeng et al. 2015). Subsequently, ANDbodies are incubated with R+, N+, RN+, or combined R+ plus N+ cells at ANDbody concentrations ranging from 10 fM up to 10 uM. The parental anti-Notch2 mono-specific antibodies (one from each variant) are fluorophore labeled with FITC according to manufacturer's instructions (ThermoFisher, 53027). In some conditions, the parental anti-Notch2 FITC labeled antibodies are incubated with the cells pre-bound with AF647 RAGE×Notch2 (matching Notch2 variants) at concentrations of 10 fM up to 10 uM to saturate the remaining binding sites for Notch2. The binding EC50s of both the AF647 labeled RAGE×Notch2 ANDbody variants and the parental FITC labeled parental anti-Notch2 antibodies are quantified using flow cytometry. When the FITC Notch2 antibody is added after the AF647 RAGE×Notch2, the FITC signal from those cells is subtracted from the FITC signal from FITC Notch2 alone on cells (then normalized to the Notch2 alone signal) to quantify the % Notch2 bound by RAGE×Notch2. These numbers at different concentrations of the RAGE×Notch2 ANDbody are used to create EC50 curves. The assay is also run replacing the AF647-labeled ANDbody with AF647-labeled anti-Notch2 antibody.


A difference in observed EC50s on N+ cells vs RN+ cells reveals an enhanced Notch2 blockade when RAGE is present and identifies cells expressing the RAGE×Notch2 ANDbodies.


1.8 Biodistribution (In Vivo) for ANDbody and Parental Antibodies


To analyze ANDbody distribution, in vivo, the biodistribution of the RAGE×Notch2 ANDbody as well as each of the parental antibodies (anti-Notch2 or anti-RAGE used for the cFAE of the ANDbody) is quantified in female Balb/c and C57BL/6 mice.


To quantify the cellular biodistribution, the proteins (ANDbody and antibodies) are first individually labeled with AF647 according to manufacturer's instructions (ThermoFisher, A20186) and methods previously described (Tzeng et al. 2015). Then, each labeled antibody is injected individually at doses of 10 ug, 100 ug, and 500 ug IV (tail vein). Saline (PBS) is also injected as a control at equal volume.


For cellular biodistribution, at time points of 12 hours, 1 day, 2 days, 3 days, 7 days, and 14 days after injection, mice are euthanized using CO2 and tissues including heart, lung, spleen, blood, kidney, liver, and intestines are processed into single cell suspensions according to methods previously described (Tzeng et al. 2015). Briefly, blood is collected by cardiac puncture into EDTA-treated tubes (BD catalog #365974), and other tissues are harvested, weighed, mechanically dissociated between frosted glass slides, and rendered into single-cell suspensions by filtration through 70-μm mesh screens (Millipore Sigma, catalot #CLS431751-50EA). Splenocytes, whole blood, and lung are treated with ammonium-chloride-potassium (ACK) lysing buffer (Thermofisher Scientific, catalog #A1049201). Heart is digested with collagenase and processed into single cell suspension according to previous methods (Covarrubias et al. 2019). Flow cytometry is performed on immune cells using markers for CD8 T cells (CD3e+ CD8+), CD4 T cells (CD3e+ CD4+ Foxp3−), regulatory T cells (CD4+ CD25+ FOXP3+), monocytes/macrophages (CD3e− CD11 b+ CD11c−/lo NK1.1− Ly6G− SSClo), dendritic cells (CD3e− CD11chi), NK cells (NK1.1+ CD3e−), and NKT cells (NK1.1+ CD3e+) as previously described (Tzeng et al. 2015). Lung cells including epithelial (CD326+CD31−CD45−), endothelial (CD326− CD31+ CD45−), and hematopoietic lineages (CD326−CD31−CD45+) are also analyzed as previously defined (Singer et al. 2016). Antibodies are purchased from Biolegend, and flow cytometry is run on a ThermoFisher Attune N×T (B2R3Y3V6). Presence of the labeled ANDbody or other labeled antibody on the cell surface is defined by fluorescence of AF647 (and this fluorophore was avoided in the flow panels).


To quantify the tissue biodistribution, the proteins (ANDbody and antibodies) are first individually labeled with NHS-5/6-FAM (Thermofisher Scientific, catalog #46409) as per the manufacturer's instructions.


For tissue biodistribution, at time points of 12 hours, 1 day, 2 days, 3 days, 7 days, and 14 days after injection, mice are euthanized using CO2 and tissues including lung, spleen, blood, kidney, liver, and intestines are harvested, weighed, and imaged on an IVIS Spectrum imaging system (Caliper Life Sciences; excitation, 500 nm; emission, 540 nm). Images are analyzed using the Living Image software.


1.9 In Vivo Bioactivity Quantifying Gene Expression Changes


To analyze ANDbody activity, in vivo, bioactivity is quantified using using female Balb/c and C57BL/6 mice. To quantify bioactivity across tissues, the RAGE×Notch2 ANDbody or each of the respective parental antibodies (anti-Notch2 or anti-RAGE used for the cFAE of the ANDbody) is injected at doses of 10 ug, 100 ug, and 500 ug IV (tail vein). Saline (PBS) is also injected as a control at equal volume.


At time points of 12 hours, 1 day, 2 days, 3 days, 7 days, and 14 days after injection, tissues including lung, spleen, blood, kidney, liver, heart, and intestines are processed into single cell suspensions according to methods previously described (Tzeng et al. 2015). Briefly, blood is collected by cardiac puncture into EDTA-treated tubes (BD catalog #365974), and other tissues are harvested, weighed, mechanically dissociated between frosted glass slides, and rendered into single-cell suspensions by filtration through 70-μm mesh screens (Millipore Sigma, catalot #CLS431751-50EA). Splenocytes and whole blood are treated with ammonium-chloride-potassium (ACK) lysing buffer (Thermofisher Scientific, catalog #A1049201).


qRT-PCR is performed using methods previously described (Nandagopal et al. 2018). RNA is prepared using the rNeasy kit (QIAGEN). cDNA is prepared from 500 ng RNA using the iScript cDNA synthesis kit (Bio-Rad). 0.5 μL cDNA is used per 10 μL RT-qPCR reaction mix containing 1× iqSYBR Green Supermix (Bio-Rad) and 450 nM total forward and reverse primers. Reactions are performed on a BioRad CFX Real-Time PCR Detection System using a 2-step amplification protocol, with the following thermocycling parameters: 95 C, 3 min followed by 40 cycles of 95 C, 10 s (melting) and 55 C, 30 s (annealing+extension). All reactions are performed in duplicate.


Genes related to Notch2 signaling are mouse Hes1, Hey1, and HeyL, and the reference gene is SdhA. Primers used for amplification are the mouse Hes1 primer set (Forward, 5′-CAACACGACACCGGACAAAC-3′ (SEQ ID NO: 77) and Reverse, 5′-AAGAATAAATGAAAGTCTAAGCCAA-3′ (SEQ ID NO: 78)), mouse Hey1 primer set (Forward, 5′-GCCGAAGTTG CCCGTTATCT-3′ (SEQ ID NO: 79) and Reverse, 5′-CGCTGGGATG CGTAGTTGTT-3′ (SEQ ID NO: 80)), mouse HeyL primer set (Forward, 5′-GAGCTGAC TTCCCACAACCA-3′ (SEQ ID NO: 81) and Reverse, 5′-GAGAGG TGCCTTTGCGTAGA-3′ (SEQ ID NO: 82)), and mouse SdhA primer set (Forward, 5′-AGTGGGCT GTCTTCCTTAAC-3′ (SEQ ID NO: 83) and Reverse, 5′-GGATTGCTTCT GTTTGCTTGG-3′ (SEQ ID NO: 84)) previously described (Nandagopal et al. 2018). All primers are purchased from IDT DNA.


Hes1, Hey1, and HeyL gene expression is measured in the ANDbody treated mice, untreated mice, and anti-Notch2 treated mice, including in the lungs.


1.10 In Vivo Bioactivity Using Weights and Histology


Using female Balb/c and C57BL/6 mice, histology is done on organs such as the spleen, kidney, liver, heart, intestines, teeth, and lungs to compare pathology with ANDbody treatment, with treatment with anti-Notch2 alone, or saline (PBS). Starting at 8 weeks of age, 10 ug, 100 ug, and 500 ug of the ANDbody or of the corresponding Notch2 antibody (prior to cFAE) is injected IV (tail vein) 1× or 2× per week. Saline (PBS) is also injected as a control at equal volume 1× or 2× per week. Mice are weighed 2× per week starting prior to the first treatment. After 2 weeks, 4 weeks, and 6 weeks of treatment, mice are euthanized and organs are processed for histology.


Unless otherwise noted, organs are removed into cassettes and then placed directly into 10% neutral-buffered formalin (Sigma-Aldrich) for 12-24 hours prior to embedding in paraffin. Lungs are perfused with 10% neutral-buffered formalin prior to being placed in cassettes for soaking in neutral-buffered formalin. Intestines are thoroughly rinsed before being put in cassettes for soaking in 10% neutral-buffered formalin. Paraffin sections (1-2 μm) are cut and de-waxed prior to histochemical staining. Sections are stained with hematoxylin/eosin (H&E; Merck, Darmstadt, Germany) and scored blindly according to immune infiltrates and tissue morphology.


In addition to lung morphology, weight loss (or not) of ANDbody treated mice over the course of treatment is compared with weight loss (or not) of mice treated with anti-Notch2, and weight loss (or not) of untreated mice.


Example 2. Andbody Binding Mouse and Human Umod and Notch2

2.1 Yeast Surface Display to Create Anti-UMOD Antibodies


Yeast surface display (Chao et al. 2006) is used to engineer antibodies to mouse UMOD (Creative BioMart, catalog #UMOD-17835M, untagged), an exemplary address target of the present technology. This is done by using methods described previously (Angelini et al. 2015) and summarized below. The yeast display starts with a synthetic antibody library from the Sidhu laboratory that is based off of natural frameworks, library ‘G’ (Van Deventer et al. 2015). scFvs displayed on the yeast surface are selected for binding to mouse UMOD. Subsequent sorts can be done against the human UMOD antigen (Creative BioMart, catalog #UMOD-001 H, untagged), such that binders can be cross-reactive between human and mouse forms. To increase affinity of the scFv binders, affinity maturation is performed using error-prone PCR as described previously (Angelini et al. 2015) and the resulting library is re-sorted for binding to both mouse and human UMOD. Subsequent to engineering, many scFvs that are multi-species cross-reactive are cloned back into human IgG1 antibody format.


2.2 Selecting for Inert Anti-UMOD Antibodies


Address target binding sites of the present technology are designed to not influence signaling upon binding the address target, such as the exemplary UMOD address target. Accordingly, anti-UMOD antibodies are further evaluated based on their inability to block UMOD ligand binding, in an assay such as the one described above for RAGE antibodies or an in vivo assay. Inert UMOD antibodies may be identified in such assays whereby kidney architecture is not affected or modified by the screened UMOD antibody.


2.3 Vaccination to Create Anti-Notch2 Antibodies


Antibodies cross-reactive to mouse and human Notch2 are created, cloned, and expressed into the human IgG1 framework according to prior methods as described above.


2.4 Selecting for Active Notch2 Antibodies at Wide IC50 Ranges


Antibodies against Notch2 will be selected at wide IC50 ranges as described above.


2.5 Expressing and Purifying ANDbodies as Bispecifics


DNA sequences from 10 UMOD antibodies and 10 Notch2 antibodies ranging in IC50 (from <1 nM up to 5 uM) are made into about 100 variant ANDbodies as described above.


2.6 Affinity of ANDbody Variants for UMOD and Notch2


ANDbody affinities for UMOD and Notch2 are evaluated similarly to above using a BIAcore (as described above). In this case, human and mouse versions of His-tagged UMOD are immobilized on a Sensor Chip NTA (Cytiva catalog #BR100034). Human and mouse notch2-Fc are immobilized as described above.


2.7 Biodistribution (In Vivo) for ANDbody and Parental Antibodies


Cellular and tissue biodistribution studies are done using methods described above (as described above). However, the ANDbody used in this case is UMOD×Notch2, and the parental antibodies correspond to anti-UMOD and anti-Notch2.


2.8 In Vivo Bioactivity Quantifying Gene Expression Changes


The in vivo bioactivity of UMOD×Notch2 ANDbodies is quantified using gene expression methods described above.


2.9 In Vivo Bioactivity Using Weights and Histology


The in vivo bioactivity of UMOD×Notch2 ANDbodies is quantified using weight and histology methods described above.


Example 3. Andbody Binding Mouse and Human Mep1B and Notch2

3.1 Yeast Surface Display to Create Anti-MEP1B Antibodies


Yeast surface display (Chao et al. 2006) is used to engineer antibodies to mouse MEP1B (Cusabio, CSB-MP730755M0), an exemplary address target of the present technology. Yeast display is performed as described above (0) to get cross-reactive mouse/human MEP1B binders (human MEP1B, Cusabio, CSB-MP618098HU). Subsequent to engineering, many scFv's cross-reactive to mouse and human MEP1B are cloned into human IgG1, transiently transfected into HEK293F cells, and purified using protein A resin as described above.


3.2 Vaccination to Create Anti-Notch2 Antibodies


Antibodies cross-reactive to mouse and human Notch2 are created, cloned, and expressed into the human IgG1 framework according to prior methods described above.


3.3 Selecting for Active Notch2 Antibodies at Wide IC50 Ranges


Antibodies against Notch2 are selected at wide IC50 ranges as described above.


3.4 Expressing and Purifying ANDbodies as Bispecifics


DNA sequences from 10 MEP1B antibodies and 10 Notch2 antibodies ranging in IC50 (from <1 nM up to 5 uM) are made into about 100 variant ANDbodies as described above.


3.5 Affinity of ANDbody Variants for MEP1B and Notch2


ANDbody affinities for MEP1B and Notch2 are evaluated similarly to above using a BIAcore. In this case, human and mouse versions of His-tagged MEP1B are immobilized on a Sensor Chip NTA (Cytiva catalog #BR100034). Human and mouse notch2-Fc are immobilized as described above.


3.6 Biodistribution (In Vivo) for ANDbody and Parental Antibodies


Cellular and tissue biodistribution studies are done using methods described above. However, the ANDbody used in this case is MEP1B×Notch2, and the parental antibodies correspond to anti-MEP1B and anti-Notch2.


3.7 In Vivo Bioactivity Quantifying Gene Expression Changes


The in vivo bioactivity of MEP1B×Notch2 ANDbodies is quantified using the gene expression methods described above.


3.8 In Vivo Bioactivity Using Weights and Histology


The in vivo bioactivity of MEP1B×Notch2 ANDbodies is quantified using weight and histology methods described above.


Example 4. Andbody Binding Mouse and Human Rage and Il11Ra

4.1 Vaccination to Create Anti-RAGE Antibodies


Methods are described above to vaccinate in order to create mouse/human cross-reactive anti-RAGE antibodies.


4.2 Selecting for Inert Anti-RAGE Antibodies


Methods are described above to select for inert anti-RAGE antibodies.


4.3 Yeast Surface Display to Create Anti-IL11Ra Antibodies


Yeast surface display is used similar to above to create antibodies of varying affinities cross-reactive with mouse and human IL11Ra, an exemplary effector target of the present technology. The DNA sequences coding for extracellular domains of mouse IL11Ra (positions 24-372 of UniProt ID Q64385) and human IL11Ra (positions 24-370 of UniProt ID 014626) are codon optimized for mammalian expression and ordered with a C-terminal His tag in the pcDNA3.4-TOPO expression vector (ThermoFisher Scientific). Proteins are transiently transfected into HEK293F cells and purified using TALON® Metal Affinity Resin according to manufacturer's instructions (Clontech) similar to prior methods (Rothschilds et al. 2019). These soluble recombinant mouse and human IL11 Ra are used as the antigens for yeast surface display.


ScFv's cross-reactive to mouse and human IL11 Ra are cloned into human IgG1, transiently transfected into HEK293F cells, and purified using protein A resin as described above.


4.4 Selecting for Active Anti-IL11Ra Antibodies at Wide IC50 Ranges


The IC50s of IL11 Ra antibodies on the ligand human IL11 (R&D Systems, catalog #218-IL-025/CF) binding to surface IL11 Ra are evaluated using flow cytometry to choose antibodies at IC50's ranging from less than 1 nM up to 5 uM, as described above. In this current example, full length human IL11 Ra is transiently transfected to the surface of HEK293F cells. The methods from the prior example are used by replacing IL11 Ra antibodies in place of Notch2 antibodies, and IL11 in place of Jagged-2-Fc.


4.5 Expressing and Purifying ANDbodies as Bispecifics


DNA sequences from 10 RAGE antibodies and 10 IL11 Ra antibodies ranging in IC50 (from <1 nM up to 5 uM) are made into about 100 variant ANDbodies as described above.


4.6 Affinity of ANDbody Variants for RAGE and IL11Ra


ANDbody affinities for RAGE and IL11 Ra are evaluated similarly to above using a BIAcore. In this case, human and mouse versions of His-tagged IL11 Ra are immobilized on a Sensor Chip NTA (Cytiva catalog #BR100034), and human and mouse versions of RAGE-Fc are captured on a Sensor Chip Protein A (Cytiva catalog #29127557).


4.7 In Vitro Assays for IL11Ra Antagonism on Cells with or without RAGE Expression


This assay is done as described above, except substituting full length human IL11 Ra instead of Notch2, as well as substituting anti-IL11 Ra antibodies for anti-Notch antibodies. The corresponding RAGE×IL11Ra ANDbodies are also used.


4.8 Biodistribution (In Vivo) for ANDbody and Parental Antibodies


Cellular and tissue biodistribution studies are done using methods described above. However, the ANDbody used in this case is RAGE×IL11Ra, and the parental antibodies correspond to anti-RAGE and anti-IL11 Ra.


4.9 In Vivo Bioactivity of RAGE×IL11Ra ANDbodies


In response to mouse treatment with murine IL11, there is an increase in collagen content in both the ventricle and the kidney (Schafer et al. 2017). Accordingly, collagen content is measured to quantify amount of IL11 Ra bioactivity after ANDbody treatment.


Similar to prior methods (Schafer et al. 2017), 10-week-old male C57BL/6 mice are injected with 2 ug mouse IL11 daily subcutaneously or an identical volume of saline for 21 days. The mouse IL11 is recombinantly made by synthesizing codon-optimized DNA using the sequence for mouse IL11 (UniProt ID P47873) with a C-terminal His tag, doing HEK293F transient transfections, and purifying the His tagged IL11 with TALON resin as described above. Starting 3 days before the first IL11 injection and then 2× per week thereafter, IL11- and saline-treated mice receive therapeutic injections IP constituting 250 ug of ANDbody RAGE×IL11Ra, parental anti-IL11 Ra alone, or saline (PBS) in equal volume.


At the end of 21 days of IL11 treatment, mice are euthanized and the amounts of total collagen in the lung, spleen, blood, kidney, liver, heart, and intestines are quantified on the basis of colorimetric detection of hydroxyproline using a Quickzyme Total Collagen assay kit (Quickzyme Biosciences) and similar to prior methods (Schafer et al. 2017).


Example 5. Andbody Binding Mouse and Human Umod and Il11Ra

5.1 Yeast Surface Display to Create Anti-UMOD Antibodies


Anti-UMOD (e.g., address target) antibodies are selected for as above and cloned into human IgG1.


5.2 Selecting for Inert Anti-UMOD Antibodies


Anti-UMOD antibodies are further evaluated based on their inability to block UMOD ligand binding, in an assay such as the ones described above.


5.3 Yeast Surface Display to Create Anti-IL11Ra Antibodies


The same IL11 Ra antibodies generated above in yeast surface display will be used here as described above. ScFv's cross-reactive to mouse and human IL11 Ra are cloned into human IgG1, transiently transfected into HEK293F cells, and purified using protein A resin as described above.


5.4 Selecting for Active IL11Ra Antibodies at Wide IC50 Ranges


The method described above is used to select for IL11 Ra antibodies at varied IC50s.


5.5 Expressing and Purifying ANDbodies as Bispecifics


DNA sequences from 10 UMOD antibodies and 10 IL11 Ra antibodies ranging in IC50 (from <1 nM up to 5 uM) are made into about 100 variant ANDbodies as described above.


5.6 Affinity of ANDbody Variants for UMOD and IL11Ra


ANDbody affinities for UMOD and IL11 Ra are evaluated similarly to above using a BIAcore. In this case, human and mouse versions of His-tagged UMOD and His-tagged IL11 Ra are immobilized on a Sensor Chip NTA (Cytiva catalog #BR100034). It is expected that some ANDbody variants have higher affinity for UMOD than for IL11 Ra, although all variants are tested in future assays.


5.7 Biodistribution (In Vivo) for ANDbody and Parental Antibodies


Cellular and tissue biodistribution studies are done using methods described above. However, the ANDbody used in this example is UMOD×IL11Ra, and the parental antibodies correspond to anti-UMOD and anti-IL11Ra.


5.8 In Vivo Bioactivity of UMOD×IL11Ra ANDbodies


The in vivo bioactivity of UMOD×IL11Ra ANDbodies is quantified using the same methods described above.


Example 6. Andbody Binding Mouse and Human Mep1B and Il11Ra

6.1 Yeast Surface Display to Create Anti-MEP1B Antibodies


Anti-MEP1B (e.g., address target) antibodies are selected for as above and cloned into human IgG1.


6.2 Yeast Surface Display to Create Anti-IL11Ra Antibodies


The same IL11Ra (e.g., effector target) antibodies generated above in yeast surface display will be used here. ScFv's cross-reactive to mouse and human IL11Ra are cloned into human IgG2, transiently transfected into HEK293F cells, and purified using protein A resin as described above.


6.3 Selecting for Active Anti-IL11Ra Antibodies at Wide IC50 Ranges


The method described above is used to select for IL11Ra antibodies at varied IC50s.


6.4 Expressing and Purifying ANDbodies as Fusion Proteins into Human IgG2


The 10 highest affinity MEP1B scFv's and 10 IL11Ra antibodies ranging in affinity (from <1 nM up to 5 uM) are made as ANDbodies with human IgG2 Fc regions. To do this, the scFv sequences from MEP1B variants are cloned respectively onto the IgG2 IL11Ra antibody variants. The MEP1B scFvs are separated by a flexible linker (3×GGGGS (SEQ ID NO: 85)) from either the N or C terminal of either the light or heavy chains of IL11Ra antibodies (each ANDbody has 2 MEP1B scFvs). Variants are made with 4 total MEP1B scFvs per ANDbody by cloning MEP1B scFvs (always separated by the linker) before the N terminal and after the C terminal of the heavy chain or the light chain, respectively. Other variants with 4 or more MEP1B scFvs per IL11Ra antibody on the MEP1B×IL11Ra ANDbody by mixing and matching the locations of the scFv on the IL11Ra antibodies: at N terminal of both heavy and light chains; at C terminal of both heavy and light chains; at N terminal of heavy chain and C terminal of light chain; at C terminal of heavy chain and N terminal of light chain; and other variants with scFvs in 3 or 4 different locations (resulting in 6 or 8 total scFvs per ANDbody, respectively).


6.5 Affinity of ANDbody Variants for MEP1B and IL11Ra


ANDbody affinities for MEP1B and IL11Ra are evaluated similarly to above using a BIAcore. In this case, human and mouse versions of His-tagged MEP1B and His-tagged IL11Ra are immobilized on a Sensor Chip NTA (Cytiva catalog #BR100034).


6.6 Biodistribution (In Vivo) for ANDbody and Parental Antibodies


Cellular and tissue biodistribution studies are done using methods described above. However, the ANDbody used in this case is MEP1B×IL11Ra, and the parental antibodies correspond to anti-MEP1B and anti-IL11Ra.


6.7 In Vivo Bioactivity of MEP1B×IL11Ra ANDbodies


The in vivo bioactivity of MEP1B×IL11Ra ANDbodies is quantified using the same methods described above.


Example 7. Exemplary Address-Restricted Binder for Skin

This example demonstrates the restricted expression of an anti-DSG1 antibody (address binder) in skin.


7.1 Anti-DSG1 Monoclonal Antibody Expression and Purification


Sequences encoding the variable heavy chain regions (HC: SEQ ID NO: 24 and SEQ ID NO: 26, shown in Table 4) of two anti-desmoglein-1 (anti-DSG1) antibodies named 3-09*5 and 3-07/1e (Yamagami et al., J Immunol., 183(9): 5615-5621, 2009) were fused to a human IgG1 (hulgG1) backbone with the effector null mutations L234A, L235A, and P329G (LALA-PG) and cloned into a PCDNA3.4™ vector (ThermoFisher Scientific). The variable light chain regions (SEQ ID NO: 25 and SEQ ID NO: 27) were fused to a constant kappa light chain (for 3-09*5) (SEQ ID NO: 22) or a constant lambda light chain (for 3-07/1e) (SEQ ID NO: 23) and cloned into PCDNA3.4™


To express and purify the antibodies, a 1:1 ratio of heavy chain to light chain DNA was transfected into EXPI293F™ cells (ThermoFisher Scientific) using the EXPIFECTAMINE™ 293 Transfection Kit (ThermoFisher Scientific) following manufacturer's recommendations. Transiently expressed antibodies were purified from conditioned media 5 days post-transfection by filtering out the transfected cells. Conditioned media was incubated with protein A agarose beads for 1 hour. The bound beads were washed with Phosphate Buffered Saline (PBS) pH 7.4 followed by elution of the bound antibody with 0.1 M Glycine pH 2.5 and neutralized with 1/10 volume of Tris pH 8.5. The neutralized eluate was buffer exchanged into PBS. The resulting mAbs were designated as PRO003 (3-09*5 HC) (heavy chain sequence: SEQ ID NO: 28; light chain sequence: SEQ ID NO: 29) and PRO004 (3-07/1e HC) (heavy chain sequence: SEQ ID NO: 30; light chain sequence: SEQ ID NO: 31).


The purified mAbs were analyzed by analytical size exclusion chromatography (SEC) for monodispersity and by SDS-PAGE for purity.









TABLE 4







PRO003 and PRO004 sequences











SEQ ID


Region
Sequence
number





Heavy chain
MGWSCIILFLVATATGVHS
SEQ ID NO: 19


signal peptide




sequence







Light chain signal
METDTLLLWVLLLWVPGSTG
SEQ ID NO: 20


peptide sequence







Constant heavy
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSW
SEQ ID NO: 21


chain region
NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC




NVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPEAAGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVE




VHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVS




NKALGAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTC




LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSK




LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG






Kappa light chain
RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWK
SEQ ID NO: 22


constant region
VDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK




VYACEVTHQGLSSPVTKSFNRGEC






Lambda light
GQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGAVTVAW
SEQ ID NO: 23


chain constant
KADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHR



region
SYSCQVTHEGSTVEKTVAPTECS






3-09*5 variable
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQA
SEQ ID NO: 24


heavy chain
PGKGLEWVSGISWNSGSIDYADSVKGRFTISRDNAKNSLYLQ



sequence
MNSLRVEDTALYYCAKDGSRVFGVGGGFDFWGQGTMVTVS




S






3-09*5 variable
ELQMTQSPSSLSASVGDRVTITCQASQDIGNYLNWYQQKPG
SEQ ID NO: 25


light chain
KAPKLLIYDASYLETGVPSRFSGSGSGTDFTFTISSLQPEDIAT



sequence
YYCQQYDNLPFTFGPGTKVDIK






3-07/1e variable
QVQLVQSGGGLVQPGGSLRVSCAASGFTSNIFWMSWVRQA
SEQ ID NO: 26


heavy chain
PGKGLEWVANIDEDGSEKNYVDSVKGRFTISRDNAKNSLYL



sequence
QMNSLRAEDTAVYYCARESFYYGSGTYFDFWGQGTLVTVS




S






3-07/1e variable
ELVVTQPPSVSGAPGQRVTISCTGSSSNIGAGYDVHWYQQL
SEQ ID NO: 27


light chain
PGTAPKLLIYGNKNRPSGVPDRFSGSKSGTSASLAITGLRAE



sequence
DEADYYCQSFDSSLGWVFGGGTQLTVL






PRO003 heavy
MGWSCIILFLVATATGVHSEVQLVESGGGLVQPGRSLRLSCA
SEQ ID NO: 28


chain
ASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGSIDYADS




VKGRFTISRDNAKNSLYLQMNSLRVEDTALYYCAKDGSRVF




GVGGGFDFWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGG




TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL




YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD




KTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVV




VDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV




SVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP




ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM




HEALHNHYTQKSLSLSPG






PRO003 light
METDTLLLWVLLLWVPGSTGELQMTQSPSSLSASVGDRVTIT
SEQ ID NO: 29


chain
CQASQDIGNYLNWYQQKPGKAPKLLIYDASYLETGVPSRFS




GSGSGTDFTFTISSLQPEDIATYYCQQYDNLPFTFGPGTKVDI




KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQW




KVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH




KVYACEVTHQGLSSPVTKSFNRGEC






PRO004 heavy
MGWSCIILFLVATATGVHSQVQLVQSGGGLVQPGGSLRVSC
SEQ ID NO: 30


chain
AASGFTSNIFWMSWVRQAPGKGLEWVANIDEDGSEKNYVD




SVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARESFYYG




SGTYFDFWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA




ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL




SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTH




TCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV




SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT




VLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVY




TLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY




KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






PRO004 light
METDTLLLWVLLLWVPGSTGELVVTQPPSVSGAPGQRVTISC
SEQ ID NO: 31


chain
TGSSSNIGAGYDVHWYQQLPGTAPKLLIYGNKNRPSGVPDR




FSGSKSGTSASLAITGLRAEDEADYYCQSFDSSLGWVFGGG




TQLTVLGQPKAAPSVTLFPPSSEELQANKATLVCLISDFYPGA




VTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQ




WKSHRSYSCQVTHEGSTVEKTVAPTECS









7.2 Anti-DSG1 Antibodies PRO003 and PRO004 Bind to Murine DSG1 Expressed on Cells


Murine DSG1 (NCBI accession NP_034209.2) with a c-Myc epitope tag at the protein C terminus was transiently expressed in RAW 264.7 cells using LIPOFECTAMINE™ 3000 (ThermoFisher Scientific) according to the manufacturer's protocol. Expression of DSG1 was confirmed by fixing and permeabilizing the cells, followed by staining with an anti-c-Myc antibody (Life Technologies A-21281) and analysis by flow cytometry. PRO003 and PRO004 bound specifically to the cells transfected with mouse DSG1, confirming that they have the expected binding specificity and are suitable for studies in mice.


7.3 Anti-DSG1 Antibodies Injected into Mice Accumulate Preferentially in Skin


To demonstrate that binding to a skin address can cause accumulation of an antibody in the skin, the anti-DSG1 antibodies PRO003 and PRO004 were chemically conjugated to the near-infrared (IR) dye IRDYE® 800CW using according to the manufacturer's instructions (LI-COR® 928-38044).


The labeled antibodies were each administered to mice by tail vein injection at a dose level of 3 mg/kg. Each antibody was administered to two groups of 3 mice, which were euthanized at 3 days and 7 days after dosing. Following euthanization, 9 organs were collected (heart, lung, pancreas, kidney, small intestine, large intestine, skin, liver, stomach), and the near-IR fluorescence of each tissue was measured on a IVIS® imager (PERKINELMER®). To image the skin, a patch of skin was shaved and approximately 1 cm2 was collected for imaging. Samples from each mouse were arranged in a standard format and total fluorescence intensity was measured. Fluorescence intensity from each organ was quantified and averaged across each tissue by measuring total signal and subtracting the local background. High background signal was observed in the livers from all treated mice, so livers were excluded from the analysis. Without wishing to be bound by theory, it is believed that the liver may take up the flourescent dye independent of antibody targeting. Similarly, background signal was observed in the stomach from all groups, including mice that were not treated with any antibody. Fluorescence was observed from the food fed to the mice, so the stomach was excluded from analysis.



FIGS. 5A and 5B show fluorescent signal across tissues for PRO003 (FIG. 5A) and PRO004 (FIG. 5B). Distribution of both antibodies is strongly skewed to the skin. These data show that DSG1 antibodies can be used as an address for preferential skin targeting of an ANDbody.


Example 8. Exemplary Address-Restricted Binder for Lung

This example demonstrates the restricted expression of an anti-RAGE antibody (address binder) in the lung.


8.1 Anti-RAGE Monoclonal Antibody Expression and Purification


Sequences encoding the variable heavy chain regions (SEQ ID NO: 32 and SEQ ID NO: 34, shown in Table 5) of two anti-RAGE mAbs named h11E6.8 and XT-M4 (Creative Biolabs) were fused to a hulgG1 backbone with the effector null mutations L234A, L235A, and P329G (LALA-PG) and cloned into a PCDNA3.4™ vector (ThermoFisher Scientific). Sequences encoding the variable light chain regions (SEQ ID NO: 33 and SEQ ID NO: 35) were fused to constant kappa light chains and cloned into PCDNA3.4™.


For expression and purification, a 1:1 ratio of heavy chain to light chain DNA was transfected into EXPI293F™ Cells (ThermoFisher Scientific) using the EXPIFECTAMINE™ 293 Transfection Kit (ThermoFisher Scientific) following the manufacturer's recommendations. Transiently expressed antibodies were purified from conditioned media 5 days post-transfection by filtering out the transfected cells. Conditioned media was incubated with protein A agarose beads for 1 hour. The bound beads were washed with Phosphate Buffered Saline (PBS) pH 7.4 followed by elution of the bound antibody with 0.1 M Glycine pH 2.5 and neutralized with 1/10 volume of Tris pH8.5. The neutralized eluate was buffer exchanged into PBS. The resulting mAbs were designated PRO001 (h11E6.8) (heavy chain sequence: SEQ ID NO: 36; light chain sequence: SEQ ID NO: 37) and PRO002 (XT-M4) (heavy chain sequence: SEQ ID NO: 38; light chain sequence: SEQ ID NO: 39).


The purified mAbs were analyzed by analytical size exclusion chromatography for monodispersity and by SDS-PAGE for purity. PRO001 and PRO002 expressed highly monodispered and resolved on SDS-PAGE at the expected molecular weight. Binding studies confirmed binding to the RAGE antigen (not shown).









TABLE 5







PRO001 and PRO002 sequences











SEQ ID


Region
Sequence
number





h11E6.8 variable
EIQLVQSGSELKKPGASVKVSCKASGYTFTNFGMNWVRQAP
SEQ ID NO: 32


heavy chain
GQGLEWMGYINTNTGESIYSEEFKGRFVFSLDTSVSTAYLQI



sequence
CSLKAEDTAVYFCARSRMVTAYGMDYWGQGTTVTVSS






h11E6.8 variable
EIVMTQSPATLSLSPGERATLSCKASQNVGTAVAWYQQKPG
SEQ ID NO: 33


light chain
QSPRLLIFSASNRYTGVPARFSGSGSGTDFTLTISSLQSEDFA



sequence
VYFCQQYSSYPLTFGQGTKLEIK






XT-M4 variable
EVQLVESGGGLVQPGGSLRLSCAASGFTFNNYWMTWVRQA
SEQ ID NO: 34


heavy chain
PGKGLEWVASIDNSGDNTYYPDSVKDRFTISRDNAKNSLYLQ



sequence
MNSLRAEDTAVYYCARGGDITTGFDYWGQGTLVTVSS






XT-M4 variable
DIQMTQSPSSLSASVGDRVTITCRASQDVGIYVNWFQQKPG
SEQ ID NO: 35


light chain
KAPRRLIYRATNLADGVPSRFSGSRSGTDFTLTISSLQPEDFA



sequence
TYYCLEFDEHPLTFGGGTKVEIK






PRO001 heavy
MGWSCIILFLVATATGVHSEIQLVQSGSELKKPGASVKVSCK
SEQ ID NO: 36


chain
ASGYTFTNFGMNWVRQAPGQGLEWMGYINTNTGESIYSEEF




KGRFVFSLDTSVSTAYLQICSLKAEDTAVYFCARSRMVTAYG




MDYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGC




LVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV




TVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPP




CPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED




PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ




DWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPP




SRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT




PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH




YTQKSLSLSPG






PRO001 light
METDTLLLWVLLLWVPGSTGEIVMTQSPATLSLSPGERATLS
SEQ ID NO: 37


chain
CKASQNVGTAVAWYQQKPGQSPRLLIFSASNRYTGVPARFS




GSGSGTDFTLTISSLQSEDFAVYFCQQYSSYPLTFGQGTKLEI




KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQW




KVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH




KVYACEVTHQGLSSPVTKSFNRGEC






PRO002 heavy
MGWSCIILFLVATATGVHSEVQLVESGGGLVQPGGSLRLSCA
SEQ ID NO: 38


chain
ASGFTFNNYWMTWVRQAPGKGLEWVASIDNSGDNTYYPDS




VKDRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARGGDITTG




FDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGC




LVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVV




TVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPP




CPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED




PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQ




DWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPP




SRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT




PPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH




YTQKSLSLSPG






PRO002 light
METDTLLLWVLLLWVPGSTGDIQMTQSPSSLSASVGDRVTIT
SEQ ID NO: 39


chain
CRASQDVGIYVNWFQQKPGKAPRRLIYRATNLADGVPSRFS




GSRSGTDFTLTISSLQPEDFATYYCLEFDEHPLTFGGGTKVEI




KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQW




KVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH




KVYACEVTHQGLSSPVTKSFNRGEC









To test the binding of the anti-RAGE antibodies by ELISA, recombinant His-tagged murine RAGE protein (ab276858 from Abcam) was coated on NUNC-IMMUNO™ MAXISORP™ ELISA plates at 1 μg/mL concentration overnight. The next day, coated antigen was removed and the wells were blocked with 1% IgG-free bovine serum albumin (BSA) followed by incubation with 11 four-fold serially diluted anti-RAGE antibodies (PRO001 and PRO002) with a starting concentration of 20 nM. Bound antibodies were detected with peroxidase-conjugated anti-human IgG antibodies with tetramethylbenzidine (TMB) and acid stop reagents. Both PRO001 and PRO002 bound murine RAGE antigen at similar affinities by ELISA around 90 pM apparent affinity, suggesting that both antibodies are tight binders.


8.2 Anti-RAGE Antibodies PRO001 and PRO002 Bind to Murine RAGE Expressed on Cells


PRO001 and PRO002 were tested for binding to mouse RAGE in cell culture. To confirm binding activity and specificity of the two antibodies, mouse RAGE (NCBI accession NP 031451.2) with a c-Myc epitope tag at the protein C terminus was transiently expressed in EXPI293™ cells (ThermoFisher Scientific) using EXPIFECTAMINE™ (ThermoFisher Scientific) according to the manufacturer's protocol. Expression of RAGE was confirmed by fixing and permeabilizing the cells, followed by staining with anti-c-Myc antibody (Life Technologies A-21281) and analysis by flow cytometry. Both antibodies bound specifically to murine RAGE expressed on cells, confirming that they have the expected binding specificity and are suitable for studies in mice.


8.3 Anti-RAGE Antibodies Injected into Mice Accumulate Preferentially in Lungs


To demonstrate that binding to a lung address can cause accumulation of an antibody in the lungs, the anti-RAGE antibodies PRO001 and PRO002 were chemically conjugated to the near-IR dye as described in Example 7.


The labeled antibodies were each administered to mice by tail vein injection and imaged as described in Example 7. FIGS. 6A and 6B show fluorescent signal measured from tissues across mice treated with the two antibodies, each normalized so that the brightest signal is equal to 1. A group of three untreated mice is included as a negative control for autofluorescence. Distribution of both antibodies is strongly skewed to the lung when compared to the other antibodies tested. These data show that two antibodies binding to RAGE accumulate preferentially in lung, demonstrating they can be used as an address for preferential lung targeting of an ANDbody.


8.4 An Anti-RAGE Antibody Accumulates Specifically on Alveolar Cells


Single-cell expression analysis indicated that RAGE is expressed specifically in type 1 alveolar cells, with lower expression in type 2 alveolar cells. To test the hypothesis that the antibodies can address a specific cell type, three Balb/C mice were treated by tail vein injection with 3 mg/kg of PRO002. Three untreated mice were used as negative control. Three days after dosing, the mice were euthanized, lungs and other tissues were collected, and all tissues were fixed in formalin. Sections from each tissue were analyzed by immunohistochemistry (IHC) using an anti-human secondary antibody conjugated to horseradish peroxidase. FIG. 7 shows representative staining in treated and untreated mice. Strong staining was observed in the alveolar tissue of mice treated with PRO002, but not in adjacent airways or negative control conditions. This result shows that binders to addresses specific to a particular cell type can be used to direct the distribution of antibodies to those cells within a larger tissue.


Example 9. Exemplary Address-Restricted Binder for Kidney

This example demonstrates the restricted expression of an anti-CDH16 antibody (address binder) in the kidney.


9.1 Anti-CDH16 Monoclonal Antibody Expression and Purification


A sequence encoding the variable heavy chain region (SEQ ID NO: 40; shown in Table 6) of the anti-cadherin 16 (anti-CDH16) mAb Ab270263 (Abcam) was fused to a hulgG1 backbone with the effector null mutations L234A, L235A, and P329G (LALA-PG) and cloned into a PCDNA3.4™ vector (ThermoFisher Scientific). A sequence encoding the variable light chain region (SEQ ID NO: 41) was fused to a constant kappa light chain and cloned into PCDNA3.4™.


For expression and purification, a 1:1 ratio of heavy chain to light chain DNA was transfected into EXPI293F™ Cells (ThermoFisher Scientific) using the EXPIFECTAMINE™ Transfection Kit (ThermoFisher Scientific) following the manufacturer's recommendations. Transiently expressed antibodies were purified from conditioned media 5 days post-transfection by filtering out the transfected cells. Conditioned media was incubated with protein A agarose beads for 1 hour. The bound beads were washed with Phosphate Buffered Saline (PBS) pH 7.4 followed by elution of the bound antibody with 0.1 M Glycine pH 2.5 and neutralized with 1/10 volume of Tris pH 8.5. The neutralized eluate was buffer exchanged into PBS. The resulting mAb was designated as PRO056 (heavy chain sequence: SEQ ID NO: 42; light chain sequence: SEQ ID NO: 43).


The purified mAb was analyzed by analytical size exclusion chromatography for monodispersity and by SDS-PAGE for purity. PRO056 expressed highly monodispered and resolved on SDS-PAGE at the expected molecular weight.









TABLE 6







PRO056 sequences











SEQ ID


Region
Sequence
number





Ab270263 variable
QVHLKESGPGLVAPSQSLSITCTVSGFSLTSYAVHWVRQPP
SEQ ID NO: 40


heavy chain
GKGLEWLGVIWAGGNTNYNSVFMSRLTISKDNSKSQVFLKM



sequence
NSLQTDDTAIYYCARLDDYDERFVYWGQGTLVTVSS






Ab270263 variable
DIVMSQSPSSLAVSVGEKVSMNCKSSQSLLYSSNHKNYLAW
SEQ ID NO: 41


light chain
FQQKPGQSPKLLIYWASTRESGVPDRFTGSGSGTDFTLTISS



sequence
VKAEDLAVYYCQQYYTYTWTFGGGTKLEIK






PRO056 heavy
MGWSCIILFLVATATGVHSQVHLKESGPGLVAPSQSLSITCTV
SEQ ID NO: 42


chain
SGFSLTSYAVHWVRQPPGKGLEWLGVIWAGGNTNYNSVFM




SRLTISKDNSKSQVFLKMNSLQTDDTAIYYCARLDDYDERFV




YWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLV




KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV




PSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCP




APEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE




VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD




WLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPS




RDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP




PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHY




TQKSLSLSPG






PRO056 light
METDTLLLWVLLLWVPGSTGDIVMSQSPSSLAVSVGEKVSM
SEQ ID NO: 43


chain
NCKSSQSLLYSSNHKNYLAWFQQKPGQSPKLLIYWASTRES




GVPDRFTGSGSGTDFTLTISSVKAEDLAVYYCQQYYTYTWTF




GGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYP




REAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLS




KADYEKHKVYACEVTHQGLSSPVTKSFNRGEC









To test the binding of the anti-CDH16 antibodies by ELISA, recombinant His-tagged murine CDH16 protein, expressed and purified in house, was coated on NUNC-IMMUNO™ MAXISORP™ ELISA plates at 1 μg/mL concentration overnight. The next day, coated antigen was removed and the wells were blocked with 1% IgG-free BSA followed by incubation with 11 three-fold serially diluted anti-CDH16 antibody (PRO056) with a starting concentration of 533 nM. Bound antibody was detected with peroxidase-conjugated anti-human IgG antibodies with TMB and acid stop reagents. PRO056 bound murine CDH16 antigen at an affinity of 200 pM by ELISA.


9.2 Anti-CDH16 Antibody Accumulates Preferentially in the Kidney


The anti-CDH16 antibody PRO056 was chemically conjugated to near-IR fluorescent dye IRDYE® 800CW, as described in Example 7. The labeled antibody was administered to mice by tail vein injection at a dose level of 3 mg/kg. Two groups of 3 mice were used, which were euthanized at 3 days and 7 days after dosing. Following euthanization, organs were collected, and the near-IR fluorescence of each tissue was measured on a model IVIS® imager (PERKINELMER®), as above. Fluorescence intensity from each organ was quantified and averaged across each tissue by measuring total signal and subtracting the local background. FIG. 8 shows fluorescent signal measured from the tissues across mice treated with PRO056. Each is normalized so that the brightest signal is equal to 1. A group of three untreated mice is included as a negative control for autofluorescence.


The distribution is strongly skewed to the kidney when compared to the antibodies provided herein that target addresses in the skin, lung, or kidney. These data show that an antibody binding to CDH16 accumulates preferentially in kidney, demonstrating they can be used as an address bidding domain for preferential kidney targeting of an ANDbody.


Example 10. Exemplary Address-Restricted Binder for Intestine

This example demonstrates the restricted expression of an anti-CDH17 antibody (address binder) in the intestine.


10.1 Anti-CDH17 Monoclonal Antibody Expression and Purification


A sequence encoding the variable heavy chain region (SEQ ID NO: 44; shown in Table 7) of the anti-cadherin 17 (anti-CDH17) mAb MAB8524 (R&D Systems) was fused to a hulgG1 backbone with the effector null mutations L234A, L235A, P329G (LALA-PG) and cloned into a PCDNA3.4™ vector (ThermoFisher Scientific). A sequence encoding the variable light chain region (SEQ ID NO: 45) was fused to a constant kappa light chain and cloned into PCDNA3.4™


For expression and purification, a 1:1 ratio of heavy chain to light chain DNA was transfected into EXPI293F™ cells (ThermoFisher Scientific) using the EXPIFECTAMINE™ 293 Transfection Kit (ThermoFisher Scientific) following the manufacturer's recommendations. Transiently expressed antibodies were purified from conditioned media 5 days post-transfection by filtering out the transfected cells. Conditioned media was incubated with protein A agarose beads for 1 hour. The bound beads were washed with Phosphate Buffered Saline (PBS) pH 7.4 followed by elution of the bound antibody with 0.1 M Glycine pH 2.5 and neutralized with 1/10 volume of Tris pH 8.5. The neutralized eluate was buffer exchanged into PBS. The resulting mAb was designated as PRO061 (heavy chain sequence: SEQ ID NO: 46; light chain sequence: SEQ ID NO: 47).


The purified mAb was analyzed by analytical size exclusion chromatography for monodispersity and by SDS-PAGE for purity. PRO061 expressed highly monodispered and resolved on SDS-PAGE at the expected molecular weight.









TABLE 7







PRO061 sequences











SEQ ID


Region
Sequence
number





MAB8524 variable
QSLEESGGRLVTPGTPLTLTCTVSGFSLTSYDMNWVRQAPG
SEQ ID NO: 44


heavy chain
KGLEWIGVVRGSGRTYYASWAKGRFTIARTSSTTVDLKMTSL



sequence
TTGDTATYFCARGDANNNYYEFDIWGPGTLVTVSS






MAB8524 variable
QDMTQTPSPVSAAVGGTVTINCQSSQSVYGDAWLSWFQQK
SEQ ID NO: 45


light chain
PGQPPKLLIYSASTLASGVPSRFKGSGSGTQFTLTISDLESDD



sequence
AATYYCAGGYDGINDIRAFGGGTEVVVK






PRO061 heavy
MGWSCIILFLVATATGVHSQSLEESGGRLVTPGTPLTLTCTVS
SEQ ID NO: 46


chain
GFSLTSYDMNWVRQAPGKGLEWIGVVRGSGRTYYASWAKG




RFTIARTSSTTVDLKMTSLTTGDTATYFCARGDANNNYYEFDI




WGPGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVK




DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP




SSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPA




PEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEV




KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW




LNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYTLPPSR




DELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV




LDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT




QKSLSLSPG






PRO061 light
METDTLLLWVLLLWVPGSTGQDMTQTPSPVSAAVGGTVTIN
SEQ ID NO: 47


chain
CQSSQSVYGDAWLSWFQQKPGQPPKLLIYSASTLASGVPSR




FKGSGSGTQFTLTISDLESDDAATYYCAGGYDGINDIRAFGG




GTEVVVKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPR




EAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK




ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC









To confirm binding activity and specificity, mouse CDH17 (NCBI accession NP 062727.1) with a c-Myc epitope tag at the protein C terminus was transiently expressed in RAW 264.7 cells using LIPOFECTAMINE™ 3000 (ThermoFisher Scientific) according to the manufacturer's protocol. Expression of CDH17 was confirmed by fixing and permeabilizing the cells, followed by staining with an anti-c-Myc antibody (Life Technologies A-21281) and analysis by flow cytometry. PRO061 bound specifically to the cells transfected with mouse CDH17, confirming that it has the expected binding specificity and is suitable for studies in mice.


10.2 Anti-CDH17 Antibody Injected into Mice Accumulates Preferentially in the Intestine


PRO061 was chemically conjugated to near-IR fluorescent dye IRDYE® 800CW, as described in Example 7. The labeled antibody was administered to mice by tail vein injection at a dose level of 3 mg/kg. Two groups of 3 mice were used, which were euthanized at 3 days and 7 days after dosing. Following euthanization, organs were collected, and the near-IR fluorescence of each tissue was measured on a model IVIS® imager (PERKINELMER®), as above. Fluorescence intensity from each organ was quantified and averaged across each tissue by measuring total signal and subtracting the local background. FIG. 9 shows fluorescent signal measured from the tissues across mice treated with PRO061. Each is normalized so that the brightest signal is equal to 1. A group of three untreated mice is included as a negative control for autofluorescence. The distribution is strongly skewed to the intestine, showing that an antibody binding to CDH17 accumulates preferentially in intestine and can be used as an address targeting domain for preferential intestine targeting of an ANDbody.


Example 11. Tissue Restriction of Predicted Addresses

Immunohistochemistry (IHC) on fresh frozen (FF) healthy mouse tissue microarray (TMA) sections mounted onto glass slides was used for assaying whether predicted organ-specific or preferentially expressed addresses were actually of highest abundance in the predetermined organs, and for determining which monoclonal antibody clones (mAbs) bound with greatest preference to the desired organ.


Glass slides coated with FF TMA were generated by first assembling a fresh frozen tissue microarray block. To enable TMA block formation, individual organs from freshly sacrificed C57BL/6 mice were embedded in optimal cutting (OCT) medium in separate cryomolds and frozen. Cylindrical cores of tissue were then taken from each block and placed into a block to create the final FF TMA. Layers of the TMA were then cut off using a cryostat, mounted onto positively charged microscopy glass slides, and stored at −80° C. until stained.


Addresses were validated by direct binding of FF TMA-coated slides with either polyclonal antibodies or mAbs raised against the address in question. These address-specific antibodies were detected with horseradish peroxidase (HRP)-conjugated antibodies specific for the IgG of the host in which the primary address specific antibody was raised. Location and intensity of binding was determined by the addition of the HRP substrate 3,3′Diaminobenzidine (DAB), which yields a brown color at the site of primary antibody binding, proportional to the abundance of deposited antibody. Nuclei were counterstained with hematoxylin to yield a blue color. For each of the respective addresses, a range of different mAb clones was assayed for tissue specificity, and their patterns of tissue binding were assessed by performing IHC on the same FF TMAs described above.


Table 8 summarizes observed binding of the antibodies tested. All the antibodies tested reacted primarily with the expected target tissue, with varying degrees of weaker reactivity on other tissues. Without wishing to be bound by theory, much of the off-tissue reactivity may reflect non-specific binding by the antibody. For example, four antibodies tested for binding to RAGE each show binding to the lung, but 3 show variable low-level binding to other tissues.









TABLE 8







Candidate addresses evaluated by IHC on mouse tissue microarrays


















Primary Ab








reactivity


Ab
Predicted



matches
Weaker


#
Organ
Address
Clone/Cat #
Source
prediction
reactivity
















1
Lung
RAGE
NBP2-67095
Novus Bio
Yes
Spleen, pancreas,








intestine


2
Lung
RAGE
PR002
in house
Yes
None detected


3
Lung
RAGE
MAB11795
R&D Systems
Yes
Spleen, intestine,








heart, kidney, brain


4
Lung
RAGE
PR001
in house
Yes
Skin, Pancreas








(low)


5
Kidney
CDH16
Ab270263
Abcam
Yes
None detected


6
Colon
CDH17
MAB8524
Novus Bio
Yes
Small intestine,








spleen


7
Pancreas
GP2
D278-3
MBL Int. Corp.
Yes
None detected


8
Liver
ASGR1
MAB27552
R&D Systems
Yes
None detected


9
Small
HEPACAM2
LS-B888
LS Bio
Yes
None detected



Intestine


10
Kidney
Nephrin
Ab227806
Abcam
Yes
None detected


11
Kidney
Aquaporin 2
PA5-78808
ThermoFisher
Yes
Colon (low)


12
Negative
n/a
PR0022
in house
Yes
None detected



Control









Example 12. Andbody Production and Use

This example demonstrates the production of an exemplary ANDbody that blocks Notch2 and binds RAGE as an address.


12.1 Anti-Notch2 Monoclonal Antibody Expression and Purification


Sequences encoding the variable heavy chain regions (SEQ ID NOs: 48, 50, 52 and 54; shown in Table 9) of four anti-Notch2 mAbs (Wu et al., Nature, 464: 1052-1057, 2010) were each individually fused to a hulgG1 backbone with the effector null mutations L234A, L235A, and P329G (LALA-PG) and cloned into a PCDNA3.4™ vector (ThermoFisher Scientific). Sequences encoding the corresponding variable light chain regions (SEQ ID NOs: 49, 51, 53, and 55) were fused to constant kappa light chains and cloned into PCDNA3.4™


For expression and purification, a 1:1 ratio of heavy chain to light chain DNA was transfected into EXPI293F™ cells (ThermoFisher Scientific) using the EXPIFECTAMINE™ 293 Transfection Kit (ThermoFisher Scientific) following the manufacturer's recommendations. Transiently expressed antibodies were purified from conditioned media 5 days post-transfection by filtering out the transfected cells. Conditioned media was incubated with protein A agarose beads for 1 hour. The bound beads were washed with Phosphate Buffered Saline (PBS) pH 7.4 followed by elution of the bound antibody with 0.1 M Glycine pH 2.5 and neutralized with 1/10 volume of Tris pH 8.5. The neutralized eluate was buffer exchanged into PBS. The resulting mAbs were designated as PRO034 (heavy chain sequence: SEQ ID NO: 56; light chain sequence: SEQ ID NO: 57), PRO035 (heavy chain sequence: SEQ ID NO: 58; light chain sequence: SEQ ID NO: 59), PRO036 (heavy chain sequence: SEQ ID NO: 60; light chain sequence: SEQ ID NO: 61), and PRO037 (heavy chain sequence: SEQ ID NO: 62; light chain sequence: SEQ ID NO: 63).









TABLE 9







PRO034, PRO035, PRO036, and PRO037 sequences











SEQ ID


Region
Sequence
number





anti-Notch2 mAb 1
EVQLVESGGGLVQPGGSLRLSCAASGYSFTSYGMSWVRQA
SEQ ID NO: 48


variable heavy
PGKGLEWVSYIYPYSGATYYADSVKGRFTISADTSKNTAYLQ



chain sequence
MNSLRAEDTAVYYCARHSGYYRISSAMDVWGQGTLVTVSS






anti-Notch2 mAb 1
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLAWYQQKPGK
SEQ ID NO: 49


variable light chain
APKLLIYGASSRASGVPSRFSGSGSGTDFTLTISSLQPEDFAT



sequence
YYCQQYYSSPLTFGQGTKVEIK






anti-Notch2 mAb 2
EVQLVESGGGLVQPGGSLRLSCAASGYTFSSYGMSWVRQA
SEQ ID NO: 50


variable heavy
PGKGLEWVSYIYPYSGATYYADSVKGRFTISADTSKNTAYLQ



chain sequence
MNSLRAEDTAVYYCARHSGYYRISSAMDVWGQGTLVTVSS






anti-Notch2 mAb 2
DIQMTQSPSSLSASVGDRVTITCRASQSNRRFLAWYQQKPG
SEQ ID NO: 51


variable light chain
KAPKLLIYGASSRASGVPSRFSGSGSGTDFTLTISSLQPEDFA



sequence
TYYCQQYYISPLTFGQGTKVEIK






anti-Notch2 mAb 3
EVQLVESGGGLVQPGGSLRLSCAASGYTFSSYGMSWVRQA
SEQ ID NO: 52


variable heavy
PGKGLEWVSYIYPYSGATYYADSVKGRFTISADTSKNTAYLQ



chain sequence
MNSLRAEDTAVYYCARHSGYYRISSAMDVWGQGTLVTVSS






anti-Notch2 mAb 3
DIQMTQSPSSLSASVGDRVTITCRASQSVRSFLAWYQQKPG
SEQ ID NO: 53


variable light chain
KAPKLLIYRASIRASGVPSRFSGSGSGTDFTLTISSLQPEDFA



sequence
TYYCQQYYISPWTFGQGTKVEIK






anti-Notch2 mAb 4
EVQLVESGGGLVQPGGSLRLSCAASGYTFSSYGMSWVRQA
SEQ ID NO: 54


variable heavy
PGKGLEWVSYIYPYSGATYYADSVKGRFTISADTSKNTAYLQ



chain sequence
MNSLRAEDTAVYYCARHSGYYRISSAMDVWGQGTLVTVSS






anti-Notch2 mAb 4
DIQMTQSPSSLSASVGDRVTITCRASQSNRRFLAWYQQKPG
SEQ ID NO: 55


variable light chain
KAPKLLIYGASSRASGVPSRFSGSGSGTDFTLTISSLQPEDFA



sequence
TYYCQQYYISPLTFGQGTKVEIK






PRO034 heavy
MGWSCIILFLVATATGVHSEVQLVESGGGLVQPGGSLRLSCA
SEQ ID NO: 56


chain
ASGYSFTSYGMSWVRQAPGKGLEWVSYIYPYSGATYYADS




VKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARHSGYYRI




SSAMDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA




LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS




SVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT




CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS




HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTV




LHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYT




LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY




KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






PRO034 light
METDTLLLWVLLLWVPGSTGDIQMTQSPSSLSASVGDRVTIT
SEQ ID NO: 57


chain
CRASQSISSYLAWYQQKPGKAPKLLIYGASSRASGVPSRFSG




SGSGTDFTLTISSLQPEDFATYYCQQYYSSPLTFGQGTKVEIK




RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWK




VDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK




VYACEVTHQGLSSPVTKSFNRGEC






PRO035 heavy
MGWSCIILFLVATATGVHSEVQLVESGGGLVQPGGSLRLSCA
SEQ ID NO: 58


chain
ASGYTFSSYGMSWVRQAPGKGLEWVSYIYPYSGATYYADS




VKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARHSGYYRI




SSAMDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA




LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS




SVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT




CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS




HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTV




LHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYT




LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY




KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






PRO035 light
METDTLLLWVLLLWVPGSTGDIQMTQSPSSLSASVGDRVTIT
SEQ ID NO: 59


chain
CRASQSNRRFLAWYQQKPGKAPKLLIYGASSRASGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQYYISPLTFGQGTKVEI




KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQW




KVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH




KVYACEVTHQGLSSPVTKSFNRGEC






PRO036 heavy
MGWSCIILFLVATATGVHSEVQLVESGGGLVQPGGSLRLSCA
SEQ ID NO: 60


chain
ASGYTFSSYGMSWVRQAPGKGLEWVSYIYPYSGATYYADS




VKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARHSGYYRI




SSAMDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA




LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS




SVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT




CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS




HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTV




LHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYT




LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY




KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






PRO036 light
METDTLLLWVLLLWVPGSTGDIQMTQSPSSLSASVGDRVTIT
SEQ ID NO: 61


chain
CRASQSVRSFLAWYQQKPGKAPKLLIYRASIRASGVPSRFSG




SGSGTDFTLTISSLQPEDFATYYCQQYYISPWTFGQGTKVEIK




RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWK




VDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHK




VYACEVTHQGLSSPVTKSFNRGEC






PRO037 heavy
MGWSCIILFLVATATGVHSEVQLVESGGGLVQPGGSLRLSCA
SEQ ID NO: 62


chain
ASGYTFSSYGMSWVRQAPGKGLEWVSYIYPYSGATYYADS




VKGRFTISADTSKNTAYLQMNSLRAEDTAVYYCARHSGYYRI




SSAMDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAA




LGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS




SVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT




CPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS




HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTV




LHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPREPQVYT




LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY




KTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL




HNHYTQKSLSLSPG






PRO037 light
METDTLLLWVLLLWVPGSTGDIQMTQSPSSLSASVGDRVTIT
SEQ ID NO: 63


chain
CRASQSNRRFLAWYQQKPGKAPKLLIYGASSRASGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQYYISPLTFGQGTKVEI




KRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQW




KVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH




KVYACEVTHQGLSSPVTKSFNRGEC









12. 2 Anti Notch2 Binding and Affinity Testing


To test the binding of the anti-Notch2 antibodies by ELISA, recombinant His-tagged human and murine Notch2 NRR domains, expressed and purified in house, were coated on NUNC-IMMUNO™ MAXISORP™ ELISA plates at 1 μg/mL concentration overnight. The next day, coated antigen was removed and the wells were blocked with 1% IgG-free BSA followed by incubation with 11 three-fold serially diluted anti-Notch2 antibodies (PRO034, PRO035, PRO036 and PRO037) with a starting concentration of 200 nM for PRO035 and PRO037 and 666 nM for PRO034 and PRO036. Bound antibody was detected with peroxidase-conjugated anti-human IgG antibodies with TMB and acid stop reagents. Each of the antibodies bound human and murine NRR domain of Notch2 with affinities between 47 pM and 140 nM.


To test the binding affinity of the anti-Notch2 antibodies by biolayer interferometry (BLI), each of PRO034, PRO035, PRO036 and PRO037 were immobilized on anti-human IgG Fc biosensors and dipped into the recombinant His-tagged murine and human Notch2 NRR protein at various concentrations from 1000 nM to 31 nM to measure the rate of association with the antigen. The dissociation rate was then measured by dipping the biosensors into buffer. The binding affinity was calculated as a ratio of the dissociation rate to the association rate. The intrinsic affinities determined by BLI were all in the nM range, suggesting that avidity improves affinity in an ELISA format.


12. 3 Design and Production of Notch2/RAGE ANDbodies


ANDbodies containing a first fragment antigen-binding (Fab) arm of a anti-Notch2 antibody described above (PRO034, PRO035, and PRO036) and a second Fab arm of the anti-RAGE antibody PRO002 (Example 8) were generated using a controlled Fab arm exchange (cFAE) reaction (Labrijn et al., Proc Natl Acad Sci U.S.A., 110(13): 5145-5150, 2013). Site-directed mutagenesis was performed to introduce a F405L amino acid substitution mutation in the Fc fragment of the anti-RAGE antibody (PRO002) and a K409R amino acid substitution mutation in the Fc fragment of each of the anti-Notch2 antibodies (PRO034, PRO035, and PRO036). These antibodies were expressed and purified as described previously for the parental antibodies. The individual monoclonal antibodies were then mixed in an equimolar ratio in a controlled reduction and reoxidation reaction that drives recombination of the bispecific antibody guided by the matching point mutations (F405L-K409R). The formation of the ANDbody was analyzed by analytical chromatography and SDS-PAGE. The resulting ANDbodies were designated as PRO051, PRO052 and PRO053 (comprising PRO034, PRO035, and PRO036, respectively).


SDS-PAGE and analytical size exclusion chromatography showed that the major product formed after cFAE reaction had a molecular weight of a typical IgG1 (150 kDa), suggesting complete reoxidation. Analytical hydrophobic interaction chromatography indicated the formation of a new product, the desired heterodimeric antibody.


12.4 Notch2/RAGE ANDbodies are Shown to Bind Simultaneously to Notch2 and RAGE by BLI


To test simultaneous dual antigen binding of the Notch2/RAGE ANDbodies by BLI, PRO051, PRO052 and PRO053, along with monovalent parental antibody controls were immobilized on anti-human IgG Fc biosensors and dipped into the recombinant His-tagged murine RAGE protein at 150 nM, followed by a second association step into wells containing recombinant murine Notch2 NRR at 150 nM to measure dual antigen binding. The dissociation rate was then measured by dipping the biosensors into buffer.


The sensorgrams showed that the ANDbodies PRO051, PRO052 and PRO053 were able to bind both RAGE and Notch2 antigens simultaneously, but the monovalent parental antibodies bound only one of RAGE and Notch2 NRR. This supports the conclusion that the ANDbodies were the correct composition and were functional in binding both antigens simultaneously.


12.5 Notch2/RAGE ANDbody are Shown to Bind Preferentially to Human Lung Tissue by Immunohistochemistry


Immunohistochemistry (IHC) on fresh frozen healthy mouse tissue microarray (FF TMA) sections mounted onto glass slides was used to evaluate tissue binding by ANDbodies containing the Notch2 inhibitory antibodies described above. TMAs were constructed and stained as described in Example 11. FIG. 10 shows staining of mouse TMAs by the three anti-Notch2 antibodies PRO034, PRO035, and PRO036 alongside staining by the Notch2/RAGE ANDbodies PRO051, PRO052, and PRO053. In each case, there is a pronounced enhancement of binding to lung tissue in the RAGE-targeted ANDbody. These data show that combining a receptor-targeting binder with an addressing binder in antibody format can impart the tissue specificity of the addressing arm to the ANDbody.


12.6 A Notch2/RAGE ANDbody Distributes Preferentially to the Lungs Compared to a Matched Non-Targeted Anti-Notch2 Antibody


To evaluate how an ANDbody targeting Notch2 and RAGE behaves in vivo, mice were treated by IV dosing with the PRO051, PRO052, and PRO053 antibodies at 3 mg/kg. All groups contained 3 mice. At 3, 7, 14, and 21 days after dosing, tissues were collected from each mouse. The accumulation of each antibody in the lungs was measured by homogenizing a fixed amount of lung tissue, normalizing each sample to a fixed amount of extracted protein, and then detecting the human antibody by sandwich ELISA.



FIG. 11 shows accumulation in the lungs of PRO052 compared with a matched antibody that binds to RAGE and the control target respiratory syncytial virus (RSV) glycoprotein F (RAGE XT-M4/Motavizumab) and one that binds to Notch2 and RSV glycoprotein F (Notch2-2/Motavizumab). The antibody targeting RSV glycoprotein F and Notch2 was not detectable in the lungs at any time point. In contrast, the Notch2/RAGE ANDbody was clearly detectable in the lung for at least two weeks. Overall accumulation of PRO052 was lower than that of the bispecific that binds to RAGE and RSV glycoprotein F, indicating that the overall specificity of PRO052 is intermediate between the two arms independently. These results show that an addressing arm in an ANDbody can significantly redirect the binding specificity of a target-binding arm.


Example 13. Andbody Production and Use

This example describes the production of an exemplary ANDbody that (i) comprises a ligand effector that targets the IL-10 pathway and (ii) binds DSG1 as an address.


13.1 Description, Design and Production of IL-10/DSG1 ANDbodies


To test formats of IL-10/anti-DSG1 ANDbodies, three parameters were explored: valency of IL-10 (1 or 2 moieties of IL-10), valency of the anti-DSG1 arm (1 or 2 Fab arms) and two versions of IL-10 (dimeric or monomeric IL-10). Formats that represent different combinations of IL-10 molecules, IL-10 valency, and antibody valency were assessed. Wild-type (WT) IL-10 (accession number P22301), a monomeric engineered IL-10 sequence (Josephson et al., J Biol Chem., 275(18): 13552-7, 2000), and a dimeric engineered IL-10 sequence (Minshawi et al., Front Immunol., 11: 1794, 2020) were fused to PRO003 sequences (Example 7) at the C-terminus of heavy chain for the bivalent formats. For monovalent formats, monomeric and dimeric IL-10 were fused at the N-terminus of the Fc and co-expressed with PRO003. The monovalent formats are asymmetric, and mutations in the Fc domain (chain A: S364K/K409S; chain B: K370S/F405K (WO 2017/106462 A1)) are used to enforce asymmetric pairing.


To express and purify the antibodies, a 1:1 ratio of heavy chain to light chain DNA or a 1:1:1 ratio of heavy chain to light chain to IL-10-Fc (listed below) was transfected into EXPI293F™ cells (ThermoFisher Scientific) using the EXPIFECTAMINE™ 293 Transfection Kit (ThermoFisher Scientific) following the manufacturer's recommendations. Transiently expressed antibodies were purified from conditioned media 5 days post-transfection by filtering out the transfected cells. Conditioned media was incubated with protein A agarose beads for 1 hour. The bound beads were washed with Phosphate Buffered Saline (PBS) pH 7.4 followed by elution of the bound antibody with 0.1 M Glycine pH 2.5 and neutralized with 1/10 volume of Tris pH 8.5. The neutralized eluate was buffer exchanged into PBS.


The resulting mAbs were designated as PRO023, PRO024, PRO025, PRO026 and PRO027 (FIG. 12).


PRO023 comprises (a) a heavy chain sequence (SEQ ID NO: 67) comprising the heavy chain sequence of PRO003 (SEQ ID NO: 28) and the wild-type human IL-10 sequence (SEQ ID NO: 64) and (b) the light chain sequence of PRO003 (SEQ ID NO: 29).


PRO024 comprises (a) a heavy chain sequence (SEQ ID NO: 68) comprising the heavy chain sequence of PRO003 (SEQ ID NO: 28) and the monomeric human IL-10 sequence (SEQ ID NO:64) and (b) the light chain sequence of PRO003 (SEQ ID NO: 29).


PRO025 comprises (a) a heavy chain sequence (SEQ ID NO: 69) comprising the heavy chain sequence of PRO003 (SEQ ID NO: 28) and the dimeric human IL-10 sequence (SEQ ID NO:66) and (b) the light chain sequence of PRO003 (SEQ ID NO: 29).


PRO026 comprises (a) the heavy chain sequence of PRO003, further comprising mutations in the Fc domain to enforce asymmetric pairing (SEQ ID NO: 70), (b) the light chain sequence of PRO003 (SEQ ID NO: 29), and (c) an IL-10-Fc fusion protein (SEQ ID NO: 72) comprising an Fc region including mutations to enforce asymmetric pairing (SEQ ID NO: 71) and a monomeric human IL-10 sequence (SEQ ID NO:64).


PRO027 comprises (a) the heavy chain sequence of PRO003, further comprising mutations in the Fc domain to enforce asymmetric pairing (SEQ ID NO: 70), (b) the light chain sequence of PRO003 (SEQ ID NO: 29), and (c) an IL-10-Fc fusion protein (SEQ ID NO: 73) comprising an Fc region including mutations to enforce asymmetric pairing (SEQ ID NO: 71) and the dimeric human IL-10 sequence (SEQ ID NO:66).


The purified ANDbodies were analyzed by analytical size exclusion chromatography for monodispersity and by SDS-PAGE for purity. PRO024 and PRO026 had the highest yields and monodispersity after single-step purification. PRO023 and PRO027 had moderate yields and were ˜70% monodispersed. PRO025 had lower yields with ˜89% monodispersity.









TABLE 10







PRO023, PRO024, PRO025, PRO026, PRO058, and PRO027 sequences











SEQ ID


Region
Sequence
number





Wild-type (WT) IL-
SPGQGTQSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMK
SEQ ID NO: 64


10 (accession
DQLDNLLLKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAEN



number P22301)
QDPDIKAHVNSLGENLKTLRLRLRRCHRFLPCENKSKAVEQV




KNAFNKLQEKGIYKAMSEFDIFINYIEAYMTMKIRN






Monomeric
SPGQGTQSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMK
SEQ ID NO: 65


engineered IL-10
DQLDNLLLKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAEN



sequence
QDPDIKAHVNSLGENLKTLRLRLRRCHRFLPCENGGGSGGK



(Josephson et al.,
SKAVEQVKNAFNKLQEKGIYKAMSEFDIFINYIEAYMTMKIRN



J Biol Chem.,




275(18): 13552-7,




2000)







Dimeric
SPGQGTQSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMK
SEQ ID NO: 66


engineered IL-10
DQLDNLLLKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAEN



sequence
QDPDIKAHVNSLGENLKTLRLRLRRCHRFLPCENKSKAVEQV



(Minshawi et al.,
KNAFNKLQEKGIYKAMSEFDIFINYIEAYMTMKIRNGGGSGGG



Front Immunol.,
SPGQGTQSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMK



11:1794, 2020)
DQLDNLLLKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAEN




QDPDIKAHVNSLGENLKTLRLRLRRCHRFLPCENKSKAVEQV




KNAFNKLQEKGIYKAMSEFDIFINYIEAYMTMKIRN






PRO023 heavy
MGWSCIILFLVATATGVHSEVQLVESGGGLVQPGRSLRLSCA
SEQ ID NO: 67


chain
ASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGSIDYADS




VKGRFTISRDNAKNSLYLQMNSLRVEDTALYYCAKDGSRVF




GVGGGFDFWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGG




TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL




YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD




KTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVV




VDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV




SVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP




ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM




HEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSSPGQGT




QSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMKDQLDNLL




LKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAENQDPDIKA




HVNSLGENLKTLRLRLRRCHRFLPCENKSKAVEQVKNAFNKL




QEKGIYKAMSEFDIFINYIEAYMTMKIRN






PRO024 heavy
MGWSCIILFLVATATGVHSEVQLVESGGGLVQPGRSLRLSCA
SEQ ID NO: 68


chain
ASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGSIDYADS




VKGRFTISRDNAKNSLYLQMNSLRVEDTALYYCAKDGSRVF




GVGGGFDFWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGG




TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL




YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD




KTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVV




VDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV




SVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP




ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM




HEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSSPGQGT




QSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMKDQLDNLL




LKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAENQDPDIKA




HVNSLGENLKTLRLRLRRCHRFLPCENGGGSGGKSKAVEQV




KNAFNKLQEKGIYKAMSEFDIFINYIEAYMTMKIRN






PRO025 heavy
MGWSCIILFLVATATGVHSEVQLVESGGGLVQPGRSLRLSCA
SEQ ID NO: 69


chain
ASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGSIDYADS




VKGRFTISRDNAKNSLYLQMNSLRVEDTALYYCAKDGSRVF




GVGGGFDFWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGG




TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL




YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD




KTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVV




VDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV




SVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP




ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVM




HEALHNHYTQKSLSLSPGGGGGSGGGGSGGGGSSPGQGT




QSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMKDQLDNLL




LKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAENQDPDIKA




HVNSLGENLKTLRLRLRRCHRFLPCENKSKAVEQVKNAFNKL




QEKGIYKAMSEFDIFINYIEAYMTMKIRNGGGSGGGSPGQGT




QSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMKDQLDNLL




LKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAENQDPDIKA




HVNSLGENLKTLRLRLRRCHRFLPCENKSKAVEQVKNAFNKL




QEKGIYKAMSEFDIFINYIEAYMTMKIRN






PRO026,
MGWSCIILFLVATATGVHSEVQLVESGGGLVQPGRSLRLSCA
SEQ ID NO: 70


PRO058, and
ASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGSIDYADS



PRO027 heavy
VKGRFTISRDNAKNSLYLQMNSLRVEDTALYYCAKDGSRVF



chain
GVGGGFDFWGQGTMVTVSSASTKGPSVFPLAPSSKSTSGG




TAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL




YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD




KTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVV




VDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVV




SVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPRE




PQVYTLPPSRDELTKNQVKLTCLVKGFYPSDIAVEWESNGQP




ENNYKTTPPVLDSDGSFFLYSSLTVDKSRWQQGNVFSCSVM




HEALHNHYTQKSLSLSPG






Fc domain of IL-10
DKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCV
SEQ ID NO: 71


Fc fusion
VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV




VSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPR




EPQVYTLPPSRDELTKNQVSLTCLVSGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFKLYSKLTVDKSRWQQGNVFSCSV




MHEALHNHYTQKSLSLSPG






PRO026 IL-10-Fc
SPGQGTQSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMK
SEQ ID NO: 72



DQLDNLLLKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAEN




QDPDIKAHVNSLGENLKTLRLRLRRCHRFLPCENGGGSGGK




SKAVEQVKNAFNKLQEKGIYKAMSEFDIFINYIEAYMTMKIRN




GGGGSGGGGSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDT




LMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPI




EKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVSGFYP




SDIAVEWESNGQPENNYKTTPPVLDSDGSFKLYSKLTVDKSR




WQQGNVFSCSVMHEALHNHYTQKSLSLSPG






PRO027 IL-10-Fc
SPGQGTQSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMK
SEQ ID NO: 73



DQLDNLLLKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAEN




QDPDIKAHVNSLGENLKTLRLRLRRCHRFLPCENKSKAVEQV




KNAFNKLQEKGIYKAMSEFDIFINYIEAYMTMKIRNGGGSGGG




SPGQGTQSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMK




DQLDNLLLKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAEN




QDPDIKAHVNSLGENLKTLRLRLRRCHRFLPCENKSKAVEQV




KNAFNKLQEKGIYKAMSEFDIFINYIEAYMTMKIRNGGGGSGG




GGSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEV




TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNST




YRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKG




QPREPQVYTLPPSRDELTKNQVSLTCLVSGFYPSDIAVEWES




NGQPENNYKTTPPVLDSDGSFKLYSKLTVDKSRWQQGNVFS




CSVMHEALHNHYTQKSLSLSPG






Fc domain of IL-10
DKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCV
SEQ ID NO: 74


Fc fusion (with
VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV



substitutions)
VSVLTVLHQDWLNGKEYKCKVSNKALGAPIEKTISKAKGQPR




EPQVYTLPPSRDELTKNQVSLTCLVSGFYPSDIAVEWESNGQ




PENNYKTTPPVLDSDGSFKLYSKLTVDKSRWQQGNVFSCSV




MHEALHNRFTQKSLSLSPG






PRO058 IL-10-Fc
SPGQGTQSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMK
SEQ ID NO: 75



DQLDNLLLKESLLEDFKGYLGCQALSEMIQFYLEEVMPQAEN




QDPDIKAHVNSLGENLKTLRLRLRRCHRFLPCENGGGSGGK




SKAVEQVKNAFNKLQEKGIYKAMSEFDIFINYIEAYMTMKIRN




GGGGSGGGGSDKTHTCPPCPAPEAAGGPSVFLFPPKPKDT




LMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKP




REEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALGAPI




EKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVSGFYP




SDIAVEWESNGQPENNYKTTPPVLDSDGSFKLYSKLTVDKSR




WQQGNVFSCSVMHEALHNRFTQKSLSLSPG









13.2 IL-10/DSG1 ANDbodies Bind to Both IL-10 Receptors


To test the binding of the IL-10/anti-DSG1 ANDbodies to IL-10 receptor alpha (IL-10Ra) by ELISA, recombinant His-tagged human IL-10Ra (Creative Biomart) was coated on NUNC-IMMUNO™ MAXISORP™ ELISA plates at 1 μg/mL concentration overnight. The next day, coated antigen was removed and the wells were blocked with 1% IgG-free BSA followed by incubation with 11 three-fold serially diluted anti-IL-10/anti-DSG1 ANDbodies (as provided above) with a starting concentration of 30 μg/mL. Bound antibody was detected with peroxidase-conjugated anti-human IgG antibodies with TMB and acid stop reagents.


Of the molecules tested, only those containing an IL-10 moiety (PRO023, PRO024, PRO025, PRO026, PRO027, and the positive control IL-10 Fc) (Creative Biomart IL10-326H) bound IL-10Ra, demonstrating that the binding was driven by IL-10 and not the negative control anti-DSG1 antibody (PRO003) and that the IL-10 moiety was functional in binding its receptor.


13.3 IL-10/DSG1 ANDbodies Activate the IL-10 Signaling Pathway


To show that IL-10 retains its biological activity as a part of the various ANDbodies described above, the ability to each IL-10/DSG1 ANDbody to activate the IL-10 signaling pathway was tested. HEK-BLUE™ IL-10 cells (InvivoGen) were used to evaluate the signaling activity and relative potency of each molecule. These cells express all the components of the IL-10 signaling pathway, including an IL-10-inducible gene encoding secreted embryonic alkaline phosphatase (SEAP). When IL-10 signaling is activated in these cells, they express and secrete SEAP in to the cell culture media. The degree of IL-10 signal is measured by adding QUANTI-BLUE™ solution colorimetric reagent (InvivoGen) to the cell culture media, followed by reading absorbance at 630 nm.


In this experiment, each of PRO023, PRO024, PRO025, PRO026, and PRO027 was titrated from 1 pM to >1 nM with overnight incubation in cell culture. FIGS. 18A and 18B show representative activity data for each IL-10/DSG1 ANDbody, along with positive and negative controls as described in Table 11. Table 11 shows the EC50 for response of HEK-BLUE™ cells to three control molecules ((1) recombinant human IL-10 (BioLegend #573204) (rhIL-10), (2) recombinant human IL-10 fused to a human Fc domain (hIL-10 Fc fusion), and (3) the parental anti-DSG1 antibody (PRO003)) and to each IL-10/DSG1 ANDbody described above. These data confirm that all five IL-10/DSG1 ANDbodies retain the signaling activity of human IL-10. They show a range of potency, indicating that the relative biological potency of ANDbodies can be adjusted by variations in the format of the molecule, structure of the biologically active moiety, and valency of the active moiety.









TABLE 11







Potency of IL-10/DSG1 ANDbodies in the HEK-BLUE ™ IL-10 signaling assay













Address
IL-10
EC50


Molecule
Description
valency
valency
(pM)














rhIL-10
Human IL-10 (positive control)
0
2
21


hIL-10 Fc
Human IL-10 fused (positive control)
0
2
50


fusion






Anti-DSG1
Negative control (targeting moiety alone)
2
0
NA


mAb






PRO003






PRO023
Native IL-10 fused to mAb C-termini
2
1
54


PRO024
Monomeric IL-10 fused to mAb C-termini
2
2
293


PRO025
IL-10 dimer fused to each mAb C-terminus
2
2
46


PRO026
Monomeric IL-10 replacing one Fab of the anti-DSG1 mAb
1
1
750


PRO027
IL-10 dimer replacing one Fab of the anti-DSG1 mAb
1
1
19









13.4 IL-10/DSG1 ANDbodies Suppress the Inflammatory Response in Primary Mouse Macrophages


To show that IL-10/DSG1 ANDbodies are able to inhibit inflammatory immune responses, the effects of IL-10/DSG1 ANDbodies on mouse peripheral blood mononucleocytes (PBMCs) and macrophages treated with lipid polysaccharide (LPS) as an inflammatory stimulus were evaluated. In these experiments, PBMCs were isolated from blood and macrophages were isolated from the spleens of Balb/C mice by negative enrichment on magnetic beads (Miltenyi Biotech #130-110-434). Macrophage activation was assayed by measuring the level of TNFα cytokine present in the media after 3 hours and 5-6 hours of stimulation with LPS.



FIGS. 13A-13G show the level of tumor necrosis factor alpha (TNFα) in PBMC cell culture after pre-stimulation with the indicated IL-10/DSG1 ANDbodies or control molecules followed by treatment with LPS for the indicated lengths of time. FIGS. 14A-14G show the level of TNFα in primary macrophage cell culture after pre-stimulation with the indicated IL-10/DSG1 ANDbodies or control molecules followed by treatment with LPS for the indicated lengths of time. Because the panels represent experiments run across multiple days, data are not comparable between panels. These data show that all five IL-10/DSG1 ANDbodies are able to suppress inflammatory stimuli in primary macrophages.


13.5 Engagement of an Address Target Enhances the Activity/Potency of the Effector Function of an ANDbody


The combination of addressing (e.g., using an address targeting domain) with a biologically active molecule has the potential to enhance a biological activity in a variety of ways. One exemplary enhancement is by increasing the potency of the effector moiety on specific cells where the address target is also present.


To test whether signaling potency of the effector targeting domain can be enhanced by the presence of an address targeting domain, human DSG1 was expressed on the HEK-BLUE™ IL-10 cells using stable expression with a lentivirus (the stable expressing cells are denoted HEKBLUE™ IL-10/DSG1). The DSG1 gene (NP_034209.2) was cloned into a suitable lentiviral plasmid backbone, packaged into viral particles using the VIRAPOWER™ Lentiviral Packing Mix (ThermoFisher Scientific) and transduced according to the manufacturer's instructions. Expression of DSG1 was confirmed by qPCR.


The potency of recombinant human IL-10, an ANDbody in which monomeric IL-10 replaces one Fab of the anti-DSG1 mAb (PRO058, functionally equivalent to PRO026), and a matched control in which the antibody sequence contains Motavizumab as a negative control were evaluated. Activity was tested on HEK-BLUE™ IL-10 cells and on HEK-BLUE™ IL-10 cells stably expressing DSG1. FIG. 15 shows the representative signaling response of each molecule in the parental HEK-BLUE™ IL-10 cells and the HEK-BLUE™ IL-10/DSG1 cells. The two cell lines responded similarly to recombinant IL-10, confirming that DSG1 expression did not have a large impact on their sensitivity to IL-10. The DSG1/IL-10 ANDbody showed approximately a 15-fold increase in potency when DSG1 was expressed on the target cells. No effect was seen on the potency of a matched IL-10/Motavizumab protein, confirming that the effect is mediated by binding to DSG1. This shows that the ANDbody designs provided herein are capable of address-mediated enhancement in their biological potency, allowing the use of less potent target binder moieties in ANDbodies to futher decrease unwanted off-target effects.


13.6 IL-10/DSG1 ANDbodies Retain the Pharmacokinetic and Tissue Distribution Properties of the Parental Anti-DSG1 Antibody


In some ANDbodies the targeting moiety is intended to impart the tissue or cellular targeting of a parental mAb or other targeting molecule onto a biologically active moiety that would otherwise have undesirable pharmacokinetics or tissue distribution.


The IL-10/DSG1 ANDbodies are intended to direct IL-10 activity to the skin. In Example 7, it was shown that this anti-DSG1 antibody distributes preferentially into the skin of mice. In contrast, IL-10 is reported to clear from circulation in humans with a half-life of approximately 2 hours (Radwanski et al, Pharm Res. 1998 December; 15(12):1895-901. We therefore evaluated whether IL-10/DSG1 ANDbodies retain the skin targeting capability of the parental antibody.


BALB/c mice were dosed by tail vein injection with 3 mg/kg of PRO003, PRO024, or PRO058. PRO058 is functionally equivalent to PRO026, with a substitution in the Fc domain to improve purification of the recombinant protein. PRO058 comprises (a) the heavy chain sequence of PRO0026 (SEQ ID NO: 70), (b) the light chain sequence of PRO003 (SEQ ID NO: 29), and (c) an IL-10-Fc fusion protein (SEQ ID NO: 75) comprising an Fc region (SEQ ID NO: 74) and a monomeric human IL-10 sequence (SEQ ID NO:64).


Serum samples were collected at time points from 1 hour to 48 hours. Tissue samples were collected at 1, 2, 4 and 7 days after dosing. The amount of anti-DSG1 or ANDbody in each serum or tissue sample was measured by ELISA. FIGS. 16A and 16B show that the IL-10/anti-DSG1 ANDbodies PRO024 and PRO058 have PK properties in skin and serum that are similar to the parental anti-DSG1 antibody PRO003. These data demonstrate that antibody-cytokine fusions comprising a recombinant IL-10 can retain the pharmacokinetic properties of the parental antibody.


Example 14. TNFα-Blocking Molecules Coupled to Dsg1-Targeting Moieties

This example describes the production of exemplary ANDbodies that block TNFα and bind DSG1 as an address.


14.1 Anti TNFα Monoclonal Antibody Expression and Purification


Anti TNFα antibodies having VH and VL sequences from a commercial antibody fused to a hulgG1 backbone with effector null mutations L234A, L235A, P329G (LALA-PG) were produced and their binding and affinity to TNFα was characterized as described above. The resulting mAbs were designated as PRO076 and PRO078.


14.2 Anti TNFα—DSG1 ANDbody Design, Expression and Purification


ANDbodies were designed by combining PRO004 (Example 7) with a previously reported dominant-negative TNFα (Steed et al. Science. 2003 Sep. 26; 301(5641) or clinically validated anti-TNFα antibodies listed below with the aim of locally downmodulating TNFα in the extracellular milieu of the inflamed skin. The TNFα-blocking anti-DSG1 ANDbody designs explored various formats and valencies, including cytokine/antibody and TNF receptor 2 (TNFR2)/antibody fusions.


To express and purify the antibodies, a 1:1 ratio of heavy chain to light chain DNA was transfected into EXPI293F™ Cells (ThermoFisher Scientific) using the EXPIFECTAMINE™ 293 Transfection Kit (ThermoFisher Scientific) following the manufacturer's recommendations. Transiently expressed antibodies were purified from conditioned media 5 days post-transfection by filtering out the transfected cells. Conditioned media was incubated with protein A agarose beads for 1 hour. The bound beads were washed with Phosphate Buffered Saline (PBS) pH 7.4 followed by elution of the bound antibody with 0.1 M Glycine pH 2.5 and neutralized with 1/10 volume of Tris pH 8.5. The neutralized eluate was buffer exchanged into PBS. The resulting mAbs were designated as PRO070, PRO074, PRO075 and PRO077 (FIG. 17).


The purified ANDbodies were analyzed by analytical size exclusion chromatography for monodispersity and by SDS-PAGE for purity. Standard additional purification steps were performed to remove aggregation. PRO077 had the highest final yield, followed by PRO074 and PRO075, while PRO070 had the lowest final yield. The polished ANDbodies were pure and of the correct composition as seen by SDS-PAGE.


14.3 Anti TNFα—DSG1 ANDbody Binding and Affinity Testing


ELISA binding assays demonstrated that all constructs were active in binding human and murine TNFα with varying affinities. PRO074 and PRO075 had similar affinities to both human and murine TNFα, which was within two/three-fold difference to the parent antibody. PRO077 had a 5-fold and a 12-fold decrease in binding affinity to human and murine TNFα, respectively, when compared to the parent antibody. This reduction in affinity is probably due to the change of format from Fab to single-chain variable fragment (scFv).


14.4 Anti TNFα—DSG1 ANDbody In Vitro Activity Assays


The ability of each anti-TNFα/anti-DSG1 ANDbody to inhibit TNFα signaling was evaluated using HEK-BLUE™ TNFα cells (InvivoGen). These cells are engineered to express secreted embryonic alkaline phosphatase (SEAP) in response to signaling to TNFα signaling. TNFα was measured according to the manufacturer's instructions. To evaluate inhibitory activity, the concentration of TNFα was fixed at 225 pm (approximately the EC80 of a recombinant human TNFα in this assay), and cells were pre-incubated with concentrations of TNFα blocking molecules from 10 nM to approximately 10 pM. Table 12 shows the IC50 of each anti-TNFα/DSG1 ANDbody alongside matched parent antibodies as positive controls. These data show that the ANDbodies retain TNFα blocking activity comparable to the original anti-TNFα parent antibodies.









TABLE 12







IC50 of anti-TNFα/anti-DSG1 ANDbodies


compared to matched controls









Protein
IC50 (nM, replicate 1)
IC50 (nM, replicate 2)












Adalimumab (PRO076)
0.05
0.03


Etanercept (PRO078)
0.06
0.07


PRO070
No inhibition
No inhibition


PRO074
0.3
0.2


PRO075
0.2
0.1


PRO077
0.04
0.04









VII. Other Embodiments

Some embodiments of the technology described herein can be defined according to any of the following numbered embodiments:


1. A macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein:


(i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell;


(ii) the second binding site does not substantially influence signaling upon binding the address target; and


(iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site.


2. A macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein:


(i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell;


(ii) the second binding site does not substantially influence signaling upon binding the address target; and


(iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site;


and wherein localization of the macromolecule to a non-target tissue or cell is substantially reduced relative to localization of a reference macromolecule lacking the second binding site.


3. A macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein:


(i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell;


(ii) the second binding site does not substantially influence signaling upon binding the address target; and


(iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site;


and wherein localization of the macromolecule to a target tissue or cell is substantially increased relative to localization of a reference macromolecule lacking the second binding site.


4. A macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein:


(i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell;


(ii) the second binding site does not substantially influence signaling upon binding the address target; and


(iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site;


and wherein at least 25% of the macromolecule administered to a subject is detected at the target tissue or cell at a time point between 1 and 7 days following administration.


5. A macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein:


(i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell;


(ii) the second binding site does not substantially influence signaling upon binding the address target; and


(iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site;


and wherein the affinity of the first binding site for the effector target is lower than the affinity of the second binding site for the address target.


6. A macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein:


(i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell;


(ii) the second binding site does not substantially influence signaling upon binding the address target; and


(iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site;


and wherein the avidity of the first binding site for the effector target is lower than the avidity of the second binding site for the address target.


7. A macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein:


(i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell;


(ii) the second binding site does not substantially influence signaling upon binding the address target; and


(iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site;


and wherein the potency of the first binding site at the target tissue or cell is substantially increased relative to a reference macromolecule lacking the second binding site.


8. The macromolecule of any one of embodiments 1-7, wherein the first binding site has a low affinity for the effector target.


9. The macromolecule of any one of embodiments 1-7, wherein the first binding site has a low avidity for the effector target.


10. The macromolecule of any one of embodiments 1˜4 and 6-9, wherein the affinity of the first binding site for the effector target is lower than the affinity of the second binding site for the address target.


11. The macromolecule of any one of embodiments 1-10, wherein the avidity of the first binding site for the effector target is lower than the avidity of the second binding site for the address target.


12. The macromolecule of any one of embodiments 1-11, wherein:


(a) the Kd of the first binding site for the effector target is higher than the Kd of the second binding site for the address target;


(b) the EC50 of the first binding site for the effector target is higher than the EC50 of the second binding site for the address target; or


(c) the IC50 of the first binding site for the effector target is higher than the IC50 of the second binding site for the address target.


13. The macromolecule of any one of embodiments 1-12, wherein the first binding site has an affinity to the effector target of at least about 2 times, at least about 5 times, or at least about 10 times less than the affinity of the second binding site to the address target.


14. The macromolecule of any one of embodiments 1-13, wherein the affinity of the second binding site to the address target has a Kd of greater than about 1 nM, greater than about 2 nM, or greater than about 50 nm.


15. The macromolecule of any one of embodiments 1-14, wherein the effector target is a protein, lipid, or sugar.


16. The macromolecule of any one of embodiments 1-15, wherein the effector target is a cell membrane-associated target.


17. The macromolecule of embodiment 15 or 16, wherein the effector target is a protein.


18. The macromolecule of embodiment 17, wherein the effector target is a secreted protein.


19. The macromolecule of embodiment 17 or 18, wherein the effector target is encoded by a gene selected from the group consisting of the genes recited in Table 1.


20. The macromolecule of any one of embodiments 1-19, wherein the macromolecule agonizes the effector target.


21. The macromolecule of any one of embodiments 1-19, wherein the macromolecule antagonizes the effector target.


22. The macromolecule of any one of embodiments 1-21, wherein the address target is a protein, lipid, or sugar.


23. The macromolecule of embodiment 22, wherein the address target is a protein.


24. The macromolecule of any one of embodiments 17-23, wherein expression of the effector target or the address target is expression of an RNA sequence encoding the effector target or the address target.


25. The macromolecule of embodiment 24, wherein the expression level of the effector target or the address target is assessed by using a RNA sequence dataset.


26. The macromolecule of embodiment 25, wherein the RNA sequence dataset is a Genotype-Tissue Expression (GTEx) dataset or a Human Protein Atlas (HPA) dataset.


27. The macromolecule of embodiment 23, wherein expression of the effector target or the address target is protein expression.


28. The macromolecule of any one of embodiments 1-27, wherein the effector target is systemically expressed in the subject.


29. The macromolecule of any one of embodiments 1-27, wherein the effector target is regionally expressed in the subject.


30. The macromolecule of any one of embodiments 1-27, wherein the effector target is locally expressed in the subject.


31. The macromolecule of any one of embodiments 1-30, wherein the address target is regionally expressed in the subject.


32. The macromolecule of any one of embodiments 1-30, wherein the address target is locally expressed in the subject.


33. The macromolecule of any one of embodiments 1-30, wherein the expression of the address target is restricted to a cell type in the subject.


34. The macromolecule of any one of embodiments 1-33, wherein the address target is a soluble protein or an extracellular matrix (ECM)-associated protein and is not present in detectable amounts on the cell surface.


35. The macromolecule of embodiment 34, wherein the address target is expressed in the ECM and is not present in detectable amounts elsewhere in the subject.


36. The macromolecule of any one of embodiments 1-35, wherein the address target is expressed only by a cell in the subject when in a specific cell state.


37. The macromolecule of any one of embodiments 1-36, wherein the address target is expressed only by a cell in the subject when in a disease state.


38. The macromolecule of any one of embodiments 1-37, wherein the address target is not expressed in a tissue in which binding of the second binding site to the effector target is deleterious to the subject.


39. The macromolecule of any one of embodiments 1-38, wherein the binding site for the address target does not bind in detectable amounts to the binding site of a natural ligand of the address target.


40. The macromolecule of any one of embodiments 1-39, wherein expression of the effector target or address target includes expression in one or more of minor salivary gland, thyroid, lung, breast, mammary tissue, pancreas, adrenal gland, liver, kidney, kidney cortex, kidney medulla, adipose-visceral tissue, omentum, small intestine, terminal ileum, fallopian tube, ovary, uterus, skin, skin not sun exposed, suprapubic skin, cervix, endocervix, ectocervix, vagina, skin sun exposed, lower leg skin, eneanterior cingulate cortex, Brodmann area 24 (BA24), basal ganglia, caudate nucleus, putamen, nucleus acumbens, hypothalamus, amygdala, hippocampus, cerebellum, cerebellar hemisphere, substantia nigra, pituitary gland, spinal cord, cervical spinal cord, artery, aorta, heart, atrial appendage, coronary artery, left ventricle, esophagus, esophagus mucosa, esophagus muscularis, gastroesophageal junction, spleen, stomach, colon, transverse colon, sigmoid colon, testis, whole blood cells, EBV-transformed lymphocytes, artery-tibial, or nerve-tibial tissues.


41. The macromolecule of embodiment 40, wherein expression of the effector target or address target includes expression in skin tissue, lung tissue, kidney tissue, or intestine tissue.


42. The macromolecule of embodiment 41, wherein expression of the address target is substantially higher in skin tissue, lung tissue, kidney tissue, or intestine tissue than in any other tissue.


43. The macromolecule of any one of embodiments 1-42, wherein the effector target and/or the address target is expressed on a structural tissue in the subject.


44. The macromolecule of any one of embodiments 1-43, wherein the effector target and address target are on the same cell.


45. The macromolecule of any one of embodiments 1-43, wherein the effector target and address target are on different cells.


46. The macromolecule of embodiment 45, wherein the effector target and address target are on different cells of the same cell type.


47. The macromolecule of embodiment 45, wherein the effector target and address target are on different cells of different cell types.


48. The macromolecule of embodiment 45, wherein the effector target and address target are on different cells in the same tissue.


49. The macromolecule of any one of embodiments 45, 47, and 48, wherein:


(a) the effector target is on a circulating cell and the address target is on a tissue-restricted cell; or


(b) the effector target is on a tissue-restricted cell and the address target is on a circulating cell.


50. The macromolecule of any one of embodiments 45-49, wherein the effector target and address target are on different cells located within 100 nm of each other in the subject.


51. The macromolecule of any one of embodiments 45-49, wherein either the effector target or the address target is present on a cell surface.


52. The macromolecule of any one of embodiments 1-51, wherein the macromolecule is a DNA polynucleotide.


53. The macromolecule of any one of embodiments 1-51, wherein the macromolecule comprises an RNA or RNA-polypeptide conjugate.


54. The macromolecule of any one of embodiments 1-51 and 53, wherein the macromolecule comprises a polypeptide.


55. The macromolecule of any one of embodiments 1-51, wherein the macromolecule is a polypeptide.


56. The macromolecule of embodiment 54 or 55, wherein the polypeptide is an antibody or antigen-binding fragment thereof.


57. The macromolecule of embodiment 56, wherein the first binding site and the second binding site each comprise a VH and/or a VL.


58. The macromolecule of embodiment 57, wherein the macromolecule is an antibody comprising a first binding site that is specific for the effector target in the subject and a second binding site that is specific for the address target.


59. The macromolecule of embodiment 57 or 58, wherein the macromolecule is an asymmetric antibody or a symmetric antibody.


60. The macromolecule of any one of embodiments 56-59, wherein the antibody or antigen-binding fragment thereof comprises an scFv, BsIgG, a BsAb fragment, a BiTE, a dual-affinity re-targeting protein (DART), a tandem diabody (TandAb), a diabody, an Fab2, a di-scFv, chemically linked F(ab′)2, an Ig molecule with 2, 3 or 4 different antigen binding sites, a DVI-IgG four-in-one, an ImmTac, an HSAbody, an IgG-IgG, a Cov-X-Body, an scFv1-PEG-scFv2, an appended IgG, an DVD-IgG, an affibody, an affilin, an affimer, an affitin, an alphabody, an anticalin, an avimer, a DARPin, a Fynomer, a monobody, a nanoCLAMP, a bis-Fab, an Fv, a Fab, a Fab′-SH, a linear antibody, an scFv, an antibody with only a heavy chain (Humabody), an ScFab, an IgG antibody fragment, a single-chain variable region antibody, a single-domain heavy chain antibody. a bispecific triplebody, a BiKE, a CrossMAb, a dsDb, an scDb, tandem a dAb/VHH, a triple dAb VHH, a tetravalent dAb/VHH, a Fab-scFv, a Fab-Fv, or a DART-Fc, an adnectin, a Kunitz-type inhibitor, or a receptor decoy.


61. The macromolecule of embodiment 54, wherein the polypeptide is a ligand of the effector target or a ligand of the address target.


62. The macromolecule of embodiment 61, wherein the ligand is a natural ligand, a modified ligand, or a synthetic ligand.


63. The macromolecule of embodiment 61 or 62, wherein the effector target or address target is a receptor and the polypeptide is a ligand thereof.


64. The macromolecule of any one of embodiments 61-63, wherein the first binding site comprises an antibody or antigen-binding fragment thereof and the second binding site comprises a ligand of the address target.


65. The macromolecule of any one of embodiments 61-63, wherein the first binding site comprises a ligand of the effector target and the second binding site comprises an antibody or antigen-binding fragment thereof.


66. The macromolecule of any one of embodiments 1-51 and 54-65, wherein the amino acid sequences of the first and second binding sites are at least about 10% identical, at least about 20% identical, at least about 30% identical, at least about 40% identical, at least about 50% identical, at least about 60% identical, or at least about 70% identical.


67. The macromolecule of any one of embodiments 1-66, wherein the address target has a Gini coefficient higher than about 0.4, about 0.5, about 0.57, about 0.65, about 0.7, about 0.85, about 0.90, or about 0.95.


68. The macromolecule of any one of embodiments 1-67, wherein the address target has a Tau coefficient higher than about 0.67, about 0.75, about 0.8, about 0.85, about 0.90, or about 0.95.


69. The macromolecule of any one of embodiments 1-68, wherein the effector target has a Gini coefficient lower than about 0.25, about 0.20, or about 0.15.


70. The macromolecule of any one of embodiments 1-69, wherein the effector target has a Tau coefficient lower than about 0.25, about 0.20, or about 0.15.


71. The macromolecule of any one of embodiments 1-70, further comprising a third binding site.


72. The macromolecule of embodiment 71, wherein the third binding site is the same as the first binding site.


73. The macromolecule of embodiment 71, wherein the third binding site is the same as the second binding site.


74. The macromolecule of any one of embodiments 1-73, wherein the first binding site and second binding site are directly joined to each other in the macromolecule.


75. The macromolecule of any one of embodiments 1-73, wherein the first binding site and the second binding site in the macromolecule are joined by a stable domain.


76. The macromolecule of any one of embodiments 1-75, wherein the effector target is Notch2 and the address target is RAGE.


77. The macromolecule of embodiment 76, wherein RAGE signaling is not influenced by the second site binding the RAGE address target.


78. The macromolecule of any one of embodiments 1-75, wherein the effector target is Notch2 and the address target is uromodulin (UMOD).


79. The macromolecule of embodiment 78, wherein UMOD signaling is not influenced by the second site binding the UMOD address target.


80. The macromolecule of any one of embodiments 1-75, wherein the effector target is Notch2 and the address target is meprin A subunit beta (MEP1B).


81. The macromolecule of embodiment 80, wherein MEP1B signaling is not influenced by the second site binding the MEP1B address target.


82. The macromolecule of any one of embodiments 1-75, wherein the effector target is IL11Ra and the address target is RAGE.


83. The macromolecule of embodiment 82, wherein RAGE signaling is not influenced by the second site binding the RAGE address target.


84. The macromolecule of any one of embodiments 1-75, wherein the effector target is IL 11 Ra and the address target is UMOD.


85. The macromolecule of embodiment 84, wherein UMOD signaling is not influenced by the second site binding the UMOD address target.


86. The macromolecule of any one of embodiments 1-85, wherein the subject is a human.


87. A method of delivering a moiety to a target tissue or cell in a subject, comprising administering to the subject a macromolecule of any one of embodiments 1-86, wherein the target tissue comprises the address target.


88. The method of embodiment 87, wherein the moiety is a molecule.


89. The method of embodiment 87 or 88, wherein the moiety is not a toxin.


90. The method of embodiment 87, wherein the moiety is a cell.


91. The method of embodiment 90, wherein the moiety is not a T cell or an NK cell.


92. The method of any one of embodiments 87-91, wherein the target tissue is not a tumor.


93. A method of modulating an effector target in a target tissue, comprising administering to the tissue a macromolecule of any one of embodiments 1-86, wherein the target tissue comprises the address target and the effector target.


94. A method of biasing a binding agent away from binding an effector target when the effector target is found in the heart or lungs, comprising administering the macromolecule of any one of embodiments 1-86, wherein the address target is not substantially expressed in the heart or lungs.


95. A method of modulating a target tissue in a subject, comprising administering to the subject a macromolecule of any one of embodiments 1-86, wherein the target tissue comprises the address target and the effector target.


96. A method of treating a subject having a disease or condition associated with an effector target, comprising administering to the subject a macromolecule of any one of embodiments 1-86, wherein the first binding site of the macromolecule binds the effector target.


97. A macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject;


wherein the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell,


wherein the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site, and


wherein the second binding site does not bind to the binding site of the natural ligand of the address target.


98. A macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject;


wherein the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell,


wherein the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site, and


wherein the first binding site and second binding site are directly joined to each other in the macromolecule.


99. A macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject;


wherein the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell,


wherein the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site, and


wherein the first binding site and second binding are joined to each other by a stable domain.


100. A macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject;


wherein the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell,


wherein the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site, and wherein the effector target and/or the address target is expressed on a structural tissue in a host.


101. A pharmaceutical composition comprising the macromolecule of any one of embodiments 1-86.


102. A pharmaceutical composition comprising a macromolecule and one or more pharmaceutically acceptable excipients,


wherein the macromolecule comprises a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject;


wherein the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell, and


wherein the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site.


103. The pharmaceutical composition of embodiment 101 or 102, wherein the pharmaceutical composition is an RNA pharmaceutical composition.


104. The pharmaceutical composition of any one of embodiments 101-103, further comprising a carrier.


105. The pharmaceutical composition of embodiment 104, wherein the carrier is a lipid nanoparticle.


106. The pharmaceutical composition of embodiment 104, wherein the carrier is a viral vector.


107. The pharmaceutical composition of embodiment 104, wherein the carrier is a membrane-based carrier.


108. The pharmaceutical composition of embodiment 107, wherein the membrane-based carrier is a cell.


109. The pharmaceutical composition of embodiment 107, wherein the membrane-based carrier is a vesicle.


110. A method for modulating activity of an effector target in the skin of a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in the subject, and


(b) the second binding site is specific for desmoglein-1 (DSG-1).


111. A method for modulating activity of an effector target in the lung of a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in the subject, and


(b) the second binding site is specific for RAGE.


112. A method for modulating activity of an effector target in the kidney of a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in the subject, and


(b) the second binding site is specific for cadherin 16 (CDH16).


113. A method for modulating activity of an effector target in the intestine of a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in the subject, and


(b) the second binding site is specific for cadherin 17 (CDH17).


114. A method of localizing a macromolecule at a target tissue or cell of a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in the subject, and


(b) the second binding site is specific for an address target expressed in the target tissue or cell in the subject; wherein:


(i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell;


(ii) the second binding site does not substantially influence signaling upon binding the address target; and


(iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site; and


allowing the macromolecule to localize at the target tissue or cell of the subject.


115. A method of concentrating a macromolecule in a target tissue or cell in a subject, the method comprising administering to the subject a macromolecule comprising a first binding site and a second binding site, wherein:


(a) the first binding site is specific for an effector target in a subject, and


(b) the second binding site is specific for an address target expressed in a target tissue or cell in the subject; wherein:


(i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the target tissue or cell;


(ii) the second binding site does not substantially influence signaling upon binding the address target; and


(iii) the first binding site does not substantially influence effector target signaling in the absence of localization by the second binding site;


and allowing the macromolecule to concentrate at the target tissue or cell of the subject, wherein at least 25% of the macromolecule detectable in the subject is detected at the target tissue or cell at a time point between 1 and 7 days following administration of the macromolecule to the subject.


116. The method of embodiment 114 or 115, wherein the potency of the first binding site at the target tissue or cell is substantially increased relative to a reference macromolecule lacking the second binding site.


117. The method of embodiment 114 or 115, wherein effector target signaling by the macromolecule in a non-target tissue or cell of the subject is substantially decreased relative to a reference macromolecule lacking the second binding site.


118. The method of embodiments 110-117, wherein the macromolecule is a macromolecule of any one of embodiments 1-86.


Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, the descriptions and examples should not be construed as limiting the scope of the invention.

Claims
  • 1. A method of potentiating activation of a signaling pathway in an intestine tissue or intestine cell, the method comprising contacting the intestine tissue or intestine cell with a macromolecule comprising a first binding site and a second binding site, wherein: (a) the first binding site is a polypeptide that is specific for an effector target in the intestine tissue or intestine cell, and(b) the second binding site is a polypeptide that is specific for an address target expressed in the intestine tissue or intestine cell, wherein the address target is locally expressed in a mammal and wherein:(i) the affinity of the first binding site for the effector target is lower than the affinity of the second binding site for the address target;(ii) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the intestine tissue or intestine cell;(iii) the second binding site does not substantially influence signaling upon binding the address target; and(iv) neither the first binding site nor the second binding site substantially activates the signaling pathway in the absence of localization by the second binding site; wherein upon contacting the intestine tissue or intestine cell with the macromolecule, activation of the signaling pathway in the intestine tissue or intestine cell by the first binding site is substantially increased relative to a reference macromolecule lacking the second binding site.
  • 2. The method of claim 1, wherein the intestine tissue or intestine cell is a mammalian intestine tissue or mammalian intestine cell.
  • 3. The method of claim 1, wherein the expression of the address target is restricted to a cell type in a mammal.
  • 4. The method of claim 1, wherein the address target is expressed only by a cell in a mammal when in a specific cell state.
  • 5. The method of claim 1, wherein the address target is expressed only by a cell in a mammal in a disease state.
  • 6. The method of claim 1, wherein the polypeptide is an antibody or antigen-binding fragment thereof.
  • 7. The method of claim 1, wherein the macromolecule is an antibody comprising a first binding site that is specific for the effector target in the subject and a second binding site that is specific for the address target.
  • 8. The method of claim 1, wherein the polypeptide is a ligand of the effector target or a ligand of the address target.
  • 9. The method of claim 1, wherein: (a) the first binding site comprises an antibody or antigen-binding fragment thereof and the second binding site comprises a ligand of the address target; or(b) the first binding site comprises a ligand of the effector target and the second binding site comprises an antibody or antigen-binding fragment thereof.
  • 10. The method of claim 1, wherein expression of the address target is substantially higher in intestine tissue than in any other tissue.
  • 11. The method of claim 1, wherein the second binding site is specific for cadherin 17 (CDH17).
  • 12. The method of claim 1, wherein the first binding site comprises a cytokine.
  • 13. The method of claim 1, wherein the signaling pathway is the IL-10 signaling pathway.
  • 14. The method of claim 13, wherein the first binding site is IL-10 or a variant thereof and the effector target is IL-10 receptor alpha (IL-10Ra).
  • 15. A method of potentiating activation of a signaling pathway in an intestine tissue or intestine cell, the method comprising contacting the intestine tissue or intestine cell with a macromolecule comprising a first binding site and a second binding site, wherein: (a) the first binding site comprises a cytokine that is specific for an effector target in the intestine tissue or intestine cell, and(b) the second binding site is a polypeptide that is specific for CDH17; wherein:(i) the second binding site localizes the first binding site to the address target such that the first binding site influences effector target signaling in the intestine tissue or intestine cell;(ii) the second binding site does not substantially influence signaling upon binding the address target; and(iii) neither the first binding site nor the second binding site substantially activates the signaling pathway in the absence of localization by the second binding site;wherein the affinity of the first binding site for the effector target is lower than the affinity of the second binding site for the address target; andwherein upon contacting the intestine tissue or intestine cell with the macromolecule, activation of the signaling pathway in the intestine tissue or intestine cell by the first binding site is substantially increased relative to a reference macromolecule lacking the second binding site.
  • 16. The method of claim 15, wherein the cytokine is IL-10 or a variant thereof and the effector target is IL-10Ra.
Provisional Applications (1)
Number Date Country
63197928 Jun 2021 US
Continuations (1)
Number Date Country
Parent PCT/US22/32561 Jun 2022 US
Child 18055992 US