The present invention relates to methods and apparatuses for provisioning a set of Radio Frequency (RF) beacons to facilitate indoor positioning in an area such as a warehouse facility. More particularly, the present invention relates to utilizing a barcode or optical data transmission to communicate an identification of an RF beacon to a mobile device that maps location of the BLE beacon and its associated identification.
Generally speaking wireless technology may be a useful tool to communicate and determine the positioning of objects in an area, such as a warehouse facility. The objective may be to generate a facility floor plan that maps objects in the facility and an identifier associated with the object. In one example, wireless devices are located at various points in the facility. A mobile device roams around the facility and communicates with the wireless devices that are each located near an object. Part of the communications may include measuring the signal strength to determine the location of the wireless devices relative to the mobile device. Due to multipath signal propagation and other factors this method may be prone to errors. Although the mobile device may be closer to device A than device B, the received signal strength of device B may be stronger than the received signal strength of device A. Therefore, the mobile device may accept the identification of what it considers to be the closest beacon (i.e. Bluetooth MAC address), as the identifier of the beacon it is collocated with. This creates an incorrect mapping of beacon identifier to spatial coordinate within the facility floor plan and introduces error into any system utilizing this data. Moreover, this method is quite time consuming to collect and record the data.
Therefore, a need exists for improve the accuracy, as well as reduce the time to efficiently communicate an identifier for the wireless device and map the identifier on a mobile device.
Accordingly, in one aspect, the present invention embraces methods and apparatuses to associate a wireless technology such as a Bluetooth Low energy (BLE) beacon to a spatial coordinate within a facility.
In an exemplary embodiment, a method comprises egressing, with a mobile device, in proximity to one or more beacon devices; selecting, with the mobile device, a procedure to communicate with one or more beacon devices;
If the selected procedure is a physical activation: selecting, with the mobile device, a set of beacon devices, and prompting, with the mobile device, an activation sensor on the set of beacon devices to cause the set of beacon devices to display their respective barcodes. If the selected procedure is a wireless communication: sending, with the mobile device, a wireless signal in order to select another set of beacon devices, and prompting, with the mobile device, the another set of beacon devices to display their respective barcodes.
The method further comprises: scanning, with the mobile device, the respective barcodes of the set of beacon devices or the another set of beacon devices, depending of the selected procedure, to obtain their respective identifications, wherein selected beacons comprise at least one beacon from the set of beacon devices or at least one beacon from the another set of beacon devices; mapping, with the mobile device, the respective identifications and associated location information of the selected beacon devices on a floor plan; and storing, with the mobile device, the respective identifications of the selected beacon devices in a database.
The method further comprises: if the selected procedure is a wireless communication: measuring, with the mobile device, a signal strength of the wireless communication of the one or more beacon devices, and selecting, with the mobile device, another set of beacon devices that have a signal strength greater than a predefined threshold value. The one or more beacon devices and the mobile device communicate on an ad-hoc basis utilizing Bluetooth Generic Attribute (BT GATT) service. The respective identifications comprise an encoded MAC address for each beacon device.
In another exemplary embodiment, the method comprises: selecting, with a mobile device, a procedure to communicate with one or more stationary devices; prompting, with the mobile device, the one or more stationary devices to provide their identifications to the mobile device utilizing the selected procedure; receiving, with the mobile device, the identifications for the one or more stationary devices; and mapping, with the mobile device, the identifications and associated location information of the one or more stationary devices on a floor plan.
The method further comprises: egressing, with the mobile device, in proximity to a selected stationary device; and communicating, with the mobile device, with the selected stationary device by prompting an activation sensor on the selected stationary device causing the selected stationary device to display a barcode that depicts identification for the selected stationary device; and scanning, with the mobile device, the barcode to receive the identification of the selected stationary device. The method comprises: communicating, with the mobile device, by sending a wireless signal from the mobile device to the one or more stationary devices; measuring, with the mobile device, a signal strength of the communication with the one or more stationary devices; selecting, with the mobile device, the one or more stationary devices that have a signal strength greater than a predefined threshold value; and prompting each of the selected one or more stationary devices to display a visual indicator comprising an identification, wherein, if the visual indicator comprises a barcode, scanning the barcode with the mobile device to acquire the identification
The method further comprises instructing, with the mobile device, each of the selected one or more stationary devices to display the visual indicator at a particular time and/or for a predetermined period of time.
The method further comprises communicating with the one or more stationary devices by: prompting an activation sensor on each of the stationary devices; and receiving light pulses comprising the identifications of each of the stationary devices from optical transmitters on each of the one or more stationary devices.
The method further comprises: communicating, with the mobile device, by sending a wireless signal from the mobile device to the one or more stationary devices; measuring, with the mobile device, a signal strength of the communication with the one or more stationary devices; selecting, with the mobile device, the one or more stationary devices that have a signal strength greater than a predefined threshold value; prompting, with the mobile device, each of the selected one or more stationary devices to transmit light pulses comprising its identification to the mobile device
The method further comprises: in response to determining that the mobile device is in proximity to one of the one or more stationary devices, saving associated location information on the mobile device. The identifications comprise an encoded MAC address.
In yet another exemplary embodiment, the method comprises: egressing, with a mobile device, in proximity to one or more stationary devices; selecting, with the mobile device, a procedure to communicate with one or more stationary devices.
If the selected procedure is a physical activation: selecting, with the mobile device, a set of stationary devices, prompting, with the mobile device, an activation sensor on the set of stationary devices to cause the set of stationary devices to display their respective barcodes; and scanning, with the mobile device, the respective barcodes of the set of stationary devices to obtain their respective identification information.
If the selected procedure is a wireless communication: sending, with the mobile device, a wireless signal in order to select another set of stationary devices, and prompting, with the mobile device, the another set of stationary devices to transmit light pulses to the mobile device comprising their respective identification information;
The method further comprises receiving, with the mobile device, the respective identification information for selected stationary devices, wherein the selected stationary devices comprise at least one stationary device from the set of stationary devices or at least one stationary device from the another set of stationary devices, depending on the selected procedure; and mapping, with the mobile device, the respective identification information and associated location information of the selected stationary devices on a floor plan. The identification information comprises an encoded MAC address for each stationary device.
The method further comprises storing the respective identification information of the selected stationary devices in a database. Also, the one or more stationary devices utilize Bluetooth Low Energy (BLE) technology.
If the selected procedure is a wireless communication: measuring, with the mobile device, a signal strength of the wireless communication of the one or more stationary devices. And selecting, with the mobile device, the another set of one or more stationary devices that have a signal strength greater than a predefined threshold value. Additionally, the method comprise, in response to determining that the mobile device is in proximity to one of the one or more beacon devices, saving associated location information on the mobile device.
egressing, with a mobile device, in proximity to one or more stationary devices; selecting, with the mobile device, a procedure to communicate with one or more stationary devices; prompting, with the mobile device, the one or more stationary devices to display their respective barcodes to the mobile device utilizing the selected procedure.
If the selected procedure is a physical activation, prompting an activation sensor to select a set of stationary devices and causing the set of beacon devices to display their respective barcodes.
If the selected procedure is a wireless communication: sending, with the mobile device, a wireless signal in order to select another set of stationary devices, and prompting, with the mobile device, the other set of stationary devices to transmit light pulses to the mobile device comprising identification information; receiving, with the mobile device, the identification information for the one or more stationary devices; and mapping, with the mobile device, the respective identifications and associated location information of the selected stationary devices on a floor plan.
The method further comprises: scanning, with the mobile device, the identification information of the selected stationary devices, wherein the identification information is a barcode, and storing the identification information of the selected stationary devices in a database. The one or more beacon devices utilize Bluetooth Low Energy (BLE) technology
Moreover, if the selected procedure is a wireless communication: measuring, with the mobile device, a signal strength of the wireless communication of the one or more stationary devices, and selecting, with the mobile device, the one or more stationary devices that have a signal strength greater than a predefined threshold value. Additionally, in response to determining that the mobile device is in proximity to one of the one or more stationary devices, saving associated location information on the mobile device.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present invention embraces apparatus and methods of associating a unique identifier of an object to a spatial coordinate in a facility. When the object is a wireless device such as a Bluetooth Low Energy (BLE) beacon, the capabilities of the wireless device may be utilized to communicate the unique identifier with the mobile device. The mobile device may include a mapping application that may generate a facility floor plan of the wireless devices (i.e. beacons) and their associated unique identifiers. Beacons “unique identifiers” are also referred herein as beacon “identifiers” or “identification.”
One of the use cases for this method is a for pick-to-light order fulfillment and that may require a low power display (e-ink) to be populated on the beacon. These beacons are hung at each pick location and will light up when their associated product may require picking. This display is used to display the pick quantity for the particular product to be picked, as well as other uses like displaying randomly generated check digits. This BLE beacon is also being used for indoor positioning. Before these beacons can be used for pick-to light order fulfillment and/or positioning they may be first be provisioning within the system. This means that their unique identifier (e.g. BT MAC address) may be associated to a spatial coordinate within the facility. This is typically done using a mobile device application that has a loaded image of the facility floor plan. After the beacons are hung around the facility, a user will need to physically walk around to each beacon, listen for that beacon's advertising packet (which would be the one with the highest received signal strength since it is closest), record its MAC address, and plot the location of the beacon on the floor plan image. This process may require a mobile device to listen for the advertising packet of each tag. Accordingly, this process may be extremely time consuming and may be prone to error caused by multipath signal propagation of other beacons (i.e. other beacons are read instead of the desired beacon, as their signal appears stronger even though they are further away).
The method previously described for provisioning a set of beacons is illustrated in network 100 in
In an exemplary embodiment,
Beacon 210 receives or transmits a communication signal from mobile device 226 that is operated by user 224 via antenna 222 Transceiver 212 may comprise a receiver and a transmitter. Beacon 210 may also receive inputs from user 224 when the user prompts activation sensor 217.
The output of transceiver 212 and activation sensor 217 are coupled to processor 214. Database 218 stores an identification of beacon 210 such as a MAC address. Database 218 may be flash (nonvolatile) memory. Database 218 may be considered a data store. Depending on the method and information provided by transceiver 212 or activation sensor 217, mobile device 226 may receive the identification.
Mobile device 226 may acquire location information of the beacon 210 by user 224 activating a function (e.g. tapping a key on the mobile device) to save its current location when the mobile device 226 is in proximity of beacon 210. For example, mobile device 226 is in proximity of beacon 210 when user 224, with mobile device 226, is standing in front of beacon 210.
Mobile device 226 may receive the identification by a visual indicator method or by an optical data transmission method. In the first method, beacon 210 may display a barcode on display 219 that may be scanned by user 224 using mobile device 226. The barcode may be a one dimensional (1D) or two dimensional (2D) barcode. In the second method, beacon 210 transmits optical data or light pulses 220 to mobile device 226. In either case, mobile device 226 may select either a procedure to communicate with beacon 210 by wirelessly communication (i.e. via transceiver 212) or by prompting activation sensor 217.
When mobile device 226 selects the procedure to prompt activation sensor 217, processor 214 may receive an instruction to send beacon 210's identification to display 219 in order to display the identification as a visual indicator, e.g. a barcode. User 224 may then scan the visual indicator using mobile device 226 and download the identification (e.g. MAC address) to mobile device 226. Activation sensor 217 may be implemented via a button that is pressed by user 224. One skilled in the art may recognize that other implementations are possible.
When mobile device 226 selects a procedure to wirelessly communicate with one or more beacons, the mobile device may search for beacons in an area. Mobile device 226 may connect to beacons with high signal strengths, and send instructions to display their MAC addresses via a visual indicator, e.g. a barcode, as previously described. High signal strengths may mean signal strengths meeting a predefined threshold value, or RSSI level. Mobile device 226 may maintain a list of the beacons with the highest signal strengths, then individually connect with these beacons and issue a command that instructs these beacons to display their barcode on display 219. Mobile device 226 may then proceed to scan the barcodes of the selected beacons. In one embodiment, the list of beacons comprises the top n percentile (e.g. 95th percentile) of signal strengths.
If a BT GATT service or similar wireless service is utilized, mobile device 226 may determine when visual indicators are displayed. Also, for the embodiment illustrated in
A communication signal may be sent to transceiver 212 of beacon 210. The communication signal may instruct processor 214 to send beacon 210's identification to display 219 in order to display the identification as a barcode. User 224 may then scan the barcode using mobile device 226
After receiving the identification of beacon 210 and determining location information of beacon 210, user 224 may obtain a map of the beacon 210, with its identification, on a floor plan, such as the floor plan of a warehouse facility. That is, a software application on mobile device 226 may associate the MAC address of beacon 210 with beacon 210's current location when the user taps on the floor plan image of the facility. Beacon 202 and beacon 206 may be mapped on the floor plan in a similar manner as described above.
Also, for the embodiment illustrated in
As previously noted, in a second method, beacon 210 transmits optical data or light pulses 220 to mobile device 226. The second method may be beneficial since it removes the need to listen for an advertising packet of each tag, assuming that the activation sensor was utilized to start this sequence. The second method may utilize a LED on the beacon to flash a binary sequence representing the beacon's identification, e.g. BT MAC address. When the beacon is prompted, it may repetitively flash a binary sequence representing the beacon's identification. A camera, proximity sensor or other optical receiver on a mobile device will be used to view this sequence and decode the pulses of light into identification. By using method two, one can remove the need to wait 5-10 seconds to listen for beacons in the area and we can be sure that the desired beacon has been provisioned.
In the second method, mobile device 226 may select a procedure to either prompt activation sensor 217 or send a wireless communication signal. These procedures are similar to the procedures previously described for the barcode method, i.e. first method). Instead of displaying a barcode that may incorporate the identification, in method 2, the selected beacon may transmit light pulses. The light pulses may have the identification embedded therein. Mobile device 226 receives light pulses 220 and subsequently decodes the identification of beacon 210.
If a BT GATT service or similar wireless service is utilized, mobile device 226 may determine when a light pulse sequence is started and stopped. This would allow mobile device 226 to scan for beacons in the area. Mobile device 226 may connect to and instruct beacons with high signal strengths (i.e. above a predefined threshold value) to start the light pulse sequence. Accordingly, user 224 may not have to worry about multipath propagation, as it may be acceptable if several tags were instructed to light flash their identification since user 224 may be looking directly at the tag of interest.
The conversion of the BT MAC address to light pulses and back may be done as follows:
To transmit a MAC address, or any data as a series of light pulses one may need to first convert the data into its binary form as noted below:
MAC Address: 14:5D:3B:A2:06:37
Binary MAC: 00010100 01011101 00111011 10100010 00000110 00110111
Once one has completed this task, one may designate a duration of time that the LED is turned on or off to represent a single bit. This duration may need to be longer than the frame rate of the optical system receiving it. For instance, if one wants to support a traditional CCD camera system capable of processing camera frames at a rate of 30 frames per second, then the light pulse duration may need to be longer than 1000 ms/30 fps=33.33 milliseconds. This means the higher the frame rate of the receiver, the higher the transmission speed. In this example, it may allow a little leeway if 40 ms per bit is selected, which is 25 baud (1000/40):
Light Pulse Off (40 ms) represents a 0
Light Pulse On (40 ms) represents a 1
This means that the beacon may turn on the led for 40 ms to represent a ‘1’ and turn off the led for 40 ms to represent a ‘0’. Taking our converted MAC address above one may see:
Flash start transmission sequence: 10101010—(on, off, on, off, on, off, on, off)
Followed by MAC address binary data: 00010100 01011101 00111011 10100010 00000110 00110111—(off, off, off, on, off, . . . , on,on,on)
Followed by end transmission sequence: 01010101—
The camera system may process each frame looking for the LED light source. If found this may indicate a 1. If not found this may indicate 0. One may wait until one observes the start sequence and then may start recording the MAC address bit data until one observes the stop sequence. One may use the timing of the start sequence as an indicator of the timing of other data. The MAC address bit data may be converted into a MAC address byte array and delivered to business logic.
In an exemplary embodiment,
In another exemplary embodiment,
Starting at a mobile device 226, (step 402), mobile device 226 egresses in proximity to one or more beacons and determines their respective locations on a facility floor plan (step 404). User 224 selects on the mobile device a procedure to communicate with one or more beacons. (step 406) The one or more beacons may comprise beacon 202, beacon 206, and beacon 210. If user 224 selects a physical activation, user 224 prompts an activation sensor 217 on selected beacon(s). (step 408) If user 224 selects a wireless communication for activation, the mobile device 226 searches and selects beacons having signal strengths above a predefined threshold value. (step 416) Then mobile device 226 sends a wireless signal to selected beacons to prompt their action to display a barcode. (step 418) The selected beacons from step 408 or step 418 then display a bar code on display 219. (step 410)
User 224 scans the barcodes on selected beacon(s) with mobile device 226 and acquires identifications for the selected beacon(s). (step 412) Based on this information, user 224 generates a map of the identifications of the selected beacons and their respective locations. (step 414)
In another exemplary embodiment,
Starting at a mobile device 226 (step 452), mobile device 226 egresses in proximity to one or more beacons and determines their respective locations on a facility floor plan. (step 456) The one or more beacons may comprise beacon 202, beacon 206, and beacon 210. User 224 selects on mobile device 226 a procedure to communicate with one or more beacons. (step 454) If user 224 selects a physical activation, then user 224 prompts activation sensor 217 on selected beacons(s). (step 458) If user 224 selects a wireless communication for activation, mobile device 226 searches and selects beacons having signal strengths above a predefined threshold value. (step 466) Then mobile device 226 sends a wireless signal to selected beacons to begin sending light pulses 220. (step 468) Selected beacon(s) from step 408 or step 418 transmit light pulses 220 to mobile device 226. (step 460) Mobile device 226 receives the light pulses 220 and decodes the unique IDs of the selected beacon(s). Based on this information, user 224 generates a map of the identifications of the selected beacons and their respective locations. (step 464)
A1. A device, comprising: a transceiver that wirelessly communicates with a mobile device; an activation sensor; a database that stores an identification of the device; and a processor communicatively coupled to the database, wherein, in response to receiving a wireless signal from the mobile device, the device communicates with the mobile device via a first procedure to transmit the identification to the mobile device; and wherein, in response to a prompt of the activation sensor, the device communicates with the mobile device via a second procedure to transmit the identification to the mobile device.
A2. The device according to claim 1, comprising a display, wherein, in response to a prompt of the activation sensor, the device presents a visual indicator comprising the identification on the display.
A3. The device according to claim 2, wherein the visual indicator is a barcode.
A4. The device according to claim 1, comprising a display, wherein, in response to receiving a wireless signal from the mobile device indicating a signal strength greater than a predefined threshold value, the device presents a visual indicator comprising the identification on the display.
A5. The device according to claim 4, wherein the visual indicator is a barcode.
A6. The device according to claim 1, comprising an optical transmitter, wherein, in response to a prompt of the activation sensor, the device transmits light pulses comprising the identification with the optical transmitter.
A7. The device according to claim 1, comprising an optical transmitter, wherein, in response to receiving a wireless signal from the mobile device indicating a signal strength greater than a predefined threshold value, the device transmits light pulses comprising the identification with the optical transmitter.
A8. The device according to claim 7, wherein, in response to receiving instructions from the mobile device, the device starts transmitting light pulses, stops transmitting light pulses, and/or transmits light pulses for a predetermined period of time.
A9. The device according to claim 1, wherein the device and the mobile device communicate on an ad-hoc basis utilizing Bluetooth Generic Attribute (BT GATT) service.
A10. The device according to claim 1, wherein the identification comprises an encoded MAC address of the device.
A11. A method comprising: selecting, with a mobile device, a procedure to communicate with one or more stationary devices; prompting, with the mobile device, the one or more stationary devices to provide their identifications to the mobile device utilizing the selected procedure; receiving, with the mobile device, the identifications for the one or more stationary devices; and mapping, with the mobile device, the identifications and associated location information of the one or more stationary devices on a floor plan.
A12. The method according to claim 11, comprising: egressing, with the mobile device, in proximity to a selected stationary device; and communicating, with the mobile device, with the selected stationary device by prompting an activation sensor on the selected stationary device causing the selected stationary device to display a barcode that depicts identification for the selected stationary device; scanning, with the mobile device, the barcode to receive the identification of the selected stationary device.
A13. The method according to claim 11, comprising: communicating, with the mobile device, by sending a wireless signal from the mobile device to the one or more stationary devices; measuring, with the mobile device, a signal strength of the communication with the one or more stationary devices; selecting, with the mobile device, the one or more stationary devices that have a signal strength greater than a predefined threshold value; prompting each of the selected one or more stationary devices to display a visual indicator comprising an identification.
A14. The method according to claim 13, wherein, if the visual indicator comprises a barcode, scanning the barcode with the mobile device to acquire the identification.
A15. The method according to claim 13, comprising instructing, with the mobile device, each of the selected one or more stationary devices to display the visual indicator at a particular time and/or for a predetermined period of time.
A16. The method according to claim 11, comprising communicating with the one or more stationary devices by: prompting an activation sensor on each of the stationary devices; receiving light pulses comprising the identifications of each of the stationary devices from optical transmitters on each of the one or more stationary devices.
A17. The method according to claim 11, comprising: communicating, with the mobile device, by sending a wireless signal from the mobile device to the one or more stationary devices; measuring, with the mobile device, a signal strength of the communication with the one or more stationary devices; selecting, with the mobile device, the one or more stationary devices that have a signal strength greater than a predefined threshold value; and prompting, with the mobile device, each of the selected one or more stationary devices to transmit light pulses comprising its identification to the mobile device.
A18. The method according to claim 11, comprising, in response to determining that the mobile device is in proximity to one of the one or more stationary devices, saving associated location information on the mobile device.
A19. The method according to claim 11, wherein the identifications comprise an encoded MAC address.
A20. A computer readable apparatus comprising a non-transitory storage medium storing instructions for a mobile device to determine an identification for each of one or more stationary devices, the instructions, when executed on a processor, causes the mobile device to: select a procedure to communicate with one or more stationary devices; prompt the one or more stationary devices to provide their identifications to the mobile device utilizing the selected procedure; receive the identifications for the one or more stationary devices; and map the identifications and associated location information of the one or more stationary devices on a floor plan.
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Zhu et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Liu | Dec 2012 | B2 |
8334898 | Ryan et al. | Dec 2012 | B1 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Van Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757477 | Do | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807428 | Morgan | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van Horn et al. | Aug 2014 | B2 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Caballero | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8903172 | Smith | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | Akel et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
D733112 | Chaney et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9082023 | Feng et al. | Jul 2015 | B2 |
9224022 | Ackley et al. | Dec 2015 | B2 |
9224027 | Van Horn et al. | Dec 2015 | B2 |
D747321 | London et al. | Jan 2016 | S |
9230140 | Ackley | Jan 2016 | B1 |
9443123 | Hejl | Jan 2016 | B2 |
9250712 | Todeschini | Feb 2016 | B1 |
9258033 | Showering | Feb 2016 | B2 |
9262633 | Todeschini et al. | Feb 2016 | B1 |
9310609 | Rueblinger et al. | Apr 2016 | B2 |
D757009 | Oberpriller et al. | May 2016 | S |
9342724 | McCloskey | May 2016 | B2 |
9375945 | Bowles | Jun 2016 | B1 |
D760719 | Zhou et al. | Jul 2016 | S |
9390596 | Todeschini | Jul 2016 | B1 |
D762604 | Fitch et al. | Aug 2016 | S |
D762647 | Fitch et al. | Aug 2016 | S |
9412242 | Van Horn et al. | Aug 2016 | B2 |
9420423 | Mendelson | Aug 2016 | B1 |
D766244 | Zhou et al. | Sep 2016 | S |
9443222 | Singel et al. | Sep 2016 | B2 |
9478113 | Xie et al. | Oct 2016 | B2 |
20040003250 | Kindberg | Jan 2004 | A1 |
20060244830 | Davenport et al. | Nov 2006 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20090090773 | Tokunaga | Apr 2009 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20090267768 | Fujiwara | Oct 2009 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20120061458 | Bahr et al. | Mar 2012 | A1 |
20120085820 | Morgan | Apr 2012 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedraro | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130313325 | Wilz et al. | Nov 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140100813 | Showering | Jan 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140042814 | Kather et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140104451 | Todeschini et al. | Apr 2014 | A1 |
20140106594 | Skvoretz | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131438 | Kearney | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140131445 | Ding et al. | May 2014 | A1 |
20140131448 | Xian et al. | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Lumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140166759 | Liu et al. | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140175172 | Jovanovski et al. | Jun 2014 | A1 |
20140191644 | Chaney | Jul 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140197238 | Lui et al. | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140203087 | Smith et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140232930 | Anderson | Aug 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140278387 | DiGregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140284384 | Lu et al. | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140312121 | Lu et al. | Oct 2014 | A1 |
20140319220 | Coyle | Oct 2014 | A1 |
20140319221 | Oberpriller et al. | Oct 2014 | A1 |
20140326787 | Barten | Nov 2014 | A1 |
20140332590 | Wang et al. | Nov 2014 | A1 |
20140344943 | Todeschini et al. | Nov 2014 | A1 |
20140346233 | Liu et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140353373 | Van Horn et al. | Dec 2014 | A1 |
20140361073 | Qu et al. | Dec 2014 | A1 |
20140361082 | Xian et al. | Dec 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150001304 | Todeschini | Jan 2015 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150009610 | London et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028102 | Ren et al. | Jan 2015 | A1 |
20150028103 | Jiang | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150048168 | Fritz et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053766 | Havens et al. | Feb 2015 | A1 |
20150053768 | Wang et al. | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150063676 | Lloyd et al. | Mar 2015 | A1 |
20150069130 | Gannon | Mar 2015 | A1 |
20150071819 | Todeschini | Mar 2015 | A1 |
20150083800 | Li et al. | Mar 2015 | A1 |
20150086114 | Todeschini | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150099557 | Pettinelli et al. | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150102109 | Huck | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150129659 | Feng et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150136854 | Lu et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150144701 | Xian et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150169925 | Chang et al. | Jun 2015 | A1 |
20150169929 | Williams et al. | Jun 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150193644 | Kearney et al. | Jul 2015 | A1 |
20150193645 | Colavito et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150204671 | Showering | Jul 2015 | A1 |
20150210199 | Payne | Jul 2015 | A1 |
20150220753 | Zhu et al. | Aug 2015 | A1 |
20150254485 | Feng et al. | Sep 2015 | A1 |
20150327012 | Bian et al. | Nov 2015 | A1 |
20150382153 | Otis | Dec 2015 | A1 |
20160014251 | Hejl | Jan 2016 | A1 |
20160040982 | Li et al. | Feb 2016 | A1 |
20160042241 | Todeschini | Feb 2016 | A1 |
20160057230 | Todeschini et al. | Feb 2016 | A1 |
20160109219 | Ackley et al. | Apr 2016 | A1 |
20160109220 | Laffargue | Apr 2016 | A1 |
20160109224 | Thuries et al. | Apr 2016 | A1 |
20160112631 | Ackley et al. | Apr 2016 | A1 |
20160112643 | Laffargue et al. | Apr 2016 | A1 |
20160119320 | Bansal | Apr 2016 | A1 |
20160124516 | Schoon et al. | May 2016 | A1 |
20160125217 | Todeschini | May 2016 | A1 |
20160125342 | Miller et al. | May 2016 | A1 |
20160133253 | Braho et al. | May 2016 | A1 |
20160171720 | Todeschini | Jun 2016 | A1 |
20160178479 | Goldsmith | Jun 2016 | A1 |
20160180678 | Ackley et al. | Jun 2016 | A1 |
20160189087 | Morton et al. | Jun 2016 | A1 |
20160125873 | Braho et al. | Jul 2016 | A1 |
20160198246 | Gurumohan | Jul 2016 | A1 |
20160227912 | Oberpriller et al. | Aug 2016 | A1 |
20160232891 | Pecorari | Aug 2016 | A1 |
20160292477 | Bidwell | Oct 2016 | A1 |
20160294779 | Yeakley et al. | Oct 2016 | A1 |
20160306769 | Kohtz et al. | Oct 2016 | A1 |
20160314276 | Sewell et al. | Oct 2016 | A1 |
20160314294 | Kubler et al. | Oct 2016 | A1 |
20170200217 | Huseth | Jul 2017 | A1 |
20180067187 | Oh | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2733502 | May 2014 | EP |
2013163789 | Nov 2013 | WO |
2013173985 | Nov 2013 | WO |
2014019130 | Feb 2014 | WO |
2014110495 | Jul 2014 | WO |
Entry |
---|
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned. |
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned. |
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages; now abandoned. |
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages. |
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages. |
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages. |
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages. |
U.S. Appl. No. 14/715,916 for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages. |
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages. |
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages. |
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al); 16 pages. |
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape); 47 pages. |
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages; now abandoned. |
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network- Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages. |
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages. |
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages. |
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages. |
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages. |
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages. |
U.S. Appl. No. 14/747,197 for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages. |
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions filed May 4, 2015 (Young et al.); 70 pages. |
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages. |
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages. |
U.S. Appl. No. 14/740,320 for Tactile Switch For a Mobile Electronic Device filed Jun. 16, 2015 (Barndringa); 38 pages. |
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages. |
Partial European Search Report in related European Application No. 17190434.5 dated Nov. 30, 2017, pp. 1-13. |
Extended European Search Report in related European Application No. 17190434.5 dated Mar. 7, 2018, pp. 1-11 [All references previously cited.]. |
Examination Report in related European Application No. 17190434.5 dated Dec. 18, 2018, pp. 1-8 [U.S. Pat. No. 9,420,423 and U.S. Publication No. 2012/0061458 previously cited.]. |
Number | Date | Country | |
---|---|---|---|
20180077535 A1 | Mar 2018 | US |