This technology generally relates to methods and devices for authentication and, more particularly, to methods for optimizing HTTP header based authentication and devices thereof.
In the context of a transaction using HTTP, authentication is a method for a program or a web browser at a client computing device to provide user credentials which may include a user name and a password each time while making a request. A HTTP header based authentication requires a server to send back HTTP 401/407 challenge to browser for collecting user's authentication credentials or token. The general process which is followed is the web server sending a HTTP 401/407 challenge for each new TCP connection and web-browser replying with user's credentials or token as response to the challenge.
However, each 401/407 challenge attempt adds latency by creating one or more than one extra round trip time between the client and the server. It also adds to the processing overhead on server side as server needs to verify the received credential or token for each request.
A method for optimizing authentication includes receiving at an application management computing device a request from a client computing device which requires authentication. A determination is made by the application management computing device whether user network identification information currently is stored for the requesting client computing device. On determining the presence of stored user network identification information for the authentication, the application management computing device obtains the stored user network identification information for the authentication. The authentication is completed by the application management computing device with the obtained user network identification information.
A non-transitory computer readable medium having stored thereon instructions for optimizing authentication comprising machine executable code which when executed by at least one processor, causes the processor to perform steps including receiving a request from a client computing device which requires authentication. A determination is made whether user network identification information currently is stored for the requesting client computing device. The stored user network identification information for the authentication is obtained when the user network identification information is determined to be currently stored for the requesting client computing device. The authentication is completed with the obtained user network identification information.
An application management computing device to optimize authentication includes at least one of configurable hardware logic configured to be capable of implementing and a processor coupled to a memory and configured to execute programmed instructions stored in the memory including receiving a request from a client computing device which requires authentication. A determination is made whether user network identification information currently is stored for the requesting client computing device. The stored user network identification information for the authentication is obtained when the user network identification information is determined to be currently stored for the requesting client computing device. The authentication is completed with the obtained user network identification information.
This technology provides a number of advantages including optimizing HTTP header based authentication. With this technology, the typical number of 401/407 challenges can be substantially reduced by utilizing a stored cookie comprising current authentication information at the client computing device. Accordingly, with this technology application management computing device utilization is optimized as the latency and the round trip time is reduced between the client computing device and the application management computing device. It also reduces the processing overhead on the application management computing device side as the application management computing device needs to verify the received credentials/token for reduced number of times.
An exemplary network environment 10 with an application management computing device 14 for optimizing HTTP header based authentication is illustrated in
Referring more specifically to
The application management computing device 14 assists with optimizing authentication as illustrated and described with the examples herein, although application management computing device 14 may perform other types and numbers of functions. Application management computing device 14 includes at least one processor 18, memory 20, optional configurable hardware logic 21, I/O interface 22, and interface device 24 which are coupled together by bus 26, although application management computing device 14 may comprise other types and numbers of elements in other configurations.
Processor(s) 18 may execute one or more computer-executable instructions stored in the memory 20 for the methods illustrated and described with reference to the examples herein, although the processor(s) can execute other types and numbers of instructions and perform other types and numbers of operations. The processor(s) 18 may comprise one or more central processing units (“CPUs”) or general purpose processors with one or more processing cores, such as AMD® processor(s), although other types of processor(s) could be used (e.g., Intel®).
Memory 20 may comprise one or more tangible storage media, such as RAM, ROM, flash memory, CD-ROM, floppy disk, hard disk drive(s), solid state memory, DVD, or any other memory storage types or devices, including combinations thereof, which are known to those of ordinary skill in the art. Memory 20 may store one or more non-transitory computer-readable instructions of this technology as illustrated and described with reference to the examples herein that may be executed by the one or more processor(s) 18. The flow chart shown in
The configurable hardware logic 21 may comprise specialized hardware configured to implement one or more steps of this technology as illustrated and described with reference to the examples herein. By way of example only, the optional configurable hardware logic 21 may comprise one or more of field programmable gate arrays (“FPGAs”), field programmable logic devices (“FPLDs”), application specific integrated circuits (ASICs”) and/or programmable logic units (“PLUs”).
Input and display devices 22 enable a user, such as an administrator, to interact with the application management computing device 14, such as to input and/or view data and/or to configure, program and/or operate it by way of example only. Input devices may include a keyboard and/or a computer mouse and display devices may include a computer monitor, although other types and numbers of input devices and display devices could be used.
The interface device 24 in the application management computing device 14 is used to operatively couple and communicate between the application management computing device 14 and the client computing devices 12 and the servers 16 which are all coupled together by one or more of the local area networks (LAN) 28 and the wide area network (WAN) 30, although other types and numbers of communication networks or systems with other types and numbers of connections and configurations to other devices and elements. By way of example only, the local area networks (LAN) 28 and the wide area network (WAN) 30 can use TCP/IP over Ethernet and industry-standard protocols, including HTTP although other types and numbers of communication networks, can be used. In this example, the bus 26 is a hyper-transport bus in this example, although other bus types and links may be used, such as PCI.
Each of the client computing devices 12 and the servers 16 include a central processing unit (CPU) or processor, a memory, an interface device, and an I/O system, which are coupled together by a bus or other link, although other numbers and types of network devices could be used. The client computing devices 12, in this example, may run interface applications, such as Web browsers, that may provide an interface to make requests for and send content and/or data to different server based applications at servers 16 via the LANs 28 and/or WANs 30. Additionally, in order for the client computing devices 12 to requests for content to one or more of the servers 16, each client computing device 12 may have to provide user network identification information for authentication.
Generally, servers 16 process requests received from requesting client computing devices 12 via LANs 28 and/or WAN 30 according to the HTTP-based application protocol in this example, but the principles discussed herein are not limited to this example and can include other application protocols. A series of applications may run on the servers 16 that allow the transmission of data, such as a data file or metadata, requested by the client computing devices 12. The servers 16 may provide data or receive data in response to requests directed toward the respective applications on the servers 16 from the client computing devices 12. It is to be understood that the servers 16 may be hardware or software or may represent a system with multiple servers 16, which may include internal or external networks. In this example the servers 16 may be any version of Microsoft® IIS servers or Apache® servers, although other types of servers may be used. Further, additional servers may be coupled to the LAN 28 and many different types of applications may be available on servers coupled to the LAN 28.
Although an exemplary network environment 10 with the client computing devices 12, the application management computing device 14, the servers 16, the LANs 28 and the WAN 30 are described and illustrated herein, other types and numbers of systems, devices, blades, components, and elements in other topologies can be used. It is to be understood that the systems of the examples described herein are for exemplary purposes, as many variations of the specific hardware and software used to implement the examples are possible, as will be appreciated by those skilled in the relevant art(s).
Furthermore, each of the systems of the examples may be conveniently implemented using one or more general purpose computer systems, microprocessors, digital signal processors, and micro-controllers, programmed according to the teachings of the examples, as described and illustrated herein, and as will be appreciated by those of ordinary skill in the art.
In addition, two or more computing systems or devices can be substituted for any one of the systems or devices in any example. Accordingly, principles and advantages of distributed processing, such as redundancy and replication also can be implemented, as desired, to increase the robustness and performance of the devices and systems of the examples. The examples may also be implemented on computer system(s) that extend across any suitable network using any suitable interface mechanisms and traffic technologies, including by way of example only teletraffic in any suitable form (e.g., voice and modem), wireless traffic media, wireless traffic networks, cellular traffic networks, G3 traffic networks, Public Switched Telephone Network (PSTNs), Packet Data Networks (PDNs), the Internet, intranets, and combinations thereof.
The examples may also be embodied as a non-transitory computer readable medium having instructions stored thereon for one or more aspects of the technology as described and illustrated by way of the examples herein, which when executed by a processor (or configurable hardware), cause the processor to carry out the steps necessary to implement the methods of the examples, as described and illustrated herein.
An exemplary method for optimizing authentication will now be described with reference to
In step 310, the application management computing device 14 determines whether the user network identification information is currently present in the request received from the client computing device 12. This information is present in the request received from the client computing device 12 if the user network identification information stored in the memory of the client computing device 12, more particularly in the browser of the client computing device 12 in the form of a cookie in this example. By way of example only, the user network identification information stored in the form of a cookie may also be in different forms such as a flash cookie, a browser cookie or a general HTTP cookie, although the user network identification information may be stored in other manners.
If in step 310, the application management computing device 14 determines user network identification information is not currently stored, then the No branch is taken to step 340. In step 340, the application management computing device 14 sends one or more than one challenge message requiring client credentials, such as a HTTP challenge 401/407 requests, to the requesting one of the client computing devices 12, although other types of challenge messages can be sent to the client computing device 12 to obtain client credentials.
In step 345, the application management computing device 14 receives one or more user credential from the requesting one of the client computing devices 12 in response the challenge message. In this example, the received credentials include login credentials, such as username, password or tokens, although other types and numbers of credentials could be received.
Next, in step 350 the application management computing device 14 authenticates the received credentials by verifying with the corresponding one of the one or more servers 16 to which the request is directed, although other manners for authenticating the credentials could be used. If in step 350, the application management computing device 14 determines the received credentials from the requesting one of the client computing devices 12 are not authenticated, then the No branch is taken to step 351. In step 351, the application management computing device 14 transmits a denial of the request to the requesting one of the client computing devices 12 and this exemplary method ends.
If in step 350, the application management computing device 14 determines the received credentials from the requesting one of the client computing devices 12 are authenticated, then the Yes branch is taken to step 352. At step 352, the application management computing device 14 obtains the user network identification information user from the authenticated requesting one of the client computing devices 12. The user network identification information may be a user's internet protocol address, user's user agent string presented by the internet browser of the client computing device 12 and other network related properties of the internet browser of the client computing devices 12, although other types of network identification information could be used. The user network identification information is network identification information of the client computing device 12, which is obtained for the first time when the application management computing device 14 determines that the cookie is not present in the browser of the client computing device 12.
In step 355, the application management computing device 14 may encrypt the user network identification information by using an encryption key. By way of example, the encryption key may be unique to each user or can be common to all users. Optionally, the application management computing device 14 may store the user network identification information in its own memory 20. The application management computing device 14 then can create a unique identifier that enables it to lookup user network identification information in its memory 20 and can encrypt this unique identifier by using the encryption key.
In step 360, the application management computing device 14 transmits the encrypted value as a cookie to the requesting client computing device 12 where it is stored in the browser of the client computing device 12 and then the initial authentication is completed. For all subsequent requests, the application management computing device 14 may use the cookie stored in the browser of the client computing device 12 to authenticate the requests
Referring back to step 305, the one of the client computing devices 12 which previously transmitted a request may transmit another request which is received by the application management computing device 14 and requires authentication, although requests can be received from other types of devices and systems
In step 310, the application management computing device 14 determines whether the user network identification information is currently stored in the request received from the internet browser of the client computing device 12. Accordingly, in this pass through step 310 the application management computing device 14 determines the user network identification information is currently stored in the browser of the requesting one of the client computing devices so the Yes branch is taken to step 315.
In step 315, the application management computing device 14 obtains the cookie from the received request of the client computing devices 12 and determines whether the cookie is valid. If in step 315, the application management computing device 14 determines the obtained cookie is invalid, then the No branch is taken to step 340 as described earlier.
If in step 315, the application management computing device 14 determines the obtained cookie is valid, then the Yes branch is taken to step 320. In step 320, the application management computing device 14 decrypts the obtained cookie to obtain the user network identification information.
In step 325, the application management computing device 14 determines whether a signature of the decrypted cookie is valid. If in step 325, the application management computing device 14 determines the signature in the decrypted cookie is not valid, then the No branch is taken to step 340 as described earlier.
If in step 325, the application management computing device 14 determines the signature in the decrypted user network identification information is verified, then the Yes branch is taken to step 330. In step 330, the application management computing device 14 first obtains the verification user network identification information from the client computing device 12 from which the request was sent and determines whether in the decrypted user network identification information, such as client's ip, unique client id, ssl session id, or other identifiers which is stored in the cookie is same as the verification user network identification information. The verification of the user network identification information is network identification information of the requesting client computing device 12, such as client's identification protocol (client's ip), user session information etc. Since, the cookie is already stored once in the browser of the client computing device 12 based on the previous communication with the application management computing device 14, the application management computing device 14 additionally obtains the network information of the requesting client computing device 12 in the form of verification of the user network identification information to compare with the information contained in the previously stored cookie. If in step 330, the application management computing device 14 determines the decrypted user network identification information stored in the already existing cookie is not the same the verified user network identification which is the user network identification information of the client computing device 12 from which the new request is received, then the No branch is taken to step 340 as described earlier. If in step 330, the application management computing device 14 determines the user network identification information in the cookie is same as the verified user network identification, then the Yes branch is taken to step 360 as described earlier.
In one exemplary method of the present disclosure, the cookie stored in the browser of the client computing device 12 may be valid for or could be used by the application management computing device 14 to service the subsequent requests for a particular user session of the requesting client computing device 12, wherein the client computing devices 12 may be required to obtain a new cookie by following the steps 340 to 355 as described above to authenticate a transaction after termination of the user session.
In another exemplary method of the present disclosure, the cookie stored in the browser of the client computing device 12 may be valid for or could be used by the application management computing device 14 to service the subsequent requests for a particular number of transactions of the requesting client computing device 12, wherein the client computing devices 12 may be required to obtain a new cookie by following steps 340 to 355 as described above to authenticate a transaction after the reaching the maximum number of transactions.
In another exemplary method of the present disclosure, the cookie stored in the browser of the client computing device 12 may be valid for or could be used by the application management computing device 14 to service the subsequent requests for a particular interval of time, wherein the client computing devices 12 may be required to obtain a new cookie by following steps 340 to 355 as described above to authenticate a transaction after the termination of the time interval.
Accordingly, as illustrated and described with the examples herein, this technology provides a number of advantages including optimizing HTTP header based authentication. With this technology, the typical number of 401/407 challenges can be substantially reduced by utilizing a stored cookie comprising current authentication information at the application management computing device. Accordingly, with this technology server utilization is optimized as the latency and the round trip time is reduced between the client computing device and the server. It also reduces the processing overhead on the server side as the server needs to verify the received credentials/token only once
Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.
Number | Name | Date | Kind |
---|---|---|---|
3950735 | Patel | Apr 1976 | A |
4644532 | George et al. | Feb 1987 | A |
4897781 | Chang et al. | Jan 1990 | A |
4965772 | Daniel et al. | Oct 1990 | A |
5023826 | Patel | Jun 1991 | A |
5053953 | Patel | Oct 1991 | A |
5167024 | Smith et al. | Nov 1992 | A |
5299312 | Rocco, Jr. | Mar 1994 | A |
5327529 | Fults et al. | Jul 1994 | A |
5367635 | Bauer et al. | Nov 1994 | A |
5371852 | Attanasio et al. | Dec 1994 | A |
5406502 | Haramaty et al. | Apr 1995 | A |
5475857 | Dally | Dec 1995 | A |
5517617 | Sathaye et al. | May 1996 | A |
5519694 | Brewer et al. | May 1996 | A |
5519778 | Leighton et al. | May 1996 | A |
5521591 | Arora et al. | May 1996 | A |
5528701 | Aref | Jun 1996 | A |
5581764 | Fitzgerald et al. | Dec 1996 | A |
5596742 | Agarwal et al. | Jan 1997 | A |
5606665 | Yang et al. | Feb 1997 | A |
5611049 | Pitts | Mar 1997 | A |
5663018 | Cummings et al. | Sep 1997 | A |
5752023 | Choucri et al. | May 1998 | A |
5761484 | Agarwal et al. | Jun 1998 | A |
5768423 | Aref et al. | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5790554 | Pitcher et al. | Aug 1998 | A |
5802052 | Venkataraman | Sep 1998 | A |
5812550 | Sohn et al. | Sep 1998 | A |
5825772 | Dobbins et al. | Oct 1998 | A |
5832283 | Chou et al. | Nov 1998 | A |
5875296 | Shi et al. | Feb 1999 | A |
5892914 | Pitts | Apr 1999 | A |
5892932 | Kim | Apr 1999 | A |
5919247 | Van Hoff et al. | Jul 1999 | A |
5936939 | Des Jardins et al. | Aug 1999 | A |
5941988 | Bhagwat et al. | Aug 1999 | A |
5946690 | Pitts | Aug 1999 | A |
5949885 | Leighton | Sep 1999 | A |
5951694 | Choquier et al. | Sep 1999 | A |
5959990 | Frantz et al. | Sep 1999 | A |
5974460 | Maddalozzo, Jr. et al. | Oct 1999 | A |
5983281 | Ogle et al. | Nov 1999 | A |
5988847 | McLaughlin et al. | Nov 1999 | A |
6006260 | Barrick, Jr. et al. | Dec 1999 | A |
6006264 | Colby et al. | Dec 1999 | A |
6026452 | Pitts | Feb 2000 | A |
6028857 | Poor | Feb 2000 | A |
6051169 | Brown et al. | Apr 2000 | A |
6078956 | Bryant et al. | Jun 2000 | A |
6085234 | Pitts et al. | Jul 2000 | A |
6092196 | Reiche | Jul 2000 | A |
6108703 | Leighton et al. | Aug 2000 | A |
6111876 | Frantz et al. | Aug 2000 | A |
6128279 | O'Neil et al. | Oct 2000 | A |
6128657 | Okanoya et al. | Oct 2000 | A |
6160874 | Dickerman et al. | Dec 2000 | A |
6170022 | Linville et al. | Jan 2001 | B1 |
6178423 | Douceur et al. | Jan 2001 | B1 |
6182139 | Brendel | Jan 2001 | B1 |
6192051 | Lipman et al. | Feb 2001 | B1 |
6233612 | Fruchtman et al. | May 2001 | B1 |
6246684 | Chapman et al. | Jun 2001 | B1 |
6253226 | Chidambaran et al. | Jun 2001 | B1 |
6253230 | Couland et al. | Jun 2001 | B1 |
6263368 | Martin | Jul 2001 | B1 |
6298380 | Coile et al. | Oct 2001 | B1 |
6327622 | Jindal et al. | Dec 2001 | B1 |
6343324 | Hubis et al. | Jan 2002 | B1 |
6347339 | Morris et al. | Feb 2002 | B1 |
6360270 | Cherkasova et al. | Mar 2002 | B1 |
6374300 | Masters | Apr 2002 | B2 |
6396833 | Zhang et al. | May 2002 | B1 |
6411986 | Susai et al. | Jun 2002 | B1 |
6430562 | Kardos et al. | Aug 2002 | B1 |
6434081 | Johnson et al. | Aug 2002 | B1 |
6480476 | Willars | Nov 2002 | B1 |
6484261 | Wiegel | Nov 2002 | B1 |
6490624 | Sampson et al. | Dec 2002 | B1 |
6510135 | Almulhem et al. | Jan 2003 | B1 |
6510458 | Berstis et al. | Jan 2003 | B1 |
6519643 | Foulkes et al. | Feb 2003 | B1 |
6601084 | Bhaskaran et al. | Jul 2003 | B1 |
6636503 | Shiran et al. | Oct 2003 | B1 |
6636894 | Short et al. | Oct 2003 | B1 |
6650640 | Muller et al. | Nov 2003 | B1 |
6650641 | Albert et al. | Nov 2003 | B1 |
6654701 | Hatley | Nov 2003 | B2 |
6683873 | Kwok et al. | Jan 2004 | B1 |
6691165 | Bruck et al. | Feb 2004 | B1 |
6694517 | James et al. | Feb 2004 | B1 |
6708187 | Shanumgam et al. | Mar 2004 | B1 |
6742045 | Albert et al. | May 2004 | B1 |
6751663 | Farrell et al. | Jun 2004 | B1 |
6754228 | Ludwig | Jun 2004 | B1 |
6760775 | Anerousis et al. | Jul 2004 | B1 |
6772219 | Shobatake | Aug 2004 | B1 |
6779039 | Bommareddy et al. | Aug 2004 | B1 |
6781986 | Sabaa et al. | Aug 2004 | B1 |
6798777 | Ferguson et al. | Sep 2004 | B1 |
6804542 | Haartsen | Oct 2004 | B1 |
6816901 | Sitaraman et al. | Nov 2004 | B1 |
6816977 | Brakmo et al. | Nov 2004 | B2 |
6829238 | Tokuyo et al. | Dec 2004 | B2 |
6868082 | Allen, Jr. et al. | Mar 2005 | B1 |
6876629 | Beshai et al. | Apr 2005 | B2 |
6876654 | Hegde | Apr 2005 | B1 |
6888836 | Cherkasova | May 2005 | B1 |
6928082 | Liu et al. | Aug 2005 | B2 |
6947985 | Hegli et al. | Sep 2005 | B2 |
6950434 | Viswanath et al. | Sep 2005 | B1 |
6954780 | Susai et al. | Oct 2005 | B2 |
6957272 | Tallegas et al. | Oct 2005 | B2 |
6959394 | Brickell et al. | Oct 2005 | B1 |
6975592 | Seddigh et al. | Dec 2005 | B1 |
6987763 | Rochberger et al. | Jan 2006 | B2 |
7007092 | Peiffer | Feb 2006 | B2 |
7113993 | Cappiello et al. | Sep 2006 | B1 |
7133944 | Song et al. | Nov 2006 | B2 |
7139792 | Mishra et al. | Nov 2006 | B1 |
7228422 | Morioka et al. | Jun 2007 | B2 |
7287082 | O'Toole, Jr. | Oct 2007 | B1 |
7295827 | Liu et al. | Nov 2007 | B2 |
7308703 | Wright et al. | Dec 2007 | B2 |
7321926 | Zhang et al. | Jan 2008 | B1 |
7333999 | Njemanze | Feb 2008 | B1 |
7343413 | Gilde et al. | Mar 2008 | B2 |
7349391 | Ben-Dor et al. | Mar 2008 | B2 |
7383570 | Pinkas et al. | Jun 2008 | B2 |
7398552 | Pardee et al. | Jul 2008 | B2 |
7433962 | Janssen et al. | Oct 2008 | B2 |
7454480 | Labio et al. | Nov 2008 | B2 |
7490162 | Masters | Feb 2009 | B1 |
7500269 | Huotari et al. | Mar 2009 | B2 |
7505795 | Lim et al. | Mar 2009 | B1 |
7516492 | Nisbet et al. | Apr 2009 | B1 |
7526541 | Roese et al. | Apr 2009 | B2 |
7558197 | Sindhu et al. | Jul 2009 | B1 |
7580971 | Gollapudi et al. | Aug 2009 | B1 |
7624424 | Morita et al. | Nov 2009 | B2 |
7668166 | Rekhter et al. | Feb 2010 | B1 |
7680915 | Still et al. | Mar 2010 | B2 |
7724657 | Rao et al. | May 2010 | B2 |
7725093 | Sengupta et al. | May 2010 | B2 |
7778187 | Chaturvedi et al. | Aug 2010 | B2 |
7801978 | Susai et al. | Sep 2010 | B1 |
7831662 | Clark et al. | Nov 2010 | B2 |
7908314 | Yamaguchi et al. | Mar 2011 | B2 |
7925908 | Kim | Apr 2011 | B2 |
7933946 | Livshits et al. | Apr 2011 | B2 |
7945908 | Waldspurger et al. | May 2011 | B1 |
8130650 | Allen, Jr. et al. | Mar 2012 | B2 |
8199757 | Pani et al. | Jun 2012 | B2 |
8351333 | Rao et al. | Jan 2013 | B2 |
8380854 | Szabo | Feb 2013 | B2 |
8447871 | Szabo | May 2013 | B1 |
8464265 | Worley | Jun 2013 | B2 |
8606921 | Vasquez et al. | Dec 2013 | B2 |
8615022 | Harrison et al. | Dec 2013 | B2 |
8665868 | Kay | Mar 2014 | B2 |
8788665 | Gilde et al. | Jul 2014 | B2 |
8804504 | Chen | Aug 2014 | B1 |
20010009554 | Katseff et al. | Jul 2001 | A1 |
20010023442 | Masters | Sep 2001 | A1 |
20020138615 | Schmeling | Sep 2002 | A1 |
20020161913 | Gonzalez et al. | Oct 2002 | A1 |
20020198993 | Cudd et al. | Dec 2002 | A1 |
20030046291 | Fascenda | Mar 2003 | A1 |
20030065951 | Igeta et al. | Apr 2003 | A1 |
20030069918 | Lu et al. | Apr 2003 | A1 |
20030069974 | Lu et al. | Apr 2003 | A1 |
20030070069 | Belapurkar et al. | Apr 2003 | A1 |
20030086415 | Bernhard et al. | May 2003 | A1 |
20030105983 | Brakmo et al. | Jun 2003 | A1 |
20030108052 | Inoue et al. | Jun 2003 | A1 |
20030128708 | Inoue et al. | Jul 2003 | A1 |
20030145062 | Sharma et al. | Jul 2003 | A1 |
20030145233 | Poletto et al. | Jul 2003 | A1 |
20030163576 | Janssen et al. | Aug 2003 | A1 |
20030225485 | Fritz et al. | Dec 2003 | A1 |
20040003287 | Zissimopoulos et al. | Jan 2004 | A1 |
20040072569 | Omae et al. | Apr 2004 | A1 |
20040103283 | Hornak | May 2004 | A1 |
20040111523 | Hall et al. | Jun 2004 | A1 |
20040111621 | Himberger et al. | Jun 2004 | A1 |
20040117493 | Bazot et al. | Jun 2004 | A1 |
20040151186 | Akama | Aug 2004 | A1 |
20040264472 | Oliver et al. | Dec 2004 | A1 |
20040264481 | Darling et al. | Dec 2004 | A1 |
20040267920 | Hydrie et al. | Dec 2004 | A1 |
20040267948 | Oliver et al. | Dec 2004 | A1 |
20040268358 | Darling et al. | Dec 2004 | A1 |
20050004887 | Igakura et al. | Jan 2005 | A1 |
20050021736 | Carusi et al. | Jan 2005 | A1 |
20050044213 | Kobayashi et al. | Feb 2005 | A1 |
20050052440 | Kim et al. | Mar 2005 | A1 |
20050055435 | Gbadegesin et al. | Mar 2005 | A1 |
20050078604 | Yim | Apr 2005 | A1 |
20050122977 | Lieberman | Jun 2005 | A1 |
20050154837 | Keohane et al. | Jul 2005 | A1 |
20050187866 | Lee | Aug 2005 | A1 |
20050188220 | Nilsson et al. | Aug 2005 | A1 |
20050198310 | Kim et al. | Sep 2005 | A1 |
20050262238 | Reeves et al. | Nov 2005 | A1 |
20060031520 | Bedekar et al. | Feb 2006 | A1 |
20060059267 | Cugi et al. | Mar 2006 | A1 |
20060112176 | Liu et al. | May 2006 | A1 |
20060112272 | Morioka et al. | May 2006 | A1 |
20060156416 | Huotari et al. | Jul 2006 | A1 |
20060161577 | Kulkarni et al. | Jul 2006 | A1 |
20060171365 | Borella | Aug 2006 | A1 |
20060209853 | Hidaka et al. | Sep 2006 | A1 |
20060230148 | Forecast et al. | Oct 2006 | A1 |
20060233106 | Achlioptas et al. | Oct 2006 | A1 |
20060242300 | Yumoto et al. | Oct 2006 | A1 |
20070006293 | Balakrishnan et al. | Jan 2007 | A1 |
20070016662 | Desai et al. | Jan 2007 | A1 |
20070058670 | Konduru et al. | Mar 2007 | A1 |
20070064661 | Sood et al. | Mar 2007 | A1 |
20070083646 | Miller et al. | Apr 2007 | A1 |
20070088822 | Coile et al. | Apr 2007 | A1 |
20070106796 | Kudo et al. | May 2007 | A1 |
20070107048 | Halls et al. | May 2007 | A1 |
20070118879 | Yeun | May 2007 | A1 |
20070220598 | Salowey et al. | Sep 2007 | A1 |
20070233809 | Brownell et al. | Oct 2007 | A1 |
20070297551 | Choi | Dec 2007 | A1 |
20080025297 | Kashyap | Jan 2008 | A1 |
20080034136 | Ulenas | Feb 2008 | A1 |
20080072303 | Syed | Mar 2008 | A1 |
20080120370 | Chan et al. | May 2008 | A1 |
20080133518 | Kapoor et al. | Jun 2008 | A1 |
20080134311 | Medvinsky et al. | Jun 2008 | A1 |
20080148340 | Powell et al. | Jun 2008 | A1 |
20080159145 | Muthukrishnan et al. | Jul 2008 | A1 |
20080178278 | Grinstein et al. | Jul 2008 | A1 |
20080201599 | Ferraiolo et al. | Aug 2008 | A1 |
20080225710 | Raja et al. | Sep 2008 | A1 |
20080229415 | Kapoor et al. | Sep 2008 | A1 |
20080253395 | Pandya | Oct 2008 | A1 |
20080256224 | Kaji et al. | Oct 2008 | A1 |
20080301760 | Lim | Dec 2008 | A1 |
20090028337 | Balabine et al. | Jan 2009 | A1 |
20090049230 | Pandya | Feb 2009 | A1 |
20090070617 | Arimilli et al. | Mar 2009 | A1 |
20090077619 | Boyce | Mar 2009 | A1 |
20090094610 | Sukirya | Apr 2009 | A1 |
20090119504 | van Os et al. | May 2009 | A1 |
20090125496 | Wexler et al. | May 2009 | A1 |
20090125532 | Wexler et al. | May 2009 | A1 |
20090125625 | Shim et al. | May 2009 | A1 |
20090138749 | Moll et al. | May 2009 | A1 |
20090141891 | Boyen et al. | Jun 2009 | A1 |
20090196282 | Fellman et al. | Aug 2009 | A1 |
20090228956 | He et al. | Sep 2009 | A1 |
20090287935 | Aull et al. | Nov 2009 | A1 |
20090296624 | Ryu et al. | Dec 2009 | A1 |
20090300407 | Kamath et al. | Dec 2009 | A1 |
20100011434 | Kay | Jan 2010 | A1 |
20100017846 | Huang et al. | Jan 2010 | A1 |
20100023582 | Pedersen et al. | Jan 2010 | A1 |
20100071048 | Novak et al. | Mar 2010 | A1 |
20100115236 | Bataineh et al. | May 2010 | A1 |
20100122091 | Huang et al. | May 2010 | A1 |
20100150154 | Viger et al. | Jun 2010 | A1 |
20100165877 | Shukla et al. | Jul 2010 | A1 |
20100242092 | Harris et al. | Sep 2010 | A1 |
20100251330 | Kroeselberg et al. | Sep 2010 | A1 |
20100279733 | Karsten et al. | Nov 2010 | A1 |
20100322250 | Shetty et al. | Dec 2010 | A1 |
20100325277 | Muthiah et al. | Dec 2010 | A1 |
20110040889 | Garrett et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110066718 | Susai et al. | Mar 2011 | A1 |
20110154443 | Thakur et al. | Jun 2011 | A1 |
20110173295 | Bakke et al. | Jul 2011 | A1 |
20110184733 | Yu et al. | Jul 2011 | A1 |
20110273984 | Hsu et al. | Nov 2011 | A1 |
20110282997 | Prince et al. | Nov 2011 | A1 |
20110321122 | Mwangi et al. | Dec 2011 | A1 |
20120039341 | Latif et al. | Feb 2012 | A1 |
20120041965 | Vasquez et al. | Feb 2012 | A1 |
20120063314 | Pignataro et al. | Mar 2012 | A1 |
20120066489 | Ozaki et al. | Mar 2012 | A1 |
20120101952 | Raleigh et al. | Apr 2012 | A1 |
20120317266 | Abbott | Dec 2012 | A1 |
20130336122 | Baruah et al. | Dec 2013 | A1 |
20140095661 | Knowles et al. | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
0744850 | Nov 1996 | EP |
WO 9114326 | Sep 1991 | WO |
WO 9505712 | Feb 1995 | WO |
WO 9709805 | Mar 1997 | WO |
WO 9745800 | Dec 1997 | WO |
WO 9905829 | Feb 1999 | WO |
WO 9906913 | Feb 1999 | WO |
WO 9910858 | Mar 1999 | WO |
WO 9939373 | Aug 1999 | WO |
WO 9964967 | Dec 1999 | WO |
WO 0004422 | Jan 2000 | WO |
WO 0004458 | Jan 2000 | WO |
Entry |
---|
“Do's and Don'ts of Client Authentication on the Web”—Fu et al, MIT, Sep. 2011 http://pdos.csail.mit.edu/cookies/pubs/webauth:tr.pdf. |
F5 Networks Inc., “Configuration Guide for Local Traffic Management,” F5 Networks Inc., Jan. 2006, version 9.2.2, 406 pgs. |
Abad, C., et al., “An Analysis on the Schemes for Detecting and Preventing ARP Cache Poisoning Attacks”, IEEE, Computer Society, 27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07), 2007, pp. 1-8. |
OWASP, “Testing for Cross site scripting”, OWASP Testing Guide v2, Table of Contents, Feb. 24, 2011, pp. 1-5, (www.owasp.org/index.php/Testing—for—Cross—site—scripting). |
International Search Report and The Written Opinion, for International Patent Application No. PCT/US2013/026615, Date of Mailing: Jul. 4, 2013. |
“A Process for Selective Routing of Servlet Content to Transcoding Modules,” Research Disclosure 422124, Jun. 1999, pp. 889-890, IBM Corporation. |
F5 Networks, Inc., “BIG-IP Controller with Exclusive OneConnect Content Switching Feature Provides a Breakthrough System for Maximizing Server and Network Performance,” Press Release, May 8, 2001, 2 pages, Las Vegas, Nevada. |
Crescendo Networks, “Application Layer Processing (ALP),” 2003-2009, pp. 168-186, Chapter 9, CN-5000E/5500E, Foxit Software Company. |
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2068, Jan. 1997, pp. 1-162. |
Fielding et al., “Hypertext Transfer Protocol—HTTP/1.1,” Network Working Group, RFC: 2616, Jun. 1999, pp. 1-176, The Internet Society. |
Floyd et al., “Random Early Detection Gateways for Congestion Avoidance,” Aug. 1993, pp. 1-22, IEEE/ACM Transactions on Networking, California. |
Hochmuth, Phil, “F5, CacheFlow pump up content-delivery lines,” Network World Fusion, May 4, 2001, 1 page, Las Vegas, Nevada. |
MacVitte, Lori., “Message-Based Load Balancing” F5 Technical Brief, pp. 1-9, 2009. |
Schaefer, Ken, “IIS and Kerberos Part 5—Protocol Transition, Constrained Delegation, S4U2S and S4U2P,” Jul. 18, 2007, 21 pages, http://www.adopenstatic.com/cs/blogs/ken/archive/2007/07/19/8460.aspx. |
“Servlet/Applet/HTML Authentication Process With Single Sign-On,” Research Disclosure 429128, Jan. 2000, pp. 163-164, IBM Corporation. |
“Traffic Surges; Surge Queue; Netscaler Defense,” 2005, PowerPoint Presentation, slides 1-12, Citrix Systems, Inc. |
Williams et al., “The Ultimate Windows Server 2003 System Administrator's Guide: Forwarding Authentication,” 2003, 2 pages, Figure 10.7, Addison-Wesley Professional, Boston, Massachusetts. |
“Windows Server 2003 Kerberos Extensions,” Microsoft TechNet, 2003 (Updated Jul. 31, 2004), http://technet.microsoft.com/en-us/library/cc738207, Microsoft Corporation. |
U.S. Appl. No. 13/164,672 to Nat Thirasuttakorn, filed Jun. 20, 2011. |
U.S. Appl. No. 13/234,042 to Baumann et al., filed Sep. 15, 2011. |
U.S. Appl. No. 13/234,047 to Wojcik et al., filed Sep. 15, 2011. |
U.S. Appl. No. 12/822,146 to Jeff Costlow, filed Jun. 23, 2010. |
U.S. Appl. No. 13/235,276 to Hawthorne et al., filed Sep. 16, 2011. |
U.S. Appl. No. 13/234,031 to Baumann et al., filed Sep. 15, 2011. |
U.S. Appl. No. 13/165,783 to Jain et al., filed Jun. 21, 2011. |