Nehlin et al., The EMBO J. 9(9):2891-2898 (1990). |
Forsburg et al., Genes & Development 3(8):1166-1178 (1989). |
Bourgarel et al., Molecular Microbiology 31(4):1205-1215 (1999). |
Ronne, Trends in Genetics 11(1):12-17 (1995). |
Brown, T. A., et al., “Strain-Dependent Variation in Carbon Source Regulation of Nucleus-Encoded Mitochondrial Proteins of Saccharomyces Cerevisiae,” Journal of Bacteriology, (1995) 177(5):1380-2. |
Dang, V., et al., “A Genetic Screen to Isolate Genes Regulated by the Yeast CCAAT-Box Binding Protein Hap2p,” Yeast, (1994) 10:1273-83. |
De Winde, J. H., et al., “Global Regulation of Mitochondrial Biogenesis in Saccharomyces Cerevisiae,” Progress in Nucleic Acid Research and Molecular Biology, (1993) 46:51-91. |
De Winde, J., et al., “Global Regualtion of Mitochondrial Biogenesis in Saccharomyces Cerevisiae: ABFI and CPFI Play Opposite Roles in Regualting Expression of the QCR8 Gene, Which Encodes Subunit VIII of the Mitochondrial Ubiquinol-Cytochrome c Oxidoreductase,” Molecular and Cellular Biology (1992) 12(6):2872-83. |
Gietz, R. D., et al., “New Yeast-Escherichia Coli Shuttle Vectors Constructed with In Vitro Mutagenized Yeast Genes Lacking Six-Base Pair Restriction Sites,” Gene (1988) 74:527-34. |
Gottlin-Ninfa, E., et al., “Isolation and Functional Analysis of Sporulation-Induced Transcribed Sequences from Saccharomyces Cerevisiae,” Molecular and Cellular Biology, (1986) 6(6):2185-97. |
Guarente, L., et al., “Distinctly Regulated Tandem Upstream Activation Sites Mediate Catabolite Repression of the CYCI Gene of S. Cerevisiae,” Cell, (1984) 36:503-11. |
Hoffman, C. S., et al., “A Ten-Minute Preparation From Yeast Efficiently Releases Autonomous Plasmids for Transformation of Escherichia Coli,” Gene, (1987) 57:267-72. |
Hurt, E. C., et al., “The First Twelve Amino Acids of a Yeast Mitochondrial Outer Membrane Protein Can Direct a Nuclear-Encoded Cytochrome Oxidase Subunit to the Mitochondrial Inner Membrane,” Embo J., (1985) 4(13A):3509-18. |
Ito, H., et al., “Transformation of Intact Yeast Cells Treated with AlkaliCations,” J. Bacteriology, (1983) 153(1):163-8. |
Johnston, M., et al., “Regulation of Carbon Phosphate Utilization,” The Molecular and Cellular Biology of the Yeast Saccharomyces, (1992) 220-237. |
Klein, C. J. L., “Alleviation of Glucose Repression of Maltose Metabolism by MIGI Disruption in Saccharomyces Cerevisiae,” Applied and Environmental Microbiology, (1996) 62(12):4441-9. |
Lesage, P., et al., “Yeast SNFI Protein Kinase Interacts with SIP4, a C6Zinc Cluster Transcriptional Activator: a New Role for SNFI in the Glucose Response,” Molecular and Cellular Biology (1996) 16(5):1921-8. |
Li, X., et al., “Evolutionary Variation of the CCAAT-Binding Transcription Factor NF-Y,” Nucleic Acids Research, (1992) 20(5);1087-91. |
McKnight, G. L., et al., Selection of Functional cDNAs by Complementation in Yeast, Proc. Natl. Acad. Sci. USA, (1983) 80:4412-6. |
Mumberg, D., et al., “Yeast Vectors for the Controlled Expression of Heterologous Proteins in Different Genetic Backgrounds,” Gene, (1995) 156:119-22. |
Needleman, R. B., et al., “MAL6 of Saccharomyces: A Complex Genetic Locus Containing Three Genes Required for Maltose Fermentation,” Proc. Natl. Acad. Sci. USA, (1984) 81:2811-5. |
Nehlin, J. O., et al., “Yeast MIGI Repressor is Related to the Mammalian Early Growth Response and Wilms Tumour Finger Proteins,” Embo J., (1990) 9(9):2891-8. |
Ng, R., et al., “Isolation and Sequence of the Gene for Actin in Saccharomyces Cerevisiae,” Proc. Natl. Acad. Sci. USA, (1980) 77(7):3912-6. |
Olesen, J., et al., “Yeast HAP2 and HAP3 Activators Both Bind to the CYC1 Upstream Activation Site, UAS2, in an Interdependent Manner,” Cell (1987) 51:953-61. |
Oudshoorn, P., et al., “Subunit II of Yeast QH2 :Cytochrome-c Oxidoreductase: Nucleotide Sequence of the Gene and Features of the Protein,” Eur. J. Biochem., (1987) 163:97-103. |
Ronne, H., “Glucose Repression In Fungi,” Trends In Genet. (1995) 11(1);12-17. |
Rothstein, R. J., “One-Step Gene Disruption in Yeast,” Methods in Enzymology, (1983) 101:202-11. |
Sambrook, J., et al., “Analysis and Cloning of Eukaryotic Genomci DNA,” Molecular Cloning: A Laboratory Manual. Second Addition, (1989) 9.49-9.52. |
Sierkstra, L., et al., “Regulation of Glycolytic Enzymes and the Crabtree Effect in Galactose-Limited Continuous Cultures of Saccharomyces Cerevisiae,” Yeast (1993) 9:787-95. |
Sinha, S., et al., “Recombinant Rat CBF-C, the Third Subunit of CBF/NFY, Allows Formation of a Protein-DNA Complex with CBF-A and CBF-B and with Yeast HAP2 and HAP3,” Proc. Natl. Acad. Sci. USA, (1995) 92:1624-8. |
Thevelein, J. M., et al., “Trehalose Synthase: Guard to the Gate of Glycolysis in Yeast,” TIBS (1995) 20:3-10. |
Treitel, M. A., et al., “Repression by SSN6-TUPI is Directed by MIGI, a Repressor/Activator Protein,” Proc. Nat. Acad. Sci. USA, (1995) 92:3132-6. |
Trumbly, R. J., “Glucose Repression in the Yeast Saccharomyces Cerevisiae,” Molecular Microbiology, (1992) 6(1):15-21. |
Van Loon, A. P. G. M., et al., “Transport of Proteins to the Mitochondrial Intermembrane Space: The ‘Matrix-Targeting’ and the ‘Sorting’ Domains in the Cytochrome c1 Presequence,” Embo J., (1987) 6(8):2433-9. |
Van Steeg, H., et al., “Targeting Efficeincy of a Mitochondrial Pre-Sequence is Dependent on the Passenger Protein,” Embo J., (1986) 5(13):3643-50. |
Wenzel, T. J., et al., “Promoter Analysis of the PDAI Gene Encoding the EI α Subunit of the Pyruvate Dehydrogenase Comples from Saccharomyces Cerevisiae,” Yeast (1994) 10:297-308. |