METHODS FOR QUANTITATING SMALL RNA MOLECULES

Information

  • Patent Application
  • 20070292878
  • Publication Number
    20070292878
  • Date Filed
    July 18, 2007
    18 years ago
  • Date Published
    December 20, 2007
    18 years ago
Abstract
In one aspect, the present invention provides methods for amplifying a microRNA molecule to produce DNA molecules. The methods each include the steps of: (a) using primer extension to make a DNA molecule that is complementary to a target microRNA molecule; and (b) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules. In some embodiments of the method, at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule.
Description
FIELD OF THE INVENTION

The present invention relates to methods of amplifying and quantitating small RNA molecules.


BACKGROUND OF THE INVENTION

RNA interference (RNAi) is an evolutionarily conserved process that functions to inhibit gene expression (Bernstein et al. (2001), Nature 409:363-6; Dykxhoorn et al. (2003) Nat. Rev. Mol. Cell. Biol. 4:457-67). The phenomenon of RNAi was first described in Caenorhabditis elegans, where injection of double-stranded RNA (dsRNA) led to efficient sequence-specific gene silencing of the mRNA that was complementary to the dsRNA (Fire et al. (1998) Nature 391:806-11). RNAi has also been described in plants as a phenomenon called post-transcriptional gene silencing (PTGS), which is likely used as a viral defense mechanism (Jorgensen (1990) Trends Biotechnol. 8:340-4; Brigneti et al. (1998) EMBO J. 17:6739-46; Hamilton & Baulcombe (1999) Science 286:950-2).


An early indication that the molecules that regulate PTGS were short RNAs processed from longer dsRNA was the identification of short 21 to 22 nucleotide dsRNA derived from the longer dsRNA in plants (Hamilton & Baulcombe (1999) Science 286:950-2). This observation was repeated in Drosophila embryo extracts where long dsRNA was found processed into 21-25 nucleotide short RNA by the RNase III type enzyme, Dicer (Elbashir et al. (2001) Nature 411:494-8; Elbashir et al. (2001) EMBO J. 20:6877-88; Elbashir et al. (2001) Genes Dev. 15:188-200). These observations led Elbashir et al. to test if synthetic 21-25 nucleotide synthetic dsRNAs function to specifically inhibit gene expression in Drosophila embryo lysates and mammalian cell culture (Elbashir et al. (2001) Nature 411:494-8; Elbashir et al. (2001) EMBO J. 20:6877-88; Elbashir et al. (2001) Genes Dev. 15:188-200). They demonstrated that small interfering RNAs (siRNAs) had the ability to specifically inhibit gene expression in mammalian cell culture without induction of the interferon response.


These observations led to the development of techniques for the reduction, or elimination, of expression of specific genes in mammalian cell culture, such as plasmid-based systems that generate hairpin siRNAs (Brummelkamp et al. (2002) Science 296:550-3; Paddison et al. (2002) Genes Dev. 16:948-58; Paddison et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99:1443-8; Paul et al. 2002) Nat. Biotechnol. 20:404-8). siRNA molecules can also be introduced into cells, in vivo, to inhibit the expression of specific proteins (see, e.g., Soutschek, J., et al., Nature 432 (7014):173-178 (2004)).


siRNA molecules have promise both as therapeutic agents for inhibiting the expression of specific proteins, and as targets for drugs that affect the activity of siRNA molecules that function to regulate the expression of proteins involved in a disease state. A first step in developing such therapeutic agents is to measure the amounts of specific siRNA molecules in different cell types within an organism, and thereby construct an “atlas” of siRNA expression within the body. Additionally, it will be useful to measure changes in the amount of specific siRNA molecules in specific cell types in response to a defined stimulus, or in a disease state.


Short RNA molecules are difficult to quantitate. For example, with respect to the use of PCR to amplify and measure the small RNA molecules, most PCR primers are longer than the small RNA molecules, and so it is difficult to design a primer that has significant overlap with a small RNA molecule, and that selectively hybridizes to the small RNA molecule at the temperatures used for primer extension and PCR amplification reactions.


SUMMARY OF THE INVENTION

In one aspect, the present invention provides methods for amplifying a microRNA molecule to produce cDNA molecules. The methods include the steps of: (a) producing a first DNA molecule that is complementary to a target microRNA molecule using primer extension; and (b) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward primer and a reverse primer. In some embodiments of the method, at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule. It will be understood that, in the practice of the present invention, typically numerous (e.g., millions) of individual microRNA molecules are amplified in a sample (e.g., a solution of RNA molecules isolated from living cells).


In another aspect, the present invention provides methods for measuring the amount of a target microRNA in a sample from a living organism. The methods of this aspect of the invention include the step of measuring the amount of a target microRNA molecule in a multiplicity of different cell types within a living organism, wherein the amount of the target microRNA molecule is measured by a method including the steps of: (1) producing a first DNA molecule complementary to the target microRNA molecule in the sample using primer extension; (2) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward primer and a reverse primer; and (3) measuring the amount of the amplified DNA molecules. In some embodiments of the method, at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule.


In another aspect, the invention provides nucleic acid primer molecules consisting of sequence SEQ ID NO:1 to SEQ ID NO: 499, as shown in TABLE 1, TABLE 2, TABLE 6, and TABLE 7. The primer molecules of the invention can be used as primers for detecting mammalian microRNA target molecules, using the methods of the invention described herein.


In another aspect, the present invention provides kits for detecting at least one mammalian target microRNA, the kits comprising one or more primer sets specific for the detection of a target microRNA, each primer set comprising (1) an extension primer for producing a cDNA molecule complementary to a target microRNA, (2) a universal forward PCR primer for amplifying the cDNA molecule and (3) a reverse PCR primer for amplifying the cDNA molecule. The extension primer comprises a first portion that hybridizes to the target microRNA molecule and a second portion that includes a hybridization sequence for a universal forward PCR primer. The reverse PCR primer comprises a sequence selected to hybridize to a portion of the cDNA molecule. In some embodiments of the kit, at least one of the universal forward and reverse primers include at least one locked nucleic acid molecule. The kits of the invention may be used to practice various embodiments of the methods of the invention.


The present invention is useful, for example, for quantitating specific microRNA molecules within different types of cells in a living organism, or, for example, for measuring changes in the amount of specific microRNAs in living cells in response to a stimulus (e.g., in response to administration of a drug).




BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 shows a flow chart of a representative method of the present invention;



FIG. 2 graphically illustrates the standard curves for assays specific for the detection of microRNA targets miR-95 and miR-424 as described in EXAMPLE 3;



FIG. 3A is a histogram plot showing the expression profile of miR-1 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5;



FIG. 3B is a histogram plot showing the expression profile of miR-124 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5; and



FIG. 3C is a histogram plot showing the expression profile of miR-150 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In accordance with the foregoing, in one aspect, the present invention provides methods for amplifying a microRNA molecule to produce cDNA molecules. The methods include the steps of: (a) using primer extension to make a DNA molecule that is complementary to a target microRNA molecule; and (b) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules. In some embodiments of the method, at least one of the universal forward primer and the reverse primer comprises at least one locked nucleic acid molecule.


As used herein, the term “locked nucleic acid molecule” (abbreviated as LNA molecule) refers to a nucleic acid molecule that includes a 2′-O,4′-C-methylene-β-D-ribofuranosyl moiety. Exemplary 2′-O,4′-C-methylene-β-D-ribofuranosyl moieties, and exemplary LNAs including such moieties, are described, for example, in Petersen, M., and Wengel, J., Trends in Biotechnology 21(2):74-81 (2003) which publication is incorporated herein by reference in its entirety.


As used herein, the term “microRNA” refers to an RNA molecule that has a length in the range of from 21 nucleotides to 25 nucleotides. Some microRNA molecules (e.g., siRNA molecules) function in living cells to regulate gene expression.


Representative Method of the Invention. FIG. 1 shows a flowchart of a representative method of the present invention. In the method represented in FIG. 1, a microRNA is the template for synthesis of a complementary first DNA molecule. The synthesis of the first DNA molecule is primed by an extension primer, and so the first DNA molecule includes the extension primer and newly synthesized DNA (represented by a dotted line in FIG. 1). The synthesis of DNA is catalyzed by reverse transcriptase.


The extension primer includes a first portion (abbreviated as FP in FIG. 1) and a second portion (abbreviated as SP in FIG. 1). The first portion hybridizes to the microRNA target template, and the second portion includes a nucleic acid sequence that hybridizes with a universal forward primer, as described infra.


A quantitative polymerase chain reaction is used to make a second DNA molecule that is complementary to the first DNA molecule. The synthesis of the second DNA molecule is primed by the reverse primer that has a sequence that is selected to specifically hybridize to a portion of the target first DNA molecule. Thus, the reverse primer does not hybridize to nucleic acid molecules other than the first DNA molecule. The reverse primer may optionally include at least one LNA molecule located within the portion of the reverse primer that does not overlap with the extension primer. In FIG. 1, the LNA molecules are represented by shaded ovals.


A universal forward primer hybridizes to the 3′ end of the second DNA molecule and primes synthesis of a third DNA molecule. It will be understood that, although a single microRNA molecule, single first DNA molecule, single second DNA molecule, single third DNA molecule and single extension, forward and reverse primers are shown in FIG. 1, typically the practice of the present invention uses reaction mixtures that include numerous copies (e.g., millions of copies) of each of the foregoing nucleic acid molecules.


The steps of the methods of the present invention are now considered in more detail.


Preparation of microRNA Molecules Useful as Templates. microRNA molecules useful as templates in the methods of the invention can be isolated from any organism (e.g., eukaryote, such as a mammal) or part thereof, including organs, tissues, and/or individual cells (including cultured cells). Any suitable RNA preparation that includes microRNAs can be used, such as total cellular RNA.


RNA may be isolated from cells by procedures that involve lysis of the cells and denaturation of the proteins contained therein. Cells of interest include wild-type cells, drug-exposed wild-type cells, modified cells, and drug-exposed modified cells.


Additional steps may be employed to remove some or all of the DNA. Cell lysis may be accomplished with a nonionic detergent, followed by microcentrifugation to remove the nuclei and hence the bulk of the cellular DNA. In one embodiment, RNA is extracted from cells of the various types of interest using guanidinium thiocyanate lysis followed by CsCl centrifugation to separate the RNA from DNA (see, Chirgwin et al., 1979, Biochemistry 18:5294-5299). Separation of RNA from DNA can also be accomplished by organic extraction, for example, with hot phenol or phenol/chloroform/isoamyl alcohol.


If desired, RNase inhibitors may be added to the lysis buffer. Likewise, for certain cell types, it may be desirable to add a protein denaturation/digestion step to the protocol.


The sample of RNA can comprise a multiplicity of different microRNA molecules, each different microRNA molecule having a different nucleotide sequence. In a specific embodiment, the microRNA molecules in the RNA sample comprise at least 100 different nucleotide sequences. In other embodiments, the microRNA molecules of the RNA sample comprise at least 500, 1,000, 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000 90,000, or 100,000 different nucleotide sequences.


The methods of the invention may be used to detect the presence of any microRNA. For example, the methods of the invention can be used to detect one or more of the microRNA targets described in a database such as “the miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144, which is publically accessible on the World Wide Web at the Wellcome Trust Sanger Institute website at http://microrna.sanger.ac.uk/sequences/. A list of exemplary microRNA targets is also described in the following references: Lagos-Quintana et al., Curr. Biol. 12(9):735-9 (2002).


Synthesis of DNA Molecules Using microRNA Molecules As Templates. In the practice of the methods of the invention, first DNA molecules are synthesized that are complementary to the microRNA target molecules, and that are composed of an extension primer and newly synthesized DNA (wherein the extension primer primes the synthesis of the newly synthesized DNA). Individual first DNA molecules can be complementary to a whole microRNA target molecule, or to a portion thereof; although typically an individual first DNA molecule is complementary to a whole microRNA target molecule. Thus, in the practice of the methods of the invention, a population of first DNA molecules is synthesized that includes individual DNA molecules that are each complementary to all, or to a portion, of a target microRNA molecule.


The synthesis of the first DNA molecules is catalyzed by reverse transcriptase. Any reverse transcriptase molecule can be used to synthesize the first DNA molecules, such as those derived from Moloney murine leukemia virus (MMLV-RT), avian myeloblastosis virus (AMV-RT), bovine leukemia virus (BLV-RT), Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV-RT). A reverse transcriptase lacking RNaseH activity (e.g., SUPERSCRIPT III™ sold by Invitrogen, 1600 Faraday Avenue, P.O. Box 6482, Carlsbad, Calif. 92008) is preferred in order to minimize the amount of double-stranded cDNA synthesized at this stage. The reverse transcriptase molecule should also preferably be thermostable so that the DNA synthesis reaction can be conducted at as high a temperature as possible, while still permitting hybridization of primer to the microRNA target molecules.


Priming the Synthesis of the First DNA Molecules. The synthesis of the first DNA molecules is primed using an extension primer. Typically, the length of the extension primer is in the range of from 10 nucleotides to 100 nucleotides, such as 20 to 35 nucleotides. The nucleic acid sequence of the extension primer is incorporated into the sequence of each, synthesized, DNA molecule. The extension primer includes a first portion that hybridizes to a portion of the microRNA molecule. Typically the first portion of the extension primer includes the 3′-end of the extension primer. The first portion of the extension primer typically has a length in the range of from 6 nucleotides to 20 nucleotides, such as from 10 nucleotides to 12 nucleotides. In some embodiments, the first portion of the extension primer has a length in the range of from 3 nucleotides to 25 nucleotides.


The extension primer also includes a second portion that typically has a length of from 18 to 25 nucleotides. For example, the second portion of the extension primer can be 20 nucleotides long. The second portion of the extension primer is located 5′ to the first portion of the extension primer. The second portion of the extension primer includes at least a portion of the hybridization site for the universal forward primer. For example, the second portion of the extension primer can include all of the hybridization site for the universal forward primer, or, for example, can include as little as a single nucleotide of the hybridization site for the universal forward primer (the remaining portion of the hybridization site for the forward primer can, for example, be located in the first portion of the extension primer). An exemplary nucleic acid sequence of a second portion of an extension primer is 5′ CATGATCAGCTGGGCCAAGA 3′ (SEQ ID NO:1).


Amplification of the DNA Molecules. In the practice of the methods of the invention, the first DNA molecules are enzymatically amplified using the polymerase chain reaction. A universal forward primer and a reverse primer are used to prime the polymerase chain reaction. The reverse primer includes a nucleic acid sequence that is selected to specifically hybridize to a portion of a first DNA molecule.


The reverse primer typically has a length in the range of from 10 nucleotides to 100 nucleotides. In some embodiments, the reverse primer has a length in the range of from 12 nucleotides to 20 nucleotides. The nucleotide sequence of the reverse primer is selected to hybridize to a specific target nucleotide sequence under defined hybridization conditions. The reverse primer and extension primer are both present in the PCR reaction mixture, and so the reverse primer should be sufficiently long so that the melting temperature (Tm) is at least 50° C., but should not be so long that there is extensive overlap with the extension primer which may cause the formation of “primer dimers.” “Primer dimers” are formed when the reverse primer hybridizes to the extension primer, and uses the extension primer as a substrate for DNA synthesis, and the extension primer hybridizes to the reverse primer, and uses the reverse primer as a substrate for DNA synthesis. To avoid the formation of “primer dimers,” typically the reverse primer and the extension primer are designed so that they do not overlap with each other by more than 6 nucleotides. If it is not possible to make a reverse primer having a Tm of at least 50° C., and wherein the reverse primer and the extension primer do not overlap by more than 6 nucleotides, then it is preferable to lengthen the reverse primer (since Tm usually increases with increasing oligonucleotide length) and decrease the length of the extension primer.


The reverse primer primes the synthesis of a second DNA molecule that is complementary to the first DNA molecule. The universal forward primer hybridizes to the portion of the second DNA molecule that is complementary to the second portion of the extension primer which is incorporated into all of the first DNA molecules. The universal forward primer primes the synthesis of third DNA molecules. The universal forward primer typically has a length in the range of from 16 nucleotides to 100 nucleotides. In some embodiments, the universal forward primer has a length in the range of from 16 nucleotides to 30 nucleotides. The universal forward primer may include at least one locked nucleic acid molecule. In some embodiments, the universal forward primer includes from 1 to 25 locked nucleic acid molecules. The nucleic acid sequence of an exemplary universal forward primer is set forth in SEQ ID NO:13.


In general, the greater the number of amplification cycles during the polymerase chain reaction, the greater the amount of amplified DNA that is obtained. On the other hand, too many amplification cycles (e.g., more than 35 amplification cycles) may result in spurious and unintended amplification of non-target double-stranded DNA. Thus, in some embodiments, a desirable number of amplification cycles is between one and 45 amplification cycles, such as from one to 25 amplification cycles, or such as from five to 15 amplification cycles, or such as ten amplification cycles.


Use of LNA Molecules and Selection of Primer Hybridization Conditions. Hybridization conditions are selected that promote the specific hybridization of a primer molecule to the complementary sequence on a substrate molecule. With respect to the hybridization of a 12 nucleotide first portion of an extension primer to a microRNA, it has been found that specific hybridization occurs at a temperature of 50° C. Similarly, it has been found that hybridization of a 20 nucleotide universal forward primer to a complementary DNA molecule, and hybridization of a reverse primer (having a length in the range of from 12-20 nucleotides, such as from 14-16 nucleotides) to a complementary DNA molecule occurs at a temperature of 50° C. By way of example, it is often desirable to design extension, reverse and universal forward primers that each have a hybridization temperature in the range of from 50° C. to 60° C.


In some embodiments, LNA molecules can be incorporated into at least one of the extension primer, reverse primer, and universal forward primer to raise the Tm of one, or more, of the foregoing primers to at least 50° C. Incorporation of an LNA molecule into the portion of the reverse primer that hybridizes to the target first DNA molecule, but not to the extension primer, may be useful because this portion of the reverse primer is typically no more than 10 nucleotides in length. For example, the portion of the reverse primer that hybridizes to the target first DNA molecule, but not to the extension primer, may include at least one locked nucleic acid molecule (e.g., from 1 to 25 locked nucleic acid molecules). In some embodiments, two or three locked nucleic acid molecules are included within the first 8 nucleotides from the 5′ end of the reverse primer.


The number of LNA residues that must be incorporated into a specific primer to raise the Tm to a desired temperature mainly depends on the length of the primer and the nucleotide composition of the primer. A tool for determining the effect on Tm of one or more LNAs in a primer is available on the Internet Web site of Exiqon, Bygstubben 9, DK-2950 Vedbaek, Denmark.


Although one or more LNAs can be included in any of the primers used in the practice of the present invention, it has been found that the efficiency of synthesis of cDNA is low if an LNA is incorporated into the extension primer. While not wishing to be bound by theory, LNAs may inhibit the activity of reverse transcriptase.


Detecting and Measuring the Amount of the Amplified DNA Molecules. The amplified DNA molecules can be detected and quantitated by the presence of detectable marker molecules, such as fluorescent molecules. For example, the amplified DNA molecules can be detected and quantitated by the presence of a dye (e.g., SYBR green) that preferentially or exclusively binds to double stranded DNA during the PCR amplification step of the methods of the present invention. For example, Molecular Probes, Inc. (29851 Willow Creek Road, Eugene, Oreg. 97402) sells quantitative PCR reaction mixtures that include SYBR green dye. By way of further example, another dye (referred to as “BEBO”) that can be used to label double stranded DNA produced during real-time PCR is described by Bengtsson, M., et al., Nucleic Acids Research 31(8):e45 (Apr. 15, 2003), which publication is incorporated herein by reference. Again by way of example, a forward and/or reverse primer that includes a fluorophore and quencher can be used to prime the PCR amplification step of the methods of the present invention. The physical separation of the fluorophore and quencher that occurs after extension of the labeled primer during PCR permits the fluorophore to fluoresce, and the fluorescence can be used to measure the amount of the PCR amplification products. Examples of commercially available primers that include a fluorophore and quencher include Scorpion primers and Uniprimers, which are both sold by Molecular Probes, Inc.


Representative Uses of the Present Invention. The present invention is useful for producing cDNA molecules from microRNA target molecules. The amount of the DNA molecules can be measured which provides a measurement of the amount of target microRNA molecules in the starting material. For example, the methods of the present invention can be used to measure the amount of specific microRNA molecules (e.g., specific siRNA molecules) in living cells. Again by way of example, the present invention can be used to measure the amount of specific microRNA molecules (e.g., specific siRNA molecules) in different cell types in a living body, thereby producing an “atlas” of the distribution of specific microRNA molecules within the body. Again by way of example, the present invention can be used to measure changes in the amount of specific microRNA molecules (e.g., specific siRNA molecules) in response to a stimulus, such as in response to treatment of a population of living cells with a drug.


Thus, in another aspect, the present invention provides methods for measuring the amount of a target microRNA in a multiplicity of different cell types within a living organism (e.g., to make a microRNA “atlas” of the organism). The methods of this aspect of the invention each include the step of measuring the amount of a target microRNA molecule in a multiplicity of different cell types within a living organism, wherein the amount of the target microRNA molecule is measured by a method comprising the steps of: (1) using primer extension to make a DNA molecule complementary to the target microRNA molecule isolated from a cell type of a living organism; (2) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules, and (3) measuring the amount of the amplified DNA molecules. In some embodiments of the methods, at least one of the forward primer and the reverse primer comprises at least one locked nucleic acid molecule. The measured amounts of amplified DNA molecules can, for example, be stored in an interrogatable database in electronic form, such as on a computer-readable medium (e.g., a floppy disc).


In some embodiments, the methods may be used to discriminate between two or more mammalian target microRNA that have a similar sequence in a sample from a living organism, the method comprising the steps of: (a) producing a first DNA molecule that is complementary to the first microRNA molecule using a first extension primer specific to the first microRNA molecule; (b) amplifying the first DNA molecule to produce a first population of amplified DNA molecules using a universal forward primer and a first reverse primer; (c) producing a second DNA molecule that is complementary to the second microRNA molecule using a second extension primer specific to the second microRNA molecule; (d) amplifying the second DNA molecule to produce a second population of amplified DNA molecules using a universal forward primer and a second reverse primer; (e) measuring the amount of the first and second population of amplified DNA molecules, wherein the first and second extension primers or the first and second reverse primers differ by one or more nucleotides in the portion that is complementary to the target microRNA. This method may be used to discriminate between microRNA targets that differ by one, two, three or more nucleotides, by designing the gene-specific region of the first and second extension primers to hybridize to the region of the microRNA targets that are not identical.


In another aspect, the invention provides nucleic acid primer molecules consisting of sequence SEQ ID NO:1 to SEQ ID NO: 499, as shown in TABLE 1, TABLE 2, TABLE 6, and TABLE 7. The primer molecules of the invention can be used as primers for detecting mammalian microRNA target molecules, using the methods of the invention described herein.


In another aspect, the invention provides sets of nucleic acid primers consisting of SEQ ID NO:500 to SEQ ID NO: 965, as shown in TABLE 8. The sets of primer molecules of the invention can be used for the detection of microRNA target molecules from human, mouse, and rat, using the methods of the invention described herein.


In another aspect, the present invention provides kits for detecting at least one mammalian target microRNA, the kits comprising one or more primer sets specific for the detection of a target microRNA, each primer set comprising (1) an extension primer for producing a cDNA molecule complementary to a target microRNA, (2) a universal forward PCR primer, and (3) a reverse PCR primer for amplifying the cDNA molecule. The extension primer comprises a first portion that hybridizes to the target microRNA molecule and a second portion that includes a hybridization sequence for a universal forward PCR primer. The reverse PCR primer comprises a sequence selected to hybridize to a portion of the cDNA molecule. In some embodiments of the kits, at least one of the universal forward and reverse primers includes at least one locked nucleic acid molecule.


The extension primer, universal forward and reverse primers for inclusion in the kit may be designed to detect any mammalian target microRNA in accordance with the methods described herein. Nonlimiting examples of human target microRNA target molecules and exemplary target-specific extension primers and reverse primers are listed below in TABLE 1, TABLE 2, and TABLE 6. Nonlimiting examples of murine target microRNA target molecules and exemplary target-specific extension primers and reverse primers are listed below in TABLE 7. A nonlimiting example of a universal forward primer is set forth as SEQ ID NO: 13.


In certain embodiments, the kit includes a set of primers comprising an extension primer, reverse and universal forward primers for a selected target microRNA molecule that each have a hybridization temperature in the range of from 50° C. to 60° C.


In certain embodiments, the kit includes a plurality of primer sets that may be used to detect a plurality of mammalian microRNA targets, such as two microRNA targets up to several hundred microRNA targets.


In certain embodiments, the kit comprises one or more primer sets capable of detecting at least one or more of the following human microRNA target templates: of miR-1, miR-7, miR-9*, miR-10a, miR-10b, miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-18, miR-19a, miR-19b, miR-20, miR-21, miR-22, miR-23a, miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-28, miR-29a, miR-29b, miR-29c, miR-30a-5p, miR-30b, miR-30c, miR-30d, miR-30e-5p, miR-30e-3p, miR-31, miR-32, miR-33, miR-34a, miR-34b, miR-34c, miR-92, miR-93, miR-95, miR-96, miR-98, miR-99a, miR-99b, miR-100, miR-101, miR-103, miR-105, miR-106a, miR-107, miR-122, miR-122a, miR-124, miR-124, miR-124a, miR-125a, miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b, miR-129, miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134, miR-135a, miR-135b, miR-136, miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p, miR-143, miR-144, miR-145, miR-146, miR-147, miR-148a, miR-148b, miR-149, miR-150, miR-151, miR-152, miR-153, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-182*, miR-182, miR-183, miR-184, miR-185, miR-186, miR-187, miR-188, miR-189, miR-190, miR-191, miR-192, miR-193, miR-194, miR-195, miR-196a, miR-196b, miR-197, miR-198, miR-199a*, miR-199a, miR-199b, miR-200a, miR-200b, miR-200c, miR-202, miR-203, miR-204, miR-205, miR-206, miR-208, miR-210, miR-211, miR-212, miR-213, miR-213, miR-214, miR-215, miR-216, miR-217, miR-218, miR-220, miR-221, miR-222, miR-223, miR-224, miR-296, miR-299, miR-301, miR-302a*, miR-302a, miR-302b*, miR-302b, miR-302d, miR-302c*, miR-302c, miR-320, miR-323, miR-324-3p, miR-324-5p, miR-325, miR-326, miR-328, miR-330, miR-331, miR-337, miR-338, miR-339, miR-340, miR-342, miR-345, miR-346, miR-363, miR-367, miR-368, miR-370, miR-371, miR-372, miR-373*, miR-373, miR-374, miR-375, miR-376b, miR-378, miR-379, miR-380-5p, miR-380-3p, miR-381, miR-382, miR-383, miR-410, miR-412, miR-422a, miR-422b, miR-423, miR-424, miR-425, miR-429, miR-431, miR-448, miR-449, miR-450, miR-451, let7a, let7b, let7c, let7d, let7e, let7f, let7g, let7i, miR-376a, and miR-377. The sequences of the above-mentioned microRNA targets are provided in “the miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144, which is publically accessible on the World Wide Web at the Wellcome Trust Sanger Institute website at http://microrna.sanger.ac.uk/sequences/.


Exemplary primers for use in accordance with this embodiment of the kit are provided in TABLE 1, TABLE 2, and TABLE 6 below.


In another embodiment, the kit comprises one or more primer sets capable of detecting at least one or more of the following human microRNA target templates: miR-1, miR-7, miR-10b, miR-26a, miR-26b, miR-29a, miR-30e-3p, miR-95, miR-107, miR-141, miR-143, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-190, miR-193, miR-194, miR-195, miR-202, miR-206, miR-208, miR-212, miR-221, miR-222, miR-224, miR-296, miR-299, miR-302c*, miR-302c, miR-320, miR-339, miR363, miR-376b, miR379, miR410, miR412, miR424, miR429, miR431, miR449, miR451, let7a, let7b, let7c, let7d, let7e, let7f, let7g, and let7i. Exemplary primers for use in accordance with this embodiment of the kit are provided in TABLE 1, TABLE 2, and TABLE 6 below.


In another embodiment, the kit comprises one or more primer sets capable of detecting at least one or more of the following human, mouse or rat microRNA target templates: miR-1, miR-9, miR-18b, miR-20b, miR-92b, miR-146b, miR-181d, miR-193b, miR-194, miR-206, miR-291a-3p, miR-291b-3p, miR-301b, miR-329, miR-346, miR-351, miR-362, miR-362-3p, miR-369-5p, miR-384, miR-409-3p, miR-409-5p, miR-425-5p, miR-449b, miR-455, miR-483, miR-484, miR-485-3p, miR-485-5p, miR-486, miR-487b, miR-488, miR-489, miR-490, miR-491, miR-493-3p, miR-494, miR-495, miR-497, miR-499, miR-500, miR-501, miR-503, miR-505, miR-519a, miR-519b, miR-519c, miR-519d, miR-520a, miR-520b, miR-520d, miR-520e, miR-520f, miR-532, miR-539, miR-542-3p, miR-542-5p, miR-615, miR-652, miR-668, miR-671, miR-675-5p, miR-699, miR-721, and miR-758.


Exemplary primers for use in accordance with this embodiment of the kit are provided in TABLE 8.


In another embodiment, the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 2 to SEQ ID NO: 493, as shown in TABLE 1, TABLE 2, TABLE 6, and TABLE 7.


In another embodiment, the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 47, 48, 49, 50, 55, 56, 81, 82, 83, 84, 91, 92, 103, 104, 123, 124, 145, 146, 193, 194, 197, 198, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 239, 240, 247, 248, 253, 254, 255, 256, 257, 258, 277, 278, 285, 286, 287, 288, 293, 294, 301, 302, 309, 310, 311, 312, 315, 316, 317, 318, 319, 320, 333, 334, 335, 336, 337, 338, 359, 360, 369, 370, 389, 390, 393, 394, 405, 406, 407, 408, 415, 416, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 461 and 462, as shown in TABLE 6.


In another embodiment, the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 500 to SEQ ID NO: 965, as shown in TABLE 8.


A kit of the invention can also provide reagents for primer extension and amplification reactions. For example, in some embodiments, the kit may further include one or more of the following components: a reverse transcriptase enzyme, a DNA polymerase enzyme, a Tris buffer, a potassium salt (e.g., potassium chloride), a magnesium salt (e.g., magnesium chloride), a reducing agent (e.g., dithiothreitol), and deoxynucleoside triphosphates (dNTPs).


In various embodiments, the kit may include a detection reagent such as SYBR green dye or BEBO dye that preferentially or exclusively binds to double stranded DNA during a PCR amplification step. In other embodiments, the kit may include a forward and/or reverse primer that includes a fluorophore and quencher to measure the amount of the PCR amplification products.


The kit optionally includes instructions for using the kit in the detection and quantitation of one or more mammalian microRNA targets. The kit can also be optionally provided in a suitable housing that is preferably useful for robotic handling in a high throughput manner.


The following examples merely illustrate the best mode now contemplated for practicing the invention, but should not be construed to limit the invention.


EXAMPLE 1

This Example describes a representative method of the invention for producing DNA molecules from microRNA target molecules.


Primer extension was conducted as follows (using InVitrogen SuperScript III® reverse transcriptase and following the guidelines that were provided with the enzyme). The following reaction mixture was prepared on ice:

    • 1 μl of 10 mM dNTPs
    • 1 μl of 2 μM extension primer
    • 1-5 μl of target template
    • 4 μl of “5×cDNA buffer”
    • 1 μl of 0.1 M DTT
    • 1 μl of RNAse OUT
    • 1 μl of SuperScript III® enzyme
    • water to 20 μl


The mixture was incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, then cooled to room temperature and diluted 10-fold with TE (10 mM Tris, pH 7.6, 0.1 mM EDTA).


Real-time PCR was conducted using an ABI 7900 HTS detection system (Applied Biosystems, Foster City, Calif., U.S.A.) by monitoring SYBR® green fluorescence of double-stranded PCR amplicons as a function of PCR cycle number. A typical 10 μl PCR reaction mixture contained:

    • 5 μl of 2×SYBR® green master mix (ABI)
    • 0.8 μl of 10 μM universal forward primer
    • 0.8 μl of 10 μM reverse primer
    • 1.4 μl of water
    • 2.0 μl of target template (10-fold diluted RT reaction)


The reaction was monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products was measured.


The foregoing method was successfully used in eleven primer extension PCR assays for quantitation of endogenous microRNAs present in a sample of total RNA. The DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in these 11 assays are shown in TABLE 1.

TABLE 1SEQTargetPrimerPrimerIDmicroRNAnumberNameDNA sequence (5′ to 3′)NOgene-specific extension_primers1humanb let7a357let7aP4CATGATCAGCTGGGCCAAGAAACTATACAACCT2human miR-1337miR1P5CATGATCAGCTGGGCCAAGATACATACTTCT3human miR-15a344miR15aP3CATGATCAGCTGGGCCAAGACACAAACCATTATG4human miR-16351miR16P2CATGATCAGCTGGGCCAAGACGCCAATATTTACGT5human miR-21342miR21P6CATGATCAGCTGGGCCAAGATCAACATCAGT6human miR-24350miR24P5CATGATCAGCTGGGCCAAGACTGTTCCTGCTG7human miR-122222122-E5FCATGATCAGCTGGGCCAAGAACAAACACCATTGTCA8human miR-124226124-E5FCATGATCAGCTGGGCCAAGATGGCATTCACCGCGTG9human miR-143362miR143P5CATGATCAGCTGGGCCAAGATGAGCTACAGTG10human miR-145305miR145P2CATGATCAGCTGGGCCAAGAAAGGGATTCCTGGGAA11human miR-155367miR155P3CATGATCAGCTGGGCCAAGACCCCTATCACGAT12universal forward primer230E5FCATGATCAGCTGGGCCAAGA13RNA species-specific reverse primers2human let7a290miRlet7a-TG+AGGT+AGTAGGTTG141, 2, 3Rhuman miR-1285miR1-1, 2RTG+GAA+TG+TAAAGAAGTA15human miR-15a287miR15aRTAG+CAG+CACATAATG16human miR-16289miR16-1, 2RT+AGC+AGCACGTAAA17human miR-21286miR21RT+AG+CT+TATCAGACTGAT18human miR-24288miR24-1, 2RTGG+CTCAGTTCAGC19human miR-122234122LNART+G+GAG+TGTGACAA20human miR-124235124LNART+TAA+GGCACGCG21human miR-143291miR143RTG+AGA+TGAAGCACTG22human miR-145314miR145R2GT+CCAGTTTTCCCA23human miR-155293miR155RT+TAA+TG+CTAATCGTGA24
1- Universal forward primer binding sites are shown in italics. The overlap with the RNA-specific reverse primers are underlined.

2- LNA molecules are preceded by a “+” . Region of overlap of the reverse primers with the corresponding extension primers are underlined.


The assay was capable of detecting microRNA in a concentration range of from 2 nM to 20 fM. The assays were linear at least up to a concentration of 2 nM of synthetic microRNA (>1,000,000 copies/cell).


EXAMPLE 2

This Example describes the evaluation of the minimum sequence requirements for efficient primer-extension mediated cDNA synthesis using a series of extension primers for microRNA assays having gene specific regions that range in length from 12 to 3 base pairs.


Primer Extension Reactions. Primer extension was conducted using the target molecules miR-195 and miR-215 as follows. The target templates miR-195 and miR-215 were diluted to 1 nM RNA (100,000 copies/cell) in TE zero plus 100 ng/μl total yeast RNA. A no template control (NTC) was prepared with TE zero plus 100 ng/μl total yeast RNA.


The reverse transcriptase reactions were carried out as follows (using InVitrogen SuperScript III® reverse transcriptase and following the guidelines that were provided with the enzyme) using a series of extension primers for miR-195 (SEQ ID NO: 25-34) and a series of extension primers for miR-215 (SEQ ID NO: 35-44) the sequences of which are shown below in TABLE 2.


The following reaction mixtures were prepared on ice:


Set 1: No Template Control

    • 37.5 μl water
    • 12.5 μl of 10 mM dNTPs
    • 12.5 μl 0.1 mM DTT
    • 50 μl of “5×cDNA buffer”
    • 12.5 μl RNAse OUT
    • 12.5 μl Superscript III® reverse transcriptase enzyme
    • 12.5 μl 1 μg/μl Hela cell total RNA (Ambion)
    • plus 50 μl of 2 μM extension primer
    • plus 50 μl TEzero+yeast RNA


Set 2: Spike-in Template

    • 37.5 μl water
    • 12.5 μl of 10 mM dNTPs
    • 12.5 μl 0.1 mM DTT
    • 50 μl of “5×cDNA buffer”
    • 12.5 μl RNAse OUT
    • 12.5 μl Superscript III® reverse transcriptase enzyme (InVitrogen)
    • 12.5 μl 1 μg/μl Hela cell total RNA (Ambion)
    • plus 50 μl of 2 μM extension primer
    • plus 50 μl 1 nM RNA target template (miR-195 or miR-215)
    • serially diluted in 10-fold increments


The reactions were incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, and cooled to 4° C. and diluted 10-fold with TE (10 mM Tris, pH 7.6, 0.1 mM EDTA).


Quantitative Real-Time PCR Reactions. Following reverse transcription, quadruplicate measurements of cDNA were made by quantitative real-time (qPCR) using an ABI 7900 HTS detection system (Applied Biosystems, Foster City, Calif., U.S.A.) by monitoring SYBR® green fluorescence of double-stranded PCR amplicons as a function of PCR cycle number. The following reaction mixture was prepared:

    • 5 μl of 2×SYBR green master mix (ABI)
    • 0.8 μl of 10 μM universal forward primer (SEQ ID NO: 13)
    • 0.8 μl of 10 μM reverse primer (miR-195RP:SEQ ID NO: 45 or
    • miR215RP: SEQ ID NO: 46)
    • 1.4 μl of water
    • 2.0 μl of target template (10-fold diluted miR-195 or miR-215
    • RT reaction)


Quantitative real-time PCR was performed for each sample in quadruplicate, using the manufacturer's recommended conditions. The reactions were monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products were measured and disassociation curves were generated. The DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in the miR-195 and miR-215 assays are shown below in TABLE 2. The assay results for miR-195 are shown below in TABLE 3 and the assay results for miR-215 are shown below in TABLE 4.

TABLE 2SEQTargetPrimerPrimerIDmicroRNAnumberNameDNA sequence (5′ to 3′)NOgene-specific extension primers1miR-195646mir195-GS1CATGATCAGCTGGGCCAAGAGCCAATATTTCT25miR-195647mir195-GS2CATGATCAGCTGGGCCAAGAGCCAATATTTC26miR-195648mir195-GS3CATGATCAGCTGGGCCAAGAGCCAATATTT27miR-195649mir195-GS4CATGATCAGCTGGGCCAAGAGCCAATATT28miR-195650mir195-GS5CATGATCAGCTGGGCCAAGAGCCAATAT29miR-195651mir195-GS6CATGATCAGCTGGGCCAAGAGCCAATA30miR-195652mir195-GS7CATGATCAGCTGGGCCAAGAGCCAAT31miR-195653mir195-GS8CATGATCAGCTGGGCCAAGAGCCAA32miR-195654mir195-GS9CATGATCAGCTGGGCCAAGAGCCA33miR-195655mir195-GS10CATGATCAGCTGGGCCAAGAGCC34miR-215656mir215-GS1CATGATCAGCTGGGCCAAGAGTCTGTCAATTC35miR-215657mir215-GS2CATGATCAGCTGGGCCAAGAGTCTGTCAATT36miR-215658mir215-GS3CATGATCAGCTGGGCCAAGAGTCTGTCAAT37miR-215659mir215-GS4CATGATCAGCTGGGCCAAGAGTCTGTCAA38miR-215660mir215-GS5CATGATCAGCTGGGCCAAGAGTCTGTCA39miR-215661mir215-GS6CATGATCAGCTGGGCCAAGAGTCTGTC40miR-215662mir215-GS7CATGATCAGCTGGGCCAAGAGTCTGT41miR-215663mir215-GS8CATGATCAGCTGGGCCAAGAGTCTG42miR-215664mir215-GS9CATGATCAGCTGGGCCAAGAGTCT43miR-215665mir215-GS10CATGATCAGCTGGGCCAAGAGTC44RNA species-specific reverse primers2miR-195442mir195RPT+AGC+AGCACAGAAAT45miR-215446mir215RPA+T+GA+CCTATGAATTG146
1- Universal forward primer binding sites are shown in italics.

2- The “+” symbol precedes the LNA molecules.


Results:


The sensitivity of each assay was measured by the cycle threshold (Ct) value which is defined as the cycle count at which fluorescence was detected in an assay containing microRNA target template. The lower this Ct value (e.g. the fewer number of cycles), the more sensitive was the assay. For microRNA samples, it was generally observed that while samples that contain template and no template controls both eventually cross the detection threshold, the samples with template do so at a much lower cycle number. The ΔCt value is the difference between the number of cycles (Ct) between template containing samples and no template controls, and serves as a measure of the dynamic range of the assay. Assays with a high dynamic range allow measurements of very low microRNA copy numbers. Accordingly, desirable characteristics of a microRNA detection assay include high sensitivity (low Ct value) and broad dynamic range (ΔCt≧12) between the signal of a sample containing target template and a no template background control sample.


The results of the miR195 and miR215 assays using extension primers having a gene specific portion ranging in size from 12 nucleotides to 3 nucleotides are shown below in TABLE 3 and TABLE 4, respectively. The results of these experiments unexpectedly demonstrate that gene-specific priming sequences as short as 3 nucleotides exhibit template specific priming. For both the miR-195 assay sets (shown in TABLE 3) and the miR-215 assay sets (shown in TABLE 4), the results demonstrate that the dynamic range (ΔCt) for both sets of assays are fairly consistent for extension primers having gene specific regions that are greater or equal to 8 nucleotides in length. The dynamic range of the assay (ΔCt) begins to decrease for extension primers having gene specific regions below 8 nucleotides, with a reduction in assay specificity below 7 nucleotides in the miR-195 assays, and below 6 nucleotides in the miR-215 assays. A melting point analysis of the miR-215 samples demonstrated that even at 3 nucleotides, there is specific PCR product present in the plus template samples (data not shown). Taken together, these data demonstrate that the gene specific region of extension primers is ideally ≧8 nucleotides, but can be as short as 3 nucleotides in length.

TABLE 3MIR195 ASSAY RESULTSCt: No TemplateGS Primer LengthControlCt: Plus TemplateΔ Ct1234.8320.0014.821234.1919.914.31140.019.820.21036.4521.215.2936.4022.214.2840.023.7316.27736.7025.9610.73630.9526.584.37530.9831.71−0.732432.9233.28−0.364335.9835.38−0.605
Ct = the cycle count where the fluorescence exceeds the threshold of detection.

ΔCt = the difference between the Ct value with template and no template.









TABLE 4










MIR215 ASSAY RESULTS











Ct: No Template




GS Primer Length
Control
Ct: Plus Template
Δ Ct













12
33.4
13.57
19.83


12
33.93
14.15
19.77


11
35.51
15.76
19.75


10
35.33
15.49
19.84


9
36.02
16.84
19.18


8
35.79
17.07
18.72


7
32.29
17.58
14.71


6
34.38
20.62
13.75


5
34.41
28.65
5.75


4
36.36
33.92
2.44


3
35.09
33.38
1.70







Ct = the cycle count where the fluorescence exceeds the threshold of detection.





ΔCt = the difference between the Ct value with template and no template.







EXAMPLE 3

This Example describes assays and primer sets designed for quantitative analysis of human microRNA expression patterns.


Primer Design:


microRNA target templates: the sequence of the target templates as described herein are publically available accessible on the World Wide Web at the Wellcome Trust Sanger Institute Web site in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144.


Extension primers: gene specific primers for primer extension of a microRNA to form a cDNA followed by quantitative PCR (qPCR) amplification were designed to (1) convert the RNA template into cDNA; (2) to introduce a “universal” PCR binding site (SEQ ID NO:1) to one end of the cDNA molecule; and (3) to extend the length of the cDNA to facilitate subsequent monitoring by qPCR.


Reverse primers: unmodified reverse primers and locked nucleic acid (LNA) containing reverse primers (RP) were designed to quantify the primer-extended, full length cDNA in combination with a generic universal forward primer (SEQ ID NO:13). For the locked nucleic acid containing reverse primers, two or three LNA modified bases were substituted within the first 8 nucleotides from the 5′ end of the reverse primer oligonucleotide, as shown below in the exemplary reverse primer sequences provided in TABLE 6. The LNA base substitutions were selected to raise the predicted Tm of the primer by the highest amount, and the final predicted Tm of the selected primers were specified to be preferably less than or equal to 55° C.


An example describing an assay utilizing an exemplary set of primers the detection of miR-95 and miR-424 is described below.


Primer Extension Reactions: primer extension was conducted using DNA templates corresponding to miR-95 and miR-424 as follows. The DNA templates were diluted to 0 nM, 1 nM, 100 pM, 10 pM, and 1 pM dilutions in TE zero (10 mM Tris pH 7.6, 0.1 mM EDTA) plus 100 ng/μl yeast total RNA (Ambion, Austin, Tex.).


The reverse transcriptase reactions were carried out using the following primers:

Extension primers: (diluted to 500 nM)miR-95GSP(SEQ ID NO:123)CATGATCAGCTGGGCCAAGATGCTCAATAAmiR-424GSP(SEQ ID NO:415)CATGATCAGCTGGGCCAAGATTCAAAACAT
















Reverse primers: (diluted to 10 mM)




miR-95_RP4



(SEQ ID NO:124)



TT+CAAC+GGGTATTTATTGA







miR-424RP2



(SEQ ID NO:416)



C+AG+CAGCAATTCATGTTTT






Reverse Transcription (Per Reaction):


2 μl water


2 μl of “5×cDNA buffer” (InVitrogen, Carlsbad, Calif.)


0.5 μl of 0.1 mM DTT (InVitrogen, Carlsbad, Calif.)


0.5 μl of 10 mM dNTPs (InVitrogen, Carlsbad, Calif.)


0.5 μl RNAse OUT (InVitrogen, Carlsbad, Calif.)


0.5 μl Superscript III® reverse transcriptase enzyme (InVitrogen, Carlsbad, Calif.)


2 μl of extension primer plus 2 μl of template dilution


The reactions were mixed and incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, and cooled to 4° C. and diluted 10-fold with TE zero.


Quantitative Real-Time PCR Reactions (Per Reaction):

    • 5 μl 2×SYBR mix (Applied Biosystems, Foster City, Calif.)
    • 1.4 μl water
    • 0.8 μl universal primer (CATGATCAGCTGGGCCAAGA (SEQ ID NO: 13))
    • 2.0 μl of diluted reverse transcription (RT) product from above.


Quantitative real-time PCR was performed for each sample in quadruplicate, using the manufacturer's recommended conditions. The reactions were monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products were measured and disassociation curves were generated. The DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in the representative miR-95 and miR-424 assays as well as primer sets for 212 different human microRNA templates are shown below in TABLE 6. Primer sets for assays requiring extensive testing and design modification to achieve a sensitive assay with a high dynamic range are indicated in TABLE 6 with the symbol # following the primer name.


Results:


TABLE 5 shows the Ct values (averaged from four samples) from the miR-95 and miR-424 assays, which are plotted in the graph shown in FIG. 2. The results of these assays are provided as representative examples in order to explain the significance of the assay parameters shown in TABLE 6 designated as slope (column 6), intercept (column 7) and background (column 8).


As shown in TABLE 5, the Ct value for each template at various concentrations is provided. The Ct values (x-axis) are plotted as a function of template concentration (y-axis) to generate a standard curve for each assay, as shown in FIG. 2. The slope and intercept define the assay measurement characteristics that permit an estimation of number of copies/cell for each microRNA. For example, when the Ct values for 50 μg total RNA input for the miR-95 assay are plotted, a standard curve is generated with a slope and intercept of −0.03569 and 9.655, respectively. When these standard curve parameters are applied to the Ct of an unknown sample (x), they yield log 10 (copies/20 pg total RNA) (y). Because the average cell yields 20 pg of total RNA, these measurements equate to copies of microRNA/cell. The background provides an estimate of the minimum copy number that can be measured in a sample and is computed by inserting the no template control (NTC) value into this equation. In this example, as shown in TABLE 6, miR-95 yields a background of 1.68 copies/20 pg at 50 pg of RNA input.


As further shown in TABLE 6, reverse primers that do not contain LNA may also be used in accordance with the methods of the invention. See, e.g., SEQ ID NO:494-499. The sensitivity and dynamic range of the assays using non-LNA containing reverse primers SEQ ID NO:494-499, yielded similar results to the corresponding assays using LNA-containing reverse primers.

TABLE 5Ct Values (averaged from four samples)Template concentration10 nM1 nM0.1 nM0.01 nM0.001 nMNTCcopies/20 pg500,00050,000500050050RNA (50 μg input)copies/20 pg5,000,000500,00050,0005000500RNA (5 μg input)miR-9511.7157216314.1797817.4635319.9725923.3317127.44383miR-42410.4770897512.7680615.6925118.5372921.5689723.2813log 10 (copies5.6989700044.698973.698972.698971.69897for 50 μg input)









TABLE 6










PRIMERS TO DETECT HUMAN MICRORNA TARGET TEMPLATES








Human











Target
Reverse
Background















micro
Extension

Primer



RNA input















RNA
Primer Name
Extension Primer Sequence
Name
Reverse Primer Sequence
Slope
Intercept
50 ug
5 ug



















miR-1
miR1GSP10#
CATGATCAGCTGGGCCAAGATACATACTTC
miR-1RP#
T+G+GAA+TG+TAAAGAAGT
−0.2758
8.3225
2.44
24.36





SEQ ID NO:47

SEQ ID NO:48





miR-7
miR-7GSP10#
CATGATCAGCTGGGCCAAGACAACAAAATC
miR-7_RP6#
T+GGAA+GACTAGTGATTTT
−0.2982
10.435
11.70
116.99




SEQ ID NO:49

SEQ ID NO:50





miR-9*
miR-9*GSP
CATGATCAGCTGGGCCAAGAACTTTCGGTT
miR-9*RP
TAAA+GCT+AGATAACCG
−0.2405
8.9145
3.71
37.15




SEQ ID NO:51

SEQ ID NO:52





miR-10a
miR-10aGSP
CATGATCAGCTGGGCCAAGACACAAATTCG
miR-10aRP
T+AC+CCTGTAGATCCG
−0.2755
8.6976
0.09
0.94




SEQ ID NO:53

SEQ ID NO:54





miR-10b
miR-10b_GSP11#
CATGATCAGCTGGGCCAAGAACAAATTCGGT
miR-10b_RP2#
TA+CCC+TGT+AGAACCGA
−0.3505
8.7109
0.55
5.52




SEQ ID NO:55

SEQ ID NO:56





miR-15a
miR-15aGSP
CATGATCAGCTGGGCCAAGACACAAACCAT
miR-15aRP
T+AG+CAGCACATAATG
−0.2831
8.4519
4.40
44.01




SEQ ID NO:57

SEQ ID NO:58





miR-15b
miR-15bGSP2
CATGATCAGCTGGGCCAAGATGTAAACCA
miR-15bRP
T+AG+CAGCACATCAT
−0.2903
8.4206
0.18
1.84




SEQ ID NO:59

SEQ ID NO:60





miR-16
miR-16GSP2
CATGATCAGCTGGGCCAAGACGCCAATAT
miR-16RP
T+AG+CAGCACGTAAA
−0.2542
9.3689
1.64
16.42




SEQ ID NO:61

SEQ ID NO:62





miR-17-3p
miR-17-3pGSP
CATGATCAGCTGGGCCAAGAACAAGTGCCT
miR-17-3pRP
A+CT+GCAGTGAAGGC
−0.2972
8.2625
1.08
10.78




SEQ ID NO:63

SEQ ID NO:64





miR-17-5p
miR-17-5pGSP2
CATGATCAGCTGGGCCAAGAACTACCTGC
miR-17-5pRP
C+AA+AGTGCTTACAGTG
−0.2956
7.9101
0.13
1.32




SEQ ID NO:65

SEQ ID NO:66





miR-19a
miR-19aGSP2
CATGATCAGCTGGGCCAAGATCAGTTTTG
miR-19aRP
TG+TG+CAAATCTATGC
−0.2984
9.461
0.02
0.23




SEQ ID NO:67

SEQ ID NO:68





miR-19b
miR-19bGSP
CATGATCAGCTGGGCCAAGATCAGTTTTGC
miR-19bRP
TG+TG+CAAATCCATG
−0.294
8.1434
2.26
22.55




SEQ ID NO:69

SEQ ID NO:70





miR-20
miR-20GSP3
CATGATCAGCTGGGCCAAGACTACCTGC
miR-20RP
T+AA+AGTGCTTATAGTGCA
−0.2979
7.9929
0.16
1.60




SEQ ID NO:71

SEQ ID NO:72





miR-21
miR-21GSP2
CATGATCAGCTGGGCCAAGATCAACATCA
miR-21RP
T+AG+CTTATCAGACTGATG
−0.2849
8.1624
1.80
17.99




SEQ ID NO:73

SEQ ID NO:74





miR-23a
miR-23aGSP
CATGATCAGCTGGGCCAAGAGGAAATCCCT
miR-23aRP
A+TC+ACATTGCCAGG
−0.3172
9.4253
2.41
24.08




SEQ ID NO:75

SEQ ID NO:76





miR-23b
miR-23bGSP
CATGATCAGCTGGGCCAAGAGGTAATCCCT
miR-23bRP
A+TC+ACATTGCCAGG
−0.2944
9.0985
5.39
53.85




SEQ ID NO:77

SEQ ID NO:78





miR-25
miR-25GSP
CATGATCAGCTGGGCCAAGATCAGACCGAG
miR-25RP
C+AT+TGCACTTGTCTC
−0.3009
8.2482
1.52
15.19




SEQ ID NO:79

SEQ ID NO:80





miR-26a
miR-26aGSP9#
CATGATCAGCTGGGCCAAGAGCCTATCCT
miR-26aRP2#
TT+CA+AGTAATCCAGGAT
−0.2807
8.558
0.26
2.56




SEQ ID NO:81

SEQ ID NO:82





miR-26b
miR-26bGSP9#
CATGATCAGCTGGGCCAAGAAACCTATCC
miR-26bRP2#
TT+CA+AGT+AATTCAGGAT
−0.2831
8.7885
0.37
3.67




SEQ ID NO:83

SEQ ID NO:84





miR-27a
miR-27aGSP
CATGATCAGCTGGGCCAAGAGCGGAACTTA
miR-27aRP
TT+CA+CAGTGGCTAA
−0.2765
9.5239
5.15
51.51




SEQ ID NO:85

SEQ ID NO:86





miR-27b
miR-27bGSP
CATGATCAGCTGGGCCAAGAGCAGAACTTA
miR-27bRP
TT+CA+CAGTGGCTAA
−0.28
9.5483
5.97
59.71




SEQ ID NO:87

SEQ ID NO:88





miR-28
miR-28GSP
CATGATCAGCTGGGCCAAGACTCAATAGAC
miR-28RP
A+AG+GAGCTCACAGT
−0.3226
10.071
7.19
71.87




SEQ ID NO:89

SEQ ID NO:90





miR-29a
miR-29aGSP8#
CATGATCAGCTGGGCCAAGAAACCGATT
miR-29aRP2#
T+AG+CACCATCTGAAAT
−0.29
8.8731
0.04
0.38




SEQ ID NO:91

SEQ ID NO:92





miR-29b
miR-29bGSP2
CATGATCAGCTGGGCCAAGAAACACTGAT
miR-29bRP2
T+AG+CACCATTTGAAATCAG
−0.3162
9.6276
3.56
35.57




SEQ ID NO:93

SEQ ID NO:94





miR-30a-5p
miR-30a-5pGSP
CATGATCAGCTGGGCCAAGACTTCCAGTCG
miR-30a-5pRP
T+GT+AAACATCCTCGAC
−0.2772
9.0694
1.92
19.16




SEQ ID NO:95

SEQ ID NO:96





miR-30b
miR-30bGSP
CATGATCAGCTGGGCCAAGAAGCTGAGTGT
miR-30bRP
TGT+AAA+CATCCTACACT
−0.2621
8.5974
0.11
1.13




SEQ ID NO:97

SEQ ID NO:98





miR-30c
miR-30cGSP
CATGATCAGCTGGGCCAAGAGCTGAGAGTG
miR-30cRP
TGT+AAA+CATCCTACACT
−0.2703
8.699
0.15
1.48




SEQ ID NO:99

SEQ ID NO:100





miR-30d
miR-30dGSP
CATGATCAGCTGGGCCAAGACTTCCAGTCG
miR-30dRP
T+GTAAA+CATCCCCG
−0.2506
9.3875
0.23
2.31




SEQ ID NO:101

SEQ ID NO:102





miR-30e-3p
miR-30e-GSP9#
CATGATCAGCTGGGCCAAGAGCTGTAAAC
miR-30e-3pRP5#
CTTT+CAGT+CGGATGTTT
−0.325
11.144
6.37
63.70




SEQ ID NO:103

SEQ ID NO:104





miR-30e-5p
miR-30e-5pGSP
CATGATCAGCTGGGCCAAGATCCAGTCAAG
miR-30e-5pRP
TG+TAAA+CATCCTTGAC
−0.2732
8.1604
8.50
85.03




SEQ ID NO:105

SEQ ID NO:106





miR-31
miR-31GSP
CATGATCAGCTGGGCCAAGACAGCTATGCC
miR-31RP
G+GC+AAGATGCTGGC
−0.3068
8.2605
3.74
37.43




SEQ ID NO:107

SEQ ID NO:108





miR-32
miR-32GSP
CATGATCAGCTGGGCCAAGAGCAACTTAGT
miR-32RP
TATTG+CA+CATTACTAAG
−0.2785
8.9581
0.39
3.93




SEQ ID NO:109

SEQ ID NO:110





miR-33
miR-33GSP2
CATGATCAGCTGGGCCAAGACAATGCAAC
miR-33RP
G+TG+CATTGTAGTTGC
−0.3031
8.42
2.81
28.14




SEQ ID NO:111

SEQ ID NO:112





miR-34a
miR-34aGSP
CATGATCAGCTGGGCCAAGAAACAACCAGC
miR-34aRP
T+GG+CAGTGTCTTAG
−0.3062
9.1522
2.40
23.99




SEQ ID NO:113

SEQ ID NO:114





miR-34b
miR-34bGSP
CATGATCAGCTGGGCCAAGACAATCAGCTA
miR-34bRP
TA+GG+CAGTGTCATT
−0.3208
9.054
0.04
0.37




SEQ ID NO:115

SEQ ID NO:116





miR-34c
miR-34cGSP
CATGATCAGCTGGGCCAAGAGCAATCAGCT
miR-34cRP
A+GG+CAGTGTAGTTA
−0.2995
10.14
1.08
10.83




SEQ ID NO:117

SEQ ID NO:118





miR-92
miR-92GSP
CATGATCAGCTGGGCCAAGACAGGCCGGGA
miR-92RP
T+AT+TGCACTTGTCCC
−0.3012
8.6908
8.92
89.17




SEQ ID NO:119

SEQ ID NO:120





miR-93
miR-93GSP
CATGATCAGCTGGGCCAAGACTACCTGCAC
miR-93RP
AA+AG+TGCTGTTCGT
−0.3025
7.9933
4.63
46.30




SEQ ID NO:121

SEQ ID NO:122





miR-95
miR_95GSP#
CATGATCAGCTGGGCCAAGATGCTCAATAA
miR-95_RP4#
TT+CAAC+GGGTATTTATTGA
−0.3436
9.655
1.68
16.80




SEQ ID NO:123

SEQ ID NO:124





miR-96
miR-96GSP
CATGATCAGCTGGGCCAAGAGCAAAAATGT
miR-96RP
T+TT+GGCACTAGCAC
−0.2968
9.2611
0.00
0.05




SEQ ID NO:125

SEQ ID NO:126





miR-98
miR-98GSP
CATGATCAGCTGGGCCAAGAAACAATACAA
miR-98RP
TGA+GGT+AGTAAGTTG
−0.2797
9.5654
1.05
10.48




SEQ ID NO:127

SEQ ID NO:128





miR-99a
miR-99aGSP
CATGATCAGCTGGGCCAAGACACAAGATCG
miR-99aRP
A+AC+CCGTAGATCCG
−0.2768
8.781
0.21
2.08




SEQ ID NO:129

SEQ ID NO:130





miR-99b
miR-99bGSP
CATGATCAGCTGGGCCAAGACGCAAGGTCG
miR-99bRP
C+AC+CCGTAGAACCG
−0.2747
7.9855
0.25
2.53




SEQ ID NO:131

SEQ ID NO:132





miR-100
miR-100GSP
CATGATCAGCTGGGCCAAGACACAAGTTCG
miR-100RP
A+AC+CCGTAGATCCG
−0.2902
8.669
0.04
0.35




SEQ ID NO:133

SEQ ID NO:134





miR-101
miR-101GSP
CATGATCAGCTGGGCCAAGACTTCAGTTAT
miR-101RP
TA+CAG+TACTGTGATAACT
−0.3023
8.2976
0.46
4.63




SEQ ID NO:135

SEQ ID NO:136





miR-103
miR-103GSP
CATGATCAGCTGGGCCAAGATCATAGCCCT
miR-103RP
A+GC+AGCATTGTACA
−0.3107
8.5776
0.02
0.21




SEQ ID NO:137

SEQ ID NO:138





miR-105
miR-105GSP
CATGATCAGCTGGGCCAAGAACAGGAGTCT
miR-105RP
T+CAAA+TGCTCAGACT
−0.2667
8.9832
0.93
9.28




SEQ ID NO:139

SEQ ID NO:140





miR-106a
miR-106aGSP
CATGATCAGCTGGGCCAAGAGCTACCTGCA
miR-106aRP
AAA+AG+TGCTTACAGTG
−0.3107
8.358
0.03
0.31




SEQ ID NO:141

SEQ ID NO:142





miR-106b
miR-106bGSP
CATGATCAGCTGGGCCAAGAATCTGCACTG
miR-106bRP
T+AAAG+TGCTGACAGT
−0.2978
8.7838
0.10
1.04




SEQ ID NO:143

SEQ ID NO:144





miR-107
miR-107GSP8#
CATGATCAGCTGGGCCAAGATGATAGCC
miR-107RP2#
A+GC+AGCATTGTACAG
−0.304
9.1666
0.34
3.41




SEQ ID NO:145

SEQ ID NO:146





miR-122a
miR-122aGSP
CATGATCAGCTGGGCCAAGAACAAACACCA
miR-122aRP
T+GG+AGTGTGACAAT
−0.3016
8.1479
0.06
0.58




SEQ ID NO:147

SEQ ID NO:148





miR-124a
miR-124aGSP
CATGATCAGCTGGGCCAAGATGGCATTCAC
miR-124aRP
T+TA+AGGCACGCGGT
−0.3013
8.6906
0.56
5.63




SEQ ID NO:149

SEQ ID NO:150





miR-125a
miR-125aGSP
CATGATCAGCTGGGCCAAGACACAGGTTAA
miR-125aRP
T+CC+CTGAGACCCTT
−0.2938
8.6754
0.09
0.91




SEQ ID NO:151

SEQ ID NO:152





miR-125b
miR-125bGSP
CATGATCAGCTGGGCCAAGATCACAAGTTA
miR-125bRP
T+CC+CTGAGACCCTA
−0.283
8.1251
0.20
1.99




SEQ ID NO:153

SEQ ID NO:154





miR-126
miR-126GSP
CATGATCAGCTGGGCCAAGAGCATTATTAC
miR-126RP
T+CG+TACCGTGAGTA
−0.26
8.937
0.18
1.80




SEQ ID NO:155

SEQ ID NO:156





miR-126*
miR-126*GSP3
CATGATCAGCTGGGCCAAGACGCGTACC
miR-126*RP
C+ATT+ATTA+CTTTTGGTACG
−0.2969
8.184
3.58
35.78




SEQ ID NO:157

SEQ ID NO:158





miR-127
miR-127GSP
CATGATCAGCTGGGCCAAGAAGCCAAGCTC
miR-127RP
T+CG+GATCCGTCTGA
−0.2432
9.1013
1.11
11.13




SEQ ID NO:159

SEQ ID NO:160





miR-128a
miR-128aGSP
CATGATCAGCTGGGCCAAGAAAAAGAGACC
miR-128aRP
T+CA+CAGTGAACCGG
−0.2866
8.0867
0.16
1.60




SEQ ID NO:161

SEQ ID NO:162





miR-128b
miR-128bGSP
CATGATCAGCTGGGCCAAGAGAAAGAGACC
miR-128bRP
T+CA+CAGTGAACCGG
−0.2923
8.0608
0.07
0.74




SEQ ID NO:163

SEQ ID NO:164





miR-129
miR-129GSP
CATGATCAGCTGGGCCAAGAGCAAGCCCAG
miR-129RP
CTTTT+TG+CGGTCTG
−0.2942
9.7731
0.88
8.85




SEQ ID NO:165

SEQ ID NO:166





miR-130a
miR-130aGSP
CATGATCAGCTGGGCCAAGAATGCCCTTTT
miR-130aRP
C+AG+TGCAATGTTAAAAG
−0.2943
8.7465
1.28
12.78




SEQ ID NO:167

SEQ ID NO:168





miR-130b
miR-130bGSP
CATGATCAGCTGGGCCAAGAATGCCCTTTC
miR-130bRP
C+AG+TGCAATGATGA
−0.2377
9.1403
3.14
31.44




SEQ ID NO:169

SEQ ID NO:170





miR-132
miR-132GSP
CATGATCAGCTGGGCCAAGACGACCATGGC
miR-132RP
T+AA+CAGTCTACAGCC
−0.2948
8.1167
0.11
1.13




SEQ ID NO:171

SEQ ID NO:172





miR-133a
miR-133aGSP
CATGATCAGCTGGGCCAAGAACAGCTGGTT
miR-133aRP
T+TG+GTCCCCTTCAA
−0.295
9.3679
0.10
1.04




SEQ ID NO:173

SEQ ID NO:174





miR-133b
miR-133bGSP
CATGATCAGCTGGGCCAAGATAGCTGGTTG
miR-133bRP
T+TG+GTCCCCTTCAA
−0.3062
8.3649
0.02
0.18




SEQ ID NO:175

SEQ ID NO:176





miR-134
miR-134GSP
CATGATCAGCTGGGCCAAGACCCTCTGGTC
miR-134RP
T+GT+GACTGGTTGAC
−0.2965
9.0483
0.14
1.39




SEQ ID NO:177

SEQ ID NO:178





miR-135a
miR-135aGSP
CATGATCAGCTGGGCCAAGATCACATAGGA
miR-135aRP
T+AT+GGCTTTTTATTCCT
−0.2914
8.092
1.75
17.50




SEQ ID NO:179

SEQ ID NO:180





miR-135b
miR-135bGSP
CATGATCAGCTGGGCCAAGACACATAGGAA
miR-135bRP
T+AT+GGCTTTTCATTCC
−0.2962
7.8986
0.05
0.49




SEQ ID NO:181

SEQ ID NO:182





miR-136
miR-136GSP
CATGATCAGCTGGGCCAAGATCCATCATCA
miR-136RP
A+CT+CCATTTGTTTTGATG
−0.3616
10.229
0.68
6.77




SEQ ID NO:183

SEQ ID NO:184





miR-137
miR-137GSP
CATGATCAGCTGGGCCAAGACTACGCGTAT
miR-137RP
T+AT+TGCTTAAGAATACGC
−0.2876
8.234
8.57
85.71




SEQ ID NO:185

SEQ ID NO:186





miR-138
miR-138GSP2
CATGATCAGCTGGGCCAAGACGGCCTGAT
miR-138RP
A+GC+TGGTGTTGTGA
−0.3023
9.0814
0.22
2.19




SEQ ID NO:187

SEQ ID NO:188





miR-139
miR-139GSP
CATGATCAGCTGGGCCAAGAAGACACGTGC
miR-139RP
T+CT+ACAGTGCACGT
−0.2983
8.1141
6.92
69.21




SEQ ID NO:189

SEQ ID NO:190





miR-140
miR-140GSP
CATGATCAGCTGGGCCAAGACTACCATAGG
miR-140RP
A+GT+GGTTTTACCCT
−0.2312
8.3231
0.13
1.34




SEQ ID NO:191

SEQ ID NO:192





miR-141
miR-141GSP9#
CATGATCAGCTGGGCCAAGACCATCTTTA
miR-141RP2#
TAA+CAC+TGTCTGGTAA
−0.2805
9.6671
0.13
1.26




SEQ ID NO:193

SEQ ID NO:194





miR-142-3p
miR-142-3pGSP3
CATGATCAGCTGGGCCAAGATCCATAAA
miR-142-3pRP
TGT+AG+TGTTTCCTACT
−0.2976
8.4046
0.03
0.27




SEQ ID NO:195

SEQ ID NO:196





miR-143
miR-143GSP8#
CATGATCAGCTGGGCCAAGATGAGCTAC
miR-143RP2#
T+GA+GATGAAGCACTG
−0.3008
9.2675
0.37
3.71




SEQ ID NO:197

SEQ ID NO:198





miR-144
miR-144GSP2
CATGATCAGCTGGGCCAAGACTAGTACAT
miR-144RP
TA+CA+GTAT+AGATGATG
−0.2407
9.4441
0.95
9.52




SEQ ID NO:199

SEQ ID NO:200





miR-145
miR-145GSP2
CATGATCAGCTGGGCCAAGAAAGGGATTC
miR-145RP
G+TC+CAGTTTTCCCA
−0.2937
8.0791
0.39
3.86




SEQ ID NO:201

SEQ ID NO:202





miR-146
miR-146GSP3
CATGATCAGCTGGGCCAAGAAACCCATG
miR-146RP
T+GA+GAACTGAATTCCA
−0.2861
8.8246
0.08
0.75




SEQ ID NO:203

SEQ ID NO:204





miR-147
miR-147GSP
CATGATCAGCTGGGCCAAGAGCAGAAGCAT
miR-147RP
G+TG+TGTGGAAATGC
−0.2989
8.8866
1.65
16.47




SEQ ID NO:205

SEQ ID NO:206





miR-148a
miR-148aGSP2
CATGATCAGCTGGGCCAAGAACAAAGTTC
miR-148aRP2
T+CA+GTGCACTACAGAACT
−0.2928
9.4654
1.27
12.65




SEQ ID NO:207

SEQ ID NO:208





miR-148b
miR-148bGSP2
CATGATCAGCTGGGCCAAGAACAAAGTTC
miR-148bRP
T+CA+GTGCATCACAG
−0.2982
10.417
0.24
2.44




SEQ ID NO:209

SEQ ID NO:210





miR-149
miR-149GSP2
CATGATCAGCTGGGCCAAGAGGAGTGAAG
miR-149RP
T+CT+GGCTCCGTGTC
−0.2996
8.3392
2.15
21.50




SEQ ID NO:211

SEQ ID NO:212





miR-150
miR-150GSP3
CATGATCAGCTGGGCCAAGACACTGGTA
miR-150RP
T+CT+CCCAACCCTTG
−0.2943
8.3945
0.06
0.56




SEQ ID NO:213

SEQ ID NO:214





miR-151
miR-151GSP2
CATGATCAGCTGGGCCAAGACCTCAAGGA
miR-151RP
A+CT+AGACTGAAGCTC
−0.2975
8.651
0.16
1.60




SEQ ID NO:215

SEQ ID NO:216





miR-152
miR-152GSP2
CATGATCAGCTGGGCCAAGACCCAAGTTC
miR-152RP
T+CA+GTGCATGACAG
−0.2741
8.7404
0.33
3.25




SEQ ID NO:217

SEQ ID NO:218





miR-153
miR-153GSP2
CATGATCAGCTGGGCCAAGATCACTTTTG
miR-153RP
TTG+CAT+AGTCACAAAA
−0.2723
9.5732
3.32
33.19




SEQ ID NO:219

SEQ ID NO:220





miR-154*
miR-154*GSP9#
CATGATCAGCTGGGCCAAGAAATAGGTCA
miR-154*RP2#
AATCA+TA+CACGGTTGAC
−0.3056
8.8502
0.07
0.74




SEQ ID NO:221

SEQ ID NO:222





miR-154
miR-154GSP9#
CATGATCAGCTGGGCCAAGACGAAGGCAA
miR-154RP3#
TA+GGTTA+TCCGTGTT
−0.3062
9.3947
0.10
0.96




SEQ ID NO:223

SEQ ID NO:224





miR-155
miR-155GSP8#
CATGATCAGCTGGGCCAAGACCCCTATC
miR-155RP2#
TT+AA+TGCTAATCGTGATAGG
−0.3201
8.474
5.49
54.91




SEQ ID NO:225

SEQ ID NO:226





miR-181a
miR-181aGSP9#
CATGATCAGCTGGGCCAAGAACTCACCGA
miR-181aRP2#
AA+CATT+CAACGCTGTC
−0.2919
7.968
1.70
17.05




SEQ ID NO:227

SEQ ID NO:228





miR-181c
miR-181cGSP9#
CATGATCAGCTGGGCCAAGAACTCACCGA
miR-181cRP2#
AA+CATT+CAACCTGTCG
−0.3102
7.9029
1.08
10.78




SEQ ID NO:229

SEQ ID NO:230





miR-182*
miR-182*GSP
CATGATCAGCTGGGCCAAGATAGTTGGCAA
miR-182*RP
T+GG+TTCTAGACTTGC
−0.2978
8.5876
4.25
42.47




SEQ ID NO:231

SEQ ID NO:232





miR-182
miR-182GSP2
CATGATCAGCTGGGCCAAGATGTGAGTTC
miR-182RP
TTT+GG+CAATGGTAG
−0.2863
9.0854
1.52
15.20




SEQ ID NO:233

SEQ ID NO:234





miR-183
miR-183GSP2
CATGATCAGCTGGGCCAAGACAGTGAATT
miR-183RP
T+AT+GGCACTGGTAG
−0.2774
9.9254
1.95
19.51




SEQ ID NO:235

SEQ ID NO:236





miR-184
miR-184GSP2
CATGATCAGCTGGGCCAAGAACCCTTATC
miR-184RP
T+GG+ACGGAGAACTG
−0.2906
7.9585
0.05
0.49




SEQ ID NO:237

SEQ ID NO:238





miR-186
miR-186GSP9#
CATGATCAGCTGGGCCAAGAAAGCCCAAA
miR-186RP3#
CA+AA+GAATT+CTCCTTTTGG
−0.2861
8.6152
0.32
3.18




SEQ ID NO:239

SEQ ID NO:240





miR-187
miR-187GSP
CATGATCAGCTGGGCCAAGACGGCTGCAAC
miR-187RP
T+CG+TGTCTTGTGTT
−0.2953
7.9329
1.23
12.31




SEQ ID NO:241

SEQ ID NO:242





miR-188
miR-188GSP
CATGATCAGCTGGGCCAAGAACCCTCCACC
miR-188RP
C+AT+CCCTTGCATGG
−0.2925
8.0782
8.49
84.92




SEQ ID NO:243

SEQ ID NO:244





miR-189
miR-189GSP2
CATGATCAGCTGGGCCAAGAACTGATATC
miR-189RP
G+TG+CCTACTGAGCT
−0.2981
8.8964
0.21
2.08




SEQ ID NO:245

SEQ ID NO:246





miR-190
miR-190GSP9#
CATGATCAGCTGGGCCAAGAACCTAATAT
miR-190RP4#
T+GA+TA+TGTTTGATATATTAG
−0.3317
9.8766
0.43
4.34




SEQ ID NO:247

SEQ ID NO:248





miR-191
miR-191GSP2
CATGATCAGCTGGGCCAAGAAGCTGCTTT
miR-191RP2
C+AA+CGGAATCCCAAAAG
−0.299
9.0317
0.41
4.07




SEQ ID NO:249

SEQ ID NO:250





miR-192
miR-192GSP2
CATGATCAGCTGGGCCAAGAGGCTGTCAA
miR-192RP
C+TGA+CCTATGAATTGAC
−0.2924
9.5012
1.10
10.98




SEQ ID NO:251

SEQ ID NO:252





miR-193
miR-193GSP9#
CATGATCAGCTGGGCCAAGACTGGGACTT
miR-193RP2#
AA+CT+GGCCTACAAAG
−0.3183
8.9942
0.17
1.72




SEQ ID NO:253

SEQ ID NO:254





miR-194
mir194GSP8#
CATGATCAGCTGGGCCAAGATCCACATG
mir194RP#
TG+TAA+CAGCAACTCCA
−0.3078
8.8045
0.37
3.69




SEQ ID NO:255

SEQ ID NO:256





miR-195
miR-195GSP9#
CATGATCAGCTGGGCCAAGAGCCAATATT
miR-195RP3#
T+AG+CAG+CACAGAAATA
−0.2955
10.213
0.76
7.58




SEQ ID NO:257

SEQ ID NO:258





miR-196b
miR-196bGSP
CATGATCAGCTGGGCCAAGACCAACAACAG
miR-196bRP
TA+GGT+AGTTTCCTGT
−0.301
8.1641
1.47
14.66




SEQ ID NO:259

SEQ ID NO:260





miR-196a
miR-196aGSP
CATGATCAGCTGGGCCAAGACCAACAACAT
miR-196aRP
TA+GG+TAGTTTCATGTTG
−0.2932
8.0448
8.04
80.37




SEQ ID NO:261

SEQ ID NO:262





miR-197
miR-197GSP2
CATGATCAGCTGGGCCAAGAGCTGGGTGG
miR-197RP
TT+CA+CCACCTTCTC
−0.289
8.2822
0.71
7.10




SEQ ID NO:263

SEQ ID NO:264





miR-198
miR-198GSP3
CATGATCAGCTGGGCCAAGACCTATCTC
miR-198RP
G+GT+CCAGAGGGGAG
−0.2986
8.1359
0.31
3.15




SEQ ID NO:265

SEQ ID NO:266





miR-199a*
miR-199a*GSP2
CATGATCAGCTGGGCCAAGAAACCAATGT
miR-199a*RP
T+AC+AGTAGTCTGCAC
−0.3029
9.0509
0.25
2.52




SEQ ID NO:267

SEQ ID NO:268





miR-199a
miR-199aGSP2
CATGATCAGCTGGGCCAAGAGAACAGGTA
miR-199aRP
C+CC+AGTGTTCAGAC
−0.3187
9.2268
0.12
1.16




SEQ ID NO:269

SEQ ID NO:270





miR-199b
miR-199bGSP
CATGATCAGCTGGGCCAAGAGAACAGATAG
miR-199bRP
C+CC+AGTGTTTAGAC
−0.3165
9.3935
2.00
20.04




SEQ ID NO:271

SEQ ID NO:272





miR-200a
miR-200aGSP2
CATGATCAGCTGGGCCAAGAACATCGTTA
miR-200aRP
TAA+CAC+TGTCTGGT
−0.2754
9.1227
0.08
0.78




SEQ ID NO:273

SEQ ID NO:274





miR-200b
miR-200bGSP2
CATGATCAGCTGGGCCAAGAGTCATCATT
miR-200bRP
TAATA+CTG+CCTGGTAAT
−0.2935
8.5461
0.08
0.85




SEQ ID NO:275

SEQ ID NO:276





miR-202
miR-202GSP10#
CATGATCAGCTGGGCCAAGATTTTCCCATG
miR-202RP#
A+GA+GGTATA+GGGCAT
−0.2684
9.056
0.25
2.48




SEQ ID NO:277

SEQ ID NO:278





miR-203
miR-203GSP2
CATGATCAGCTGGGCCAAGACTAGTGGTC
miR-203RP
G+TG+AAATGTTTAGGACC
−0.2852
8.1279
1.60
16.03




SEQ ID NO:279

SEQ ID NO:280





miR-204
miR-204GSP2
CATGATCAGCTGGGCCAAGAAGGCATAGG
miR-204RP
T+TC+CCTTTGTCATCC
−0.2925
8.7648
0.16
1.59




SEQ ID NO:281

SEQ ID NO:282





miR-205
miR-205GSP
CATGATCAGCTGGGCCAAGACAGACTCCGG
miR-205RP
T+CCTT+CATTCCACC
−0.304
8.2407
9.21
92.15




SEQ ID NO:283

SEQ ID NO:284





miR-206
mir206GSP7#
CATGATCAGCTGGGCCAAGACCACACA
miR-206RP#
T+G+GAA+TGTAAGGAAGTGT
−0.2815
8.2206
0.29
2.86




SEQ ID NO:285

SEQ ID NO:286





miR-208
miR-208_GSP13#
CATGATCAGCTGGGCCAAGAACAAGCTTTTTGC
miR-208_RP4#
ATAA+GA+CG+AGCAAAAAG
−0.2072
7.9097
57.75
577.52




SEQ ID NO:287

SEQ ID NO:288





miR-210
miR-210GSP
CATGATCAGCTGGGCCAAGATCAGCCGCTG
miR-210RP
C+TG+TGCGTGTGACA
−0.2717
8.249
0.18
1.77




SEQ ID NO:289

SEQ ID NO:290





miR-211
miR-211GSP2
CATGATCAGCTGGGCCAAGAAGGCGAAGG
miR-211RP
T+TC+CCTTTGTCATCC
−0.2926
8.3106
0.10
1.00




SEQ ID NO:291

SEQ ID NO:292





miR-212
miR-212GSP9#
CATGATCAGCTGGGCCAAGAGGCCGTGAC
miR-212RP2#
T+AA+CAGTCTCCAGTCA
−0.2916
8.0745
0.59
5.86




SEQ ID NO:293

SEQ ID NO:294





miR-213
miR-213GSP
CATGATCAGCTGGGCCAAGAGGTACAATCA
miR-213RP
A+CC+ATCGACCGTTG
−0.2934
8.1848
2.96
29.59




SEQ ID NO:295

SEQ ID NO:296





miR-214
miR-214GSP
CATGATCAGCTGGGCCAAGACTGCCTGTCT
miR-214RP
A+CA+GCAGGCACAGA
−0.2947
7.82
0.84
8.44




SEQ ID NO:297

SEQ ID NO:298





miR-215
miR-215GSP2
CATGATCAGCTGGGCCAAGAGTCTGTCAA
miR-215RP
A+TGA+CCTATGAATTGAC
−0.2932
8.9273
1.51
15.05




SEQ ID NO:299

SEQ ID NO:300





miR-216
miR-216GSP9#
CATGATCAGCTGGGCCAAGACACAGTTGC
mir216RP#
TAA+TCT+CAGCTGGCA
−0.273
8.5829
0.95
9.50




SEQ ID NO:301

SEQ ID NO:302





miR-217
miR-217GSP2
CATGATCAGCTGGGCCAAGAATCCAATCA
miR-217RP2
T+AC+TGCATCAGGAACTGA
−0.3089
9.6502
0.07
0.71




SEQ ID NO:303

SEQ ID NO:304





miR-218
miR-218GSP2
CATGATCAGCTGGGCCAAGAACATGGTTA
miR-218RP
TTG+TGCTT+GATCTAAC
−0.2778
8.4363
1.00
10.05




SEQ ID NO:305

SEQ ID NO:306





miR-220
miR-220GSP
CATGATCAGCTGGGCCAAGAAAAGTGTCAG
miR-220RP
C+CA+CACCGTATCTG
−0.2755
9.0728
8.88
88.75




SEQ ID NO:307

SEQ ID NO:308





miR-221
miR-221GSP9#
CATGATCAGCTGGGCCAAGAGAAACCCAG
miR-221RP#
A+GC+TACATTGTCTGC
−0.2886
8.5743
0.12
1.17




SEQ ID NO:309

SEQ ID NO:310





miR-222
miR-222GSP8#
CATGATCAGCTGGGCCAAGAGAGACCCA
miR-222RP#
A+GC+TACATCTGGCT
−0.283
8.91
1.64
16.41




SEQ ID NO:311

SEQ ID NO:312





miR-223
miR-223GSP
CATGATCAGCTGGGCCAAGAGGGGTATTTG
miR-223RP
TG+TC+AGTTTGTCAAA
−0.2998
8.6669
0.94
9.44




SEQ ID NO:313

SEQ ID NO:314





miR-224
miR-224GSP8#
CATGATCAGCTGGGCCAAGATAAACGGA
miR-224RP2#
C+AAG+TCACTAGTGGTT
−0.2802
7.5575
0.56
5.63




SEQ ID NO:315

SEQ ID NO:316





miR-296
miR-296GSP9#
CATGATCAGCTGGGCCAAGAACAGGATTG
miR-296RP2#
A+GG+GCCCCCCCTCAA
−0.3178
8.3856
0.10
0.96




SEQ ID NO:317

SEQ ID NO:318





miR-299
miR-299GSP9#
CATGATCAGCTGGGCCAAGAATGTATGTG
miR-299RP#
T+GG+TTTACCGTCCC
−0.3155
7.9383
1.30
12.96




SEQ ID NO:319

SEQ ID NO:320





miR-301
miR-301GSP
CATGATCAGCTGGGCCAAGAGCTTTGACAA
miR-301RP
C+AG+TGCAATAGTATTGT
−0.2839
8.314
2.55
25.52




SEQ ID NO:321

SEQ ID NO:322





miR-302a*
miR-302a*GSP
CATGATCAGCTGGGCCAAGAAAAGCAAGTA
miR-302a*RP
TAAA+CG+TGGATGTAC
−0.2608
8.3921
0.04
0.41




SEQ ID NO:323

SEQ ID NO:324





miR-302a
miR-302aGSP
CATGATCAGCTGGGCCAAGATCACCAAAAC
miR-302aRP
T+AAG+TGCTTCCATGT
−0.2577
9.6657
2.17
21.67




SEQ ID NO:325

SEQ ID NO:326





miR-302b*
miR-302b*GSP
CATGATCAGCTGGGCCAAGAAGAAAGCACT
miR-302b*RP
A+CTTTAA+CATGGAAGTG
−0.2702
8.5153
0.02
0.24




SEQ ID NO:327

SEQ ID NO:328





miR-302b
miR-302bGSP
CATGATCAGCTGGGCCAAGACTACTAAAAC
miR-302bRP
T+AAG+TGCTTCCATGT
−0.2398
9.1459
5.11
51.11




SEQ ID NO:329

SEQ ID NO:330





miR-302d
miR-302dGSP
CATGATCAGCTGGGCCAAGAACACTCAAAC
miR-302dRP
T+AAG+TGCTTCCATGT
−0.2368
8.5602
5.98
59.78




SEQ ID NO:331

SEQ ID NO:332





miR-302c*
miR-302c*_GSP9#
CATGATCAGCTGGGCCAAGACAGCAGGTA
miR-302c*_RP2#
TT+TAA+CAT+GGGGGTACC
−0.312
8.2904
0.33
3.28




SEQ ID NO:333

SEQ ID NO:334





miR-302c
miR-302cGSP9#
CATGATCAGCTGGGCCAAGACCACTGAAA
miR-302cRP5#
T+AAG+TGCTTCCATGTTTCA
−0.2945
8.381
14.28
142.76




SEQ ID NO:335

SEQ ID NO:336





miR-320
miR-320_GSP8#
CATGATCAGCTGGGCCAAGATTCGCCCT
miR-320_RP3#
AAAA+GCT+GGGTTGAGAGG
−0.2677
7.8956
6.73
67.29




SEQ ID NO:337

SEQ ID NO:338





miR-323
miR-323GSP
CATGATCAGCTGGGCCAAGAAGAGGTCGAC
miR-323RP
G+CA+CATTACACGGT
−0.2878
8.2546
0.19
1.92




SEQ ID NO:339

SEQ ID NO:340





miR-324-3p
miR-324-3pGSP
CATGATCAGCTGGGCCAAGACCAGCAGCAC
miR-324-3pRP
C+CA+CTGCCCCAGGT
−0.2698
8.5223
2.54
25.41




SEQ ID NO:341

SEQ ID NO:342





miR-324-5p
miR-324-5pGSP
CATGATCAGCTGGGCCAAGAACACCAATGC
miR-324-5pRP
C+GC+ATCCCCTAGGG
−0.2861
7.6865
0.06
0.62




SEQ ID NO:343

SEQ ID NO:344





miR-325
miR-325GSP
CATGATCAGCTGGGCCAAGAACACTTACTG
miR-325RP
C+CT+AGTAGGTGTCC
−0.2976
8.1925
0.01
0.14




SEQ ID NO:345

SEQ ID NO:346





miR-326
miR-326GSP
CATGATCAGCTGGGCCAAGACTGGAGGAAG
miR-326RP
C+CT+CTGGGCCCTTC
−0.2806
7.897
0.59
5.87




SEQ ID NO:347

SEQ ID NO:348





miR-328
miR-328GSP
CATGATCAGCTGGGCCAAGAACGGAAGGGC
miR-328RP
C+TG+GCCCTCTCTGC
−0.293
7.929
3.17
31.69




SEQ ID NO:349

SEQ ID NO:350





miR-330
miR-330GSP
CATGATCAGCTGGGCCAAGATCTCTGCAGG
miR-330RP
G+CA+AAGCACACGGC
−0.3009
7.7999
0.13
1.30




SEQ ID NO:351

SEQ ID NO:352





miR-331
miR-331GSP
CATGATCAGCTGGGCCAAGATTCTAGGATA
miR-331RP
G+CC+CCTGGGCCTAT
−0.2816
8.1643
0.45
4.54




SEQ ID NO:353

SEQ ID NO:354





miR-337
miR-337GSP
CATGATCAGCTGGGCCAAGAAAAGGCATCA
miR-337RP
T+CC+AGCTCCTATATG
−0.2968
8.7313
0.10
1.02




SEQ ID NO:355

SEQ ID NO:356





miR-338
miR-338GSP
CATGATCAGCTGGGCCAAGATCAACAAAAT
miR-338RP2
T+CC+AGCATCAGTGATTT
−0.2768
8.5618
0.52
5.17




SEQ ID NO:357

SEQ ID NO:358





miR-339
miR-339GSP9#
CATGATCAGCTGGGCCAAGATGAGCTCCT
miR-339RP2#
T+CC+CTGTCCTCCAGG
−0.303
8.4873
0.27
2.72




SEQ ID NO:359

SEQ ID NO:360





miR-340
miR-340GSP
CATGATCAGCTGGGCCAAGAGGCTATAAAG
miR-340RP
TC+CG+TCTCAGTTAC
−0.2846
9.6673
0.15
1.45




SEQ ID NO:361

SEQ ID NO:362





miR-342
miR-342GSP3
CATGATCAGCTGGGCCAAGAGACGGGTG
miR-342RP
T+CT+CACACAGAAATCG
−0.293
8.1553
4.69
46.85




SEQ ID NO:363

SEQ ID NO:364





miR-345
miR-345GSP
CATGATCAGCTGGGCCAAGAGCCCTGGACT
miR-345RP
T+GC+TGACTCCTAGT
−0.2909
8.468
0.04
0.40




SEQ ID NO:365

SEQ ID NO:366





miR-346
miR-346GSP
CATGATCAGCTGGGCCAAGAAGAGGCAGGC
miR-346RP
T+GT+CTGCCCGCATG
−0.2959
8.1958
0.25
2.54




SEQ ID NO:367

SEQ ID NO:368





miR-363
miR-363GSP10#
CATGATCAGCTGGGCCAAGATACAGATGGA
miR-363RP#
AAT+TG+CAC+GGTATCC
−0.2362
8.9762
0.44
4.36




SEQ ID NO:369

SEQ ID NO:370





miR-367
miR-367GSP
CATGATCAGCTGGGCCAAGATCACCATTGC
miR-367RP
AAT+TG+CACTTTAGCAAT
−0.2819
8.6711
0.00
0.03




SEQ ID NO:371

SEQ ID NO:372





miR-368
miR-368GSP
CATGATCAGCTGGGCCAAGAAAACGTGGAA
miR-368RP2
A+CATAGA+GGAAATTCCAC
−0.2953
8.0067
6.01
60.11




SEQ ID NO:373

SEQ ID NO:374





miR-370
miR-370GSP
CATGATCAGCTGGGCCAAGACCAGGTTCCA
miR-370RP
G+CC+TGCTGGGGTGG
−0.2825
8.3162
1.45
14.55




SEQ ID NO:375

SEQ ID NO:376





miR-371
miR-371GSP
CATGATCAGCTGGGCCAAGAACACTCAAAA
miR-371RP
G+TG+CCGCCATCTTT
−0.295
7.8812
2.51
25.12




SEQ ID NO:377

SEQ ID NO:378





miR-372
miR-372GSP
CATGATCAGCTGGGCCAAGAACGCTCAAAT
miR-372RP
A+AA+GTGCTGCGACA
−0.2984
8.9183
0.05
0.53




SEQ ID NO:379

SEQ ID NO:380





miR-373*
miR-373*GSP
CATGATCAGCTGGGCCAAGAGGAAAGCGCC
miR-373*RP
A+CT+CAAAATGGGGG
−0.2705
8.4513
0.20
1.99




SEQ ID NO:381

SEQ ID NO:382





miR-373
miR-373GSP
CATGATCAGCTGGGCCAAGAACACCCCAAA
miR-373RP2
GA+AG+TGCTTCGATTTTGG
−0.307
7.9056
9.13
91.32




SEQ ID NO:383

SEQ ID NO:384





miR-374
miR-374GSP2
CATGATCAGCTGGGCCAAGACACTTATCA
miR-374RP
TT+AT+AATA+CAACCTGATAAG
−0.2655
9.3795
9.16
91.60




SEQ ID NO:385

SEQ ID NO:386





miR-375
miR-375GSP
CATGATCAGCTGGGCCAAGATCACGCGAGC
miR-375RP
TT+TG+TTCGTTCGGC
−0.3041
8.1181
0.09
0.90




SEQ ID NO:387

SEQ ID NO:388





miR-376b
miR-376bGSP8#
CATGATCAGCTGGGCCAAGAAACATGGA
miR-376bRP#
AT+CAT+AGA+GGAAAATCCA
−0.2934
9.0188
1.07
10.74




SEQ ID NO:389

SEQ ID NO:390





miR-378
miR-378GSP
CATGATCAGCTGGGCCAAGAACACAGGACC
miR-378RP
C+TC+CTGACTCCAGG
−0.2899
8.1467
0.07
0.73




SEQ ID NO:391

SEQ ID NO:392





miR-379
miR-379_GSP7#
CATGATCAGCTGGGCCAAGATACGTTC
miR-379RP2#
T+GGT+AGACTATGGAACG
−0.2902
8.2149
10.89
108.86




SEQ ID NO:393

SEQ ID NO:394





miR-380-5p
miR-380-5pGSP
CATGATCAGCTGGGCCAAGAGCGCATGTTC
miR-380-5pRP
T+GGT+TGACCATAGA
−0.2462
9.4324
1.30
13.04




SEQ ID NO:395

SEQ ID NO:396





miR-380-3p
miR-380-3pGSP
CATGATCAGCTGGGCCAAGAAAGATGTGGA
miR-380-3pRP
TA+TG+TAATATGGTCCACA
−0.3037
8.0356
3.69
36.89




SEQ ID NO:397

SEQ ID NO:398





miR-381
miR-381GSP2
CATGATCAGCTGGGCCAAGAACAGAGAGC
miR-381RP2
TATA+CAA+GGGCAAGCT
−0.3064
8.8704
1.72
17.16




SEQ ID NO:399

SEQ ID NO:400





miR-382
miR-382GSP
CATGATCAGCTGGGCCAAGACGAATCCACC
miR-382RP
G+AA+GTTGTTCGTGGT
−0.2803
7.6738
0.66
6.57




SEQ ID NO:401

SEQ ID NO:402





miR-383
miR-383GSP
CATGATCAGCTGGGCCAAGAAGCCACAATC
miR-383RP2
A+GATC+AGAAGGTGATTGT
−0.2866
8.1463
0.54
5.45




SEQ ID NO:403

SEQ ID NO:404





miR-410
miR-410GSP9#
CATGATCAGCTGGGCCAAGAACAGGCCAT
miR-410RP#
AA+TA+TAA+CA+CAGATGGC
−0.2297
8.5166
4.27
42.71




SEQ ID NO:405

SEQ ID NO:406





miR-412
miR-412GSP10#
CATGATCAGCTGGGCCAAGAACGGCTAGTG
miR-412RP#
A+CTT+CACCTGGTCCACTA
−0.3001
7.9099
4.24
42.37




SEQ ID NO:407

SEQ ID NO:408





miR-422a
miR-422aGSP
CATGATCAGCTGGGCCAAGAGGCCTTCTGA
miR-422aRP
C+TG+GACTTAGGGTC
−0.3079
9.3108
5.95
59.54




SEQ ID NO:409

SEQ ID NO:410





miR-422b
miR-422bGSP
CATGATCAGCTGGGCCAAGAGGCCTTCTGA
miR-422bRP
C+TG+GACTTGGAGTC
−0.2993
8.9437
4.86
48.56




SEQ ID NO:411

SEQ ID NO:412





miR-423
miR-423GSP
CATGATCAGCTGGGCCAAGACTGAGGGGCC
miR-423RP
A+GC+TCGGTCTGAGG
−0.3408
9.2274
6.06
60.62




SEQ ID NO:413

SEQ ID NO:414





miR-424
miR-424GSP#
CATGATCAGCTGGGCCAAGATTCAAAACAT
miR-424RP2#
C+AG+CAGCAATTCATGTTTT
−0.3569
9.3419
10.78
107.85




SEQ ID NO:415

SEQ ID NO:416





miR-425
miR-425GSP
CATGATCAGCTGGGCCAAGAGGCGGACACG
miR-425RP
A+TC+GGGAATGTCGT
−0.2932
7.9786
0.39
3.93




SEQ ID NO:417

SEQ ID NO:418





miR-429
miR-429_GSP11#
CATGATCAGCTGGGCCAAGAACGGTTTTACC
miR-429RP5#
T+AATAC+TG+TCTGGTAAAA
−0.2458
8.2805
16.21
162.12




SEQ ID NO:419

SEQ ID NO:420





miR-431
miR-431GSP10#
CATGATCAGCTGGGCCAAGATGCATGACGG
miR-431RP#
T+GT+CTTGCAGGCCG
−0.3107
7.7127
7.00
70.05




SEQ ID NO:421

SEQ ID NO:422





miR-448
miR-448GSP
CATGATCAGCTGGGCCAAGAATGGGACATC
miR-448RP
TTG+CATA+TGTAGGATG
−0.3001
8.4969
0.12
1.16




SEQ ID NO:423

SEQ ID NO:424





miR-449
miR-449GSP10#
CATGATCAGCTGGGCCAAGAACCAGCTAAC
miR-449RP2#
T+GG+CAGTGTATTGTTAGC
−0.3225
8.4953
2.57
25.70




SEQ ID NO:425

SEQ ID NO:426





miR-450
miR-450GSP
CATGATCAGCTGGGCCAAGATATTAGGAAC
miR-450RP
TTTT+TG+CGATGTGTT
−0.2906
8.1404
0.48
4.82




SEQ ID NO:427

SEQ ID NO:428





miR-451
miR-451GSP10#
CATGATCAGCTGGGCCAAGAAAACTCAGTA
miR-451RP#
AAA+CCG+TTA+CCATTACTGA
−0.2544
8.0291
1.73
17.35




SEQ ID NO:429

SEQ ID NO:430





let7a
let7a-GSP2#
CATGATCAGCTGGGCCAAGAAACTATAC
let7a-RP#
T+GA+GGTAGTAGGTTG
−0.3089
9.458
0.04
0.38




SEQ ID NO:431

SEQ ID NO:432





let7b
let7b-GSP2#
CATGATCAGCTGGGCCAAGAAACCACAC
let7b-RP#
T+GA+GGTAGTAGGTTG
−0.2978
7.9144
0.05
0.54




SEQ ID NO:433

SEQ ID NO:432





let7c
let7c-GSP2#
CATGATCAGCTGGGCCAAGAAACCATAC
let7c-RP#
T+GA+GGTAGTAGGTTG
−0.308
7.9854
0.01
0.14




SEQ ID NO:434

SEQ ID NO:432





let7d
let7d-GSP2#
CATGATCAGCTGGGCCAAGAACTATGCA
let7d-RP#
A+GA+GGTAGTAGGTTG
−0.3238
8.3359
0.06
0.57




SEQ ID NO:435

SEQ ID NO:436





let7e
let7e-GSP2#
CATGATCAGCTGGGCCAAGAACTATACA
let7e-RP#
T+GA+GGTAGGAGGTTG
−0.3284
9.7594
0.22
2.20




SEQ ID NO:437

SEQ ID NO:438





let7f
let7f-GSP2#
CATGATCAGCTGGGCCAAGAAACTATAC
let7f-RP#
T+GA+GGTAGTAGATTG
−0.2901
11.107
0.32
3.18




SEQ ID NO:439

SEQ ID NO:440





let7g
let7gGSp2#
CATGATCAGCTGGGCCAAGAACTGTACA
let7g-RP#
T+GA+GGTAGTAGTTTG
−0.3469
9.8235
0.16
1.64




SEQ ID NO:441

SEQ ID NO:442





let7i
let7i-GSP2#
CATGATCAGCTGGGCCAAGAACAGCACA
let7i-RP#
T+GA+GGTAGTAGTTTG
−0.321
10.82
0.20
1.99




SEQ ID NO:443

SEQ ID NO:444





miR-377
miR-377GSP
CATGATCAGCTGGGCCAAGAACAAAAGTTG
miR-377RP2
AT+CA+CACAAAGGCAAC
−0.2979
10.612
13.45
134.48




SEQ ID NO:445

SEQ ID NO:446





miR-376a
miR-376a_GSP7
CATGATCAGCTGGGCCAAGAACGTGGA
miR-376a_RP5
AT+CAT+AGA+GGAAAATCC
−0.2938
10.045
63.00
630.00




SEQ ID NO:447

SEQ ID NO:448





miR-22
miR-22GSP
CATGATCAGCTGGGCCAAGAACAGTTCTTC
miR-22RP
A+AG+CTGCCAGTTGA
−0.2862
8.883
20.46
204.58




SEQ ID NO:449

SEQ ID NO:450





miR-200c
miR-200cGSP2
CATGATCAGCTGGGCCAAGACCATCATTA
miR-200cRP
T+AA+TACTGCCGGGT
−0.3094
11.5
15.99
159.91




SEQ ID NO:451

SEQ ID NO:452





miR-24
miR-24GSP
CATGATCAGCTGGGCCAAGACTGTTCCTGC
miR-24RP
T+GG+CTCAGTTCAGC
−0.3123
8.6824
24.34
243.38




SEQ ID NO:453

SEQ ID NO:454





miR-29cDNA
miR-29cGSP10
CATGATCAGCTGGGCCAAGAACCGATTTCA
miR-29cRP
T+AG+CACCATTTGAAAT
−0.2975
8.8441
23.22
232.17




SEQ ID NO:455

SEQ ID NO:456





miR-18
miR-18GSP
CATGATCAGCTGGGCCAAGATATCTGCACT
miR-18RP
T+AA+GGTGCATCTAGT
−0.3209
9.0999
14.90
149.01




SEQ ID NO:457

SEQ ID NO:458





miR-185
miR-185GSP
CATGATCAGCTGGGCCAAGAGAACTGCCTT
miR-185RP
T+GG+AGAGAAAGGCA
−0.3081
8.9289
15.73
157.32




SEQ ID NO:459

SEQ ID NO:460





miR-181b
miR-181bGSP8#
CATGATCAGCTGGGCCAAGACCCACCGA
miR-181bRP2#
AA+CATT+CATTGCTGTC
−0.3115
10.846
15.87
158.67




SEQ ID NO:461

SEQ ID NO:462





miR-128a
miR-128aGSP
CATGATCAGCTGGGCCAAGAAAAAGAGACC
miR-128anLRP
TCACAGTGAACCGGT
approx.
approx.
approx.
approx.




SEQ ID NO:161

SEQ ID NO:494
−0.2866
8.0867
0.16
1.60





miR-138
miR-138GSP2
CATGATCAGCTGGGCCAAGACGGCCTGAT
miR-138nLRP
AGCTGGTGTTGTGAA
approx.
approx.
approx.
approx.




SEQ ID NO:187

SEQ ID NO:495
−0.3023
9.0814
0.22
2.19





miR-143
miR-143GSP8#
CATGATCAGCTGGGCCAAGATGAGCTAC
miR-143nLRP
TGAGATGAAGCACTGT
approx.
approx.
approx.
approx.




SEQ ID NO:197

SEQ ID NO:496
−0.3008
9.2675
0.37
3.71





miR-150
miR-150GSP3
CATGATCAGCTGGGCCAAGACACTGGTA
miR-150nLRP
TCTCCCAACCCTTGTA
approx.
approx.
approx.
approx.




SEQ ID NO:213

SEQ ID NO:497
−0.2943
8.3945
0.06
0.56





miR-181a
miR-181aGSP9#
CATGATCAGCTGGGCCAAGAACTCACCGA
miR-181anLRP
AACATTCAACGCTGT
approx.
approx.
approx.
approx.




SEQ ID NO:227

SEQ ID NO:498
−0.2919
7.968
1.70
17.05





miR-194
mir194GSP8#
CATGATCAGCTGGGCCAAGATCCACATG
miR-194nLRP
TGTAACAGCAACTCCA
approx.
approx.
approx.
approx.




SEQ ID NO:255

SEQ ID NO:499
−0.3078
8.8045
0.37
3.69







#denotes primers for assays that required extensive testing and primer design modification to achieve optimal assay results including high sensitivity and high dynamic range.







EXAMPLE 4

This Example describes assays and primers designed for quantitative analysis of murine miRNA expression patterns.


Methods: The representative murine microRNA target templates described in TABLE 7 are publically available accessible on the World Wide Web at the Wellcome Trust Sanger Institute website in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111 and Griffith-Jones et al. (2006), Nucleic Acids Research 34: D140-D144. As indicated below in TABLE 7, the murine microRNA templates are either totally identical to the corresponding human microRNA templates, identical in the overlapping sequence with differing ends, or contain one or more base pair changes as compared to the human microRNA sequence. The murine microRNA templates that are identical or that have identical overlapping sequence to the corresponding human templates can be assayed using the same primer sets designed for the human microRNA templates, as indicated in TABLE 7. For the murine microRNA templates with one or more base pair changes in comparison to the corresponding human templates, primer sets have been designed specifically for detection of the murine microRNA, and these primers are provided in TABLE 7. The extension primer reaction and quantitative PCR reactions for detection of the murine microRNA templates may be carried out as described in EXAMPLE 3.

TABLE 7PRIMERS TO DETECT MURINE MICRORNA TARGET TEMPLATESMouseTargetExtensionReverseMouse microRNAmicro-PrimerPrimeras compared toRNA:NameExtension Primer SequenceNameReverse Prime SequenceHuman microRNAmiR-1miRCATGATCAGCTGGGCCAAGATACATACTTCmiR-1RPT+G+GAA+TG+TAAAGAAGTIdentical1GSP10SEQ ID NO:47SEQ ID NO:48miR-7miR-CATGATCAGCTGGGCCAAGAAACAAAATCmiR-7_RP6T+GGAA+GACTTGTGATTTTone or more base7GSP10SEQ ID NO:486SEQ ID NO:487pairs differmiR-9*miR-CATGATCAGCTGGGCCAAGAACTTTCGGTTmiR-9*RPTAAA+GCT+AGATAACCGIdentical over-9*GSPSEQ ID NO:51SEQ ID NO:52lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGACACAAATTCGmiR-10aRPT+AC+CCTGTAGATCCGIdentical10a10aGSPSEQ ID NO:53SEQ ID NO:54miR-miR-CATGATCAGCTGGGCCAAGAACACAAATTCGmiR-10b_RP2C+CC+TGT+AGAACCGAATone or more base10b10b_GSP11SEQ ID NO:492SEQ ID NO:493pairs differmiR-miR-CATGATCAGCTGGGCCAAGACACAAACCATmiR-15aRPT+AG+CAGCACATAATGIdentical15a15aGSPSEQ ID NO:57SEQ ID NO:58miR-miR-CATGATCAGCTGGGCCAAGATGTAAACCAmiR-15bRPT+AG+CAGCACATCATIdentical15b15bGSP2SEQ ID NO:59SEQ ID NO:60miR-16miR-CATGATCAGCTGGGCCAAGACGCCAATATmiR-16RPT+AG+CAGCACGTAAAIdentical16GSP2SEQ ID NO:61SEQ ID NO:62miR-miR-CATGATCAGCTGGGCCAAGAACAAGTGCCCmiR-17-3pRPA+CT+GCAGTGAGGGCone or more base17-3p17-3pGSPSEQ ID NO:463SEQ ID NO:464pairs differmiR-miR-CATGATCAGCTGGGCCAAGAACTACCTGCmiR-17-5pRPC+AA+AGTGCTTACAGTGIdentical17-5p17-5pGSP2SEQ ID NO:65SEQ ID NO:66miR-miR-CATGATCAGCTGGGCCAAGATCAGTTTTGmiR-19aRPTG+TG+CAAATCTATGCIdentical19a19aGSP2SEQ ID NO:67SEQ ID NO:68miR-miR-CATGATCAGCTGGGCCAAGATCAGTTTTGCmiR-19bRPTG+TG+CAAATCCATGIdentical19b19bGSPSEQ ID NO:69SEQ ID NO:70miR-20miR-CATGATCAGCTGGGCCAAGACTACCTGCmiR-20RPT+AA+AGTGCTTATAGTGCAIdentical20GSP3SEQ ID NO:71SEQ ID NO:72miR-21miR-CATGATCAGCTGGGCCAAGATCAACATCAmiR-21RPT+AG+CTTATCAGACTGATGIdentical21GSP2SEQ ID NO:73SEQ ID NO:74miR-miR-CATGATCAGCTGGGCCAAGAGGAAATCCCTmiR-23aRPA+TC+ACATTGCCAGGIdentical23a23aGSPSEQ ID NO:75SEQ ID NO:76miR-miR-CATGATCAGCTGGGCCAAGAGGTAATCCCTmiR-23bRPA+TC+ACATTGCCAGGIdentical23b23bGSPSEQ ID NO:77SEQ ID NO:78miR-24miR-CATGATCAGCTGGGCCAAGACTGTTCCTGCmiR24-1, 2RTGG+CTCAGTTCAGCIdentical24P5TGSEQ ID NO:19SEQ ID NO:7miR-25miR-CATGATCAGCTGGGCCAAGATCAGACCGAGmiR-25RPC+AT+TGCACTTGTCTCIdentical25GSPSEQ ID NO:79SEQ ID NO:80miR-miR-CATGATCAGCTGGGCCAAGAGCCTATCCTmiR-26aRP2TT+CA+AGTAATCCAGGATIdentical26a26aGSP9SEQ ID NO:81SEQ ID NO:82miR-miR-CATGATCAGCTGGGCCAAGAAACCTATCCmiR-26bRP2TT+CA+AGT+AATTCAGGATIdentical26b26bGSP9SEQ ID NO:83SEQ ID NO:84miR-miR-CATGATCAGCTGGGCCAAGAGCGGAACTTAmiR-27aRPTT+CA+CAGTGGCTAAIdentical27a27aGSPSEQ ID NO:85SEQ ID NO:86miR-miR-CATGATCAGCTGGGCCAAGAGCAGAACTTAmiR-27bRPTT+CA+CAGTGGCTAAIdentical27b27bGSPSEQ ID NO:87SEQ ID NO:88miR-28miR-CATGATCAGCTGGGCCAAGACTCAATAGACmiR-28RPA+AG+GAGCTCACAGTIdentical28GSPSEQ ID NO:89SEQ ID NO:90miR-miR-CATGATCAGCTGGGCCAAGAAACCGATTmiR-29aRP2T+AG+CACCATCTGAAATIdentical29a29aGSP8SEQ ID NO:91SEQ ID NO:92miR-miR-CATGATCAGCTGGGCCAAGAAACACTGATmiR-29bRP2T+AG+CACCATTTGAAATCAGIdentical29b29bGSP2SEQ ID NO:93SEQ ID NO:94miR-miR-CATGATCAGCTGGGCCAAGACTTCCAGTCGmiR-30a-T+GT+AAACATCCTCGACIdentical30a-5p30a-5pGSPSEQ ID NO:955pRPSEQ ID NO:96miR-miR-CATGATCAGCTGGGCCAAGAAGCTGAGTGTmiR-30bRPTGT+AAA+CATCCTACACTIdentical30b30bGSPSEQ ID NO:97SEQ ID NO:98miR-miR-CATGATCAGCTGGGCCAAGAGCTGAGAGTGmiR-30cRPTGT+AAA+CATCCTACACTIdentical30c30cGSPSEQ ID NO:99SEQ ID NO:100miR-miR-CATGATCAGCTGGGCCAAGACTTCCAGTCGmiR-30dRPT+GTAAA+CATCCCCGIdentical30d30dGSPSEQ ID NO:101SEQ ID NO:102miR-miR-CATGATCAGCTGGGCCAAGAGCTGTAAACmiR-30e-CTTT+CAGT+CGGATGTTTIdentical30e-3p30e-3pGSP9SEQ ID NO:1033pRP5SEQ ID NO:104miR-31miR-CATGATCAGCTGGGCCAAGACAGCTATGCCmiR-31RPG+GC+AAGATGCTGGCIdentical over-31GSPSEQ ID NO:107SEQ ID NO:108lapping sequence,ends differmiR-32miR-CATGATCAGCTGGGCCAAGAGCAACTTAGTmiR-32RPTATTG+CA+CATTACTAAGIdentical32GSPSEQ ID NO:109SEQ ID NO:110miR-33miR-CATGATCAGCTGGGCCAAGACAATGCAACmiR-33RPG+TG+CATTGTAGTTGCIdentical33GSP2SEQ ID NO:111SEQ ID NO:112miR-miR-CATGATCAGCTGGGCCAAGAAACAACCAGCmiR-34aRPT+GG+CAGTGTCTTAGIdentical34a34aGSPSEQ ID NO:113SEQ ID NO:114miR-miR-CATGATCAGCTGGGCCAAGACAATCAGCTAmiR-34bRPTA+GG+CAGTGTAATTone or more base34b34bGSPSEQ ID NO:115SEQ ID NO:482pairs differmiR-miR-CATGATCAGCTGGGCCAAGAGCAATCAGCTmiR-34cRPA+GG+CAGTGTAGTTAIdentical34c34cGSPSEQ ID NO:117SEQ ID NO:118miR-92miR-CATGATCAGCTGGGCCAAGACAGGCCGGGAmiR-92RPT+AT+TGCACTTGTCCCIdentical92GSPSEQ ID NO:119SEQ ID NO:120miR-93miR-CATGATCAGCTGGGCCAAGACTACCTGCACmiR-93RPAA+AG+TGCTGTTCGTIdentical over-93GSPSEQ ID NO:121SEQ ID NO:122lapping sequence,ends differmiR-96miR-CATGATCAGCTGGGCCAAGAGCAAAAATGTmiR-96RPT+TT+GGCACTAGCACIdentical over-96GSPSEQ ID NO:125SEQ ID NO:126lapping sequence,ends differmiR-98miR-CATGATCAGCTGGGCCAAGAAACAATACAAmiR-98RPTGA+GGT+AGTAAGTTGIdentical98GSPSEQ ID NO:127SEQ ID NO:128miR-miR-CATGATCAGCTGGGCCAAGACACAAGATCGmiR-99aRPA+AC+CCGTAGATCCGIdentical over-99a99aGSPSEQ ID NO:129SEQ ID NO:130lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGACGCAAGGTCGmiR-99bRPC+AC+CCGTAGAACCGIdentical99b99bGSPSEQ ID NO:131SEQ ID NO:132miR-miR-CATGATCAGCTGGGCCAAGACACAAGTTCGmiR-100RPA+AC+CCGTAGATCCGIdentical100100GSPSEQ ID NO:133SEQ ID NO:134miR-miR-CATGATCAGCTGGGCCAAGACTTCAGTTATmiR-101RPTA+CAG+TACTGTGATAACTIdentical101101GSPSEQ ID NO:135SEQ ID NO:136miR-miR-CATGATCAGCTGGGCCAAGATCATAGCCCTmiR-103RPA+GC+AGCATTGTACAIdentical103103GSPSEQ ID NO:137SEQ ID NO:138miR-miR-CATGATCAGCTGGGCCAAGATACCTGCACmiR-106aRPCAA+AG+TGCTAACAGTGone or more base106a106aGSPSEQ ID NO:472SEQ ID NO:473pairs differmiR-miR-CATGATCAGCTGGGCCAAGAATCTGCACTGmiR-106bRPT+AAAG+TGCTGACAGTIdentical106b106bGSPSEQ ID NO:143SEQ ID NO:144miR-miR-CATGATCAGCTGGGCCAAGATGATAGCCmiR-107RP2A+GC+AGCATTGTACAGIdentical107107GSP8SEQ ID NO:145SEQ ID NO:146miR-miR-CATGATCAGCTGGGCCAAGAACAAACACCAmiR-122aRPT+GG+AGTGTGACAATIdentical122a122aGSPSEQ ID NO:147SEQ ID NO:148miR-miR-CATGATCAGCTGGGCCAAGATGGCATTCACmiR-124aRPT+TA+AGGCACGCGGTIdentical over-124a124aGSPSEQ ID NO:149SEQ ID NO:150lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGACACAGGTTAAmiR-125aRPT+CC+CTGAGACCCTTIdentical125a125aGSPSEQ ID NO:151SEQ ID NO:152miR-miR-CATGATCAGCTGGGCCAAGATCACAAGTTAmiR-125bRPT+CC+CTGAGACCCTAIdentical125b125bGSPSEQ ID NO:153SEQ ID NO:154miR-miR-CATGATCAGCTGGGCCAAGAGCATTATTACmiR-126RPT+CG+TACCGTGAGTAIdentical126126GSPSEQ ID NO:155SEQ ID NO:156miR-miR-CATGATCAGCTGGGCCAAGACGCGTACCmiR-126*RPC+ATT+ATTA+CTTTTGGTACGIdentical126*126*GSP3SEQ ID NO:157SEQ ID NO:158miR-miR-CATGATCAGCTGGGCCAAGAAGCCAAGCTCmiR-127RPT+CG+GATCCGTCTGAIdentical over-127127GSPSEQ ID NO:159SEQ ID NO:160lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGAAAAAGAGACCmiR-128aRPT+CA+CAGTGAACCGGIdentical128a128aGSPSEQ ID NO:161SEQ ID NO:162miR-miR-CATGATCAGCTGGGCCAAGAGAAAGAGACCmiR-128bRPT+CA+CAGTGAACCGGIdentical128b128bGSPSEQ ID NO:163SEQ ID NO:164miR-miR-CATGATCAGCTGGGCCAAGAATGCCCTTTTmiR-130aRPC+AG+TGCAATGTTAAAAGIdentical130a130aGSPSEQ ID NO:167SEQ ID NO:168miR-miR-CATGATCAGCTGGGCCAAGAATGCCCTTTCmiR-130bRPC+AG+TGCAATGATGAIdentical130b130bGSPSEQ ID NO:169SEQ ID NO:170miR-miR-CATGATCAGCTGGGCCAAGACGACCATGGCmiR-132RPT+AA+CAGTCTACAGCCIdentical132132GSPSEQ ID NO:171SEQ ID NO:172miR-miR-CATGATCAGCTGGGCCAAGAACAGCTGGTTmiR-133aRPT+TG+GTCCCCTTCAAIdentical133a133aGSPSEQ ID NO:173SEQ ID NO:174miR-miR-CATGATCAGCTGGGCCAAGATAGCTGGTTGmiR-133bRPT+TG+GTCCCCTTCAAIdentical133b133bGSPSEQ ID NO:175SEQ ID NO:176miR-miR-CATGATCAGCTGGGCCAAGACCCTCTGGTCmiR-134RPT+GT+GACTGGTTGACIdentical over-134134GSPSEQ ID NO:177SEQ ID NO:178lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGATCACATAGGAmiR-135aRPT+AT+GGCTTTTTATTCCTIdentical135a135aGSPSEQ ID NO:179SEQ ID NO:180miR-miR-CATGATCAGCTGGGCCAAGACACATAGGAAmiR-135bRPT+AT+GGCTTTTCATTCCIdentical135b135bGSPSEQ ID NO:181SEQ ID NO:182miR-miR-CATGATCAGCTGGGCCAAGATCCATCATCAmiR-136RPA+CT+CCATTTGTTTTGATGIdentical136136GSPSEQ ID NO:183SEQ ID NO:184miR-miR-CATGATCAGCTGGGCCAAGACTACGCGTATmiR-137RPT+AT+TGCTTAAGAATACGCIdentical over-137137GSPSEQ ID NO:185SEQ ID NO:186lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGACGGCCTGATmiR-138RPA+GC+TGGTGTTGTGAIdentical138138GSP2SEQ ID NO:187SEQ ID NO:188miR-miR-CATGATCAGCTGGGCCAAGAAGACACGTGCmiR-139RPT+CT+ACAGTGCACGTIdentical139139GSPSEQ ID NO:189SEQ ID NO:190miR-miR-CATGATCAGCTGGGCCAAGACTACCATAGGmiR-140RPA+GT+GGTTTTACCCTIdentical over-140140GSPSEQ ID NO:191SEQ ID NO:192lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGACCATCTTTAmiR-141RP2TAA+CAC+TGTCTGGTAAIdentical141141GSP9SEQ ID NO:193SEQ ID NO:194miR-miR-CATGATCAGCTGGGCCAAGATCCATAAAmiR-142-TGT+AG+TGTTTCCTACTIdentical over-142-3p142-3pGSP3SEQ ID NO:1953pRPSEQ ID NO:196lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGATGAGCTACmiR-143RP2T+GA+GATGAAGCACTGIdentical143143GSP8SEQ ID NO:197SEQ ID NO:198miR-miR-CATGATCAGCTGGGCCAAGACTAGTACATmiR-144RPTA+CA+GTAT+AGATGATGIdentical144144GSP2SEQ ID NO:199SEQ ID NO:200miR-miR-CATGATCAGCTGGGCCAAGAAAGGGATTCmiR-145RPG+TC+CAGTTTTCCCAIdentical145145GSP2SEQ ID NO:201SEQ ID NO:202miR-miR-CATGATCAGCTGGGCCAAGAAACCCATGmiR-146RPT+GA+GAACTGAATTCCAIdentical146146GSP3SEQ ID NO:203SEQ ID NO:204miR-miR-CATGATCAGCTGGGCCAAGAACAAAGTTCmiR-148aRP2T+CA+GTGCACTACAGAACTIdentical148a148aGSP2SEQ ID NO:207SEQ ID NO:208miR-miR-CATGATCAGCTGGGCCAAGAACAAAGTTCmiR-148bRPT+CA+GTGCATCACAGIdentical148b148bGSP2SEQ ID NO:209SEQ ID NO:210miR-miR-CATGATCAGCTGGGCCAAGAGGAGTGAAGmiR-149RPT+CT+GGCTCCGTGTCIdentical149149GSP2SEQ ID NO:211SEQ ID NO:212miR-miR-CATGATCAGCTGGGCCAAGACACTGGTAmiR-150RPT+CT+CCCAACCCTTGIdentical150150GSP3SEQ ID NO:213SEQ ID NO:214miR-miR-CATGATCAGCTGGGCCAAGACCTCAAGGAmiR-151RPA+CT+AGACTGAGGCTCone or more base151151GSP2SEQ ID NO:215SEQ ID NO:477pairs differmiR-miR-CATGATCAGCTGGGCCAAGACCCAAGTTCmiR-152RPT+CA+GTGCATGACAGIdentical152152GSP2SEQ ID NO:217SEQ ID NO:218miR-miR-CATGATCAGCTGGGCCAAGATCACTTTTGmiR-153RPTTG+CAT+AGTCACAAAAIdentical over-153153GSP2SEQ ID NO:219SEQ ID NO:220lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGACGAAGGCAAmiR-154RP3TA+GGTTA+TCCGTGTTIdentical154154GSP9SEQ ID NO:223SEQ ID NO:224miR-miR-CATGATCAGCTGGGCCAAGACCCCTATCmiR-155RP2TT+AA+TGCTAATTGTGATAGGone or more base155155GSP8SEQ ID NO:225SEQ ID NO:489pairs differmiR-miR-CATGATCAGCTGGGCCAAGAACTCACCGAmiR-181aRP2AA+CATT+CAACGCTGTCIdentical181a181aGSP9SEQ ID NO:227SEQ ID NO:228miR-miR-CATGATCAGCTGGGCCAAGAACTCACCGAmiR-181cRP2AA+CATT+CAACCTGTCGIdentical181c181cGSP9SEQ ID NO:229SEQ ID NO:230miR-miR-CATGATCAGCTGGGCCAAGATAGTTGGCAAmiR-182*RPT+GG+TTCTAGACTTGCIdentical182182*GSPSEQ ID NO:231SEQ ID NO:232miR-miR-CATGATCAGCTGGGCCAAGACAGTGAATTmiR-183RPT+AT+GGCACTGGTAGIdentical183183GSP2SEQ ID NO:235SEQ ID NO:236miR-miR-CATGATCAGCTGGGCCAAGAACCCTTATCmiR-184RPT+GG+ACGGAGAACTGIdentical184184GSP2SEQ ID NO:237SEQ ID NO:238miR-miR-CATGATCAGCTGGGCCAAGAAAGCCCAAAmiR-186RP3CA+AA+GAATT+CTCCTTTTGGIdentical186186GSP9SEQ ID NO:239SEQ ID NO:240miR-miR-CATGATCAGCTGGGCCAAGACGGCTGCAACmiR-187RPT+CG+TGTCTTGTGTTIdentical over-187187GSPSEQ ID NO:241SEQ ID NO:242lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGAACCCTCCACCmiR-188RPC+AT+CCCTTGCATGGIdentical188188GSPSEQ ID NO:243SEQ ID NO:244miR-miR-CATGATCAGCTGGGCCAAGAACTGATATCmiR-189RPG+TG+CCTACTGAGCTIdentical189189GSP2SEQ ID NO:245SEQ ID NO:246miR-miR-CATGATCAGCTGGGCCAAGAACCTAATATmiR-190RP4T+GA+TA+TGTTTGATATATTAGIdentical190190GSP9SEQ ID NO:247SEQ ID NO:248miR-miR-CATGATCAGCTGGGCCAAGAAGCTGCTTTmiR-191RP2C+AA+CGGAATCCCAAAAGIdentical191191GSP2SEQ ID NO:249SEQ ID NO:250miR-miR-CATGATCAGCTGGGCCAAGAGGCTGTCAAmiR-192RPC+TGA+CCTATGAATTGACIdentical over-192192GSP2SEQ ID NO:251SEQ ID NO:252lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGACTGGGACTTmiR-193RP2AA+CT+GGCCTACAAAGIdentical193193GSP9SEQ ID NO:253SEQ ID NO:254miR-mirCATGATCAGCTGGGCCAAGATCCACATGmir194RPTG+TAA+CAGCAACTCCAIdentical194194GSP8SEQ ID NO:255SEQ ID NO:256miR-miR-CATGATCAGCTGGGCCAAGAGCCAATATTmiR-195RP3T+AG+CAG+CACAGAAATAIdentical195195GSP9SEQ ID NO:257SEQ ID NO:258miR-miR-CATGATCAGCTGGGCCAAGACCAACAACATmiR-196aRPTA+GG+TAGTTTCATGTTGIdentical196a196aGSPSEQ ID NO:261SEQ ID NO:262miR-miR-CATGATCAGCTGGGCCAAGACCAACAACAGmiR-196bRPTA+GGT+AGTTTCCTGTIdentical196b196bGSPSEQ ID NO:259SEQ ID NO:260miR-miR-CATGATCAGCTGGGCCAAGAAACCAATGTmiR-199a*RPT+AC+AGTAGTCTGCACIdentical199a*199a*GSP2SEQ ID NO:267SEQ ID NO:268miR-miR-CATGATCAGCTGGGCCAAGAGAACAGGTAmiR-199aRPC+CC+AGTGTTCAGACIdentical199a199aGSP2SEQ ID NO:269SEQ ID NO:270miR-miR-CATGATCAGCTGGGCCAAGAGAACAGGTAGmiR-199bRPC+CC+AGTGTTTAGACone or more base199b199bGSPSEQ ID NO:475SEQ ID NO:272pairs differmiR-miR-CATGATCAGCTGGGCCAAGAACATCGTTAmiR-200aRPTAA+CAC+TGTCTGGTIdentical200a200aGSP2SEQ ID NO:273SEQ ID NO:274miR-miR-CATGATCAGCTGGGCCAAGAGTCATCATTmiR-200bRPTAATA+CTG+CCTGGTAATIdentical200b200bGSP2SEQ ID NO:275SEQ ID NO:276miR-miR-CATGATCAGCTGGGCCAAGACTAGTGGTCmiR-203RPG+TG+AAATGTTTAGGACCIdentical over-203203GSP2SEQ ID NO:279SEQ ID NO:280lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGAAGGCATAGGmiR-204RPT+TC+CCTTTGTCATCCIdentical over-204204GSP2SEQ ID NO:281SEQ ID NO:282lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGACAGACTCCGGmiR-205RPT+CCTT+CATTCCACCIdentical205205GSPSEQ ID NO:283SEQ ID NO:284miR-mirCATGATCAGCTGGGCCAAGACCACACAmiR-206RPT+G+GAA+TGTAAGGAAGTGTIdentical206206GSP7SEQ ID NO:285SEQ ID NO:286miR-miR-CATGATCAGCTGGGCCAAGAACAAGCTTTTmiR-208_RP4ATAA+GA+CG+AGCAAAAAGIdentical208208_GSP13TGCSEQ ID NO:288SEQ ID NO:287miR-miR-CATGATCAGCTGGGCCAAGATCAGCCGCTGmiR-210RPC+TG+TGCGTGTGACAIdentical210210GSPSEQ ID NO:289SEQ ID NO:290miR-miR-CATGATCAGCTGGGCCAAGAAGGCAAAGGmiR-211RPT+TC+CCTTTGTCATCCone or more base211211GSP2SEQ ID NO:491SEQ ID NO:292pairs differmiR-miR-CATGATCAGCTGGGCCAAGAGGCCGTGACmiR-212RP2T+AA+CAGTCTCCAGTCAIdentical212212GSP9SEQ ID NO:293SEQ ID NO:294miR-miR-CATGATCAGCTGGGCCAAGAGGTACAATCAmiR-213RPA+CC+ATCGACCGTTGIdentical213213GSPSEQ ID NO:295SEQ ID NO:296miR-miR-CATGATCAGCTGGGCCAAGACTGCCTGTCTmiR-214RPA+CA+GCAGGCACAGAIdentical214214GSPSEQ ID NO:297SEQ ID NO:298miR-miR-CATGATCAGCTGGGCCAAGAGTCTGTCAAmiR-215RPA+TGA+CCTATGATTTGACone or more base215215GSP2SEQ ID NO:299SEQ ID NO:469pairs differmiR-miR-CATGATCAGCTGGGCCAAGACACAGTTGCmir216RPTAA+TCT+CAGCTGGCAIdentical216216GSP9SEQ ID NO:301SEQ ID NO:302miR-miR-CATGATCAGCTGGGCCAAGAATCCAGTCAmiR-217RP2T+AC+TGCATCAGGAACTGAone or more base217217GSP2SEQ ID NO:481SEQ ID NO:304pairs differmiR-miR-CATGATCAGCTGGGCCAAGAACATGGTTAmiR-218RPTTG+TGCTT+GATCTAACIdentical218218GSP2SEQ ID NO:305SEQ ID NO:306miR-miR-CATGATCAGCTGGGCCAAGAGAAACCCAGmiR-221RPA+GC+TACATTGTCTGCIdentical over-221221GSP9SEQ ID NO:309SEQ ID NO:310lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGAGAGACCCAmiR-222RPA+GC+TACATCTGGCTIdentical222222GSP8SEQ ID NO:311SEQ ID NO:312miR-miR-CATGATCAGCTGGGCCAAGAGGGGTATTTGmiR-223RPTG+TC+AGTTTGTCAAAIdentical223223GSPSEQ ID NO:313SEQ ID NO:314miR-miR-CATGATCAGCTGGGCCAAGATAAACGGAmiR-224RP2C+AAG+TCACTAGTGGTTIdentical over-224224GSP8SEQ ID NO:315SEQ ID NO:316lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGAACAGGATTGmiR-296RP2A+GG+GCCCCCCCTCAAIdentical296296GSP9SEQ ID NO:317SEQ ID NO:318miR-miR-CATGATCAGCTGGGCCAAGAATGTATGTGmiR-299RPT+GG+TTTACCGTCCCIdentical299299GSP9SEQ ID NO:319SEQ ID NO:320miR-miR-CATGATCAGCTGGGCCAAGAGCTTTGACAAmiR-301RPC+AG+TGCAATAGTATTGTIdentical301301GSPSEQ ID NO:321SEQ ID NO:322miR-miR-CATGATCAGCTGGGCCAAGATCACCAAAACmiR-302aRPT+AAG+TGCTTCCATGTIdentical302a302aGSPSEQ ID NO:325SEQ ID NO:326miR-miR-CATGATCAGCTGGGCCAAGATTCGCCCTmiR-320_RP3AAAA+GCT+GGGTTGAGAGGIdentical320320_GSP8SEQ ID NO:337SEQ ID NO:338miR-miR-CATGATCAGCTGGGCCAAGAAGAGGTCGACmiR-323RPG+CA+CATTACACGGTIdentical323323GSPSEQ ID NO:339SEQ ID NO:340miR-miR-CATGATCAGCTGGGCCAAGACCAGCAGCACmiR-324-C+CA+CTGCCCCAGGTIdentical324-3p324-3pGSPSEQ ID NO:3413pRPSEQ ID NO:342miR-miR-CATGATCAGCTGGGCCAAGAACACCAATGCmiR-324-C+GC+ATCCCCTAGGGIdentical over-324-5p324-5pGSPSEQ ID NO:3435pRPSEQ ID NO:344lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGAACACTTACTGmiR-325RPC+CT+AGTAGGTGCTCone or more base325325GSPSEQ ID NO:345SEQ ID NO:476pairs differmiR-miR-CATGATCAGCTGGGCCAAGACTGGAGGAAGmiR-326RPC+CT+CTGGGCCCTTCIdentical over-326326GSPSEQ ID NO:347SEQ ID NO:348lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGAACGGAAGGGCmiR-328RPC+TG+GCCCTCTCTGCIdentical328328GSPSEQ ID NO:349SEQ ID NO:350miR-miR-CATGATCAGCTGGGCCAAGATCTCTGCAGGmiR-330RPG+CA+AAGCACAGGGCone or more base330330GSPSEQ ID NO:351SEQ ID NO:478pairs differmiR-miR-CATGATCAGCTGGGCCAAGATTCTAGGATAmiR-331RPG+CC+CCTGGGCCTATIdentical331331GSPSEQ ID NO:353SEQ ID NO:354miR-miR-CATGATCAGCTGGGCCAAGAAAAGGCATCAmiR-337RPT+TC+AGCTCCTATATGone or more base337337GSPSEQ ID NO:355SEQ ID NO:490pairs differmiR-miR-CATGATCAGCTGGGCCAAGATCAACAAAATmiR-338RP2T+CC+AGCATCAGTGATTTIdentical338338GSPSEQ ID NO:357SEQ ID NO:358miR-miR-CATGATCAGCTGGGCCAAGATGAGCTCCTmiR-339RP2T+CC+CTGTCCTCCAGGIdentical339339GSP9SEQ ID NO:359SEQ ID NO:360miR-miR-CATGATCAGCTGGGCCAAGAGGCTATAAAGmiR-340RPTC+CG+TCTCAGTTACIdentical340340GSPSEQ ID NO:361SEQ ID NO:362miR-miR-CATGATCAGCTGGGCCAAGAGACGGGTGmiR-342RPT+CT+CACACAGAAATCGIdentical342342GSP3SEQ ID NO:363SEQ ID NO:364miR-miR-CATGATCAGCTGGGCCAAGAGCACTGGACTmiR-345RPT+GC+TGACCCCTAGTone or more base345345GSPSEQ ID NO:484SEQ ID NO:485pairs differmiR-miR-CATGATCAGCTGGGCCAAGAAGAGGCAGGCmiR-346RPT+GT+CTGCCCGAGTGone or more base346346GSPSEQ ID NO:367SEQ ID NO:488pairs differmiR-miR-CATGATCAGCTGGGCCAAGATACAGATGGAmiR-363RPAAT+TG+CAC+GGTATCCIdentical363363GSP10SEQ ID NO:369SEQ ID NO:370miR-miR-CATGATCAGCTGGGCCAAGACCAGGTTCCAmiR-370RPG+CC+TGCTGGGGTGGIdentical over-370370GSPSEQ ID NO:375SEQ ID NO:376lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGATCACGCGAGCmiR-375RPTT+TG+TTCGTTCGGCIdentical375375GSPSEQ ID NO:387SEQ ID NO:388miR-miR-CATGATCAGCTGGGCCAAGAACGTGGATmiR-376aRP2A+TCGTAGA+GGAAAATCCACone or more base376a376aGSP3SEQ ID NO:467SEQ ID NO:468pairs differmiR-miR-CATGATCAGCTGGGCCAAGAACACAGGACCmiR-378RPC+TC+CTGACTCCAGGIdentical378378GSPSEQ ID NO:391SEQ ID NO:392miR-miR-CATGATCAGCTGGGCCAAGATACGTTCmiR-379RP2T+GGT+AGACTATGGAACGIdentical over-379379_GSP7SEQ ID NO:393SEQ ID NO:394lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGAGCGCATGTTCmiR-380-T+GGT+TGACCATAGAIdentical380-5p380-5pGSPSEQ ID NO:3955pRPSEQ ID NO:396miR-miR-CATGATCAGCTGGGCCAAGAAAGATGTGGAmiR-380-TA+TG+TAGTATGGTCCACAone or more base380-3p380-3pGSPSEQ ID NO:3953pRPSEQ ID NO:483pairs differmiR-miR-CATGATCAGCTGGGCCAAGAACAGAGAGCmiR-381RP2TATA+CAA+GGGCAAGCTIdentical381381GSP2SEQ ID NO:399SEQ ID NO:400miR-miR-CATGATCAGCTGGGCCAAGACGAATCCACCmiR-382RPG+AA+GTTGTTCGTGGTIdentical382382GSPSEQ ID NO:401SEQ ID NO:402miR-miR-CATGATCAGCTGGGCCAAGAAGCCACAGTCmiR-383RP2A+GATC+AGAAGGTGACTGTone or more base383383GSPSEQ ID NO:465SEQ ID NO:466pairs differmiR-miR-CATGATCAGCTGGGCCAAGATGTGAACAAmiR-384_RP5ATT+CCT+AG+AAATTGTTCone or more base384384_GSP9SEQ ID NO:470SEQ ID NO:471pairs differmiR-miR-CATGATCAGCTGGGCCAAGAACAGGCCATmiR-410RPAA+TA+TAA+CA+CAGATGGCIdentical410410 GSP9SEQ ID NO:405SEQ ID NO:406miR-miR-CATGATCAGCTGGGCCAAGAACGGCTAGTGmiR-412RPA+CTT+CACCTGGTCCACTAIdentical412412 GSP10SEQ ID NO:407SEQ ID NO:408miR-miR-CATGATCAGCTGGGCCAAGATCCAAAACATmiR-424RP2C+AG+CAGCAATTCATGTTTTone or more base424424GSPSEQ ID NO:474SEQ ID NO:414pairs differmiR-miR-CATGATCAGCTGGGCCAAGAGGCGGACACGmiR-425RPA+TC+GGGAATGTCGTIdentical425425GSPSEQ ID NO:417SEQ ID NO:418miR-miR-CATGATCAGCTGGGCCAAGAACGGCATTACCmiR-429RP5T+AATAC+TG+TCTGGTAATGone or more base429429_GSP11SEQ ID NO:479SEQ ID NO:480pairs differmiR-miR-CATGATCAGCTGGGCCAAGATGCATGACGGmiR-431RPT+GT+CTTGCAGGCCGIdentical over-431431 GSP10SEQ ID NO:421SEQ ID NO:422lapping sequence,ends differmiR-miR-CATGATCAGCTGGGCCAAGAATGGGACATCmiR-448RPTTG+CATA+TGTAGGATGIdentical448448GSPSEQ ID NO:423SEQ ID NO:424miR-miR-CATGATCAGCTGGGCCAAGAACCAGCTAACmiR-449RP2T+GG+CAGTGTATTGTTAGCIdentical449449GSP10SEQ ID NO:425SEQ ID NO:426miR-miR-CATGATCAGCTGGGCCAAGATATTAGGAACmiR-450RPTTTT+TG+CGATGTGTTIdentical450450GSPSEQ ID NO:427SEQ ID NO:428miR-miR-CATGATCAGCTGGGCCAAGAAAACTCAGTAmiR-451RPAAA+CCG+TTA+CCATTACTGAIdentical over-451451 GSP10SEQ ID NO:429SEQ ID NO:430lapping sequence,ends differlet7alet7a-GSP2CATGATCAGCTGGGCCAAGAAACTATAClet7a-RPT+GA+GGTAGTAGGTTGIdentical over-SEQ ID NO:431SEQ ID NO:432lapping sequence,ends differlet7blet7b-GSP2CATGATCAGCTGGGCCAAGAAACCACAClet7b-RPT+GA+GGTAGTAGGTTGIdenticalSEQ ID NO:433SEQ ID NO:432let7clet7c-GSP2CATGATCAGCTGGGCCAAGAAACCATAClet7c-RPT+GA+GGTAGTAGGTTGIdenticalSEQ ID NO:434SEQ ID NO:432let7dlet7d-GSP2CATGATCAGCTGGGCCAAGAACTATGCAlet7d-RPA+GA+GGTAGTAGGTTGIdenticalSEQ ID NO:435SEQ ID NO:436let7elet7e-GSP2CATGATCAGCTGGGCCAAGAACTATACAlet7e-RPT+GA+GGTAGGAGGTTGIdenticalSEQ ID NO:437SEQ ID NO:438let7flet7f-GSP2CATGATCAGCTGGGCCAAGAAACTATAClet7f-RPT+GA+GGTAGTAGATTGIdentical over-SEQ ID NO:439SEQ ID NO:440lapping sequence,ends differlet7glet7g-GSP2CATGATCAGCTGGGCCAAGAACTGTACAlet7g-RPT+GA+GGTAGTAGTTTGIdenticalSEQ ID NO:441SEQ ID NO:442let7ilet7i-GSP2CATGATCAGCTGGGCCAAGAACAGCACAlet7i-RPT+GA+GGTAGTAGTTTGIdenticalSEQ ID NO:443SEQ ID NO:444


EXAMPLE 5

This Example describes the detection and analysis of expression profiles for three microRNAs in total RNA isolated from twelve different tissues using methods in accordance with an embodiment of the present invention.


Methods: Quantitative analysis of miR-1, miR-124 and miR-150 microRNA templates was determined using 0.5 μg of First Choice total RNA (Ambion, Inc.) per 10 μl primer extension reaction isolated from the following tissues: brain, heart, intestine, kidney, liver, lung, lymph, ovary, skeletal muscle, spleen, thymus and uterus. The primer extension enzyme and quantitative PCR reactions were carried out as described above in EXAMPLE 3, using the following PCR primers:


miR-1 Template:

extension primer:CATGATCAGCTGGGCCAAGATACATACTTC(SEQ ID NO:47)reverse primer:T+G+GAA+TG+TAAAGAAGT(SEQ ID NO:48)forward primer:CATGATCAGCTGGGCCAAGA(SEQ ID NO:13)


miR-124 Template:

extension primer:CATGATCAGCTGGGCCAAGATGGCATTCAC(SEQ ID NO:149)reverse primer:T+TA+AGGCACGCGGT(SEQ ID NO:150)forward primer:CATGATCAGCTGGGCCAAGA(SEQ ID NO:13)


miR-150 Template:

extension primer:CATGATCAGCTGGGCCAAGACACTGGTA(SEQ ID NO:213)reverse primer:T+CT+CCCAACCCTTG(SEQ ID NO:214)forward primer:CATGATCAGCTGGGCCAAGA(SEQ ID NO:13)


Results. The expression profiles for miR-1, miR-124 and miR-150 are shown in FIGS. 3A, 3B, and 3C, respectively. The data in FIGS. 3A-3C are presented in units of microRNA copies per 10 pg of total RNA (y-axis). These units were chosen since human cell lines typically yield ≦10 pg of total RNA per cell. Hence the data shown are estimates of microRNA copies per cell. The numbers on the x-axis correspond to the following tissues: (1) brain, (2) heart, (3) intestine, (4) kidney, (5) liver, (6) lung, (7) lymph, (8) ovary, (9) skeletal muscle, (10) spleen, (11) thymus and (12) uterus.


Consistent with previous reports, very high levels of striated muscle-specific expression were found for miR-1 (as shown in FIG. 3A), and high levels of brain expression were found for miR-124 (as shown in FIG. 3B) (see Lagos-Quintana et al., RNA 9:175-179, 2003). Quantitative analysis reveals that these microRNAs are present at tens to hundreds of thousands of copies per cell. These data are in agreement with quantitative Northern blot estimates of miR-1 and miR-124 levels (see Lim et al., Nature 433:769-773, 2005). As shown in FIG. 3C, miR-150 was found to be highly expressed in the immune-related lymph node, thymus and spleen samples which is also consistent with previous findings (see Baskerville et al., RNA 11:241-247, 2005).


EXAMPLE 6

This Example describes the selection and validation of primers for detecting mammalian microRNAs of interest.


Rationale: In order to perform multiple assays to detect a plurality of microRNA targets in a single sample (i.e., multiplex PCR), it is important that the assays work under uniform reverse transcriptase and PCR cycling conditions in a common buffer system with a single universal primer. The following primer design principles and high throughput assays were utilized to identify useful primer sets for desired microRNA targets that work well under the designated reaction conditions.


Primer Design:


As described in Example 2, the sensitivity of an assay to detect mammalian microRNA targets using the methods of the invention may be measured by the cycle threshold (Ct) value. The lower the Ct value (e.g., the fewer number of cycles), the more sensitive is the assay. The Δ Ct value is the difference between the number of cycles (Ct) between template containing samples and no template controls, and serves as a measure of the dynamic range of the assay. Assays with a high dynamic range allow measurements of very low microRNA copy numbers. Accordingly, desirable characteristics of a microRNA detection assay include high sensitivity (low Ct value) (preferably in the range of from about 5 to about 25, such as from about 10 to about 20), broad dynamic range (preferably in the range of from about 10 and 35, such as Δ Ct≧12) between the signal of a sample containing target template and a no template background control sample.


microRNA Target Templates: Representative mammalian microRNA target templates (h=human, r=rat, m=mouse) are provided in Table 9 (SEQ ID NO:966 to SEQ ID NO:1043) which are publically available and accessible on the World Wide Web at the Wellcome Trust Sanger Institute website in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111 and Griffith-Jones et al. (2006), Nucleic Acids Research 34:D140-D144.


Extension Primers:


Empirical data generated as described in Examples 1-5 suggests that gene specific (GS) extension primers are primarily responsible for the dynamic range of the assays for detecting mammalian microRNA targets using the methods described herein. As described in Example 2, it was determined that the dynamic range (Δ Ct) and specificity of the assays tested decreased for extension primers having gene specific regions below 6 to 7 nucleotides. Therefore, in order to optimize microRNA detection assays, extension primers were designed that have 7 to 10 nucleotide overlap with the microRNA target of interest. Exemplary extension primers for the microRNA targets listed in TABLE 9 are provided in TABLE 8 (SEQ ID NO:500 to SEQ ID NO:965). These exemplary extension primers have a gene specific (GS) region from 7 to 10 nucleotide overlap with the microRNA target of interest.


Reverse Primers:


Unmodified and locked nucleic acid (LNA)-containing reverse primers were designed to quantify the primer-extended, full length cDNA in combination with a generic universal forward primer (SEQ ID NO:13). Based on the data generated as described in Examples 1-5, it was determined that the design of the reverse primers contributes to the efficiency of the PCR reactions, with the observation that the longer the reverse primer, the better the PCR performance. However, it was also observed that the longer the overlap with the extension primer, the higher the background. Therefore, the reverse primers were designed to be as long as possible while minimizing the overlap with the gene specific portion of the extension primer, in order to reduce the non-specific background signal.


In addition, as described in Example 3, LNA base substitutions may be selected to raise the predicted Tm of the primer, with two or three LNA base substitutions typically substituted within the first 8 nucleotides from the 5′ end of the reverse primer oligonucleotide. Exemplary reverse primers for the microRNA targets listed in TABLE 9 are provided in TABLE 8. While these exemplary reverse primers contain LNA base substitutions (the “+” symbol preceding a nucleotide designates an LNA substitution), this feature is optional and not required.


Selection and Validation of Primers for a Desired Target:


Assay Oligonucleotide Selection is Made in Two Steps as Follows:


1) Primer designs were determined using the principles described above. Typically, 4 extension primer candidates and 2 reverse primer candidates were designed for each microRNA target of interest. The extension primers in each set overlap the gene specific region by 7, 8, 9 and 10 nucleotides, respectively, at the 3′ end. Exemplary primers designed according to these design principles are provided in TABLE 8 for the microRNA targets listed in TABLE 9.


Assay Design to Validate the Candidate Primer Sets (Assay #1)


microRNA Target:


Exemplary target microRNA miR-495 has an RNA target sequence (SEQ ID NO:966) that is conserved across human (h), mouse (m) and rat (r), as indicated by the designation “hmr”-miR-495 in TABLE 9. Therefore, the primer designed for this target sequence would be expected to be useful to detect miR-495 in samples obtained from human, mouse, and rat.


microRNA miR-495 Target RNA Sequence:

AAACAAACAUGGUGCACUUCUU 3′(SEQ ID NO:966)


Extension Primers (4 Candidates)

hmr-miR-495GS10:(SEQ ID NO:500)5′ CATGATCAGCTGGGCCAAGAAAGAAGTGCA 3′hmr-miR-495GS9:(SEQ ID NO:501)5′ CATGATCAGCTGGGCCAAGAAAGAAGTGC 3′hmr-miR-495GS8:(SEQ ID NO:502)5′ CATGATCAGCTGGGCCAAGAAAGAAGTG 3′hmr-miR-495GS7:(SEQ ID NO:503)5′ CATGATCAGCTGGGCCAAGAAAGAAGT


Reverse Primers (2 Candidates)

hmr-miR-495RP1:5′ AAA+CAAA+CA+TGGTGCAC 3′(SEQ ID NO:504)hmr-miR-495RP2:5′ AAA+C+AAA+CATGGTGC 3′(SEQ ID NO:505)


2) The primers designed as described above were tested to find pairs that showed both high sensitivity and high dynamic range in quantitative PCR assays, using the assay methods described in Example 2. The optimal combination of extension primer and reverse primer was determined for the target microRNA by testing all combinations of primers in the presence or absence of DNA template. It is preferable to use DNA rather than RNA template to test the oligo pairs because it is less likely to degrade than RNA. Degraded templates result in misleading assay data. Therefore, HPLC purified DNA template molecules are preferred.


TABLE 8 shows exemplary primer sets for use in detection assays for 78 microRNA targets (shown in TABLE 9). The candidate primers for use in these assays were designed to specifically detect human (h), mouse (m) and rat (r) microRNAs, or microRNAs from one or more species. For example, assays with the “hmr” prefix are designed to detect a perfectly conserved microRNA in all three species, whereas a “mr” prefix means the assay is designed to detect a microRNA conserved between mouse and rat, but not human. Nucleotides preceded by a plus (+) sign may be optionally locked (LNA). TABLE 9 shows the microRNA target sequence for each assay.

TABLE 8EXEMPLARY PRIMER SETS FOR DETECTING MAMMALIAN MICRORNA TARGETSExtensionReverseAssayTargetPrimerExtensionPrimerReverseNumbermicroRNANamePrimer SequenceNamePrimer SequenceComments1hmr-miR-495Hmr-miR-CATGATCAGCTGGGCCAAHmr-miR-AAA+CAAA+CA+GGTGCACConserved across495GS10GAAAGAAGTGCA495RP1SEQ ID NO: 504all threeSEQ ID NO: 500speciesHmr-miR-CATGATCAGCTGGGCCAAHmr-miR-AAA+C+AAA+CATGGTGC495GS9GAAAGAAGTGC495RP2SEQ ID NO: 505SEQ ID NO: 501Hmr-miR-CATGATCAGCTGGGCCAA495GS8GAAAGAAGTGSEQ ID NO: 502Hmr-miR-CATGATCAGCTGGGCCAA495GS7GAAAGAAGTSEQ ID NO: 5032mr-miR-291a-mr-mIR-CATGATCAGCTGGGCCAAmr-mIR-291a-AA+AG+TGCTTCCACTTTGTMouse/rat3p291a-GAGGCACACAAA3pRP1SEQ ID NO: 510specific; seed3pGS10SEQ ID NO: 506region orthologto humanmiR-371/2mr-mIR-CATGATCAGCTGGGCCAAmr-mIR-291a-AA+AG+TG+CTTCCACTTT291a-3pGS9GAGGCACACAA3pRP2SEQ ID NO: 511SEQ ID NO: 507mr-mIR-CATGATCAGCTGGGCCAA291a-3pGS8GAGGCACACASEQ ID NO: 508mr-mIR-CATGATCAGCTGGGCCAA291a-3pGS7GAGGCACACSEQ ID NO: 5093m-miR-291b-m-mIR-CATGATCAGCTGGGCCAAm-mIR-291b-AA+AG+TG+CAT+CCATTTTGTMouse specific;3p291b-GAGACAAACAAA3pRP1SEQ ID NO: 516seed region3pGS10SEQ ID NO: 512ortholog tohuman miR-371/2m-mIR-CATGATCAGCTGGGCCAAm-mIR-291b-AA+AG+TG+CATCCATTTT291b-3pGS9GAGACAAACAA3pRP2SEQ ID NO: 517SEQ ID NO: 513m-mIR-CATGATCAGCTGGGCCAA291b-3pGS8GAGACAAACASEQ ID NO: 514m-mIR-CATGATCAGCTGGGCCAA291b-3pGS7GAGACAAACSEQ ID NO: 5154h-miR-519ah-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+TG+CATCCTTTTAGAGTHuman specific;519aGS10GAGTAACACTCT519aRP1SEQ ID NO: 522implicated inSEQ ID NO: 518oncogenesish-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+TG+CATCCTTTTAGA519aGS9GAGTAACACTC519aRP2SEQ ID NO: 523SEQ ID NO: 519h-miR-CATGATCAGCTGGGCCAA519aGS8GAGTAACACTSEQ ID NO: 520h-miR-CATGATCAGCTGGGCCAA519aGS7GAGTAACACSEQ ID NO: 5215h-miR-519bh-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+TG+CATCCTTTTAGHuman specific;519bGS10GAAAACCTCTAA519bRP1SEQ ID NO: 528implicated inSEQ ID NO: 524oncogenesish-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+TG+CATCCTTTT519bGS9GAAAACCTCTA519bRP2SEQ ID NO: 529SEQ ID NO: 525h-miR-CATGATCAGCTGGGCCAA519bGS8GAAAACCTCTSEQ ID NO: 526h-miR-CATGATCAGCTGGGCCAA519bGS7GAAAACCTCSEQ ID NO: 5276h-miR-519ch-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+TG+CATCTTTTTAGAHuman specific;519cGS10GAATCCTCTAAA519cRP1SEQ ID NO: 534implicated inSEQ ID NO: 530oncogenesish-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+TG+CATCTTTTTA519cGS9GAATCCTCTAA519cRP2SEQ ID NO: 535SEQ ID NO: 531h-miR-CATGATCAGCTGGGCCAA519cGS8GAATCCTCTASEQ ID NO: 532h-miR-CATGATCAGCTGGGCCAA519cGS7GAATCCTCTSEQ ID NO: 5337h-miR-519dh-miR-CATGATCAGCTGGGCCAAh-miR-C+AAAG+TGCCTCCCTTTAGHuman specific;519dGS10GAACACTCTAAA519dRP1SEQ ID NO: 540implicated inSEQ ID NO: 536oncogenesish-miR-CATGATCAGCTGGGCCAAh-miR-C+AA+AG+TGCCTCCCTTT519dGS9GAACACTCTAA519dRP2SEQ ID NO: 541SEQ ID NO: 537h-miR-CATGATCAGCTGGGCCAA519dGS8GAACACTCTASEQ ID NO: 538h-miR-CATGATCAGCTGGGCCAA519dGS7GAACACTCTSEQ ID NO: 5398h-miR-520ah-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+TGCTTCCCTTTGGHuman specific;520aGS10GAACAGTCCAAA520aRP1SEQ ID NO: 546implicated inSEQ ID NO: 542oncogenesish-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+T+GCTTCCCTTT520aGS9GAACAGTCCAA520aRP2SEQ ID NO: 547SEQ ID NO: 543h-miR-CATGATCAGCTGGGCCAA520aGS8GAACAGTCCASEQ ID NO: 544h-miR-CATGATCAGCTGGGCCAA520aGS7GAACAGTCCSEQ ID NO: 5459h-miR-520bh-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+T+GCTTCCTTTTAGHuman specific;520bGS10GACCCTCTAAAA520bRP1SEQ ID NO: 552implicated inSEQ ID NO: 548oncogenesish-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+TG+CTTCCTTTTA520bGS9GACCCTCTAAA520bRP2SEQ ID NO: 553SEQ ID NO: 549h-miR-CATGATCAGCTGGGCCAA520bGS8GACCCTCTAASEQ ID NO: 550h-miR-CATGATCAGCTGGGCCAA520bGS7GACCCTCTASEQ ID NO: 55110h-miR-520dh-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+TGCTTCTCTTTGGTHuman specific;520dGS10GAAACCCACCAA520dRP1SEQ ID NO: 558implicated inSEQ ID NO: 554oncogenesish-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+TG+CTTCTCTTTG520dGS9GAAACCCACCA520dRP2SEQ ID NO: 559SEQ ID NO: 555h-miR-CATGATCAGCTGGGCCAA520dGS8GAAACCCACCSEQ ID NO: 556h-miR-CATGATCAGCTGGGCCAA520dGS7GAAACCCACSEQ ID NO: 55711h-miR-520eh-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+TGCTTCCTTTTTGHuman specific;520eGS10GACCCTCAAAAA520eRP1SEQ ID NO: 564implicated inSEQ ID NO: 560oncogenesish-miR-CATGATCAGCTGGGCCAAh-miR-AA+AG+T+GCTTCCTTTTT520eGS9GACCCTCAAAA520eRP2SEQ ID NO: 565SEQ ID NO: 561h-miR-CATGATCAGCTGGGCCAA520eGS8GACCCTCAAASEQ ID NO: 562h-miR-CATGATCAGCTGGGCCAA520eGS7GACCCTCAASEQ ID NO: 56312h-miR-520fh-miR-CATGATCAGCTGGGCCAAh-miR-A+AG+TGCTTCCTTTTAGAHuman specific;520fGS10GAAACCCTCTAA520fRP1SEQ ID NO: 570implicated inSEQ ID NO: 566oncogenesish-miR-CATGATCAGCTGGGCCAAh-miR-A+AG+T+GCTTCCTTTTA520fGS9GAAACCCTCTA520fRP2SEQ ID NO: 571SEQ ID NO: 567h-miR-CATGATCAGCTGGGCCAA520fGS8GAAACCCTCTSEQ ID NO: 568h-miR-CATGATCAGCTGGGCCAA520fGS7GAAACCCTCSEQ ID NO: 56913mr-miR-329mr-miR-CATGATCAGCTGGGCCAAmr-miR-AA+CA+CACCCAGCTAACCSpecific for329GS10GAAAAAAGGTTA329RP1SEQ ID NO: 576mouse/ratSEQ ID NO: 572orthologmr-miR-CATGATCAGCTGGGCCAAmr-miR-AA+CA+CACCCAGCTAA329GS9GAAAAAAGGTT329RP2SEQ ID NO: 577SEQ ID NO: 573mr-miR-CATGATCAGCTGGGCCAA329GS8GAAAAAAGGTSEQ ID NO: 574mr-miR-CATGATCAGCTGGGCCAA329GS7GAAAAAAGGSEQ ID NO: 57514hmr-miR-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-AA+CATT+CATTGTTGTCGGTConserved181d181dGS10GAAACCCACCGA181dRP1SEQ ID NO: 582across allSEQ ID NO: 578three specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-AA+CA+TT+CATTGTTGTCG181dGS9GAAACCCACCG181dRP2SEQ ID NO: 583SEQ ID NO: 579hmr-miR-CATGATCAGCTGGGCCAA181dGS8GAAACCCACCSEQ ID NO: 580hmr-miR-CATGATCAGCTGGGCCAA181dGS7GAAACCCACSEQ ID NO: 58115has-miR-193bhmr-miR-CATGATCAGCTGGGCCAAhmr-miR-AA+CT+GGCCCTCAAAGTCCCConserved193bGS10GAAAAGCGGGAC193bRP1SEQ ID NO: 588across allSEQ ID NO: 584three specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-AA+CT+GGCCCTCAAAGTC193bGS9GAAAAGCGGGA193bRP2SEQ ID NO: 589SEQ ID NO: 585hmr-miR-CATGATCAGCTGGGCCAA193bGS8GAAAAGCGGGSEQ ID NO: 586hmr-miR-CATGATCAGCTGGGCCAA193bGS7GAAAAGCGGSEQ ID NO: 58716h-miR-362h-miR-CATGATCAGCTGGGCCAAh-miR-362RP1AAT+CCTT+GGAACCTAGGTGAssay specific362GS10GAACTCACACCTSEQ ID NO: 594for humanSEQ ID NO: 590orthologh-miR-CATGATCAGCTGGGCCAAh-miR-362RP2AA+TC+CTT+GGAACCTAGG362GS9GAACTCACACCSEQ ID NO: 595SEQ ID NO: 591h-miR-CATGATCAGCTGGGCCAA362GS8GAACTCACACSEQ ID NO: 592h-miR-CATGATCAGCTGGGCCAA362GS7GAACTCACASEQ ID NO: 59317mr-miR-362mr-mIR-CATGATCAGCTGGGCCAAmr-mIR-362-AA+TCCTT+GGAACCTAGGTAssay specific362-3pGS10GATTCACACCTA3pRP1SEQ ID NO: 600for rodentSEQ ID NO: 596orthologmr-mIR-CATGATCAGCTGGGCCAAmr-mIR-362-AA+TC+CTT+GGAACCTAG362-3pGS9GATTCACACCT3pRP2SEQ ID NO: 601SEQ ID NO: 597mr-mIR-CATGATCAGCTGGGCCAA362-3pGS8GATTCACACCSEQ ID NO: 598mr-mIR-CATGATCAGCTGGGCCAA362-3pGS7GATTCACACSEQ ID NO: 59918h-miR-500h-miR-CATGATCAGCTGGGCCAAh-miR-500RP1A+TG+CACCTGGGCAAGGAAssay specific500GS10GACAGAATCCTTSEQ ID NO: 606for humanSEQ ID NO: 602orthologh-miR-CATGATCAGCTGGGCCAAh-miR-500RP2A+TG+CACCTGGGCAAG500GS9GACAGAATCCTSEQ ID NO: 607SEQ ID NO: 603h-miR-CATGATCAGCTGGGCCAA500GS8GACAGAATCCSEQ ID NO: 604h-miR-CATGATCAGCTGGGCCAA500GS7GACAGAATCSEQ ID NO: 60519mmu-miR-mr-miR-CATGATCAGCTGGGCCAAmr-miR-A+TGCA+CCTGGGCAAGGGAssay specific500500GS10GACTGAACCCTT500RP1SEQ ID NO: 612for rodentSEQ ID NO: 608orthologmr-miR-CATGATCAGCTGGGCCAAmr-miR-A+TGCA+CCTGGGCAAG500GS9GACTGAACCCT500RP2SEQ ID NO: 613SEQ ID NO: 609mr-miR-CATGATCAGCTGGGCCAA500GS8GACTGAACCCSEQ ID NO: 610mr-miR-CATGATCAGCTGGGCCAA500GS7GACTGAACCSEQ ID NO: 61120h-miR-501h-miR-CATGATCAGCTGGGCCAAh-miR-501RP1AA+T+CCTT+TGTCCCTGGGAssay specific501GS10GATCTCACCCAGSEQ ID NO: 618for humanSEQ ID NO: 614orthologh-miR-CATGATCAGCTGGGCCAAh-miR-501RP2AAT+CCTT+TGTCCCTGG501GS9GATCTCACCCASEQ ID NO: 619SEQ ID NO: 615h-miR-CATGATCAGCTGGGCCAA501GS8GATCTCACCCSEQ ID NO: 616h-miR-CATGATCAGCTGGGCCAA501GS7GATCTCACCSEQ ID NO: 61721mr-miR-501mr-miR-CATGATCAGCTGGGCCAAmr-miR-AA+T+CC+TTTGTCCCTGGGAssay specific501GS10GATTTCACCCAG501RP1SEQ ID NO: 624for rodentSEQ ID NO: 620orthologmr-miR-CATGATCAGCTGGGCCAAmr-miR-AA+T+CC+TTTGTCCCTG501GS9GATTTCACCCA501RP2SEQ ID NO: 625SEQ ID NO: 621mr-miR-CATGATCAGCTGGGCCAA501GS8GATTTCACCCSEQ ID NO: 622mr-miR-CATGATCAGCTGGGCCAA501GS7GATTTCACCSEQ ID NO: 62322hmr-miR-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-AAT+CG+TACAGGGTCATConserved across487b487bGS10GAAGTGGATGAC487bRP1SEQ ID NO: 630all threeSEQ ID NO: 626specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-A+AT+CG+TACAGGGTC487bGS9GAAGTGGATGA487bRP2SEQ ID NO: 631SEQ ID NO: 627hmr-miR-CATGATCAGCTGGGCCAA487bGS8GAAGTGGATGSEQ ID NO: 628hmr-miR-CATGATCAGCTGGGCCAA487bGS7GAAGTGGATSEQ ID NO: 62923h-miR-489h-miR-CATGATCAGCTGGGCCAAh-miR-489RP1AG+TGA+CATCACATATACGAssay specific489GS10GAGCTGCCGTATSEQ ID NO: 636for humanSEQ ID NO: 632orthologh-miR-CATGATCAGCTGGGCCAAh-miR-489RP2A+G+TGA+CATCACATATAC489GS9GAGCTGCCGTASEQ ID NO: 637SEQ ID NO: 633h-miR-CATGATCAGCTGGGCCAA489GS8GAGCTGCCGTSEQ ID NO: 634h-miR-CATGATCAGCTGGGCCAA489GS7GAGCTGCCGSEQ ID NO: 63524m-miR-489m-miR-CATGATCAGCTGGGCCAAm-miR-489RP1AATGA+CA+CCACATATATGAssay specific489GS10GAGCTGCCATATSEQ ID NO: 642for mouseSEQ ID NO: 638orthologm-miR-CATGATCAGCTGGGCCAAm-miR-489RP2AA+TGA+CA+CCACATAT489GS9GAGCTGCCATASEQ ID NO: 643SEQ ID NO: 639m-miR-CATGATCAGCTGGGCCAA489GS8GAGCTGCCATSEQ ID NO: 640m-miR-CATGATCAGCTGGGCCAA489GS7GAGCTGCCASEQ ID NO: 64125r-miR-489r-miR-CATGATCAGCTGGGCCAAr-miR-489RP1AA+TGA+CA+TCACATATATGAssay specific489GS10GAGCTGCCATATSEQ ID NO: 648for rat orthologSEQ ID NO: 644r-miR-CATGATCAGCTGGGCCAAr-miR-489RP2AAT+GA+CA+TCACATATAT489GS9GAGCTGCCATASEQ ID NO: 649SEQ ID NO: 645r-miR-CATGATCAGCTGGGCCAA489GS8GAGCTGCCATSEQ ID NO: 646r-miR-CATGATCAGCTGGGCCAA489GS7GAGCTGCCASEQ ID NO: 64726hmr-miR-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-425-AA+TGA+CACGATCACTCCCConserved across425-5p425-5pGS10GATCAACGGGAG5pRP1SEQ ID NO: 654all threeSEQ ID NO: 650specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-425-AA+T+GA+CACGATCACTC425-5pGS9GATCAACGGGA5pRP2SEQ ID NO: 655SEQ ID NO: 651hmr-miR-CATGATCAGCTGGGCCAA425-5pGS8GATCAACGGGSEQ ID NO: 652hmr-miR-CATGATCAGCTGGGCCAA425-5pGS7GATCAACGGSEQ ID NO: 65327hmr-miR-652hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-AAT+GGCGCCACTAGGGTTConserved across652GS10GATGCACAACCC652RP1SEQ ID NO: 660all threeSEQ ID NO: 656specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-AAT+GG+CGCCACTAGGG652GS9GATGCACAACC652RP2SEQ ID NO: 661SEQ ID NO: 657hmr-miR-CATGATCAGCTGGGCCAA652GS8GATGCACAACSEQ ID NO: 658hmr-miR-CATGATCAGCTGGGCCAA652GS7GATGCACAASEQ ID NO: 65928hmr-miR-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-485-AGA+GGCTGGCCGTGATGConserved across485-5p485-5pGS10GAGAATTCATCA5pRP1SEQ ID NO: 666all threeSEQ ID NO: 662specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-485-AGA+GGCTGGCCGTGA485-5pGS9GAGAATTCATC5pRP2SEQ ID NO: 667SEQ ID NO: 663hmr-miR-CATGATCAGCTGGGCCAA485-5pGS8GAGAATTCATSEQ ID NO: 664hmr-miR-CATGATCAGCTGGGCCAA485-5pGS7GAGAATTCASEQ ID NO: 66529has-miR-485-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-485-AG+TCATA+CACGGCTCTCCConserved across3p485-3pGS10GAAGAGAGGAGA3pRP1SEQ ID NO: 672all threeSEQ ID NO: 668specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-485-AG+TC+ATACACGGCTCT485-3pGS9GAAGAGAGGAG3pRP2SEQ ID NO: 673SEQ ID NO: 669hmr-miR-CATGATCAGCTGGGCCAA485-3pGS8GAAGAGAGGASEQ ID NO: 670hmr-miR-CATGATCAGCTGGGCCAA485-3pGS7GAAGAGAGGSEQ ID NO: 67130hmr-miR-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-369-A+GA+TC+GACCGTGTTATConserved across369-5p369-5pGS10GACGAATATAAC5pRP1SEQ ID NO: 678all threeSEQ ID NO: 674specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-369-A+GA+TCGACCGTGTT369-5pGS9GACGAATATAA5pRP2SEQ ID NO: 679SEQ ID NO: 675hmr-miR-CATGATCAGCTGGGCCAA369-5pGS8GACGAATATASEQ ID NO: 676hmr-miR-CATGATCAGCTGGGCCAA369-5pGS7GACGAATATSEQ ID NO: 67731hmr-miR-671hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-A+GGAAGCCCTGGAGGGGCTConserved across671GS10GACCTCCAGCCC671RP1SEQ ID NO: 684all threeSEQ ID NO: 680specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-A+GGAAGCCCTGGAGGGG671GS9GACCTCCAGCC671RP2SEQ ID NO: 685SEQ ID NO: 681hmr-miR-CATGATCAGCTGGGCCAA671GS8GACCTCCAGCSEQ ID NO: 682hmr-miR-CATGATCAGCTGGGCCAA671GS7GACCTCCAGSEQ ID NO: 68332h-miR-449bh-miR-CATGATCAGCTGGGCCAAh-miR-A+GGC+AGTGTATTGTTAGAssay specific449bGS10GAGCCAGCTAAC449bRP1SEQ ID NO: 690for humanSEQ ID NO: 686orthologh-miR-CATGATCAGCTGGGCCAAh-miR-AG+GC+AG+TGTATTGTT449bGS9GAGCCAGCTAA449bRP2SEQ ID NO: 691SEQ ID NO: 687h-miR-CATGATCAGCTGGGCCAA449bGS8GAGCCAGCTASEQ ID NO: 688h-miR-CATGATCAGCTGGGCCAA449bGS7GAGCCAGCTSEQ ID NO: 68933mr-miR-449bmr-miR-CATGATCAGCTGGGCCAAmr-miR-A+GGC+AGTGCATTGCTAAssay specific449bGS10GACCAGCTAGCA449bRP1SEQ ID NO: 696for rodentSEQ ID NO: 692orthologmr-miR-CATGATCAGCTGGGCCAAmr-miR-A+GG+CAGTGCATTGC449bGS9GACCAGCTAGC449bRP2SEQ ID NO: 697SEQ ID NO: 693mr-miR-CATGATCAGCTGGGCCAA449bGS8GACCAGCTAGSEQ ID NO: 694mr-miR-CATGATCAGCTGGGCCAA449bGS7GACCAGCTASEQ ID NO: 69534m-miR-699m-miR-CATGATCAGCTGGGCCAAm-miR-699RP1A+GGCAGTGCGACCTGMouse specific;699GS10GACGAGCCAGGTSEQ ID NO: 702ortholog toSEQ ID NO: 698miR-34cm-miR-CATGATCAGCTGGGCCAAm-miR-699RP2A+GG+CAGTGCGACC699GS9GACGAGCCAGGSEQ ID NO: 703SEQ ID NO: 699m-miR-CATGATCAGCTGGGCCAA699GS8GACGAGCCAGSEQ ID NO: 700m-miR-CATGATCAGCTGGGCCAA699GS7GACGAGCCASEQ ID NO: 70135hmr-miR-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-409-A+GGT+TACCCGAGCAACTConserved across409-5p409-5pGS10GACAAAGTTGCT5pRP1SEQ ID NO: 708all threeSEQ ID NO: 704specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-409-A+GG+TTACCCGAGCAA409-5pGS9GACAAAGTTGC5pRP2SEQ ID NO: 709SEQ ID NO: 705hmr-miR-CATGATCAGCTGGGCCAA409-5pGS8GACAAAGTTGSEQ ID NO: 706hmr-miR-CATGATCAGCTGGGCCAA409-5pGS7GACAAAGTTSEQ ID NO: 70736hmr-miR-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-409-G+AA+TGTTGCTCGGTGAACConserved across409-3p409-3pGS10GAAAGGGGTTCA3pRP1SEQ ID NO: 714all threeSEQ ID NO: 710specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-409-G+AA+TGTTGCTCGGTGA409-3pGS9GAAAGGGGTTC3pRP2SEQ ID NO: 715SEQ ID NO: 711hmr-miR-CATGATCAGCTGGGCCAA409-3pGS8GAAAGGGGTTSEQ ID NO: 712hmr-miR-CATGATCAGCTGGGCCAA409-3pGS7GAAAGGGGTSEQ ID NO: 71337hmr-miR-491hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-AG+TGG+GGAACCCTTCCAConserved across491GS10GACCTCATGGAA491RP1SEQ ID NO: 720alll threeSEQ ID NO: 716specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-AG+TG+GGGAACCCTTC491GS9GACCTCATGGA491RP2SEQ ID NO: 721SEQ ID NO: 717hmr-miR-CATGATCAGCTGGGCCAA491GS8GACCTCATGGSEQ ID NO: 718hmr-miR-CATGATCAGCTGGGCCAA491GS7GACCTCATGSEQ ID NO: 71938h-miR-384h-miR-CATGATCAGCTGGGCCAAh-miR-384RP1A+TT+CCT+AGAAATTGTTCAssay specific384GS10GATATGAACAATSEQ ID NO: 726for humanSEQ ID NO: 722orthologh-miR-CATGATCAGCTGGGCCAAh-miR-384RP2A+TT+CCT+AG+AAATTGT384GS9GATATGAACAASEQ ID NO: 727SEQ ID NO: 723h-miR-CATGATCAGCTGGGCCAA384GS8GATATGAACASEQ ID NO: 724h-miR-CATGATCAGCTGGGCCAA384GS7GATATGAACSEQ ID NO: 72539mr-miR-384mr-miR-CATGATCAGCTGGGCCAAmr-miR-A+TT+CCT+AGAAATTGTTAssay specific384GS10GATGTGAACAAT384RP1SEQ ID NO: 732for rodentSEQ ID NO: 728orthologmr-miR-CATGATCAGCTGGGCCAAmr-miR-A+TT+CCT+AG+AAATTGTT384GS9GATGTGAACAA384RP2SEQ ID NO: 733SEQ ID NO: 729mr-miR-CATGATCAGCTGGGCCAA384GS8GATGTGAACASEQ ID NO: 730mr-miR-CATGATCAGCTGGGCCAA384GS7GATGTGAACSEQ ID NO: 73140hmr-miR-20bhmr-miR-CATGATCAGCTGGGCCAAhmr-miR-C+AA+AG+TGCTCATAGTGCAConserved across20bGS10GAACCTGCACTA20bRP1SEQ ID NO: 738all threeSEQ ID NO: 734specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-CAA+AG+TG+CTCATAGTG20bGS9GAACCTGCACT20bRP2SEQ ID NO: 739SEQ ID NO: 735hmr-miR-CATGATCAGCTGGGCCAA20bGS8GAACCTGCACSEQ ID NO: 736hmr-miR-CATGATCAGCTGGGCCAA20bGS7GAACCTGCASEQ ID NO: 73741hmr-miR-490hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-C+AA+CCTGGAGGACTCCAConserved across490GS10GACAGCATGGAG490RP1SEQ ID NO: 744all threeSEQ ID NO: 740specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-CAA+CCT+GGAGGACTC490GS9GACAGCATGGA490RP2SEQ ID NO: 745SEQ ID NO: 741hmr-miR-CATGATCAGCTGGGCCAA490GS8GACAGCATGGSEQ ID NO: 742hmr-miR-CATGATCAGCTGGGCCAA490GS7GACAGCATGSEQ ID NO: 74342hmr-miR-497hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-C+AG+CAGCACACTGTGGConserved across497GS10GAACAAACCACA497RP1SEQ ID NO: 750all threeSEQ ID NO: 746specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-C+AG+CAGCACACTGTG497GS9GAACAAACCAC497RP2SEQ ID NO: 751SEQ ID NO: 747hmr-miR-CATGATCAGCTGGGCCAA497GS8GAACAAACCASEQ ID NO: 748hmr-miR-CATGATCAGCTGGGCCAA497GS7GAACAAACCSEQ ID NO: 74943h-miR-301bh-miR-CATGATCAGCTGGGCCAAh-miR-C+AG+TG+CAATGATATTGTCAAssay specific301bGS10GATGCTTTGACA301bRP1SEQ ID NO: 756for humanSEQ ID NO: 752orthologh-miR-CATGATCAGCTGGGCCAAh-miR-C+AG+TG+CAATGATATTGT301bGS9GATGCTTTGAC301bRP2SEQ ID NO: 757SEQ ID NO: 753h-miR-CATGATCAGCTGGGCCAA301bGS8GATGCTTTGASEQ ID NO: 754h-miR-CATGATCAGCTGGGCCAA301bGS7GATGCTTTGSEQ ID NO: 75544mr-miR-301bmr-miR-CATGATCAGCTGGGCCAAmr-miR-C+AG+TG+CAATGGTATTGTCAAssay specific301bGS10GATGCTTTGACA301bRP1SEQ ID NO: 762for rodentSEQ ID NO: 758orthologmr-miR-CATGATCAGCTGGGCCAAmr-miR-C+AG+TG+CAATGGTATTGT301bGS9GATGCTTTGAC301bRP2SEQ ID NO: 763SEQ ID NO: 759mr-miR-CATGATCAGCTGGGCCAA301bGS8GATGCTTTGASEQ ID NO: 760mr-miR-CATGATCAGCTGGGCCAA301bGS7GATGCTTTGSEQ ID NO: 76145hmr-miR-721hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-C+AG+TG+CAATTAAAAGGGConserved across721GS10GATTCCCCCTTT721RP1SEQ ID NO: 768all threeSEQ ID NO: 764specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-C+AG+TG+CAATTAAAAG721GS9GATTCCCCCTT721RP2SEQ ID NO: 769SEQ ID NO: 765hmr-miR-CATGATCAGCTGGGCCAA721GS8GATTCCCCCTSEQ ID NO: 766hmr-miR-CATGATCAGCTGGGCCAA721GS7GATTCCCCCSEQ ID NO: 76746hmr-miR-532hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-CA+TG+CCTTGAGTGTAGGConserved across532GS10GAACGGTCCTAC532RP1SEQ ID NO: 774all threeSEQ ID NO: 770specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-CA+TG+CCTTGAGTGTA532GS9GAACGGTCCTA532RP2SEQ ID NO: 775SEQ ID NO: 771hmr-miR-CATGATCAGCTGGGCCAA532GS8GAACGGTCCTSEQ ID NO: 772hmr-miR-CATGATCAGCTGGGCCAA532GS7GAACGGTCCSEQ ID NO: 77347h-miR-488h-miR-CATGATCAGCTGGGCCAAh-miR-488RP1C+CCA+GATAATGGCACTAssay specific488GS10GATTGAGAGTGCSEQ ID NO: 780for humanSEQ ID NO: 776orthologh-miR-CATGATCAGCTGGGCCAAh-miR-488RP2C+CC+A+GATAATGGCA488GS9GATTGAGAGTGSEQ ID NO: 781SEQ ID NO: 777h-miR-CATGATCAGCTGGGCCAA488GS8GATTGAGAGTSEQ ID NO: 778h-miR-CATGATCAGCTGGGCCAA488GS7GATTGAGAGSEQ ID NO: 77948mr-miR-488mr-miR-CATGATCAGCTGGGCCAAmr-miR-C+CCA+GATAATAGCACTAssay specific488GS10GATTGAGAGTGC488RP1SEQ ID NO: 786for rodentSEQ ID NO: 782orthologmr-miR-CATGATCAGCTGGGCCAAmr-miR-C+CC+A+GATAATAGCA488GS9GATTGAGAGTG488RP2SEQ ID NO: 787SEQ ID NO: 783mr-miR-CATGATCAGCTGGGCCAA488GS8GATTGAGAGTSEQ ID NO: 784mr-miR-CATGATCAGCTGGGCCAA488GS7GATTGAGAGSEQ ID NO: 78549hmr-miR-539hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-GG+AG+AAATTATCCTTGGTConserved across539GS10GAACACACCAAG539RP1SEQ ID NO: 792all threeSEQ ID NO: 788specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-G+GA+G+AAATTATCCTTGG539GS9GAACACACCAA539RP2SEQ ID NO: 793SEQ ID NO: 789hmr-miR-CATGATCAGCTGGGCCAA539GS8GAACACACCASEQ ID NO: 790hmr-miR-CATGATCAGCTGGGCCAA539GS7GAACACACCSEQ ID NO: 79150h-miR-505h-miR-CATGATCAGCTGGGCCAAh-miR-505RP1GT+CAA+CACTTGCTGGTTAssay specific505GS10GAGAGGAAACCASEQ ID NO: 798for humanSEQ ID NO: 794orthologh-miR-CATGATCAGCTGGGCCAAh-miR-505RP2G+T+CAA+CACTTGCTGG505GS9GAGAGGAAACCSEQ ID NO: 799SEQ ID NO: 795h-miR-CATGATCAGCTGGGCCAA505GS8GAGAGGAAACSEQ ID NO: 796h-miR-CATGATCAGCTGGGCCAA505GS7GAGAGGAAASEQ ID NO: 79751mr-miR-505mr-miR-CATGATCAGCTGGGCCAAmr-miR-CG+T+CAA+CA+CTTGCTGGTAssay specific505GS10GAGGAAACCAGC505RP1SEQ ID NO: 804for rodentSEQ ID NO: 800orthologmr-miR-CATGATCAGCTGGGCCAAmr-miR-CG+T+CAA+CA+CTTGCTG505GS9GAGGAAACCAG505RP2SEQ ID NO: 805SEQ ID NO: 801mr-miR-CATGATCAGCTGGGCCAA505GS8GAGGAAACCASEQ ID NO: 802mr-miR-CATGATCAGCTGGGCCAA505GS7GAGGAAACCSEQ ID NO: 80352h-miR-18bh-miR-CATGATCAGCTGGGCCAAh-miR-18bRP1TAA+GG+TGCATCTAGTGCAssay specific18bGS10GATAACTGCACTSEQ ID NO: 810for humanSEQ ID NO: 806orthologh-miR-CATGATCAGCTGGGCCAAh-miR-18bRP2T+AA+GG+TGCATCTAGT18bGS9GATAACTGCACSEQ ID NO: 811SEQ ID NO: 807h-miR-CATGATCAGCTGGGCCAA18bGS8GATAACTGCASEQ ID NO: 808h-miR-CATGATCAGCTGGGCCAA18bGS7GATAACTGCSEQ ID NO: 80953mr-miR-18bmr-miR-CATGATCAGCTGGGCCAAmr-miR-T+AA+GG+TGCATCTAGTGCAssay specific18bGS10GATAACAGCACT18bRP1SEQ ID NO: 816for rodentSEQ ID NO: 812orthologmr-miR-CATGATCAGCTGGGCCAAmr-miR-TAA+GG+TG+CATCTAGT18bGS9GATAACAGCAC18bRP2SEQ ID NO: 817SEQ ID NO: 813mr-miR-CATGATCAGCTGGGCCAA18bGS8GATAACAGCASEQ ID NO: 814mr-miR-CATGATCAGCTGGGCCAA18bGS7GATAACAGCSEQ ID NO: 81554hmr-miR-503hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-T+AGC+AGCGGGAACAGTConserved across503GS10GACAGTACTGTT503RP1SEQ ID NO: 822all threeSEQ ID NO: 818specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-T+AGC+AGCGGGAACA503GS9GACAGTACTGT503RP2SEQ ID NO: 823SEQ ID NO: 819hmr-miR-CATGATCAGCTGGGCCAA503GS8GACAGTACTGSEQ ID NO: 820hmr-miR-CATGATCAGCTGGGCCAA503GS7GACAGTACTSEQ ID NO: 82155hmr-miR-455hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TA+TG+TGCCTTTGGACTAConserved across455GS10GACGATGTAGTC455RP1SEQ ID NO: 828all threeSEQ ID NO: 824specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TA+TG+TGCCTTTGGAC455GS9GACGATGTAGT455RP2SEQ ID NO: 829SEQ ID NO: 825hmr-miR-CATGATCAGCTGGGCCAA455GS8GACGATGTAGSEQ ID NO: 826hmr-miR-CATGATCAGCTGGGCCAA455GS7GACGATGTASEQ ID NO: 82756hmr-miR-92bhmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TAT+TG+CACTCGTCCCGConserved across92bGS10GAGAGGCCGGGA92bRP1SEQ ID NO: 834all threeSEQ ID NO: 830specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TAT+TG+CACTCGTCCC92bGS9GAGAGGCCGGG92bRP2SEQ ID NO: 835SEQ ID NO: 831hmr-miR-CATGATCAGCTGGGCCAA92bGS8GAGAGGCCGGSEQ ID NO: 832hmr-miR-CATGATCAGCTGGGCCAA92bGS7GAGAGGCCGSEQ ID NO: 83357h-miR-483h-miR-CATGATCAGCTGGGCCAAh-miR-483RP1T+CAC+TCCTCTCCTCCCGTAssay specific483GS10GAAGAAGACGGGSEQ ID NO: 840for humanSEQ ID NO: 836orthologh-miR-CATGATCAGCTGGGCCAAh-miR-483RP2T+CAC+TCCTCTCCTCCC483GS9GAAGAAGACGGSEQ ID NO: 841SEQ ID NO: 837h-miR-CATGATCAGCTGGGCCAA483GS8GAAGAAGACGSEQ ID NO: 838h-miR-CATGATCAGCTGGGCCAA483GS7GAAGAAGACSEQ ID NO: 83958mr-miR-483mr-miR-CATGATCAGCTGGGCCAAmr-miR-TC+ACTCCTCCCCTCCCGTAssay specific483GS10GAACAAGACGGG483RP1SEQ ID NO: 846for rodentSEQ ID NO: 842orthologmr-miR-CATGATCAGCTGGGCCAAmr-miR-TC+ACTCCTCCCCTCCC483GS9GAACAAGACGG483RP2SEQ ID NO: 847SEQ ID NO: 843mr-miR-CATGATCAGCTGGGCCAA483GS8GAACAAGACGSEQ ID NO: 844mr-miR-CATGATCAGCTGGGCCAA483GS7GAACAAGACSEQ ID NO: 84559hmr-miR-484hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TCA+GGCTCAGTCCCCTCConserved across484GS10GAATCGGGAGGG484RP1SEQ ID NO: 852all threeSEQ ID NO: 848specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TC+AGGCTCAGTCCCC484GS9GAATCGGGAGG484RP2SEQ ID NO: 853SEQ ID NO: 849hmr-miR-CATGATCAGCTGGGCCAA484GS8GAATCGGGAGSEQ ID NO: 850hmr-miR-CATGATCAGCTGGGCCAA484GS7GAATCGGGASEQ ID NO: 85160mmu-miR-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TC+CCTGAGGAGCCCTTTGARodent specific;351351GS10GACAGGCTCAAA351RP1SEQ ID NO: 858ortholog toSEQ ID NO: 854human miR-125hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TC+CCTGAGGAGCCCTTT351GS9GACAGGCTCAA351RP2SEQ ID NO: 859SEQ ID NO: 855hmr-miR-CATGATCAGCTGGGCCAA351GS8GACAGGCTCASEQ ID NO: 856hmr-miR-CATGATCAGCTGGGCCAA351GS7GACAGGCTCSEQ ID NO: 85761hmr-miR-615hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TC+CGAGCCTGGGTCTCConserved across615GS10GAAGAGGGAGAC615RP1SEQ ID NO: 864all threeSEQ ID NO: 860specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TC+CGAGCCTGGGTC615GS9GAAGAGGGAGA615RP2SEQ ID NO: 865SEQ ID NO: 861hmr-miR-CATGATCAGCTGGGCCAA615GS8GAAGAGGGAGSEQ ID NO: 862hmr-miR-CATGATCAGCTGGGCCAA615GS7GAAGAGGGASEQ ID NO: 86362hmr-miR-486hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-T+CC+TGTACTGAGCTGCCConserved across486GS10GACTCGGGGCAG486RP1SEQ ID NO: 870all threeSEQ ID NO: 866specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-T+CC+TGTACTGAGCTG486GS9GACTCGGGGCA486RP2SEQ ID NO: 871SEQ ID NO: 867hmr-miR-CATGATCAGCTGGGCCAA486GS8GACTCGGGGCSEQ ID NO: 868hmr-miR-CATGATCAGCTGGGCCAA486GS7GACTCGGGGSEQ ID NO: 86963hmr-miR-494hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-T+GA+AA+CATACACGGGAConserved across494GS10GAAGGTTTCCCG494RP1SEQ ID NO: 876all threeSEQ ID NO: 872specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-T+GA+AA+CATACACGG494GS9GAAGGTTTCCC494RP2SEQ ID NO: 877SEQ ID NO: 873hmr-miR-CATGATCAGCTGGGCCAA494GS8GAAGGTTTCCSEQ ID NO: 874hmr-miR-CATGATCAGCTGGGCCAA494GS7GAAGGTTTCSEQ ID NO: 87564hmr-miR-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-493-T+GAA+GGTCTACTGTGConserved across493-3p493-3pGS10GACTGGCACACA3pRP1SEQ ID NO: 882all threeSEQ ID NO: 878specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-493-T+GAA+GGTCTACTGT493-3pGS9GACTGGCACAC3pRP2SEQ ID NO: 883SEQ ID NO: 879hmr-miR-CATGATCAGCTGGGCCAA493-3pGS8GACTGGCACASEQ ID NO: 880hmr-miR-CATGATCAGCTGGGCCAA493-3pGS7GACTGGCACSEQ ID NO: 88165hmr-miR-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-T+GA+GAAC+TGAATTCCATAConserved across146b146bGS10GAAGCCTATGGA146bRP1SEQ ID NO: 888all threeSEQ ID NO: 884specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-T+GA+GAAC+TGAATTCCA146bGS9GAAGCCTATGG146bRP2SEQ ID NO: 889SEQ ID NO: 885hmr-miR-CATGATCAGCTGGGCCAA146bGS8GAAGCCTATGSEQ ID NO: 886hmr-miR-CATGATCAGCTGGGCCAA146bGS7GAAGCCTATSEQ ID NO: 88766r-miR-1r-miR-CATGATCAGCTGGGCCAAr-miR-1RP1T+G+GAA+TGTAAAGAAGTGAssay specific1GS10GATACACACTTCSEQ ID NO: 894for ratSEQ ID NO: 890orthologr-miR-1GS9CATGATCAGCTGGGCCAAr-miR-1RP2T+G+GAA+TGTAAAGAAGGATACACACTTSEQ ID NO: 895SEQ ID NO: 891r-miR-1GS8CATGATCAGCTGGGCCAAGATACACACTSEQ ID NO: 892r-miR-1GS7CATGATCAGCTGGGCCAAGATACACACSEQ ID NO: 89367h-miR-675-5ph-miR-675-CATGATCAGCTGGGCCAAh-miR-675-T+GGTGCGGAGAGGGCCCAAssay specific5pGS10GACACTGTGGGC5pRP1SEQ ID NO: 900for humanSEQ ID NO: 896orthologh-miR-675-CATGATCAGCTGGGCCAAh-miR-675-T+GGTGCGGAGAGGGC5pGS9GACACTGTGGG5pRP2SEQ ID NO: 901SEQ ID NO: 897h-miR-675-CATGATCAGCTGGGCCAA5pGS8GACACTGTGGSEQ ID NO: 898h-miR-675-CATGATCAGCTGGGCCAA5pGS7GACACTGTGSEQ ID NO: 89968mr-miR-675-mr-miR-CATGATCAGCTGGGCCAAmr-miR-675-T+GGTGCGGAAAGGGCCAssay specific5p675-5pGS10GAACTGTGGGCC5pRP1SEQ ID NO: 906for rodentSEQ ID NO: 902orthologmr-miR-CATGATCAGCTGGGCCAAmr-miR-675-T+GGTGCGGAAAGGG675-5pGS9GAACTGTGGGC5pRP2SEQ ID NO: 907SEQ ID NO: 903mr-miR-CATGATCAGCTGGGCCAA675-5pGS8GAACTGTGGGSEQ ID NO: 904mr-miR-CATGATCAGCTGGGCCAA675-5pGS7GAACTGTGGSEQ ID NO: 90569hmr-miR-668hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TG+TCACTCGGCTCGGCCConserved across668GS10GAGTAGTGGGCC668RP1SEQ ID NO: 912all threeSEQ ID NO: 908specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TG+TCACTCGGCTCGG668GS9GAGTAGTGGGC668RP2SEQ ID NO: 913SEQ ID NO: 909hmr-miR-CATGATCAGCTGGGCCAA668GS8GAGTAGTGGGSEQ ID NO: 910hmr-miR-CATGATCAGCTGGGCCAA668GS7GAGTAGTGGSEQ ID NO: 91170r-miR-346r-miR-CATGATCAGCTGGGCCAAr-miR-346RP1TGTC+TGCCTGAGTGCCTGAssay specific346GS10GAAGAGGCAGGCSEQ ID NO: 918for ratSEQ ID NO: 914orthologr-miR-CATGATCAGCTGGGCCAAr-miR-346RP2TGTC+TGCCTGAGTGCC346GS9GAAGAGGCAGGSEQ ID NO: 919SEQ ID NO: 915r-miR-CATGATCAGCTGGGCCAA346GS8GAAGAGGCAGSEQ ID NO: 916r-miR-CATGATCAGCTGGGCCAA346GS7GAAGAGGCASEQ ID NO: 91771hmr-miR-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-542-TG+TGA+CAGATTGATAACTConserved across542-3p542-3pGS10GATTCAGTTATC3pRP1SEQ ID NO: 924all threeSEQ ID NO: 920specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-542-TG+T+GA+CAGATTGATAA542-3pGS9GATTCAGTTAT3pRP2SEQ ID NO: 925SEQ ID NO: 921hmr-miR-CATGATCAGCTGGGCCAA542-3pGS8GATTCAGTTASEQ ID NO: 922hmr-miR-CATGATCAGCTGGGCCAA542-3pGS7GATTCAGTTSEQ ID NO: 92372hmr-miR-hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-542-CTC+GG+GGATCATCATGConserved across542-5p542-5pGS10GACGTGACATGATG5pRP1SEQ ID NO: 930all threeSEQ ID NO: 926specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-542-C+TC+GGGGATCATCAT542-5pGS9GACGTGACATG5pRP2SEQ ID NO: 931SEQ ID NO: 927hmr-miR-CATGATCAGCTGGGCCAA542-5pGS8GACGTGACATSEQ ID NO: 928hmr-miR-CATGATCAGCTGGGCCAA542-5pGS7GACGTGACASEQ ID NO: 92973hmr-miR-499hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-T+TAA+GA+CTTGCAGTGATConserved across499GS10GAAAACATCACT499RP1SEQ ID NO: 936all threeSEQ ID NO: 932specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-T+TAA+GA+CTTGCAGTG499GS9GAAAACATCAC499RP2SEQ ID NO: 937SEQ ID NO: 933hmr-miR-CATGATCAGCTGGGCCAA499GS8GAAAACATCASEQ ID NO: 934hmr-miR-CATGATCAGCTGGGCCAA499GS7GAAAACATCSEQ ID NO: 93574hmr-miR-758hmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TT+TG+TGACCTGGTCCACConserved across758GS10GAGTTAGTGGAC758RP1SEQ ID NO: 942all threeSEQ ID NO: 938specieshmr-miR-CATGATCAGCTGGGCCAAhmr-miR-TT+TG+T+GACCTGGTCC758GS9GAGTTAGTGGA758RP2SEQ ID NO: 943SEQ ID NO: 939hmr-miR-CATGATCAGCTGGGCCAA758GS8GAGTTAGTGGSEQ ID NO: 940hmr-miR-CATGATCAGCTGGGCCAA758GS7GAGTTAGTGSEQ ID NO: 94175hmr-miR-194miR-CATGATCAGCTGGGCCAAmiR-194RP1TG+TAA+CAGCAACTCCAConserved across194GSP10GATCCACATGGASEQ ID NO: 948all threeSEQ ID NO: 944speciesmiR-CATGATCAGCTGGGCCAAmiR-RP2TG+TAA+CA+GCAACTCCAT194GSP9GATCCACATGGSEQ ID NO: 949SEQ ID NO: 945miR-CATGATCAGCTGGGCCAA194GSP8GATCCACATGSEQ ID NO: 946miR-CATGATCAGCTGGGCCAA194GSP7GATCCACATSEQ ID NO: 94776hmr-miR-206mir-CATGATCAGCTGGGCCAAmir-206RP1T+GGAA+TGTAAGGAAGTConserved across206GSP10GACCACACACTTSEQ ID NO: 954all threeSEQ ID NO: 950speciesmir-CATGATCAGCTGGGCCAAmiR-206RP2T+G+GAA+TGTAAGGAAGTGT206GSP9GACCACACACTSEQ ID NO: 955SEQ ID NO: 951mir-CATGATCAGCTGGGCCAA206GSP8GACCACACACSEQ ID NO: 952mir-CATGATCAGCTGGGCCAA206GSP7GACCACACASEQ ID NO: 95377hmr-miR-1miR-1GS10CATGATCAGCTGGGCCAAmiR-1RP1TG+GAA+TG+TAAAGAAGTAConserved acrossGATACATACTTC(SEQ ID NO:959)all three(SEQ ID NO: 47)speciesmiR-1GS9CATGATCAGCTGGGCCAAmiR-1RP2T+G+GAA+TG+TAAAGAAGTGATACATACTT(SEQ ID NO:48)(SEQ ID NO: 956)miR-1GS8CATGATCAGCTGGGCCAAGATACATACT(SEQ ID NO: 957)miR-1GS7CATGATCAGCTGGGCCAAGATACATAC(SEQ ID NO: 958)78hmr-miR-9miR-9GS10CATGATCAGCTGGGCCAAmiR-9RP1T+CTTT+GGTTATCTAGCTConserved acrossGATCATACAGCT(SEQ ID NO:964)all three(SEQ ID NO:960)speciesmiR-9GS9CATGATCAGCTGGGCCAAmiR-9RP2TC+TTT+GGTT+ATCTAGCTGTGATCATACAGCA(SEQ ID NO:961)(SEQ ID NO:965)miR-9GS8CATGATCAGCTGGGCCAAGATCATACAG(SEQ ID NO:962)miR-9GS7CATGATCAGCTGGGCCAAGATCATACA(SEQ ID NO 963)













TABLE 9









Target

SEQ



Assay
MicroRNA

ID


Number
Name
RNA target sequence
NO:



















 1.
hmr-miR-495
AAACAAACAUGGUGCACUUCUU
966






 2.
mr-miR-291a-
AAAGUGCUUCCACUUUGUGUGCC
967



3p





 3.
m-mIR-291b-
AAAGUGCAUCCAUUUUGUUUGUC
968



3p





 4.
h-miR-519a
AAAGUGCAUCCUUUUAGAGUGUUAC
969





 5.
h-miR-519b
AAAGUGCAUCCUUUUAGAGGUUU
970





 6.
h-miR-519c
AAAGUGCAUCUUUUUAGAGGAU
971





 7.
h-miR-519d
CAAAGUGCCUCCCUUUAGAGUGU
972





 8.
h-miR-520a
AAAGUGCUUCCCUUUGGACUGU
973





 9.
h-miR-520b
AAAGUGCUUCCUUUUAGAGGG
974





10.
h-miR-520d
AAAGUGCUUCUCUUUGGUGGGUU
975





11.
h-miR-520e
AAAGUGCUUCCUUUUUGAGGG
976





12.
h-miR-520f
AAGUGCUUCCUUUUAGAGGGUU
977





13.
mr-miR-329
AACACACCCAGCUAACCUUUUU
978





14.
hmr-miR-181d
AACAUUCAUUGUUGUCGGUGGGUU
979





15.
hmr-miR-193b
AACUGGCCCUCAAAGUCCCGCUUU
980





16.
h-miR-362
AAUCCUUGGAACCUAGGUGUGAGU
981





17.
mr-mIR-362-
AAUCCUUGGAACCUAGGUGUGAA
982



3p





18.
h-miR-500
AUGCACCUGGGCAAGGAUUCUG
983





19.
mr-miR-500
AUGCACCUGGGCAAGGGUUCAG
984





20.
h-miR-501
AAUCCUUUGUCCCUGGGUGAGA
985





21.
mr-miR-501
AAUCCUUUGUCCCUGGGUGAAA
986





22.
hmr-miR-487b
AAUCGUACAGGGUCAUCCACU
987





23.
h-miR-489
AGUGACAUCACAUAUACGGCAGC
988





24.
m-miR-489
AAUGACACCACAUAUAUGGCAGC
989





25.
r-miR-489
AAUGACAUCACAUAUAUGGCAGC
990





26.
hmr-miR-425-
AAUGACACGAUCACUCCCGUUGA
991



5p





27.
hmr-miR-652
AAUGGCGCCACUAGGGUUGUGCA
992





28.
hmr-miR-485-
AGAGGCUGGCCGUGAUGAAUUC
993



5p





29.
hmr-miR-485-
AGUCAUACACGGCUCUCCUCUCU
994



3p





30.
hmr-miR-369-
AGAUCGACCGUGUUAUAUUCG
995



5p





31.
hmr-miR-671
AGGAAGCCCUGGAGGGGCUGGAGG
996





32.
h-miR-449b
AGGCAGUGUAUUGUUAGCUGGC
997





33.
mr-miR-449b
AGGCAGUGCAUUGCUAGCUGG
998





34.
m-miR-699
AGGCAGUGCGACCUGGCUCG
999





35.
hmr-miR-409-
AGGUUACCCGAGCAACUUUGCA
1000



5p





36.
hmr-miR-409-
GAAUGUUGCUCGGUGAACCCCUU
1001



3p





37.
hmr-miR-491
AGUGGGGAACCCUUCCAUGAGG
1002





38.
h-miR-384
AUUCCUAGAAAUUGUUCAUA
1003





39.
mr-miR-384
AUUCCUAGAAAUUGUUCACA
1004





40.
hmr-miR-20b
CAAAGUGCUCAUAGUGCAGGUAG
1005





41.
hmr-miR-490
CAACCUGGAGGACUCCAUGCUG
1006





42.
hmr-miR-497
CAGCAGCACACUGUGGUUUGU
1007





43.
h-miR-301b
CAGUGCAAUGAUAUUGUCAAAGCA
1008





44.
mr-miR-301b
CAGUGCAAUGGUAUUGUCAAAGCA
1009





45.
hmr-miR-721
CAGUGCAAUUAAAAGGGGGAA
1010





46.
hmr-miR-532
CAUGCCUUGAGUGUAGGACCGU
1011





47.
h-miR-488
CCCAGAUAAUGGCACUCUCAA
1012





48.
mr-miR-488
CCCAGAUAAUAGCACUCUCAA
1013





49.
hmr-miR-539
GGAGAAAUUAUCCUUGGUGUGU
1014





50.
h-miR-505
GUCAACACUUGCUGGUUUCCUC
1015





51.
mr-miR-505
CGUCAACACUUGCUGGUUUUCU
1016





52.
h-miR-18b
UAAGGUGCAUCUAGUGCAGUUA
1017





53.
mr-miR-18b
UAAGGUGCAUCUAGUGCUGUUA
1018





54.
hmr-miR-503
UAGCAGCGGGAACAGUACUGC
1019





55.
hmr-miR-455
UAUGUGCCUUUGGACUACAUCG
1020





56.
hmr-miR-92b
UAUUGCACUCGUCCCGGCCUC
1021





57.
h-miR-483
UCACUCCUCUCCUCCCGUCUUCU
1022





58.
mr-miR-483
UCACUCCUCCCCUCCCGUCUUGU
1023





59.
hmr-miR-484
UCAGGCUCAGUCCCCUCCCGAU
1024





60.
hmr-miR-351
UCCCUGAGGAGCCCUUUGAGCCUG
1025





61.
hmr-miR-615
UCCGAGCCUGGGUCUCCCUCU
1026





62.
hmr-miR-486
UCCUGUACUGAGCUGCCCCGAG
1027





63.
hmr-miR-494
UGAAACAUACACGGGAAACCU
1028





64.
hmr-miR-493-
UGAAGGUCUACUGUGUGCCAG
1029



3p





65.
hmr-miR-146b
UGAGAACUGAAUUCCAUAGGCU
1030





66.
r-miR-1
UGGAAUGUAAAGAAGUGUGUA
1031





67.
h-miR-675-5p
UGGUGCGGAGAGGGCCCACAGUG
1032





68.
mr-miR-675-
UGGUGCGGAAAGGGCCCACAGU
1033



5p





69.
hmr-miR-668
UGUCACUCGGCUCGGCCCACUAC
1034





70.
r-miR-346
UGUCUGCCUGAGUGCCUGCCUCU
1035





71.
hmr-miR-542-
UGUGACAGAUUGAUAACUGAAA
1036



3p





72.
hmr-miR-542-
CUCGGGGAUCAUCAUGUCACG
1037



5p





73.
hmr-miR-499
UUAAGACUUGCAGUGAUGUUU
1038





74.
hmr-miR-758
UUUGUGACCUGGUCCACUAACC
1039





75.
hmiR-194
UGUAACAGCAACUCCAUGUGGA
1040





76.
hmiR-206
UGGAAUGUAAGGAAGUGUGUGG
1041





77.
hmiR-1
UGGAAUGUAAAGAAGUAUGUA
1042





78.
hmiR-9
UCUUUGGUUAUCUAGCUGUAUGA
1043









Assay Format:


Several candidate primer sets shown above in TABLE 8 were tested in a high-throughput assay testing format as follows:


Each test assay (e.g., assay #75, #76, #77 and #78 listed in TABLE 8) was run in 4×4 wells of a 96 well plate, with 6 assays per 96 well plate, thereby allowing for rapid determination of the optimal primer pair for each target.


For each assay, each of the 4 candidate extension (GS) primers were tested in a separate row of the 96 well plate. Each of the 2 reverse primers were tested plus (1 nM DNA) or minus template (10 mM Tris pH 7.6, 0.1 mM EDTA, 100 ng/ul yeast total RNA). Following reverse transcription, one set of duplicate non-template control and template samples was tested against reverse primer 1 (RP1) and the other against reverse primer 2 (RP2).


Reverse Transcriptase Assay Conditions:

    • 6 μl of RT master mix was added to all 96 wells
    • 2 μl of 0.5 μM GS primers was added to four successive wells
    • yeast RNA in TE (10 mM Tris pH 7.6, 0.1 mM EDTA) was added to all odd-numbered wells and pre-diluted DNA templates was added to even-numbered wells


Samples were mixed well and the reverse transcriptase step was carried out, followed by dilution with 80 μl TE (10 mM Tris pH 7.6, 0.1 mM EDTA).


2 μl of the reverse transcription mixture was transferred into quadruplicate wells of a 384 well PCR plate preloaded with 8 μl PCR mix per well containing universal primer plus the appropriate reverse primers.


The quantitative PCR reaction results were evaluated on a real-time PCR instrument compatible with 384 well plates.


Ct values for the PCR reactions were determined based on a baseline threshold of 0.01. The sensitivity (Ct value of 1 nM template) and dynamic range (Ct of no-template control minus the Ct of the 1 nM template) were determined for each primer pair in each assay. The results of exemplary assays #75, #76, #77 and #78, listed in TABLE 8, are shown in TABLE 10 below.

TABLE 10ASSAY RESULTS USING CANDIDATE PRIMER SETS FORDETECTING MIR-1, MIR-9; MIR-194 AND MIR-206SelectedmicroRNADynamicfor use intargetExtension primerReverse primerSensitivityRangeprofilingmiR-9miR-9GS10 (SEQ IDmiR-9 RP1 (SEQ ID139(SEQ IDNO: 960)NO: 964)NO: 1043)miR-9GS9 (SEQ IDmiR-9 RP1 (SEQ ID134NO: 961)NO: 964)miR-9GS8 (SEQ IDmiR-9 RP1 (SEQ ID100NO: 962)NO: 964)miR-9GS7 (SEQ IDmiR-9 RP1 (SEQ ID168NO: 963)NO: 964)miR-9GS10 (SEQ IDmiR-9 RP2 (SEQ ID135NO: 960)NO: 965)miR-9GS9 (SEQ IDmiR-9 RP2 (SEQ ID144NO: 961)NO: 965)miR-9GS8 (SEQ IDmiR-9 RP2 (SEQ ID100NO: 962)NO: 965)miR-9GS7 (SEQ IDmiR-9 RP2 (SEQ ID178NO: 963)NO: 965)miR-194miR-194GS10 (SEQmiR-194RP1 (SEQ ID96(SEQ IDID NO: 944)NO: 948)NO: 1040)miR-194GS9 (SEQ IDmiR-194RP1 (SEQ ID115NO: 945)NO: 948)miR-194GS8 (SEQ IDmiR-194RP1 (SEQ ID1317+NO: 946)NO: 948)miR-194GS7 (SEQ IDmiR-194RP1 (SEQ ID1517NO: 947)NO: 948)miR-194GS10 (SEQmiR-194RP2 (SEQ ID106ID NO: 944)NO: 949)miR-194GS9 (SEQ IDmiR-194RP2 (SEQ ID116NO: 945)NO: 949)miR-194GS8 (SEQ IDmiR-194RP2 (SEQ ID1316NO: 946)NO: 949)miR-194GS7 (SEQ IDmiR-194RP2 (SEQ ID1716NO: 947)NO: 949)miR-1miR-1 GS10 (SEQ IDmiR-1 RP1 (SEQ ID1515(SEQ IDNO: 47)NO: 959)NO: 1042)miR-1 GS9 (SEQ IDmiR-1 RP1 (SEQ ID178NO: 956)NO: 959)miR-1 GS8 (SEQ IDmiR-1 RP1 (SEQ ID1911NO: 957)NO: 959)miR-1 GS7 (SEQ IDmiR-1 RP1 (SEQ ID2211NO: 958)NO: 959)miR-1 GS10 (SEQ IDmiR-1 RP2 (SEQ ID1315+NO: 47)NO: 48)miR-1 GS9 (SEQ IDmiR-1 RP2 (SEQ ID158NO: 956)NO: 48)miR-1 GS8 (SEQ IDmiR-1 RP2 (SEQ ID1711NO: 957)NO: 48)miR-1 GS7 (SEQ IDmiR-1 RP2 (SEQ ID1910NO: 958)NO: 48)miR-206miR-206 GS10 (SEQmiR-206RP1 (SEQ ID1510(SEQ IDID NO: 950)NO: 954)NO: 1041)miR-206 GS9 (SEQmiR-206RP1 (SEQ ID1610ID NO: 951)NO: 954)miR-206 GS8 (SEQmiR-206RP1 (SEQ ID1714ID NO: 952)NO: 954)miR-206 GS7 (SEQmiR-206RP1 (SEQ ID2020ID NO: 953)NO: 954)miR-206 GS10 (SEQmiR-206RP2 (SEQ ID108ID NO: 950)NO: 955)miR-206 GS9 (SEQmiR-206RP2 (SEQ ID119ID NO: 951)NO: 955)miR-206 GS8 (SEQmiR-206RP2 (SEQ ID1111ID NO: 952)NO: 955)miR-206 GS7 (SEQmiR-206RP2 (SEQ ID1320+ID NO: 953)NO: 955)


Optimal primer pairs were identified based on superior sensitivity (e.g., a preferred range between 5 and 25) and dynamic range (e.g., a preferred range between 10 and 35) characteristics. As shown above in TABLE 10, an optimal primer pair was identified for miR-194: GS8 (SEQ ID NO:946) and RP1 (SEQ ID NO:948) with a sensitivity of 13 and a dynamic range of 17. An optimal primer pair was identified for miR-1: GS10 (SEQ ID NO:47) and RP2 (SEQ ID NO:48) with a sensitivity of 13 and a dynamic range of 15. An optimal primer pair was identified for miR-206: GS7 (SEQ ID NO:953) and RP2 (SEQ ID NO:955) with a sensitivity of 13 and a dynamic range of 20. As also shown in TABLE 10, the GS primers control specificity, as shown by the significant increase in dynamic range (driven by a decrease in background) in going from GS9 to GS8 (see, e.g., miR-194).


Candidate primers designed based on the principles described above, such as the additional exemplary primers listed in TABLE 8, or other candidate primers designed using the design principles described herein, may be tested using the screening methods described above. The assays may be further optimized by using HPLC purified templates to avoid problems associated with degraded templates.


It has also been determined that microRNAs that differ from each other in sequence by only 1, 2 or 3 nucleotide changes can be readily distinguished from one another through the use of the primers designed according to the design principles and methods described herein.


While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Claims
  • 1. A method for amplifying a microRNA molecule to produce DNA molecules, the method comprising the steps of: (a) producing a first DNA molecule that is complementary to a target microRNA molecule using primer extension; and (b) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward primer and a reverse primer.
  • 2. The method of claim 1, wherein at least one of the universal forward primer and the reverse primer comprises at least one locked nucleic acid molecule.
  • 3. A method of claim 1, wherein the primer extension uses an extension primer having a length in the range of from 10 to 100 nucleotides.
  • 4. A method of claim 1, wherein the primer extension uses an extension primer having a length in the range of from 20 to 35 nucleotides.
  • 5. A method of claim 1, wherein the extension primer comprises a first portion that hybridizes to a portion of the microRNA molecule.
  • 6. A method of claim 5, wherein the first portion has a length in the range of from 3 to 25 nucleotides.
  • 7. A method of claim 5, wherein the extension primer comprises a second portion.
  • 8. A method of claim 7, wherein the second portion has a length of from 18 to 25 nucleotides.
  • 9. A method of claim 7, wherein the second portion has a nucleic acid sequence comprising the nucleic acid sequence of SEQ ID NO:1.
  • 10. A method of claim 1, wherein the universal forward primer has a length in the range of from 16 nucleotides to 100 nucleotides.
  • 11. A method of claim 1, wherein the universal forward primer consists of the nucleic acid sequence set forth in SEQ ID NO:13.
  • 12. A method of claim 7, wherein the universal forward primer hybridizes to the complement of the second portion of the extension primer.
  • 13. A method of claim 2, wherein the universal forward primer comprises at least one locked nucleic acid molecule.
  • 14. A method of claim 13, wherein the universal forward primer comprises from 1 to 25 locked nucleic acid molecules.
  • 15. A method of claim 1, wherein the reverse primer has a length in the range of from 10 nucleotides to 100 nucleotides.
  • 16. A method of claim 2, wherein the reverse primer comprises at least one locked nucleic acid molecule.
  • 17. A method of claim 16, wherein the reverse primer comprises from 1 to 25 locked nucleic acid molecules.
  • 18. A method of claim 1, wherein the reverse primer is selected to specifically hybridize to a DNA molecule complementary to a selected microRNA molecule under defined hybridization conditions.
  • 19. A method of claim 1, further comprising the step of measuring the amount of amplified DNA molecules.
  • 20. A method of claim 1, wherein amplification is achieved by multiple successive PCR reactions.
  • 21. A method for measuring the amount of a target microRNA in a sample from a living organism, the method comprising the step of measuring the amount of a target microRNA molecule in a multiplicity of different cell types within a living organism, wherein the amount of the target microRNA molecule is measured by a method comprising the steps of: (1) producing a first DNA molecule complementary to the target microRNA molecule in the sample using primer extension; (2) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward and a reverse primer; and (3) measuring the amount of the amplified DNA molecules.
  • 22. The method of claim 21, wherein at least one of the universal forward primer and the reverse primer comprises at least one locked nucleic acid molecule.
  • 23. The method of claim 21, wherein the amount of the amplified DNA molecules are measured using fluorescence-based quantitative PCR.
  • 24. The method of claim 21, wherein the amount of the amplified DNA molecules are measured using SYBR green dye.
  • 25. A kit for detecting at least one mammalian target microRNA comprising at least one primer set specific for the detection of a target microRNA, the primer set comprising: (1) an extension primer for producing a cDNA molecule complementary to a target microRNA, the extension primer comprising a first portion that hybridizes to a target microRNA and a second portion having a hybridization sequence for a universal forward PCR primer; (2) a universal forward PCR primer for amplifying the cDNA molecule, comprising a sequence selected to hybridize to the hybridization sequence on the extension primer; and (3) a reverse PCR primer for amplifying the cDNA molecule, comprising a sequence selected to hybridize to a portion of the cDNA molecule.
  • 26. The kit according to claim 25, wherein at least one of the universal forward and reverse PCR primers includes at least one locked nucleic acid molecule.
  • 27. The kit according to claim 25, wherein the extension primer has a length in the range of from 10 to 100 nucleotides.
  • 28. The kit according to claim 25, wherein the first portion of the extension primer has a length in the range of from 3 to 25 nucleotides.
  • 29. The kit according to claim 25, wherein the second portion of the extension primer has a length in the range of from 18 to 25 nucleotides.
  • 30. The kit according to claim 25, wherein the second portion of the extension primer has a nucleic acid sequence comprising the nucleic acid sequence of SEQ ID NO:1.
  • 31. The kit according to claim 25, wherein the universal forward PCR primer has a length in the range of from 16 to 100 nucleotides.
  • 32. The kit according to claim 25, wherein the universal forward primer consists of the nucleic acid sequence set forth in SEQ ID NO:13.
  • 33. The kit according to claim 25, wherein the reverse PCR primer has a length in the range of from 10 to 100 nucleotides.
  • 34. The kit according to claim 25, wherein the reverse PCR primer comprises from 1 to 25 locked nucleic acid molecules.
  • 35. The kit according to claim 25, wherein the at least one mammalian target microRNA is a human microRNA.
  • 36. The kit according to claim 35, wherein the at least one target microRNA is selected from the group consisting of miR-1, miR-7, miR-9*, miR-10a, miR-10b, miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-18, miR-19a, miR-19b, miR-20, miR-21, miR-22, miR-23a, miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-28, miR-29a, miR-29b, miR-29c, miR-30a-5p, miR-30b, miR-30c, cmiR-34c, miR-92, miR-93, miR-95, miR-96, miR-98, miR-99a, miR-99b, miR-100, miR-101, miR-103, miR-105, miR-106a, miR-107, miR-122, miR-122a, miR-124, miR-124, miR-124a, miR-125a, miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b, miR-129, miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134, miR-135a, miR-135b, miR-136, miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p, miR-143, miR-144, miR-145, miR-146, miR-147, miR-148a, miR-148b, miR-149, miR-150, miR-151, miR-152, miR-153, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-182*, miR-182, miR-183, miR-184, miR-185, miR-186, miR-187, miR-188, miR-189, miR-190, miR-191, miR-192, miR-193, miR-194, miR-195, miR-196a, miR-196b, miR-197, miR-198, miR-199a*, miR-199a, miR-199b, miR-200a, miR-200b, miR-200c, miR-202, miR-203, miR-204, miR-205, miR-206, miR-208, miR-210, miR-211, miR-212, miR-213, miR-213, miR-214, miR-215, miR-216, miR-217, miR-218, miR-220, miR-221, miR-222, miR-223, miR-224, miR-296, miR-299, miR-301, miR-302a*, miR-302a, miR-302b*, miR-302b, miR-302d, miR-302c*, miR-302c, miR-320, miR-323, miR-324-3p, miR-324-5p, miR-325, miR-326, miR-328, miR-330, miR-331, miR-337, miR-338, miR-339, miR-340, miR-342, miR-345, miR-346, miR-363, miR-367, miR-368, miR-370, miR-371, miR-372, miR-373*, miR-373, miR-374, miR-375, miR-376b, miR-378, miR-379, miR-380-5p, miR-380-3p, miR-381, miR-382, miR-383, miR-410, miR-412, miR-422a, miR-422b, miR-423, miR-424, miR-425, miR-429, miR-431, miR-448, miR-449, miR-450, miR-451, let7a, let7b, let7c, let7d, let7e, let7f, let7g, let7i, miR-376a, and miR-377.
  • 37. The kit according to claim 35, wherein the at least one target microRNA is selected from the group consisting of: miR-1, miR-7, miR-10b, miR-26a, miR-26b, miR-29a, miR-30e-3p, miR-95, miR-107, miR-141, miR-143, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-190, miR-193, miR-194, miR-195, miR-202, miR-206, miR-208, miR-212, miR-221, miR-222, miR-224, miR-296, miR-299, miR-302c*, miR-302c, miR-320, miR-339, miR-363, miR-376b, miR-379, miR-410, miR-412, miR-424, miR-429, miR-431, miR-449, miR-451, let7a, let7b, let7c, let7d, let7e, let7f, let7g, and let7i.
  • 38. The kit according to claim 25, wherein the at least one target microRNA is a murine microRNA.
  • 39. A kit for detecting at least one mammalian microRNA, comprising at least one oligonucleotide primer selected from the group consisting of SEQ ID NO:2 to SEQ ID NO:499.
  • 40. The kit according to claim 39, comprising at least one or more oligonucleotide primers selected from the group consisting of SEQ ID NOS:47, 48, 49, 50, 55, 56, 81, 82, 83, 84, 91, 92, 103, 104, 123, 124, 145, 146, 193, 194, 197, 198, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 239, 240, 247, 248, 253, 254, 255, 256, 257, 258, 277, 278, 285, 286, 287, 288, 293, 294, 301, 302, 309, 310, 311, 312, 315, 316, 317, 318, 319, 320, 333, 334, 335, 336, 337, 338, 359, 360, 369, 370, 389, 390, 393, 394, 405, 406, 407, 408, 415, 416, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 461, and 462.
  • 41. An oligonucleotide primer for detecting a human microRNA selected from the group consisting of SEQ ID NO:2 to SEQ ID NO:499.
  • 42. An oligonucleotide primer according to claim 41, wherein the primer is selected from the group consisting of SEQ ID NO:47, 48, 49, 50, 55, 56, 81, 82, 83, 84, 91, 92, 103, 104, 123, 124, 145, 146, 193, 194, 197, 198, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 239, 240, 247, 248, 253, 254, 255, 256, 257, 258, 277, 278, 285, 286, 287, 288, 293, 294, 301, 302, 309, 310, 311, 312, 315, 316, 317, 318, 319, 320, 333, 334, 335, 336, 337, 338, 359, 360, 369, 370, 389, 390, 393, 394, 405, 406, 407, 408, 415, 416, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 461, and 462.
  • 43. The kit according to claim 25, wherein the at least one mammalian target microRNA is selected from the group consisting of miR-1, miR-9, miR-18b, miR-20b, miR-92b, miR-146b, miR-181d, miR-193b, miR-194, miR-206, miR-291a-3p, miR-291b-3p, miR-301b, miR-329, miR-346, miR-351, miR-362, miR-362-3p, miR-369-5p, miR-384, miR-409-3p, miR-409-5p, miR-425-5p, miR-449b, miR-455, miR-483, miR-484, miR-485-3p, miR-485-5p, miR-486, miR-487b, miR-488, miR-489, miR-490, miR-491, miR-493-3p, miR-494, miR-495, miR-497, miR-499, miR-500, miR-501, miR-503, miR-505, miR-519a, miR-519b, miR-519c, miR-519d, miR-520a, miR-520b, miR-520d, miR-520e, miR-520f, miR-532, miR-539, miR-542-3p, miR-542-5p, miR-615, miR-652, miR-668, miR-671, miR-675-5p, miR-699, miR-721, and miR-758.
  • 44. A kit for detecting at least one mammalian microRNA comprising at least one oligonucleotide primer selected from the group consisting of SEQ ID NO:500 to SEQ ID NO:965.
  • 45. An oligonucleotide primer for detecting a mammalian microRNA selected from the group consisting of SEQ ID NO:500 to SEQ ID NO:965.
  • 46. A method for discriminating between two or more mammalian target microRNA that have a similar sequence in a sample from a living organism, the method comprising the steps of: (a) producing a first DNA molecule that is complementary to the first microRNA molecule using a first extension primer specific to the first microRNA molecule; (b) amplifying the first DNA molecule to produce a first population of amplified DNA molecules using a universal forward primer and a first reverse primer; (c) producing a second DNA molecule that is complementary to the second microRNA molecule using a second extension primer specific to the second microRNA molecule; (d) amplifying the second DNA molecule to produce a second population of amplified DNA molecules using a universal forward primer and a second reverse primer; and (e) measuring the amount of the first and second population of amplified DNA molecules, wherein the first and second extension primers or the first and second reverse primers differ by one or more nucleotides in the portion that is complementary to the target microRNA.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 10/579,029, which is the National Stage of International Application No. PCT/US2006/002591, filed Jan. 25, 2006, which claims the benefit of U.S. Provisional Application No. 60/647,178, filed Jan. 25, 2005.

Provisional Applications (1)
Number Date Country
60647178 Jan 2005 US
Continuation in Parts (1)
Number Date Country
Parent 10579029 US
Child 11779759 Jul 2007 US