Various of the disclosed embodiments concern an upwards jetting digital printing platform.
In the sector of industrial digital inkjet printing for non-flexible flat substrates, most machines have a similar morphology. This basic architecture typically includes:
In this typical arrangement, the normal to the face of the substrate to be printed is parallel and with the same direction as the upwards vertical direction and the drops of ink fall in the same direction as that of gravity.
This arrangement has obvious benefits for the simplicity and robustness of the system:
Nevertheless, in some specific cases this arrangement is not preferred, for example when it is desirable to minimize and simplify the required processes for the printing to be conducted. One of these cases is the printing of the bottom/back face of the substrate.
Embodiments of the invention allow the seamless integration of digital printing platforms into production lines where the substrate to be printed is typically upside down, with the normal to the surface to be printed having the same direction as that of the acceleration of gravity. This eliminates additional steps of the production process, resulting in lower cost, faster return on investment, more compact production lines, and higher productivity.
Embodiments of the herein disclosed printing platform include:
Embodiments of the invention allow the seamless integration of digital printing platforms into production lines where the substrate to be printed is typically upside down, with the normal to the surface to be printed having the same direction as that of the acceleration of gravity. This eliminates additional steps of the production process, resulting in lower cost, faster return on investment, more compact production lines, and higher productivity.
Embodiments find application with any rigid substrate that is to be printed upside down, where ink is to be jetted upwardly to the substrate. While the discussion herein primarily concerns corrugated cardboard substrates, those skilled in the art will appreciate that embodiments of the invention find ready application for such substrates as paper, non-corrugated cardboard, fiberboard, Masonite, PVC, acrylic, poly carbonate and other rigid plastic sheets, foam core, sheetrock, plywood, etc.
In
The printing surface is downward facing to protect against the accumulation of dust and dirt before the surface is printed. Also, the die cutting process, as well as folding, must be performed from the unprinted surface for reasons of efficiency and further to avoid engagement of the cutter template or folding arms with the printed surface, which may damage any image printed on that surface. Thus, it is desirable to maintain the printed surface in a downward orientation during such fabrication steps as die cutting and folding. To accommodate this requirement, printing is typically performed by flipping and rotating the cardboard sheets prior to printing and then reflipping and re-rotating the cardboard sheets after printing and prior to die cutting and folding. The printing step is discussed in greater detail below in connection with
The corrugated cardboard sheet is passed to a stripping station 12 where it is stripped 20 into individual sheets and then cleaned 19 by brushing 18 and blowing 17 operations.
The individual sheets are then passed to a die cutter 14 where they are cut as appropriate to produce a cut sheet that can be folded into a corrugated cardboard box.
In
As can be seen with the use of conventional digital printing techniques in a corrugated cardboard fabrication line, the product cost 31 is the sum total of the printing cost 27 and the cutting cost 30. The time taken to manipulate the cardboard sheets prior to and after printing is a significant cost factor in the production of corrugated cardboard sheet using this technique.
In
As can be seen with the use of an upward jetting digital printing techniques in a corrugated cardboard fabrication line, the product cost 38 is the sum total of the printing, die cutting, and folding cost 38. This cost is substantially less than the cost of corrugated cardboard fabrication using conventional digital printing techniques. Because the printer jets ink upwardly it is not necessary to interrupt the flow of cardboard sheets to rotate and flip the cardboard sheets before they are printed, nor is it necessary that the cardboard sheets be again rotated and flipped after printing and before die cutting.
Embodiments of the herein disclosed printing platform include:
In
The printhead is normal 46 to the surface of the transportation system that is in contact with the substrate. The printhead is controlled by a printing engine 40 to jet the ink drops upwardly to the substrate as it passes the printhead. The surface of the substrate transportation system that is in contact with the substrate is parallel with and in the opposite direction to the travelling direction 47 of the jetted ink drops.
In embodiments of the invention, two main modifications are introduced to the printer with respect to a typical arrangement where the ink drops are jetted downwards and the substrate is resting on top of the substrate transportation system.
These are:
Regarding the conveying of the substrates under the action of gravity, the counteracting of the weight of the substrate during the printing process can be achieved through different mechanisms, two of which are:
In
In
Irrespectively of the method employed to hold the substrate in place, the adhesion force between the substrate and the conveying element should be superior than in the traditional arrangement. Besides the fact that the weight of the substrate should be counteracted by the substrate holding mechanism, this is also related to the effect of gravity on warped substrates. For the most common concave-warped substrates, looking from the printhead side, the action of gravity in the traditional printer arrangement helps to flatten the substrate while, for the proposed arrangement, the action of gravity tends to amplify the degree of warp of the substrate. In summary, for most cases, in the proposed arrangement the integral across the substrate area of the pressure difference between the top and bottom faces should be higher by at least the substrate weight than in the traditional arrangement.
Regarding the drop ejection against the action of gravity, four main aspects should be considered:
These aspects can be tailored for the specific requirements of this printing arrangement by tuning three main elements
Regarding the first aspect, the ink meniscus shape is affected by multiple factors such as the ink pressure at the nozzle, the surface tension and density of the ink, the nozzle shape, the surface energy of the nozzle plate material, and the orientation of the printheads with respect to gravity. This shape has severe implications for the printhead operation because it affects ink laydown, long-term printing robustness, and accurate image reproduction. Embodiments achieve the same optimal meniscus shape as the typical arrangement (
Pmeniscus=Pintlet+Poutlet/2.
While for the typical arrangement the ink at the meniscus is kept under slight vacuum, i.e., ink pressure is slightly below atmospheric one, to counteract gravity and prevent drops from falling (dripping), in embodiments the ink delivery system setpoints are modified in such a way that the pressure at the meniscus is slightly above atmospheric one, thereby counteracting the effect of gravity and ensuring optimal meniscus shape for drop formation. This can be accomplished by increasing both the inlet and outlet printhead pressures while keeping the difference between them stable so as not to affect the flow rate across it. This optimal meniscus shape can be deduced based on printing tests where this and other parameters, such as the waveform, are modified to achieve the best possible balance between opposing requirements, such as maximizing drop volume and velocity and minimizing nozzle plate and substrate contamination. The required increase in meniscus pressure between both arrangements is highly dependent on the parameters previously cited but is in the range of 3 to 10 kPa for most cases.
Regarding the second aspect, this adaptation can be accomplished by a combination of a modification in the ink properties, particularly the ink viscosity through ink heating/cooling, and the waveform. The waveform is a highly tunable element of inkjet printing system so adaptation to the specific requirements of this arrangement would not have major side effects, contrary to the change in the ink properties where this can lead to undesired ink evaporation and degradation, so the adaptation of this factor is preferred. The procedure to tune a waveform is typically performed entirely in an experimental set-up involving printing in front of a stroboscopic camera where parameters such as the drop volume and velocity can be measured under variable drop ejection frequencies, and also printing on a substrate to check contamination and drop placement accuracy. In these set-up, parameters such as the voltage levels, the duration of the voltage pulses, and the spacing between the pulses is changed to achieve the desired drop characteristics and long-term jetting sustainability. In embodiments, it is important to achieve similar volume and velocities of the jetted drops as the optimal ones for the typical arrangement and prevent long term jetting sustainability problems. The drop ejection against the action of gravity should lead, in most cases, to slightly higher required power/voltage levels, typically 2 to 20%, than in the typical arrangement due to gravity acting against the drop detachment from the ink ligament generated by the action of printhead actuator.
Regarding the third aspect, once the ink drop has already exited the printhead nozzle, it can be shown that gravity has minimal impact on the drop trajectory. This is related to the fact that the ink drops exit the printhead nozzle at relatively high speeds, typically between 5 and 15 m/s, so the dominant force acting on the falling drops is caused by drag against the surrounding air, which can be orders of magnitude bigger than the force of gravity for these very small drops, which are on the order of 10 to 100 microns in diameter.
Finally, regarding the fourth aspect, gravity plays a role in the interaction between the falling drop and the substrate upon contact. Due to the negligible impact on the trajectory and velocity of the drops previously discussed, the herein disclosed arrangement should not lead in most cases to more significant splashing with respect to the traditional approach. Nevertheless, the dynamic process of ink settling on the substrate is affected by the action of the gravity. In embodiments, and for the same conditions as for the traditional ones, slower ink drop absorption and diameter increase on the substrate can be expected, leading to slower drop gain. As previously mentioned, this behavior can be compensated by playing with the surface properties of the substrate, for example, by applying a primer agent that increase the surface energy and modify the porosity of the ink-receiving surface over the one used in the typical arrangement to enhance its wettability and optimize drop control. The specific requirements are very substrate-specific. For example, for porous substrates, such as cardboard, a slower ink absorption of this arrangement is preferred because it leads to better drop and image definition. Thus, no specific adaptation of the primer properties for the proposed arrangement is required, although an improvement over the performance achieved with the conventional arrangement is possible. For drop gain control, the goal is to increase the drop size to a level where possible defects in the drop deposition are masked and the desired color density is achieved. This is typically accomplished when, for the biggest drop, the final diameter on the substrate is in between √2 and 2 times the spacing between adjacent nozzles. The methods to achieve this can include chemical and electrical treatments of the surface to be printed and the formulation of primers to be applied on the surface to be printed before the printing takes place.
This arrangement is applicable for any application where the face of the substrate to be printed is typically facing downwards due to optimality for other steps of the manufacturing process. This adaptation to the other steps of the process allows the number of total operations required for the production of the substrate to be reduced, resulting in lower production costs.
One possible application is the printing of corrugated cardboard sheets, where the manufacturing of the sheets takes place with the surface to be printed facing downwards. This arrangement would also allow the printing of both sides of the substrate in a completely consecutive manner without requiring any intermediate substrate flipping procedure by concatenating one printing machine having a traditional downward jetting arrangement and another having the disclosed upward jetting arrangement or vice versa.
In
The spacing of the printheads to the cardboard sheets is adjustable by use of a manual lifting system 74. The distance of the substrate to the printhead should be sufficient to prevent possible contact between irregularities of the printed face of the substrate and the printheads while also being as small as possible to minimize possible drop deviations induced by air flow and drop deceleration.
In
Those skilled in the art will appreciate that the printheads and electronic controls therefore may be selected from among those that are currently available to conduct the required adaptations previously described for optimal operation in the proposed arrangement.
The language used in the specification has been principally selected for readability and instructional purposes. It may not have been selected to delineate or circumscribe the subject matter. It is therefore intended that the scope of the technology be limited not by this Detailed Description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of various embodiments is intended to be illustrative, but not limiting, of the scope of the technology as set forth in the following claims.
This application is a divisional of U.S. patent application Ser. No. 18/311,863, titled “UPWARDS JETTING DIGITAL PRINTING PLATFORM” and filed on May 3, 2023, which is a continuation of U.S. patent application Ser. No. 17/373,622, titled “UPWARDS JETTING DIGITAL PRINTING PLATFORM” and filed on Jul. 12, 2021, which are each incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4814795 | Kuester et al. | Mar 1989 | A |
6767073 | Tschida | Jul 2004 | B2 |
7924455 | Lapstun et al. | Apr 2011 | B2 |
8721039 | Jo | May 2014 | B2 |
20020033860 | Kubota | Mar 2002 | A1 |
20070247505 | Isowa | Oct 2007 | A1 |
20180200906 | Senoo | Jul 2018 | A1 |
20180297356 | Capoia | Oct 2018 | A1 |
20200114655 | Escudero Gonzalez et al. | Apr 2020 | A1 |
20210222025 | Okazaki et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
114918081 | Aug 2022 | CN |
1847381 | Oct 2007 | EP |
3121017 | Nov 2019 | EP |
3442805 | Sep 2020 | EP |
2019162768 | Sep 2019 | JP |
2020152531 | Sep 2020 | WO |
Entry |
---|
“Corrugated Box Printed Inside and Outside”, Blog of Shanghai DE Printed Box; retrieved online from url: https://www.deprintedbox.com/blog/corrugated-box-printed-inside-and-out/; 13 pages, Jul. 4, 2016. |
“Technical Documents of Corrugated Box Making Machines”, Hebei Shengli Carton Equipment Manufacturing Co., Ltd.; retrieved online on Jun. 21, 2021 from url: www.corrugated-box-machine-china.top/technology-of-corrugated-box-mking-machines; publication date unknown, 5 pages. |
“V5 Upjet prints on the back of large format pieces to mark industrially and improve production traceability.”, Limitronic; retrieved online from url: https://www.limitronic.com/en/printer/industrial-printer-v5-upjet, Jan. 2020, 1 page. |
Der Nederlanden, Leopold , “What is flexo printing? The printing technique explained”, MPS Printing Productivity; retrieved online from url: https://blog.mps4u.com/what-is-flexo-printing, Aug. 7, 2018, 4 pages. |
Murat, Akar , “#projectainvent”, retrieved online from url: https://www.linkedin.com/posts/murat-akar-94309367_projectainvent-digital-seiko-activity-6787419204564852737-u8vZ, Apr. 2021, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20240173974 A1 | May 2024 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 18311863 | May 2023 | US |
Child | 18433815 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17373622 | Jul 2021 | US |
Child | 18311863 | US |