The present invention relates to the field of digital communications systems, and more particularly to systems transporting multiple media (multimedia) and/or communicating such multimedia through a plurality of connections to multiple callers.
In the prior art, multimedia communications, such as video conferencing systems for providing two way video and audio, are well known. Given sufficient bandwidth and dedicated independent channels, (e.g. 6 Mhz for an analog video channel, 3 Khz for an audio link over a standard analog telephone line, etc), video conferencing between two callers can be realized. However, communication channels providing 6 Mhz video bandwidth are not generally or universally available. A major obstacle to wide spread implementation and acceptance of multiple media conferencing systems is the limited bandwidth of the available communication channels. In addition, typical communication channels available on packet switched networks such as AppleTalk, from Apple Computer, California, USA, or Netware from Novell Inc, Oregon, USA, do not provide the continuous real time analog or digital connection of a telephone line or modem. Instead, packet switched networks provide non-real time bursts of data in the form of a switched packet containing a burst of digital data. Thus, in addition to bandwidth limitations, packet switched networks present delay limitations in implementing real time multiple media conferencing systems. The same bandwidth and time delay limitations which apply to all time division multiple access (TDMA) communication systems and similar schemes present obstacles to achieving real time multimedia communications.
Typically, the problem of video conferencing two callers is approached by compressing the composite video signal so that the resulting transmitted data rate is compatible with the available communication channel, while permitting acceptable video and audio to be received at the other end of the communication channel. However, solutions in the past using lossy compression techniques, have been limited to compromising quality in order to obtain acceptable speed. Recently, non-lossy compression techniques have become available. The problem still remains as to how to match the bandwidth and timing constraints of available digital formats to the available communication channels, both present and future.
The present invention is embodied in a digital communication system where multiple media data sources are time multiplexed into a packetized data stream. At both the transmit side, and the receive side, audio packets are given priority processing over video packets, which in turn have priority over text/graphics data packets. Continuous real time audio playback is maintained at the receiver by delaying the playback of received audio in a first in/first out (FIFO) buffer providing a delay at least equal to the predicted average packet delay for the communication system. Optionally, the average system delay is continuously monitored, and the audio and video playback delay time as well as audio and video qualities are adjusted accordingly. In another embodiment of the invention, a conference of three or more callers is created by broadcasting a common packetized data stream to all conference callers. Use of the present invention further permits an all software implementation of a multimedia system.
1. In accordance with a first aspect of the present invention, multiple data sources forming data packets are combined into a prioritized data stream.
The present invention is embodied in a method and apparatus for combining data from a plurality of media sources into a composite data stream capable of supporting simultaneous transmission including multiple video and graphic signals and real time audio. Video, audio and other signals are integrated in a non-standard transmission format determined by a novel streaming algorithm and prioritization scheme designed to provide the best balance between transmission quality and realization of real time rendition of each.
For example, each data type packet at the transmitter is assigned a priority between 0 and 10000, with 0 being the highest priority and 10000 the lowest. An audio packet is given priority 20, a video packet is given priority 50. Screen data packets and file data transfer packets are both given priority 180.
Before transmission on the communication channel, packets are placed in a queue according to priority order. As new packets are generated, the queue is reorganized so that the new packet is placed into its proper priority order.
At the receiver, each task runs according to its assigned priority. Packets with priorities between 0 and 100 are processed first, to the exclusion of packets with priorities 101 through 10000. Audio, being the highest priority (20), is processed first to the exclusion of all other packets. Within the class of packets with priorities between 101 and 10000, packets are processed according to relative priority. That is, higher priority tasks do not completely shut out tasks of lower priority. The relationship among priorities is that a priority 200 task runs half as often as a priority 100 task. Conversely, a priority 100 task runs twice as often as priority 200 task. Tasks with priorities between 0 and 100 always run until completion. Thus, video, screen data and file data, processing tasks are completed after audio processing in accordance with the relative priority of the packets.
A multi-tasking executive dynamically reassigns task priorities, to efficiently complete all tasks within the available time, while performing the highest priority tasks first. At any given time, there are different tasks all at different priorities, all yielding to each other. In general, a task yields to a higher priority task, if it is not running an uninterruptable sequence. If the current task completes its cycle, its priority is reassigned to a lower priority. If the priority of two or more tasks is equal, then the multi-tasking executive executes each task in a round robin fashion, performing a portion of each task, until the completion of all tasks with the same priority.
The assignment of packet priorities, and processing according to priority assures that audio will be given precedent over video, while audio and video will be given precedent over both screen data and file transfer data.
As indicated above, continuous real time audio playback is maintained at the receiver by delaying the playback of received audio in a first in/first out (FIFO) buffer having a size at least equal to the predicted average packet delay for the communication system. Optionally, the delay of the audio FIFO may be made variable. A variable delay audio FIFO buffer at the receiver allows the system to shrink or grow the time delay between one machine and the other. The ability to shrink or grow the difference in time between the sender and receiver permits the system of the present invention to compensate for indeterminate system delays. If the changes are slight, the difference in pitch is not noticeable. For greater changes, the technique of audio resampling may be used to increase or decrease the rate of audio playback without changing the pitch of audio content.
Similarly, video playback continuity at the receiver may also be improved by delaying the playback of received video in a first in/first out (FIFO) buffer having a size at least equal to the predicted average packet delay for the communication system. The delay of the video FIFO may be made variable, allowing the system to shrink or grow the time delay between one machine and the other to compensate for indeterminate system delays. Again, if the changes are slight, the change in frame rate is not noticeable. However, video data does not age as quickly as audio data. Therefore a smaller video FIFO can be used. Also, a video image may have short discontinuities without a perceived loss of the video connection. Audio playback, on the other hand, is more sensitive to discontinuities, and it is more important to maintain continuity at the receiver. Ideally, when both audio and video are used in a multimedia conference, the delay for audio and video should be equal to make sure that they are synchronized. In the latter case, the actual system delay is calculated by finding the maximum delay of both audio and video packets.
Data from media sources tend to come in bursts. For example, audio data rates rise when speaking, and fall to zero during a silence. In the present embodiment, the silence between words provides the present system with an opportunity to catch up by refilling the audio FIFO buffer before it empties. In such manner, the present system compensates for the delay inherent in a packet switched, time delay variant, communication channel.
Similarly, video sources including graphic screen data, are generated in bursts. That is, the data rate for video ideally falls to zero when there is no motion. The data rate for transmitting screen graphics falls to zero when are no changes. When the caller changes the screen, (such as the collaborative work document displayed on the screen), data is generated.
Thus, following the priority scheme of the present invention, video is updated only when no speech data is being processed. However, processing of speech data does not included the playing of sound. Once the sound starts playing, there is no need to further spend time to process the sound. Sound playing needs no supervision. Therefore, video updating occurs while sound is playing. After speech is playing close to real time (with a delay), video text and graphics are updated in the background. Video, text, graphics and data files are updated at lesser priorities. Except for audio and video data, task priorities are re-assigned to assure that all tasks will be completed, and that a higher priority task will not completely prevent the lower priority tasks from being completed.
2. In accordance with a second aspect of the present invention, multiple signal packets are broadcast to a plurality of callers to create a common multimedia conference.
In addition to assigned priorities, data packets having multiple destination addresses are broadcast over a plurality of connections to multiple callers. Each caller receives the same data packets with assigned priorities, and processes the received packets in a similar manner. As new data is generated from each caller in the video conference, new data packets are broadcast to the other callers. Thus, due to the broadcast of data packets representing audio, video and screen data, all callers are conferenced together, each seeing and hearing each other, while discussing the same screen document. Additional callers can be added to the conference over a plurality of connections without adding undue burden, because in a conference, each caller needs to generate data only once, which is then transimtted either simultaneously or sequentially depending on the kind of connection, to other callers.
3. In accordance with a third aspect of the present invention data received on a first communication medium (for example on a broadband local area network, such as ethernet) are re-broadcast on a different communication medium (such as a telephone line) in order to conference callers on the different communication media in a common multimedia conference. The present invention thereby provides the option of desktop video conferencing on standard computer networks and telephone lines.
4. In accordance with a fourth aspect of the present invention, a method for use in a communications network is disclosed. In one embodiment, a processing machine establishes communications between at least first and second user machines, the first user machine being coupled to the processing machine over a first communication medium, and the processing machine being coupled to the second user machine over a second communication medium, and the method comprises: causing signals to be sent to the first and second user machines to enable media type selections, at least one of the media type selections including a selection of at least two different media types; and transmitting via the processing machine a plurality of digital media packets corresponding to the at least two different media types, the digital media packets being transmitted in accordance with the media type selections over the first communication medium.
In one variant, the first communication medium comprises a packet switched network, and the second communication medium comprises, e.g., a non-packet switched network.
In another embodiment, the method comprises: causing control signals to be sent to at least one of the first and second users to enable respective media type selections; and transmitting via the processing machine and a packet-switched network a plurality of digital media packets corresponding to each of at least two different first user media types, the at least two different first user media types being selected based at least in part on the control signals. For at least one of the at least two different first user media types, the first processing machine further causes signals associated with at least a portion of the plurality of digital media packets to be delivered to at least the second user consistent with the second user media type selection.
In yet another embodiment, the communications network comprises a first processing machine that establishes communication between at least second and third processing machines, the second processing machine being in communication with the first processing machine via communications channels of a packet-switched network having indeterminate packet loss. The first processing machine being in signal communication with the third processing machine via at least a non-packet switched network, and the method comprises: causing signals to be sent to the second and third processing machines to enable media type selections; and transmitting via the first processing machine and the communications channels a plurality of digital media packets corresponding to each of at least two different media types selected via the second processing machine based at least in part on the signals. For at least one of the at least two different media types, the first processing machine further causes signals related to at least a portion of the transmitted digital media packets to be delivered to at least the third processing machine consistent with the third processing machine's media type selection.
5. In accordance with a fifth aspect of the present invention, a method of communication is disclosed. In one embodiment, the method is adapted for use in an apparatus adapted to couple into communication a remote processing machine with a caller coupled via a telephone line, and comprises: negotiating with the remote processing machine a selection of at least one media type from a plurality of media types including audio, video and data, and to configure, according to the selection, the apparatus to process media data packets received from and to be transmitted to the remote processing machine over a packet switched network via one or more packet switched communication channels; and placing the caller into signal communication with the apparatus at least via the telephone line. In one variant, the one or more packet switched communication channels have an indeterminate packet loss, and the media type selection is of only audio. The negotiation comprises sending a first message and receiving a response message, and involves a message format that supports the description of the audio, video and data media types. The apparatus communicates information between the remote processing machine and the telephone line.
6. In accordance with a sixth aspect of the present invention, a method of communication over a network is disclosed. In one embodiment, the network comprises a processing machine that establishes communication between a first caller and a second caller, the first caller being coupled to the processing machine over a first communication medium, the processing machine being coupled to the second caller over a second communication medium, and the method comprises: invoking at least one connection routine at the processing machine to cause control signals to be sent to at least one of the first and second callers to enable media type selections, at least one of the media type selections including a selection of at least two different media types; and transmitting via the processing machine a plurality of digital media packets corresponding to each of the at least two different media types. For at least one of the at least two different media types, at least a portion of the plurality of corresponding digital media packets are transmitted to at least one of the first and second callers in accordance with the media type selections, over the first communication medium via one or more packet switched communication channels. The one or more packet switched communication channels include a single connection stream that includes packets of at least one media stream set up for each of the at least one media type by the first and second callers.
7. In accordance with a seventh aspect of the present invention, a method of transmitting data packets from a first processing machine to be delivered to one or more of a plurality of remote processing machines in data communication therewith, is disclosed. In one embodiment, the method also places a telephone subscriber into communication with the plurality of remote processing machines, and comprises: transmitting a plurality of media data packets for delivery to at least one of the plurality of remote processing machines over a packet switched network via one or more packet switched communication channels, wherein each of the media data packets has a plurality of data fields associated therewith, at least one of the data fields comprising at least one destination address associated with a respective one of the plurality of remote processing machines; and communicating signals of at least one media type via a telephone network to couple the telephone subscriber into communication with the plurality of remote processing machines. A first number of the plurality of media data packets may be transmitted for delivery to a first subset of the plurality of remote processing machines while a second number of the plurality of media data packets may be transmitted for delivery to a second subset of the plurality of remote processing machines, the first and second subsets not being identical.
These and other aspects of the invention are now described in detail herein.
From the viewpoint of the caller, the present multimedia communication system operates as follows:
A caller on a desktop computer initiates a multimedia call by selecting a media type and desired connection with a second party. A dialog box of the type shown in
Connection Establishment
The sequence of operation for establishing a connection between caller 1 and caller 2 over a communication network is illustrated in
The terms, “connection stream” and “media stream” used below are further defined in the description of
In addition to denying or taking the call, caller 2 has the option to pick a different media type. That is, for example, if the media type stream 28 of caller 1 is video, and caller 2 does not want to accept a video call but will accept an audio call, then the return message pick will indicate that caller 2 is picking audio as the media for an incoming call. At caller 1, connection stream 30 distributes the response from caller 2. Specifically, if the call is denied then the connection attempt is deleted 40. If a different media is picked, then a modification of the media type stream 28 is performed. If take a message was selected, then the appropriate file transfer 38 takes place to transmit an announcement file, and a message is requested to be sent back.
Data Format in Packets with Priority and Multiple Destinations
The priority of the data packet is indicated in data field 62. When transporting multiple media digital data packets, the priority data field determines which of the packets has the highest priority in processing. Data fields 64 and 66 respectively contain information as to the message state, and a checksum for determining message errors. The packet source address is indicated at data field 68, and a destination count as to the number of destinations this packet will reach is indicated at data field 70. Also, an active destination count, the number of destination which have not yet received this packet, and a maximum destination count is provided in data fields 72 and 74 respectively.
The data packet 52 of
System Overview
A block diagram of a multiple media communication system transmitter is shown in
A block diagram of a multiple media communication system receiver is shown in
Audio data playback is delayed in a delay 734, 742, as indicated above. Video data display is similarly delayed in delay 731, 739 to maintain synchronism between video and audio. The multi-task control 730, 738 sets the amount of delay (for both video and audio) in accordance with the predicted average delay of the communication channel 720, 746. Delayed audio is then displayed 736, 744 at the receiver for caller 2 and caller 3. Delayed video is simultaneous displayed 732, 740 at the receiver for caller 2 and caller 3. Furthermore, since callers 2 and 3 are both receiving the same packets broadcast by caller 1, both hear and view the same multimedia messages.
Multimedia communication is typically two way between all callers. It should be understood that caller 1, caller 2 and caller 3 all include the transmitter and receiver elements shown in
In operation, at caller 1 in
At the receiver, callers 2 and 3 in
Continuity of audio playback is perceived as critical to a multimedia conference. Accordingly, audio packets, being assigned the highest priority, are sent as soon as possible, and at the receiver, are processed as soon as possible after receipt. Thus, audio packets tend to be delivered in the shortest time which the communication channel will allow.
The system of the present invention tolerates transmission errors inherent in a traditional packet switched system by discarding or retransmitting corrupted audio or video. For text files, the normal error detection and retransmission requests are used. Sound and video are distinguished from text or file data in that it is possible to tolerate some loss of sound and video and still maintain an acceptable quality. In the event of a detected error in the received audio or video packet, the receiver determines whether there is sufficient time to flag the error and request a retransmission, based on the predicted average delay time of the system. If there is not sufficient time, the corrupted packet is ignored. In such manner, network capacity is not wasted on retransmissions which will arrive too late and have to be discarded anyway. However, the lowest priority packets of text/graphics or computer file data which are not time dependent, are flagged for errors and retransmitted.
Object Oriented CPacketStream Streaming Method
Various types of streams are used to achieve multimedia communications. First, a connection stream provides the interface to the communication channel. Then, there is a media stream for each desired media. For example, there may be a video stream, an audio stream, a video and audio stream such as QuickTime, or a text/data/graphics stream representing files, graphic images of many types, or any other data required. The architecture is designed to support “drop in” streams for new kinds of collaborative data.
The block diagram of
CPacketStream 80 is a software component which is responsible for handling CPackets to establish communication channels between machines. Each CPacketStream 80 is composed of a set of routines (or methods) responsible to interact with CPackets. These methods are used in turn by a set of tasks running in each CPacketStream. The task types and methods (or routines) available for packet handling are summarized as follows and described in more detail below.
Tasks:
Methods
CPacketStream::WriteTask 94
The WriteTask 94 is responsible for distributing packets contained in the WriteQueue 96 in each CPacketStream 80. The priority of this task is at least as high as the packet it is currently handling. This task is in a loop currently scanning the WriteQueue 96, if the queue is empty then the task will sleep. The CPacketStream::DoQueue method will put a CPacket into the WriteQueue 96, and wake the WriteTask 94 up. Therefore, the WriteTask 94 will be the one displaying or playing the packets.
CPacketStream::ReadTask 82
The ReadTask 84 is responsible for reading CPackets from a particular channel, and redistributing among CPacketStreams 80 in that machine. This type of task is only appropriate for a connection (media) CPacketStream 80. (In a way it is similar to the WriteTask 94, serving a WriteQueue 96, but in the reverse direction, and corresponding to receiving data packets in a ReadQueue)
CPacketStream::IdleTask 82
The idle task 82 is responsible for generating and sending ‘helo’ (the initial packet) and ‘kiss’ (the final packet) CPackets. It is also responsible to execute idle time events in some particular streams. For example, a Communications Tool (from Apple Computer) needs to have an idle call every so often in order to handle a particular connection.
An OpenTask 88 is used when the connection is being first opened and the connection negotiated between callers. At that time, the contents of the table lookup 98, which defines media types and connection streams is determined. In addition to these tasks, there are several methods that are called by these tasks in order to communicate with the stream. These methods are:
CPacketStream::DoQueue 86
This is the method that is called in order to give a packet to a particular stream. Most streams will immediately write the packet to a WriteQueue 96, and activate the WriteTask 94 in order to handle that particular packet.
CPacketStream::DoWrite 92
The WriteTask 94 will call this routine to actually handle the packet's content. For a connection stream, this is the output routine of a CPacketStream 80 to the communication channel. For a video stream, this routine will decompress and display the video contained in a packet. For other media streams, the DoWrite 92 routine will carry out the appropriate process to get the data displayed, played or otherwise.
CPacketStream::DoIdle
This is the routine which can be used to idle the CPacketStream 80. Many streams can use this to do periodic tasks.
CPacketStream::Write 90
This routine will look up in table 98 the destination address for each destination in the packet, and the call DoQueue 86 for each destination packet stream. Each DoQueue 86 can refuse the packet until a later time, and therefore the packet contains flags for each destination address such that a complete write will mark that address completely written. A packet therefore contains an active destination count (72 in
Data packet flow and handling through CPacketStream 80 is from calls to DoQueue 86 which will write a CPacket into the WriteQueue 96, and then activate WriteTask 94, which processes the Cpackets, and calls DoWrite 92 to distribute the Cpackets contained in the WriteQueue 96.
CPacketStream::WriteDone
This routine will be called to dispose of the packet generated by a certain stream. It can be used for synchronization. A connection stream has the option of calling WriteDone to transfer acknowledge packets on the outgoing connection. The CPacketStream owns the packet which it sends, until all other streams are done with the packet. At that time, the packet ready to be deleted. However, when a packet (e.g., video) is sent from one machine on to another machine, such as between an ethernet LAN (local area network) and a telephone modem, the packet (e.g., the video) is not actually being used. In such circumstances, the originating connection stream should hold the packet, until all other connections have used this packet on the other machine(s). Synchronization of packet receipt is accomplished by returning an acknowledge packet when the WriteDone function of the connection stream is called at each machine which receives the packet. This is an additional form of communications between machines to reinforce the normal packet communications. “Acknowledge” packets have the same priority as the information packets, the lowest packet priority.
Streaming Algorithm
A generalized representation of the use of the present streaming algorithm is shown in the block diagram of
Packet Acknowledgement
A block diagram illustrating the use of an optional acknowledgement packet is shown in
The communication channel LAN protocol typically supports lower level acknowledgment functions. For example, it is known by the transmitting caller that the packet was received over the clear communication channel 938. Otherwise, the LAN protocol (at the ADSP level for example) would have returned an error indication. In addition to the acknowledge at the LAN protocol level, an acknowledge packet is generated when the received data is played (i.e., when the video data is displayed) in order to provide end to end synchronization information. The WriteDone function of connection stream 932 generates such acknowledge packet for return transmission across communication channel 938. Back at the originating transmitting caller, the ReadTask function of connection stream 930, calls WriteDone routine of media stream 928 to process the acknowledge packet. The receipt of an acknowledge packet also provides an indication of system delay for the media type of media stream 928, in this example, a video packet. The acknowledge packet contains a recorded time indicating when the video packet was actually used. Comparison of the recorded transmission time with the received recorded display time, provides a measure of the end to end system delay.
Prioritized Data Packet Processing
A system block diagram is illustrated in
In
For the return direction,
In operation in
In
Additional media types, such as file text or screen documents may be added to the block diagrams of
As indicated, the preferred embodiment of the present invention is in software running on a Macintosh computer. A software embodiment has the advantage of being hardware independent, capable of working with any available media source, and across any available communication system. In addition, CPacketStream tasks and methods are shared by various connection streams and media streams. It is noteworthy that the present system achieves multimedia conferencing in a uniprocessor architecture.
Alternative embodiments of the present multimedia communication system include multi-processor architectures where the multi-tasking of received multimedia data packets may be replaced by parallel processing, or in special purpose hardware. In dedicated hardware, each CPacketStream could be a special purpose microprogrammed integrated circuit, where one chip would be required for each media type, and for each connection.
A three way videoconference call is illustrated in
An alternate embodiment for a three way videoconference call is illustrated in
This application is a continuation of application Ser. No. 09/596,835 filed Jun. 19, 2000 now U.S. Pat. No. 6,738,357 of the same title, which is a continuation of prior application Ser. No. 09/437,269, filed Nov. 10, 1999, now U.S. Pat. No. 6,104,706, which is a continuation of Ser. No. 08/795,798, filed Feb. 5, 1997, now U.S. Pat. No. 5,995,491, which is a continuation of Ser. No. 08/626,580, filed Apr. 2, 1996, now U.S. Pat. No. 5,623,490, which is a continuation of Ser. No. 08/073,956, filed Jun. 9, 1993, now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3584142 | Schoeffler | Jun 1971 | A |
4100377 | Flanagan | Jul 1978 | A |
4387271 | Artom | Jun 1983 | A |
4506358 | Montgomery | Mar 1985 | A |
4507781 | Alvarez, III et al. | Mar 1985 | A |
4516156 | Fabris et al. | May 1985 | A |
4525779 | Davids et al. | Jun 1985 | A |
4574374 | Scordo | Mar 1986 | A |
4627052 | Hoare et al. | Dec 1986 | A |
4645872 | Pressman et al. | Feb 1987 | A |
4650929 | Boerger et al. | Mar 1987 | A |
4653090 | Hayden | Mar 1987 | A |
4686698 | Tompkins et al. | Aug 1987 | A |
4707831 | Weir et al. | Nov 1987 | A |
4710917 | Tompkins et al. | Dec 1987 | A |
4734765 | Okada et al. | Mar 1988 | A |
4748620 | Adelmann et al. | May 1988 | A |
4756019 | Szybicki | Jul 1988 | A |
4760572 | Tomikawa | Jul 1988 | A |
4763317 | Lehman et al. | Aug 1988 | A |
4827339 | Wada et al. | May 1989 | A |
4847829 | Tompkins et al. | Jul 1989 | A |
4849811 | Kleinerman | Jul 1989 | A |
4882743 | Mahmoud | Nov 1989 | A |
4888795 | Ando et al. | Dec 1989 | A |
4893326 | Duran et al. | Jan 1990 | A |
4897866 | Majmudar et al. | Jan 1990 | A |
4905231 | Leung et al. | Feb 1990 | A |
4918718 | Emmons et al. | Apr 1990 | A |
4924311 | Ohki et al. | May 1990 | A |
4932047 | Emmons et al. | Jun 1990 | A |
4935953 | Appel et al. | Jun 1990 | A |
4937856 | Natarajan | Jun 1990 | A |
4942470 | Nishitani et al. | Jul 1990 | A |
4942540 | Black et al. | Jul 1990 | A |
4942569 | Maeno | Jul 1990 | A |
4943994 | Ohtsuka et al. | Jul 1990 | A |
4945410 | Walling | Jul 1990 | A |
4949169 | Lumelsky et al. | Aug 1990 | A |
4953159 | Hayden | Aug 1990 | A |
4953196 | Ishikawa | Aug 1990 | A |
4962521 | Komatsu et al. | Oct 1990 | A |
4965819 | Kannes | Oct 1990 | A |
4991169 | Davis et al. | Feb 1991 | A |
4991171 | Teraslinna et al. | Feb 1991 | A |
4995071 | Weber et al. | Feb 1991 | A |
5003532 | Ashida et al. | Mar 1991 | A |
5014267 | Tompkins et al. | May 1991 | A |
5034916 | Ordish | Jul 1991 | A |
5042006 | Flohrer | Aug 1991 | A |
5042062 | Lee et al. | Aug 1991 | A |
5046079 | Hashimoto | Sep 1991 | A |
5046080 | Lee et al. | Sep 1991 | A |
5056136 | Smith | Oct 1991 | A |
5062136 | Gattis et al. | Oct 1991 | A |
5072442 | Todd | Dec 1991 | A |
5077732 | Fischer et al. | Dec 1991 | A |
5079627 | Filo | Jan 1992 | A |
5083269 | Syobatake et al. | Jan 1992 | A |
5099510 | Blinken, Jr. et al. | Mar 1992 | A |
5101451 | Ash et al. | Mar 1992 | A |
5132966 | Hayano et al. | Jul 1992 | A |
5136581 | Muehrcke | Aug 1992 | A |
5140584 | Suzuki | Aug 1992 | A |
5155594 | Bernstein et al. | Oct 1992 | A |
5157662 | Tadamura et al. | Oct 1992 | A |
5177604 | Martinez | Jan 1993 | A |
5192999 | Graczyk et al. | Mar 1993 | A |
5195086 | Baumgartner et al. | Mar 1993 | A |
5200951 | Grau et al. | Apr 1993 | A |
5210836 | Childers et al. | May 1993 | A |
5220653 | Miro | Jun 1993 | A |
5231492 | Dangi et al. | Jul 1993 | A |
5241625 | Epard et al. | Aug 1993 | A |
5243596 | Port et al. | Sep 1993 | A |
5276679 | McKay et al. | Jan 1994 | A |
5283638 | Engberg et al. | Feb 1994 | A |
5291492 | Andrews et al. | Mar 1994 | A |
5297143 | Fridrich et al. | Mar 1994 | A |
5309433 | Cidon et al. | May 1994 | A |
5311585 | Armstrong et al. | May 1994 | A |
5315586 | Charvillat | May 1994 | A |
5323445 | Nakatsuka | Jun 1994 | A |
5341374 | Lewen et al. | Aug 1994 | A |
5355371 | Auerbach et al. | Oct 1994 | A |
5371534 | Dagdeviren et al. | Dec 1994 | A |
5373549 | Bales et al. | Dec 1994 | A |
5375068 | Palmer et al. | Dec 1994 | A |
5392344 | Ash et al. | Feb 1995 | A |
5422883 | Hauris et al. | Jun 1995 | A |
5432525 | Maruo et al. | Jul 1995 | A |
5537548 | Fin et al. | Jul 1996 | A |
5594859 | Palmer et al. | Jan 1997 | A |
5623490 | Richter et al. | Apr 1997 | A |
5995491 | Richter et al. | Nov 1999 | A |
6104706 | Richter et al. | Aug 2000 | A |
Number | Date | Country |
---|---|---|
2080530 | Apr 1994 | CA |
0279232 | Aug 1988 | EP |
Number | Date | Country | |
---|---|---|---|
20040218628 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09596835 | Jun 2000 | US |
Child | 10804776 | US | |
Parent | 09437269 | Nov 1999 | US |
Child | 09596835 | US | |
Parent | 08795798 | Feb 1997 | US |
Child | 09437269 | US | |
Parent | 08626580 | Apr 1996 | US |
Child | 08795798 | US | |
Parent | 08073956 | Jun 1993 | US |
Child | 08626580 | US |