METHODS FOR OBJECTIVE ASSESSMENT OF STRESS, EARLY DETECTION OF RISK FOR STRESS DISORDERS, MATCHING INDIVIDUALS WITH TREATMENTS, MONITORING RESPONSE TO TREATMENT, AND NEW METHODS OF USE FOR DRUGS

Information

  • Patent Application
  • 20210255198
  • Publication Number
    20210255198
  • Date Filed
    June 05, 2019
    5 years ago
  • Date Published
    August 19, 2021
    3 years ago
  • Inventors
  • Original Assignees
    • The United States of America as Represented by the Department of Veterans Affairs Office (Washington, DC, US)
Abstract
Disclosed are methods for assessing severity, determining future risk, matching with a drug treatment, and measuring response to treatment, for stress disorders. Also disclosed are new methods of use for drugs and natural compounds repurposed for use in reducing stress severity, as well as for preventing and treating stress disorders. All the above mentioned methods are computer assisted methods analyzing the expression of panels of genes, clinical measures, and drug databases. A universal approach in everybody, as well as a personalized approaches by gender, and by diagnosis, are disclosed.
Description
INCORPORATION OF SEQUENCE LISTING

A paper copy of the Sequence Listing and a computer readable form of the Sequence Listing containing the file named “2018-032-02_ST25.txt”, which is 1,076 bytes in size (as measured in MICROSOFT WINDOWS® EXPLORER), are provided herein and are herein incorporated by reference. This Sequence Listing consists of SEQ ID Nos:1-4.


BACKGROUND OF THE DISCLOSURE

The present disclosure relates generally to methods for assessing high stress states, and predict future clinical events due to high stress, such as psychiatric hospitalizations with stress symptoms, using computer assisted methods and blood gene expression biomarker data. Further, the present disclosure relates to methods for matching individuals with high stress, with medications that can treat stress, and methods for monitoring response to treatment. Finally, the disclosure relates to new methods of use for candidate drugs and natural compounds repurposed for the treatment of stress.


Stress is a subjective sensation. Accordingly, stress disorders (such as PSD) are often not properly diagnosed and treated. Stress disorders, such as post-traumatic stress disorder (PTSD), are prevalent, disabling, and underdiagnosed, in both the military and civilian realm. Stress disorders consist of mental and physical over-reaction to environmental cues that are perceived as potentially harmful, engendered by past exposure to traumatic events. The persistence, intensity, discongruence from the environment, or congruence with excessive response, are all hallmarks of clinical illness. Stress disorders affect one's ability to do things and quality of life. Due to stigma and lack of objective tests, they are often underdiagnosed, sub-optimally treated, and can lead to self-medication with alcohol and drugs. They may culminate in some cases with suicide.


There are no current objective tests to diagnose, so clinicians have to rely on the self-report of patients. An objective blood test for stress will facilitate proper diagnosis and treatment, enabling more confident treatment of those in need of it, without the stigma that it is “all in their head” and “weakness”. Psychiatric patients may have an increased vulnerability to stress, regardless of their primary diagnosis, as well as increased reasons for stress disorders, due to their often adverse life trajectory. As such, they may be a particularly suitable population in which to try to identify blood biomarkers for stress that are generalizable and trans-diagnostic.


Given the negative impact of untreated stress on quality (and quantity) of life, the current lack of objective measures to determine appropriateness of treatment, and the mixed results with existing medications, the importance of approaches such as those of the present disclosure cannot be overstated.


BRIEF DESCRIPTION

The present disclosure is generally related to biomarkers and their use for tracking stress states and/or predicting a subject's risk of high stress states and/or future psychiatric hospitalizations with stress symptoms. In some embodiments, the biomarkers used herein have been found to be more universal in nature, working across psychiatric diagnoses, genders and subtypes, in other embodiments, the present disclosure relates to biomarkers identified using a personalized approach; that is, by psychiatric diagnosis, gender and subtype.


The present disclosure further relates to drugs for mitigating high stress states in subjects. Particular drugs have been found that can mitigate high stress states in subjects universally; that is, drugs that can be used for mitigating high stress states across psychiatric diagnoses, genders and subtypes of high stress states. Some drugs, however, have been found that can be used more effectively for mitigating high stress states dependent on gender, psychiatric diagnoses, subtypes and combinations thereof.


In one specific aspect, the present disclosure relates to a method of mitigating stress in a subject in need thereof, the method comprising administering a therapy to the subject, the therapy being selected from the group consisting of one or more compounds from Tables 6A-6D.


In another aspect, the present disclosure relates to a method for predicting a high stress state in a subject, the method comprising: obtaining an expression level of at least one blood biomarker from Table 2 in a sample obtained from the subject, obtaining a reference expression level of the blood biomarker, and identifying a difference between the expression level of the blood biomarker in the sample obtained from the subject and the reference expression level of the blood biomarker, wherein the difference in the expression level of the blood biomarker in the sample obtained from the subject and the reference expression level of the blood biomarker indicates a risk for a high stress state in the subject.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be better understood, and features, aspects and advantages other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such detailed description makes reference to the following drawings, wherein:



FIGS. 1A-1G depict Steps 1-3: Discovery, Prioritization and Validation of the methods used in the present disclosure. FIG. 1A depicts cohorts used in the Example, depicting flow of discovery, prioritization, and validation of biomarkers from each step. FIG. 1B depicts the discovery cohort longitudinal within-participant analysis. Phchp### is study ID for each participant. V# denotes visit number. FIG. 1C depicts the discovery of possible subtypes of stress based on High Stress visits in the discovery cohort. Participants were clustered using measures of mood and anxiety (from Simplified Affective State Scale (SASS)), as well as psychosis (PANNS Positive). FIG. 1D depicts differential gene expression in the Discovery cohort−number of genes identified with differential expression (DE) and absent-present (AP) methods with an internal score of 2 and above. Numbers on the top represent biomarkers that were increased in expression in High Stress; numbers on the bottom represent biomarkers that were decreased in expression in High Stress. At the discovery step probesets were identified based on their score for tracking stress with a maximum of internal points of 6 (33% (2 pt), 50% (4 pt) and 80% (6 pt)). FIG. 1E shows prioritization with CFG for prior evidence of involvement in stress. In the prioritization step, probesets were converted to their associated genes using Affymetrix annotation and GeneCards. Genes were prioritized and scored using CF for stress evidence with a maximum of 12 external points. Genes scoring at least 6 points out of a maximum possible of 18 total internal and external scores points were carried to the validation step. FIGS. 1F and 1G show validation in an independent cohort of psychiatric patients with clinically severe trait stress and high state stress. In the validation step, biomarkers were assessed for stepwise change from the discovery groups of participants with Low Stress, to High Stress, to Clinically Severe Stress, using ANOVA. N=number of testing visits, 232 biomarkers were nominally significant, ASCC1 (FIG. 1F) and NUB1 (FIG. 1G) were the most significant biomarkers, and 1130 biomarkers were stepwise changed.



FIGS. 2A-2C depict best biomarker predictors for stress from top candidate biomarkers that survived Steps 1-3 (Discovery, Prioritization, Validation-Bold) (n=285). Bar graph shows best predictive biomarkers in each group. * Nominally significant for predictions p<0.05. ** Bonferroni significant for the 285 biomarkers tested. Table underneath each graph displays the actual number of biomarkers for each group whose ROC AUC p-values (FIGS. 2A and 2B) and Cox Odds Ratio p-values (FIG. 2C) were at least nominally significant. Some gender and diagnosis groups were left off the graph as they did not have any significant biomarkers. Cross-sectional analysis was based on levels at one visit. Longitudinal analysis was based on levels at multiple visits (integrates levels at most recent visit, maximum levels, slope into most recent visit, and maximum slope). Dividing lines represent the cutoffs for a test performing at chance levels (white), and at the same level as the best biomarkers for all subjects in cross-sectional (gray) and longitudinal (black) based predictions. All biomarkers performed better than chance. Biomarkers also performed better when personalized by gender and diagnosis.



FIG. 3 depicts the STRING Interaction Network for nominally validated biomarkers for stress (n=220 genes, 232 probesets).





DETAILED DESCRIPTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure belongs. Although any methods and materials similar to or equivalent to those described herein can be used in the practice or testing of the present disclosure, the preferred methods and materials are described below.


The present disclosure present disclosure relates generally to methods for assessing high stress states, and predict future clinical events due to high stress, such as psychiatric hospitalizations with stress symptoms, using computer assisted methods and blood gene expression biomarker data. Further, the present disclosure relates to methods for matching individuals with high stress, with medications that can treat stress, and methods for monitoring response to treatment. Finally, the invention relates to new methods of use for candidate drugs and natural compounds repurposed for the treatment of stress.


Furthermore, the predictive ability of the biomarkers discovered were examined, in a completely independent cohort, in all the participants in it, as well as divided by subtypes, and personalized by gender and diagnosis.


In additional embodiments, the present disclosure is directed to drugs for mitigating high stress states in subjects. Particular drugs have been found that can mitigate high stress states in subjects universally; that is, drugs that can be used for mitigating high stress states across psychiatric diagnoses and genders. Some drugs, however, have been found that can be used more effectively for mitigating high stress states dependent on gender, psychiatric diagnoses, and combinations thereof. Exemplary therapies include cefotiam, proguanil, hydroxyachillin, Prestwick-682, levopropoxyphene, isoflupredone, ozagrel, streptozocin, cyclopenthiazide, metformin, corticosterone, calcium folinate, diphenhydramine, ambroxol, xanoterol, botulin, isometheptene, primidone, tocainide, diloxanide, alprostadil, amphotericin B, oxolamine, and combinations thereof.


A powerful longitudinal within-subject design was used in individuals with psychiatric disorders to discover blood gene expression changes between self-reported low stress and high stress states. The list of candidate biomarkers were prioritized with a Bayesian-like Convergent Functional Genomics approach, comprehensively integrating previous human and animal model evidence in the field. The top biomarkers from discovery and prioritization were then validated in an independent cohort of psychiatric subjects with high scores on stress rating scales. The present disclosure identified a list of 116 candidate biomarkers that were nominally significant after the validation step. The candidate biomarkers were then analyzed for their abilities to predict high stress state, and future hospitalizations with stress, in another independent cohort of psychiatric subjects. The biomarkers were tested in all subjects in the test cohort, as well as in a more personalized fashion by gender and psychiatric diagnosis, showing increased accuracy with the personalized approach. The biomarkers were assessed for evidence of involvement in other psychiatric and related disorders, and the biological pathways and networks they are involved in were analyzed. The biomarkers were analyzed as targets of existing drugs for use for pharmacogenomic population stratification and measuring of response to treatment, as well as used the biomarker gene expression signature to interrogate the Connectivity Map database from Broad/MIT to identify drugs and natural compounds that can be repurposed for treating stress.


As used herein, “predicting high stress state in a subject” is used herein to indicate in advance that a subject's stress state will become elevated.


As known by those skilled in the art, “stress state” refers to thoughts, feelings, intent, and behaviors about life and environment, health, financial, and social conditions. “High stress state” refers to scoring in the upper tertile of a visual analog scale for perceived life stress (0 to 100). “Low stress state” refers to scoring in the lower tertile of a visual analog scale for perceived life stress (0 to 100). In some embodiments, the reference expression level of a biomarker can be obtained for a subject who has a low stress state at the time the sample is obtained from the subject, but who later exhibits a high stress state.


As used herein, “a reference expression level of a biomarker” refers to the expression level of a biomarker established for a subject with a low stress state, expression level of a biomarker in a normal/healthy subject with a low stress state as determined by one skilled in the art using established methods as described herein, and/or a known expression level of a biomarker obtained from literature. The reference expression level of the biomarker can further refer to the expression level of the biomarker established for a high stress state subject, including a population of high stress state subjects. The reference expression level of the biomarker can also refer to the expression level of the biomarker established for a low stress state subject, including a population of low stress state subjects. The reference expression level of the biomarker can also refer to the expression level of the biomarker established for any combination of subjects such as a subject with a low stress state, expression level of the biomarker in a normal/healthy subject with a low stress state, expression level of the biomarker for a subject who has a low stress state at the time the sample is obtained from the subject, but who later exhibits a high stress state, expression level of the biomarker as established for a high stress state subject, including a population of high stress state subjects, and expression level of the biomarker can also refer to the expression level of the biomarker established for a low stress state subject, including a population of low stress state subjects. The reference expression level of the biomarker can also refer to the expression level of the biomarker obtained from the subject to which the method is applied. As such, the change within a subject from visit to visit can indicate an increased or decreased stress state. For example, a plurality of expression levels of a biomarker can be obtained from a plurality of samples obtained from the same subject and used to identify differences between the plurality of expression levels in each sample. Thus, in some embodiments, two or more samples obtained from the same subject can provide an expression level(s) of a blood biomarker and a reference expression level(s) of the blood biomarker.


As used herein, “expression level of a biomarker” refers to the process by which a gene product is synthesized from a gene encoding the biomarker as known by those skilled in the art. The gene product can be, for example, RNA (ribonucleic acid) and protein. Expression level can be quantitatively measured by methods known by those skilled in the art such as, for example, northern blotting, amplification, polymerase chain reaction, microarray analysis, tag-based technologies (e.g., serial analysis of gene expression and next generation sequencing such as whole transcriptome shotgun sequencing or RNA-Seq). Western blotting, enzyme linked immunosorbent assay (ELISA), and combinations thereof.


As used herein, a “difference” in the expression level of the biomarker refers to an increase or a decrease in the expression of a blood biomarker when analyzed against a reference expression level of the biomarker. In some embodiments, the “difference” refers to an increase or a decrease by about 1.2-fold or greater in the expression level of the biomarker as identified between a sample obtained from the subject and the reference expression level of the biomarker. In one embodiment, the difference in expression level is an increase or decrease by about 1.2 fold. As used herein “a risk for high stress state” can refer to an increased (greater) risk that a subject will reach a high stress state. For example, depending on the biomarker(s) selected, the difference in the expression level of the biomarker(s) can indicate an increased (greater) risk that a subject will reach a high stress state. Conversely, depending on the biomarker(s) selected, the difference in the expression level of the biomarker(s) can indicate a decreased (lower) risk that a subject will reach a high stress state.


In accordance with the present disclosure, biomarkers useful for objectively predicting, mitigating, and/or preventing high stress states in subjects have been discovered. In one aspect, the present disclosure is directed to a universal method for predicting high stress state in a subject; that is, a method for predicting high stress state across all psychiatric diagnoses and for either gender. The method includes obtaining a reference expression level of a blood biomarker and determining an expression level of the blood biomarker in a sample obtained from the subject. A change in the expression level of the blood biomarker in the sample obtained from the subject as compared to the reference expression level indicates a risk to reaching a level of high stress.


In one embodiment, the expression level of the blood biomarker in the sample obtained from the subject is increased as compared to the reference expression level of the biomarker. It has been found that an increase in the expression level of particular blood biomarkers in the sample obtained from the subject as compared to the reference expression level of the biomarker indicates a risk for high stress state. Suitable biomarkers that indicate a risk for high stress state when the expression level increases can be, for example, one or more biomarkers as listed in Table 2 and combinations thereof.


In another embodiment, the expression level of the blood biomarker in the sample obtained from the subject is decreased as compared to the reference expression level of the biomarker. Suitable biomarkers that indicate a risk for high stress state when the expression level decreases as compared to the reference expression level have been found to include, for example, one or more biomarkers as listed in Table 2 and combinations thereof.


Particularly suitable subjects are humans. Suitable subjects can also be experimental animals such as, for example, monkeys and rodents, that display a behavioral phenotype associated with high stress states. In one particular aspect, the subject is a female human. In another particular aspect, the subject is a male human, and in another particular aspect, the subject is a male depressed human.


A particularly suitable sample for which the expression level of a biomarker is determined can be, for example, blood, including whole blood, serum, plasma, leukocytes, and megakaryocytes.


Various functions and advantages of these and other embodiments of the present disclosure will be more fully understood from the examples shown below. The examples are intended to illustrate the benefits of the present disclosure, but do not exemplify the full scope of the disclosure.


EXAMPLE

In this Example, biomarkers were assessed for tracking stress states, predicting high stress states, and predicting psychiatric hospitalizations with stress symptoms.


Materials and Methods

Cohorts


Three independent cohorts were used: discovery (major psychiatric disorders with changes in state stress), validation (major psychiatric disorders with clinically severe trait and state stress), and testing (an independent major psychiatric disorders cohort for predicting state stress, and for predicting trait future hospitalization visits with stress as the primary reason) (FIG. 1A).


Participants were recruited from the patient population at the Indianapolis VA Medical Center. All participants understood and signed informed consent forms detailing the research goals, procedure, caveats and safeguards, per IRB approved protocol. Participants completed diagnostic assessments by an extensive structured clinical interview-Diagnostic Interview for Genetic Studies, and up to six testing visits, 3-6 months apart or whenever a new psychiatric hospitalization occurred. At each testing visit, they received a series of rating scales, including a self-report visual analog scale (1-100) for quantitatively assessing state stress at that particular moment in time (Simplified Stress Scale—SSS), which has 4-items (Life Stress, Financial Stress, Health Stress and Social Stress). A PTSD Checklist-Civilian Version (PCL-C) scale, which measures clinical severity of trait stress symptoms over the month preceding testing, was also administered. Whole blood (10 ml) was collected in two RNA-stabilizing PAXgene tubes, labeled with an anonymized ID number, and stored at −80° in a locked freezer until the time of future processing. Whole-blood RNA was extracted for microarray gene expression studies from the PAXgene tubes, as detailed below.


For this Example, the within-participant discovery cohort, from which the biomarker data were derived, consisted of 36 participants (28 males, 8 females) with multiple testing visits, who each had at least one diametric change in stress state from low stress state (VAS Life Stress score of ≤33/100) to a high stress state (Life Stress score of ≥67). At least one of the other items (Health Stress. Financial Stress or Social Stress) having concording low or high score with the Life Stress ((FIGS. 1A-1G) was required.


The validation cohort, in which the top biomarker findings were validated for being even more strongly changed in expression compared to the discovery cohort, consisted of 35 male and 13 female participants with both high trait stress (PTSD PCL-C scale scores ≥50, indicating clinically severe stress) and high state stress (VAS Life Stress score of ≥67). (Table 1.









TABLE 1







Demographics














Number of



Age Mean
T-test for



participants
Gender
Diagnosis
Ethnicity
(SD)
age











Discovery













Discovery
36 (with 91
Male = 28
Dx
EA = 25
All = 49.8022
T-test for


Cohort
visits)
Female = 8
Subjects
AA = 10
(10.3754)
age between


(Within-


(Visits)
Hispanic = 1
Low Stress =
Low Stress


Participant


BP 14

50.31
and High


Changes in Life


(38)

High Stress =
Stress


Stress VAS)


MDD

49.30
0.645943


Low-Life Stress


7(15)


VAS <=33


PSYCH


High-Life Stress


1(3)


VAS >=67


PTSD


Concordance


6(16)


with 1 other


SZ 6(14)


item (Health


SZA 2(5)


Stress, Financial


Stress, Social


Stress)







Validation













Independent
48
Male = 35
MDD = 13
EA = 37
48.96
T-test for


Validation

Female = 13
BP = 8
AA = 10
(8.4)
age between


Cohort


SZ = 2


Discovery vs.


(Clinically


SZA = 7


Validation


Severe Stress)


PTSD = 13


0.56523437


PCL-C >=50


MOOD = 4


Life Stress


VAS >=67







Testing













Independent
122
Male = 95
BP = 53
EA = 89
All = 45.5
T-test for


Testing Cohort

Female = 27
MDD = 24
AA =31
(9.93)
age


For Predicting


SZA = 15
Mixed = 1
Low Stress =
Low and


High Stress State


SZ = 17
Hispanic = 1
46.2
Intermediate


Life Stress


PTSD = 9

High Stress =
Stress vs.


VAS >=67


MOOD = 1

44.03
High Stress


at Time of


PSYCH = 3


0.50720396


Assessment)


Independent
162
Male = 144
BP = 50
EA = 101
All = 50.4
T-test for


Testing Cohort

Female = 18
MDD = 27
AA = 58
(8.19)
age


For Predicting


SZA = 32
Mixed = 1
Hosp with
Hosp with


Trait


SZ = 39
Hispanic = 2
no Stress =
no Stress vs.


(Hospitalizations


PTSD = 8

48.6
Hosp with


visits with Stress


MOOD = 3

Hosp with
Stress


in the First Year


PSYCH = 8

Stress =
within the


Following




47.9
first Year


Assessment)





0.7001408


Independent
186
Male = 166
BP = 56
EA = 119
All = 50.45
T-test for


Testing Cohort

Female = 20
MDD = 30
AA = 64
(8.86)
age


For Predicting


SZA = 47
Mixed = 1
Hosp with
Hosp with


Trait


SZ = 39
Hispanic = 2
no Stress =
no Stress vs.


(Hospitalizations


PTSD = 8

50.55
Hosp with


visits with Stress


MOOD = 3

Hosp with
Stress in


Stress in All


PSYCH = 3

Stress =
Future


Future Years




50.12
Years


Following





0.65942853


Assessment)









The independent test cohort for predicting state high stress consisted of 95 male and 27 female participants with psychiatric disorders, demographically matched with the discovery cohort, with one or multiple testing visits in the lab, with either low stress, intermediate stress, or high stress (FIGS. 1A-1G and Table 1).


The test cohort for predicting trait future hospitalization visits with stress symptoms, in the first year of follow-up, and all future hospitalization visits with stress symptoms (FIGS. 1A-1G) consisted of 166 males and 20 female participants for which there was a longitudinal follow-up with electronic medical records. The participants' subsequent number of hospitalization with stress symptoms in the year following testing was tabulated from electronic medical records by a clinical researcher, who examined admission and discharge summaries.


Medications. The participants in the discovery cohort were all diagnosed with various psychiatric disorders, and had various medical co-morbidities (Table 2). Their medications were listed in their electronic medical records, and documented at the time of each testing visit. Medications can have a strong influence on gene expression. However, the discovery of differentially expressed genes was based on within-participant analyses, which factor out not only genetic background effects, but also minimizes medication effects, as the participants rarely had major medication changes between visits. Moreover, there was no consistent pattern of any particular type of medication, as the participants were on a wide variety of different medications, psychiatric and non-psychiatric. Some participants may be non-compliant with their treatment and may thus have changes in medications or drug of abuse not reflected in their medical records. That being said, the goal was to find biomarkers that track stress, regardless if the reason for it is endogenous biology or driven by substance abuse or medication non-compliance. In fact, one would expect some of these biomarkers to be targets of medications. Overall, the discovery of biomarkers with this design occurs despite the participants having different genders, diagnoses, being on various different medications, and other lifestyle variables









TABLE 2





Convergent Functional Evidence (CFE) for Best Predictive Biomarkers for Stress (n = 41 genes, 42 probesets).



























Step 4








Best








Significant








Prediction







Step 4
of First







Best
Year Hosp







Significant
Visits







Prediction
with





Step 2

of Stress
Stress




Step 1
External

ROC
ROC




Discovery
CFG
Step 3
AUC/
AUC/




in Blood
Evidence
Validation
p-value
p-value




(Direction
For
in Blood
8 pts All
8 pts All


Gene

of Change)
Involvement
ANOVA
6 pts
6 pts


Symbol/

Method/
in Stress
p-value/
Gender
Gender


Gene

Score/%
Score
Score
4 pts
4 pts


Name
Probesets
6 pts
12 pts
6 pts
Gender/Dx
Gender/Dx






TL

NA
NA
7

NS

Gender/Dx
All


Telomere




M-MDD
C: (14/108)


Length




C: (2/14)
0.72/4.82E−03


Reference




1/1.42E−02
Gender


marker





Male


from





C: (14/86)


literature





0.73/3.21E−03








Gender/Dx








M-MDD








C: (4/17)








0.90/8.71E−03








M-BP








C: (9/55








0.68/4.19E−02



FKBP5

224856_at
(D)
12

1.22E−02/4

Gender
Gender/Dx



FK506


DE/4


Nominal

Female
M-MDD



Binding


53.8%


C: (13/60)
C: (5/49)



Protein 5





0.65/4.85E−02
0.75/3.72E−02







Gender/Dx
M-MDD







F-BP
L: (2/27)







C: (6/22)
0.9/3.20E−02







0.82/1.11E−02



DDX6

1562836_at
(I)
9
Not
All
All


DEAD-

DE/6

Stepwise

L: (13/134)

L: (14/234)


Box

83.8%



0.64/4.79E−02

0.63/4.59E−02


Helicase 6

(I)


Gender
Gender




AP/6


Female
Male




90.2%


C: (13/60)
L: (14/206)







0.7/1.60E−02
0.64/4.00E−02







Female
Gender/Dx







L: (5/33)
M-BP







0.79/2.23E−02
L: (10/77)







Gender/Dx
0.71/1.63E−02







F-BP







C: (6/22)







0.82/1.11E−02







F-BP







L: (2/12)







0.9/4.28E−02







M-PSYCHOSIS







C: (5/47)







0.73/4.88E−02







M-PSYCHOSIS







L: (2/24)







0.95/1.84E−02








M-SZ









C: (4/29)









0.87/9.64E−03








M-SZ







L: (2/15)







1/1.36E−02



B2M

232311_at
(I)
5
Not
Gender/Dx
Gender


Beta-2-

DE/6

Stepwise

F-PSYCHOSIS

Female


Microglobulin

91.2%



C: (4/19)

C: (2/46)








0.93/4.66E−03

0.94/1.78E−02







F-SZA







C: (3/13)







0.9/2.13E−02



LAIR1

210644_s_at
(D)
4

1.12E−02/4

Gender
Gender/Dx



Leukocyte


DE/6


Nominal

Female

M-PSYCHOSIS




Associated


86.2%



L: (5/33)


L: (2/95)




Immunoglobulin






0.75/3.94E−02


0.85/4.35E−02




Like




Receptor 1




RTN4

1556049_at
(I)
9
Not

All


Reticulon 4

DE/4

Stepwise


C: (32/398)





54.4%




0.63/9.49E−03









Gender








Female








C: (2/46)








0.85/4.75 − 02








Male








C: (30/352)








0.61/2.32 − 02



NUB1

1560108_at
(I)
8

2.34E−02/4

All


Negative
(1560108_at)
DE/4


Nominal


C: (38/258)



Regulator

61.8%


(6.22E−04/4


0.65/1.42E−03



Of Ubiquitin Like




Top

Gender


Proteins 1




Nominal)

Female







C: (13/60)







0.74/3.96E−03







Male







C: (25/198)







0.6/4.70E−02







Gender/Dx







F-BP







C: (6/22)







0.78/2.33E−02



CIRBP

200811_at
(D)
4

3.66E−02/4

Gender
All



Cold


DE/4


Nominal

Female
L: (14/234)



Inducible


69.2%


C: (13/60)
0.68/1.19E−02



RNA





0.65/4.67E−02
Gender



Binding





Gender/Dx
Male



Protein





F-BP
L: (14/206)







C: (6/22)
0.68/1.17E−02







0.76/3.27E−02
Gender/Dx








F-BP

M-BP








L: (2/12)

L: (10/77)








1/1.58E−02

0.67/4.63E−02








M-SZ








C: (3/74)








0.79/4.59E−02



CYP2E1

209976_s_at
(I)
6

1.57E−02/4

Gender/Dx
All


Cytochrome

DE/2


Nominal

F-BP
C: (32/398)


P450

44.1%


C: (6/22)
0.6/3.41E−02


Family 2




0.78/2.33E−02
Gender


Subfamily E




M-MDD

Male



Member 1




C: (6/35)

C: (30/352)








0.77/1.98E−02

0.63/1.09E−02









Gender/Dx








M-PSYCHOSIS








C: (8/161)








0.74/1.04E−02








M-SZA








C: (5/87)








0.82/7.64E−03



MAD1LI

204857_at
(D)
2

1.47E−02/4

Gender/Dx
All



MAD1


DE/4


Nominal

F-PSYCHOSIS
L: (14/236)



Mitotic


72.3%


C: (4/19)
0.64/4.24E−02



Arrest





0.78/4.45E−02
Gender



Deficient






Male



Like 1






L: (14/208)








0.64/4.07E−02



OAS1

202869_at
(D)
9
1.15E−01/2
All



2′-5′-


DE/4

Stepwise
C: (38/258)



Oligoadenylate


56.9%


0.6/2.77E−02



Synthetase 1





Gender







Female







C: (13/60)







0.66/3.71E−02







Gender/Dx







F-PSYCHOSIS







C: (4/19)







0.8/3.59E−02



OXA1L

208717_at
(D)
6

6.40E−03/4

Gender/Dx
Gender/Dx



OXA1L,


DE/4


Nominal

F-BP
M-MDD



Mitochondrial


56.9%


C: (6/22)
L: (2/27)



Inner





0.75/3.84E−02
0.86/4.78E−02



Membrane




Protein




CCL4

204103_at
(D)
2
Not
Gender/Dx
All



C-C


DE/6

Stepwise

F-PTSD

L: (14/234)



Motif


96.9%



C: (3/7)

0.66/2.01E−02



Chemokine






1/1.69E−02

Gender



Ligand 4





M-MDD
Male







C: (6/35)
(14/206)







0.75/2.99E−02
0.66/2.07E−02








Gender/Dx








M-MDD








L: (2/27)








0.94/2.08E−02



DTNBP1

223446_s_at
(D)
4
Not
Gender
Gender/Dx



Dystrobrevin


DE/6

Stepwise
Female
M-MDD



Binding


93.8%


C: (13/60)
C: (9/57)



Protein 1





0.7/1.33E−02
3.1/2.45E−02







Gender/Dx







F-PSYCHOSIS







C: (4/19)







0.9/8.20E−03








F-SZA









C: (3/13)









0.93/1.40E−02




SPON2

218638_s_at
(D)
2
Not
Gender/Dx
All



Spondin 2


DE/6

Stepwise
F-PTSD
L: (14/234)




93.8%


C: (3/7)
0.66/2.24E−02







1/1.69E−02
Gender








Male








L: (14/206)








0.66/2.19E−02








Gender/Dx








M-BP








L: (10/77)








0.67/4.20E−02








M-MDD








C: (5/49)








0.83/8.70E−03








M-MDD








L: (2/27)








0.88/3.93E−02



ANK2

202921_s_at
(I)
2

1.09E−02/4

Gender
Gender/Dx


Ankyrin 2

DE/4


Nominal

Female
M-MDD




52.9%


C: (13/60)
C: (5/49)







0.66/4.33E−02
0.75/3.22E−02







F-BP
M-MDD







C: (6/22)
L: (2/27)







0.75/3.84E−02
0.96/1.66E−02







M-MDD







C: (6/35)







0.72/4.81E−02



LAIR2

207509_s_at
(D)
0
Not
Most
Gender



Leukocyte


DE/6

Stepwise
reproducibly
Female



Associated


98.5%


predictive
C: (2/46)



Immunoglobulin





for state
0.97/1.36E−02



Like





All



Receptor 2





C: (38/258)







0.62/1.15E−02







Gender







Female







C: (13/60)







0.81/3.37E−04







Female







L: (5/33)







0.81/1.36E−02







Gender/Dx







F-BP







C: (6/22)







0.86/4.94E−03







F-BP







L: (2/12)







1/1.58E−02







F-PTSD







C: (3/7)







1/1.69E−02







M-MDD







C: (6/35)







0.76/2.44E−02



SUMO1

208762_at
(D)
9
Not
Gender
Gender/Dx



Small


DE/4

Stepwise
Female
M-SZ



Ubiquitin


56.3%


C: (13/60)
C: (3/74)



Like





0.70/1.46E−02
0.87/1.57 − 02



Modifier 1





Gender/Dx
L: (1/44)







F-BP
1/4.52 − 02







C: (6/22)







0.75/3.84 − 02







L: (2/12)







0.9/4.28 − 02



MKL2

1562497_at
(I)
2

4.58E−02/4


Most


MKL1/

AP/4


Nominal


reproducibly


Myocardin

60.8%



predictive


Like 2





for trait








first year








All








C: (32/398)








0.59/3.79E−02








Gender








Male








C: (30/352)








0.61/2.53E−02








Male








L: (14/206)








0.64/4.33E−02








Gender/Dx








M-BP








L: (10/77)








0.67/3.81E−02








M-MDD








L: (2/27)








0.88/3.93E−02








M-PSYCHOSIS








C: (8/161)








0.68/3.94E−02



DMGDH

231591_at
(I)
4

3.36E−02/4

Gender/Dx
Gender/Dx


Dimethylglycine

DE/2


Nominal

F-BP

M-SZ



Dehydrogenase

45.6%


C: (6/22)

L: (1/44)








0.77/2.76E−02

1.0/4.52E−02




N4BP2L2

214388_at
(I)
4

4.40E−02/4

Gender/Dx
Gender/Dx


NEDD4

DE/4


Nominal

F-BP

M-BP



Binding

69.1%


C: (6/22)

L: (10/77)



Protein2




0.77/2.76E−02

0.74/7.66E−03



Like 2




F-BP
M-SZ







L: (2/12)
C: (3/74)







0.95/2.66E−02
0.82/3.02E−02



PCDHB6

239443_at
(I)
6

1.17E−02/4

All


Protocadherin

DE/2


Nominal

C: (38/258)


Beta 6

38.2%


0.61/1.31E−02







Gender








Male









C: (25/198)









0.65/7.19E−03








Gender/Dx







M-BP







C: (10/101)







0.67/4.20E−02



SNCA

215811_at
(D)
11
Not
Gender/Dx



Synuclein


AP/2

Stepwise

M-PSYCHOSIS




Alpha


37.5%



L: (2/24)









0.98/1.41E−02









M-SZ









L: (2/15)









1/1.36E−02




GJB2

223278_at
(I)
6

2.42E−02/4

Gender/Dx


Gap

DE/2


Nominal


M-MDD



Junction

48.5%



C: (6/35)



Protein





0.82/7.12E−03



Beta 2



HIF1A

238869_at
(I)
4

1.11E−02/4



Hypoxia

DE/4


Nominal



Inducible

54.4%


Factor 1


Alpha


Subunit



PSD3

218613_at
(D)
2
Not

Gender



Pleckstrin


AP/6

Stepwise


Female




And Sec7


100%




C: (2/46)




Domain







0.98/1.18E−02




Containing 3




STX11

210190_at
(D)
4.5

2.74E−02/4

Gender/Dx
Gender/Dx



Syntax


DE/2


Nominal

M-MDD

M-MDD




in 11


49.2%


C: (6/35)

C: (5/49)








0.74/3.64E−02

0.95/4.78−04




APOL3

221087_s_at
(D)
2

2.96E−02/4


All



Apolipoprotein


AP/4


Nominal



L: (14/234)




L3


50%




0.7/5.34E−03









Gender









Male










L: (14/206)










0.71/4.53E−03









Gender/Dx








M-MDD








L: (2/27)








0.92/2.59E−02



ELMO2

220363_s_at
(D)
2

1.30E−02/4


Gender/Dx



Engulfment


DE/4


Nominal


M-MDD



And


60.0%



C: (5/49)



Cell


(D)



0.78/2.20E−02



Motility 2


AP/4



M-MDD




54.7%



L: (2/27)








0.92/2.59E−02



UBE2E2

225651_at
(D)
4

4.41E−02/4

Gender



Ubiquitin


DE/4


Nominal

Female



Conjugating


53.8%


C: (13/60)



Enzyme E2 E2





0.68/2.58E−02







F-BP







C: (6/22)







0.76/3.27E−02



FKBP5

224840_at
(D)
12
Not



FK506


DE/2

Stepwise



Binding


41.5%



Protein 5




HLA-

209312_x_at
(D)
4

1.22E−02/4




DRB1


DE/2


Nominal




Major


41.5%



Histocompatibility




Complex,




Class II,




DR Beta 1




LCP2

244251_at
(D)
3

2.01E−02/4


Gender



Lymphocyte


DE/4


Nominal


Male



Cytosolic


53.8%



C: (30/352)



Protein 2






0.61/2.19E−02








Gender/Dx









M-SZA










C: (5/87)










0.85/4.09E−03










M-PSYCHOSIS










C: (8/161)










0.78/3.90E−03




LRRC59

222231_s_at
(D)
2

3.15E−02/4




Leucine


DE/4


Nominal




Rich


61.5%



Repeat




Containing 59




FOXK2

220696_at
(I)
2

1.52E−02/4

Gender


Forkhead

DE/4


Nominal

Female


Box K2

58.8%


C: (13/60)




(I)


0.68/2.18E−02




AP/4



Female





72.5%



L: (5/33)









0.88/3.89E−03








Gender/Dx







F-BP







C: (6/22)







0.76/3.27E−02







F-BP







L: (2/12)







1/1.58E−02







F-PTSD







C: (3/7)







1/1.69E−02



HLA-B

211911_x_at
(D)
3

4.85E−02/4


Gender/Dx



Major


DE/4


Nominal


M-MDD



Histocompatibility


52.3%



C: (5/49)



Complex,






0.85/4.99E−03



Class I, B







M-MDD










L: (2/27)










1.0/1.03E−02




NKTR

243055_at
(I)
4

1.24E−02/4



Natural

DE/4


Nominal



Killer

50%


Cell

(I)


Triggering

AP/2


Receptor

43.1%



PLEKHA5

239559_at
(I)
4

3.33E−02/4



Gender/Dx



Pleckstrin

DE/2


Nominal



M-SZ



Homology

35.3%




C: (3/74)



Domain






0.91/8.24E−03



Containing A5



Clorf123

203197_s_at
(D)
2

2.92E−02/4




Chromosome 1


DE/4


Nominal




Open


72.3%



Reading




Frame 123




UQCC1

217935_s_at
(D)
4

3.33E−02/4

Gender/Dx
Gender/Dx



Ubiquinol-


DE/2


Nominal


M-BP

M-SZ



Cytochrome C


38.5%



C: (10/101)

C: (3/74)



Reductase






0.72/1.18E−02

0.89/1.19E−02



Complex




Assembly




Factor 1




PCBP2

237374_at
(I)
4.5
2.83E−02/41
Gender/Dx


Poly(RC)

DE/2

Nominal

F-BP



Binding

35.3%



C: (6/22)



Protein 2





0.89/3.19 − 03








L: (2/12)







1/1.58 − 02







M-SZ







C: (4/29)







0.8/2.89 − 02



DCTN5

209231_s_at
(D)
2
Not



Dynactin


DE/6

Stepwise



Subunit 5


90.8%



LOC105378349

241143_at
(D)
0
Not
Gender/Dx



Uncharacterized


AP/6

Stepwise

M-PSYCHOSIS




LOC105378349


90.6%



C: (5/47)









0.74/4.22E−02


















Step 4







Best




Significant




Predictions




of All




Future




Hosp
Step 5




visits
Other




with
Psychiatric




Stress
and Related
Step 6




OR/OR
Disorders
Drugs that




p-value
Evidence-
Modulate




8 pts All
Change
the Biomarker



Gene
6 pts
in same
in Opposite



Symbol/
Gender
direction as
Direction to
CFE



Gene
4 pts
stress
Stress
Polyevidence



Name
Gender/Dx
3 pts
3 pts
Score








TL


Aging
Omega-3
25



Telomere

Alcohol
Fatty



Length

Depression
acids



Reference

Mania
Lithium



marker

Psychosis
Meditation



from


Olanzapine



literature


Mianserin




FKBP5

Gender/Dx
Alcohol
Mood
40




FK506

M-SZ
Anxiety
Stabilizers




Binding

L: (8/56)
BP
Psychotherapy




Protein 5

4.6/3.94E−02
Depression





MDD





Pain





Psychosis





Unipolar





Depression





Suicide




DDX6

All
Alcohol

36



DEAD-
L: (62/286)
BP



Box
1.3/4.41E−02
Other



Helicase 6
Gender
Substances/




Male
Addictions




L: (59/253)
MDD




1.4/1.66E−02
Yohimbine




Gender/Dx
Suicide




M-BP




L: (24/91)




1.8/2.75E−05




B2M

All
Alcohol
Omega-3
35



Beta-2-
C: (113/474)
Aging
fatty



Microglobulin
1.2/3.09E−02
Autism
acids,




L: (62/286)
Eating
4′-iodo-4′-




1.5/9.79E−03
Disorder
deoxydoxorubicin




Gender
MDD




Female
Depression




C: (7/53)
Pain




1.8/4.87E−02
Suicide




Male




L: (59/253)




1.5/6.83E−03




Gender/Dx




M-BP




C: (41/140)




1.4/2.02E−03




M-BP




L: (24/91)




2.3/5.64E−04




LAIR1

All
Suicide

35




Leukocyte

L: (62/286)




Associated

1.7/1.68E−03




Immunoglobulin

Gender




Like

Male




Receptor 1

L: (59/253)




1.7/2.09E−03




Gender/Dx




M-BP




L: (24/91)




2/1.76E−02




M-PSYCHOSIS




L: (29/121)




1.7/1.22E−02




RTN4

All
Alcohol
Omega-3
35



Reticulon 4
C: (113/474)
BP
fatty




1.18/2.26 − 02
Suicide
acids




Gender
Pain
Valproate




Male




C: (106/421)




1.16/4.30 − 02




Gender/Dx




M-BP




C: (41/140)




1.29/4.95 − 02




M-MDD




C: (9/57)




2.21/1.33 − 02




F-SZA




C: (3/12)




5.4/4.76 − 02




NUB1

Gender/Dx
Autism
Antipsychotics
34



Negative
M-PSYCHOSIS
Suicide



Regulator
C: (52/201)



Of Ubiquitin Like
1.2/2.72E−02



Proteins 1
L: (29/121)




1.5/1.37E−02




M-SZ




L: (8/56)




1.6/2.20E−02




CIRBP

Gender/Dx
Autism

33




Cold

M-BP
SZ




Inducible

L: (24/91)




RNA

1.9/1.99E−02




Binding

M-MDD




Protein

L: (4/32)




13/3.39E−02




M-SZ




L: (8/56)




4.1/1.23E−02




CYP2E1

Gender
Alcohol

33



Cytochrome
Male
SZ



P450
L: (59/253)
Suicide



Family 2
1.3/4.96E−02



Subfamily E
Gender/Dx



Member 1
M-PSYCHOSIS




L: (29/121)




1.6/9.44E−03




M-SZ




C: (13/93)




1.4/3.85E−02




M-SZ




L: (8/56)




2.1/2.50E−03




MAD1LI


All

Autism

33




MAD1


L: (62/288)

BP




Mitotic


1.8/1.32E−03

Cocaine




Arrest

Gender
SZ




Deficient


Male





Like 1


(59/255)






1.7/2.66E−03





Gender/Dx




M-BP




L: (24/91)




2.1/9.71E−03




M-MDD




L: (4/32)




31.4/5.50E−03




OAS1

Gender/Dx
Alcohol
Mood
33




2′-5′-


M-PSYCHOSIS

Alzheimer's
Stabilizers




Oligoadenylate


L: (29/121)

Panic




Synthetase 1


2.7/1.52E−02

Disorder




M-SZ
MDD




L: (8/56)




3.5/4.35E−02




OXA1L

All
Autism

33




OXA1L,

L: (62/288)
BP




Mitochondrial

1.5/1.14E−02
Suicide




Inner

Gender
SZ




Membrane

Male




Protein

L: (59/255)




1.5/2.04E−02




Gender/Dx





F: PSYCHOSIS






C: (6/17)






4.2/3.02E−02





M-MDD




L: (4/32)




3.5/4.37E−02




M-SZ




L: (8/56)




4.7/2.19E−02




CCL4

All
Alcohol

31




C-C

L: (62/286)
Depression




Motif

1.4/3.22E−02
MDD




Chemokine

Gender
SZ




Ligand 4

Male




L: (59/253)




1.6/1.01E−02




Gender/Dx




M-BP




L: (24/91)




2.2/5.34E−03




M-MDD




L: (4/32)




54.5/2.12E−02




DTNBP1

All
Autism

31




Dystrobrevin

L: (62/286)
Intellect




Binding

1.4/2.26E−02
Methamphetamine




Protein 1

Gender
Psychosis




Male
SZ




L: (59/253)
BP




1.5/7.76E−03
MDD




Gender/Dx
Suicide




M-BP




L: (24/91)




1.9/2.78E−03




M-SZA




C: (39/108)




1.5/1.55E−02




SPON2

All
Autism

31




Spondin 2

L: (62/286)
BP




1.6/8.58E−03
Panic




Gender
Disorder




Male
SZ




L: (59/253)




1.7/4.62E−03




Gender/Dx





M-BP






L: (24/91)






4.4/9.90E−04





M-MDD




(4/32)




14.6/1.88E−02




ANK2

Gender/Dx
Autism
Antidepressants
30



Ankyrin 2

M-MDD

Alcohol





L: (4/32)

BP





76.8/8.14E−03

Longevity





ASD





Chronic





Fatigue





Syndrome





MDD





Suicide





SZ




LAIR2

Gender/Dx
Suicide
Antidepressants
30




Leukocyte

M-BP




Associated

L: (24/91)




Immunoglobulin

2.6/7.13E−03




Like

M-MDD




Receptor 2

L: (4/32)




5.5/4.21E−02




SUMO1

Gender/Dx
Aging

30




Small


M-SZ

BP




Ubiquitin


C: (13/93)

SZ




Like


2.98/2.98 − 02





Modifier 1

L: (8/56)




3.26/3.07 − 02




MKL2

All
Autism

29



MKL1/
C: (113/474)
SZ



Myocardin
1.2/7.86E−03



Like 2
L: (62/286)




1.4/3.45E−03




Gender




Male




C: (106/421)




1.2/1.84E−02




Male




L: (59/253)




1.3/7.90E−03




Gender/Dx




M-BP




C: (41/140)




1.3/3.59E−03




M-BP




L: (24/91)




1.6/6.70E−04




M-MDD




L: (4/32)




3.3/1.73E−02




DMGDH

Gender
Delusion

27



Dimethylglycine
Male
Suicide



Dehydrogenase
L: (59/255)




1.3/4.80E−02




Gender/Dx




M-BP




L: (24/91)




1.6/2.89E−02




M-PSYCHOSIS




C: (52/201)




1.3/1.69E−02




M-SZ




C: (13/93)




1.4/2.67E−02




M-SZ




L: (8/56)




2.8/1.52E−02




N4BP2L2

Gender/Dx
BP

27



NEDD4
M-BP
MDD



Binding
L: (24/91)
SZ



Protein2
1.5/1.13E−02
Suicide



Like 2




PCDHB6

Gender/Dx
Suicide

27



Protocadherin
M-PSYCHOSIS



Beta 6
L: (29/121)




1.5/1.51E−02




M-SZ




L: (8/56)




1.8/1.98E−02




SNCA

Gender/Dx
Alcohol
Omega-3
27




Synuclein

M-SZA
Aggression
fatty




Alpha

C: (39/108)
Alzheimer's
acids,




1.6/3.62E−02
BP
Mood





MDD
Stabilizers





Methamphetamine





Parkinson





Suicide





SZ




GJB2

Gender/Dx
MDD
Antipsychotics
26



Gap
M-SZ



Junction
L: (8/56)



Protein
2.2/2.37E−02



Beta 2




HIF1A

Most
Alcohol
EZN
26



Hypoxia
reproducibly
Autism
2968



Inducible
predictive
BP



Factor 1
for trait
MDD



Alpha
all future
Longevity



Subunit
All
Pain




C: (113/474)
SZ




1.2/3.86E−02




L: (62/288)




1.5/1.28E−02




Gender




Male




C: (106/421)




1.2/1.42E−02




L: (59/255)




1.5/5.53E−03




Gender/Dx




M-BP




L: (24/91)




1.5/3.84E−02




M-PSYCHOSIS




C: (52/201)




1.3/1.91E−02




M-PSYCHOSIS




L: (29/121)




1.7/2.57E−02




M-SZ




C: (13/93)




1.7/3.44E−02




M-SZ




L: (8/56)




3.3/1.75E−02




PSD3

Gender
Autism
Antipsychotics
26




Pleckstrin


Female

Alcohol




And Sec7


C: (7/53)

ASD




Domain


2.2/4.42E−02

BP




Containing 3


SZ





MDD





Methamphetamine





Chronic





Fatigue





Syndrome





Suicide




STX11

Gender/Dx

Antidepressants,
25.5




Syntax

M-MDD

Mood




in 11

C: (9/57)

Stabilizers




3.1/2.45E−02




APOL3

Gender/Dx
ADHD

25




Apolipoprotein

F-SZA
Suicide




L3

C: (3/12)
SZ




8.1/4.33E−02




M-MDD




L: (4/32)




9.6/2.59E−02




ELMO2

All
Suicide

25




Engulfment

L: (62/288)




And

1.44/3.31E−02




Cell

Gender




Motility 2

Male




L: (59/255)




1.39/4.91E−02




Gender/Dx





M-MDD






C: (9/57)






3.86/8.54E−03





L: (4/32)




6.07/3.64E−02




F-PSYCHOSIS




L: (6/17)




2.36/4.48E−02




UBE2E2

Gender/Dx
Psychosis

25




Ubiquitin


M-PSYCHOSIS





Conjugating


C: (52/201)





Enzyme E2 E2


1.4/5.21E−03






M-SZA






C: (39/108)






1.6/2.83E−03





FKBP5

Gender/Dx
Alcohol
Mood
24




FK506

M-SZ
Anxiety
Stabilizers




Binding

L: (8/56)
BP
Psychotherapy




Protein 5

3.4/3.84E−02
Depression





MDD





Pain





Psychosis





Unipolar





Depression





Suicide




HLA-

All
Alcohol
apolizumab
24




DRB1

L: (62/286)
BP




Major

1.7/5.17E−03
Longevity




Histocompatibility

Gender
Alzheimer's




Complex,

Male
Disease




Class II,

L: (59/253)
SZ




DR Beta 1

1.6/1.21E−02
Pain




Gender/Dx
Panic




F-PSYCHOSIS
Disorder




C: (6/17)




3.1/2.62E−02




F-SZA




C: (3/12)




39.3/4.08E−02





M-SZA






C: (39/108)






1.4/2.18E−02






M-SZA






L: (21/65)






1.7/4.72E−02





LCP2

Gender/Dx
MDD

24




Lymphocyte

M-SZ




Cytosolic

C: (13/93)




Protein 2

1.46/4.14E−02




L: (8/56)




2.17/2.38E−02




LRRC59

All
SZ
Valproate
24




Leucine

L: (62/286)




Rich

1.35/4.50E−02




Repeat

Gender




Containing 59

Male




L: (59/253)




1.38/3.67E−02




Gender/Dx





F-SZA






C: (3/12)






56.1/4.25E−02





FOXK2

Gender/Dx
Alcohol

23



Forkhead
M-SZ
Autism



Box K2
L: (8/56)
Delusions




2.2/1.09E−02
Hallucinations





Suicide




HLA-B

All


23




Major

L: (62/288)




Histocompatibility

1.65/4.74E−03




Complex,

Gender




Class I, B

Male




L: (59/255)




1.66/4.25E−03




Gender/Dx




M-MDD




L: (4/32)




5.35/1.09E−02




M-BP




L: (24/91)




1.76/1.10E−02




NKTR

All
Alcohol

23



Natural

C: (113/474)

BP



Killer

1.4/9.52E−05**

MDD



Cell
Gender
Suicide



Triggering
Male
SZ



Receptor

C: (106/421)






1.4/1.43E−04**





Gender/Dx





M-BP






C: (41/140)






1.6/5.56E−05**





M-PSYCHOSIS




C: (52/201)




1.3/1.06E−02




M-SZ




C: (13/93)




1.7/5.58E−03




M-SZ




L: (8/56)




1.7/4.98E−02




PLEKHA5

Gender
BP

23



Pleckstrin
Male
Suicide



Homology
C: (106/421)



Domain
1.2/4.50E−02



Containing A5
Gender/Dx




M-BP




L: (24/91)




1.6/1.15E−02




Clorf123

All
Suicide

21




Chromosome 1

L: (62/288)




Open

1.5/1.44E−02




Reading

Gender




Frame 123


Female






L: (3/33)






12.3/3.35E−02





Gender




Male




L: (59/255)




1.3/4.43E−02




F-PSYCHOSIS




C: (6/17)




3.5/2.00E−02




M-MDD




L: (4/32)




3/3.73E−02




UQCC1


BP

21




Ubiquinol-


Suicide




Cytochrome C





Reductase





Complex





Assembly





Factor 1





PCBP2


BP

17.5



Poly(RC)

Suicide



Binding



Protein 2




DCTN5

Gender/Dx
BP

15




Dynactin

F-PSYCHOSIS
Suicide




Subunit 5

C: (6/17)




3.3/3.22E−02





M-SZ






L: (8/56)






6.5/4.80E−3





LOC105378349

Gender/Dx


14




Uncharacterized

M-BP




LOC105378349

C: (41/140)




1.4/2.00E−02




M-MDD




C: (9/57)




2.4/2.68E−02







After Step 4 Testing in independent cohorts for state and trait predictions.



Telomere Length (TL) was chosen as a literature based positive control/comparator. FKBP5 is the gene with the most consistent evidence across all steps in our work, and a de facto positive control based on its extensive prior evidence in the field.




Bold - indicates biomarker decreased in expression, Italic - indicates biomarker increased in expression. DE-differential expression, AP-Absent/Present. NS- Non-stepwise in validation. Bold name genes also nominally significant at Step 3 validation (n = 29). For Step 4 Predictions, C-cross-sectional (using levels from one visit), L-longitudinal (using levels and slopes from multiple visits). In All, by Gender, and personalized by Gender and Diagnosis (Gender/Dx) M-males, F-Females, MDD-depression, BP-bipolar, SZ-schizophrenia, SZA-schizoaffective, PSYCHOSIS-schizophrenia and schizoaffective combined, PTSD-post-traumatic stress disorder.




**significant after Bonferroni correction for number of biomarkers tested for predictive ability. Underlined-best predictor category as depicted in FIGS. 2A-2C



Blood gene expression experiments






RNA extraction. Whole blood (2.5 ml) was collected into each PaxGene tube by routine venipuncture. PaxGene tubes contain proprietary reagents for the stabilization of RNA. RNA was extracted and processed as described in Le-Niculeswu H. et al. Discovery and validation of blood biomarkers for suicidality. Mol Psychiatry 2013; 18(12): 1249-1264; Niculescu A B. et al. Understanding and predicting suicidality using a combined genomic and clinical risk assessment approach. Mol Psychiatry 2015; 20(11): 1266-1285; and Levey D F. et al. Towards understanding and predicting suicidality in women: biomarkers and clinical risk assessment. Molecular psychiatry 2016; 21(6): 768-785.


Microarrays. Microarray work was carried out using previously described methodology (see, Le-Niculescu H. et al., Mol Psychiatry 2013; 18(12): 1249-1264; Niculescu A B, et al., Mol Psychiatry 2015; 20(11): 1266-1285; Levey D F, et al. Molecular psychiatry 2016; 21(6): 768-785; and Niculescu A B et al. Precision medicine for suicidality: from universality to subtypes and personalization. Mol Psychiatry 2017:22(9): 1250-1273).


Telomere Length


Blood was collected in EDTA blood tubes and kept at −80° C. until time of extraction. DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen) and DNA concentration was assessed using Qubit (ThermoFisher Scientific) as per the manufacturer's protocols. Telomere length (TL) was determined using a relative quantitative real-time PCR (qRT-PCR) method (Mamdani et al. Variable telomere length across post-mortem human brain regions and specific reduction in the hippocampus of major depressive disorder. Transl Psychiatry 2015: 5: e636). Two assays were carried out, one for the Human albumin gene (ALB), which is a single copy gene, and the other assay with primers specific to the repetitive telomeric (TEL) sequence. The primers used to amplify the single copy gene are: ALBF (CTO TCA TCT CTT GTG GGC TOT) (SEQ ID NO:1) and ALBR (GGC ATG ACA GO TIT GCA ATA) (SEQ ID NO:2) and those for the telomeric sequence are: TEL1b (CGG TTT OTT TGG GTT TGG GTT TGG GTT TGG GT TGG GTT) (SEQ ID NO:3) and TEL2b (GGC TTG CCT TAC CCT TAC CCT TAC CCT TAC CCT TAC CCT) (SEQ ID NO:4). A ratio of the relative quantities (TEL/ALB) was used as a quantitative measure of TL Each sample was run in triplicate and an average of the cycle thresholds was used to calculate telomere/single copy gene (T/S) ratios.


Biomarkers


Step 1: Discovery


The participant's score from a visual-analog scale Life Stress, assessed at the time of blood collection (FIG. 1B), was used. Gene expression differences were analyzed between visits with Low Stress (defined as a score of 0-33) and visits with High Stress (defined as a score of 67-100), using a powerful within-participant design, then an across-participants summation (FIGS. 1A-1G).


The data was analyzed in two ways: an Absent-Present (AP) approach, and a differential expression (DE) approach. The AP approach may capture turning on and off of genes, and the DE approach may capture gradual changes in expression. Analyses were performed as described in Niculescu A B, et al., Mol Psychiatry 2015; 20(11): 1266-1285; Levey D F, et al., Molecular psychiatry 2016; 21(6): 768-785; and Niculescu A B et al. Mol Psychiatry 2017; 22(9): 1250-1273.


Gene Symbol for the probesets were identified using NetAffyx (Affymetrix) for Affymetrix HG-U133 Plus 2.0 GeneChips, followed by GeneCards to confirm the primary gene symbol. In addition, for those probesets that were not assigned a gene symbol by NetAffyx, was used GeneAnnot (https://genecards.weizmann.ac.il/geneannot/index.slml) to obtain gene symbol for these uncharacterized probesets, followed by GeneCard. Genes were then scored using a manually curated CPO databases as described below (FIG. 1E).


Step 2: Prioritization Using Convergent Functional Genomics (CFG)


Databases. Manually curated databases were established of the human gene expression/protein expression studies (postmortem brain, peripheral tissue/fluids: CSF, blood and cell cultures), human genetic studies (association, copy number variations and linkage), and animal model gene expression and genetic studies, published to date on psychiatric disorders. Only findings deemed significant in the primary publication, by the study authors, using their particular experimental design and thresholds, are included in the databases. The databases include only primary literature data and do not include review papers or other secondary data integration analyses to avoid redundancy and circularity. These large and constantly updated databases have been used in the CFG cross validation and prioritization platform (FIG. 1E). For this Example, data from 354 papers on stress were present in the databases at the time of the CPG analyses (February 2018) (human genetic studies-93, human brain studies-10, human peripheral tissue/fluids-96, non-human genetic studies-17, non-human brain studies-123, non-human peripheral tissue/fluids-17). Analyses were performed as previously described in Niculescu A B, et al., Mol Psychiatry 2015; 20(11): 1266-1285; Levey D F, et al., Molecular psychiatry 2016; 21(6):768-785.


Step 3: Validation Analyses


Which of the top candidate genes (total CFG score of 6 or above), were stepwise changed in expression from the Low Stress and High Stress group to the Validation Clinically Severe Stress group, were examined. A CFG score of 6 or above reflects an empirical cutoff of 33.3% of the maximum possible total CFG score of 18, which permits the inclusion of potentially novel genes with maximal internal score of 6 but no external evidence score. Participants with Low Stress, as well as participants with High Stress from the discovery cohort, who did not have severe clinical stress (PCL-C <50) were used, along with the independent Validation cohort (n=48).


The AP derived and DE derived lists of genes were combined, and the gene expression data corresponding to them was used for the validation analysis. The cohorts (Validation Clinically Severe Stress, alongside the Low Stress and High Stress groups in the Discovery cohort) were assembled out of Affymetrix.cel data that was RMA normalized by gender and diagnosis. The log transformed expression data was transferred to an Excel sheet, and non-log transformed the data by taking 2 to the power of the transformed expression value. The values were then Z-scored by gender and diagnosis. The Excel sheets were imported with the Z-scored by gender and diagnosis expression data into Partek, and statistical analyses were performed using a one-way ANOVA for the stepwise changed probesets, and stringent Bonferroni corrections was also attempted for all the probesets tested (stepwise and non-stepwise) (FIG. 1F). An R script that automatically analyzes the data directly from the Excel sheet was used to confirm our calculations.


Choice of Biomarkers to be Carried Forward


Top biomarkers from each step were then carried into testing. The list of candidate biomarkers included the top biomarkers from discovery step (≥90% of raw scores, n=39), the top biomarkers from the prioritization step (CFG score ≥13, n=21), and the nominally significant biomarkers after the validation step (n=232), for a total of n=285 probesets (n=269 genes). The biomarkers and trait future hospitalizations with stress in the first year of follow-up, and in all future years of follow-up, were predicted from the list in independent cohorts state (High Life Stress VAS ≥67).


Diagnostics


In Step 4, testing, the test cohort for predicting High Stress (state), and the test cohort for predicting future hospitalizations with stress (trait), were assembled out of data that was RMA normalized by gender and diagnosis. The cohort was completely independent from the discovery and validation cohorts, there was no participant overlap with them. Phenomic (clinical) and gene expression markers used for predictions were Z scored by gender and diagnosis, to be able to combine different markers into panels and to avoid potential artefacts due to different ranges of expression in different gender and diagnoses. Markers were combined by simple summation of the increased risk markers minus the decreased risk markers. Predictions were performed using R-studio. For cross-sectional analyses, marker expression levels, z-scored by gender and diagnosis, were used. For longitudinal analyses, four measures were combined: marker expression levels, slope (defined as ratio of levels at current testing visit vs. previous visit, divided by time between visits), maximum levels (at any of the current or past visits), and maximum slope (between any adjacent current or past visits). For decreased markers, the minimum rather than the maximum was used for level calculations. All four measures were Z-scored, then combined in an additive fashion into a single measure. The longitudinal analysis was carried out in a sub-cohort of the testing cohort consisting of participants that had at least two test visits.


Predicting State High Stress. Receiver-operating characteristic (ROC) analyses between marker levels and stress state were performed by assigning participants visits with a Life Stress VAS score of ≥67 into the High Stress category. The pROC package of R (Xavier Robin et al. BMC Bioinformatics 2011) was used (Table 2, FIGS. 2A-2C). Additionally, a one-tailed t-test was performed between High Stress group vs. the rest, and Pearson R (one-tail) was calculated between Life Stress VAS scores and marker levels (data not shown).


Predicting Trait Future Hospitalization with Stress as a Symptom/Reason for Admission. Analyses were conducted for predicting future psychiatric hospitalizations with stress as a symptom/reason for admission in the first year following each testing visit, in participants that had at least one year of follow-up in the Veteran's Administration (VA) system. ROC analyses between genomic and phenomic markers measures (cross-sectional, longitudinal) at a specific testing visit and future hospitalization were performed as described above, based on assigning if participants had been admitted to the hospital due to stress or not. Additionally, a one tailed t-test with unequal variance was performed between groups of participant visits with and without future hospitalization with stress. Pearson R (one-tail) correlation was performed between hospitalization frequency (number of hospitalizations with stress divided by duration of follow-up) and marker levels. A Cox regression was performed using the time in days from the testing visit date to first hospitalization date in the case of patients who had been hospitalized, or 365 days for those who did not. The hazard ratio was calculated such that a value greater than 1 always indicates increased risk for hospitalization, regardless if the biomarker is increased or decreased in expression.


Pearson R and Cox regression analyses were also conducted for all future hospitalizations with stress, including those occurring beyond one year of follow-up, in the years following testing (on average 5.76 years per participant, range 0.07 to 11.27 years; see Supplementary Information 2), as these calculations, unlike the ROC and t-test, account for the actual length of follow-up, which varied from participant to participant. The ROC and t-test might in fact, if used, under-represent the power of the markers to predict, as the more severe psychiatric patients are more likely to move geographically and/or be lost to follow-up. The Cox regression was performed using the time in days from visit date to first hospitalization date in the case of patients who had hospitalizations with stress, or from visit date to last note date in the electronic medical records for those who did not.


Biological Understanding


Pathway Analyses


IPA (Ingenuity Pathway Analysis, version 24390178, Qiagen), David Functional Annotation Bioinformatics Microarray Analysis (National Institute of Allergy and Infectious Diseases) version 6.7 (August 2016), and Kyoto Encyclopedia of Genes and Genomes (KEGG) (through DAVID) were used to analyze the biological roles, including top canonical pathways and diseases (Table 3), of the candidate genes resulting from this work. The pathway analyses were run for the combined 220 unique genes (232 probesets) that were nominally significant after validation. For Network analysis of the 220 unique genes, STRING Interaction Network (https://string-db.org) was performed by in putting the genes into the search window and performed Multiple Proteins Homo sapiens analysis.


Tables 3A & 3B: Biological Pathway Analyses of validated biomarkers (n=232 probesets 220 genes). Table 3A. Pathways. Table 3B. Diseases.






















TABLE 3A
















Top














Canonical



#
Term
Count
%
P-Value
Term
Count
%
P-Value
Pathways
P-Value
Overlap




























220
1
Antigen
8
3.7
9.30E−06
Antigen
8
3.7
9.80E−05
Antigen
1.71E−06
15.8%


Stress

processing



processing



Presentation

6/38


Genes

and



and



Pathway


(n = 220,

presentation



presentation


232

of exogenous


probesets)

peptide




antigen via




MHC class I,




TAP-dependent



2
proteasome-
12
5.6
3.10E−05
Viral
7
3.3
1.50E−04
Natural
2.67E−05
6.6%




mediated



myocarditis



Killer

8/122




ubiquitin-







Cell




dependent







Signaling




protein




catabolic




process



3
negative
6
2.8
7.10E−05
Lysosome
9
4.2
3.60E−04
Autoimmune
1.02E−04
10.4%




regulation







Thyroid

5/48




of T cell







Disease




proliferation







Signaling



4
protein
6
2.8
2.30E−04
Epstein-
11
5.1
1.20E−03
Graft-
1.02E−04
10.4%




K48-



Barr



versus-

5/48




linked



virus



Host




ubiquitination



infection



Disease












Signaling



5
Antigen
5
2.3
4.10E−04
Graft-
5
2.3
1.70E−03
Phagosome
1.02E−04
5.4%




processing



versus-



Maturation

8/148




and



host




presentation



disease




of peptide




antigen




via MHC




class I


















TABLE 3B









Ingenuity Pathways Disease









Diseases











David
and
#
















#
Term
Count
%
P-Value
Disorders
P-Value
Molecules



















220
1
HIV
10
4.7
1.10E−03
Cancer
9.75E−03-
202


Stress






2.15E−07


Genes
2
Drug-
4
1.9
2.70E−03
Organismal
9.75E−03-
206


(n = 220

Induced



Injury
2.15E−07


Genes,

Liver



and


232

Injury



Abnormalities


probesets)
3
HIV
12
5.6
3.00E−03
Infectious
8.66E−03-
53




Infections|[X]



Diseases
2.33E−06




Human




immunodeficiency virus




disease



4
Malaria,
3
1.4
3.00E−03
Inflammatory
9.75E−03-
61




Cerebral|Malaria,



Response
3.06E−05




Falciparum



5
adrenal
3
1.4
4.00E−03
Metabolic
9.75E−03-
50




hyperplasia,



Disease
6.01E−05




congenital





CFG beyond Stress: evidence for involvement in other psychiatric and related disorders.






A CRG approach was also used to examine evidence from other psychiatric and related disorders, for the list of top predictive biomarkers after Step 4 testing (n=41) (Table 4).


Tables 4A &4B. Methods for Personalized Assessment of High Stress State and Prediction of Risk for Future Clinical Worsening of Stress, such as Hospitalization Related to Stress.


Personalized by Gender and Psychiatric Diagnosis.

M—males, F—females, BP—bipolar, MDD—Major Depressive Disorder, PTSD—Post-Traumatic Stress Disorder, PSYCHOSIS—schizophrenia or schizoaffective disorder, SZ—schizophrenia, SZA—schizoaffective disorder. D—Decreased in expression; I—increased in expression in high stress states.









TABLE 4A







Assessment for High Stress State











Direction of




Change in High


Diagnosis
Best Individual Biomarker
Stress





All
LAIR2
D


All
NUB1
I


All-Females
PDZD11
D


All-Females
FOXK2
I


All-Males
PCDHB6
I


F-BP
CIRBP
D


F-BP
PCBP2
I


F-PSYCHOSIS
DTNBP1
D


F-PSYCHOSIS
B2M
I


F-PTSD
CCL4
D


F-PTSD
RFFL
I


F-SZA
DTNBP1
D


F-SZA
B2M
I


M-BP
UQCC1
D


M-BP
CLU
I


M-MDD
TSC22D3
D


M-MDD
GJB2
I


M-PSYCHOSIS
SNCA
D


M-PSYCHOSIS
DDX6
I


M-SZ
SNCA
D


M-SZ
DDX6
I
















TABLE 4B







Prediction of Risk for Future Clinical Worsening


of Stress, such as Hospitalizations Due to Stress













Direction of





Change in



Diagnosis
Best Individual Biomarker
High Stress







All
MAD1L1
D



All
1566695_at
I



All-Females
Clorf123
D



All-Females
SESN3
I



All-Males
MAD1L1
D



All-Males
HIF1A
I



F-PSYCHOSIS
OXA1L
D



F-PSYCHOSIS
SESN3
I



F-SZA
LRRC59
D



F-SZA
DCUN1D2
I



M-BP
SPON2
D



M-BP
B2M
I



M-MDD
CCL4
D



M-MDD
ANK2
I



M-PSYCHOSIS
OAS1
D



M-PSYCHOSIS
CAMTA1
I



M-SZ
DCTN5
D



M-SZ
RBFOX1
I



M-SZA
HLADRB1
D



M-SZA
GNPTAB
I










Therapeutics


Pharmacogenomics. Which of the individual top predictive biomarkers (n=41) were known to be modulated by existing drugs was analyzed using the CPG databases, and using Ingenuity Drugs analyses (Table 5).









TABLE 5







Pharmacogenomics. Top predictive biomarkers in datasets that are targets of existing drugs and are modulated


by them in opposite direction. Bold-decreased in expression; Italic-increased in expression



















Priori-










Discovery
tization




(Change)
Total


Gene

Method/
CFG
Validation


Symbol/

Score
Score
Anova


Mood


Gene

For
For
p-value

Anti-
Stabi-
Anti-
Other


Name
Probeset
Stress
Stress
6 pts
Omega-3
depressants
lizers
psychotics
Treatments




















TL


(D)

Not
(I)
(I)
(I)
(I)
(I)



Telomere




Stepwise
Peripheral
C. Elegans
Saliva
Peripheral
Peripheral



Length





Blood

Mianserin


Lithium

Blood
Blood



Reference





Mono-

(I)
Leukocytes
Leukocytes



marker





nuclearcytes

Blood

Olanzapine
228


Meditation
229, 230




from






Omega-3



Lithium




literature






fatty









acids




FKBP5

224856_at
(D)
16

1.22E−02/4



(I)

(I)



FK506


DE/4


Nominal



Cerebral

Blood



Binding


53.8%




Cortex


Psychotherapy




Protein 5







(right)










Lithium




FKBP5

224840_at
(D)
14
Not


(I)

(I)



FK506


DE/2

Stepwise


Cerebral

Blood



Binding


41.5%




Cortex


Psychotherapy




Protein 5







(right)










Lithium




RTN4

1556049_at
(I)
13
Not
(D)

(D)


Reticulon 4

DE/4

Stepwise
Lymphocytes

VT




54.4%


(females)


Valproate









Omega-3




OAS1

202869_at
(D)
13
1.15E−01/2


(I)



2′-5′-


DE/4

Stepwise


Blood



Oligoadenylate


56.9%




mono-



Synthetase 1







nuclear









cells










Lithium




SNCA

215811_at
(D)
13
Not
(I)

(I)



Synuclein


AP/2

Stepwise
Lymphocytes

NT2.D1



Alpha


37.5%


(males)

cells








DBPKO-



Lithium









Stressed









mice,









Omega-3









fatty









acids




B2M

232311_at
(I)
11
Not
(D)



4′-iodo-4′-


Beta-2-

DE/6

Stepwise
NAC



deox-


Microglobulin

91.2%


(females)



ydoxorubicin








DBPKO-









Stressed,









mice,









Omega-3









fatty









acids




NUB1

1560108_at
(I)
12

2.34E−02/4




(D)


Negative

DE/4


Nominal




VT


Regulator

61.8%






Clozapine



Of


Ubiquitin


Like


Proteins 1



GJB2

223278_at
(I)
8

2.42E−02/4




(D)


Gap

DE/2


Nominal




VT


Junction

48.5%






Clozapine



Protein


Beta 2



HIF1A

238869_at
(I)
8

1.11E−02/4





EZN


Hypoxia

DE/4


Nominal





2968


Inducible

54.4%


Factor 1


Alpha


Subunit



LRRC59

222231_s_at
(D)
6

3.15E−02/4




(I)



Leucine


DE/4


Nominal




CP



Rich


61.5%






Valproate




Repeat




Containing 59




PSD3

218613_at
(D)
8
Not



(I)



Pleckstrin


AP/6

Stepwise



VT



And Sec7


100%






Clozapine




Domain




Containing 3




STX11

210190_at
(D)
6.5

2.74E−02/4


(I)
(I)



Syntaxin 11


DE/2


Nominal


MNC
Lympho-




49.2%




Anti-

blastoid









depressants

cell









cultures










Lithium










(I)









Lympho-









blastoid









cell









cultures










Valproate




ANK2

202921_s_at
(I)
6

1.09E−02/4


(D)


Ankyrin 2

DE/4


Nominal


C. elegans




52.9%




Mianserin




HLA-

209312_x_at
(D)
6

1.22E−02/4





apolizumab



DRB1


DE/2


Nominal




Major


41.5%



Histocompat-




ibility




Complex,




Class II,




DR Beta 1




LAIR2

207509_s_at
(D)
6
Not

(I)



Leukocyte


DE/6

Stepwise

Blood



Associated


98.5%




Anti-




Immunoglobulin







depressants




Like




Receptor 2










New drug discovery/repurposing. Drugs and natural compounds were analyzed to determine an opposite match for the gene expression profiles of panels of the top predictive biomarkers, using the Connectivity Map (portals.broadinstitute.org, Broad Institute, MIT) (Table 6). 140 out of the nominally validated 232 probesets from Step 3 were present in the HOU-133A array used for the Connectivity Map. Out of these, gene expression signatures of the probesets that were predictive in Step 4 (nominally significant) were compiled for all participants, as well as separately for males, for females, and personalized by gender and diagnosis.


Tables 6A-6E. New Methods of Use for Therapeutics. Discovery of new method of use for drugs/repurposing. Connectivity Map (CMAP) analysis. Query for signature is done using exact Affymetrix probesets and direction of change. Drugs that have opposite gene expression profile effects to our high stress biomarkers signatures. A score of −1 indicates the perfect match, i.e. the best potential therapeutic for decreasing stress. NIH LINCS analysis using the L1000CDS2 (LINCS L1000 Characteristic Direction Signature Search Engine) tool. Query for signature is done using gene symbols and direction of change. Shown are compounds mimicking the opposite direction of change in high stress. A higher score indicates a better match.


Drug Repurposing Using Connectivity Map (CMAP from Broad Institute/MIT)









TABLE 6A





Drugs Identified Using Gene Expression Panels of Validated Biomarkers. (22


increased and 118 decreased were present in HG-U133A array used by CMAP).















Panel of 22 genes increased in expression:


ANK2, CACNA1H, CADM4, CBX1, CRHR1, CYP11B1, CYP19A1,


CYP2E1, FOXK2, GRIA1, IGKC, LDB3, LINC-PINT, MCM3AP,


N4BP2L2, NACC1, NCDN, PDHX, PEG3, SFRP1, SPN, TFPI


Panel of 118 genes decreased in expression:


ACTR1A, ADA2, AK2(4), APLP2, APOL3, ASCC1, ATG12, BUB3,


Clorf123, CD1D, CIAPIN1, CIRBP, CLTA, CSNK2A1, CTSZ,


CYBB, DAZAP2, DBNDD2, DMAC2, DNAJB1, DYNLRB1, EFCAB14,


EFHD2, EIF6, ELF4, ELMO2, ENTPD1(2), ESD, FGR, FLI1,


FUCA1, GTPBP2, H2AFY, HDAC3, HLA-B, HLA-DMA, HLA-DRB1,


HLA-F, HLA-G, HMOX1, IDH3B(2), IPO4, ISG20, KIR3DL2,


KPNA6, LAIR1, LAPTM5, LEPROTL1, LILRB1, LIPA, LRRC59,


MAD1L1, MAN2B2, MARCKSL1, MDH2(2), MECP2, MED24, MFNG,


MIA3, MPV17, MR1, MRPS18B, NAAA, NAGA, NAGK, NONO,


OCRL, OPA3, OXA1L, PAFAH2, PDE6D, PIK3R5, PLAGL2,


PLPBP, POLR3C, PPP1R7, PSMA5, PSMC4, PSME1, PSME3,


RAC1, RAC2(2), RNF216, RNF5, RPP40, RUBCN, SASH3,


SCAMP1, SEC13, SFXN3, SMUG1, SNHG17, SPG7, STX11,


TCTN3, TIMP1, TM9SF4, TMBIM6, TMEM80, TNFAIP1, TOR1B,


TOR4A, TPP1, TRAK1, TSC22D3, UBE2A, UQCC1, USP39,


VAMP3, XPNPEP1, ZFYVE21













rank
CMAP name
score
Description





1
cefotiam
−1
Parenteral second-generation cephalosporin





antibiotic; broad-spectrum activity against





Gram-positive and Gram-negative bacteria; as





a beta-lactam, its bactericidal activity results





from the inhibition of cell wall synthesis via





affinity for penicillin-binding proteins


2
proguanil
−0.991
In combination with Atovaquone as





antimalarial agent;


3
hydroxyachillin
−0.96
A sesquiterpene lactone, and the main





component isolated from aerial parts of





Tanacetum microphyllum DC, the last is used





in folk medicine as an anti-inflammatory and





anti-ulcer agent; inhibition of protein kinase C





may be one of the mechanisms


4
Prestwick-682
−0.95
AKA Clofilium tosylate; K+ channel blocker;





cardiac depressant; anti-arrhythmic; increases





atrial and ventricular effective refractory





period without changing conduction time and,





despite no apparent change in premature





ventricular complex frequency, it can abolish





the ability to induce ventricular tachycardia by





programmed stimulation and is also well





tolerated


5
levopropoxyphene
−0.949
Stereoisomer of propoxyphene; was sold as an





antitussive, but it was removed from the





market in the 70s because data showed that the





drug can cause serious toxicity to the heart,





even when used at therapeutic doses; was





developed by Lilly and FDA approved on





Mar. 21st, 1962


6
isoflupredone
−0.943
Isoflupredone, also known as deltafludrocortisone





and 9α-fluoroprednisolone, is a synthetic





glucocorticoid corticosteroid which was never





marketed. Its acetate ester, isoflupredone





acetate, is used in veterinary medicine.


7
ozagrel
−0.941
Antiplatelet agent working as a thromboxane





A2 synthesis inhibitor; has been used in trials





studying the treatment of Dry Eye Syndromes.


8
streptozocin
−0.938
Antineoplastic, aklylating agent; inhibits DNA





synthesis by alkylation and cross-linking the





strands of DNA, and by possible protein





modification; cell cycle nonspecific; black box





warning for dose-related and cumulative renal





toxicity and secondary malignancy


9
cyclopenthiazide
−0.934
Thiazide diuretic used in the treatment of heart





failure and hypertension; positive allosteric





modulator at AMPA-A receptors.


10
metformin
−0.93
Biguanide antihyperglycemic agent; decreases





hepatic glucose production, decreases





intestinal absorption of glucose and improves





insulin sensitivity (increases peripheral glucose





uptake and utilization); black box warning for





lactic acidosis; contraindicated in severe renal





dysfunction (eGFR <30 mL/minute/1.73 m2)





and acute or chronic metabolic acidosis with or





without coma (including diabetic





ketoacidosis). Wang et al. 2017 has found that





metformin down-regulates the AMPK





pathway, which is increased after single





prolonged stress in rat models. Fan et al. 2019





has reported that metform increases miniature





inhibitory postsynaptic currents via





upregulating the membrane insertion of





GABAA receptors, providing anxiolytic effects





in rat models. Erensoy et al. 2019 has





concluded that metformin decreases anxiety





(measured using the Beck Anxiety Inventory)





in women diagnosed with polycystic ovary





syndrome.


11
corticosterone
−0.925
Hormone secreted by the adrenal cortex; one of





the glucocorticoids; important mainly as an





intermediate in the steroidogenic pathway from





pregnenolone to aldosterone; precursor





molecule to the mineralocorticoid aldosterone,





one of the major homeostatic modulators of





sodium and potassium levels in vivo; With





emotional memories, corticosterone is largely





associated with fear memory recognition. Jia et





al. 2015 has reported that prophylactic and





therapeutic corticosterone therapy diminished





hyperarousal and exaggerated innate fear





response in rat models of PTSD.


12
calcium folinate
−0.924
Also known as leucovorin. Calcium folinate





actively competes with methotrexate for





transport sites, displaces methotrexate from





intracellular binding sites, and restores active





folate stores required for DNA/RNA synthesis.





It is used as a rescue agent for methotrexate





therapy.


13
diphenhydramine
−0.921
An antihistamine that also has anticholinergic





and sedative effects.


14
dapsone
−0.915
Competitive antagonist of para-aminobenzoic





acid (PABA) and prevents normal bacterial





utilization of PABA for the synthesis of folic





acid.


15
spiramycin
−0.913
A macrolide antibiotic.


16
asiaticoside
−0.906
A constituent of Centella asiatica. Commonly





referred to as Gotu Kola. It is a member of the





parsley family. It is commonly utilized for





fatigue, anxiety, depression, psychiatric





disorders, Alzheimer's disease, and improving





memory. Bradwejn el al. 2000 has concluded





that asiaticoside has anxiolytic activity in





humans due to reduced acoustic startle





response.
















TABLE 6B





Drugs Identified Using Gene Expression Panels of Predictive Biomarkers in All.


(5 increased and 52 decreased were present in HG-U133A array used by CMAP).















Panel of 5 genes increased in expression: CYP19A1, CYP2E1,


GRIA1, IGKC, SFRP1


Panel of 52 genes decreased in expression: ACTR1A, AK2(2),


APOL3, ATG12, BUB3, Clorf123, CIRBP, CLTA, CSNK2A1, DAZAP2,


DMAC2, EIF6, ELMO2, ESD, HLAB, HLADMA, HLADRB1, HMOX1,


IDH3B(2), LAIR1, LRRC59, MAD1L1, MARCKSL1, MDH2, MED24,


MFNG, MPV17, MR1, MRPS18B, NAGA, NAGK, OXA1L, PAFAH2,


PIK3R5, POLR3C, PPP1R7, PSME1, RAC1, RAC2, RNF216, SASH3,


SCAMP1, SEC13, SMUG1, SNHG17, SPG7, TIMP1, USP39, VAMP3,


ZFYVE21













rank
CMAP name
score
Description





1
ambroxol
−1
Secretolytic agent used in the treatment of respiratory





diseases associated with viscid or excessive mucus; not





marketed in the US; inhibits the NO-dependent





activation of soluble guanylate cyclase; Recently, a





hypothesis suggested that it may have a potential role in





treatment of Paget's disease of bone, Parkinsonism, and





other common diseases of aging-associated diseases





involving dysfunction of autophagy.


2
ozagrel
−0.971
Antiplatelet agent working as a thromboxane A2





synthesis inhibitor; has been used in trials studying the





treatment of Dry Eye Syndromes.


3
cefotiam
−0.959
Parenteral second-generation cephalosporin antibiotic;





broad-spectrum activity against Gram-positive and





Gram-negative bacteria; as a beta-lactam, its bactericidal





activity results from the inhibition of cell wall synthesis





via affinity for penicillin-binding proteins


4
xamoterol
−0.951
Cardiac stimulant; β1-adrenoceptor partial agonist that





has shown to improve systolic and diastolic function in





studies with heart failure patients; has no agonist action





on β2-adrenoceptors; Suspected of damaging fertility or





the unborn child. Schutsky et al. 2011 has reported that





xamoterol impairs the retrieval of memory in rats via





Gi/o-coupled β2 signaling.


5
betulin
−0.93
Abundant, naturally occurring triterpene; commonly





isolated from the bark of birch trees; has a role as a





metabolite, an antiviral agent, an analgesic, an anti-





-inflammatory agent and an antineoplastic agent;





Inhibition of SREBP by betulin decreased the





biosynthesis of cholesterol and fatty acids; In vivo,





betulin ameliorated diet-induced obesity, decreased the





lipid contents in serum and tissues, and increased insulin





sensitivity; Furthermore, betulin reduced the size and





improved the stability of atherosclerotic plaques.





Puniani et al. 2014 has concluded that betulinic acid is





the active principle in Souroubea compounds and has





anxiolytic effects as shown by an increased elevated





plus maze with rat models. Delcellier 2015 has reported





that a botanical blend extract of compounds containing





betulinic acid may be useful in PTSD as it disrupted fear





memory reconsolidation with no memory impairment in





rat models. There is currently a patent for a





pharmaceutical preparation containing betulinic acid fo





use of preventing or treating anxiety (Durst el al. 2002).


6
isometheptene
−0.927
Sympathomimetic amine sometimes used in the





treatment of migraines and tension headaches due to its





vasoconstricting properties; along with paracetamol and





dichloralphenazone, it is one of the constituents of





Amidrine; FDA notified manufacturers and labelers on





Oct. 12, 2017, to stop distributing their





isometheptene mucate-containing drug products





(containing either isometheptene mucate,





dichloralphenazone, and acetaminophen or





isometheptene mucate, caffeine, and acetaminophen)


7
primidone
−0.925
Barbiturate, anticonvulsant; decreases neuron





excitability, raises seizure threshold similar to





phenobarbital; active metabolite PEMA may enhance





activity of phenobarbital; increased risk of suicidal





thoughts/behavior; use with caution in patients with a





history of drug abuse - potential for drug dependency





exists. Anticonvulsants have been suggested as potential





treatments for PTSD due to the similarities between





kindling in seizure disorders and behavioral sensitization





in PTSD (Friedman 1994; Post et al. 1999).


8
tocainide
−0.919
Class Ib antiarrhythmic agent; no longer sold in the





United States; produces dose dependent decreases in





sodium and potassium conductance, thereby decreasing





the excitability of myocardial cells


9
diloxanide
−0.919
Anti-protozoal drug used in the treatment of Entamoeba





histolytica and some other protozoal infections; although





it is not currently approved for use in the United States,





it was approved by a CDC study in the treatment of





4,371 cases of Entamoeba histolytica from 1977 to





1990; during pregnancy it is recommended that it be





taken after the first trimester; works only in the digestive





tract


10
alprostadil
−0.913
Causes vasodilation by means of direct effect on





vascular and ductus arteriosus smooth muscle;





commonly used for erectile dysfunction; BBW for apnea





in neonates with congenital heart defects;





phosphodiesterase type 5 inhibitor
















TABLE 6C





Drugs Identified Using Gene Expression Panels of Predictive Biomarkers in Males.


(5 increased and 48 decreased were present in HG-U133A array used by CMAP).

















Panel of 5 genes increased in expression: CYP19A1,



CYP2E1, IGKC, MCM3AP, SFRP1



Panel of 48 genes decreased in expression:



ACTR1A, AK2(2), APOL3, ATG12, Clorf23, CIRBP,



CLTA, CSNK2A1, DAZAP2, DMAC2, EIF6, ELMO2, FLI1,



HLAB, HLADMA, HLADRB1, HMOX1, IDH3B(2), LA1R1,



LRRC59, MAD1L1, MARCKSL1, MFNG, MR1, MRPS18B,



NAGA, NAGK, OXA1L, PAFAH2, PIK3R5, POLR3C,



PPP1R7, PSME1, RAC1, RAC2, RNF216, SASH3,



SEC13, SFXN3, SNHG17, SPG7, TIMP1, USP39,



VAMP3, XPNPEP1, ZFYVE21














rank
CMAP name
score
Description





1
ozagrel
−1
Antiplatelet agent working as a thromboxane A2





synthesis inhibitor; has been used in trials studying the





treatment of Dry Eye Syndromes.


2
flucloxacillin
−0.981
Narrow-spectrum beta-lactam antibiotic of the





penicillin class; not currently available in the US; very





similar to dicloxacillin - they are considered





interchangeable. Lurie et al. 2015 has reported that





recurrent exposures to penicllins is associated with an





increased risk for anxiety.


3
ambroxol
−0.97
Secretolytic agent used in the treatment of respiratory





diseases associated with viscid or excessive mucus; not





marketed in the US; inhibits the NO-dependent





activation of soluble guanylate cyclase; Recently, a





hypothesis suggested that it may have a potential role





in treatment of Paget's disease of bone, Parkinsonism,





and other common diseases of aging-associated





diseases involving dysfunction of autophagy.


4
dapsone
−0.958
Competitive antagonist of para-aminobenzoic acid





(PABA) and prevents normal bacterial utilization of





PABA for the synthesis of folic acid; Prolonged use





may result in fungal or bacterial superinfection,





including C. difficile-associated diarrhea and





pseudomembranous colitis - CDAD has been observed >





2 months postantibiotic treatment. Zhang et al. 2015





has concluded that pretreatment with dapsone





improved surgical stress induced depressive and





anxiety-like behavior in aged mice.


5
tiaprofenic acid
−0.955
A nonsteroidal anti-inflammatory drug of the





arylpropionic acid class, used to treat pain, especially





arthritic pain; not recommended in children; may be a





potentially inappropriate medication to be avoided in





patients 65 years and older (unless alternative agents





ineffective and patient can receive concomitant





gastroprotective agent) due to increased risk of GI





bleeding and peptic ulcer disease in older adults in high





risk category


6
primidone
−0.939
Barbiturate, anticonvulsant; decreases neuron





excitability, raises seizure threshold similar to





phenobarbital; active metabolite PEMA may enhance





activity of phenobarbital; increased risk of suicidal





thoughts/behavior; use with caution in patients with a





history of drug abuse - potential for drug dependency





exists. Anticonvulsants have been suggested as





potential treatments for PTSD due to the similarities





between kindling in seizure disorders and behavioral





sensitization in PTSD (Friedman 1994; Post et al.





1999).


7
betulin
−0.936
Abundant, naturally occurring triterpene; commonly





isolated from the bark of birch trees; has a role as a





metabolite, an antiviral agent, an analgesic, an anti-





inflammatory agent and an antineoplastic agent;





Inhibition of SREBP by betulin decreased the





biosynthesis of cholesterol and fatty acids; In vivo,





betulin ameliorated diet-induced obesity, decreased the





lipid contents in serum and tissues, and increased





insulin sensitivity; Furthermore, betulin reduced the





size and improved the stability of atherosclerotic





plaques. Puniani el al. 2014 has concluded that





betulinic acid is the active principle in Souroubea





compounds and has anxiolytic effects as shown by an





increased elevated plus maze with rat models.





Delcellier 2015 has reported that a botanical blend





extract of compounds containing betulinic acid may be





useful in PTSD as it disrupted fear memory





reconsolidation with no memory impairment in rat models.





There is currently a patent for a pharmaceutical





preparation containing betulinic acid fo





use of preventing or treating anxiety (Durst et al.





2002).


8
proguanil
−0.929
In combination with Atovaquone as antimalarial agent;





Metabolite cycloguanil inhibits dihydrofolate





reductase, disrupting deoxythymidylate synthesis;





Together, atovaquone/cycloguanil affect the





erythrocytic and exoerythrocytic stages of





development; Use is contraindicated for malaria





prophylaxis in patients with severe renal impairment





(CrCl less than 30 mL/min) because of the risk of





pancytopenia.


9
gossypol
−0.925
Gossypium hirsutum; most common source is the stem,





seeds, and roots of the cotton plant, where it acts as a





natural defensive agent by provoking infertility in





insects; Orally, gossypol is used as a male





contraceptive and in treating uterine myoma,





endometriosis, dysfunctional uterine bleeding,





metastatic carcinoma of the endometrium or ovary, and





HIV disease; Topically, gossypol is used as a





spermicidal cream or gel; inhibitory effects on





spermatogenesis are not predictably reversible,





although sperm counts usually return to normal within





three months to two years after discontinuation


10
levopropoxyphene
−0.92
Stereoisomer of propoxyphene; was sold as an





antitussive, but it was removed from the market in the





70s because data showed that the drug can cause





serious toxicity to the heart, even when used at





therapeutic doses; was developed by Lilly and FDA





approved on Mar. 21st, 1962
















TABLE 6D





Drugs Identified Using Gene Expression Panels of Predictive Biomarkers in Females.


(9 increased and 21 decreased were present in HG-U133A array used by CMAP).

















Panel of 9 genes increased in expression:



ANK2, CBX1, CYP19A1, FOXK2, GRIA1, IGKC,



LDB3, LINCPINT, NACC1



Panel of 21 genes decreased in expression:



ASCC1, AT12, Clorf123, CIAPIN1, CIRBP, ESD,



GTPBP2, H2AFY, HMOX1, IPO4, LAIR1, LIPA,



MARCKSL1, MDH2, MED24, MRPS18B, PAFAH2,



PLAGL2, SMUG1, SNHG17, USP39














rank
CMAP name
score
Description





1
flecainide
−1
Class 1 c antiarrhythmic agent; slows conduction in





cardiac tissue by altering transport of ions across cell





membranes; causes slight prolongation of refractory





periods; decreases the rate of rise of the action potential





without affecting its duration; increases electrical





stimulation threshold of ventricle, His-Purkinje system;





possesses local anesthetic and moderate negative





inotropic effects; BBW for excessive mortality or





nonfatal cardiac arrest rate and ventricular proarrhythmic





effects in patients with atrial fibrillation/flutter


2
Prestwick-682
−0.997
AKA Clofilium tosylate; K+ channel blocker; cardiac





depressant; anti-arrhythmic; increases atrial and





ventricular effective refractory period without changing





conduction time and, despite no apparent change in





premature ventricular complex frequency, it can abolish





the ability to induce ventricular tachycardia by





programmed stimulation and is also well tolerated


3
spiramycin
−0.98
Macrolide antibiotic and antiparasitic; not commercially





available in the US; Prolonged use may result in fungal





or bacterial superinfection, including C. difficile-





associated diarrhea (CDAD) and pseudomembranous





colitis - CDAD has been observed >2 months





postantibiotic treatment.


4
domperidone
−0.974
Antiemetic, gastroprokinetic agent, and galactagogue;





peripheral dopamine receptor blocking properties and





does not readily cross the blood-brain barrier; facilitates





gastric emptying and decreases small bowel transit time;





Canadian BBW for “increased risk of serious ventricular





arrhythmias or sudden cardiac death, particularly with





doses >30 mg or when used in patients >60 years of age.





Use the lowest possible dose for the shortest duration





necessary.” Itoh et al. 2005 has reported that





dromperidone may be beneficial in stress-related diseases





as it significantly suppresses increases in plasma ACTH





motilin-immunoreactive substance and cortisol levels





compared to placebo.


5
homatropine
−0.967
Anticholinergic medication that is an antagonist at





muscarinic acetylcholine receptors and thus the





parasympathetic nervous system; used in eye drops as a





cycloplegic, and as a mydriatic. There is currently a





patent for scopolamine analogues for the treatment of





depression and anxiety (Furey et al. 2005).


6
isoniazid
−0.964
Antitubercular agent; inhibits the synthesis of mycoloic





acids, an essential component of the bacterial cell wall;





BBW for severe and sometimes fatal hepatitis associated





with isoniazid therapy has been reported and may occur





or may develop even after many months of treatment;





Health Canada conducted a safety review and concluded





that there is a rare potential risk of pancreatitis with the





use of isoniazid. Case studies report controversial results





for benefit of isoniazid in anxiety and depressive states





(Salzer et al. 1953; Lemere 1954).


7
proguanil
−0.964
In combination with Atovaquone as antimalarial agent;





Metabolite cycloguanil inhibits dihydrofolate reductase,





disrupting deoxythymidylate synthesis; Together,





atovaquone/cycloguanil affect the erythrocytic and





exoerythrocytic stages of development; Use is





contraindicated for malaria prophylaxis in patients with





severe renal impairment (CrCl less than 30 mL/min)





because of the risk of pancytopenia.


8
phentolamine
−0.958
Anti-hypertensive agent; Competitively blocks alpha-





adrenergic receptors (nonselective) to produce brief





antagonism of circulating epinephrine and norepinephrine





to reduce hypertension caused by alpha effects of these





catecholamines; positive inotropic and chronotropic





effect on the heart thought to be due to presynaptic alpha-





2 receptor blockade which results in release of





presynaptic norepinephrine. There was recently a patent





for treatment of anxiety disorders, including PTSD, with





α and β blockers (Khan et al. 2011).


9
sulfamonomethoxine
−0.952
Long-acting sulfonamide antibiotic; It is used in blood





kinetic studies as well as to study the formation of





capsules in Bordetella bronchiseptica;





Sulfamonomethoxine is used to combat hyperpyrexia of





unknown etiology. Lurie et al. 2015 has reported that





recurrent exposures to sulfonamides is associated with an





increased risk for anxiety.


10
fludrocortisone
−0.951
Corticosteroid; Very potent mineralocorticoid with high





glucocorticoid activity; used primarily for its





mineralocorticoid effects; Promotes increased





reabsorption of sodium and loss of potassium from renal





distal tubules. de Kloet et al. 2016 has found that





fludrocortisone decreased cortisol secretion and may be





more effective in young depressed patients.










Drug repurposing using L1000 Characteristic Direction Signature Search Engine









TABLE 6E





Drugs Identified Using Gene Expression Panels of


Nominally Validated Biomarkers (n = 221 genes)

















Panel of 60 genes increased in expression:



ANK2, ANKRD28, CACNA1H, CADM4, CAMTA1, CARS2,



CBX1, CPM, CRHR1, CYP11B1, CYP19A1, CYP2E1,



DMGDH, DSCAM, FBXO34, FOXK2, GJB2, GNPTAB,



GPCPD1, GRIA1, HHIP, HIF1A, Hs.567066, IGKC,



KCNMA1, KDM4C, LDB3, LINC-PINT, LOC105370523,



MCM3AP, MKL2, MNAT1, N4BP2L2, NACC1, NCDN,



NKTR, NTRK2, NUB1, PCBP2, PCDHB6, PDHX, PEG3,



PLAGL1, PLEKHA5, PSTK, RAB6A, RBFOX1, RFFL,



RORA, SEC14L2, SERPINB1, SESN3, SFRP1, SPN,



TFPI, TTF2, TULP4, UBE2B, VPS13C, ZNF638



Panel of 161 genes decreased in expression:



ABHD12, ACTR1A, ADA2, AK2, ALKBH6, APLP2,



APOL3, ARSB, ARSD, ASCC1, ATG12, BUB3, Clorf123,



Clorf162, CD1D, CD44, CIAPIN1, CIRBP, CLTA,



COG1, COPZ1, CSNK2A1, CTSC, CTSZ, CYBB, DAZAP2,



DBNDD2, DMAC2, DNAJB1, DYNLRB1, EFCAB14, EFHD2,



EIF6, ELF4, ELMO2, EMC4, ENTPD1, ESD, FGR,



FKBP5, FLI1, FUCA1, GLMP, GTPBP2, H2AFY, HDAC3,



HLA-B, HLA-DMA, HLA-DRB1, HLA-F, HLA-G, HMOX1,



HNRNPDL, HSH2D, IDH3B, INO80, IPO4, ISG20,



ITPKB, KIR3DL2, KPNA6, LAIR1, LAPTM5, LCP2,



LEPROTL1, LILRB1, LIPA, LRRC59, MAD1L1, MAN2B2,



MARCKSL1, MDH2, MECP2, MED24, MEF2C, MFNG,



MIA3, MPV17, MR1, MRPL44, MRPS18B, NAAA,



NAF1, NAGA, NAGK, NDFIP1, NONO, OCRL, ODF2,



OPA3, OXA1L, PAFAH2, PDE6D, PHYKPL, PIK3R5,



PLAGL2, PLPBP, POLR3C, PPP1R11, PPP1R7, PSMA5,



PSMC4, PSME1, PSME3, RABL6, RAC1, RAC2, RNF213,



RNF216, RNF5, RPP40, RUBCN, SAP30L, SASH3,



SCAMP1, SCO1, SDCCAG8, SEC13, SESTD1, SETDB2,



SFXN3, SLC35A4, SMUG1, SNHG17, SPEN, SPG7,



STAM2, STX11, SURF4, TCTN3, TIMP1, TM9SF4,



TMBIM6, TMEM173, TMEM179B, TMEM80, TNFAIP1,



TOMM40L, TOR1B, TOR4A, TPP1, TRAK1, TRAV25,



TRBV24-1, TSC22D3, UBE2A, UBE2E2, UHRF1BP1L,



UQCC1, USP39, VAMP3, VIRMA, VPS26B, VTI1A,



WDFY1, WWP2, XPNPEP1, ZFYVE21, ZNF655, ZNF689,



ZNF747














Rank
Score
Drug
Description





1
0.0714
BRD-K46137903


2
0.0655
Doxepin hydrochloride


3
0.0595
trichostatin A


4
0.0595
CGS 15943


5
0.0595
(−)-Gallocatechin gallate


6
0.0595
OSI-906


7
0.0595
BRD-K74777906


8
0.0595
B3063


9
0.0595
BRD-K33396764


10
0.0595
BRD-K68336408


11
0.0595
BRD-A72703248


12
0.0536
AT-7519


13
0.0536
LY 288513


14
0.0536
Biperiden hydrochloride


15
0.0536
DILTIAZEM




HYDROCHLORIDE


16
0.0536
ESTRIOL


17
0.0536
Molindone hydrochloride


18
0.0536
PX12


19
0.0536
APO866


20
0.0536
AT-CSC-07 BRD-K33720404









Convergent Functional Evidence (CPE)


For the top predictive biomarkers (n=42), all the evidence from discovery (up to 6 points), prioritization (up to 12 points), validation (up to 6 points), testing (state, trait first year Hospitalization with Stress visits, trait all future Hospitalization with Stress visits were tabulated into a convergent functional evidence (CFE) score—up to 8 points each if significantly predicts in all participants, 6 points if predicts by gender, 4 points if predicts in gender/diagnosis), other psychiatric and related disorders (3 points), and drug evidence (3 points). The total score can be up to 54 points: 36 from the data and 18 from literature data. The data weighed twice as much as the literature data. The goal was to highlight, based on the totality of the data and of the evidence in the field to date, biomarkers that have all around evidence: track stress, predict it, are reflective of stress and other pathology, and are potential drug targets. Such biomarkers merit priority evaluation in future clinical trials.


Results

Step 1: Discovery of Biomarkers for Stress


A powerful within-participant longitudinal discovery approach was used to identify genes that: (1) change in expression in blood between low stress states (Life Stress VAS≤33 out of 100) and high stress states (Life Stress VAS ≥67 out of 100), (2) track the stress state across visits in a participant, and (3) track stress state in multiple participants. A longitudinally followed cohort of psychiatric participants was used to show diametric changes in stress states between at least two testing visits (n=36 participants) (FIGS. 1A-1G and Table 1). The stress state self-report may be more reliable in this cohort, as the subjects demonstrated the aptitude and willingness to report different, and diametric, stress states. Using 33% of maximum raw score threshold (internal score of 1 pt), 12,884 unique probesets (FIG. 1D) were identified. These were carried forward to the prioritization step. This represents approximately a 4-fold enrichment of the 54,625 probesets on the Affymetrix array.


It was also examined in the discovery cohort whether subtypes of stress can be identified based on mental state at the time of high stress visits, using two way hierarchical clustering with anxiety, mood, and psychosis measures. Three potential subtypes of stress were identified: predominantly anxious (possibly reflecting increased reactivity), predominantly psychotic (possibly reflecting dis-connectivity), and non-comorbid with other psychiatric symptoms (possibly reflecting better adaptation) (FIG. 1C). These subtypes need to be further evaluated and tested in independent cohorts for practical utility, diagnostic and therapeutic.


Step 2: Prioritization of Biomarkers Based on Prior Evidence in the Field


A Convergent Functional Genomics (CFG) approach was used to prioritize the candidate biomarkers identified in the discovery step (33% cutoff, internal score of ≥1 pt) by using all the published prior independent evidence in the field (FIG. 1E). There were 3,590 probesets that had a CFO score (combined internal and external score) of 6 and above. These were carried forward to the validation step. This represented approximately a 15-fold enrichment of the probesets on the Affymetrix array.


Step 3: Validation of Biomarkers for Severe Stress State and Trait


These prioritized candidate biomarkers (n=3,590) were next analyzed in a demographically matched cohort of psychiatric participants with clinically severe state and trait stress, by assessing which markers were stepwise changed in expression from low stress to high stress to clinically severe state and trait stress (FIG. 1F). These genes were likely involved in stress state and trait. 2228 probesets were non-stepwise changed, 1130 were stepwise changed, and 232 were nominally significant by ANOVA. This represents approximately a 235-fold enrichment of the probesets on the Affymetrix array. The best p-value increased in expression (risk) biomarker was NUB1 (p=0.00062), and the best p-value decreased in expression (protective) biomarker was ASCC1 (p=0.00028). The Bonferroni threshold was set conservatively at 0.05/3.590=0.000014, and none of the biomarkers crossed that threshold.


Step 4: Testing for Diagnostics


The top biomarkers from each of the first three steps were carried over for further testing. The list of candidate biomarkers thus includes the top biomarkers from discovery step (>=90% of scores, n=39), the top biomarkers after the prioritization step (total CF score >=13, n=21), and the nominally significant biomarkers after the validation step (n=232), for a total of n=285 probesets (n=269 genes) (FIGS. 1A-1G). The rationale for that was that there might be biomarkers that did not survive validation in the particular cohort and stringent stepwise change in expression approach, but have either an abundance of evidence from the literature supporting their involvement in stress and thus are highly prioritized at Step 2, and/or have strong evidence in the discovery Step 1 and might be completely novel candidate biomarkers for stress.


285 candidate biomarkers were tested to determine if they are able to predict stress severity state, and future psychiatric hospitalizations with stress, in another independent cohort of psychiatric participants. Biomarker levels information were used cross-sectionally, as well as expanded longitudinal information about biomarker levels at multiple visits, as predictors. The biomarkers in all participants in the independent test cohort were tested, as well as in a more personalized fashion by gender and psychiatric diagnosis, showing increased accuracy with the personalized approach, in particular in women (FIGS. 2A-2C). In general, the longitudinal information was more predictive than the cross-sectional information.


Across all participants tested, NUB1, the top risk biomarker after validation, was also the best predictor for high stress state (AUC 65%, p=0.0014). NUB1 was an even better predictor of stress state by gender in females (AUC 74%, p=0.004), and by gender and diagnosis in female bipolars (AUC 78%, p=0.02). NUB1 (Negative Regulator Of Ubiquitin Like Proteins 1), which was increased in expression in high stress states in this Example, has previous convergent evidence for increase in expression in stress, in human brain (nucleus accumbens in individuals exposed to social isolation before dying) and blood (individuals exposed to combat traumas), as well as in the brain of mice subjected to chronic variable stress. Such reproducibility across studies, tissues and populations provides strong reasons to consider it as a bona fide marker for psychological stress, and it serves as a reassuring de facto positive control for the design and power of this Example. Interestingly, NUB1 is also increased in expression in previous blood biomarker studies of suicide, in both males and females (Table 4). There was a strong clinical connection between stress and suicide.


APOL3 was the best predictor for trait first year future hospitalizations with stress (AUC 70%, p=0.0053). APOL3 was an even better predictor of first year future hospitalizations in males (AUC 71%, p=0.045), and by gender and diagnosis in male depression (AUC 92%, p=0.026). It also is a good predictor of all future hospitalizations with stress in male depression (OR 9.6, p=0.026). APOL3 (Apolipoprotein 13), decreased in expression in high stress states, has previous convergent evidence for decrease in expression in brain in mice subjected to stress. Interestingly, APOL3 is also decreased in expression in previous blood biomarker studies of suicide, in both males and females (Table 4).


MAD1L1 the best predictor for trait all future hospitalizations with stress (OR 1.80, p=0.0013). MAD1L1 was an even better predictor by gender and diagnosis in male bipolar (OR 2.1, p=0.0097) and male depression (OR 31.4, p=0.0055). MAD1L1 (Mitotic Arrest Deficient Like 1), which is decreased in expression in high stress states, has previous convergent evidence for decrease in expression in blood in chronic stress. Of note, MAD1L1 has strong previous genetic and gene expression data for involvement in autism, as well as in bipolar disorder and schizophrenia. It may mediate the impact of stress on those disorders.


NKTR (OR 1.37, p=0.000095) survived Bonferroni correction for all the 285 biomarkers tested. Importantly. NKTR (Natural Killer Cell Triggering Receptor), increased in expression in blood in high stress states, was also reported increased in expression in blood in studies of social isolation in humans, and in brain in studies of chronic variable stress in mice. NKTR is also increased in expression in previous blood biomarker studies of suicide, in both males and females, as well as increased in expression in postmortem brain studies in depression and in schizophrenia (Table 4), possibly underlying the effect of stress in those disorders.


By gender, in females, FOXK2 was the best predictor for state (AUC 88%, p=0.0039), PSD3 the best predictor for trait first year hospitalizations (AUC 98%, p=0.011) and Clorf123 for trait all future hospitalizations (OR 12.26, p=0.033). In males, PCDHB6 was the best predictor for state (AUC 65%, p=0.0072), APOL3 the best predictor for trait first year hospitalizations (AUC 71%, p=0.0045), and MAD1L1 the best predictor for trait all future hospitalizations (OR 1.7, p=0.0027).


Personalized by gender and diagnosis, in female bipolar CIRBP was a strong predictor for state (AUC 100%, p=0.016), and in female schizoaffective HLA-DRB1 for trait all future hospitalizations (OR 39.23, p=0.041). In male schizophrenia. SNCA was a strong predictor for state (AUC 100%, p=0.014), in male depression STX11 was a strong predictor for trait first year hospitalizations (AUC 100%, p=0.00047), and in male depression ANK2 was a strong predictor for trait all future hospitalizations (OR 76.81, p=0.0081).


TL (Telomere Length), used as a comparator/positive control, was a good predictor for stress state and first year hospitalizations, particularly in males with depression (Table 2).


Across all participants tested, and in males, predictions of future hospitalizations with stress were in general somewhat stronger using phenotypic markers (such as the PTSD PCL-C scale and the VAS Stress scale) than biomarkers, but predictions were stronger using biomarkers than phenotypic markers in females, and personalized by gender and diagnosis. Also, panels of the validated biomarkers did not work as well as individual biomarkers, particularly when the later are tested by gender and diagnosis, consistent with there being heterogeneity in the population and supporting the need for personalization (data not shown).


Step 5: Biological Roles


Fifth, the top predictive biomarkers were assessed for evidence of involvement in other psychiatric and related disorders (Tables 2 and 5). A majority of the biomarkers have some evidence in other psychiatric disorders, consistent with the broad effect of stress on the brain and on mind domains/dimensions, whereas a few seem to be specific for stress, such as HLA-B (Major Histocompatibility Complex, Class 1, B), LOC105378349 (Uncharacterized LOC105378349), and STX11 (Syntaxin 11). More than half of the top predictive biomarkers (26 out of 41 genes, i.e. 63%) have prior evidence for involvement in suicide, suggesting an extensive molecular co-morbidity between stress and suicide, to go along with the clinical and phenomenological co-morbidity.


The biological pathways and networks in which the nominally validated biomarkers (n=232 probesets 220 genes) are involved were further analyzed. The top biological pathway is involved in antigen processing and presentation (Table 3), broadly speaking in the reaction to threats. The pathways are shared with other non-psychiatric diseases, suggesting that stress is a whole-body disease. There is a network centered on HLA DRB1 that may be involved in reactivity/immune response. A second network is centered on HDAC3, and may be involved in activity/trophicity. A third network is centered on RACI, and may be involved in connectivity/signaling. ACTR1A seems to be a nodal gene connecting these three networks. (FIG. 3).


Step 6: Targeted Treatments and Drug Repurposing


Sixth, the top predictive biomarkers as modulated by existing drugs (Tables 2 and 6) was analyzed. The validated biomarker signature, and out of them, the top predictive biomarkers gene expression signatures, were used to interrogate the Connectivity Map database from Broad/MIT to identify drugs and natural compounds that have the opposite effects on gene expression to stress, and can be repurposed for treating stress (Table 6). Reversing the gene expression signature in essence increases the expression of the resilience genes and decreases expression of the risk genes. The top drugs and nutraceuticals identified as potential new stress therapeutics are cefotiam (an antibiotic) and calcium folinate (a B vitamin) using all the validated biomarkers, ambroxol (originally a mucolytic drug, with recent evidence sodium channel blocker with anti-pain properties) and betulin (a triterpene compound from the bark of the birch tree, with evidence for anxiolytic effects) in all using the predictive biomarkers, as well as ozagrel (an antiplatelet agent working as a thromboxane A2 synthesis inhibitor) in males and flecainide (an antiarrhythmic agent that blocks sodium channels) in females.


Step 7: Convergent Functional Evidence (CFE)


The biomarkers with the best overall convergent functional evidence (CFE) across the six steps were FKBP5, DDX6, B2M, LAIR1, RTN4 and the previously mentioned NUB1 (Table 1). FKBP5 (FK506 Binding Protein 5), a decreased in expression biomarker, survived discovery, prioritization and validation. It seems to be a better predictor for state in females, and for trait in males, especially personalized by diagnosis. FKBP5 has independently been described as decreased in expression in blood in World Trade Center attack survivors and in a Dutch cohort with post-deployment PTSD30, as well as in postmortem brains from PTSD. FKBP5 appearance in the present screen is reassuring and serves as a de facto positive control for the approach. It is also involved in multiple other psychiatric disorders, consistent with the role of stress as a trigger or precipitant of illness (Table 4). There is previous evidence for its modulation in expression in opposite direction to stress by mood stabilizers (Table 3), and interestingly, by psychotherapy. DDX6 (DEAD-Box Helicase 6), an increased in expression biomarker, has previous convergent evidence of being increased in expression in blood and in amygdala of mice subjected to stress. It is a strong predictor of state and trait stress across all, by gender, and by gender and diagnosis. DDX6 has also been implicated in other neuropsychiatric disorders (alcoholism, other addictions, depression, schizophrenia), as well as is an increased in expression blood biomarker for suicide in previous studies. LAIR1 (Leukocyte Associated Immunoglobulin Like Receptor 1), a decreased in expression biomarker, survived discovery, prioritization and validation. It has previous convergent evidence from human studies of being decreased in expression in blood in PTSD related to childhood trauma and to interpersonal trauma in females. It is a strong predictor of state stress in females, and of trait stress across all and in males. LAIR1 is also a decreased in expression blood biomarker for suicide in previous studies. RTN4 (Reticulon 4), an increased in expression biomarker, has previous convergent evidence of being increased in the nucleus accumbens (NAC) in social isolation in humans, and in blood in PTSD. It is decreased in expression in blood by treatment with the nutraceutical omega-3 fatty acid DHA in stressed female mice in independent studies, as well as by valproate in brain of mice. RTN4 is a predictor of trait future hospitalizations with stress in all, as well as separately in males and females. RTN4 has also been implicated in bipolar disorder, alcoholism, and pain, as well as is an increased in expression suicide blood biomarker in our studies. B2M (Beta-2-Microglobulin), an increased in expression biomarker, has previous convergent evidence of being increased in the nucleus accumbens (NAC) in social isolation in humans, and it is decreased in expression in NAC by treatment with the nutraceutical omega-3 fatty acid DHA in stressed female mice in independent studies. It is a strong predictor of state stress in females with psychotic disorders, and of future hospitalizations with stress in both genders. B2M has also been implicated in other neuropsychiatric disorders (alcoholism, autism, depression, eating disorders, pain, as well as aging and suicide), possibly mediating the effects of stress in those disorders.

Claims
  • 1-14. (canceled)
  • 15. A computer-assisted method for assessing a high stress state in a subject, the method comprising: computing a score based on the expression level of a panel composed of at least one blood biomarker, in one or more samples obtained from the subject;computing a score based on a reference expression level of the panel of blood biomarkers; andidentifying a difference between the score in the sample obtained from the subject and the score in the reference sample, wherein the difference in the score in the sample obtained from the subject and the score in the reference sample indicates a risk for a high stress state in the subject.
  • 16. The method according to claim 15, wherein the score is greater in the sample obtained from the subject as compared to the score in the reference sample.
  • 17. The method according to claim 16, wherein the blood biomarkers in the panel are selected from the group consisting of: DEAD-Box Helicase 6 (DDX6), Beta-2-Microglobulin (B2M), Reticulon 4 (RTN4), Negative Regulator Of Ubiquitin Like Proteins 1 (NUB1), Cytochrome P450 Family 2 Subfamily E Member 1 (CYP2E1), Ankyrin 2 (ANK2), MKL1/Myocardin Like 2 (MKL2), Dimethylglycine Dehydrogenase (DMGDH), NEDD4 Binding Protein 2 Like 2 (N4BP2L2), Protocadherin Beta 6 (PCDHB6), Gap Junction Protein Beta 2 (GJB2), Hypoxia Inducible Factor 1 Alpha Subunit (HIF1A), Forkhead Box K2 (FOXK2), Natural Killer Cell Triggering Receptor (NKTR), Pleckstrin Homology Domain Containing A5 (PLEKHA5), Poly(RC) Binding Protein 2 (PCBP2), and combinations thereof.
  • 18. The method according to claim 19, wherein the blood biomarkers in the panel are selected from the group consisting of: DEAD-Box Helicase 6 (DDX6), Beta-2-Microglobulin (B2M), and Reticulon 4 (RTN4).
  • 19. The method according to claim 15, wherein the score is less in the sample obtained from the subject as compared to the score in the reference sample.
  • 20. The method according to claim 17, wherein the blood biomarkers is the panel are selected from the group consisting of: FK506 Binding Protein 5 (FKBP5), Leukocyte Associated Immunoglobulin Like Receptor 1 (LAIR1), Cold Inducible RNA Binding Protein (CIRBP), MAD1 Mitotic Arrest Deficient Like 1 (MAD1L1), 2′-5′-Oligoadenylate Synthetase 1 (OAS1), OXA1L, C-C Motif Chemokine Ligand 4 (CCL4), Dystrobrevin Binding Protein 1 (DTNBP1), Spondin 2 (SPON2), Leukocyte Associated Immunoglobulin Like Receptor 2 (LAIR2), Small Ubiquitin-Like Modifier 1 (SUMO1), Synuclein Alpha (SNCA), Pleckstrin And Sec7 Domain Containing 3 (PSD3), syntaxin 11 (STX11), Apolipoprotein L3 (APOL3), Engulfment And Cell Motility 2 (ELMO2), Conjugating Enzyme E2 E2 (UBE2E2), Major Histocompatibility Complex, Class II, DR Beta 1 (HLA-DRB1), Lymphocyte Cytosolic Protein 2 (LCP2), Leucine Rich Repeat Containing 59 (LRRC59), Major Histocompatibility Complex, Class I, B (HLA-B), Chromosome 1 Open Reading Frame 123 (Clorf123), Ubiquinol-Cytochrome C Reductase Complex Assembly Factor 1 (UQCC1), Dynactin Subunit 5 (DCTN 5), Dynactin Subunit 5 (DCTN5), Uncharacterized LOC105378349 (LOC105378349), and combinations thereof.
  • 21. The method according to claim 19, wherein the blood biomarkers is the panel are selected from the group consisting of: FK506 Binding Protein 5 (FKBP5), Leukocyte Associated Immunoglobulin Like Receptor 1 (LAIR1), and MAD1 Mitotic Arrest Deficient Like 1 (MAD1L1).
  • 22. The method according to claim 15, wherein upon identifying a difference between the score in the sample obtained from the subject and the score in the reference sample, the method further comprises administering a treatment to the subject, wherein the treatment reduces the difference between the score in the sample from the subject and the score in the reference sample to mitigate the high stress state in the subject, and wherein a change in score upon administering the treatment indicates a response to the treatment.
  • 23. The method according to claim 21, wherein the treatment is selected from lifestyle modification and administering a therapy.
  • 24. The method as set forth in claim 21, wherein the therapy is selected in a computer-assisted fashion from the group consisting of one or more psychiatric compounds, each therapy selection is based on a panel of one or more individual biomarkers.
  • 25. The method according to claim 22, wherein: (a) the individual exhibiting changes in one or more of biomarkers: FKBP5, RTN4, OAS1, SNCA, STX11, LRRC59 is treated with at least one mood stabilizing compound;(b) the individual exhibiting changes in one or more of biomarkers: STX11, ANK2, LAIR2 is treated with at least one antidepressant compound;(c) the individual exhibiting changes in one or more of biomarkers: RTN4, SNCA, B2M is treated with at least one of the following compounds: docosahexaenoic acid and other omega-3 fatty acids; and(d) the individual exhibiting changes in one or more of biomarkers: NUB1, GJB2, PSD3 is treated with at least one antipsychotic compound.(e) the individual exhibiting changes in FKBP5 is treated with psychotherapy.
  • 26. The method according to claim 22, wherein the therapy is selected in a computer-assisted fashion from the group consisting one or more new compounds selected from the group consisting of: cefotiam, proguanil, hydroxyachillin, Prestwick-682, levopropoxyphene, isoflupredone, ozagrel, streptozocin, cyclopenthiazide, metformin, corticosterone, calcium folinate, diphenhydramine, dapsone, spiramycin, asiaticoside, ambroxol, xamoterol, betulin, isometheptene, primidone, tocainide, diloxanide, alprostadil, doxepin, diltiazem, estriol, molindone, and combinations thereof, each therapy selection based on a panel of one or more individual biomarkers.
  • 27. The method according to claim 22, wherein the subject is a male subject, and the therapy is selected from the group consisting of: ozagrel, flucloxacillin, ambroxol, dapsone, tiaprofenic acid, primidone, betulin, proguanil, gossypol, levopropoxyphene, and combinations thereof, each therapy selection based on a panel of one or more individual biomarkers.
  • 28. The method according to claim 22, wherein the subject is a female subject, and the therapy is selected from the group consisting of: flecainide, Prestwick-682, spiramycin, domperidone, homatropine, isoniazid, proguanil, phentolamine, sulfamonomethoxine, fludrocortisone, and combinations thereof, each therapy selection based on a panel of one or more individual biomarkers.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 62/683,320, filed on Jun. 11, 2018, which is hereby incorporated by reference in its entirety.

STATEMENT OF GOVERNMENT SUPPORT

This invention was made with government support under OD007363 awarded by the National Institutes of Health and CX000139 merit award by the Veterans Administration. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/035513 6/5/2019 WO 00
Provisional Applications (1)
Number Date Country
62683320 Jun 2018 US