Methods for producing a hybrid seed product

Information

  • Patent Application
  • 20060277618
  • Publication Number
    20060277618
  • Date Filed
    June 06, 2005
    19 years ago
  • Date Published
    December 07, 2006
    18 years ago
Abstract
A method for increasing production of hybrid seed of bee-pollinated crops, such as alfalfa and soybean at predetermined hybridity levels. Hybrid seed is produced using female and pollenizer plants at a selected ratio of female plants to pollenizer plants. The female plants and the pollenizer plants are intermingled in the hybrid seed production field. Prediction of percentage of hybridity at various female to pollenizer ratios allows for selection of a ratio of female plants to pollenizer plants to provide seed at a test percentage of hybridity. The percentage of hybridity may be increased post-harvest by employing techniques using seed properties such as size differential, color or density to remove a higher percentage of non-hybrid seed. The hybrid seed product is maximized at various hybridity levels. Planting according to subrows allows for separate harvesting of intermingled crops. Testing the hybrid seed product provides verification of percentage of hybridity.
Description
BACKGROUND OF THE INVENTION

The present invention generally relates to methods for production of a hybrid seed product, and more particularly to methods for producing a hybrid seed product while increasing production of hybrid seed of bee-pollinated crops at predetermined hybridity levels, including post production adjustment of percentage of hybridity and verification of percentage of hybridity of the hybrid seed product after harvest.


Hybrid plant varieties offer many desirable agronomic traits. Hybrid plant varieties often provide higher yield than non-hybrid strains. Hybrid plant varieties may also possess higher stress tolerance than non-hybrid varieties, enabling them to survive in less favorable environmental conditions. Furthermore, hybrid plant varieties provide greater efficiency in breeding improvements. Hybridization allows for combination of desirable agronomic traits from different strains.


While hybridization provides these desirable agronomic traits, certain plant species present particular challenges to hybridization. Species such as corn are easily hybridized because the male and female reproductive organs have physical separation. Other species have reproductive parts that are less accessible and have little physical separation between male and female parts. These species are more difficult to hybridize. Bee-pollinated crops, such as alfalfa and soybeans, are examples of species that have male and female reproductive parts that have little physical separation because of the relatively small size of the flower.


Hybrid seed production in these species often employs cytoplasmic male sterile plants, also called female plants. Seed that is produced by female plants from pollinations by pollenizer plants, also called male plants, is mostly hybrid seed. Seed produced from selfing or sibbing by the pollenizer plants is mostly non-hybrid seed. During production of hybrid seed, employing a higher proportion of female plants to pollenizer plants in a hybrid seed production field increases the proportion of hybrid seed to non-hybrid seed. However, current methods for producing hybrid seed result in a significant decrease of seed yield for each individual plant when increasing the proportion of female plants to pollenizer plants. There is therefore a need for methods for increasing the proportion of hybrid seed to non-hybrid seed while maintaining high overall seed yield for a hybrid seed product.


Production of hybrid varieties is subject to federal law requirements that make a high percentage of hybridity very desirable. 7 CFR §201.26 requires that a variety have at least seventy-five percent hybridity to be classified as a hybrid variety. Certain plant species, particularly bee-pollinated species, such as alfalfa and soybeans, present challenges to breeding plant varieties that meet this federally mandated hybridity level. U.S. Pat. No. 3,570,181, herein incorporated by reference, discloses a method for producing hybrid alfalfa using cytoplasmic male sterile alfalfa plants. However, production according to this method results in large reduction of seed yield that makes production of hybrid seed of bee-pollinated crops commercially impractical. U.S. Pat. No. 4,045,912, herein incorporated by reference, discloses a method for producing seed but does not provide for production of seed meeting federal requirements for a hybrid variety. U.S. Pat. No. 4,045,912 is further not concerned with verification of percentage of hybridity at commercial levels of production. Thus, there is a need for methods for production of hybrid seed that provide for high seed yield while maintaining hybridity levels meeting federal requirements.


Production of a certified hybrid alfalfa product requires determination of percentage of hybridity. Determination of percentage of hybridity is often accomplished using methods employing morphological or molecular markers. However, using molecular markers is expensive, takes significant time and is often commercially impractical. In some species, morphological markers require a homozygous recessive gene on one side, and dominance gene on the other side, and are therefore difficult to employ. Furthermore, some plant species present additional difficulties to employing such methods. For example, tetraploid species such as alfalfa have greater complexity in their genetics and inheritance. Another difficulty is the small seed size of some species, such as alfalfa. There is therefore a need for methods for determining or verifying the percentage of hybridity of a particular hybrid that avoid these difficulties.


Separate harvesting of female seed and pollenizer seed is useful for determining percentage of hybridity. Prior methods of separate harvesting for species such as alfalfa require planting female seed and pollenizer seed in separate rows for separate harvesting. However, production of hybrid seed for bee-pollinated crops, such as alfalfa and soybeans, benefits from intermingling to allow a higher percentage of cross-pollination to occur. Planting in separate rows decreases production of hybrid seed, as cross-pollination becomes less frequent due to the distance of the female plants from the pollenizer plants. Where multiple female rows are planted for every male row, such as shown in U.S. Pat. No. 3,570,181, cross-pollination becomes even less frequent. There is therefore a need for methods for separately harvesting female seed and pollenizer seed that allow for intermingling of female and pollenizer plants.


Production of a hybrid seed product is furthermore a long, expensive and labor-intensive process. Prior methods of seed production do not provide for prediction of percentage of hybridity. A method for predicting hybridity levels of seed production of bee-pollinated crops would facilitate production of a hybrid seed product meeting federal standards. This would allow for faster, cost-effective and less labor-intensive production. There is therefore a need for methods for predicting hybridity levels of bee-pollinated crops.


Prior methods of seed production also do not include methods for post-production adjustment of hybridity levels of bee-pollinated crops. A method for adjusting hybridity levels of bee-pollinated crops would also aid meeting hybridity standards for production of hybrid plant varieties. Post-production adjustment of hybridity levels also would allow for production of hybrid plant varieties while employing breeding methods that would not normally result in hybridity levels required by statute. There is therefore a need for post-production methods for adjusting hybridity levels of bee-pollinated crops.


Although hybrid plant varieties are desirable for agronomic reasons, commercial production of many hybrid plant varieties has not been commercially viable, particularly for bee-pollinated crops. The present invention solves these needs and other problems in the field of hybrid seed production by providing, in most preferred aspects, methods for producing a hybrid seed product that includes increasing production of hybrid seed of bee-pollinated crops at predetermined hybridity levels, prediction of percentage of hybridity, determination of percentage of hybridity, post-production adjustment of percentage of hybridity, and verification of percentage of hybridity after harvest.


SUMMARY OF THE INVENTION

The invention therefore provides a method for producing a hybrid seed product of bee-pollinated crops, such as alfalfa and soybean, at predetermined hybridity levels. Hybrid seed is produced using female and pollenizer plants at a predetermined ratio of female plants to pollenizer plants mixed together in a hybrid seed production field. Prediction of percentage of hybridity at various female to pollenizer ratios allows for selection of a ratio of female plants to pollenizer plants to provide seed at a selected percentage of hybridity. The percentage of hybridity of the hybrid seed product may be increased after harvesting by employing techniques using seed properties such as size differential, color or density to remove a higher percentage of non-hybrid seed.


In other aspects of the present invention, the method provides for maximization of seed yield at various hybridity levels.


In further aspects of the present invention, the method provides for separate harvesting of intermingled crops.


In further aspects of the present invention, the method provides for verification of percentage of hybridity of a hybrid product.


These and further objects and advantages of the present invention will become clearer in light of the following detailed description of an illustrative embodiment of this invention.




BRIEF DESCRIPTION OF THE DRAWINGS

The illustrative embodiment may best be described by reference to the accompanying drawings where:



FIG. 1 shows a flow diagram of one embodiment of the methods for producing a hybrid seed product.



FIG. 2
a shows a regression curve showing percentage hybridity versus female to pollenizer ratio for a single cross.



FIG. 2
b shows a regression curve showing percentage hybridity versus female to pollenizer ratio for multiple crosses.



FIG. 3 shows a plot planted according to the subrow method of the invention.




All figures are drawn for ease of explanation of the basic teachings of the present invention only; the extensions of the figures with respect to number, position, relationship, and dimensions of the parts to form the preferred embodiment will be explained or will be within the skill of the art after the following description has been read and understood. Further, the exact measurements and measurement proportions to conform to specific percentages, sizes, and similar requirements will likewise be within the skill of the art after the following description has been read and understood. Values provided are representative and are utilized to facilitate the description of the preferred embodiment.


Where used in the various figures of the drawings, the same numerals designate the same or similar parts. Furthermore, when the terms “upper,” “lower,” “side,” “end,” “bottom,” “first,” “second,” “laterally,” “longitudinally,” “row,” “column,” “array,” and similar terms are used herein, it should be understood that these terms have reference only to the structure shown in the drawings as it would appear to a person viewing the drawings and are utilized only to facilitate describing the illustrative embodiment.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention provides methods for producing a hybrid seed product of bee-pollinated crops such as alfalfa and soybean. FIG. 1 shows a flow diagram of one example embodiment of these methods. The method includes selection of a female line and a pollenizer line 10. These lines are planted in test plots in selected ratios of female plants to pollenizer plants 20. Data is collected from the test plots 30. Data analysis provides information on characteristics such as: seed size distribution for each line and seed yield of female and pollenizer plants in response to the selected ratios of female plants to pollenizer plants 40. In the preferred embodiment, the data analysis can provide for further selection of a female line or lines and further selection of a pollenizer line or lines for production of the hybrid seed product. In one example embodiment, the data analysis 40 may indicate a combination of a female line and pollenizer line having a high seed yield.


In this example embodiment, analysis of seed size distribution determines a procedure for producing the hybrid seed product. If the seed size distribution of the female plants and the pollenizer plants have a small amount of overlap 50, then a female to pollenizer ratio is selected using the data analysis to produce the maximum quantity of seed 60. In one example embodiment, selection of a female to pollenizer ratio to produce the maximum quantity of seed occurs when the overlap in seed size distribution involves less than 25% of the seed product of the cross between the selected female line and the selected pollenizer line. Subsequent seed size screening removes enough non-hybrid seed to achieve a targeted percentage of hybridity in the hybrid seed product. Where there is little or no overlap in seed size distribution, substantially all of the non-hybrid seed may be removed 70.


If the seed size distribution of the female plants and seed size distribution of the pollenizer plants have significant overlap, but are not substantially the same 80, then statistical analysis on the respective seed size distributions determines the percentage of hybridity that can be gained by screening out seed within a selected size range 90. Selection of a female to pollenizer ratio for a production field takes into account both the hybridity level of the selected female to pollenizer ratios in the test plots, and the gain in hybridity level attained by screening out seed in a selected size range 100. In the preferred embodiment, the ratio producing the maximum quantity of seed after post-harvest screening to achieve a targeted hybridity level is selected for use in the production field.


If the seed size distribution of the female plants and the seed size distribution of the pollenizer plants are substantially the same 110, then a female to pollenizer ratio is selected for the production field using data from the test plots that will achieve the targeted hybridity level 120.


The selected female line and the selected pollenizer line are then planted in the production field in the selected female to pollenizer ratio to produce the hybrid seed product 130. After production, the percentage of hybridity of the hybrid seed product is verified 140.


With respect to the selection of lines 10 for the hybrid seed product, in the preferred embodiment of the methods of the invention, the production of a hybrid seed product includes selection of one or more female lines, also referred to as an “A line.” A female line is a cytoplasmic male sterile line, a genic male sterile line, or an induced male sterile line by chemicals or biotechnology. These lines have a condition in which pollen is absent or non-functional in flowering plants. The methods also include the selection of one or more pollenizer lines, also referred to as a “male line” or “C line.” The pollenizer line is a male fertile line having a condition in which pollen is produced and functional in flowering plants, with the female part either functional or not functional.


In the preferred embodiment, selection of the female line and the pollenizer line takes into account both agronomic factors and factors that affect percentage of hybridity and seed yield. In an example embodiment, these factors include: female to pollenizer ratio, seed yield from pollenizer plants, seed yield from female plants, female to pollenizer seed yield differential, female to pollenizer seed size differential, high seed yield with increasing female to pollenizer plant ratio, low P.P.I. (Pollen Production Index), large seed size, pollination power in pollenizer plants and high self-incompatibility in pollenizer plants. In further aspects of the invention, these factors include desirable agronomic traits such as disease resistance, insect resistance and forage yield.


The selected lines can then be planted in test plots 20 for data collection 30 and data analysis 40. In the preferred embodiment, data on seed yielding ability, pollination power, pollen production index (P.P.I.), seed size distribution for each line and seed yield of female and pollenizer plants in response to the selected ratios of female plants to pollenizer plants is collected along with other characteristics.


The data collection 30 and data analysis 40 of the present invention demonstrate that individual female lines can have different seed yielding abilities. Table 1 illustrates test results of seed yield for four female lines with different P.P.I., with each female line crossed with five different pollenizers.

TABLE 1Seed Yield of Female Plants with Different P.P.I.Average seed YieldFemale Line(Total wt. of 4(A × B)P.P.I.rows in grams)Female10.013328.6Female20.025402.1Female30.046318.2Female40.085369.6


Table 1 illustrates the results of testing under the following conditions:

    • Selection of four female lines with different P.P.I. and five pollenizer lines with different pollinating abilities for diallel mating in three female to pollenizer ratios, 70:30, 75:25, and 80:20 at two locations, Sloughouse, Calif., and Homedale, Id.
    • Split plot designs with two replications were used at the two locations. Each location included 120 plots, with each plot having six rows and being 20 feet long. The center four rows included a mixture of both female and pollenizer seed in one of the tested ratios. The outside rows included only female seed and provided for P.P.I. readings and progeny testing.


These four female lines demonstrate different seed yielding capabilities. As further shown in Table 1, experimentation reveals no significant correlation between P.P.I. and seed yields for the tested female lines in the tested female to pollenizer ratios within the tested low P.P.I. range. In this experiment, each female line was crossed with five male lines in three female to pollenizer ratios. Thus, in a preferred embodiment of the invention, the methods of the invention for hybrid seed production includes selection of at least one female line having a high seed yield, such as the line designated Female2 in the study above, without regard for the P.P.I. of the female line. In other aspects of the present invention, the invention may employ multiple female lines having varying seed yield. Those skilled in the art will recognize that selection of a female line may be done according to various agronomic factors within the spirit and scope of the invention.


In the preferred embodiment of the present invention, selection of a pollenizer, or male, line provides for high pollination power. Thus, a measure of pollination power provides a measure of average female line seed yield from pollination of the selected pollenizer line. Tables 2 and 3 show representative measures of pollination power for five male lines.

TABLE 2Seed Yield of PollenizersSeed YieldPollenizer(grams/plant)Male1361.5Male2333.5Male3360.8Male4440.7Male5276.6


Table 2 shows data collected according to the teachings of the present invention on average seed yield for five pollenizers crossed with four different females in three female to pollenizer ratios: 80:20, 75:25 and 70:30. Seed were harvested in bulk, comprising a mixture of both hybrid and pollenizer seed. Seed yields are the mean of twenty-four plots. The Male5 pollenizer line had the white flower trait.


Testing according to the teachings of the present invention indicates that different pollenizers have different seed yielding abilities and varying pollinating power with respect to female plant seed yield. In the study performed above, the Male4 pollenizer caused the female plants to produce the most seed, and the Male5 pollenizer caused the female plants to produce the least seed. These results are statistically significant at the 1% level.

TABLE 3Average Seed Yield of Each Female with Specific Pollenizer(Male) at Three Female to Male Ratios (70:30, 75:25, and 80:20)MaleMale4Male5FemaleMale1Male2Male3(High seed)(Low seed)Female1316.8339.2316.8383.8286.7Female2431.2392.5361.5534.3290.8(high seedyielder)Female3297.0298.5358.0402.3235.3(low seedyielder)Female4401.2303.7406.8442.8293.5


Testing according to the teachings of the present invention confirm that crossing females having high seed yield with pollenizers having high seed yield results in a cross with the highest seed yield. Likewise, crossing females having low seed yield with pollenizers having low seed yield results in a cross with the lowest seed yield. Table 3 summarizes the results of this testing.


According to the further teachings of the present invention, the percentage of hybridity of the hybrid seed product will be highest when using a male line with high pollination power but low seed yield. This provides for a higher percentage in the production field of hybrid seed by lowering production of non-hybrid seed. In the preferred form of the invention, the method includes selection of a male line with low seed yield but high pollination power for crossing with a female line with high seed yield in hybrid seed production. In another aspect of the preferred embodiment of the invention, pollenizers having high self-incompatibility contribute to a hybrid seed product having less selfed seed than outcross seed. As with selection of the female line, in other aspects of the present invention, the method of the invention may employ multiple pollenizer lines having varying pollination power. Those skilled in the art will recognize that selection of a pollenizer line having lower pollination power and lower self-incompatibility is within the spirit and scope of the invention, and that selection of a pollenizer line may be done according to various agronomic factors.

TABLE 4Seed Yield Decrease with Increase Female and DecreasePollenizer (Male) in Female to Male RatiosFemale:Pollenizer(male)70:3075:2580:20Seed Yield375.2370.1318.6(Hybrid seed and pollenizer seed)% reduction from 70:30 1.4 15.1seed production level


In the most preferred embodiment of the invention, the method for production of hybrid seed further incorporates selection of female to pollenizer ratios. Testing according to the teachings of the present invention demonstrates that female to pollenizer ratio affects seed yield, as shown in Table 4. This testing further indicates that the effect of female to pollenizer ratio is not linear. In one example embodiment, experimentation on selected female and pollenizer lines demonstrates an average 1.4% drop in seed yield between a 70:30 and a 75:25 female to pollenizer ratio. However, testing demonstrated an average 15.1% drop in seed yield between a 75:25 and an 80:20 female to pollenizer ratio. Therefore, for the tested lines, much greater gains in seed yield occur when going from an 80:20 female to pollenizer ratio to a 75:25 ratio than from a 75:25 ratio to a 70:30 ratio. Table 4 summarizes the average decreases in seed yield with increasing female to pollenizer ratios for the tested varieties. Furthermore, testing according to the teachings of the present invention further demonstrates that the decrease in seed yield will vary with different female to pollenizer crosses, as shown in Tables 6, 7, 8, and 9.


According to the teachings of the present invention, individual crosses have varying responses to female to pollenizer ratio with respect to hybrid seed production levels and percentages of hybridity. Thus, in the preferred form of the invention, production of a hybrid seed product includes determining, for each cross, the hybrid seed production level and percentage of hybridity for a range of female to pollenizer ratios. In this preferred embodiment, hybrid seed production employs selection of a specific female to pollenizer ratio for maximum seed production at a desired hybridity level for each cross of two or more lines. However, those skilled in the art will recognize that selection of a female to pollenizer ratio can be made for a selected cross without determining the hybrid seed production level and percentage of hybridity for a range of female to pollenizer ratios. For example, in one alternate embodiment, a typical response to female to pollenizer ratio may be used for production purposes without determining individual response to female to pollenizer ratio. In another alternate embodiment, where non-hybrid seed are removed to produce the hybrid seed product, a female to pollenizer ratio having high hybrid seed production levels, such as 70:30 or 60:40 is selected for production.

TABLE 5Seed Yield of a Female Line Pollinated with High and Low SeedYield Pollenizers at Three Different Female to Pollenizer Ratio'sFemale:Male ratioC1/C2A1 × C1/A1 × C21:12:13:1totalratioratioF(A) (wt/plant in grams)59.948.638.9147.4M C1 (High yield)45.237.439.5122.1122.1/35.3147.4/46.1(wt/plant in grams)% Hybridity(56.9)(72.2)(74.8)F(A)(wt/pl) in grams17.415.313.4 46.1M C2 (Low yield)12.911.810.6 35.3(wt/plant in grams)Avg. Female seed wt.38.732.026.2Ave. Male seed wt.29.124.625.1% Hybridity(62.5)(73.1)(79.9)


In one preferred embodiment of the method of the invention to produce a hybrid seed product, selection of a cross having a high female to pollenizer seed yield differential provides for an increase in the percentage of hybridity of the hybrid seed product. The teachings of the present invention demonstrates that seed yield of female plants varies in response to different males at different female to pollenizer ratios. Table 5 illustrates results of seed yield for a female line crossed with a high seed yield pollenizer and a low seed yield pollenizer at three different female to pollenizer ratios. Thus, greater levels of hybridity can be obtained by selection for a cross where the pollenizer lines and female lines have a high female to pollenizer seed yield differential. In the preferred embodiment, the methods for producing a hybrid seed product of the instant invention include selection of a female line and a pollenizer line to provide for a high female to pollenizer seed yield differential.


The present invention further illustrates, as shown in Table 5, that female seed yield has a positive correlation with decreasing female to pollenizer ratios. Total seed yield also has a positive correlation with decreasing female to pollenizer ratios. In contrast, the percentage of hybridity has a positive correlation with increasing female to pollenizer ratios. Female seed yield is also affected by pollenizer seed yield, with higher pollenizer seed yield positively correlated to higher female seed yield.

TABLE 6Female1 with Male1Seed Yield Decrease and Hybridity Increase as Femaleto Male (Pollenizer) Ratios Changed from 1:1 Ratio to2:1 Ratio and 3:1 RatioFemale:Male1:12:13:1F1 (wt/pl) grams59.948.638.9% reduction from 1:118.935.1seed production levelM1 (wt/pl) grams45.237.439.5% reduction from 1:117.312.6seed production levelTotal (Female + Male)105.186.078.4% reduction from 1:118.225.4seed production levelF:M seed yield differential1.331.300.98% Hybridity57.072.274.7









TABLE 7










Female1 with Male2


Seed Yield Decrease and Hybridity Increase as Female


to Male (Pollenizer) Ratios Changed from 1:1 Ratio to


2:1 Ratio and 3:1 Ratio









Female:Male











1:1
2:1
3:1
















F1 (wt/pl) grams
17.4
15.3
13.4



% reduction from 1:1

12.1
23.0



seed production level



M2 (wt/pl) grams
12.9
11.8
10.6



% reduction from 1:1

8.5
17.8



seed production level



Total (Female + Male)
30.3
27.1
24.0



% reduction from 1:1

10.6
20.8



seed production level



F:M seed yield differential
1.35
1.30
1.26



% Hybridity
62.5
73.1
79.9

















TABLE 8










Overall changes in Seed Yield Decrease and Hybridity Increase


as Female to Male (Pollenizer) Ratios Increases from 1:1 Ratio


to 2:1 Ratio and 3:1 Ratio









Female:Male











1:1
2:1
3:1
















F1 (wt/pl) grams
59.9
48.6
38.9



Change
100.0
81.1
64.9



M1 (wt/pl) grams
45.2
37.4
39.5



Change
100.0
82.7
87.4



Total
105.1
86.0
78.4



(Female + Male)



Change
100.0
81.8
74.6



F:M seed yield
1.33
1.30
.99



differential



% Hybridity
56.9
72.2
74.8










Tables 6, 7 and 8 show data for a female line crossed with two pollenizer lines using three different female to pollenizer ratios. Table 6 shows the female line crossed with a first pollenizer line (Male1) at three female to pollenizer ratios. Table 7 shows the same female line crossed with a second pollenizer line (Male2) at three female to pollenizer ratios. Data obtained from experimentation according to the teaching of the present invention demonstrates an average hybridity level of 71.8% for the cross with the first pollenizer line and an average hybridity level of 67.8% for the cross with the second pollenizer line. Thus, according to the teachings of the present invention, percentage of hybridity will vary from cross to cross.


This experimentation further shows differences in response to seed yield and percentage of hybridity from cross to cross. Table 6 shows that for the first pollenizer (Male1), seed yield increased by 34% and 10% when female to pollenizer ratio changed from 3:1 to 1:1 and 3:1 to 2:1, respectively. Percentage of hybridity, conversely, increased by 31% and 27% when female to pollenizer ratios changed from 1:1 to 3:1 and 1:1 to 2:1, respectively. Table 7 shows that for the second pollenizer (Male2), seed yield increased by 26% and 13% when female to pollenizer ratio changed from 3:1 to 1:1 and 3:1 to 2:1, respectively. The percentage of hybridity increased by 28% and 17%, conversely, when female to pollenizer ratios changed from 1:1 to 3:1 and 1:1 to 2:1, respectively. Thus, according to the teachings of the present invention, in the preferred embodiment of the invention for producing a hybrid seed product, each cross is tested for responsiveness to female to pollenizer ratio for seed yield and percentage of hybridity. In the preferred embodiment, a cross is selected that maintains at least two-thirds of female seed yield when increasing ratio of female plants to pollenizer plants from 1:1 to 3:1 under substantially similar environmental conditions. Alternatively, for some varieties, the method for producing a hybrid seed product can make use of a generic formula to estimate responsiveness to female to pollenizer ratio for seed yield and percentage of hybridity. One way of establishing a generic curve is by estimating a curve from multiple crosses of other varieties. FIG. 2A shows one example embodiment of a curve estimated from several female-pollenizer crosses.

TABLE 9The effect on hybrid seed yield and percentage of hybridity bychanging female to pollenizer ratios.Female to Pollenizer Ratios.Female70:3075:2580:20F1SEEDYIELD345298218% CHANGE1008663HYBRIDITY87.593.590.5% CHANGE100107103F2SEEDYIELD285357231% CHANGE10012581HYBRIDITY88.584.587.5% CHANGE1009699F3SEEDYIELD340174193% CHANGE1005157HYBRIDITY84.58891% CHANGE100104108F4SEEDYIELD344285252% CHANGE1008373HYBRIDITY83.588.0089.00% CHANGE100105107OVER ALLSEED YIELD1008669CHANGEHYBRIDITY100103104


Table 9 summarizes further experimental seed yield and percentage of hybridity for multiple female and pollenizer crosses at different female to pollenizer ratios. In the most preferred embodiment, production of a hybrid seed product includes a statistical analysis on data for a selected cross in order to determine the effect of different female to pollenizer ratios on seed yield. In one example embodiment, the statistical analysis comprises a regression analysis. FIG. 2B shows a number of regression curves for different female-pollenizer crosses.


As shown in Table 9, according to the teachings of the present invention, changing female to pollenizer ratios from a 70:30 ratio to a 75:25 ratio or a 70:30 ratio to an 80:20 ratio greatly impacts hybrid seed yield. Seed yield dropped an average of 31% from a 70:30 ratio to 80:20 ratio and dropped an average of 16% from a 70:30 ratio to a 75:25 ratio, respectively, when Male3 was crossed with four different female lines. Average percentage of hybridity increased 3% when female to pollenizer ratios changed from a 70:30 ratio to a 75:25 ratio and increased 4% when going from a 70:30 ratio to an 80:20 ratio, respectively.


While a hybrid seed product having a high percentage of hybridity is desirable for agronomic qualities and for certification; on the other hand, the cost of producing a hybrid seed product increases with decreasing seed yield. The methods for producing a hybrid seed product of the present invention, therefore, provides methods for determining a female to pollenizer ratio providing for maximum seed yield at a predetermined level of hybridity of the hybrid seed product.

TABLE 10Hybrid Seed Yield and Percentage of Hybridity are Differentwith Each Specific Combination of Female Line and Pollenizerat Different Female to Pollenizer RatiosFemaleFemale seed%seed yieldF:M% of Male.HybridityChange %F1:M10.7:1.078.7/100.044.03:161.6/100  64.9Female ratio change.(0.7:1.00 to(78.3%)3:1)F2:M21.1:1.092.3/100.048.03.2:1.065.1/100  75.3Female ratio change.(1.1:1.0 to(70.5)3.2:1.0)F3:M31:1141.058.52.5:197.8/100  71.0Female ratio change.(1:1 to 2.5:1)(69.4)F1:M40.8:1.0101.4/100  50.33.0:1.0115.1/100  77.5Female ratio change(0.8:1.0 to(113.5) 3:1)52.3:1.086.8/100  66.63.0:1.0 100/10075.0Female ratio change(2.3:1.0 to(115.2) 3:1)


Table 10 summarizes experimentation according to the teachings of the present invention to determine varying effects of female to pollenizer ratios on different crosses. In this example embodiment, Female1 (F1), Female2 (F2) and Female3 (F3) seed yield decreased at higher female to pollenizer ratios when pollinated by Pollenizer1 (M1) and Pollenizer2 (M2). Female4 (F4) and Female5 (F5), on the other hand, did not show seed yield decrease at higher female to male ratios when pollinated by Pollenizer4 (M4) and Pollenizer5 (M5). With respect to the lines tested and reported on Table 9, (A1XB1)×(A2XR (Restorer)) cross demonstrates both higher hybrid seed yield and higher percentage of hybridity.


In the preferred embodiment of the invention, the data analysis 40 comprises a regression analysis of percentage of hybridity versus female to pollenizer ratio to establish a regression curve for each individual cross. In this embodiment of the present invention, selection of lines for hybrid seed production employs the resulting regression curves for each cross under consideration in order to select a cross for high seed yield during hybrid seed production. FIG. 2B shows a regression curve showing percentage hybridity versus female to pollenizer ratio for multiple crosses. In this example embodiment, the regression analysis shows:

y=18.836 ln(x)+55.128


where: y=percentage of hybridity

    • x=female to pollenizer ratio.


In this embodiment of the invention to produce a hybrid seed product, the regression analysis allows for determination of a female to pollenizer ratio necessary to achieve a targeted percentage of hybridity. In one example embodiment, selection of the female to pollenizer ratio employs the regression analysis to target a 75% hybridity level to achieve certification standards for a hybrid variety. In an alternative embodiment, selection of the female to pollenizer ratio employs the regression analysis to target a 95% hybridity level.


However, in many female to pollenizer crosses, seed yield dramatically decreases with increasing female to pollenizer ratios. Agronomic or other considerations often suggest a cross having a dramatic decrease in seed yield with increasing female to pollenizer ratios. Therefore, the present invention provides a means for post-production increase of percentage of hybridity in a hybrid seed product.


In the preferred embodiment of the invention, the method for production of a hybrid seed product increases the percentage of hybridity of a hybrid seed product by removing non-hybrid seed. In one example embodiment, removal of non-hybrid seed makes use of seed size differential between hybrid seed produced by female plants and non-hybrid seed produced by pollenizer plants. In this preferred embodiment, selection of a female line and selection of a pollenizer line results in hybrid seed having an average size larger than non-hybrid seed. In an alternate embodiment, selection of a female line and selection of a pollenizer line results in hybrid seed having an average size smaller than non-hybrid seed.


Testing according to the preferred teachings of the invention demonstrates selection of a female line and a pollenizer line can provide a cross having a high correlation (r=0.9) between female parental lines and their first generation progeny with respect to seed size. Thus, in the preferred embodiment, the methods for producing a hybrid seed product employs selection for hybrid seed having a seed size distribution skewed to larger seed sizes and non-hybrid seed having a seed size distribution skewed to smaller seed sizes. Sifting production seed to screen out seed smaller than a selected seed size increases the percentage of hybrid seed for the hybrid seed product. In one example embodiment, a sieve screens out seed smaller than a selected seed size to increase the percentage of hybridity of the hybrid seed product. In one example embodiment, shown in Table 14, using a 1/19″ sieve provides a gain to 75% hybridity when production of hybrid seed is done using a 65:35 ratio of female plants to pollenizer plants. As those skilled in the art will recognize, different sieve sizes can be employed to accomplish different increases in percentage of hybridity.

TABLE 12Seed Size Distributions of a Female Line, 3 Pollenizers and a Hybrid(A1 × B1) × (C1 + C2 + C3)1/141/151/161/171/181/191/201/211/221/23REMAINMEANH1 (hybrid)0.4914.9925.2225.7220.978.470.353.540.220.010.005.93F1 (Female 1)1.1718.6023.7326.2418.117.540.223.720.280.350.005.96C1 (Pollenizer 1)0.731.464.4715.5629.1821.972.0921.492.580.190.295.37C2 (Pollenizer 2)0.562.087.2121.0121.8624.321.9119.141.800.120.005.45C3 (Pollenizer 3)0.8010.6421.7827.6820.0810.160.587.170.830.260.015.82Mean of C1 + C2 + C30.704.7311.1621.4123.7118.821.5315.931.740.190.101,000 SEED WEIGHTH1=(A1 × B1) × (C1,C2,C3)2.480 GRAMSF1=A1 × B12.365 GRAMSC12.200 GRAMSC22.339 GRAMSC32.250 GRAMS









TABLE 13










Seed Size Distribution of a Female Line, 3 Pollenizers a


Hybrid Using a 1/19″ sieve to 1/23″ sieve












Entry
1/19
1/20
1/21
1/22
1/23





Hybrid (A1 × B1) ×
12.59%
 4.12%
 3.77%
0.23%
0.01%


C1,C2,C3)


Female (A × B)
11.92%
 4.58%
 4.36%
0.63%
0.35%


Pollenizer (C1)
47.37%
26.93%
24.87%
2.87%
0.23%


Pollenizer (C2)
46.26%
23.38%
21.47%
1.96%
0.12%


Pollenizer (C3)
18.54%
 8.90%
 8.32%
1.11%
0.27%


Pollenizer Average
37.39%
19.74%
18.22%
1.98%
0.21%









As shown in Table 12, seed size differential varies for each crossing of different female lines and pollenizer lines. Table 12 shows a seed size distribution for a hybrid line, a female line, and three pollenizer lines. Table 13 shows the percentage of seed screened out using five different sieve sizes, from 1/19 to 1/23.


According to the teachings of the present invention, seed size distributions vary for each different cross; therefore, increases in hybridity level also vary with each different cross between different female lines and different pollenizer lines. Because seed size is a inheritable trait, in the preferred embodiment of the present invention for producing a hybrid seed product, selection of female and pollenizer lines provides for seed size differential between hybrid and non-hybrid seed. Environmental conditions, such as drought and poor soil conditions, also affect seed size. Thus, determination of seed size distribution according to the teachings of the present invention, should be done in the same field to control for environmental variation. As the seed size distribution differential between female line and pollenizer line increases, the environmental effect on the use of screening to remove non-hybrid seed will be reduced. Experimentation according to the teaching of the present invention, and as shown in Table 14, illustrates the increase in hybridity levels achieved by straining out a selected seed size for crosses between one female line and three pollenizer lines. In particular, Tables 14a and 14b illustrate gains in hybridity level for a 1/19″ sieve and a 1/21″ size sieve for the selected crosses.


Percentage of Hybridity Gained by Applying 1/19″ Sieve and 1/21″ Sieve to Screen Out a Higher Percentage of Non-Hybrid Seed (Pollenizer C1, C2, C3)












TABLE 14a











AMT. SEED


*%



SCREEN OUT
FEMALE:
%
HYBRID


PARENTS
FOR 1/19 SIZE
POLLENIZER
HYBRIDITY
FOR













FEMALE
POLLENIZER
FEMALE
POLLENIZER
RATIO
INC.
PRODUCT
















A1 × B1
C1
11.92%
47.37%
65:35
10.7
75.7



C2

46.26%

10.3
75.3



C3

18.54%

1.8
66.8



C1


70:30
9.6
79.6



C2


9.3
79.3



C3


1.6
71.6



C1


75:25
8.4
83.4



C2


8.1
83.1



C3


1.4
76.4



C1


80:20
7.0
87.0



C2


6.8
86.8



C3


1.2
81.2




















TABLE 14b











AMT. SEED


%



SCREEN OUT
FEMALE:
%
HYBRID


PARENTS
FOR 1/21 SIZE
POLLENIZER
HYBRIDITY
FOR













FEMALE
POLLENIZER
FEMALE
POLLENIZER
RATIO
INC.
PRODUCT





A1 × B1
C1
4.36%
24.87%
65:35
5.3
70.3



C2

21.47%

4.3
69.3



C3

 8.32%

1.0
66.0



C1


70:30
4.8
74.8



C2



4.0
74.0



C3



0.9
70.9



C1


75:25
4.3
79.3



C2



3.5
78.5



C3



0.8
75.8



C1


80:20
3.6
83.6



C2



3.0
83.0



C3



0.7
80.7









In alternate embodiments of the invention, the method for post-production increase of percentage of hybridity can employ differences in seed density, seed weight or seed coat color. In one example embodiment, selection of a female line and a pollenizer line may provide for non-hybrid seed having a lesser density than hybrid seed. In this example embodiment, the teachings of the present invention provides for removal of non-hybrid seed according to seed density or seed weight. A gravity table or rice roller can separate hybrid and non-hybrid seed in this embodiment of the invention. In an alternate embodiment employing differences in seed color between hybrid seed and non-hybrid seed, a seed coat color sorter removes non-hybrid seed. Those skilled in the art will recognize that other methods of removing non-hybrid seed to increase the percentage of hybridity of a hybrid seed product lie within the spirit and scope of the invention. For example, morphological traits such as seed size, seed color, seed weight, leaf shape, leaf size, root color, stem color, flower color root structure, plant height and fall growth habit or a genetic marker can be used to distinguish hybrid seed from non-hybrid seed.


Therefore, in the preferred embodiment of the invention to produce certified seed, the regression curve of a targeted hybrid product provides for selection of a female to pollenizer ratio, that when combined with a post-production increase in hybridity level, achieves maximum yield at a hybridity level of at least 75%.


In the preferred embodiment of the invention to produce a hybrid seed product, test plots provide for determination of percentage of hybridity at different female to pollenizer ratios. Regression analysis of percentage of hybridity versus female to pollenizer ratio then provides a regression curve for each individual cross to allow for production of a hybrid product having a preselected percentage of hybridity. In other aspects of the method of the invention, the test plots further provide for determination of the seed size distribution of selected female lines, male lines and hybrid lines. The test plots also provide for determination of the 1,000 seed weight of each line and the P.P.I. of the female lines.


In one example embodiment of the invention to produce a hybrid seed product, the following types of test plots are employed.


A “Check” plot has female seed and pollenizer seed planted in the same plot. The check plot includes two pollenizer rows, a skipped row, four female rows, a skipped row, and two pollenizer rows. This design of the “Check” plot allows the female rows and pollenizer rows to be harvested separately. After flowering, analysis of the female plants provides for determination of the P.P.I. After harvesting, analysis of the seed from the female plants provides determination of seed size distribution and 1000 seed weight. After harvesting the pollenizer plants, analysis of the seed from pollenizer plants provides determination of seed size distribution and 1000 seed weight. Analysis also determines data for the seed yield of female plants and pollenizer plants.


A female to pollenizer plot designed to have a 1:1 ratio. The female and pollenizer plants are intermingled and distributed randomly.


A female to pollenizer plot designed to have a 2:1 ratio. The female and pollenizer plants are intermingled and distributed randomly.


A female to pollenizer plot designed to have a 3:1 ratio. The female and pollenizer plants are intermingled and distributed randomly.


A female to pollenizer plot designed to have a 4:1 ratio. The female and pollenizer plants are intermingled and distributed randomly.


In one preferred embodiment, the test plots are planted using a complete random block design with four to eight replications for each female to pollenizer ratio. In this embodiment, the test plots are six row plots, with each row fifty to one hundred feet long. Data collection is performed on the middle two to four rows, with the outside rows serving as borders. The outside border rows serve as a guard and a barrier to reduce contamination from neighboring plots.


In this example embodiment of the invention, data collection follows the following procedures. The number of seed produced by female plants can be determined using the equation:

x=female seed weight/weight of one thousand female seed,


where x=the mean number of seed produced by a female plant.


The number of seed produced by pollenizer plants can be determined using the equation:

y=pollenizer seed weight/weight of one thousand pollenizer seed,


where y=the mean number of seed produced by a pollenizer plant.


The percentage of female seed can be then determined as:

% female seed=x/(x+y).


In the preferred embodiment of the invention, determination of percentage of hybridity takes selfing and sibbing in the female line into account. The adjusted percentage of hybridity corrects for these factors by subtracting non-hybrid seed produced from female plants. The ASOCA publication of hybrid alfalfa certification provides the correction factor for non-hybrid seed produced from female plants from sibbing and selfing. The correction factor is equal to P.P.I.×0.595, with the P.P.I. (Pollen production index) defined as follows.


1. Male Sterile Plants (MS) P.P.I.=0

    • No visible pollen can be observed with the naked eye when flower is tripped with a black knife blade.


2. Partial Male Sterile Plants (PMS) P.P.I.=0.1

    • A trace of pollen can be observed with the naked eye when flower is tripped with a black knife blade.


3. Partial Fertile Plant (PF) P.P.I.=0.6

    • Less than normal amount of pollen can be observed with the naked eye when flower is tripped with a black knife blade.


4. Fertile Plant (F) P.P.I.=1.0

    • Normal amounts of pollen can be observed when flower is tripped with a black knife blade.


In this example embodiment of the invention, the pollen production index (P.P.I.) is determined by sampling 200 female plants from the female rows of the “check” plots. The percentage of hybridity can then be determined by the equation:

% hybridity=% female seed−% non-hybrid female seed,


where the % non-hybrid female seed is P.P.I.×0.595


In one preferred embodiment of the invention, the methods for producing a hybrid seed product determines the percentage of hybridity for each female to male ratio of 1:1, 2:1, 3:1, and 4:1.


This method for determining the percentage of hybridity requires analysis of seed produced by female plants apart from analysis of seed produced by pollenizer plants. Harvesting female plants separately from pollenizer plants is one way of obtaining female seed apart from pollenizer seed. However, separate harvesting of female plants from pollenizer plants is difficult under current hybrid seed production methods.


In one method for hybrid seed production, female plants are crossed with pollenizer plants by planting female plants and pollenizer plants in separate rows of plants, with each row separated by a width of twenty to forty inches. Each group of rows contain either pollenizer plants or female plants, such as shown in U.S. Pat. No. 4,045,912, herein incorporated by reference. This allows female plants and pollenizer plants to be harvested separately according to rows. However, this method involves a large physical separation of female and pollenizer plants, resulting in lower production of hybrid seed.


Female and pollenizer plants may also be intermingled in the same row in the same test plot. This intermingling increases hybrid seed production from the female plants. However, intermingling also causes difficulty in distinguishing the female plants from the pollenizer plants. To obtain data on hybrid seed production, seed from female plants must be distinguished from seed from pollenizer plants. Distinguishing between female plants and pollenizer plants is a highly labor intensive, difficult and expensive process. U.S. Pat. No. 4,045,912 provides one example of such a process, where female and pollenizer plants are germinated separately, and then hand planted and tagged in a test plot. This process becomes untenable in larger applications. Thus, the present invention provides methods for distinguishing female plants from pollenizer plants suitable for large-scale applications, such as large test plots.


The preferred embodiment of the invention for producing a hybrid seed product provides for methods for distinguishing female plants from pollenizer plants by planting female lines and pollenizer lines in subrows. The subrow methods of the invention further allow for separate harvesting of female plants and pollenizer plants. During planting, female plants and pollenizer plants are offset from the center of a row on opposite sides to distinguish the female plants from the pollenizer plants.



FIG. 3 shows an example embodiment of the subrow planting method of the invention. The subrow planting method provides for planting both female and pollenizer plants in a single row 200, with female seed planted two to four inches from the center 210 of the row 200 on a first subrow 220, and pollenizer seed are planted one to eight inches from the center 210 of the row 200 in a second subrow 230 on the opposite side. Thus, in this example embodiment, planting according to the subrow methods provides female plants 240 offset to one side in the first subrow 220 and a pollenizer plants 250 in the second subrow 220 offset to the other side. This single row 200 shows an embodiment having a female to pollenizer ratio of 2:1. A second single row 260 shows an embodiment having a female to pollenizer ratio of 3:1. A third single row 270 shows a female to pollenizer ratio of 4:1. In one preferred embodiment of the invention, an onion planter may be used to plant female seed and pollenizer seed in their respective subrows. Those skilled in the art will recognize that other methods of planting the female seed and the pollenizer seed in their respective subrows lies within the spirit and scope of the invention.


In other aspects of the subrow methods of the invention, the subrows 220, 230 can advantageously provide for reduction of competition between female plants and male plants by increasing physical separation of the female plants from the pollenizer plants while still allowing intermingling. In cases where one line may be more vigorous than another, the increased separation between plants may allow slower growing plants a better opportunity to grow without being crowded out by other plants. Because of the small seed size of some field crops, such as alfalfa, during planting, some seeds are not spaced with sufficient room to grow, allowing a faster growing plant to crowd out a slower developing plant, particularly in subsequent years of perennial crops. Subrows provide for increased separation between female plants and pollenizer plants that reduces competition between the female plants and pollenizer plants, maintaining a more consistent female to pollenizer ratio. As the female to pollenizer ratio is selected to optimize production of the hybrid seed product, in this aspect of the present invention, planting in subrows in the production field maintains optimal production from year to year.


In another aspect of the subrow methods of the invention, subrows 220, 230 allow a breeder to quickly determine the actual female to pollenizer ratio. At a seedling stage, the subrows 220, 230 allow the number of female plants 240 and the number of pollenizer plants 250 to be quickly counted. In subsequent years after planting for perennial plants, a new female to pollenizer ratio needs to be determined from year to year, as plants may die over the winter. In this instance, subrows 220, 230 facilitate quick determination of female to pollenizer ratio through visual inspection.


In another aspect of the invention, subrows 220, 230 facilitate separate harvesting of female plants 240 and pollenizer 250 by harvesting according to female subrows and pollenizer subrows. Separate harvesting allows for determination of percentage of hybridity by sampling before harvest.


In an alternate embodiment of the invention, morphological markers, such as seed size, seed color, seed weight, leaf shape, leaf size, root color, stem color, flower color root structure, plant height and fall growth habit flower colors, can be used to distinguish female plants from pollenizer plants in the test plots. Those skilled in the art will recognize that other methods of distinguishing female plants from pollenizer plants can be employed without departing from the spirit and scope of the invention.


The preferred form of the invention further includes verification of percentage of hybridity of the hybrid seed product 140. These methods involve progeny testing and are employed after production of the hybrid seed product in the production field. Verification of percentage of hybridity can be used to help ensure a hybrid seed product achieves predetermined hybridity goals. In the preferred embodiment, a characteristic of the hybrid seed that has a distinct difference from non-hybrid seed is used in the verification process. However, as those skilled in the art will understand, other methods for verifying percentage of hybridity can be employed without departing from the spirit or scope of the invention.


In one preferred form, verifying percentage of hybridity begins with choosing a row and sampling 200-1000 female plants and 200-1000 pollenizer plants. Data is collected to determine the seed yield of the female plants and the seed yield of the pollenizer plants. The female to pollenizer ratio is determined by counting number of female plants to number of pollenizer plants for 200 feet in a chosen row for two to five replications in a hybrid seed production field. The subrow system can be employed to aid tracking of female plants versus the pollenizer plants to distinguish the plants in the commercial hybrid seed production field.


Analysis on the gathered data then provides an estimated percentage of hybridity. Because of the variability inherent in biological systems, the analysis provides an estimate rather than an exact determination. The analysis can be performed according to the following procedures:


1. From the sampled plants, determine the average female seed yield (X) to pollenizer seed yield (Y) per plant and determine average number of seed produced from female (hybrid) plants to number of seed produced from pollenizer plants as X:Y.


2. Determine number of female plants to number of pollenizer plants in a commercial hybrid seed production field by measuring the number of female plants and number of pollenizer plants in 100 feet of a randomly selected row with two to five replications. The proportion of female plants to the number of pollenizer plants is A:B.


3. The percentage of hybridity is computed according to:
%Hybridity=(A×X)(A×X)+(B×Y)×100%-CF


where CF is a correction factor to account for non-hybrid seed produced from female plants by selfing, and is equal to the P.P.I. (female plants)×0.595.


Harvesting the center two rows of pollenizer line from the pollenizer test strip and harvesting the center two rows of the female line from the female test strip separately provides for data on seed size distribution of the pollenizer seed and hybrid seed. The commercial hybrid production field is harvested in bulk.


In another example embodiment, seed size distribution differential between hybrid seed and pollenizer seed provides data for verifying percentage of hybridity. In this method, four to six rows of 200-1000 feet of plants from a selected pollenizer line are planted as a pollenizer test strip and four to six rows of 200-1000 feet of plants from a selected female line are planted as a female test strip in the same commercial hybrid seed production field.


Analysis of the pollenizer seed provides the pollenizer seed size distribution. Likewise, analysis of the female seed provides the female seed size distribution, and analysis of the bulk-harvested seed provides the seed size distribution of the commercial hybrid production field. By way of illustration and not limitation, the following shows an example with the seed size distribution determined for each increment from 1/10 inch to 1/25 inch. In this example, samples having the same weight are used to determine the seed size distributions. The following procedure provides an estimate of the percentage of hybridity.


1. Perform a T-test for seed size distribution of pollenizer seed, hybrid seed and commercial experimental hybrid seed (female:pollenizer ratio block used by commercial hybrid seed production field) harvested from a test plot, and comparing with pollenizer seed, hybrid seed and commercial hybrid seed harvested from a commercial hybrid seed production field.


2. If the T-test is not significant, then the percentage of hybrid seed in the overlap area of the seed size distribution in the test plot would be same as overlap area of the seed size distribution in the commercial hybrid production seed field.


The % hybridity in the commercial hybrid production seed field can then be determined by:
%Hybridity=X1+Y2X1+Y2+Q2+R1×100%-CF

Where:


X=Hybrid seed weight of non-overlap area.


X1=X/1,000 seed weight of non-overlap area.


Y=Hybrid seed weight and pollenizer seed weight of overlap area.


Y1=Y×% Hybrid seed overlap area (from test plots).


Y2=Y1/1,000 seed weight.


Q=Pollenizer seed weight of overlap area.


Q1=Y×% Pollenizer seed of overlap area.


Q2=Q/1,000 seed weight.


R=Pollenizer seed weight of non-overlap area.


R1=R/1,000 seed weight.


CF=P.P.I. (female plants)×0.595.


In an alternate embodiment, seed size distribution can be used to verify percentage of hybridity using the proportion of seed within a selected seed size range. The selected seed size range includes an area of overlap in the seed size distribution between the seed size distribution of the female seed and pollenizer seed. The percentage of hybridity can be estimated as:
%Hybridity=Z-YX-Y×100%-CF

where:


X=percentage of female seed falling into the selected seed size range;


Y=percentage of pollenizer seed falling into the selected seed size range;


Z=percentage of production seed falling into the selected seed size range; and


CF=correction factor to account for non-hybrid seed produced from female plants by selfing, and is equal to the P.P.I. (female plants)×0.595.


As those skilled in the art will recognize, other seed characteristics where the female seed has a distinct difference from the pollenizer seed can be used to estimate the percentage of hybridity. For example, in an alternate embodiment, the mean seed size of the seed sampled from the pollenizer plants, the female plants and the production field can be used to estimate percentage of hybridity. Using this method, percentage of hybridity can be estimated as:
%Hybridity=Z-YX-Y×100%-CF


where:


X=mean female seed size;


Y=mean pollenizer seed size;


Z=mean production seed size; and


CF=correction factor to account for non-hybrid seed produced from female plants by selfing and sibbing, equal to the P.P.I. (female plants)×0.595.


In another example embodiment, the methods for verification of percentage of hybridity employ the pollen production index (P.P.I.) of hybrid seed and the commercial hybrid seed product, which is a mixture of hybrid and pollenizer seed. In this embodiment of the invention employing the P.P.I., verification of percentage of hybridity begins with crossing a selected female line with a selected pollenizer line and harvesting the seed produced by the cross in a test plot and production field. The harvested seed is planted and P.P.I. data is gathered. Further analysis for verification of hybridity proceeds in one of two cases, depending on whether the P.P.I. of the hybrid seed production field is larger than the P.P.I. of the test plot hybrid seed or vice versa.


Case 1


If the P.P.I. of the hybrid seed production field is larger than the P.P.I. of the test plot hybrid seed, the following formula will be used to calculate the percentage of hybridity.


The seed from a hybrid seed production field contain both hybrid seed (female×pollenizer) and non-hybrid seed (pollenizer). The seed from test plot of f:p=1:0 contains only hybrid seed.






    • a. % of hybridity=1−P.P.I. (Production seed)/1−P.P.I. (Test plot hybrid seed)×100−CF

    • b. Sample size of growouts=200-2000 plants from each population (production seed and test plot hybrid seed) at the same environment and same location.


      Case 2





If the P.P.I. from the hybrid seed production field is similar to the P.P.I. of the test plot hybrid seed, then seed size distribution differential between hybrid seed and pollenizer seed or some morphological traits or molecular markers that can differentiate hybrid seed from non-hybrid seed from grow outs need to be used to verify the percentage of hybridity.


As the invention disclosed herein may be embodied in other specific forms without departing from the spirit or general characteristics thereof, some of which forms have been indicated, the embodiments described herein are to be considered in all respects illustrative and not restrictive. The scope of the invention is to be indicated by the appended claims, rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.

Claims
  • 1. A method for producing a hybrid seed product of a bee-pollinated crop, from a cross between female plants from at least one female line and pollenizer plants from at least one pollenizer line, the hybrid seed product having a percentage of hybridity above a predetermined percentage of hybridity, the hybrid seed product further having a mixture of hybrid seed and non-hybrid seed, the method comprising: selecting the at least one female line and the at least one pollenizer line; determining a production ratio of female plants to pollenizer plants to produce a hybrid seed product above the predetermined percentage of hybridity; planting the at least one female line and the at least one pollenizer line in the production ratio in a production field to obtain production seed; and harvesting the production seed to obtain the hybrid seed product.
  • 2. The method of claim 1 with the bee-pollinated crop further comprising alfalfa.
  • 3. The method of claim 1 with the bee-pollinated crop further comprising soybean.
  • 4. The method of claim 1 with the female plants comprising plants from a single female line.
  • 5. The method of claim 1 with the female plants comprising plants from a plurality of female lines.
  • 6. The method of claim 1 with the pollenizer plants comprising plants from a single pollenizer line.
  • 7. The method of claim 1 with the pollenizer plants comprising plants from a plurality of pollenizer lines.
  • 8. The method of claim 1 with the predetermined percentage of hybridity comprising seventy-five percent.
  • 9. The method of claim 1 with determining a production female to pollenizer ratio to produce the hybrid seed product having a percentage of hybridity above the predetermined percentage of hybridity further includes: selecting a female to pollenizer ratio to maximize total seed yield in the production field while maintaining the percentage of hybridity of the hybrid seed product above the predetermined percentage of hybridity, the total seed yield including the hybrid seed and the non-hybrid seed.
  • 10. The method of claim 1 with determining a production female to pollenizer ratio to produce the hybrid seed product having a percentage of hybridity above the predetermined percentage of hybridity further comprising: selecting a female to pollenizer ratio to maximize hybrid seed yield in the production field while maintaining the percentage of hybridity of the hybrid seed product above the predetermined percentage of hybridity.
  • 11. The method of claim 1 with selecting the at least one female line and the at least one pollenizer line further comprising: selecting the female plants and the pollenizer plants to provide a cross that has greater average seed production per female plant than average seed production per pollenizer plant.
  • 12. The method of claim 1 with selecting the at least one female line and the at least one pollenizer line further comprising: selecting the at least one female line and the at least one pollenizer line to provide a cross maintaining at least two-thirds of female seed yield when increasing ratio of female plants to pollenizer plants from 1:1 to 3:1 under substantially similar environmental conditions.
  • 13. The method of claim 1 with selecting the at least one female line and the at least one pollenizer line further comprising: selecting a female line having an average Pollen Production Index (P.P.I.) between 0.0% to 0.42%.
  • 14. The method of claim 1 with selecting the at least one female line and the at least one pollenizer line further comprising: selecting a pollenizer line having high self-incompatibility.
  • 15. The method of claim 1 further comprising crossing the female plants with the pollenizer plants at a test ratio of female plants to pollenizer plants in a test plot to obtain a test seed product having a test percentage of hybridity, with determining a production ratio of female plants to pollenizer plants further comprising estimating from the test percentage of hybridity the production ratio needed to produce the hybrid seed product having a percentage of hybridity above the predetermined percentage of hybridity.
  • 16. The method of claim 15 with crossing the female plants with the pollenizer plants at a test ratio of female plants to pollenizer plants further comprising: crossing the female plants with the pollenizer plants at the test ratio in the test plot; harvesting the female plants to obtain hybrid seed and the pollenizer plants to obtain non-hybrid seed, with a total seed yield including the hybrid seed and the non-hybrid seed; and determining the test percentage of hybridity as the proportion of hybrid seed in the total seed yield.
  • 17. The method of claim 16 with crossing the female plants with the pollenizer plants at the test ratio in the test plot further comprising: planting female plants and pollenizer plants in the test plot, the test plot having multiple rows, with the female plants planted in a female subrow offset from the centerline of each row of the multiple rows on a first side, and the pollenizer plants planted in a pollenizer subrow offset from the centerline of each row on an opposite side.
  • 18. The method of claim 17 with the female subrow and the pollenizer subrow each offset from the centerline between one inch to eight inches.
  • 19. The method of claim 17 with harvesting the female plants to obtain hybrid seed and the pollenizer plants to obtain non-hybrid seed further comprising: harvesting the female subrow to obtain hybrid seed from the female plants; and harvesting the pollenizer subrow to obtain non-hybrid seed from the pollenizer plants.
  • 20. The method of claim 16 with harvesting the female plants to obtain hybrid seed and the pollenizer plants to obtain non-hybrid seed further comprising: distinguishing the female plants from the pollenizer plants using morphological traits to harvest the female plants to obtain hybrid seed and the pollenizer plants to obtain non-hybrid seed.
  • 21. The method of claim 1 with the production seed including both hybrid seed and non-hybrid seed and further comprising removing a portion of the non-hybrid seed from the production seed to obtain the hybrid seed product.
  • 22. The method of claim 21 with selecting the at least one female line and the at least one pollenizer line further comprising: selecting the at least one female line and the at least one pollenizer line having a seed size differential between the hybrid seed of the female plants and the non-hybrid seed of the pollenizer plants.
  • 23. The method of claim 22 with determining a production ratio of female plants to pollenizer plants to produce a hybrid seed product above the predetermined percentage of hybridity further comprising: determining a hybrid seed size distribution for the female plants; determining a non-hybrid seed size distribution for the pollenizer plants; determining an increase in percentage of hybridity after screening for at least one sieve size; and determining the production ratio of female plants to pollenizer plants, with selection of the production ratio chosen to provide a hybrid seed product having a percentage of hybridity above the predetermined percentage of hybridity after screening the production seed through the at least one sieve size.
  • 24. The method of claim 23 with determining an increase in percentage of hybridity after screening for at least one sieve size further comprising: determining an increase in percentage of hybridity after screening for a plurality of sieve sizes; selecting a sieve size from the plurality of sieve sizes and a production ratio of female plants to pollenizer plants to maximize quantity of the hybrid seed product from the production field after filtering through a sieve having the selected sieve size.
  • 25. The method of claim 24 with selecting a sieve size from the plurality of sieve sizes and a production ratio of female plants to pollenizer plants to maximize quantity of the hybrid seed product from the production field after filtering through a sieve having the selected sieve size further comprising: determining a first regression curve for female to pollenizer ratio versus percentage of hybridity; determining a second regression curve for female to pollenizer ratio versus total seed yield; determining a sieve size table having a percentage of hybrid seed removed and a percentage of non-hybrid seed removed for a plurality of sieve sizes; and selecting the sieve size and the ratio of female plants to pollenizer plants to maximize quantity of the hybrid seed product using the first regression curve, the second regression curve and the sieve size table to produce a hybrid seed product having a percentage of hybridity above the predetermined percentage of hybridity.
  • 26. The method of claim 22 with selecting female plants and pollenizer plants having a seed size differential between hybrid seed of the female plants and non-hybrid seed of the pollenizer plants providing for hybrid seed and non-hybrid seed having substantially no overlap in seed size distribution allowing for removal of substantially all non-hybrid seed with a sieve.
  • 27. The method of claim 20 with selecting the at least one female line and the at least one pollenizer line providing for seed weight differential between hybrid seed of the female plants and non-hybrid seed of the pollenizer plants, and with removing a portion of the non-hybrid seed from the hybrid seed product to obtain a higher hybridity hybrid seed product further comprising using a gravity table to remove a portion of the non-hybrid seed.
  • 28. The method of claim 21 with selecting the at least one female line and the at least one pollenizer line providing for color differential between hybrid seed of the female plants and non-hybrid seed of the pollenizer plants, and removing a portion of the non-hybrid seed from the hybrid seed product to obtain a higher hybridity hybrid seed product further comprising using a seed coat color sorter to remove a portion of the non-hybrid seed.
  • 29. The method of claim 1 further comprising crossing the female plants and the pollenizer plants at multiple test ratios of female plants to pollenizer plants to determine a respective test percentage of hybridity for each of the multiple test ratios.
  • 30. The method of claim 29 with determining a production ratio of female plants to pollenizer plants to produce a hybrid seed product above the predetermined percentage of hybridity further comprising: performing a regression analysis on the multiple test ratios test percentage and the respective test percentage of hybridity; and using the regression analysis to determine the production ratio of female plants to pollenizer plants to produce the hybrid seed product having a percentage of hybridity above the predetermined percentage of hybridity.
  • 31. The method of claim 1 further comprising verifying the percentage of hybridity of the hybrid seed product by progeny testing.
  • 32. The method of claim 31 with verifying the percentage of hybridity of the hybrid seed product by progeny testing further comprising: determining the Pollen Production Index (P.P.I.) of the production seed (P.P.I. (Production seed)); determining the P.P.I. of the test plot hybrid seed (P.P.I.(Test plot hybrid seed)); and determining the percentage of hybridity of the hybrid seed product (% hybridity) as: %⁢ ⁢hybridity=1-P.P.I.(Production⁢ ⁢seed)1-P.P.I.(Test⁢ ⁢plot⁢ ⁢hybrid⁢ ⁢seed)×100⁢%
  • 33. The method of claim 31 further comprising using molecular markers to identify the hybrid seed and the non-hybrid seed to determine percentage of hybridity of the hybrid seed product.
  • 34. The method of claim 31 with verifying percentage of hybridity for the hybrid seed product further comprising: collecting female seed data on traits of the female seed; collecting pollenizer seed data on traits of the pollenizer seed; collecting hybrid seed product data on traits of the hybrid seed product; and analyzing the female seed data, the pollenizer seed data and the hybrid seed product data to estimate a percentage of hybridity for the hybrid seed product.
  • 35. The method of claim 1 further comprising killing the pollenizer plants prior to harvest to increase the percentage of hybridity of the production seed.
  • 36. A method for separately harvesting hybrid seed and non-hybrid seed from plants intermingled in a single field, the method comprising: planting female plants and pollenizer plants in the single field, the single field having multiple rows, with the female plants planted in a female subrow offset from the centerline of each row of the multiple rows on a first side, and the pollenizer plants planted in a pollenizer subrow offset from the centerline of each row on an opposite side; harvesting the female subrow to obtain hybrid seed from the female plants; and harvesting the pollenizer subrow to obtain non-hybrid seed from the pollenizer plants.
  • 37. A method for distinguishing a first variety from a second variety, where the first variety is intermingled with the second variety in a single field, the method comprising: planting the first variety and the second variety in the single field, the single field having multiple rows, with plants of the first variety planted in a first subrow offset from the centerline of each row of the multiple rows on a first side, and the plants of the second variety planted in a second subrow offset from the centerline of each row on an opposite side; and harvesting the first subrow to obtain first variety seed from the plants of the first variety; and harvesting the second subrow to obtain second variety seed from the plants of the second variety.
  • 38. The method of claim 37 with the first subrow and the second subrow each offset from the centerline between one inch to eight inches.
  • 39. A method for increasing percentage of hybridity in a hybrid seed product, the hybrid seed product having seed harvested from a production field, and the production field having female plants producing hybrid seed and pollenizer plants producing non-hybrid seed, the method comprising: harvesting the production field to obtain production seed, the production seed including hybrid seed from the female plants and non-hybrid seed from the pollenizer plants; and removing a portion of the non-hybrid seed from the production seed to obtain the hybrid seed product.
  • 40. The method of claim 39 further comprising: selecting female plants and pollenizer plants having a seed size differential between the hybrid seed of the female plants and the non-hybrid seed of the pollenizer plants; selecting a predetermined percentage of hybridity; determining a hybrid seed size distribution for the female plants; determining a non-hybrid seed size distribution for the pollenizer plants; determining an increase in percentage of hybridity after screening for at least one sieve size; and determining the production ratio of female plants to pollenizer plants, with selection of the production ratio chosen to provide a hybrid seed product having a percentage of hybridity above the predetermined percentage of hybridity after screening the production seed through the at least one sieve size.
  • 41. The method of claim 40 further comprising: determining an increase in percentage of hybridity after screening for a plurality of sieve sizes; selecting a sieve size from the plurality of sieve sizes and a production ratio of female plants to pollenizer plants to maximize quantity of the hybrid seed product from the production field after filtering through a sieve having the selected sieve size.
  • 42. The method of claim 41 with selecting a sieve size from the plurality of sieve sizes and a production ratio of female plants to pollenizer plants to maximize quantity of the hybrid seed product from the production field after filtering through a sieve having the selected sieve size further comprising: determining a first regression curve for female to pollenizer ratio versus percentage of hybridity; determining a second regression curve for female to pollenizer ratio versus total seed yield; determining a sieve size table having a percentage of hybrid seed removed and a percentage of non-hybrid seed removed for a plurality of sieve sizes; and selecting the sieve size and the ratio of female plants to pollenizer plants to maximize quantity of the hybrid seed product using the first regression curve, the second regression curve and the sieve size table to produce a hybrid seed product having a percentage of hybridity above the predetermined percentage of hybridity.
  • 43. The method of claim 40 with selecting female plants and pollenizer plants having a seed size differential between hybrid seed of the female plants and non-hybrid seed of the pollenizer plants providing for hybrid seed and non-hybrid seed having substantially no overlap in seed size distribution allowing for removal of substantially all non-hybrid seed with a sieve.
  • 44. The method of claim 39 with selecting female plants and pollenizer plants providing for differential between distribution of seed color of the hybrid seed of the female plants and distribution of the non-hybrid seed of the pollenizer plants, and with removing non-hybrid seed from the production seed further comprising sorting using a seed coat color sorter to remove a portion of the non-hybrid seed of the pollenizer plants.
  • 45. The method of claim 39 with selecting female plants and pollenizer plants providing for differential between distribution of seed weight of the hybrid seed of the female plants and distribution of the seed weight of the non-hybrid seed of the pollenizer plants, and with removing non-hybrid seed from the production seed further comprising sorting using a gravity table to remove a portion of the non-hybrid seed of the pollenizer plants.
  • 46. A method for verifying percentage of hybridity for a hybrid seed product, the hybrid seed product having hybrid seed and non-hybrid seed, with the percentage of hybridity being the proportion of hybrid seed in the hybrid seed product, the method comprising: collecting female seed data on traits of the female seed; collecting pollenizer seed data on traits of the pollenizer seed; collecting hybrid seed product data on traits of the hybrid seed product; and analyzing the female seed data, the pollenizer seed data and the hybrid seed product data to estimate a percentage of hybridity for the hybrid seed product.
  • 47. The method for verifying percentage of hybridity of claim 46 with analyzing the female seed data, the pollenizer seed data and the hybrid seed product data to estimate a percentage of hybridity for the hybrid seed product further comprising correcting the percentage of hybridity for the hybrid seed product for selfing and sibbing from female plants.
  • 48. The method for verifying percentage of hybridity of claim 46 with the female seed having a female seed size distribution and the pollenizer seed having a pollenizer seed size distribution, and with analyzing the female seed data, the pollenizer seed data and the hybrid seed product data to determine a percentage of hybridity for the hybrid seed product further comprising: selecting a seed size range; determining the percentage of pollenizer seed falling into the selected seed size range; determining the percentage of female seed falling into the selected seed size range; determining the percentage of production seed falling into the selected seed size range; and determining percentage of hybridity for the hybrid seed product as: %⁢ ⁢Hybridity=Z-YX-Y×100⁢%-CFwhere: X=percentage of female seed falling into the selected seed size range; Y=percentage of pollenizer seed falling into the selected seed size range; Z=percentage of production seed falling into the selected seed size range; and CF=correction factor to account for non-hybrid seed produced from female plants by selfing, and is equal to the P.P.I. (female plants)×0.595.
  • 49. The method for verifying percentage of hybridity of claim 46 with the female seed having a mean female seed size and the pollenizer seed having a mean pollenizer seed size, and with analyzing the female seed data, the pollenizer seed data and the hybrid seed product data to determine a percentage of hybridity for the hybrid seed product further comprising calculating percentage of hybridity as:
  • 50. A method for verifying percentage of hybridity for a hybrid seed product, the hybrid seed product being produced from female plants and pollenizer plants in a production field: growing the female plants and the pollenizer plants in a test plot; harvesting the female plants in the test plot to obtain test plot hybrid seed; growing the female plants and the pollenizer plants in a production field; harvesting production seed from the production field to obtain the hybrid seed product; determining the P.P.I. of the test plot seed (P.P.I.(Test plot hybrid seed)); determining the P.P.I. of the production seed (P.P.I. (Production seed)); and determining the percentage of hybridity of the hybrid seed product (% Hybridity) as: %⁢ ⁢Hybridity=1-P.P.I. ⁢(Production⁢ ⁢seed)1-P.P.I. ⁢(Test⁢ ⁢plot⁢ ⁢hybrid⁢ ⁢seed)×100⁢%
  • 51. A method for maintaining consistent production of a seed product produced from a plurality of varieties where a first variety of the plurality of varieties is faster growing than a second variety of the plurality of varieties, the method comprising: determining a minimum distance between a plant of the first variety and a plant of the second variety, with the minimum distance selected to allow sufficient room for plant of the second variety to grow without being crowded out; planting the first variety and the second variety intermingled in a single field, the single field having multiple rows, with plants of the first variety planted in a first subrow offset from the centerline of each row of the multiple rows on a first side, and the plants of the second variety planted in a second subrow offset from the centerline of each row on an opposite side, with the offset calculated to provide the minimum distance.
  • 52. The method of claim 51 with the minimum distance comprising at least three inches.