The present invention relates generally to dental implant systems. More particularly, the present invention relates to restoration components for dental implant systems and a computer model for developing an implant analog placement tool to eliminate the need for a surgical index.
The dental restoration of a partially or wholly edentulous patient with artificial dentition is typically done in two stages. In the first stage, an incision is made through the gingiva to expose the underlying bone. An artificial tooth root, usually a dental implant, is placed in the jawbone for integration. The dental implant generally includes a threaded bore to receive a retaining screw holding mating components therein. During the first stage, the gum tissue overlying the implant is sutured and heals as the osseointegration process continues.
Once the osseointegration process is complete, the second stage is initiated. Here, the gum tissue is re-opened to expose the end of the dental implant. A healing component or healing abutment is fastened to the exposed end of the dental implant to allow the gum tissue to heal therearound. Preferably, the gum tissue heals such that the aperture that remains generally approximates the size and contour of the aperture that existed around the natural tooth that is being replaced. To accomplish this, the healing abutment attached to the exposed end of the dental implant has the same general contour as the gingival portion of the natural tooth being replaced.
During the typical second stage of dental restoration, the healing abutment is removed and an impression coping is fitted onto the exposed end of the implant. This allows an impression of the specific region of the patient's mouth to be taken so that an artificial tooth is accurately constructed. Thus, in typical dental implant systems, the healing component and the impression coping are two physically separate components. Preferably, the impression coping has the same gingival dimensions as the healing component so that there is no gap between the impression coping and the wall of the gum tissue defining the aperture. Otherwise, a less than accurate impression of the condition of the patient's mouth is made. The impression coping may be a “pick-up” type impression coping or a “transfer” type impression coping, both known in the art. After these processes, a dental laboratory creates a prosthesis to be permanently secured to the dental implant from the impression that was made.
In addition to the method that uses the impression material and mold to manually develop a prosthesis, systems exist that utilize scanning technology to assist in generating a prosthesis. A scanning device is used in one of at least three different approaches. First, a scanning device can scan the region in the patient's mouth where the prosthesis is to be placed without the need to use impression materials or to construct a mold. Second, the impression material that is removed from the healing abutment and surrounding area is scanned. Third, a dentist or technician can scan the stone model of the dental region that was formed from the impression material and mold to produce the permanent components.
Three basic scanning techniques exist, laser scanning, photographic imaging and mechanical sensing. Each scanning technique is used or modified for any of the above-listed approaches (a scan of the stone model, a scan of the impression material, or a scan in the mouth without using impression material) to create the prosthesis. After scanning, a laboratory can create and manufacture the permanent crown or bridge, usually using a computer aided design (“CAD”) package.
The utilization of a CAD program, as disclosed in U.S. Pat. No. 5,338,198, (Wu), whose disclosure is incorporated by reference herein, is one method of scanning a dental region to create a three dimensional model. Preferably, after the impression is made of the patient's mouth, the impression material or stone model is placed on a support table defining the X-Y plane. A scanning laser light probe is directed onto the model. The laser light probe emits a pulse of laser light that is reflected by the model. A detector receives light scattered from the impact of the beam with the impression to calculate a Z-axis measurement. The model and the beam are relatively translated within the X-Y plane to gather a plurality of contact points with known location in the X-Y coordinate plane. The locations of several contact points in the Z-plane are determined by detecting reflected light. Finally, correlating data of the X-Y coordinates and the Z-direction contact points creates a digital image. Once a pass is complete, the model may be tilted to raise one side of the mold relative to the opposite vertically away from the X-Y plane. Subsequent to the model's second scan, the model may be further rotated to allow for a more accurate reading of the model. After all scans are complete, the data may be fed into a CAD system for manipulation of this electronic data by known means.
Photographic imaging can also used to scan impression material, a stone model or to scan directly in the mouth. For example, one system takes photographs at multiple angles in one exposure to scan a dental region, create a model and manufacture a prosthetic tooth. As disclosed in U.S. Pat. No. 5,851,115, (Carlsson), whose disclosure is incorporated by reference herein, this process is generally initiated with the process of taking a stereophotograph with a camera from approximately 50 to 150 mm away from the patient's mouth. The stereophotograph can involve a photograph of a patient's mouth already prepared with implantation devices. Correct spatial positioning of the dental implants is obtained by marking the implant in several locations. The resulting photograph presents multiple images of the same object. The images on the photographs are scanned with a reading device that digitizes the photographs to produce a digital image of the dental region. The data from the scanner is electronically transmitted to a graphical imaging program that creates a model that is displayed to the user. After identification of the shape, position and other details of the model, the ultimate step is the transmission of the data to a computer for manufacturing.
A third scanning measure uses mechanical sensing. A mechanical contour sensing device, as disclosed in U.S. Pat. No. 5,652,709 (Andersson), whose disclosure is incorporated by reference herein, is another method used to read a dental model and produce a prosthetic tooth. The impression model is secured to a table that may rotate about its longitudinal axis as well as translate along the same axis with variable speeds. A mechanical sensing unit is placed in contact with the model at a known angle and the sensing equipment is held firmly against the surface of the model by a spring. When the model is rotated and translated, the sensing equipment can measure the changes in the contour and create an electronic representation of the data. A computer then processes the electronic representation and the data from the scanning device to create a data array. The computer then compresses the data for storage and/or transmission to the milling equipment.
When the stone model of the patient's mouth is created for use in the scanning process, or in other prior techniques, a second stone model of the patient's mouth is also typically used to develop a final prosthesis for use in the patient. The prosthesis is typically developed on the second stone model. A surgical index is used to position the implant analog within the second stone model so that the dental laboratory may know the exact position of the implant when making the prosthesis. The surgical index is typically a mold of the patient's teeth directly adjacent to the implant site that relies upon the position of the adjacent teeth to dictate the location and orientation of the implant analog within the stone model. Unfortunately, the surgical index is an additional step in the process for the clinician that requires additional components. A need exists for a device and method of placing the implant analog within the stone model without using a conventional surgical index.
According to one aspect of the present invention, a method of affixing an implant analog in a physical model of a patient's mouth for use in creating a custom abutment comprises determining, in a three-dimensional virtual model of the patient's mouth, the location of the implant analog to be placed in the physical model. The method further includes developing implant-analog positional information based on the location of the implant analog in the three-dimensional virtual model and developing an emergence profile contour information to provide for a contour of an opening to be made in the physical model leading to the implant analog. The contour is preferably tapered downwardly toward the implant analog. The method further includes transferring to a robot (i) the implant-analog positional information, and (ii) the emergence profile contour information, using the robot to modify the physical model by creating an opening in the physical model having a tapering contour, and using the robot to affix the implant analog within the opening of the physical model.
According to another aspect of the present invention, a method of positioning an implant analog in a physical model of a patient's mouth for use in creating a custom abutment comprises scanning the physical model to develop scan data of the physical model, transferring the scan data to a CAD program, and creating a three-dimensional model of at least a portion of the physical model on the CAD program using the scan data. The method further includes determining, in the three-dimensional model, the location of the implant analog to be placed in the physical model, developing implant-analog positional information based on the location of the implant analog in the three-dimensional model, and developing an emergence profile contour information to provide for a contour of an opening to be made in the physical model leading to the implant analog. The method further includes transferring to a robot (i) the implant-analog positional information and (ii) the emergence profile contour information, and, by use of at least one tool associated with the robot, modifying the physical model by creating the opening. The opening has an emergence profile corresponding to the emergence-profile contour information. The method may further include, by use of the robot, fixing the implant analog within the opening of the physical model in accordance to the implant-analog positional information.
According to yet another process of the present invention, a method of positioning an implant analog in a physical model of a patient's mouth for use in creating a custom abutment, comprises scanning the physical model to develop scan data of the physical model, transferring the scan data to a CAD program, and creating a three-dimensional model of at least a portion of the physical model on the CAD program using the scan data. The method further includes determining, in the three-dimensional model, the location of the implant analog to be placed in the physical model, and using a robot to place an implant analog within the physical model in accordance with information from the three-dimensional model.
According to yet a further aspect of the present invention, a method of performing guided surgery in a patient's mouth, comprises taking a CT-scan of the patient's mouth to develop CT-scan data, and developing, on a 3D-computer model, a surgical plan based on the CT-scan data. The surgical plan includes at least one virtual implant. The virtual implant has virtual-implant location data and virtual implant orientation data corresponding to a non-rotational feature on the virtual implant. Based on the surgical plan, the method further may further include manufacturing a surgical guide to be placed in the patient's mouth for installing an implant in the patient's mouth at substantially the same location and orientation as the virtual implant on the 3D-computer model, and manufacturing a physical model of the patient's mouth having an implant analog at substantially the same location and orientation as the virtual implant on the 3D-computer model. The method further includes developing a custom abutment on the physical mode, performing surgery to place the implant in the patient's mouth as physically guided by the surgical guide in accordance with the surgical plan, and installing the custom abutment on the implant.
a is a top view of a healing abutment;
b is a longitudinal cross-sectional view of the healing abutment shown in
c is the healing abutment shown in
a is a top view of another embodiment of a healing abutment;
b is a longitudinal cross-sectional view of the healing abutment shown in
a is a top view of yet another embodiment of a healing abutment;
b is a longitudinal cross-sectional view of the healing abutment shown in
a is a top view of a further embodiment of the healing abutment;
a is a top view of a further embodiment of the healing abutment;
b is a longitudinal cross-sectional view of the healing abutment shown in
a is a top view of another embodiment of a healing abutment;
b is a longitudinal cross-sectional view of the healing abutment shown in
a is a top view of another embodiment of a healing abutment;
b is a longitudinal cross-sectional view of the healing abutment shown in
a-9p are top views of a plurality of healing abutments having a binary-type system of information markers;
q is a top view of a healing abutment having a bar code information marker;
a is a perspective view of an embodiment of an altered stone model of a mouth with abutments removed;
b is a perspective view of an alternative embodiment of an altered stone model of a mouth with abutments removed;
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed but, on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
As shown in
b discloses the top view of the same healing abutment 10 shown in
A socket 30 on the exposed surface of a head portion 40 of an attaching bolt 50 is shaped to accept a wrench (not shown) for turning the attaching bolt 50 into the threaded bore of an implant 70, as shown in
A healing abutment 100 of
The notches 130 are used, for example, to determine the identification of the underlying implant hex position 125 or the height of the healing abutment or the diameter of the healing abutment. This embodiment is not limited to comprising six notches in the top surface 129 of the healing abutment 100. It is also contemplated that one embodiment of the present invention may possess four notches or even two notches for indicative purposes. Furthermore, it is contemplated that the information marker and notch approach could be combined or modified to provide information regarding the underlying implant seating surface diameter and implant hex angulation.
In another embodiment of the present invention, a healing abutment 200 shown in
Two notches 230 have also been etched or machined onto a top surface 229 of the healing abutment of
In yet another embodiment of the present invention, a top surface 329 of the healing abutment 300 of
A top surface 429 of a healing abutment 400 shown in
Another embodiment of the present invention is shown in
During the second stage of the prosthetic implementation process and after a healing abutment with the information markers has been placed, an impression of the mouth is made with only the healing abutments as described herein and without the use of an impression coping. A model of the impression is poured with, for example, die stone. Since the information markers are disposed on the top and/or side of the healing abutment, the laboratory has all necessary information to define the gingival aperture, the implant size and the orientation of the underlying hex. This enables the laboratory to quickly prepare the permanent components. The system of the present invention also allows the maintenance of the soft-tissue surrounding the healing abutment where in prior systems the soft tissue would close once the healing abutment was removed. The system spares the patient from the pain of removing the healing abutment.
To create a permanent prosthesis, the dental region is scanned, as described above, from a stone model, from the impression material, or directly in the mouth using a laser scanning technique, a photographic scanning technique or a mechanical sensing technique.
The scanned information is then transferred into a graphical imaging program for analysis. The graphical imaging software program, due to the information markers on the surface of the healing abutment, can perform a wide variety of functions. The graphical imaging program can scan an opposing cast in order to develop an opposing occlusal scheme and relate this information back to the primary model. This feature is extremely important because many clinical patients have implants in both maxillary and mandibular locations.
The graphical imaging software program is capable of generating a three-dimensional image of the emergence profile contours used on the healing abutment. If the implant is not placed in the desired esthetic location, the software program relocates the position of the restoration emergence through the soft tissue. The graphical imaging software program is also able to accurately relate the gingival margin for all mold, model, implant and abutment dimensions. The software creates a transparent tooth outline for superimposition within the edentulous site. The occlusal outline of the “ghost” tooth should, if possible, be accurate and based on the scanned opposing occlusal dimensions. It is contemplated in accordance with the present invention that an occlusal outline is created by scanning a wax-up in order to maintain a proper plane of occlusion and healing abutment height.
The software program subtracts a given dimension from the mesial, distal, buccal, lingual, and occlusal areas of the superimposed tooth dimension. This allows for an even reduction of the healing abutment during fabrication to allow for proper thickness of the overlying materials (e.g., gold, porcelain, targis, etc.). The graphical imaging software program also incorporates angulation measurements into the custom abutment and subsequently calculates the dimensions of the prosthesis that are checked and modified, if necessary, by a laboratory technician. Each of the features is analyzed and determined from the different information markers that exist on the healing abutments of the present invention.
The final dimensional information determined by the graphical imaging computer program is transferred from the computer to a milling machine (e.g., a 5-axis milling machine) to fabricate the custom abutment. It is contemplated in accordance with the present invention that the custom abutment can be fashioned from gold or titanium or other similar metals or composites. A custom milled coping can then be fabricated. It is contemplated in accordance with the present invention that the custom milled coping can be formed from titanium, plastic, gold, ceramic, or other similar metals and composites.
Specifically, after the healing abutment has been secured to the implant, the cap 602 is securely placed over the top of the healing abutment 600. The impression material is then placed over the top of the cap 602. The impression is then either scanned in the patient's mouth or the impression material (with the cap 602) is then scanned and the process continues as described above.
a-9p depict yet another embodiment of the present invention. Specifically,
In
The top surface of each of the healing abutments has from zero to four information markers located in the four marking locations. As shown in
As is well known, a binary-coded system exists as an array of digits, where the digits are either “1” or “0” that represent two states, respectively, ON and OFF. For each marking location, the presence of a marker (“ON”) is a 1 and the absence of a marker (“OFF”) is a 0. By grouping sets of 1's and 0's together, information about each healing abutment is known. In the illustrative embodiment, the determination of the sets of 1's and 0's derived from the information markers (e.g., via visual inspection, scanning in the mouth, scanning of the impression, or scanning of the model created by the impression) provide information on the height of the healing abutment and the diameter of the seating surface of the attached implant.
The information markers shown in
Turning now to the specifics of each healing abutment,
The orientation pick-ups 802 serve a second function in that they dictate which of the four marking locations is the first marking location. The other three marking locations are then read in clockwise order, proceeding from the most counterclockwise pick-up 802 to the other three marking locations on the top surface of the healing abutment. In other words, as illustrated in
The results of a scan (computer or visual) of the four information markers on the healing abutment 801 produce no information markers at the four marking locations on the healing abutment 801 of
The healing abutment 806 in
The healing abutments 821, 826, 831, 836 shown in
The healing abutments 841, 846, 851, 856 shown in
The healing abutments 861, 866, 871, 876 shown in
While the matrix of the sixteen healing abutments in
Further, while
While the invention has been described with round healing abutments, healing abutments anatomically shaped like teeth can take advantage of the information markers. Thus, the set of healing abutments could include components shaped like the various teeth, and the information markers could provide the information regarding which tooth shape is present on the healing abutment. For example, a set may include four types of molar-shaped healing abutments, four types of bicuspid-shaped healing abutments, four types of incisor-shaped healing abutments and four types of round abutments. The four information marker locations on each component in the set provide the information to determine which one of the sixteen healing abutments is being used.
It is contemplated that the present invention also covers a set of eight unique healing abutments (as opposed to the sixteen shown) requiring only three marking locations. The computer software and/or the visual chart in this situation would identify these eight unique healing abutments through binary codes possessing three digits. The potential binary codes corresponding to an ON or OFF determination at the three marking locations are 000, 100, 010, 001, 110, 101, 011, and 111. Similarly, if the set has only four unique healing abutments, only two marking locations would be required on the healing abutments to determine features regarding the healing abutment and the attached dental implant. The potential binary codes in a four healing abutment matrix are 00, 10, 01, and 11.
After the top surface of a healing abutment (or the impression of the top surface, or the model of the impression of the top surface) is analyzed, the orientation of the hex is known from the location of the orientation pick-ups 802 and, via the binary code, the abutment height and the seating surface of the healing abutment is known. Other information regarding the healing abutment and the attached implant can also be determined by adding other markers of the type previously shown.
In addition to the markers described, it is further possible to provide a bar-coded system for providing information about the particular component, as shown in
Referring to
As noted above, the information markers assist in determining the height of the healing abutment above the implant. This height can be used to identify the zero point on the “Z” axis, which is in the plane 920 containing the seating surface 925 of the implant 900. The “Y” axis 910 is within the plane 920 representing the seating surface 925 with the positive “Y” direction as close to the direction of facial to buccal as possible. The “X” axis 915 is in the plane 920 and is perpendicular to an implant hex face. Thus, the width of the seating surface 925 in the plane 920 is known, as is the width of the healing abutment emerging through the gingiva. Thus, the emergence profile of the artificial tooth is known, as well.
Turning now to
Once the stone cast 1000 is prepared, it is scanned using a scanning technique previously described, the scanned data is transferred into a graphical imaging program, such as a Computer Aided Design (“CAD”) program so that a three-dimensional (“3-D”) CAD model 1100 of the stone cast 1000 (
As shown in
The CAD program is additionally used to design a custom, patient specific, abutment adapted to attach to the implant 1202. The custom abutment supports a final prosthesis, often referred to as a crown. A modified version of the stone model 1000 is used to design the crown to fit between the adjacent teeth based on the specific dimensions and conditions of a patient's mouth. Thus, obtaining an accurate position of the dental implant is critical to designing an accurate crown. Once the CAD program has been used to design a custom abutment, the design of the custom abutment is input into a precision manufacturing device, such as a CNC milling machine, to create the custom abutment from a blank of metal, usually titanium, or a titanium alloy, or from a ceramic material.
As shown in
Once the overmold 1502 has been designed in the 3-D CAD model 1400, the CAD program allows a rapid prototype overmold 1602 (
Turning now to
The custom abutment 1604 (
Thus according to the present invention, the same stone model may be used for a scanning process to make the patient specific custom abutment 1604 and for receiving an implant analog 1606 for mating with the custom abutment 1604 to develop a final prosthesis.
While the preceding embodiment has been described for creating a final prosthesis, it is contemplated that the process may be used to create a temporary prosthesis as well.
According to anther embodiment of the present invention, an implant analog is placed within a stone model using a robot manipulator. As previously described herein, a stone cast 1000 of a mouth of a patient is produced from taking an impression of the patient's mouth. The stone cast is scanned to generate a 3-D CAD model 1100 of the stone cast 1000. The CAD program is used to design a custom abutment 1604. The custom abutment 1604 is produced on a precision manufacturing device using information from the CAD program.
As shown in
Once the relative position of the implant analog 2002 and the adjacent teeth 2004 has been generated, this position information is input to a robot manipulator. The robot manipulator 2100 uses the relative position information to place an implant analog 2102 into a securing material 2104, such as epoxy, located on the modified stone cast 1900 where the healing abutments had been located, as shown schematically in
According to a further alternative embodiment of the present invention, instead of using a robot manipulator to place an implant analog into a securing material of a modified stone cast, the robot manipulator may instead be a multiple handed robot manipulator adapted to drill a hole 1902 in a stone cast 1901 (as shown in
The robot 2300 includes a base structure 2302 that is supported on a table or other work bench. The base structure 2302 typically has one or more moving arms 2304 having a terminal structure 2310 for supporting one or more tool holders 2312, 2314 that grip and/or manipulate tools or other components. As shown, the base structure 2302 includes an arm 2304 having multiple pivotable sections 2304a and 2304b, and the tool holder 2312 includes a drill bit 2320. The terminal structure 2310, the arm 2304, the base structure 2302, and/or the tool holders 2312, 2314 include gears and other common components for transmitting rotational energy to a tool (e.g., the drill bit 2320) being held by one of the tool holders 2312, 2314.
The arm 2304 (and thus the terminal structure 2310) can be moved in all directions relative to the stone cast 1000 and a pallet 2340. The pallet 2340 includes a specific sequence of tools or other components that are placed within the pallet 2340 prior to the operation of the robot 2300. As shown, the pallet 2304 includes an additional drill bit 2342 at one location and an implant analog holder 2344 at a second location. Typically, after the data from the 3-D CAD model 2200 of
In
To help arrange for the precision location of the tool 2320 relative to the stone cast 1000, the stone model 1000 (and its base structure 2350) has an abutment coordinate system, which is labeled as XA, YA, ZA for locating the custom abutment, which will ultimately fit on the implant analog to be located within the opening in the stone cast 1000. Further, the robot 2300 (and the scanning system previously used) has its own base coordinate system, which is labeled as XB, YB, ZB.
When the data from the 3-D CAD model 2200 is transferred to the control system for the robot 2300, the data includes at least three types of data sets. A first data set will indicate the type of implant analog that will be used in the stone cast 1000. A second data set will indicate the relative location of the abutment coordinate system to the base coordinate system so that the creation of the hole in the stone cast 1000 and the placement of the implant analog is substantially identical to that which has been virtually modeled. A third data set will define the gingival margin of the custom abutment 1604 (e.g., having a saddle shape) so that a properly sized opening can be created above the implant analog, allowing the custom abutment to fit properly within the stone cast. This third data set is helpful because the actual custom abutment is larger in diameter than the implant analog such that the opening must be contoured in a tapered fashion (e.g., straight-wall taper, curved wall taper, etc) to accommodate the actual custom abutment.
The robot 2300 of
In
After calibrating the location of the implant analog 2386 with the calibration system 2360 (
Once the adhesive has cured, the robot 2300 commands the gripping mechanism of the tool holder 2314 to release the implant analog holder 2384. The implant analog holder 2344 is held to the implant analog 2386 through a long screw. Thus, the operator removes the long screw such that the implant analog 2386 remains by itself within the opening 2380 (attached via the adhesive), as is shown in
At step 2508, the stone cast is scanned so as to produce a virtual model of the stone cast. This scanning step may also include the scanning of the cast of the opposing upper or lower dentition to constrain the height of the eventual custom abutment that is designed and manufactured. The opposing cast scan is articulated relative to the initial cast scan. The articulation can be achieved through various methods. For example, the articulation axis from the articulator used to articulate the physical casts can be stored in the computer (with respect to a common calibration standard used with the scanner and articulator) such that the opposing cast can be articulated correctly. Another example is the use of the “virtual articulation” software module available in the 3Shape Dental Designer software (3Shape A/S, Copenhagen, Denmark). This allows a set of casts to be articulated in the computer by taking an additional scan in which the casts are positioned in the articulated condition. The software uses a shape-matching algorithm to articulate the opposing cast scan relative to the initial cast scan by referencing geometry from all three scans.
At step 2510, the scanned data of the stone cast is interpreted. Further, using the marker system associated with the set of healing abutments, a virtual healing abutment that matches the scanned data of the stone replica of the healing abutments is aligned with the scanned data such that the exact location, size, and orientation of the entire healing abutment (and, thus, the underlying dental implant) is known. For example, the operator may have a library of possible healing abutments and the one that matches the size and markers at the top of the scanned healing abutment is selected to be aligned on the scanned healing abutment. Once the location and orientation of the underlying dental implant is known, the operator preferably manipulates the model to produce a 3-D CAD model of only the specific area containing the stone replica of the healing abutment(s), as is shown in
Information resulting from step 2510 is then used for two purposes. First, it is used within step 2512 to design a virtual custom abutment (e.g., custom abutment 1604) with the use of the 3-D CAD model. The data is ultimately transferred to a milling machine to manufacture the actual custom abutment. And second, the information from step 2510 can also be sent to a robot (such as the robot 2100 in
At step 2516, the custom abutment that was manufactured in step 2512 can be placed on the modified stone cast created in step 2514. In doing so, the final restorative component(s) (e.g., porcelain tooth-shaped material to be cemented to the custom abutment) can be created on the custom abutment, often by a dental laboratory. The development of the final restorative component(s) take into account the adjacent teeth in the modified stone cast as well as the contour of the opening in the stone cast that leads to the implant analog. At step 2518, the custom abutment and the final restorative component(s) are then sent to the clinician who installs the custom abutment and mating restorative component(s) onto the dental implant.
As an alternate methodology to that which is shown in
As a further option to the alternative procedure in the preceding paragraph, instead of a scan of the patient's mouth with the healing abutment in place, an abutment-level impression (as in step 2504) can be taken after the healing abutment and implant are installed and the impression (or resultant stone cast) could be scanned by a lab. This scanned data could again be merged with the data set from the initial stone cast. In either of these two options, the primary advantage is that overall process can be expedited. This is due to the fact that the entity that modifies the stone model already has the stone model in hand and can begin altering the stone model with the robot once it receives the electronic transfer of the scan data from the (i) scan of the patient's mouth with the healing abutment (as described in the preceding paragraph), or (ii) the scan of the impression of the patient's mouth with the healing abutment (as described in this paragraph).
In a further alternative to either of the previous paragraphs, instead of receiving a stone cast of the patient's mouth prior to installation of the dental implant and healing abutment, the entity involved with the modification of the stone model receives a CT scan of the patient's mouth. In doing so, the CT scan allows that entity to build a physical stone model of the patient's mouth through a rapid prototyping technique. In other words, in this further alternative, there is no need to make a stone model or transfer a stone model created by an impression of the patient's mouth. The CT scan and the subsequent transfer of that scanned data allows for the creation of a model of the patient's mouth through a rapid prototyping technique.
In yet another alternative, after the patient has been fitted with the implant and the associated healing abutment, the patient receives a CT scan. That scanned data is then transferred to the entity involved with the modification is stone model. That entity then uses the data from the CT scan to create a rapid prototyping, which will ultimately serve as the stone model 1000 described above. Further, that same CT scan data can be used to design manufacture the custom abutment. In other words, in such a methodology using a CT scan of the patient's mouth that includes the healing abutment, once a rapid prototype is built from that scanned data, the methodology continues from step 2510 in
In a further alternative, no healing abutments with informational markers are necessary, as will be described with reference to
Once the CT scan is created and the surgical plan with the associated virtual implants is known, at step 2608, the CT scan data and virtual implant data can be used to develop a cast, such as a rapid prototype model, that will ultimately replicate the conditions in the patient's mouth after the surgical plan is effectuated. As such, the CT scan data and the surgical plan data can be used to develop a rapid prototype model of the patient's mouth. Further, this data can also be used to install implant analogs at locations within that rapid prototype model that correspond to locations of the virtual implants dictated by the surgical plan. For example, the robot 2300 can be used to install implant analogs in the rapid prototype model as described above with reference to
Once the surgical guide from step 2606 is completed, it can be transferred to the clinician for use in the patient at step 2612. Thus, the patient receives dental implants installed in accordance with the dental plan (i.e., the proper size implants, their orientation, and their location are finalized in the patient in accordance to virtual implants of the surgical plan). Further, the custom abutment and restorative components (e.g., porcelain tooth-shaped material, associated screw, etc) are transferred to the clinician and can be installed on the dental implants at step 2614. Consequently, under the methodology of
While the preceding embodiments have been described for creating a final prosthesis, it is contemplated that the process may be used to create a temporary prosthesis as well.
While the preceding embodiments have been described by scanning a cast of a patient's mouth, it is also contemplated that an intra-oral scan, a CT scan, or other known type of medical scan, may be taken to generate data used for a 3-D CAD model.
While the preceding embodiments have been described using a healing abutment containing a variety of markings, it is further contemplated that a scanning abutment may be placed into a stone model before a scan is performed. According to such an embodiment, a first stone model of a patient's mouth would be made, and a portion of the first stone model corresponding to a healing abutment would be removed and replaced with a scanning abutment containing a variety of markings as previously described. A scan would then be performed of the first stone model containing the scanning abutment, and a 3-D CAD model of the patient's mouth would be created. The 3-D CAD model would then be used as previously described.
While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations may be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.
This application is a divisional of prior application Ser. No. 12/070,922, filed Feb. 22, 2008, which is a continuation-in-part of application Ser. No. 11/585,705, filed Oct. 24, 2006, now U.S. Pat. No. 7,661,956, which claims the benefit of U.S. Provisional Application No. 60/729,506, filed Oct. 24, 2005, each of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3906634 | Aspel | Sep 1975 | A |
3919772 | Lenczycki | Nov 1975 | A |
3958471 | Muller | May 1976 | A |
4011602 | Rybicki et al. | Mar 1977 | A |
4056585 | Waltke | Nov 1977 | A |
4086701 | Kawahara et al. | May 1978 | A |
4177562 | Miller et al. | Dec 1979 | A |
4294544 | Altschuler et al. | Oct 1981 | A |
4306862 | Knox | Dec 1981 | A |
4325373 | Slivenko et al. | Apr 1982 | A |
4341312 | Scholer | Jul 1982 | A |
4364381 | Sher et al. | Dec 1982 | A |
4439152 | Small | Mar 1984 | A |
4543953 | Slocum et al. | Oct 1985 | A |
4547157 | Driskell | Oct 1985 | A |
4571180 | Kulick | Feb 1986 | A |
4611288 | Duret et al. | Sep 1986 | A |
4624673 | Meyer | Nov 1986 | A |
4663720 | Duret et al. | May 1987 | A |
4713004 | Linkow et al. | Dec 1987 | A |
4756689 | Lundgren | Jul 1988 | A |
4758161 | Niznick | Jul 1988 | A |
4767331 | Hoe | Aug 1988 | A |
4772204 | Soderberg | Sep 1988 | A |
4821200 | Öberg | Apr 1989 | A |
4842518 | Linkow et al. | Jun 1989 | A |
4850870 | Lazzara et al. | Jul 1989 | A |
4850873 | Lazzara et al. | Jul 1989 | A |
4854872 | Detsch | Aug 1989 | A |
4856994 | Lazzara et al. | Aug 1989 | A |
4872839 | Brajnovic | Oct 1989 | A |
4906191 | Soderberg | Mar 1990 | A |
4906420 | Brajnovic | Mar 1990 | A |
4931016 | Sillard | Jun 1990 | A |
4935635 | O'Harra | Jun 1990 | A |
4961674 | Wang et al. | Oct 1990 | A |
4964770 | Steinbichler et al. | Oct 1990 | A |
4986753 | Sellers | Jan 1991 | A |
4988297 | Lazzara et al. | Jan 1991 | A |
4988298 | Lazzara et al. | Jan 1991 | A |
4998881 | Lauks | Mar 1991 | A |
5000685 | Brajnovic | Mar 1991 | A |
5006069 | Lazzara et al. | Apr 1991 | A |
5015183 | Fenick | May 1991 | A |
5015186 | Detsch | May 1991 | A |
5030096 | Hurson et al. | Jul 1991 | A |
5035619 | Daftary | Jul 1991 | A |
5040982 | Stefan-Dogar | Aug 1991 | A |
5040983 | Binon | Aug 1991 | A |
5064375 | Jörnéus | Nov 1991 | A |
5071351 | Green, Jr. et al. | Dec 1991 | A |
5073111 | Daftary | Dec 1991 | A |
5087200 | Brajnovic et al. | Feb 1992 | A |
5100323 | Friedman et al. | Mar 1992 | A |
5104318 | Piche et al. | Apr 1992 | A |
5106300 | Voitik | Apr 1992 | A |
5122059 | Dürr et al. | Jun 1992 | A |
5125839 | Ingber et al. | Jun 1992 | A |
5125841 | Carlsson et al. | Jun 1992 | A |
5133660 | Fenick | Jul 1992 | A |
5135395 | Marlin | Aug 1992 | A |
5145371 | Jörnéus | Sep 1992 | A |
5145372 | Daftary et al. | Sep 1992 | A |
5176516 | Koizumi | Jan 1993 | A |
5188800 | Green, Jr. et al. | Feb 1993 | A |
5195892 | Gersberg | Mar 1993 | A |
5205745 | Kamiya et al. | Apr 1993 | A |
5209659 | Friedman et al. | May 1993 | A |
5209666 | Balfour et al. | May 1993 | A |
5213502 | Daftary | May 1993 | A |
5221204 | Kruger et al. | Jun 1993 | A |
5237998 | Duret et al. | Aug 1993 | A |
5246370 | Coatoam | Sep 1993 | A |
5257184 | Mushabac | Oct 1993 | A |
5281140 | Niznick | Jan 1994 | A |
5286195 | Clostermann | Feb 1994 | A |
5286196 | Brajnovic et al. | Feb 1994 | A |
5292252 | Nickerson et al. | Mar 1994 | A |
5297963 | Dafatry | Mar 1994 | A |
5302125 | Kownacki et al. | Apr 1994 | A |
5312254 | Rosenlicht | May 1994 | A |
5312409 | McLaughlin et al. | May 1994 | A |
5316476 | Krauser | May 1994 | A |
5320529 | Pompa | Jun 1994 | A |
5328371 | Hund et al. | Jul 1994 | A |
5334024 | Niznick | Aug 1994 | A |
5336090 | Wilson, Jr. et al. | Aug 1994 | A |
5338196 | Beaty et al. | Aug 1994 | A |
5338198 | Wu et al. | Aug 1994 | A |
5343391 | Mushabac | Aug 1994 | A |
5344457 | Pilliar et al. | Sep 1994 | A |
5350297 | Cohen | Sep 1994 | A |
5359511 | Schroeder et al. | Oct 1994 | A |
5362234 | Salazar et al. | Nov 1994 | A |
5362235 | Daftary | Nov 1994 | A |
5368483 | Sutter et al. | Nov 1994 | A |
5370692 | Fink | Dec 1994 | A |
5372502 | Massen et al. | Dec 1994 | A |
5386292 | Massen et al. | Jan 1995 | A |
5413481 | Göppel et al. | May 1995 | A |
5417569 | Perisse | May 1995 | A |
5417570 | Zuest et al. | May 1995 | A |
5419702 | Beaty et al. | May 1995 | A |
5431567 | Datary | Jul 1995 | A |
5437551 | Chalifoux | Aug 1995 | A |
5440393 | Wenz | Aug 1995 | A |
5452219 | Dehoff et al. | Sep 1995 | A |
5458488 | Chalifoux | Oct 1995 | A |
5476382 | Daftary | Dec 1995 | A |
5476383 | Beaty et al. | Dec 1995 | A |
5492471 | Singer | Feb 1996 | A |
5516288 | Sichler et al. | May 1996 | A |
5527182 | Willoughby | Jun 1996 | A |
5533898 | Mena | Jul 1996 | A |
5538426 | Harding et al. | Jul 1996 | A |
5547377 | Daftary | Aug 1996 | A |
5556278 | Meitner | Sep 1996 | A |
5564921 | Marlin | Oct 1996 | A |
5564924 | Kwan | Oct 1996 | A |
5569578 | Mushabac | Oct 1996 | A |
5575656 | Hajjar | Nov 1996 | A |
5580244 | White | Dec 1996 | A |
5580246 | Fried | Dec 1996 | A |
5595703 | Swaelens et al. | Jan 1997 | A |
5613832 | Su | Mar 1997 | A |
5613852 | Bavitz | Mar 1997 | A |
5630717 | Zuest | May 1997 | A |
5636986 | Prezeshkian | Jun 1997 | A |
5651675 | Singer | Jul 1997 | A |
5652709 | Andersson et al. | Jul 1997 | A |
5658147 | Phimmasone | Aug 1997 | A |
5662476 | Ingber et al. | Sep 1997 | A |
5674069 | Osorio | Oct 1997 | A |
5674071 | Beaty et al. | Oct 1997 | A |
5674073 | Ingber et al. | Oct 1997 | A |
5681167 | Lazarof | Oct 1997 | A |
5685715 | Beaty et al. | Nov 1997 | A |
5688283 | Knapp | Nov 1997 | A |
5692904 | Beaty et al. | Dec 1997 | A |
5704936 | Mazel | Jan 1998 | A |
5718579 | Kennedy | Feb 1998 | A |
5725376 | Poirier | Mar 1998 | A |
5733124 | Kwan | Mar 1998 | A |
5741215 | D'Urso | Apr 1998 | A |
5743916 | Greenberg | Apr 1998 | A |
5759036 | Hinds | Jun 1998 | A |
5762125 | Mastrorio | Jun 1998 | A |
5762500 | Lazarof | Jun 1998 | A |
5768134 | Swaelens et al. | Jun 1998 | A |
5769636 | Di Sario | Jun 1998 | A |
5791902 | Lauks | Aug 1998 | A |
5800168 | Cascione et al. | Sep 1998 | A |
5813858 | Singer | Sep 1998 | A |
5823778 | Schmitt et al. | Oct 1998 | A |
5842859 | Palacci | Dec 1998 | A |
5846079 | Knode | Dec 1998 | A |
5851115 | Carlsson et al. | Dec 1998 | A |
5857853 | Van Nifterick et al. | Jan 1999 | A |
5871358 | Ingber et al. | Feb 1999 | A |
5873722 | Lazzara et al. | Feb 1999 | A |
5876204 | Day et al. | Mar 1999 | A |
5885078 | Cagna et al. | Mar 1999 | A |
5888034 | Greenberg | Mar 1999 | A |
5904483 | Wade | May 1999 | A |
5915962 | Rosenlicht | Jun 1999 | A |
5927982 | Kruger | Jul 1999 | A |
5938443 | Lazzara et al. | Aug 1999 | A |
5954769 | Rosenlicht | Sep 1999 | A |
5964591 | Beaty et al. | Oct 1999 | A |
5967777 | Klein et al. | Oct 1999 | A |
5984681 | Huang | Nov 1999 | A |
5989025 | Conley | Nov 1999 | A |
5989029 | Osorlo | Nov 1999 | A |
5989258 | Hattori | Nov 1999 | A |
5997681 | Kinzie | Dec 1999 | A |
6000939 | Ray et al. | Dec 1999 | A |
6008905 | Breton et al. | Dec 1999 | A |
6068479 | Kwan | May 2000 | A |
6099311 | Wagner et al. | Aug 2000 | A |
6099313 | Dorken et al. | Aug 2000 | A |
6099314 | Kopelman et al. | Aug 2000 | A |
6120293 | Lazzara et al. | Sep 2000 | A |
6129548 | Lazzara et al. | Oct 2000 | A |
6135773 | Lazzara | Oct 2000 | A |
6142782 | Lazarof | Nov 2000 | A |
6174168 | Dehoff et al. | Jan 2001 | B1 |
6175413 | Lucas | Jan 2001 | B1 |
6190169 | Bluemli et al. | Feb 2001 | B1 |
6197410 | Vallittu et al. | Mar 2001 | B1 |
6200125 | Akutagawa | Mar 2001 | B1 |
6206693 | Hultgren | Mar 2001 | B1 |
6210162 | Chishti | Apr 2001 | B1 |
6217334 | Hultgren | Apr 2001 | B1 |
6227859 | Sutter | May 2001 | B1 |
6283753 | Willoughby | Sep 2001 | B1 |
6287119 | van Nifterick | Sep 2001 | B1 |
6296483 | Champleboux | Oct 2001 | B1 |
6305939 | Dawood | Oct 2001 | B1 |
6319000 | Branemark | Nov 2001 | B1 |
6322728 | Brodkin | Nov 2001 | B1 |
6382975 | Poirier | May 2002 | B1 |
6402707 | Ernst | Jun 2002 | B1 |
6431867 | Gittelson et al. | Aug 2002 | B1 |
6488503 | Lichkus et al. | Dec 2002 | B1 |
6497574 | Miller | Dec 2002 | B1 |
6540784 | Barlow | Apr 2003 | B2 |
6558162 | Porter et al. | May 2003 | B1 |
6568936 | MacDougald | May 2003 | B2 |
6575751 | Lehmann et al. | Jun 2003 | B1 |
6594539 | Geng | Jul 2003 | B1 |
6610079 | Li | Aug 2003 | B1 |
6619958 | Beaty et al. | Sep 2003 | B2 |
6629840 | Chishti | Oct 2003 | B2 |
6634883 | Ranalli | Oct 2003 | B2 |
6648640 | Rubbert et al. | Nov 2003 | B2 |
6671539 | Gateno et al. | Dec 2003 | B2 |
6672870 | Knapp | Jan 2004 | B2 |
6688887 | Morgan | Feb 2004 | B2 |
6691764 | Embert | Feb 2004 | B2 |
6743491 | Cirincione et al. | Jun 2004 | B2 |
6755652 | Nanni | Jun 2004 | B2 |
6772026 | Bradbury | Aug 2004 | B2 |
6776614 | Wiechmann et al. | Aug 2004 | B2 |
6783359 | Kapit | Aug 2004 | B2 |
6790040 | Amber et al. | Sep 2004 | B2 |
6793491 | Klein et al. | Sep 2004 | B2 |
6808659 | Schulman | Oct 2004 | B2 |
6814575 | Poirier | Nov 2004 | B2 |
6821462 | Schulamn et al. | Nov 2004 | B2 |
6829498 | Kipke et al. | Dec 2004 | B2 |
D503804 | Phleps et al. | Apr 2005 | S |
6882894 | Durbin et al. | Apr 2005 | B2 |
6885464 | Pfeiffer et al. | Apr 2005 | B1 |
6902401 | Jorneus et al. | Jun 2005 | B2 |
6913463 | Blacklock | Jul 2005 | B2 |
6926442 | Stöckl | Aug 2005 | B2 |
6926525 | Ronvig | Aug 2005 | B1 |
6939489 | Moszner et al. | Sep 2005 | B2 |
6942699 | Stone et al. | Sep 2005 | B2 |
6953383 | Rothenberger | Oct 2005 | B2 |
6957118 | Kopelman et al. | Oct 2005 | B2 |
6966772 | Malin et al. | Nov 2005 | B2 |
6970760 | Wolf et al. | Nov 2005 | B2 |
6971877 | Harter | Dec 2005 | B2 |
6994549 | Brodkin et al. | Feb 2006 | B2 |
7010150 | Pfeiffer et al. | Mar 2006 | B1 |
7010153 | Zimmermann | Mar 2006 | B2 |
7012988 | Adler et al. | Mar 2006 | B2 |
7018207 | Prestipino | Mar 2006 | B2 |
7021934 | Aravena | Apr 2006 | B2 |
7029275 | Rubbert et al. | Apr 2006 | B2 |
7044735 | Malin | May 2006 | B2 |
7056115 | Phan et al. | Jun 2006 | B2 |
7056472 | Behringer | Jun 2006 | B1 |
7059856 | Marotta | Jun 2006 | B2 |
7066736 | Kumar et al. | Jun 2006 | B2 |
7084868 | Farag et al. | Aug 2006 | B2 |
7086860 | Schuman et al. | Aug 2006 | B2 |
7097451 | Tang | Aug 2006 | B2 |
7104795 | Dadi | Sep 2006 | B2 |
7110844 | Kopelman | Sep 2006 | B2 |
7112065 | Kopelman | Sep 2006 | B2 |
7118375 | Durbin et al. | Oct 2006 | B2 |
D532991 | Gozzi | Dec 2006 | S |
7153132 | Tedesco | Dec 2006 | B2 |
7153135 | Thomas | Dec 2006 | B1 |
7163443 | Basler et al. | Jan 2007 | B2 |
7175434 | Brajnovic | Feb 2007 | B2 |
7175435 | Andersson et al. | Feb 2007 | B2 |
7178731 | Basler | Feb 2007 | B2 |
7214062 | Morgan | May 2007 | B2 |
7220124 | Taub et al. | May 2007 | B2 |
7228191 | Hofmeister et al. | Jun 2007 | B2 |
7236842 | Kopelman et al. | Jun 2007 | B2 |
7281927 | Marotta | Oct 2007 | B2 |
7286954 | Kopelman et al. | Oct 2007 | B2 |
7303420 | Huch et al. | Dec 2007 | B2 |
7319529 | Babayoff | Jan 2008 | B2 |
7322746 | Beckhaus et al. | Jan 2008 | B2 |
7322824 | Schmitt | Jan 2008 | B2 |
7324680 | Zimmermann | Jan 2008 | B2 |
7329122 | Scott | Feb 2008 | B1 |
7333874 | Taub et al. | Feb 2008 | B2 |
7335876 | Eiff et al. | Feb 2008 | B2 |
D565184 | Royzen | Mar 2008 | S |
7367801 | Saliger | May 2008 | B2 |
7379584 | Rubbert et al. | May 2008 | B2 |
D571471 | Stöckl | Jun 2008 | S |
7381191 | Fallah | Jun 2008 | B2 |
7383094 | Kopelman et al. | Jun 2008 | B2 |
D575747 | Abramovich et al. | Aug 2008 | S |
7421608 | Schron | Sep 2008 | B2 |
7425131 | Amber et al. | Sep 2008 | B2 |
7429175 | Gittelson | Sep 2008 | B2 |
7435088 | Brajnovic | Oct 2008 | B2 |
7476100 | Kuo | Jan 2009 | B2 |
7481647 | Sambu et al. | Jan 2009 | B2 |
7488174 | Kopelman et al. | Feb 2009 | B2 |
7497619 | Stoeckl | Mar 2009 | B2 |
7497983 | Khan et al. | Mar 2009 | B2 |
7520747 | Stonisch | Apr 2009 | B2 |
7522764 | Schwotzer | Apr 2009 | B2 |
7534266 | Kluger | May 2009 | B2 |
7536234 | Kopelman et al. | May 2009 | B2 |
7545372 | Kopelman et al. | Jun 2009 | B2 |
7551760 | Scharlack et al. | Jun 2009 | B2 |
7555403 | Kopelman et al. | Jun 2009 | B2 |
7556496 | Cinader, Jr. et al. | Jul 2009 | B2 |
7559692 | Beckhaus et al. | Jul 2009 | B2 |
7563397 | Schulman et al. | Jul 2009 | B2 |
D597769 | Richter et al. | Aug 2009 | S |
7572058 | Pruss et al. | Aug 2009 | B2 |
7572125 | Brajnovic | Aug 2009 | B2 |
7574025 | Feldman | Aug 2009 | B2 |
7578673 | Wen et al. | Aug 2009 | B2 |
7580502 | Dalpiaz et al. | Aug 2009 | B2 |
7581951 | Lehmann et al. | Sep 2009 | B2 |
7582855 | Pfeiffer | Sep 2009 | B2 |
7628537 | Schulze-Ganzlin | Dec 2009 | B2 |
7632097 | Clerck | Dec 2009 | B2 |
7653455 | Cnader, Jr. et al. | Jan 2010 | B2 |
7654823 | Dadi | Feb 2010 | B2 |
7655586 | Brodkin et al. | Feb 2010 | B1 |
7658610 | Knopp | Feb 2010 | B2 |
7661956 | Powell et al. | Feb 2010 | B2 |
7661957 | Tanimura | Feb 2010 | B2 |
7665989 | Brajnovic et al. | Feb 2010 | B2 |
7679723 | Schwotzer | Mar 2010 | B2 |
7687754 | Eiff et al. | Mar 2010 | B2 |
7689308 | Holzner et al. | Mar 2010 | B2 |
D614210 | Basler et al. | Apr 2010 | S |
7698014 | Dunne et al. | Apr 2010 | B2 |
7774084 | Cinader, Jr. | Aug 2010 | B2 |
7780907 | Schmidt et al. | Aug 2010 | B2 |
7785007 | Stoeckl | Aug 2010 | B2 |
7787132 | Körner et al. | Aug 2010 | B2 |
7796811 | Orth et al. | Sep 2010 | B2 |
7798708 | Erhardt et al. | Sep 2010 | B2 |
7801632 | Orth et al. | Sep 2010 | B2 |
7815371 | Schulze-Ganzlin | Oct 2010 | B2 |
7824181 | Sers | Nov 2010 | B2 |
D629908 | Jerger et al. | Dec 2010 | S |
7855354 | Eiff | Dec 2010 | B2 |
7865261 | Pfeiffer | Jan 2011 | B2 |
7876877 | Stockl | Jan 2011 | B2 |
7901209 | Saliger et al. | Mar 2011 | B2 |
7982731 | Orth et al. | Jul 2011 | B2 |
7985119 | Basler et al. | Jul 2011 | B2 |
7986415 | Thiel et al. | Jul 2011 | B2 |
7988449 | Amber et al. | Aug 2011 | B2 |
8011925 | Powell et al. | Sep 2011 | B2 |
8011927 | Merckmans, III et al. | Sep 2011 | B2 |
8026943 | Weber et al. | Sep 2011 | B2 |
8038440 | Swaelens et al. | Oct 2011 | B2 |
8047895 | Basler | Nov 2011 | B2 |
8057912 | Basler et al. | Nov 2011 | B2 |
8062034 | Hanisch et al. | Nov 2011 | B2 |
8083522 | Karkar et al. | Dec 2011 | B2 |
8105081 | Bavar | Jan 2012 | B2 |
20010008751 | Chishti et al. | Jul 2001 | A1 |
20010034010 | MacDougald et al. | Oct 2001 | A1 |
20020010568 | Rubbert et al. | Jan 2002 | A1 |
20020028418 | Farag et al. | Mar 2002 | A1 |
20020039717 | Amber et al. | Apr 2002 | A1 |
20020052606 | Bonutti | May 2002 | A1 |
20020160337 | Klein et al. | Oct 2002 | A1 |
20020167100 | Moszner | Nov 2002 | A1 |
20030130605 | Besek | Jul 2003 | A1 |
20030222366 | Stangel | Dec 2003 | A1 |
20040029074 | Brajnovic | Feb 2004 | A1 |
20040048227 | Brajnovic | Mar 2004 | A1 |
20040157188 | Luth et al. | Aug 2004 | A1 |
20040180308 | Ebi et al. | Sep 2004 | A1 |
20040219477 | Harter | Nov 2004 | A1 |
20040219479 | Malin et al. | Nov 2004 | A1 |
20040219490 | Gartner et al. | Nov 2004 | A1 |
20040220691 | Hofmeister et al. | Nov 2004 | A1 |
20040241611 | Amber et al. | Dec 2004 | A1 |
20040243481 | Bradbury et al. | Dec 2004 | A1 |
20040259051 | Brajnovic | Dec 2004 | A1 |
20050023710 | Brodkin et al. | Feb 2005 | A1 |
20050056350 | Dolabdjian et al. | Mar 2005 | A1 |
20050070782 | Brodkin | Mar 2005 | A1 |
20050084144 | Feldman | Apr 2005 | A1 |
20050100861 | Choi et al. | May 2005 | A1 |
20050136374 | Carmichael et al. | Jun 2005 | A1 |
20050170311 | Tardieu et al. | Aug 2005 | A1 |
20050271996 | Sporbert et al. | Dec 2005 | A1 |
20050277089 | Brajnovic | Dec 2005 | A1 |
20050277090 | Anderson et al. | Dec 2005 | A1 |
20050277091 | Andersson et al. | Dec 2005 | A1 |
20050282106 | Sussman et al. | Dec 2005 | A1 |
20050283065 | Babayoff | Dec 2005 | A1 |
20060006561 | Brajnovic | Jan 2006 | A1 |
20060008763 | Brajnovic | Jan 2006 | A1 |
20060008770 | Brajnovic et al. | Jan 2006 | A1 |
20060093988 | Swaelens et al. | May 2006 | A1 |
20060094951 | Dean et al. | May 2006 | A1 |
20060127848 | Sogo et al. | Jun 2006 | A1 |
20060210949 | Stoop | Sep 2006 | A1 |
20060263741 | Imgrund et al. | Nov 2006 | A1 |
20060281041 | Rubbert et al. | Dec 2006 | A1 |
20070015111 | Kopelman et al. | Jan 2007 | A1 |
20070031790 | Raby et al. | Feb 2007 | A1 |
20070065777 | Becker | Mar 2007 | A1 |
20070077532 | Harter | Apr 2007 | A1 |
20070092854 | Powell et al. | Apr 2007 | A1 |
20070141525 | Cinader, Jr. | Jun 2007 | A1 |
20070211081 | Quadling et al. | Sep 2007 | A1 |
20070218426 | Quadling et al. | Sep 2007 | A1 |
20070264612 | Mount | Nov 2007 | A1 |
20070269769 | Marchesi | Nov 2007 | A1 |
20070281277 | Brajnovic | Dec 2007 | A1 |
20080038692 | Andersson et al. | Feb 2008 | A1 |
20080044794 | Brajnovic | Feb 2008 | A1 |
20080057467 | Gittelson | Mar 2008 | A1 |
20080070181 | Abolfathi et al. | Mar 2008 | A1 |
20080085489 | Schmitt | Apr 2008 | A1 |
20080090210 | Brajnovic | Apr 2008 | A1 |
20080114371 | Kluger | May 2008 | A1 |
20080118895 | Brajnovic | May 2008 | A1 |
20080124676 | Marotta | May 2008 | A1 |
20080153060 | De Moyer | Jun 2008 | A1 |
20080153061 | Marcello | Jun 2008 | A1 |
20080153065 | Brajnovic et al. | Jun 2008 | A1 |
20080153069 | Holzner et al. | Jun 2008 | A1 |
20080176189 | Stonisch | Jul 2008 | A1 |
20080206714 | Schmitt | Aug 2008 | A1 |
20080233537 | Amber et al. | Sep 2008 | A1 |
20080241798 | Holzner et al. | Oct 2008 | A1 |
20080261165 | Steingart et al. | Oct 2008 | A1 |
20080286722 | Berckmans, III et al. | Nov 2008 | A1 |
20080300716 | Kopelman et al. | Dec 2008 | A1 |
20090017418 | Gittelson | Jan 2009 | A1 |
20090026643 | Wiest et al. | Jan 2009 | A1 |
20090042167 | Van Der Zel | Feb 2009 | A1 |
20090081616 | Pfeiffer | Mar 2009 | A1 |
20090087817 | Jansen et al. | Apr 2009 | A1 |
20090092948 | Gantes | Apr 2009 | A1 |
20090098510 | Zhang | Apr 2009 | A1 |
20090098511 | Zhang | Apr 2009 | A1 |
20090123045 | Quadling et al. | May 2009 | A1 |
20090123887 | Brajnovic | May 2009 | A1 |
20090130630 | Suttin et al. | May 2009 | A1 |
20090187393 | Van Lierde et al. | Jul 2009 | A1 |
20090220134 | Cahill et al. | Sep 2009 | A1 |
20090220916 | Fisker et al. | Sep 2009 | A1 |
20090220917 | Jensen | Sep 2009 | A1 |
20090239197 | Brajnovic | Sep 2009 | A1 |
20090239200 | Brajnovic et al. | Sep 2009 | A1 |
20090253097 | Brajnovic | Oct 2009 | A1 |
20090263764 | Berckmans, III et al. | Oct 2009 | A1 |
20090287332 | Adusumilli et al. | Nov 2009 | A1 |
20090298009 | Brajnovic | Dec 2009 | A1 |
20090298017 | Boerjes et al. | Dec 2009 | A1 |
20090317763 | Brajnovic | Dec 2009 | A1 |
20090325122 | Brajnovic et al. | Dec 2009 | A1 |
20100009314 | Tardieu et al. | Jan 2010 | A1 |
20100028827 | Andersson et al. | Feb 2010 | A1 |
20100038807 | Brodkin et al. | Feb 2010 | A1 |
20100075275 | Brajnovic | Mar 2010 | A1 |
20100092904 | Esposti et al. | Apr 2010 | A1 |
20100105008 | Powell et al. | Apr 2010 | A1 |
20100173260 | Sogo et al. | Jul 2010 | A1 |
20100280798 | Pattijn et al. | Nov 2010 | A1 |
20110008751 | Pettersson | Jan 2011 | A1 |
20110060558 | Pettersson et al. | Mar 2011 | A1 |
20110129792 | Berckmans, III et al. | Jun 2011 | A1 |
20110183289 | Powell et al. | Jul 2011 | A1 |
20110191081 | Malfliet et al. | Aug 2011 | A1 |
20110244426 | Amber et al. | Oct 2011 | A1 |
20110269104 | Berckmans, III et al. | Nov 2011 | A1 |
20110275032 | Tardieu et al. | Nov 2011 | A1 |
20110306008 | Suttin et al. | Dec 2011 | A1 |
20110306009 | Suttin et al. | Dec 2011 | A1 |
20120010740 | Swaelens et al. | Jan 2012 | A1 |
20120164593 | Bavar | Jun 2012 | A1 |
20120164893 | Mitsuzuka et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
10029256 | Nov 2000 | DE |
WO 9426200 | Nov 1994 | WO |
WO 9932045 | Jul 1999 | WO |
WO 0008415 | Feb 2000 | WO |
WO 0158379 | Aug 2001 | WO |
WO 02053055 | Jul 2002 | WO |
WO 03024352 | Mar 2003 | WO |
WO 2004030565 | Apr 2004 | WO |
WO 2004075771 | Sep 2004 | WO |
WO 2004075771 | Sep 2004 | WO |
WO 2004087000 | Oct 2004 | WO |
WO 2004098435 | Nov 2004 | WO |
WO 2006014130 | Feb 2006 | WO |
WO 2006062459 | Jun 2006 | WO |
WO 2006082198 | Aug 2006 | WO |
WO2007005490 | Jan 2007 | WO |
WO 2007033157 | Mar 2007 | WO |
WO 2007104842 | Sep 2007 | WO |
WO 2007129955 | Nov 2007 | WO |
WO 2008057955 | May 2008 | WO |
WO2008083857 | Jul 2008 | WO |
WO2009146164 | Dec 2009 | WO |
Entry |
---|
Biomet 3i—Manual entitled “Navigator™ System for CT Guided Surgery Manual”, Revision A Oct. 2007—34 pages. |
Francois Goulette, “A New Method and a Clinical case for Computer Assisted Dental Implantology.” Retrieved from Summer European university in surgical Robotics, URL:www.lirmm.fr/manifs/UEE/docs/students/goulette.pdf, Sep. 6, 2003 (7 pages). |
International Search Report for International Application No. PCT/US2009/034463, filed Feb. 19, 2009, dated Apr. 30, 2009 (2 pages). |
Jakob Brief, “Accuracy of image-guided implantology.” Retrieved from Google, <URL:sitemaker.umich.edu/sarmentlab/files/robodent—vs—denx—coir—05.pdf, Aug. 20, 2004 (7 pages). |
Machine Design: “Robots are ready for medical manufacturing.” Retrieved from MachineDesign.com, <URL: http://machinedesign.com/article/robots-are-ready-for-medical-manufacturing-0712>, Jul. 12, 2007 (7 pages). |
MedNEWS: “‘Surgical Glue’ May Help to Eliminate Suturing for Implants.” Retrieved from MediNEWS.Direct, URL:http://www.medinewsdirect.com/?p=377, Dec. 21, 2007 (1 page). |
Written Opinion of International Application No. PCT/US2009/034463, filed Feb. 19, 2009, dated Apr. 30, 2009 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20110200970 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
60729506 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12070922 | Feb 2008 | US |
Child | 13053424 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11585705 | Oct 2006 | US |
Child | 12070922 | US |