Methods for producing organic light emitting diode (OLED) materials

Information

  • Patent Grant
  • 9376428
  • Patent Number
    9,376,428
  • Date Filed
    Thursday, May 9, 2013
    11 years ago
  • Date Issued
    Tuesday, June 28, 2016
    8 years ago
Abstract
Methods of producing OLED materials containing fluorene ring systems in which two alkyl substituents at the 9-position of fluorene ring are alkyl substituted through key intermediates generically represented by the formula: where X represents a substituent that increases the acidity of the hydrogen atoms on the adjoining methylene group (which is immediately adjacent the fluorene ring systems 9 -position).
Description

This application is a 35 U.S.C. §371 national stage filing of International Application No. PCT/GB2013/000208, filed May 9, 2013, which claims priority to GB Patent Application No. 1208136.0, filed May 10, 2012. The entire contents of each of the aforementioned applications are incorporated herein by reference.


This invention relates to improved methods for producing Organic Light Emitting Diode (OLED) materials containing fluorene ring systems, such as those comprising spiro[cycloalkane-1,9-fluorene]s, spiro[bicycloalkane-9-fluorene]s, and 9,9-Di(1,1-dimethylalk-1-yl)fluorenes, and condensed ring systems incorporating these structures


Organic Light Emitting Diode (OLED) materials containing fluorene ring systems in which two alkyl substituents at the 9-position of fluorene ring are alkyl substituted are desirable components for use in OLEDs because of their high oxidative stability. Previous methods of producing these materials were very low yielding.







The present invention provides methods by which these materials may be produced with higher yields.


The invention comprises methods of producing OLED materials containing fluorene ring systems in which two alkyl substituents at the 9-position of fluorene ring are alkyl substituted through key intermediates generically represented by the formula:




embedded image



where X represents a substituent that increases the acidity of the hydrogen atoms on the adjoining methylene group (which is immediately adjacent the fluorene ring systems 9-position).


X may comprise an electron withdrawing group. Electron withdrawing groups that may be used include alkoxycarbonyl, cyano, 1,3-oxazol-2-yl, 1,3-thiazol-2-yl, 1,3-benzo[d]oxazol-2-yl, and 1,3-benzo[d]thiazol-2-yl.


The invention comprises a synthesis (Synthesis 1) for previously unknown compound, fluorene-9,9-diacetic acid, dimethyl ester, which corresponds to Formula 1 with X=methoxycarbonyl:




embedded image


An alternative pathway replaces step II with epoxidation with m-chloroperbenzoic acid followed by periodic acid oxidation to the dialdehyde. In either case the dialdehyde is, in fact, a polymeric hydrate similar to that formed by glutaraldehyde. Because of this the aldehyde and its imino or hydrazone derivatives are excluded from the list of candidate substituents X in Formula 1 since they do not, in fact, structurally exist.


The preferred X in Formula 1 is the 1,3-benzo[d]thiazol-2-yl radical. One reason for this is that the resulting compound (previously unknown), 2,2′(fluoren-9,9-diyldimethylene)bis-1,3-benzo[d]thiazole, is easily synthesised (Synthesis 2):




embedded image


A further reason why this compound is the preferred intermediate is that the hydrogens on the methylenes adjacent to the groups X appear to have unusually low acidities for hydrogens located next to these activating groups, likely due to the effect of the fluorene ring. The nitrogenous bases such as lithium diisopropylamide (LDA) that are normally used to deprotonate such materials appear to only partially deprotonate the materials represented by FIG. 1 resulting in low yields. Sufficient deprotonation is only achieved by carbon-based bases like n-butyl lithium and t-butyl lithium. Thus only groups X which are stable to alkyl lithiums, e.g. 1,3-benzo[d]thiazol-2-yl, can yield complete deprotonation.


Following deprotonation the intermediate (Formula 1) is dialkylated to form a second intermediate. If monohaloalkanes are used for the alkylation, the second intermediate has the formula




embedded image


Here X has the same meaning as in Formula 1 and R is an alkyl group, most commonly n-alkyl, but branched chain alkyl groups may be used as well. 1-Bromo-n-alkanes are most commonly used in this synthetic step except that iodomethane is used if R is to be methyl. The Rs may be different. However, this introduces the problem of optical isomers in the final product. Aside from monohaloalkanes, alkanes substituted with other leaving groups such as methylsulphonates and p-toluenesulphonates may also be used.


If α,ω-dihaloalkanes are used spiro[cycloalkane-1,9-fluorenes] are the resulting second intermediates. In particular, dialkylation with 1-bromo-2-chloroethane and with 1-bromo-3-chloropropane result in spiro[cyclopentane-1,9-fluorene]s (Formula 3) and spiro[cyclohexane-1,9-fluorene]s (Formula 4) respectively.




embedded image


In addition, dialkylation of the deprotonated material of Formula 2 with 1-bromo-3-chloro-2,2-dimethylpropane and 3-bromomethyl-3chloromethyl-n-pentane result in 4,4-dimethylspiro[cyclohexane-1,9-fluorene]s (Formula 5) and 4,4-diethylspiro[cyclohexane-1,9-fluorene]s (Formula 6) respectively.




embedded image


All of the spiro materials in FIGS. 3,4,5, and 6 may be generically represented by the formula




embedded image


A particularly preferred compound of this type is




embedded image


In the synthesis of the compound with Formula 8, the deprotonation and alkylation process may proceed in two steps:




embedded image


In the next step of this synthetic method, if the second intermediate has the structure shown in Formula 2, it may again be deprotonated with a strong base (e.g. t-butyl lithium) and then dialkylated with a monohaloalkane or an α,ω-dihaloalkane. If a monohaloalkane is used the resulting product will have the general formula




embedded image


A preferred example of compounds with Formula 9 is




embedded image


If the second intermediate of Formula 2 is deprotonated and then dialkylated with an α,ω-dihaloalkane the resulting product will have the general formula




embedded image


If the second intermediate has the structure shown in Formula 7, it may also be deprotonated with a strong base and then be dialkylated with a monohaloalkane or an α,ω-dihaloalkane. If it is dialkylated with a monohaloalkane the resulting product will have the structure shown in Formula 11. A preferred series of compounds of Formula 11 are




embedded image


If the dialkylation of the deprotonated material with structure shown in FIG. 7 is carried out using an α,ω-dihaloalkane, the resulting product will be a spiro[bicycloalkane-9-fluorene] of the general formula




embedded image


Preferred compounds with a structure shown in FIG. 13 are the material with n=2, m=2, and X=1,3-benzo[d]thiazol-2-yl,




embedded image



the material with n=3, m=2, and X=1,3-benzo[d]thiazol-2-yl, and




embedded image



the material with n=3, m=3, and X=1,3-benzo[d]thiazol-2-yl.




embedded image


Electron withdrawing groups that may be used in compounds with formulae 2 and 7 so as to allow further deprotonation and alkylation include 1,3-thiazol-2-yl, 1,3-benzo[d]oxazol-2-yl, and 1,3-benzo[d]thiazol-2-yl and N-alkylimino.


The 1,3-oxazol-2-yl, 1,3-thiazol-2-yl, 1,3-benzo[d]oxazol-2-yl, and 1,3-benzo[d]thiazol-2-yl functions in compounds of formulae 7, 9, 11, and 13 may be converted into aldehyde functions by a previously known series of steps, for instance,




embedded image


The intermediates of Formula 1 may be substituted at any of the positions on the fluorene ring system. In particular, the fluorene may fused to further aromatic rings, e.g.




embedded image


Compounds with formulae 2,7,9,11, and 13 may be similarly substituted or fused.


A further preferred synthetic variation of this method (Synthesis 3) utilises a variant of the intermediate with Formula 2 in which R has the formula —(CH2)nY




embedded image


In this synthesis Y is converted by a series of synthetic steps to a second intermediate with Formula 2 with R=—(CH2)mY′




embedded image



wherein Y′ is a leaving group such as iodo, bromo, chloro, p-toluenesulfonato, methanesufonato, trifluoromethanesulfonato, etc.


Treatment of this second intermediate with a strong base converts the material to a product with Formula 13:




embedded image



A first example of this synthesis is:




embedded image




embedded image



A second example synthesis is:




embedded image



A third example of the synthesis is:




embedded image




embedded image

Claims
  • 1. A method of producing fluorene OLED materials, the method comprising the steps of: (a) deprotonation and alkylation of a compound of Formula 1:
  • 2. The method of claim 1, wherein the alkyl lithium base is n-butyl lithium.
  • 3. The method of claim 1, wherein the alkyl lithium base is t-butyi lithium.
  • 4. The method of claim 1, wherein the α,ω-dihaloalkane is 1-bromo-2-chloroethane.
  • 5. The method of claim 2, wherein the α,ω-dihaloalkane is 1-bromo-2-chloroethane.
  • 6. The method of claim 3, wherein the α,ω-dihaloalkane is 1-bromo-2-chloroethane.
  • 7. The method of claim 1, wherein the α,ω-dihaloalkane is 1-bromo-3-chloropropane.
  • 8. The method of claim 2, wherein the α,ω-dihaloalkane is 1-bromo-3-chloropropane.
  • 9. The method of claim 3, wherein the α,ω-dihaloalkane is 1-brorno-3-chloropropane.
  • 10. The method of claim 1, wherein n is 2 and m is 2.
  • 11. The method of claim 1, wherein n is 3 and m is 2.
  • 12. The method of claim 1, wherein n is 3 and m is 3.
  • 13. A compound 2,2′(fluoren-9,9-diyldimethylene)bis-1,3-benzo[d]thiazole having the formula
Priority Claims (1)
Number Date Country Kind
1208136.0 May 2012 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/GB2013/000208 5/9/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2013/167863 11/14/2013 WO A
Foreign Referenced Citations (6)
Number Date Country
1215192 Jun 2002 EP
3013952 Jan 1991 JP
WO-2009087364 Jul 2009 WO
WO-2010061896 Jun 2010 WO
WO-2011039506 Apr 2011 WO
WO-2013167857 Nov 2013 WO
Non-Patent Literature Citations (2)
Entry
CAS Registry Entry for Registry No. 910611-93-7, which entered STN on Oct. 18, 2006.
International Search Report on PCT/GB2013/000208, date of mailing Jul. 18, 2013.
Related Publications (1)
Number Date Country
20150141656 A1 May 2015 US