Methods for operating electro-optic displays

Information

  • Patent Grant
  • 10726798
  • Patent Number
    10,726,798
  • Date Filed
    Thursday, March 2, 2017
    7 years ago
  • Date Issued
    Tuesday, July 28, 2020
    4 years ago
Abstract
A method of operating an electro-optic display in which an image is scrolled across the display, and in which a clearing bar is provided between two portions of the image being scrolled, the clearing bar scrolling across in display in synchronization with said two portions of the image, the writing of the clearing bar being effected such that every pixel over which the clearing bar passes is rewritten.
Description
BACKGROUND OF INVENTION

The present invention relates to methods for driving electro-optic displays, especially bistable electro-optic displays, and to apparatus for use in such methods. More specifically, this invention relates to driving methods which may allow for rapid response of the display to user input. This invention also relates to methods which may allow reduced “ghosting” in such displays. This invention is especially, but not exclusively, intended for use with particle-based electrophoretic displays in which one or more types of electrically charged particles are present in a fluid and are moved through the fluid under the influence of an electric field to change the appearance of the display.


The term “electro-optic”, as applied to a material or a display, is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material. Although the optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.


The term “gray state” is used herein in its conventional meaning in the imaging art to refer to a state intermediate two extreme optical states of a pixel, and does not necessarily imply a black-white transition between these two extreme states. For example, several of the E Ink patents and published applications referred to below describe electrophoretic displays in which the extreme states are white and deep blue, so that an intermediate “gray state” would actually be pale blue. Indeed, as already mentioned, the change in optical state may not be a color change at all. The terms “black” and “white” may be used hereinafter to refer to the two extreme optical states of a display, and should be understood as normally including extreme optical states which are not strictly black and white, for example the aforementioned white and dark blue states. The term “monochrome” may be used hereinafter to denote a drive scheme which only drives pixels to their two extreme optical states with no intervening gray states.


The terms “bistable” and “bistability” are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in U.S. Pat. No. 7,170,670 that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called “multi-stable” rather than bistable, although for convenience the term “bistable” may be used herein to cover both bistable and multi-stable displays.


The term “impulse” is used herein in its conventional meaning of the integral of voltage with respect to time. However, some bistable electro-optic media act as charge transducers, and with such media an alternative definition of impulse, namely the integral of current over time (which is equal to the total charge applied) may be used. The appropriate definition of impulse should be used, depending on whether the medium acts as a voltage-time impulse transducer or a charge impulse transducer.


Much of the discussion below will focus on methods for driving one or more pixels of an electro-optic display through a transition from an initial gray level to a final gray level (which may or may not be different from the initial gray level). The term “waveform” will be used to denote the entire voltage against time curve used to effect the transition from one specific initial gray level to a specific final gray level. Typically such a waveform will comprise a plurality of waveform elements; where these elements are essentially rectangular (i.e., where a given element comprises application of a constant voltage for a period of time); the elements may be called “pulses” or “drive pulses”. The term “drive scheme” denotes a set of waveforms sufficient to effect all possible transitions between gray levels for a specific display. A display may make use of more than one drive scheme; for example, the aforementioned U.S. Pat. No. 7,012,600 teaches that a drive scheme may need to be modified depending upon parameters such as the temperature of the display or the time for which it has been in operation during its lifetime, and thus a display may be provided with a plurality of different drive schemes to be used at differing temperature etc. A set of drive schemes used in this manner may be referred to as “a set of related drive schemes.” It is also possible, as described in several of the aforementioned MEDEOD applications, to use more than one drive scheme simultaneously in different areas of the same display, and a set of drive schemes used in this manner may be referred to as “a set of simultaneous drive schemes.”


Several types of electro-optic displays are known. One type of electro-optic display is a rotating bichromal member type as described, for example, in U.S. Pat. Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791 (although this type of display is often referred to as a “rotating bichromal ball” display, the term “rotating bichromal member” is preferred as more accurate since in some of the patents mentioned above the rotating members are not spherical). Such a display uses a large number of small bodies (typically spherical or cylindrical) which have two or more sections with differing optical characteristics, and an internal dipole. These bodies are suspended within liquid-filled vacuoles within a matrix, the vacuoles being filled with liquid so that the bodies are free to rotate. The appearance of the display is changed by applying an electric field thereto, thus rotating the bodies to various positions and varying which of the sections of the bodies is seen through a viewing surface. This type of electro-optic medium is typically bistable.


Another type of electro-optic display uses an electrochromic medium, for example an electrochromic medium in the form of a nanochromic film comprising an electrode formed at least in part from a semi-conducting metal oxide and a plurality of dye molecules capable of reversible color change attached to the electrode; see, for example O'Regan, B., et al., Nature 1991, 353, 737; and Wood, D., Information Display, 18 (3), 24 (March 2002). See also Bach, U., et al., Adv. Mater., 2002, 14 (11), 845. Nanochromic films of this type are also described, for example, in U.S. Pat. Nos. 6,301,038; 6,870,657; and 6,950,220. This type of medium is also typically bistable.


Another type of electro-optic display is an electro-wetting display developed by Philips and described in Hayes, R. A., et al., “Video-Speed Electronic Paper Based on Electrowetting”, Nature, 425, 383-385 (2003). It is shown in U.S. Pat. No. 7,420,549 that such electro-wetting displays can be made bistable.


One type of electro-optic display, which has been the subject of intense research and development for a number of years, is the particle-based electrophoretic display, in which a plurality of charged particles move through a fluid under the influence of an electric field. Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays. Nevertheless, problems with the long-term image quality of these displays have prevented their widespread usage. For example, particles that make up electrophoretic displays tend to settle, resulting in inadequate service-life for these displays.


As noted above, electrophoretic media require the presence of a fluid. In most prior art electrophoretic media, this fluid is a liquid, but electrophoretic media can be produced using gaseous fluids; see, for example, Kitamura, T., et al., “Electrical toner movement for electronic paper-like display”, IDW Japan, 2001, Paper HCS1-1, and Yamaguchi, Y., et al., “Toner display using insulative particles charged triboelectrically”, IDW Japan, 2001, Paper AMD4-4). See also U.S. Pat. Nos. 7,321,459 and 7,236,291. Such gas-based electrophoretic media appear to be susceptible to the same types of problems due to particle settling as liquid-based electrophoretic media, when the media are used in an orientation which permits such settling, for example in a sign where the medium is disposed in a vertical plane. Indeed, particle settling appears to be a more serious problem in gas-based electrophoretic media than in liquid-based ones, since the lower viscosity of gaseous suspending fluids as compared with liquid ones allows more rapid settling of the electrophoretic particles.


Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation describe various technologies used in encapsulated electrophoretic and other electro-optic media. Such encapsulated media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles in a fluid medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes. The technologies described in the these patents and applications include:

    • (a) Electrophoretic particles, fluids and fluid additives; see for example U.S. Pat. Nos. 7,002,728; and 7,679,814;
    • (b) Capsules, binders and encapsulation processes; see for example U.S. Pat. Nos. 6,922,276; and 7,411,719;
    • (c) Films and sub-assemblies containing electro-optic materials; see for example U.S. Pat. Nos. 6,982,178; and 7,839,564;
    • (d) Backplanes, adhesive layers and other auxiliary layers and methods used in displays; see for example U.S. Pat. Nos. 7,116,318; and 7,535,624;
    • (e) Color formation and color adjustment; see for example U.S. Pat. No. 7,075,502; and U.S. Patent Application Publication No. 2007/0109219;
    • (f) Methods for driving displays; see the aforementioned MEDEOD applications;
    • (g) Applications of displays; see for example U.S. Pat. No. 7,312,784; and U.S. Patent Application Publication No. 2006/0279527; and
    • (h) Non-electrophoretic displays, as described in U.S. Pat. Nos. 6,241,921; 6,950,220; and 7,420,549; and U.S. Patent Application Publication No. 2009/0046082.


Many of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium could be replaced by a continuous phase, thus producing a so-called polymer-dispersed electrophoretic display, in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material, and that the discrete droplets of electrophoretic fluid within such a polymer-dispersed electrophoretic display may be regarded as capsules or microcapsules even though no discrete capsule membrane is associated with each individual droplet; see for example, the aforementioned U.S. Pat. No. 6,866,760. Accordingly, for purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media.


A related type of electrophoretic display is a so-called “microcell electrophoretic display”. In a microcell electrophoretic display, the charged particles and the fluid are not encapsulated within microcapsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. See, for example, U.S. Pat. Nos. 6,672,921 and 6,788,449, both assigned to Sipix Imaging, Inc.


Although electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be made to operate in a so-called “shutter mode” in which one display state is substantially opaque and one is light-transmissive. See, for example, U.S. Pat. Nos. 5,872,552; 6,130,774; 6,144,361; 6,172,798; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays, which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Pat. No. 4,418,346. Other types of electro-optic displays may also be capable of operating in shutter mode. Electro-optic media operating in shutter mode may be useful in multi-layer structures for full color displays; in such structures, at least one layer adjacent the viewing surface of the display operates in shutter mode to expose or conceal a second layer more distant from the viewing surface.


An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (Use of the word “printing” is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; electrophoretic deposition (See U.S. Pat. No. 7,339,715); and other similar techniques.) Thus, the resulting display can be flexible. Further, because the display medium can be printed (using a variety of methods), the display itself can be made inexpensively.


Other types of electro-optic media may also be used in the displays of the present invention.


The bistable or multi-stable behavior of particle-based electrophoretic displays, and other electro-optic displays displaying similar behavior (such displays may hereinafter for convenience be referred to as “impulse driven displays”), is in marked contrast to that of conventional liquid crystal (“LC”) displays. Twisted nematic liquid crystals are not bi- or multi-stable but act as voltage transducers, so that applying a given electric field to a pixel of such a display produces a specific gray level at the pixel, regardless of the gray level previously present at the pixel. Furthermore, LC displays are only driven in one direction (from non-transmissive or “dark” to transmissive or “light”), the reverse transition from a lighter state to a darker one being effected by reducing or eliminating the electric field. Finally, the gray level of a pixel of an LC display is not sensitive to the polarity of the electric field, only to its magnitude, and indeed for technical reasons commercial LC displays usually reverse the polarity of the driving field at frequent intervals. In contrast, bistable electro-optic displays act, to a first approximation, as impulse transducers, so that the final state of a pixel depends not only upon the electric field applied and the time for which this field is applied, but also upon the state of the pixel prior to the application of the electric field.


Whether or not the electro-optic medium used is bistable, to obtain a high-resolution display, individual pixels of a display must be addressable without interference from adjacent pixels. One way to achieve this objective is to provide an array of non-linear elements, such as transistors or diodes, with at least one non-linear element associated with each pixel, to produce an “active matrix” display. An addressing or pixel electrode, which addresses one pixel, is connected to an appropriate voltage source through the associated non-linear element. Typically, when the non-linear element is a transistor, the pixel electrode is connected to the drain of the transistor, and this arrangement will be assumed in the following description, although it is essentially arbitrary and the pixel electrode could be connected to the source of the transistor. Conventionally, in high resolution arrays, the pixels are arranged in a two-dimensional array of rows and columns, such that any specific pixel is uniquely defined by the intersection of one specified row and one specified column. The sources of all the transistors in each column are connected to a single column electrode, while the gates of all the transistors in each row are connected to a single row electrode; again the assignment of sources to rows and gates to columns is conventional but essentially arbitrary, and could be reversed if desired. The row electrodes are connected to a row driver, which essentially ensures that at any given moment only one row is selected, i.e., that there is applied to the selected row electrode a voltage such as to ensure that all the transistors in the selected row are conductive, while there is applied to all other rows a voltage such as to ensure that all the transistors in these non-selected rows remain non-conductive. The column electrodes are connected to column drivers, which place upon the various column electrodes voltages selected to drive the pixels in the selected row to their desired optical states. (The aforementioned voltages are relative to a common front electrode which is conventionally provided on the opposed side of the electro-optic medium from the non-linear array and extends across the whole display.) After a pre-selected interval known as the “line address time” the selected row is deselected, the next row is selected, and the voltages on the column drivers are changed so that the next line of the display is written. This process is repeated so that the entire display is written in a row-by-row manner.


It might at first appear that the ideal method for addressing such an impulse-driven electro-optic display would be so-called “general grayscale image flow” in which a controller arranges each writing of an image so that each pixel transitions directly from its initial gray level to its final gray level. However, inevitably there is some error in writing images on an impulse-driven display. Some such errors encountered in practice include:

    • (a) Prior State Dependence; With at least some electro-optic media, the impulse required to switch a pixel to a new optical state depends not only on the current and desired optical state, but also on the previous optical states of the pixel.
    • (b) Dwell Time Dependence; With at least some electro-optic media, the impulse required to switch a pixel to a new optical state depends on the time that the pixel has spent in its various optical states. The precise nature of this dependence is not well understood, but in general, more impulse is required the longer the pixel has been in its current optical state.
    • (c) Temperature Dependence; The impulse required to switch a pixel to a new optical state depends heavily on temperature.
    • (d) Humidity Dependence; The impulse required to switch a pixel to a new optical state depends, with at least some types of electro-optic media, on the ambient humidity.
    • (e) Mechanical Uniformity; The impulse required to switch a pixel to a new optical state may be affected by mechanical variations in the display, for example variations in the thickness of an electro-optic medium or an associated lamination adhesive. Other types of mechanical non-uniformity may arise from inevitable variations between different manufacturing batches of medium, manufacturing tolerances and materials variations.
    • (f) Voltage Errors; The actual impulse applied to a pixel will inevitably differ slightly from that theoretically applied because of unavoidable slight errors in the voltages delivered by drivers.


General grayscale image flow suffers from an “accumulation of errors” phenomenon. For example, imagine that temperature dependence results in a 0.2 L* (where L* has the usual CIE definition:

L*=116(R/R0)1/3−16,

where R is the reflectance and R0 is a standard reflectance value) error in the positive direction on each transition. After fifty transitions, this error will accumulate to 10 L*. Perhaps more realistically, suppose that the average error on each transition, expressed in terms of the difference between the theoretical and the actual reflectance of the display is ±0.2 L*. After 100 successive transitions, the pixels will display an average deviation from their expected state of 2 L*; such deviations are apparent to the average observer on certain types of images.


This accumulation of errors phenomenon applies not only to errors due to temperature, but also to errors of all the types listed above. As described in the aforementioned U.S. Pat. No. 7,012,600, compensating for such errors is possible, but only to a limited degree of precision. For example, temperature errors can be compensated by using a temperature sensor and a lookup table, but the temperature sensor has a limited resolution and may read a temperature slightly different from that of the electro-optic medium. Similarly, prior state dependence can be compensated by storing the prior states and using a multi-dimensional transition matrix, but controller memory limits the number of states that can be recorded and the size of the transition matrix that can be stored, placing a limit on the precision of this type of compensation.


Thus, general grayscale image flow requires very precise control of applied impulse to give good results, and empirically it has been found that, in the present state of the technology of electro-optic displays, general grayscale image flow is infeasible in a commercial display.


Under some circumstances, it may be desirable for a single display to make use of multiple drive schemes. For example, a display capable of more than two gray levels may make use of a gray scale drive scheme (“GSDS”) which can effect transitions between all possible gray levels, and a monochrome drive scheme (“MDS”) which effects transitions only between two gray levels, the MDS providing quicker rewriting of the display that the GSDS. The MDS is used when all the pixels which are being changed during a rewriting of the display are effecting transitions only between the two gray levels used by the MDS. For example, the aforementioned U.S. Pat. No. 7,119,772 describes a display in the form of an electronic book or similar device capable of displaying gray scale images and also capable of displaying a monochrome dialogue box which permits a user to enter text relating to the displayed images. When the user is entering text, a rapid MDS is used for quick updating of the dialogue box, thus providing the user with rapid confirmation of the text being entered. On the other hand, when the entire gray scale image shown on the display is being changed, a slower GSDS is used.


Alternatively, a display may make use of a GSDS simultaneously with a “direct update” drive scheme (“DUDS”). The DUDS may have two or more than two gray levels, typically fewer than the GSDS, but the most important characteristic of a DUDS is that transitions are handled by a simple unidirectional drive from the initial gray level to the final gray level, as opposed to the “indirect” transitions often used in a GSDS, where in at least some transitions the pixel is driven from an initial gray level to one extreme optical state, then in the reverse direction to a final gray level; in some cases, the transition may be effected by driving from the initial gray level to one extreme optical state, thence to the opposed extreme optical state, and only then to the final extreme optical state—see, for example, the drive scheme illustrated in FIGS. 11A and 11B of the aforementioned U.S. Pat. No. 7,012,600. Thus, present electrophoretic displays have an update time in grayscale mode of about two to three times the length of a saturation pulse (where “the length of a saturation pulse” is defined as the time period, at a specific voltage, that suffices to drive a pixel of a display from one extreme optical state to the other), or approximately 700-900 milliseconds, whereas a DUDS has a maximum update time equal to the length of the saturation pulse, or about 200-300 milliseconds.


However, there are some circumstances in which it is desirable to provide an additional drive scheme (hereinafter for convenience referred to as an “application update drive scheme” or “AUDS”) with a maximum update time even shorter than that of a DUDS, and thus less than the length of the saturation pulse, even if such rapid updates compromise the quality of the image produced. An AUDS may be desirable for interactive applications, such as drawing on the display using a stylus and a touch sensor, typing on a keyboard, menu selection, and scrolling of text or a cursor. One specific application where an AUDS may be useful is electronic book readers which simulate a physical book by showing images of pages being turned as the user pages through an electronic book, in some cases by gesturing on a touch screen. During such page turning, rapid motion through the relevant pages is of greater importance than the contrast ratio or quality of the images of the pages being turned; once the user has selected his desired page, the image of that page can be rewritten at higher quality using the GSDS drive scheme. Prior art electrophoretic displays are thus limited in interactive applications. However, since the maximum update time of the AUDS is less than the length of the saturation pulse, the extreme optical states obtainable by the AUDS will be different from those of a DUDS; in effect, the limited update time of the AUDS does not allow the pixel to be driven to the normal extreme optical states.


However, there is an additional complication to the use of an AUDS, namely the need for overall DC balance. As discussed in many of the aforementioned MEDEOD applications, the electro-optic properties and the working lifetime of displays may be adversely affected if the drive scheme(s) used are not substantially DC balanced (i.e., if the algebraic sum of the impulses applied to a pixel during any series of transitions beginning and ending at the same gray level is not close to zero). See especially the aforementioned U.S. Pat. No. 7,453,445, which discusses the problems of DC balancing in so-called “heterogeneous loops” involving transitions carried out using more than one drive scheme. In any display which uses a GSDS and an AUDS, it is unlikely that the two drive schemes will be overall DC balanced because of the need for high speed transitions in the AUDS. (In general, it is possible to use a GSDS and a DUDS simultaneously while still preserving overall DC balance.) Accordingly, it is desirable to provide some method of driving a display using both a GSDS and an AUDS which allows for overall DC balancing, and one aspect of the present invention relates to such a method.


A second aspect of the present invention relates to methods for reducing so-called “ghosting” in electro-optic displays. Certain drive schemes for such displays, especially drive schemes intended to reduce flashing of the display, leave “ghost images” (faint copies of previous images) on the display. Such ghost images are distracting to the user, and reduce the perceived quality of the image, especially after multiple updates. One situation where such ghost images are a problem is when an electronic book reader is used to scroll through an electronic book, as opposed to jumping between separate pages of the book.


SUMMARY OF INVENTION

Accordingly, in one aspect, this invention provides a method of operating an electro-optic display in which an image is scrolled across the display, and in which a clearing bar is provided between two portions of the image being scrolled, the clearing bar scrolling across in display in synchronization with said two portions of the image, the writing of the clearing bar being effected such that every pixel over which the clearing bar passes is rewritten.


In another aspect, this invention provides a method of operating an electro-optic display in which a image is formed on the display, and in which a clearing bar is provided which travels across the image on the display, such that every pixel over which the clearing bar passes is rewritten.


In all the methods of the present invention, the display may make use of any of the type of electro-optic media discussed above. Thus, for example, the electro-optic display may comprise a rotating bichromal member or electrochromic material. Alternatively, the electro-optic display may comprise an electrophoretic material comprising a plurality of electrically charged particles disposed in a fluid and capable of moving through the fluid under the influence of an electric field. The electrically charged particles and the fluid may be confined within a plurality of capsules or microcells. Alternatively, the electrically charged particles and the fluid may be present as a plurality of discrete droplets surrounded by a continuous phase comprising a polymeric material. The fluid may be liquid or gaseous.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 of the accompanying drawings illustrates schematically a gray level drive scheme used to drive an electro-optic display.



FIG. 2 illustrates schematically a gray level drive scheme used to drive an electro-optic display.



FIG. 3 illustrates schematically a transition from the gray level drive scheme of FIG. 1 to the monochrome drive scheme of FIG. 2 using a transition image method of the present invention.



FIG. 4 illustrates schematically a transition which is the reverse of that shown in FIG. 3.



FIG. 5 illustrates schematically a transition from the gray level drive scheme of FIG. 1 to the monochrome drive scheme of FIG. 2 using a transition drive scheme method of the present invention.



FIG. 6 illustrates schematically a transition which is the reverse of that shown in FIG. 5.



FIG. 7A illustrates a clearing bar in accordance with the subject matter presented herein.



FIG. 7B illustrates a clearing bar having the form of a frame around an image.



FIG. 7C illustrates the clearing bar having a different color than the background.



FIG. 7D illustrates the clearing bar having the form of a series of discrete points across the display strategically placed.





DETAILED DESCRIPTION

As already mentioned in one aspect this invention provides two different but related methods of operating an electro-optic display using two different drive schemes. In the first of these two methods, the display is first driven to a pre-determined transition image using a first drive scheme, then rewritten to a second image using a second drive scheme. The display is thereafter returned to the same transition image using the second drive scheme, and finally driven to a third image using the first drive scheme. In this “transition image” (“TI”) driving method, the transition image acts as a known changeover image between the first and second driving schemes. It will be appreciated that more than one image may be written on the display using the second drive scheme between the two occurrences of the transition image. Provided that the second drive scheme (which is typically and AUDS) is substantially DC balanced, there will be little or no DC imbalance caused by use of the second drive scheme between the two occurrences of the same transition image as the display transitions from the first to the second and back to the first drive scheme (which is typically a GSDS).


Since the same transition image is used for the first-second (GSDS-AUDS) transition and for the reverse (second-first) transition, the exact nature of the transition image does not affect the operation of the TI method of the invention, and the transition image can be chosen arbitrarily. Typically, the transition image will be chosen to minimize the visual effect of the transition. The transition image could, for example, be chosen as solid white or black, or a solid gray tone, or could be patterned in a manner having some advantageous quality. In other words, the transition image can be arbitrary but each pixel of this image must have a predetermined value. It will also be apparent that since both the first and the second drive schemes must effect a change from the transition image to a different image, the transition image must be one which can be handled by both the first and second drive schemes, i.e., the transition image must be limited to a number of gray levels equal to the lesser of the number of gray levels employed by the first and second drive schemes. The transition image can be interpreted differently by each drive scheme but it must be treated consistently by each drive scheme. Furthermore, provided that the same transition image is used for a particular first-second transition and for the reverse transition immediately following, it is not essential that the same transition image be used for every pair of transitions; a plurality of different transition images could be provided and the display controller arranged to choose a particular transition image depending upon, for example, the nature of the image already present on the display, in order to minimize flashing. The TI method of the present invention could also use multiple successive transition images to further improve image performance at the cost of slower transitions.


Since DC balancing of electro-optic displays needs to be achieved on a pixel-by-pixel basis (i.e., the drive scheme must ensure that each pixel is substantially DC balanced), the TI method of the present invention may be used where only part of a display is being switched to a second drive scheme, for example where it is desired to provide an on-screen text box to display text input from a keyboard, or to provide an on-screen keyboard in which individual keys flash to confirm input.


The TI method of the present invention is not confined to methods using only a GSDS in addition to the AUDS. Indeed, in one preferred embodiment of the TI method, the display is arranged to use a GSDS, a DUDS and an AUDS. In one preferred form of such a method, since the AUDS has an update time less than the saturation pulse, the white and black optical states achieved by the AUDS are reduced compared to those achieved by the DUDS and GSDS (i.e., the white and black optical states achieved by the AUDS are actually very light gray and very dark gray compared with the “true” black and white states achieved by the GSDS) and there is increased variability in the optical states achieved by the AUDS compared with those achieved by the GSDS and DUDS due to prior-state (history) and dwell time effects leading to undesirable reflectance errors and image artifacts. To reduce these errors it is proposed to use the following image sequence.

    • The GC waveform will transition from an n-bit image to an n-bit image.
    • The DU waveform will transition an n-bit (or less than n-bit) image to an m-bit image where m⇐n.
    • The AU waveform will transition a p-bit image to a p-bit image; typically, n=4, m=1, and p=1, or n=4, m=2 or 1, p=2 or 1.
    • −GC→image n−1−GC or DU→transition image−AU→image n−AU→image n+1−AU→ . . . −AU→image n+m−1−AU→image n+m−AU→transition image−GC or DU→image n+m+1


From the foregoing, it will be seen that in the TI method of the present invention the AUDS may need little or no tuning and can be much faster that the other drive schemes (GSDS or DUDS) used. DC balance is maintained by the use of the transition image and the dynamic range of the slower drive schemes (GSDS and DUDS) is maintained. The image quality achieved can be better than not using intermediate updates. The image quality can be improved during the AUDS updating since the first AUDS update can be applied to a (transition) image having desirable attributes. For a solid image, the image quality can be improved by having the AUDS update applied to a uniform background. This reduces previous state ghosting. The image quality after the last intermediate update can also be improved by have the GSDS or DUDS update applied to a uniform background.


In the second method of the present invention (which may hereinafter be referred to as a “transition drive scheme” or “TDS” method), a transition image is not used, but instead a transition drive scheme is used; a single transition using the transition drive scheme replaces last transition using the first drive scheme (which generates the transition image) and the first transition using the second drive scheme (which transitions from the transition image to the second image). In some cases, two different transition drive schemes may be required depending upon the direction of the transition; in others, a single transition drive scheme will suffice for transitions in either direction. Note that a transition drive scheme is only applied once to each pixel, and is not repeatedly applied to the same pixel, as are the main (first and second) drive schemes.


The TI and TDS methods of the present invention will not be explained in more detail with reference to the accompanying drawings which illustrate, in a highly schematic manner, transitions occurring in these two methods. In all the accompanying drawings, time increases from left to right, the squares or circles represent gray levels, and the lines connecting these squares or circles represent gray level transitions.



FIG. 1 illustrates schematically a standard gray scale waveform having N gray levels (illustrated as N=6, where the gray levels are indicated by squares) and N×N transitions illustrated by the lines linking the initial gray level of a transition (on the left hand side of FIG. 1) with the final gray level (on the right hand side). (Note that it is necessary to provide for zero transitions where the initial and final gray levels are the same; as explained in several of the MEDEOD applications mentioned above, typically zero transitions still involve application of periods of non-zero voltage to the relevant pixel). Each gray level has not only a specific gray level (reflectance) but, if as is desirable the overall drive scheme is DC balanced (i.e., the algebraic sum of the impulses applied to a pixel over any series of transitions beginning and ending at the same gray level is substantially zero), a specific DC offset. The DC offsets are not necessarily evenly space or even unique. So for a waveform with N gray levels, there will be a DC offset that corresponds to each of those gray levels.


When a set of drive schemes are DC balanced to each other, the path taken to get to a specific gray level may vary but the total DC offset for each gray level is the same. Thus, one can switch drive schemes within the set balanced to each other without worrying about incurring a growing DC imbalance, which can cause damage to certain types of display as discussed in the aforementioned MEDEOD applications.


The aforementioned DC offsets are measured relative to one another, i.e., the DC offset for one gray level is set arbitrarily to zero arbitrary and the DC offsets of the remaining gray levels are measured relative to this arbitrary zero.



FIG. 2 is a diagram similar to FIG. 1 but illustrating a monochrome drive scheme (N=2).


If a display has two drive schemes which are not DC balanced to each other (i.e., their DC offsets between particular gray levels are different; this does not necessarily imply that the two drive schemes have differing numbers of gray levels), it is still possible to switch between the two drive schemes without incurring an increasingly large DC imbalance over time. However, particular care need be taken in switching between the drive schemes. The necessary transition can be accomplished using a transition image in accordance with the TI method of the present invention. A common gray tone is used to transition between the differing drive schemes. Whenever switching between modes one must be always transition by switching to that common gray level in order to ensure the DC balance has been maintained.



FIG. 3 illustrates such a TI method being applied during the transition from the drive scheme shown in FIG. 1 to that shown in FIG. 2, which are assumed not to be balanced to each other. The left hand one fourth of FIG. 3 shows a regular gray scale transition using the drive scheme of FIG. 1. Thereafter, the first part of the transition uses the drive scheme of FIG. 1 to drive all pixels of the display to a common gray level (illustrated as the uppermost gray level shown in FIG. 3), while the second part of the transition uses the drive scheme of FIG. 2 to drive the various pixels as required to the two gray levels of the FIG. 2 drive scheme. Thus, the overall length of the transition is equal to the combined lengths of transitions in the two drive schemes. If the optical states of the supposedly common gray level do not match in the two drive schemes some ghosting may result. Finally, a further transition is effected using only the drive scheme of FIG. 2.


It will be appreciated that, although only a single common gray level is shown in FIG. 3, there may be multiple common gray levels between the two drive schemes. In such a case, any one common gray level may be used for the transition image, and the transition image may simply be that caused by driving every pixel of the display to one common gray level. This tends to produce a visually pleasing transition in which one image “melts” into a uniform gray field, from which a different image gradually emerges. However, in such a case it is not necessary that all pixels use the same common gray level; one set of pixels may use one common gray level while a second set of pixels use a different common gray level; so long as the drive controller knows which pixels use which common gray level, the second part of the transition can still be effected using the drive scheme of FIG. 2. For example, two sets of pixels using different gray levels could be arranged in a checkerboard pattern.



FIG. 4 illustrates a transition which is the reverse of that shown in FIG. 3. The left hand one fourth of FIG. 4 shows a regular monochrome transition using the drive scheme of FIG. 2. Thereafter, the first part of the transition uses the drive scheme of FIG. 2 to drive all pixels of the display to a common gray level (illustrated as the uppermost gray level shown in FIG. 4), while the second part of the transition uses the drive scheme of FIG. 1 to drive the various pixels as required to the six gray levels of the FIG. 1 drive scheme. Thus, the overall length of the transition is again equal to the combined lengths of transitions in the two drive schemes. Finally, a further gray scale transition is effected using only the drive scheme of FIG. 1.



FIGS. 5 and 6 illustrate transitions which are generally similar to those of FIGS. 3 and 4 respectively but which use a transition drive scheme method of the present invention rather than a transition image method. The left hand one third of FIG. 5 shows a regular gray scale transition using the drive scheme of FIG. 1. Thereafter, a transition image drive scheme is invoked to transition directly from the six gray levels of FIG. 1 drive scheme to the two gray levels of the FIG. 2 drive scheme; thus, while the FIG. 1 drive scheme is a 6×6 drive scheme and the FIG. 2 drive scheme is a 2×2 drive scheme, the transition drive scheme is a 6×2 drive scheme. The transition drive scheme can if desired replicate the common gray level approach of FIGS. 3 and 4, but the use of a transition drive scheme rather than a transition image allows more design freedom and hence the transition drive scheme need not pass through a common gray level case. Note that the transition drive scheme is only used for a single transition at any one time, unlike the FIG. 1 and FIG. 2 drive schemes, which will typically be used for numerous successive transitions. The use of a transition drive scheme allows for better optical matching of gray levels and the length of the transition can be reduced below that of the sum of the individual drive schemes, thus providing faster transitions.



FIG. 6 illustrates a transition which is the reverse of that shown in FIG. 5. If the FIG. 2FIG. 1 transition is the same as the FIG. 1FIG. 2 transition for the overlapping transitions (which is not always the case) the same transition drive scheme may be used in both directions, but otherwise two discrete transition drive schemes are required.


As already noted, a further aspect of the present invention relates to method of operating electro-optic displays using clearing bars. In one such method, an image is scrolled across the display, and a clearing bar is provided between two portions of the image being scrolled, the clearing bar scrolling across in display in synchronization with the two adjacent portions of the image, the writing of the clearing bar being effected such that every pixel over which the clearing bar passes is rewritten. In another such method, an image is formed on the display and a clearing bar is provided which travels across the image on the display, such that every pixel over which the clearing bar passes is rewritten. These two versions of the method may hereinafter be referred to as the “synchronized clearing bar” and non-synchronized clearing bar” methods respectively.


The “clearing bar” methods are primarily, although not exclusively, to remove, or at least alleviate the ghosting effects which may occur in electro-optic displays when local updating or poorly constructed drive schemes are used. Once situation where such ghosting may occur is scrolling of a display, i.e., the writing on the display of a series of images differing slightly from one another so as to give the impression that an image larger than the display itself (for example, an electronic book, web page or map) is being moved across the display. Such scrolling can leave a smear of ghosting on the display, and this ghosting gets worse the larger the number of successive images displayed.


In a bi-stable display, a black (or other non background color) clearing bar may be added to one or more edges of the onscreen image (in the margins, on the border or in the seams). This clearing bar may be located in pixels that are initially on screen or, if the controller memory retains an image which is larger than the physical image displayed (for example, to speed up scrolling), the clearing bar could also be located in pixels that are in the software memory but not on the screen. When the display image is scrolled (as when reading a long web page) in the image displayed the clearing bar travels across the image synchronously with the movement of the image itself, so that the scrolled image gives the impression of showing two discrete pages rather than a scroll, and the clearing bar forces updates of all pixels across which it travels, reducing the build up of ghosts and similar artifacts as it passes.


The clearing bar could take various forms, some of which might not, at least to a casual user, be recognizable as clearing bars. For example, a clearing bar could be used as a delimiter between contributions in between contributions in a chat or bulletin board application, so that each contribution would scroll across the screen with a clearing bar between each successive pair of contributions clearing screen artifacts as the chat or bulletin board topic progressed. In such an application, there would often be more than one clearing bar on the screen at one time.


A clearing bar could have the form of a simple line perpendicular to the direction of scrolling, and this typically horizontal. However, numerous other forms of clearing bar could be used in the methods of the present invention. For example, a clearing bar could have the form of parallel lines, jagged (saw tooth) lines, diagonal lines, wavy (sinusoidal) lines or broken lines. The clearing bar could also have a form other than lines; for example a clearing bar could have the form of a frame around an image, a grid, that may or may not be visible (the grid could be smaller than the display size or larger than the display size). The clearing bar could also have the form of a series of discrete points across the display strategically placed such that when they are scrolled across the display they force every pixel to switch. such discrete points, while more complicated to implement have the advantage of being self-masking and thus less visible to the user because of being spread out.


The minimum number of pixels in the clearing bar in the direction of scrolling (hereinafter for convenience called the “height” of the clearing bar) should be at least equal to the number of pixels by which the image moves at each scrolling image update. Thus, the clearing bar height could vary dynamically; as the page was scrolled faster the clearing bar height would increase, and as scrolling slowed, the clearing bar height would shrink. However, for simple implementation, it may be most convenient to set the clearing bar height sufficient to allow for the maximum scrolling speed and keep this height constant. Since the clearing bar is unnecessary after scrolling ceases, the clearing bar could be removed when scrolling ceases or remain on the display. The use of a clearing bar will typically be most advantageous when a rapid update drive scheme (DUDS or ADDS) is being used.


When the clearing bar is in the form of a number of spread out points, the “height” of the clearing bar must account for the spacing between the points. The set of each point's location in the direction of scrolling mod the number of pixels which the image moves at each scrolling update should lie in the range of zero to one less than the number of pixels moved at each scrolling update, and this requirement should be satisfied for each parallel line of pixels in the scrolling direction.


The clearing bar need not be of a solid color but could be patterned. A patterned clearing bar might, depending on the drive scheme used, add ghosting noise to the background, thus better disguising image artifacts. The pattern of the clearing bar could change depending upon bar location and time. Artifacts made from using a patterned clearing bar in space could create ghosting in a manner more appealing to the eye. For example one could use a pattern in the form of a corporate logo so that ghosting artifacts left behind appear as a “watermark” of that logo, although if the wrong drive scheme were used, undesirable artifacts could be created. The suitability of an patterned clearing bar may be determined by scrolling the patterned clearing bar with the desired drive scheme across the display using a solid background image, and judging if it the resulting artifacts are desirable or undesirable.


A patterned clearing bar may be particularly useful when the display uses a patterned background. All the same rules would apply; in the simplest case a clearing bar color different from the background color may be chosen. Alternatively, two or more clearing bars of different colors or patterns may be used. A patterned clearing bar can effectively be the same as a spread out points clearing bar, though with the spread out points requirements are modified such that there is there is a point on the clearing bar (of a different color than the specific one being cleared on the background) for each grey tone of the background, such that the set of each clearing point's location in the direction of scrolling mod the number of pixels moved in each scrolling step covers the same range as the patterned background points' location in the direction of scrolling mod the number of pixels moved each scrolling step.


In a display which uses a striped background, a clearing bar could use the same gray tones as the striped background but be out of phase with the background by one block. This could effectively hide the clearing bar to the extent that the clearing bar could be placed in the background between text and behind images. A background textured with random ghosting from a patterned clearing bar can camouflage patterned ghosting from a recognizable image and may produce a display more attractive to some users. Alternatively, the clearing bar could be arranged to leave a ghost of specific pattern, if there is ghosting, such that the ghosting becomes a watermark on the display and an asset.


Although the foregoing discussion of clearing bars has focused on clearing bars that scroll with the image on the display, a clearing bar need not scroll in this manner but instead could be periodically out of synchronization with the scrolling or completely independent of the scrolling; for example, the clearing bar could operate like a windshield wiper or like a conventional video wipe that traversed a display in one direction without the background image moving at all. Multiple non-synchronized clearing bars could be used simultaneously or sequentially to clear various portions of a display. The provision of a non-synchronized clearing bar in one or more parts of the display could be controlled by a display application.


The clearing bar needs not use the same drive scheme as the rest of the display. If a drive scheme having the same or shorter length than that used for the remaining part of the display is used for the clearing bar, implementation is straight forward. If the drive scheme of the clearing bar is longer (as is likely to be the case in practice) not all the pixels in the clearing bar will switch at once but rather a wide subsection of pixels will switch while there are non-switching pixels and regularly switching pixels moving around the clearing bar. The number of non-switching pixels should be large enough so the regularly switching and clearing bar zones do not collide where as the clearing bar needs be wide enough so that no pixels are missed as the clearing bar moves across the screen. The drive scheme used for the clearing bar could be a selected one of the drive schemes used for the remainder of the display or could be a drive scheme specifically tuned to the needs of a clearing bar. If multiple clearing bars are used, they need not all use the same drive scheme.


From the foregoing, it will be seen that the clearing bar methods of the present invention can readily be incorporated into many types of electro-optic displays and provide methods of page clearing which are less obtrusive visually than other methods of page clearing. Several variants of clearing bar methods, both synchronized and non-synchronized could be incorporated into a specific display, so that either software or the user could select the method to be used depending upon factors such as user perception of acceptability, or the specific program being run on the display.


It will be apparent to those skilled in the art that numerous changes and modifications can be made in the specific embodiments of the invention described above without departing from the scope of the invention. Accordingly, the whole of the foregoing description is to be interpreted in an illustrative and not in a limitative sense.

Claims
  • 1. A method of operating an electro-optic display in which an image is formed on the display, and in which a clearing bar is provided which travels across the image on the display, such that every pixel over which the clearing bar passes is rewritten, the clearing bar configured to reduce ghosting effects and being located in pixels that are initially on screen or in pixels that are in the software memory but not on the screen, and wherein the clearing bar is patterned and uses a color different from a background color, or two or more clearing bars of different colors or patterns are used.
  • 2. The method of claim 1, wherein the clearing bar has a form of a frame around an image, the frame being smaller than a display size or larger than a display size.
  • 3. The method of claim 1, wherein a minimum number of pixels in the clearing bar or a height of the clearing bar in a direction of scrolling is at least equal to the number of pixels by which the image moves at each scrolling image update and the clearing bar height varies dynamically.
  • 4. The method of claim 1, wherein the clearing bar uses the same gray tones as a striped background and is out of phase with the background by one block.
  • 5. The method of claim 1, wherein the clearing bar has a form of a series of discrete points across the display strategically placed such that when the discrete points are scrolled across the display the discrete points force every pixel to switch.
  • 6. The method of claim 5, wherein the clearing bar is in a form of a number of spread out points, the height of the clearing bar accounts for the spacing between the points.
  • 7. The method of claim 1, wherein a drive scheme having the same or shorter length than that used for the remaining part of the display is used for the clearing bar.
  • 8. The method of claim 1, wherein when a drive scheme of the clearing bar is longer that used for the remaining part of the display, not all the pixels in the clearing bar will switch at once but rather a wide subsection of the pixels will switch while there are non-switching pixels and regularly switching pixels moving around the clearing bar.
REFERENCE TO RELATED APPLICATIONS

This application is a divisional of application Ser. No. 14/949,134, filed on Nov. 23, 2015 (Publication No. 2016/0078820 A1), which itself is a divisional of application Ser. No. 13/083,637, filed Apr. 11, 2011 (Publication No. 2011/0285754, now issued as U.S. Pat. No. 9,230,492), which claims the benefit of Application Ser. No. 61/322,355, filed Apr. 9, 2010. This application is also a continuation-in-part of application Ser. No. 12/411,643, filed Mar. 26, 2009 (Publication No. 2009/0179923), which is itself a division of application Ser. No. 10/879,335, filed Jun. 29, 2004 (now U.S. Pat. No. 7,528,822, issued May 5, 2009), which is itself a continuation-in-part of application Ser. No. 10/814,205, filed Mar. 31, 2004 (now U.S. Pat. No. 7,119,772 issued Oct. 10, 2006). The aforementioned application Ser. Nos. 12/411,643 and 10/879,335 claim benefit of Application Ser. No. 60/481,040, filed Jun. 30, 2003; of Application Ser. No. 60/481,053, filed Jul. 2, 2003; and of Application Ser. No. 60/481,405, filed Sep. 22, 2003. The aforementioned application Ser. No. 10/814,205 claims benefit of Application Ser. No. 60/320,070, filed Mar. 31, 2003; of Application Ser. No. 60/320,207, filed May 5, 2003; of Application Ser. No. 60/481,669, filed Nov. 19, 2003; of Application Ser. No. 60/481,675, filed Nov. 20, 2003; and of Application Ser. No. 60/557,094, filed Mar. 26, 2004. All of the above-listed applications are incorporated by reference herein. This application is related to U.S. Pat. Nos. 5,930,026; 6,445,489; 6,504,524; 6,512,354; 6,531,997; 6,753,999; 6,825,970; 6,900,851; 6,995,550; 7,012,600; 7,023,420; 7,034,783; 7,116,466; 7,119,772; 7,193,625; 7,202,847; 7,259,744; 7,304,787; 7,312,794; 7,327,511; 7,453,445; 7,492,339; 7,528,822; 7,545,358; 7,583,251; 7,602,374; 7,612,760; 7,679,599; 7,688,297; 7,729,039; 7,733,311; 7,733,335; and 7,787,169; and U.S. Patent Applications Publication Nos. 2003/0102858; 2005/0122284; 2005/0179642; 2005/0253777; 2005/0280626; 2006/0038772; 2006/0139308; 2007/0013683; 2007/0091418; 2007/0103427; 2007/0200874; 2008/0024429; 2008/0024482; 2008/0048969; 2008/0129667; 2008/0136774; 2008/0150888; 2008/0165122; 2008/0211764; 2008/0291129; 2009/0174651; 2009/0179923; 2009/0195568; 2009/0256799; and 2009/0322721. The aforementioned patents and applications may hereinafter for convenience collectively be referred to as the “MEDEOD” (MEthods for Driving Electro-Optic Displays) applications. The entire contents of these patents and applications, and of all other U.S. patents and published and applications mentioned below, are herein incorporated by reference.

US Referenced Citations (303)
Number Name Date Kind
3668106 Ota Jun 1972 A
3756693 Ota Sep 1973 A
3767392 Ota Oct 1973 A
3792308 Ota Feb 1974 A
3870517 Ota et al. Mar 1975 A
3892568 Ota Jul 1975 A
3972040 Hilsum Jul 1976 A
4041481 Sato Aug 1977 A
4088395 Gigila May 1978 A
4418346 Batchelder Nov 1983 A
4430648 Togashi Feb 1984 A
4450440 White May 1984 A
4741604 Kornfeld May 1988 A
4746917 DiSanto May 1988 A
4833464 DiSanto May 1989 A
4947157 DiSanto Aug 1990 A
4947159 DiSanto Aug 1990 A
5046823 Mori et al. Sep 1991 A
5066946 DiSanto Nov 1991 A
5223115 DiSanto Jun 1993 A
5245328 Garrett Sep 1993 A
5247290 DiSanto Sep 1993 A
5254981 DiSanto Oct 1993 A
5266937 DiSanto Nov 1993 A
5293528 DiSanto Mar 1994 A
5302235 DiSanto Apr 1994 A
5412398 DiSanto May 1995 A
5467107 DiSanto Nov 1995 A
5467217 Check, III Nov 1995 A
5499038 DiSanto Mar 1996 A
5654732 Katakura Aug 1997 A
5684501 Knapp Nov 1997 A
5689282 Wolfs Nov 1997 A
5717515 Sheridon Feb 1998 A
5739801 Sheridon Apr 1998 A
5745094 Gordon, II et al. Apr 1998 A
5760761 Sheridon Jun 1998 A
5777782 Sheridon Jul 1998 A
5805149 Yuki Sep 1998 A
5808783 Crowley Sep 1998 A
5866284 Vincent Feb 1999 A
5872552 Gordon, II Feb 1999 A
5892504 Knapp Apr 1999 A
5896117 Moon Apr 1999 A
5930026 Jacobson Jul 1999 A
5933203 Wu Aug 1999 A
5961804 Jacobson Oct 1999 A
5963456 Klein Oct 1999 A
5978052 Ilcisin Nov 1999 A
6002384 Tamai Dec 1999 A
6017584 Albert Jan 2000 A
6034807 Little Mar 2000 A
6054071 Mikkelsen, Jr. Apr 2000 A
6055091 Sheridon Apr 2000 A
6055180 Gudesen Apr 2000 A
6057814 Kalt May 2000 A
6064410 Wen May 2000 A
6067185 Albert May 2000 A
6081285 Wen Jun 2000 A
6097531 Sheridon Aug 2000 A
6118426 Albert Sep 2000 A
6120588 Jacobson Sep 2000 A
6120839 Comiskey Sep 2000 A
6124851 Jacobson Sep 2000 A
6128124 Silverman Oct 2000 A
6130773 Jacobson Oct 2000 A
6130774 Albert Oct 2000 A
6137467 Sheridon Oct 2000 A
6144361 Gordon, II Nov 2000 A
6147791 Sheridon Nov 2000 A
6154190 Yang Nov 2000 A
6172798 Albert Jan 2001 B1
6177921 Comiskey Jan 2001 B1
6184856 Gordon, II Feb 2001 B1
6211998 Sheridon Apr 2001 B1
6225971 Gordon, II May 2001 B1
6232950 Albert May 2001 B1
6236385 Nomura May 2001 B1
6239896 Ikeda May 2001 B1
6241921 Jacobson Jun 2001 B1
6249271 Albert Jun 2001 B1
6252564 Albert Jun 2001 B1
6262706 Albert Jul 2001 B1
6262833 Loxley Jul 2001 B1
6268890 Kawahara Jul 2001 B1
6271823 Gordon, II Aug 2001 B1
6300932 Albert Oct 2001 B1
6301038 Fitzmaurice Oct 2001 B1
6312304 Duthaler Nov 2001 B1
6312971 Amundson Nov 2001 B1
6320565 Albu Nov 2001 B1
6323989 Jacobson Nov 2001 B1
6327072 Comiskey Dec 2001 B1
6330054 Ikami Dec 2001 B1
6348908 Richley Feb 2002 B1
6359605 Knapp Mar 2002 B1
6373461 Hasegawa Apr 2002 B1
6376828 Comiskey Apr 2002 B1
6377387 Duthaler Apr 2002 B1
6392678 Nakamura May 2002 B2
6392785 Albert May 2002 B1
6392786 Albert May 2002 B1
6407763 Yamaguchi Jun 2002 B1
6413790 Duthaler Jul 2002 B1
6421033 Williams Jul 2002 B1
6422687 Jacobson Jul 2002 B1
6445374 Albert Sep 2002 B2
6445489 Jacobson Sep 2002 B1
6459418 Comiskey Oct 2002 B1
6462837 Tone Oct 2002 B1
6473072 Comiskey Oct 2002 B1
6480182 Turner Nov 2002 B2
6498114 Amundson Dec 2002 B1
6504524 Gates Jan 2003 B1
6506438 Duthaler Jan 2003 B2
6512354 Jacobson Jan 2003 B2
6515649 Albert Feb 2003 B1
6518949 Drzaic Feb 2003 B2
6521489 Duthaler et al. Feb 2003 B2
6531997 Gates Mar 2003 B1
6535197 Comiskey Mar 2003 B1
6538801 Jacobson Mar 2003 B2
6545291 Amundson Apr 2003 B1
6580545 Morrison Jun 2003 B2
6639578 Comiskey Oct 2003 B1
6650462 Katase Nov 2003 B2
6652075 Jacobson Nov 2003 B2
6657612 Machida Dec 2003 B2
6657772 Loxley Dec 2003 B2
6664944 Albert Dec 2003 B1
D485294 Albert Jan 2004 S
6672921 Liang Jan 2004 B1
6680725 Jacobson Jan 2004 B1
6683333 Kazlas Jan 2004 B2
6693620 Herb Feb 2004 B1
6704133 Gates Mar 2004 B2
6710540 Albert Mar 2004 B1
6721083 Jacobson Apr 2004 B2
6724519 Comiskey Apr 2004 B1
6727881 Albert Apr 2004 B1
6738050 Comiskey May 2004 B2
6750473 Amundson Jun 2004 B2
6750833 Kasai Jun 2004 B2
6753844 Machida Jun 2004 B2
6753999 Zehner Jun 2004 B2
6762744 Katase Jul 2004 B2
6784880 Fujita Aug 2004 B2
6788449 Liang Sep 2004 B2
6816147 Albert Nov 2004 B2
6819471 Amundson Nov 2004 B2
6822782 Honeyman Nov 2004 B2
6825068 Denis Nov 2004 B2
6825829 Albert Nov 2004 B1
6825970 Goenaga Nov 2004 B2
6831769 Holman Dec 2004 B2
6839158 Albert Jan 2005 B2
6842167 Albert Jan 2005 B2
6842279 Amundson Jan 2005 B2
6842657 Drzaic Jan 2005 B1
6864866 Aoki Mar 2005 B2
6864875 Drzaic Mar 2005 B2
6865010 Duthaler et al. Mar 2005 B2
6866760 Paolini, Jr. Mar 2005 B2
6870657 Fitzmaurice Mar 2005 B1
6870661 Pullen et al. Mar 2005 B2
6900851 Morrison May 2005 B2
6922276 Zhang et al. Jul 2005 B2
6950220 Abramson et al. Sep 2005 B2
6956557 Machida Oct 2005 B2
6958848 Cao et al. Oct 2005 B2
6965358 Kasahara et al. Nov 2005 B1
6967640 Albert et al. Nov 2005 B2
6980196 Turner et al. Dec 2005 B1
6982178 LeCain et al. Jan 2006 B2
6987603 Paolini, Jr. et al. Jan 2006 B2
6995550 Jacobson Feb 2006 B2
7002728 Pullen et al. Feb 2006 B2
7012600 Zehner Mar 2006 B2
7012735 Honeyman et al. Mar 2006 B2
7023420 Comiskey et al. Apr 2006 B2
7030412 Drzaic et al. Apr 2006 B1
7030854 Baucom et al. Apr 2006 B2
7034783 Gates Apr 2006 B2
7038648 Yamakawa May 2006 B2
7038655 Herb May 2006 B2
7071913 Albert Jul 2006 B2
7075502 Drzaic Jul 2006 B1
7081720 Burau Jul 2006 B2
7091939 Kasai Aug 2006 B2
7110163 Webber et al. Sep 2006 B2
7116318 Amundson et al. Oct 2006 B2
7116466 Whitesides et al. Oct 2006 B2
7119772 Amundson Oct 2006 B2
7126743 Johnson Oct 2006 B2
7170670 Webber Jan 2007 B2
7176880 Amundson et al. Feb 2007 B2
7190008 Amundson et al. Mar 2007 B2
7193625 Danner et al. Mar 2007 B2
7202847 Gates Apr 2007 B2
7202991 Zhang et al. Apr 2007 B2
7223672 Kazlas et al. May 2007 B2
7230604 Machida Jun 2007 B2
7230750 Whitesides Jun 2007 B2
7236147 Morita Jun 2007 B2
7236291 Kaga et al. Jun 2007 B2
7256766 Albert et al. Aug 2007 B2
7259744 Arango Aug 2007 B2
7280094 Albert Oct 2007 B2
7304787 Whitesides et al. Dec 2007 B2
7312784 Baucom et al. Dec 2007 B2
7312794 Zehner Dec 2007 B2
7312916 Pullen Dec 2007 B2
7321459 Masuda et al. Jan 2008 B2
7327511 Whitesides et al. Feb 2008 B2
7339715 Webber et al. Mar 2008 B2
7365394 Denis et al. Apr 2008 B2
7365733 Duthaler Apr 2008 B2
7369299 Sakurai et al. May 2008 B2
7388572 Duthaler et al. Jun 2008 B2
7411719 Paolini, Jr. et al. Aug 2008 B2
7420549 Jacobson Sep 2008 B2
7453445 Amundson Nov 2008 B2
7492339 Amundson Feb 2009 B2
7525719 Yakushiji Apr 2009 B2
7528822 Amundson May 2009 B2
7535624 Amundson et al. May 2009 B2
7545358 Gates et al. Jun 2009 B2
7561324 Duthaler et al. Jul 2009 B2
7583251 Arango Sep 2009 B2
7602374 Zehner et al. Oct 2009 B2
7605799 Amundson et al. Oct 2009 B2
7612760 Kawai Nov 2009 B2
7667684 Jacobson et al. Feb 2010 B2
7679814 Paolini, Jr. et al. Mar 2010 B2
7688297 Zehner et al. Mar 2010 B2
7728811 Albert et al. Jun 2010 B2
7729039 LeCain et al. Jun 2010 B2
7733311 Amundson Jun 2010 B2
7733335 Zehner et al. Jun 2010 B2
7787169 Abramson et al. Aug 2010 B2
7804483 Zhou Sep 2010 B2
7839564 Whitesides et al. Nov 2010 B2
7893435 Kazlas et al. Feb 2011 B2
7952557 Amundson May 2011 B2
7956841 Albert Jun 2011 B2
7999787 Amundson Aug 2011 B2
8009348 Zehner Aug 2011 B2
8077141 Duthaler Dec 2011 B2
8106856 Matas Jan 2012 B2
8125501 Amundson Feb 2012 B2
8129655 Jacobson et al. Mar 2012 B2
8139050 Jacobson et al. Mar 2012 B2
8174490 Whitesides May 2012 B2
8289250 Zehner Oct 2012 B2
8293824 Negishi Oct 2012 B2
8300006 Zhou Oct 2012 B2
8314784 Ohkami Nov 2012 B2
8319759 Jacobson Nov 2012 B2
8319766 Gormish Nov 2012 B2
8384658 Albert Feb 2013 B2
8466852 Drzaic Jun 2013 B2
8558783 Wilcox Oct 2013 B2
8928562 Gates et al. Jan 2015 B2
8988328 Kishi Mar 2015 B2
20010026260 Yoneda et al. Oct 2001 A1
20020060321 Kazlas May 2002 A1
20020090980 Wilcox et al. Jul 2002 A1
20020113770 Jacobson et al. Aug 2002 A1
20020196219 Matsunaga Dec 2002 A1
20030058223 Tracy Mar 2003 A1
20030102858 Jacobson Jun 2003 A1
20030193460 Lee Oct 2003 A1
20040051934 Machida Mar 2004 A1
20040105036 Danner et al. Jun 2004 A1
20040119681 Albert et al. Jun 2004 A1
20040120024 Chen Jun 2004 A1
20040165064 Weitbruch Aug 2004 A1
20040190115 Liang Sep 2004 A1
20040239593 Yamada Dec 2004 A1
20040246562 Chung Dec 2004 A1
20050012980 Wilcox et al. Jan 2005 A1
20050018273 Honeyman et al. Jan 2005 A1
20050253777 Zehner Nov 2005 A1
20050259068 Nihei et al. Nov 2005 A1
20050285500 Hattori Dec 2005 A1
20060087479 Sakurai et al. Apr 2006 A1
20060087489 Sakurai et al. Apr 2006 A1
20060087718 Takagi et al. Apr 2006 A1
20060209008 Nihei et al. Sep 2006 A1
20060214906 Kobayashi et al. Sep 2006 A1
20060231401 Sakurai et al. Oct 2006 A1
20070091418 Danner et al. Apr 2007 A1
20070103427 Zhou et al. May 2007 A1
20080024429 Zehner Jan 2008 A1
20080024482 Gates Jan 2008 A1
20080062159 Roh Mar 2008 A1
20080136774 Harris Jun 2008 A1
20080291129 Harris Nov 2008 A1
20080291184 Zhou Nov 2008 A1
20090174651 Jacobson Jul 2009 A1
20090179923 Amundson Jul 2009 A1
20090195568 Sjodin Aug 2009 A1
20090322721 Zehner Dec 2009 A1
Foreign Referenced Citations (30)
Number Date Country
2523763 Dec 1976 DE
0186519 Jul 1986 EP
1145072 Oct 2001 EP
1462847 Sep 2004 EP
1500971 Jan 2005 EP
1536271 Jun 2005 EP
H0391722 Apr 1991 JP
H0396925 Apr 1991 JP
H05173194 Jul 1993 JP
H06233131 Aug 1994 JP
H0915559 Jan 1997 JP
H0916116 Jan 1997 JP
H09185087 Jul 1997 JP
H09230391 Sep 1997 JP
H1175144 Mar 1999 JP
H11113019 Apr 1999 JP
2000221546 Aug 2000 JP
2003122312 Apr 2003 JP
2006064910 Mar 2006 JP
2006209177 Aug 2006 JP
2007240931 Sep 2007 JP
1999010870 Mar 1999 WO
1999067678 Dec 1999 WO
2000005704 Feb 2000 WO
2000036560 Jun 2000 WO
2000038000 Jun 2000 WO
2000067110 Nov 2000 WO
2001007961 Feb 2001 WO
2004079442 Sep 2004 WO
2005093705 Oct 2005 WO
Non-Patent Literature Citations (27)
Entry
Wood, D., “An Electrochromic Renaissance?” Information Display, 18(3), 24 (Mar. 2002) Mar. 1, 2002.
O'Regan, B. et al., “A Low Cost, High-efficiency Solar Cell Based on Dye-sensitized colloidal TiO2 Films”, Nature, vol. 353, Oct. 24, 1991, 737-740 Oct. 24, 1991.
Bach, U. et al., “Nanomaterials-Based Electrochromics for Paper-Quality Displays”, Adv. Mater, 14(11), 845 (2002) Jun. 5, 2002.
Hayes, R.A. et al., “Video-Speed Electronic Paper Based on Electrowetting”, Nature, vol. 425, Sep. 25, pp. 383-385 (2003) Sep. 25, 2003.
Kitamura, T. et al., “Electrical toner movement for electronic paper-like display”, Asia Display/IDW '01, p. 1517, Paper HCS1-1 (2001) Jan. 1, 2001.
Yamaguchi, Y. et al., “Toner display using insulative particles charged triboelectrically”, Asia Display/IDW '01, p. 1729, Paper AMD4-4 (2001) Jan. 1, 2001.
International Search Report and Written Opinion for PCT/US2011/031883 dated Oct. 25, 2011.
Antia, M., “Switchable Reflections Make Electronic Ink”, Science, 285, 658 (1999) Dec. 31, 1999.
Chen, Y., et al., “A Conformable Electronic Ink Display using a Foil-Based a-Si TFT Array”, SID 01 Digest, 157 (Jun. 2001) Jun. 30, 2001.
Comiskey, B., et al., “An electrophoretic ink for all-printed reflective electronic displays”, Nature, 394, 253 (1998) Dec. 31, 1998.
Comiskey, B., et al., “Electrophoretic Ink: A Printable Display Material”, SID 97 Digest (1997), p. 75 Dec. 31, 1997.
Drzaic, P., et al., “A Printed and Rollable Bistable Electronic Display”, SID 98 Digest (1998), p. 1131 Dec. 31, 1998.
Duthaler, G., et al., “Active-Matrix Color Displays Using Electrophoretic Ink and Color Filters”, SID 02 Digest, 1374 (2002) Dec. 31, 2002.
Hunt, R.W.G., “Measuring Color”, 3d. Edn, Fountain Press (ISBN 0 86343 387 1), p. 63 (1998) Dec. 31, 1998.
Jacobson, J., et al., “The last book”, IBM Systems J., 36, 457 (1997) Dec. 31, 1997.
Jo, G-R, et al., “Toner Display Based on Particle Movements”, Chem. Mater, 14, 664 (2002) Dec. 31, 2002.
Kazlas, P., et al., “12.1 SVGA Microencapsulated Electrophoretic Active Matrix Display for Information Applicances”, SID 01 Digest, 152 (Jun. 2001) Jun. 30, 2001.
Mossman, M.A., et al., “A New Reflective Color Display Technique Based on Total Internal Reflection and Substractive Color Filtering”, SID 01 Digest, 1054 (2001) Dec. 31, 2001.
Pitt, M.G., et al., “Power Consumption of Microencapsulated Electrophoretic Displays for Smart Handheld Applications”, SID 02 Digest, 1378 (2002) Dec. 31, 2002.
Poor, A., “Feed forward makes LCDs Faster”, available at “http://www.extremetech.com/article2/0,3973,10085,00.asp” Sep. 24, 2001.
Shiffman, R.R., et al., “An Electrophoretic Image Display with Internal NMOS Address Logic and Display Drivers,” Proceedings of the SID, 1984, vol. 25, 105 (1984) Dec. 31, 1984.
Singer, B. et al., “An X-Y Addressable Electrophoretic Display,” Proceedings of the SID, 18, 255 (1977) Dec. 31, 1977.
Zebber, R., “Image Stability in Active-Matrix Microencapsulated Electrophoretic Displays”, SID 02 Digest, 126 (2002) Dec. 31, 2002.
Zehner, R. et al., “Drive Waveforms for Active Matrix Electrophoretic Displays”, SID 03 Digest, 842 (2003) Dec. 31, 2003.
LG. Philips, Product Specification for Liquid Crystal Display LB121S1-A2 (Espacenet Archive No. XP002443278) Dec. 6, 1999.
Amundson, Karl, et al., “12.3: Flexible, Active-Matrix Display Constructed Using a Microencapsulated Electrophoretic Material and an Organic-Semiconductor-Based Backplane”, SID 01 Digest, 160 (Jun. 2001) Jun. 30, 2001.
Korean Intellectual Property Office; PCT/US2016/060427; International Search Report and Written Opinion; Feb. 3, 2017. Feb. 8, 2017.
Related Publications (1)
Number Date Country
20170178574 A1 Jun 2017 US
Provisional Applications (9)
Number Date Country
61322355 Apr 2010 US
60557094 Mar 2004 US
60481675 Nov 2003 US
60481669 Nov 2003 US
60481405 Sep 2003 US
60481053 Jul 2003 US
60481040 Jun 2003 US
60320207 May 2003 US
60320070 Mar 2003 US
Divisions (3)
Number Date Country
Parent 14949124 Nov 2015 US
Child 15447802 US
Parent 13083637 Apr 2011 US
Child 14949124 US
Parent 10879335 Jun 2004 US
Child 12411643 US
Continuation in Parts (2)
Number Date Country
Parent 12411643 Mar 2009 US
Child 13083637 US
Parent 10814205 Mar 2004 US
Child 10879335 US