Methods for quantitating small RNA molecules

Information

  • Patent Application
  • 20090123912
  • Publication Number
    20090123912
  • Date Filed
    January 25, 2006
    19 years ago
  • Date Published
    May 14, 2009
    16 years ago
Abstract
In one aspect, the present invention provides methods for amplifying a microRNA molecule to produce DNA molecules. The methods each include the steps of: (a) using primer extension to make a DNA molecule that is complementary to a target microRNA molecule; and (b) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules. In some embodiments of the method, at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule.
Description
FIELD OF THE INVENTION

The present invention relates to methods of amplifying and quantitating small RNA molecules.


BACKGROUND OF THE INVENTION

RNA interference (RNAi) is an evolutionarily conserved process that functions to inhibit gene expression (Bernstein et al. (2001), Nature 409:363-6; Dykxhoorn et al. (2003) Nat. Rev. Mol. Cell. Biol. 4:457-67). The phenomenon of RNAi was first described in Caenorhabditis elegans, where injection of double-stranded RNA (dsRNA) led to efficient sequence-specific gene silencing of the mRNA that was complementary to the dsRNA (Fire et al. (1998) Nature 391:806-11). RNAi has also been described in plants as a phenomenon called post-transcriptional gene silencing (PTGS), which is likely used as a viral defense mechanism (Jorgensen (1990) Trends Biotechnol. 8:340-4; Brigneti et al. (1998) EMBO J. 17:6739-46; Hamilton & Baulcombe (1999) Science 286:950-2).


An early indication that the molecules that regulate PTGS were short RNAs processed from longer dsRNA was the identification of short 21 to 22 nucleotide dsRNA derived from the longer dsRNA in plants (Hamilton & Baulcombe (1999) Science 286:950-2). This observation was repeated in Drosophila embryo extracts where long dsRNA was found processed into 21-25 nucleotide short RNA by the RNase III type enzyme, Dicer (Elbashir et al. (2001) Nature 411:494-8; Elbashir et al. (2001) EMBO J. 20:6877-88; Elbashir et al. (2001) Genes Dev. 15:188-200). These observations led Elbashir et al. to test if synthetic 21-25 nucleotide synthetic dsRNAs function to specifically inhibit gene expression in Drosophila embryo lysates and mammalian cell culture (Elbashir et al. (2001) Nature 411:494-8; Elbashir et al. (2001) EMBO J. 20:6877-88; Elbashir et al. (2001) Genes Dev. 15:188-200). They demonstrated that small interfering RNAs (siRNAs) had the ability to specifically inhibit gene expression in mammalian cell culture without induction of the interferon response.


These observations led to the development of techniques for the reduction, or elimination, of expression of specific genes in mammalian cell culture, such as plasmid-based systems that generate hairpin siRNAs (Brummelkamp et al. (2002) Science 296:550-3; Paddison et al. (2002) Genes Dev. 16:948-58; Paddison et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99:1443-8; Paul et al. 2002) Nat. Biotechnol. 20:404-8). siRNA molecules can also be introduced into cells, in vivo, to inhibit the expression of specific proteins (see, e.g., Soutschek, J., et al., Nature 432 (7014):173-178 (2004)).


siRNA molecules have promise both as therapeutic agents for inhibiting the expression of specific proteins, and as targets for drugs that affect the activity of siRNA molecules that function to regulate the expression of proteins involved in a disease state. A first step in developing such therapeutic agents is to measure the amounts of specific siRNA molecules in different cell types within an organism, and thereby construct an “atlas” of siRNA expression within the body. Additionally, it will be useful to measure changes in the amount of specific siRNA molecules in specific cell types in response to a defined stimulus, or in a disease state.


Short RNA molecules are difficult to quantitate. For example, with respect to the use of PCR to amplify and measure the small RNA molecules, most PCR primers are longer than the small RNA molecules, and so it is difficult to design a primer that has significant overlap with a small RNA molecule, and that selectively hybridizes to the small RNA molecule at the temperatures used for primer extension and PCR amplification reactions.


SUMMARY OF THE INVENTION

In one aspect, the present invention provides methods for amplifying a microRNA molecule to produce cDNA molecules. The methods include the steps of: (a) producing a first DNA molecule that is complementary to a target microRNA molecule using primer extension; and (b) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward primer and a reverse primer. In some embodiments of the method, at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule. It will be understood that, in the practice of the present invention, typically numerous (e.g., millions) of individual microRNA molecules are amplified in a sample (e.g., a solution of RNA molecules isolated from living cells).


In another aspect, the present invention provides methods for measuring the amount of a target microRNA in a a sample from a living organism. The methods of this aspect of the invention include the step of measuring the amount of a target microRNA molecule in a multiplicity of different cell types within a living organism, wherein the amount of the target microRNA molecule is measured by a method including the steps of: (1) producing a first DNA molecule complementary to the target microRNA molecule in the sample using primer extension; (2) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward primer and a reverse primer; and (3) measuring the amount of the amplified DNA molecules. In some embodiments of the method, at least one of the forward primer and the reverse primer comprise at least one locked nucleic acid molecule.


In another aspect, the invention provides nucleic acid primer molecules consisting of sequence SEQ ID NO:1 to SEQ ID NO: 499, as shown in TABLE 1, TABLE 2, TABLE 6 and TABLE 7. The primer molecules of the invention can be used as primers for detecting mammalian microRNA target molecules, using the methods of the invention described herein.


In another aspect, the present invention provides kits for detecting at least one mammalian target microRNA, the kits comprising one or more primer sets specific for the detection of a target microRNA, each primer set comprising (1) an extension primer for producing a cDNA molecule complementary to a target microRNA, (2) a universal forward PCR primer for amplifying the cDNA molecule and (3) a reverse PCR primer for amplifying the cDNA molecule. The extension primer comprises a first portion that hybridizes to the target microRNA molecule and a second portion that includes a hybridization sequence for a universal forward PCR primer. The reverse PCR primer comprises a sequence selected to hybridize to a portion of the cDNA molecule. In some embodiments of the kit, at least one of the universal forward and reverse primers include at least one locked nucleic acid molecule. The kits of the invention may be used to practice various embodiments of the methods of the invention.


The present invention is useful, for example, for quantitating specific microRNA molecules within different types of cells in a living organism, or, for example, for measuring changes in the amount of specific microRNAs in living cells in response to a stimulus (e.g., in response to administration of a drug).





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:



FIG. 1 shows a flow chart of a representative method of the present invention;



FIG. 2 graphically illustrates the standard curves for assays specific for the detection of microRNA targets miR-95 and miR-424 as described in EXAMPLE 3;



FIG. 3A is a histogram plot showing the expression profile of miR-1 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5;



FIG. 3B is a histogram plot showing the expression profile of miR-124 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5; and



FIG. 3C is a histogram plot showing the expression profile of miR-150 across a panel of total RNA isolated from twelve tissues as described in EXAMPLE 5.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In accordance with the foregoing, in one aspect, the present invention provides methods for amplifying a microRNA molecule to produce cDNA molecules. The methods include the steps of: (a) using primer extension to make a DNA molecule that is complementary to a target microRNA molecule; and (b) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules. In some embodiments of the method, at least one of the universal forward primer and the reverse primer comprises at least one locked nucleic acid molecule.


As used, herein, the term “locked nucleic acid molecule” (abbreviated as LNA molecule) refers to a nucleic acid molecule that includes a 2′-O,4′-C-methylene-β-D-ribofuranosyl moiety. Exemplary 2′-O,4′-C-methylene-β-D-ribofuranosyl moieties, and exemplary LNAs including such moieties, are described, for example, in Petersen, M. and Wengel, J., Trends in Biotechnology 21(2):74-81 (2003) which publication is incorporated herein by reference in its entirety.


As used herein, the term “microRNA” refers to an RNA molecule that has a length in the range of from 21 nucleotides to 25 nucleotides. Some microRNA molecules (e.g., siRNA molecules) function in living cells to regulate gene expression.


Representative method of the invention. FIG. 1 shows a flowchart of a representative method of the present invention. In the method represented in FIG. 1, a microRNA is the template for synthesis of a complementary first DNA molecule. The synthesis of the first DNA molecule is primed by an extension primer, and so the first DNA molecule includes the extension primer and newly synthesized DNA (represented by a dotted line in FIG. 1). The synthesis of DNA is catalyzed by reverse transcriptase.


The extension primer includes a first portion (abbreviated as FP in FIG. 1) and a second portion (abbreviated as SP in FIG. 1). The first portion hybridizes to the microRNA target template, and the second portion includes a nucleic acid sequence that hybridizes with a universal forward primer, as described infra.


A quantitative polymerase chain reaction is used to make a second DNA molecule that is complementary to the first DNA molecule. The synthesis of the second DNA molecule is primed by the reverse primer that has a sequence that is selected to specifically hybridize to a portion of the target first DNA molecule. Thus, the reverse primer does not hybridize to nucleic acid molecules other than the first DNA molecule. The reverse primer may optionally include at least one LNA molecule located within the portion of the reverse primer that does not overlap with the extension primer. In FIG. 1, the LNA molecules are represented by shaded ovals.


A universal forward primer hybridizes to the 3′ end of the second DNA molecule and primes synthesis of a third DNA molecule. It will be understood that, although a single microRNA molecule, single first DNA molecule, single second DNA molecule, single third DNA molecule and single extension, forward and reverse primers are shown in FIG. 1, typically the practice of the present invention uses reaction mixtures that include numerous copies (e.g., millions of copies) of each of the foregoing nucleic acid molecules.


The steps of the methods of the present invention are now considered in more detail.


Preparation of microRNA molecules useful as templates. microRNA molecules useful as templates in the methods of the invention can be isolated from any organism (e.g., eukaryote, such as a mammal) or part thereof, including organs, tissues, and/or individual cells (including cultured cells). Any suitable RNA preparation that includes microRNAs can be used, such as total cellular. RNA.


RNA may be isolated from cells by procedures that involve lysis of the cells and denaturation of the proteins contained therein. Cells of interest include wild-type cells, drug-exposed wild-type cells, modified cells, and drug-exposed modified cells.


Additional steps may be employed to remove some or all of the DNA. Cell lysis may be accomplished with a nonionic detergent, followed by microcentrifugation to remove the nuclei and hence the bulk of the cellular DNA. In one embodiment, RNA is extracted from cells of the various types of interest using guanidinium thiocyanate lysis followed by CsCl centrifugation to separate the RNA from DNA (see, Chirgwin et al., 1979, Biochemistry 18:5294-5299). Separation of RNA from DNA can also be accomplished by organic extraction, for example, with hot phenol or phenol/chloroform/isoamyl alcohol.


If desired, RNase inhibitors may be added to the lysis buffer. Likewise, for certain cell types, it may be desirable to add a protein denaturation/digestion step to the protocol.


The sample of RNA can comprise a multiplicity of different microRNA molecules, each different microRNA molecule having a different nucleotide sequence. In a specific embodiment, the microRNA molecules in the RNA sample comprise at least 100 different nucleotide sequences. In other embodiments, the microRNA molecules of the RNA sample comprise at least 500, 1,000, 5,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000, 90,000, or 100,000 different nucleotide sequences.


The methods of the invention may be used to detect the presence of any microRNA. For example, the methods of the invention can be used to detect one or more of the microRNA targets described in a database such as “the miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34: D140-D144, which is publicly accessible on the World Wide Web at the Wellcome Trust Sanger Institute website at http://microrna.sanger.ac.uk/sequences/. A list of exemplary microRNA targets is also described in the following references: Lagos-Quintana et al., Curr. Biol. 12(9):735-9 (2002).


Synthesis of DNA molecules using microRNA molecules as templates. In the practice of the methods of the invention, first DNA molecules are synthesized that are complementary to the microRNA target molecules, and that are composed of an extension primer and newly synthesized DNA (wherein the extension primer primes the synthesis of the newly synthesized DNA). Individual first DNA molecules can be complementary to a whole microRNA target molecule, or to a portion thereof; although typically an individual first DNA molecule is complementary to a whole microRNA target molecule. Thus, in the practice of the methods of the invention, a population of first DNA molecules is synthesized that includes individual DNA molecules that are each complementary to all, or to a portion, of a target microRNA molecule.


The synthesis of the first DNA molecules is catalyzed by reverse transcriptase. Any reverse transcriptase molecule can be used to synthesize the first DNA molecules, such as those derived from Moloney murine leukemia virus (MMLV-RT), avian myeloblastosis virus (AMV-RT), bovine leukemia virus (BLV-RT), Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV-RT). A reverse transcriptase lacking RNaseH activity (e.g., SUPERSCRIPT III™ sold by Invitrogen, 1600 Faraday Avenue, PO Box 6482, Carlsbad, Calif. 92008) is preferred in order to minimize the amount of double-stranded cDNA synthesized at this stage. The reverse transcriptase molecule should also preferably be thermostable so that the DNA synthesis reaction can be conducted at as high a temperature as possible, while still permitting hybridization of primer to the microRNA target molecules.


Priming the synthesis of the first DNA molecules. The synthesis of the first DNA molecules is primed using an extension primer. Typically, the length of the extension primer is in the range of from 10 nucleotides to 100 nucleotides, such as 20 to 35 nucleotides. The nucleic acid sequence of the extension primer is incorporated into the sequence of each, synthesized, DNA molecule. The extension primer includes a first portion that hybridizes to a portion of the microRNA molecule. Typically the first portion of the extension primer includes the 3′-end of the extension primer. The first portion of the extension primer typically has a length in the range of from 6 nucleotides to 20 nucleotides, such as from 10 nucleotides to 12 nucleotides. In some embodiments, the first portion of the extension primer has a length in the range of from 3 nucleotides to 25 nucleotides.


The extension primer also includes a second portion that typically has a length of from 18 to 25 nucleotides. For example, the second portion of the extension primer can be 20 nucleotides long. The second portion of the extension primer is located 5′ to the first portion of the extension primer. The second portion of the extension primer includes at least a portion of the hybridization site for the universal forward primer. For example, the second portion of the extension primer can include all of the hybridization site for the universal forward primer, or, for example, can include as little as a single nucleotide of the hybridization site for the universal forward primer (the remaining portion of the hybridization site for the forward primer can, for example, be located in the first portion of the extension primer). An exemplary nucleic acid sequence of a second portion of an extension primer is 5′ CATGATCAGCTGGGCCAAGA 3′ (SEQ ID NO:1).


Amplification of the DNA molecules. In the practice of the methods of the invention, the first DNA molecules are enzymatically amplified using the polymerase chain reaction. A universal forward primer and a reverse primer are used to prime the polymerase chain reaction. The reverse primer includes a nucleic acid sequence that is selected to specifically hybridize to a portion of a first DNA molecule.


The reverse primer typically has a length in the range of from 10 nucleotides to 100 nucleotides. In some embodiments, the reverse primer has a length in the range of from 12 nucleotides to 20 nucleotides. The nucleotide sequence of the reverse primer is selected to hybridize to a specific target nucleotide sequence under defined hybridization conditions. The reverse primer and extension primer are both present in the PCR reaction mixture, and so the reverse primer should be sufficiently long so that the melting temperature (Tm) is at least 50° C., but should not be so long that there is extensive overlap with the extension primer which may cause the formation of “primer dimers.” “Primer dimers” are formed when the reverse primer hybridizes to the extension primer, and uses the extension primer as a substrate for DNA synthesis, and the extension primer hybridizes to the reverse primer, and uses the reverse primer as a substrate for DNA synthesis. To avoid the formation of “primer dimers,” typically the reverse primer and the extension primer are designed so that they do not overlap with each other by more than 6 nucleotides. If it is not possible to make a reverse primer having a Tm of at least 50° C., and wherein the reverse primer and the extension primer do not overlap by more than 6 nucleotides, then it is preferable to lengthen the reverse primer (since Tm usually increases with increasing oligonucleotide length) and decrease the length of the extension primer.


The reverse primer primes the synthesis of a second DNA molecule that is complementary to the first DNA molecule. The universal forward primer hybridizes to the portion of the second DNA molecule that is complementary to the second portion of the extension primer which is incorporated into all of the first DNA molecules. The universal forward primer primes the synthesis of third DNA molecules. The universal forward primer typically has a length in the range of from 16 nucleotides to 100 nucleotides. In some embodiments, the universal forward primer has a length in the range of from 16 nucleotides to 30 nucleotides. The universal forward primer may include at least one locked nucleic acid molecule. In some embodiments, the universal forward primer includes from 1 to 25 locked nucleic acid molecules. The nucleic acid sequence of an exemplary universal forward primer is set forth in SEQ ID NO:13.


In general, the greater the number of amplification cycles during the polymerase chain reaction, the greater the amount of amplified DNA that is obtained. On the other hand, too many amplification cycles (e.g., more than 35 amplification cycles) may result in spurious and unintended amplification of non-target double-stranded DNA. Thus, in some embodiments, a desirable number of amplification cycles is between one and 45 amplification cycles, such as from one to 25 amplification cycles, or such as from five to 15 amplification cycles, or such as ten amplification cycles.


Use of LNA molecules and selection of primer hybridization conditions: hybridization conditions are selected that promote the specific hybridization of a primer molecule to the complementary sequence on a substrate molecule. With respect to the hybridization of a 12 nucleotide first portion of an extension primer to a microRNA, it has been found that specific hybridization occurs at a temperature of 50° C. Similarly, it has been found that hybridization of a 20 nucleotide universal forward primer to a complementary DNA molecule, and hybridization of a reverse primer (having a length in the range of from 12-20 nucleotides, such as from 14-16 nucleotides) to a complementary DNA molecule occurs at a temperature of 50° C. By way of example, it is often desirable to design extension, reverse and universal forward primers that each have a hybridization temperature in the range of from 50° C. to 60° C.


In some embodiments, LNA molecules can be incorporated into at least one of the extension primer, reverse primer, and universal forward primer to raise the Tm of one, or more, of the foregoing primers to at least 5° C. Incorporation of an LNA molecule into the portion of the reverse primer that hybridizes to the target first DNA molecule, but not to the extension primer, may be useful because this portion of the reverse primer is typically no more than 10 nucleotides in length. For example, the portion of the reverse primer that hybridizes to the target first DNA molecule, but not to the extension primer, may include at least one locked nucleic acid molecule (e.g., from 1 to 25 locked nucleic acid molecules). In some embodiments, two or three locked nucleic acid molecules are included within the first 8 nucleotides from the 5′ end of the reverse primer.


The number of LNA residues that must be incorporated into a specific primer to raise the Tm to a desired temperature mainly depends on the length of the primer and the nucleotide composition of the primer. A tool for determining the effect on Tm of one or more LNAs in a primer is available on the Internet Web site of Exiqon, Bygstubben 9, DK-2950 Vedbaek, Denmark.


Although one or more LNAs can be included in any of the primers used in the practice of the present invention, it has been found that the efficiency of synthesis of cDNA is low if an LNA is incorporated into the extension primer. While not wishing to be bound by theory, LNAs may inhibit the activity of reverse transcriptase.


Detecting and measuring the amount of the amplified DNA molecules: the amplified DNA molecules can be detected and quantitated by the presence of detectable marker molecules, such as fluorescent molecules. For example, the amplified DNA molecules can be detected and quantitated by the presence of a dye (e.g., SYBR green) that preferentially or exclusively binds to double stranded DNA during the PCR amplification step of the methods of the present invention. For example, Molecular Probes, Inc. (29851 Willow Creek Road, Eugene, Oreg. 97402) sells quantitative PCR reaction mixtures that include SYBR green dye. By way of further example, another dye (referred to as “BEBO”) that can be used to label double stranded DNA produced during real-time PCR is described by Bengtsson, M., et al., Nucleic Acids Research 31(8):e45 (Apr. 15, 2003), which publication is incorporated herein by reference. Again by way of example, a forward and/or reverse primer that includes a fluorophore and quencher can be used to prime the PCR amplification step of the methods of the present invention. The physical separation of the fluorophore and quencher that occurs after extension of the labeled primer during PCR permits the fluorophore to fluoresce, and the fluorescence can be used to measure the amount of the PCR amplification products. Examples of commercially available primers that include a fluorophore and quencher include Scorpion primers and Uniprimers, which are both sold by Molecular Probes, Inc.


Representative uses of the present invention: The present invention is useful for producing cDNA molecules from microRNA target molecules. The amount of the DNA molecules can be measured which provides a measurement of the amount of target microRNA molecules in the starting material. For example, the methods of the present invention can be used to measure the amount of specific microRNA molecules (e.g., specific siRNA molecules) in living cells. Again by way of example, the present invention can be used to measure the amount of specific microRNA molecules (e.g., specific siRNA molecules) in different cell types in a living body, thereby producing an “atlas” of the distribution of specific microRNA molecules within the body. Again by way of example, the present invention can be used to measure changes in the amount of specific microRNA molecules (e.g., specific siRNA molecules) in response to a stimulus, such as in response to treatment of a population of living cells with a drug.


Thus, in another aspect, the present invention provides methods for measuring the amount of a target microRNA in a multiplicity of different cell types within a living organism (e.g., to make a microRNA “atlas” of the organism). The methods of this aspect of the invention each include the step of measuring the amount of a target microRNA molecule in a multiplicity of different cell types within a living organism, wherein the amount of the target microRNA molecule is measured by a method comprising the steps of: (1) using primer extension to make a DNA molecule complementary to the target microRNA molecule isolated from a cell type of a living organism; (2) using a universal forward primer and a reverse primer to amplify the DNA molecule to produce amplified DNA molecules, and (3) measuring the amount of the amplified DNA molecules. In some embodiments of the methods, at least one of the forward primer and the reverse primer comprises at least one locked nucleic acid molecule. The measured amounts of amplified DNA molecules can, for example, be stored in an interrogatable database in electronic form, such as on a computer-readable medium (e.g., a floppy disc).


In another aspect, the invention provides nucleic acid primer molecules consisting of sequence SEQ ID NO:1 to SEQ ID NO: 499, as shown in TABLE 1, TABLE 2, TABLE 6 and TABLE 7. The primer molecules of the invention can be used as primers for detecting mammalian microRNA target molecules, using the methods of the invention described herein.


In another aspect, the present invention provides kits for detecting at least one mammalian target microRNA, the kits comprising one or more primer sets specific for the detection of a target microRNA, each primer set comprising (1) an extension primer for producing a cDNA molecule complementary to a target microRNA, (2) a universal forward PCR primer and (3) a reverse PCR primer for amplifying the cDNA molecule. The extension primer comprises a first portion that hybridizes to the target microRNA molecule and a second portion that includes a hybridization sequence for a universal forward PCR primer. The reverse PCR primer comprises a sequence selected to hybridize to a portion of the cDNA molecule. In some embodiments of the kits, at least one of the universal forward and reverse primers includes at least one locked nucleic acid molecule.


The extension primer, universal forward and reverse primers for inclusion in the kit may be designed to detect any mammalian target microRNA in accordance with the methods described herein. Nonlimiting examples of human target microRNA target molecules and exemplary target-specific extension primers and reverse primers are listed below in TABLE 1, TABLE 2 and TABLE 6. Nonlimiting examples of murine target microRNA target molecules and exemplary target-specific extension primers and reverse primers are listed below in TABLE 7. A nonlimiting example of a universal forward primer is set forth as SEQ ID NO: 13.


In certain embodiments, the kit includes a set of primers comprising an extension primer, reverse and universal forward primers for a selected target microRNA molecule that each have a hybridization temperature in the range of from 50° C. to 60° C.


In certain embodiments, the kit includes a plurality of primer sets that may be used to detect a plurality of mammalian microRNA targets, such as two microRNA targets up to several hundred microRNA targets.


In certain embodiments, the kit comprises one or more primer sets capable of detecting at least one or more of the following human microRNA target templates: of miR-1, miR-7, miR-9*, miR-10a, miR-10b, miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-18, miR-19a, miR-19b, miR-20, miR-21, miR-22, miR-23a, miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-28, miR-29a, miR-29b, miR-29c, miR-30a-5p, miR-30b, miR-30c, miR-30d, miR-30e-5p, miR-30e-3p, miR-31, miR-32, miR-33, miR-34a, miR-34b, miR-34c, miR-92, miR-93, miR-95, miR-96, miR-98, miR-99a, miR-99b, miR-100, miR-101, miR-103, miR-105, miR-106a, miR-107, miR-122, miR-122a, miR-124, miR-124, miR-124a, miR-125a, miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b, miR-129, miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134, miR-135a, miR-135b, miR-136, miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p, miR-143, miR-144, miR-145, miR-146, miR-147, miR-148a, miR-148b, miR-149, miR-150, miR-151, miR-152, miR-153, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-182*, miR-182, miR-183, miR-184, miR-185, miR-186, miR-187, miR-188, miR-189, miR-190, miR-191, miR-192, miR-193, miR-194, miR-195, miR-196a, miR-196b, miR-197, miR-198, miR-199a*, miR-199a, miR-199b, miR-200a, miR-200b, miR-200c, miR-202, miR-203, miR-204, miR-205, miR-206, miR-208, miR-210, miR-211, miR-212, miR-213, miR-213, miR-214, miR-215, miR-216, miR-217, miR-218, miR-220, miR-221, miR-222, miR-223, miR-224, miR-296, miR-299, miR-301, miR-302a*, miR-302a, miR-302b*, miR-302b, miR-302d, miR-302c*, miR-302c, miR-320, miR-323, miR-324-3p, miR-324-5p, miR-325, miR-326, miR-328, miR-330, miR-331, miR-337, miR-338, miR-339, miR-340, miR-342, miR-345, miR-346, miR-363, miR-367, miR-368, miR-370, miR-371, miR-372, miR-373*, miR-373, miR-374, miR-375, miR-376b, miR-378, miR-379, miR-380-5p, miR-380-3p, miR-381, miR-382, miR-383, miR-410, miR-412, miR-422a, miR-422b, miR-423, miR-424, miR-425, miR-429, miR-431, miR-448, miR-449, miR-450, miR-451, let7a, let7b, let7c, let7d, let7e, let7f, let7g, let7i, miR-376a, and miR-377. The sequences of the above-mentioned microRNA targets are provided in “the miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111, and Griffith-Jones et al. (2006), Nucleic Acids Research 34: D140-D144, which is publicly accessible on the World Wide Web at the Welcome Trust Sanger Institute website at http://microrna.sanger.ac.uk/sequences/.


Exemplary primers for use in accordance with this embodiment of the kit are provided in TABLE 1, TABLE 2 and TABLE 6 below.


In another embodiment, the kit comprises one or more primer sets capable of detecting at least one or more of the following human microRNA target templates: miR-1, miR-7, miR-10b, miR-26a, miR-26b, miR-29a, miR-30e-3p, miR-95, miR-107, miR-141, miR-143, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-190, miR-193, miR-194, miR-195, miR-202, miR-206, miR-208, miR-212, miR-221, miR-222, miR-224, miR-296, miR-299, miR-302c*, miR-302c, miR-320, miR-339, miR363, miR-376b, miR379, miR410, miR412, miR424, miR429, miR431, miR449, miR451, let7a, let7b, let7c, let7d, let7e, let7f, let7g, and let7i. Exemplary primers for use in accordance with this embodiment of the kit are provided in TABLE 1, TABLE 2 and TABLE 6 below.


In another embodiment, the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 2 to SEQ ID NO: 493, as shown in TABLE 1, TABLE 2, TABLE 6 and TABLE 7.


In another embodiment, the kit comprises at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 47, 48, 49, 50, 55, 56, 81, 82, 83, 84, 91, 92, 103, 104, 123, 124, 145, 146, 193, 194, 197, 198, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 239, 240, 247, 248, 253, 254, 255, 256, 257, 258, 277, 278, 285, 286, 287, 288, 293, 294, 301, 302, 309, 310, 311, 312, 315, 316, 317, 318, 319, 320, 333, 334, 335, 336, 337, 338, 359, 360, 369, 370, 389, 390, 393, 394, 405, 406, 407, 408, 415, 416, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 461 and 462, as shown in TABLE 6.


A kit of the invention can also provide reagents for primer extension and amplification reactions. For example, in some embodiments, the kit may further include one or more of the following components: a reverse transcriptase enzyme, a DNA polymerase enzyme, a Tris buffer, a potassium salt (e.g., potassium chloride), a magnesium salt (e.g., magnesium chloride), a reducing agent (e.g., dithiothreitol), and deoxynucleoside triphosphates (dNTPs).


In various embodiments, the kit may include a detection reagent such as SYBR green dye or BEBO dye that preferentially or exclusively binds to double stranded DNA during a PCR amplification step. In other embodiments, the kit may include a forward and/or reverse primer that includes a fluorophore and quencher to measure the amount of the PCR amplification products.


The kit optionally includes instructions for using the kit in the detection and quantitation of one or more mammalian microRNA targets. The kit can also be optionally provided in a suitable housing that is preferably useful for robotic handling in a high throughput manner.


The following examples merely illustrate the best mode now contemplated for practicing the invention, but should not be construed to limit the invention.


EXAMPLE 1

This Example describes a representative method of the invention for producing DNA molecules from microRNA target molecules.


Primer extension was conducted as follows (using InVitrogen SuperScript III® reverse transcriptase and following the guidelines that were provided with the enzyme). The following reaction mixture was prepared on ice:

    • 1 μl of 10 mM dNTPs
    • 1 μl of 2 μM extension primer
    • 1-5 μl of target template
    • 4 μL of “5× cDNA buffer”
    • 1 μl of 0.1 M DTT
    • 1 μl of RNAse OUT
    • 1 μl of SuperScript III® enzyme
    • water to 20 μl


The mixture was incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, then cooled to room temperature and diluted 10-fold with TE (10 mM Tris, pH 7.6, 0.1 mM EDTA).


Real-time PCR was conducted using an ABI 7900 HTS detection system (Applied Biosystems, Foster City, Calif., U.S.A.) by monitoring SYBR® green fluorescence of double-stranded PCR amplicons as a function of PCR cycle number. A typical 10 μl PCR reaction mixture contained:

    • 5 μl of 2×SYBR® green master mix (ABI)
    • 0.8 μl of 10 μM universal forward primer
    • 0.8 μl of 10 μM reverse primer
    • 1.4 μl of water
    • 2.0 μl of target template (10-fold diluted RT reaction).


The reaction was monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec; 60° C.-60 sec) and the fluorescence of the PCR products was measured.


The foregoing method was successfully used in eleven primer extension PCR assays for quantitation of endogenous microRNAs present in a sample of total RNA. The DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in these 11 assays are shown in TABLE 1.














TABLE 1






Primer


SEQ ID



Target microRNA
number
Primer Name
DNA sequence (5′ to 3′)
NO















gene-secific extension primers1












humanb let7a
357
let7aP4

CATGATCAGCTGGGCCAAGAAACTATACAACCT

2






human miR-1
337
miR1P5

CATGATCAGCTGGGCCAAGATACATACTTCT

3





human miR-15a
344
miR15aP3

CATGATCAGCTGGGCCAAGACACAAACCATTATG

4





human miR-16
351
miR16P2

CATGATCAGCTGGGCCAAGACGCCAATATTTACGT

5





human miR-21
342
miR21P6

CATGATCAGCTGGGCCAAGATCAACATCAGT

6





human miR-24
350
miR24P5

CATGATCAGCTGGGCCAAGACTGTTCCTGCTG

7





human miR-122
222
122-E5F

CATGATCAGCTGGGCCAAGAACAAACACCATTGTCA

8





human miR-124
226
124-E5F

CATGATCAGCTGGGCCAAGATGGCATTCACCGCGTG

9





human miR-143
362
miR143P5

CATGATCAGCTGGGCCAAGATGAGCTACAGTG

10





human miR-145
305
miR145P2

CATGATCAGCTGGGCCAAGAAAGGGATTCCTGGGAA

11





human miR-155
367
miR155P3

CATGATCAGCTGGGCCAAGACCCCTATCACGAT

12











universal forward primer














230
E5F
CATGATCAGCTGGGCCAAGA
13











RNA species-specific reverse primers2












human let7a
290
miRlet7a-
TG+AGGT+AGTAGGTTG
14





1, 2, 3R





human miR-1
285
miR1-1, 2R
TG+GAA+TG+TAAAGAAGTA
15





human miR-15a
287
miR15aR
TAG+CAG+CACATAATG
16





human miR-16
289
miR16-1, 2R
T+AGC+AGCACGTAAA
17





human miR-21
286
miR21R
T+AG+CT+TATCAGACTGAT
18





human miR-24
288
miR24-1, 2R
TGG+CTCAGTTCAGC
19





human miR-122
234
122LNAR
T+G+GAG+TGTGACAA
20





human miR-124
235
124LNAR
T+TAA+GGCACGCG
21





human miR-143
291
miR143R
TG+AGA+TGAAGCACTG
22





human miR-145
314
miR145R2
GT+CCAGTTTTCCCA
23





human miR-155
293
miR155R
T+TAA+TG+CTAATCGTGA
24






1-Universal forward primer binding sites are shown in italics. The overlap with the RNA-specific reverse primers are underlined.




2-LNA molecules are preceded by a “+”. Region of overlap of the reverse primers with the corresponding extension primers are underlined.







The assay was capable of detecting microRNA in a concentration range of from 2 nM to 20 fM. The assays were linear at least up to a concentration of 2 nM of synthetic microRNA (>1,000,000 copies/cell).


EXAMPLE 2

This Example describes the evaluation of the minimum sequence requirements for efficient primer-extension mediated cDNA synthesis using a series of extension primers for microRNA assays having gene specific regions that range in length from 12 to 3 base pairs.


Primer Extension Reactions: Primer extension was conducted using the target molecules miR-195 and miR-215 as follows. The target templates miR-195 and miR-215 were diluted to 1 nM RNA (100,000 copies/cell) in TE zero plus 100 ng/μl total yeast RNA. A no template control (NTC) was prepared with TE zero plus 100 ng/μl total yeast RNA.


The reverse transcriptase reactions were carried out as follows (using InVitrogen SuperScript III® reverse transcriptase and following the guidelines that were provided with the enzyme) using a series of extension primers for miR-195 (SEQ ID NO: 25-34) and a series of extension primers for miR-215 (SEQ ID NO: 35-44) the sequences of which are shown below in TABLE 2.


The following reaction mixtures were prepared on ice:


Set 1: No Template Control


37.5 μl water


12.5 μl of 10 mM dNTPs


12.5 μl 0.1 mM DTT


50 μl of “5× cDNA buffer”


12.5 μl RNAse OUT


12.5 μl Superscript III® reverse transcriptase enzyme


12.5 μl 1 μg/μl Hela cell total RNA (Ambion)


plus 50 μl of 2 μM extension primer


plus 50 μl TEzero+yeast RNA


Set 2: Spike-in Template


37.5 μl water


12.5 μl of 10 mM dNTPs


12.5 μl 0.1 mM DTT


50 μl of “5× cDNA buffer”


12.5 μl RNAse OUT


12.5 μl Superscript III® reverse transcriptase enzyme (InVitrogen)


12.5 μl 1 μg/μl Hela cell total RNA (Ambion)


plus 50 μl of 2 μM extension primer


plus 50 μl 1 nM RNA target template (miR-195 or miR-215) serially diluted in 10-fold increments


The reactions were incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, and cooled to 4° C. and diluted 10-fold with TE (10 mM Tris, pH 7.6, 0.1 mM EDTA).


Quantitative Real-Time PCR reactions: Following reverse transcription, quadruplicate measurements of cDNA were made by quantitative real-time (qPCR) using an ABI 7900 HTS detection system (Applied Biosystems, Foster City, Calif., U.S.A.) by monitoring SYBR® green fluorescence of double-stranded PCR amplicons as a function of PCR cycle number. The following reaction mixture was prepared:


5 μl of 2×SYBR green master mix (ABI)


0.8 μl of 10 μM universal forward primer (SEQ ID NO: 13)


0.8 μl of 10 μM reverse primer (miR-195RP:SEQ ID NO: 45 or miR215RP: SEQ ID NO: 46)


1.4 μl of water


2.0 μl of target template (10-fold diluted miR-195 or miR-215 RT reaction)


Quantitative real-time PCR was performed for each sample in quadruplicate, using the manufacturer's recommended conditions. The reactions were monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products were measured and disassociation curves were generated. The DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in the miR-195 and miR-215 assays are shown below in TABLE 2. The assay results for miR-195 are shown below in TABLE 3 and the assay results for miR-215 are shown below in TABLE 4.














TABLE 2









SEQ



Target
Primer
Primer

ID


microRNA
number
Name
DNA sequence (5  to 3′)
NO:















gene-specific extension primers1












miR-195
646
mir195-GS1

CATGATCAGCTGGGCCAAGAGCCAATATTTCT

25






miR-195
647
mir195-GS2

CATGATCAGCTGGGCCAAGAGCCAATATTTC

26





miR-195
648
mir195-GS3

CATGATCAGCTGGGCCAAGAGCCAATATTT

27





miR-195
649
mir195-GS4

CATGATCAGCTGGGCCAAGAGCCAATATT

28





miR-195
650
mir195-GS5

CATGATCAGCTGGGCCAAGAGCCAATAT

29





miR-195
651
mir195-GS6

CATGATCAGCTGGGCCAAGAGCCAATA

30





miR-195
652
mir195-GS7

CATGATCAGCTGGGCCAAGAGCCAAT

31





miR-195
653
mir195-GS8

CATGATCAGCTGGGCCAAGAGCCAA

32





miR-195
654
mir195-GS9

CATGATCAGCTGGGCCAAGAGCCA

33





miR-195
655
mir195-GS10

CATGATCAGCTGGGCCAAGAGCC

34





miR-215
656
mir215-GS1

CATGATCAGCTGGGCCAAGAGTCTGTCAATTC

35





miR-215
657
mir215-GS2

CATGATCAGCTGGGCCAAGAGTCTGTCAATT

36





miR-215
658
mir215-GS3

CATGATCAGCTGGGCCAAGAGTCTGTCAAT

37





miR-215
659
mir215-GS4

CATGATCAGCTGGGCCAAGAGTCTGTCAA

38





miR-215
660
mir215-GS5

CATGATCAGCTGGGCCAAGAGTCTGTCA

39





miR-215
661
mir215-GS6

CATGATCAGCTGGGCCAAGAGTCTGTC

40





miR-215
662
mir215-GS7

CATGATCAGCTGGGCCAAGAGTCTGT

41





miR-215
663
mir215-GS8

CATGATCAGCTGGGCCAAGAGTCTG

42





miR-215
664
mir215-GS9

CATGATCAGCTGGGCCAAGAGTCT

43





miR-215
665
mir215-GS10

CATGATCAGCTGGGCCAAGAGTC

44










RNA species-specific reverse primers2












miR-195
442
mir195RP
T+AGC+AGCACAGAAAT
45






miR-215
446
mir215RP
AT+GA+CCTATGAATTG
46






1-Universal forward primer binding sites are shown in italics.




2- The “+” symbol precedes the LNA molecules.







Results:


The sensitivity of each assay was measured by the cycle threshold (Ct) value which is defined as the cycle count at which fluorescence was detected in an assay containing microRNA target template. The lower this Ct value (e.g. the fewer number of cycles), the more sensitive was the assay. For microRNA samples, it was generally observed that while samples that contain template and no template controls both eventually cross the detection threshold, the samples with template do so at a much lower cycle number. The ΔCt value is the difference between the number of cycles (Ct) between template containing samples and no template controls, and serves as a measure of the dynamic range of the assay. Assays with a high dynamic range allow measurements of very low microRNA copy numbers. Accordingly, desirable characteristics of a microRNA detection assay include high sensitivity (low Ct value) and broad dynamic range (ΔCt≧12) between the signal of a sample containing target template and a no template background control sample.


The results of the miR195 and miR215 assays using extension primers having a gene specific portion ranging in size from 12 nucleotides to 3 nucleotides are shown below in TABLE 3 and TABLE 4, respectively. The results of these experiments unexpectedly demonstrate that gene-specific priming sequences as short as 3 nucleotides exhibit template specific priming. For both the miR-195 assay sets (shown in TABLE 3) and the miR-215 assay sets (shown in TABLE 4), the results demonstrate that the dynamic range (ΔCt) for both sets of assays are fairly consistent for extension primers having gene specific regions that are greater or equal to 8 nucleotides in length. The dynamic range of the assay (ΔCt) begins to decrease for extension primers having gene specific regions below 8 nucleotides, with a reduction in assay specificity below 7 nucleotides in the miR-195 assays, and below 6 nucleotides in the miR-215 assays. A melting point analysis of the miR-215 samples demonstrated that even at 3 nucleotides, there is specific PCR product present in the plus template samples (data not shown). Taken together, these data demonstrate that the gene specific region of extension primers is ideally ≧8 nucleotides, but can be as short as 3 nucleotides in length.









TABLE 3







miR195 Assay Results











Ct: No Template




GS Primer Length
Control
Ct: Plus Template
Δ Ct













12
34.83
20.00
14.82


12
34.19
19.9
14.3


11
40.0
19.8
20.2


10
36.45
21.2
15.2


9
36.40
22.2
14.2


8
40.0
23.73
16.27


7
36.70
25.96
10.73


6
30.95
26.58
4.37


5
30.98
31.71
−0.732


4
32.92
33.28
−0.364


3
35.98
35.38
−0.605





Ct = the cycle count where the fluorescence exceeds the threshold of detection. ΔCt = the difference between the Ct value with template and no template.













TABLE 4







miR215 Assay Results











Ct: No Template




GS Primer Length
Control
Ct: Plus Template
Δ Ct













12
33.4
13.57
19.83


12
33.93
14.15
19.77


11
35.51
15.76
19.75


10
35.33
15.49
19.84


9
36.02
16.84
19.18


8
35.79
17.07
18.72


7
32.29
17.58
14.71


6
34.38
20.62
13.75


5
34.41
28.65
5.75


4
36.36
33.92
2.44


3
35.09
33.38
1.70





Ct = the cycle count where the fluorescence exceeds the threshold of detection. ΔCt = the difference between the Ct value with template and no template.






EXAMPLE 3

This Example describes assays and primer sets designed for quantitative analysis of human microRNA expression patterns.


Primer Design:


microRNA target templates: the sequence of the target templates as described herein are publicly available accessible on the World Wide Web at the Welcome Trust Sanger Institute website in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111 and Griffith-Jones et al. (2006) Nucleic Acids Research 34: D140-D144.


Extension primers: gene specific primers for primer extension of a microRNA to form a cDNA followed by quantitative PCR (qPCR) amplification were designed to (1) convert the RNA template into cDNA; (2) to introduce a “universal” PCR binding site (SEQ ID NO:1) to one end of the cDNA molecule; and (3) to extend the length of the cDNA to facilitate subsequent monitoring by qPCR.


Reverse primers: unmodified reverse primers and locked nucleic acid (LNA) containing reverse primers (RP) were designed to quantify the primer-extended, full length cDNA in combination with a generic universal forward primer (SEQ ID NO:13). For the locked nucleic acid containing reverse primers, two or three LNA modified bases were substituted within the first 8 nucleotides from the 5′ end of the reverse primer oligonucleotide, as shown below in the exemplary reverse primer sequences provided in TABLE 6. The LNA base substitutions were selected to raise the predicted Tm of the primer by the highest amount, and the final predicted Tm of the selected primers were specified to be preferably less than or equal to 55° C.


An example describing an assay utilizing an exemplary set of primers the detection of miR-95 and miR-424 is described below.


Primer Extension Reactions: primer extension was conducted using DNA templates corresponding to miR-95 and miR-424 as follows. The DNA templates were diluted to 0 nM, 1 nM, 100 pM, 10 pM and 1 pM dilutions in TE zero (10 mM Tris pH7.6, 0.1 mM EDTA) plus 100 ng/μl yeast total RNA (Ambion, Austin Tex.).


The reverse transcriptase reactions were carried out using the following primers:












Extension primers: (diluted to 500 nM)









(SEQ ID NO:123)












miR-95GSP
CATGATCAGCTGGGCCAAGATGCTCAATAA













(SEQ ID NO:415)












miR-424GSP
CATGATCAGCTGGGCCAAGATTCAAAACAT















Reverse primers: (diluted to 10 mM).









(SEQ ID NO:124)












miR-95_RP4
TT+CAAC+GGGTATTTATTGA













(SEQ ID NO:416)












miR-424RP2
C+AG+CAGCAATTCATGTTTT







Reverse Transcription (Per Reaction):


2 μl water


2 μl of “5× cDNA buffer” (InVitrogen, Carlsbad, Calif.)


0.5 μl of 0.1 mM DTT (InVitrogen, Carlsbad, Calif.)


0.5 μl of 10 mM dNTPs (InVitrogen, Carlsbad, Calif.)


0.5 μl RNAse OUT (InVitrogen, Carlsbad, Calif.)


0.5 μl Superscript III® reverse transcriptase enzyme (InVitrogen, Carlsbad, Calif.)


2 μl of extension primer plus 2 μl of template dilution.


The reactions were mixed and incubated at 50° C. for 30 minutes, then 85° C. for 5 minutes, and cooled to 4° C. and diluted 10-fold with TE zero.


Quantitative Real-Time PCR Reactions: (per reaction)


5 μl 2×SYBR mix (Applied Biosystems, Foster City, Calif.)


1.4p water


0.8 μl universal primer (CATGATCAGCTGGGCCAAGA (SEQ ID NO: 13))


2.0 μl of diluted reverse transcription (RT) product from above.


Quantitative real-time PCR was performed for each sample in quadruplicate, using the manufacturer's recommended conditions. The reactions were monitored through 40 cycles of standard “two cycle” PCR (95° C.-15 sec, 60° C.-60 sec) and the fluorescence of the PCR products were measured and disassociation curves were generated. The DNA sequences of the extension primers, the universal forward primer sequence, and the LNA substituted reverse primers, used in the representative miR-95 and miR-424 assays as well as primer sets for 212 different human microRNA templates are shown below in TABLE 6. Primer sets for assays requiring extensive testing and design modification to achieve a sensitive assay with a high dynamic range are indicated in TABLE 6 with the symbol # following the primer name.


Results:


TABLE 5 shows the Ct values (averaged from four samples) from the miR-95 and miR-424 assays, which are plotted in the graph shown in FIG. 2. The results of these assays are provided as representative examples in order to explain the significance of the assay parameters shown in TABLE 6 designated as slope (column 6), intercept (column 7) and background (column 8).


As shown in TABLE 5, the Ct value for each template at various concentrations is provided. The Ct values (x-axis) are plotted as a function of template concentration (y-axis) to generate a standard curve for each assay, as shown in FIG. 2. The slope and intercept define the assay measurement characteristics that permit an estimation of number of copies/cell for each microRNA. For example, when the Ct values for 50 μg total RNA input for the miR-95 assay are plotted, a standard curve is generated with a slope and intercept of −0.03569 and 9.655, respectively. When these standard curve parameters are applied to the Ct of an unknown sample (x), they yield log 10 (copies/20 pg total RNA) (y). Because the average cell yields 20 pg of total RNA, these measurements equate to copies of microRNA/cell. The background provides an estimate of the minimum copy number that can be measured in a sample and is computed by inserting the no template control (NTC) value into this equation. In this example, as shown in TABLE 6, miR-95 yields a background of 1.68 copies/20 pg at 50 μg of RNA input.


As further shown in TABLE 6, reverse primers that do not contain LNA may also be used in accordance with the methods of the invention. See, e.g. SEQ ID NO: 494-499. The sensitivity and dynamic range of the assays using non-LNA containing reverse primers SEQ ID NO: 494-499, yielded similar results to the corresponding assays using LNA-containing reverse primers.









TABLE 5







Ct Values (averaged from four samples)









Template concentration














10 nM
1 nM
0.1 nM
0.01 nM
0.001 nM
NTC

















copies/20 pg RNA
500,000
50,000
5000
500
50



(50 μg input)


copies/20 pg RNA
5,000,000
500,000
50,000
5000
500


(5 μg input)


miR-95
11.71572163
14.17978
17.46353
19.97259
23.33171
27.44383


miR-424
10.47708975
12.76806
15.69251
18.53729
21.56897
23.2813


log10 (copies for
5.698970004
4.69897
3.69897
2.69897
1.69897


50 μg input)
















TABLE 6







Primers to detect human microRNA target templates















Human










Target


Reverse





micro
Extension
Extension
Primer
Reverse

Background
RNA input


RNA
Primer Name
Primer Sequence
Name
Primer Sequence
Slope
Intercept
50 ug 5 ug



















miR-1
miR1GSP10#
CATGATCAGCTGGGCCAA
miR-1RP#
T+G+GAA+TG+TAAAGAA
−0.2758
8.3225
2.44
24.36





GATACATACTTC

GT




SEQ ID NO:47

SEQ ID NO:48





miR-7
miR-7GSP #
CATGATCAGCTGGGCCAA
miR-7_RP6#
T+GGAA+GACTAGTGATT
−0.2982
10.435
11.70
116.99




GACAACAAAATC

TT




SEQ ID NO:49

SEQ ID NO:50





miR-9*
miR-9*GSP
CATGATCAGCTGGGCCAA
miR-9*RP
TAAA+GCT+AGATAACCG
−0.2405
8.9145
3.71
37.15




GAACTTTCGGTT

SEQ ID NO:52




SEQ ID NO:51





miR-10a
miR-10aGSP
CATGATCAGCTGGGCCAA
miR-10aRP
T+AC+CCTGTAGATCCG
−0.2755
8.6976
0.09
0.94




GACACAAATTCG

SEQ ID NO:54




SEQ ID NO:53





miR-10b
miR-
CATGATCAGCTGGGGCAA
miR-
TA+CCC+TGT+AGAACCG
−0.3505
8.7109
0.55
5.52



10b_GSP11#
GAACAAATTCGGT
10b_RP2#
A




SEQ ID NO:55

SEQ ID NO:56





miR-15a
miR-15aGSP
CATGATCAGCTGGGCCAA
miR-15aRP
T+AG+CAGCACATAAT
−0.2831
8.4519
4.40
44.01




GACACAAACCAT

SEQ ID NO:58




SEQ ID NO:57





miR-15b
miR-15bGSP2
CATGATCAGCTGGGCCAA
miR-15bRP
T+AG+CAGCACATCAT
−0.2903
8.4206
0.18
1.84




GATGTAAACCA

SEQ ID NO:60




SEQ ID NO:59





miR-16
miR-16GSP2
CATGATCAGCTGGGCCAA
miR-16RP
T+AG+CAGCACGTAAA
−0.2542
9.3689
1.64
16.42




GACGCCAATAT

SEQ ID NO:62




SEQ ID NO:61





miR-17-
miR-17-3pGSP
CATGATCAGCTGGGCCAA
miR-17-3pRP
A+CT+GCAGTGAAGGG
−0.2972
8.2625
1.08
10.78




GAACAAGTGCCT

SEQ ID NO:64




SEQ ID NO:63





miR-17-
miR-17-
CATGATCAGCTGGGCCAA
miR-17-5pRP
C+AA+AGTGCTTAGAGTG
−0.2956
7.9101
0.13
1.32


5p
5pGSP2
GAACTACCTGC

SEQ ID NO:66




SEQ ID NO:65





miR-19a
miR-19aGSP2
CATGATCAGCTGGGCCA
miR-19aRP
TG+TG+CAAATCTATGG
−0.2984
9.461
0.02
0.23




AGATCAGTTTTG

SEQ ID NO:68




SEQ ID NO:67





miR-19b
miR-19bGSP
CATGATCAGCTGGGCCA
miR-19bRP
TG+TG+CAAATGCATG
−0.294
8.1434
2.26
22.55




AGATCAGTTTTGC

SEQ ID NO:70




SEQ ID NO:69





miR-20
miR-20GSP3
CATGATCAGCTGGGCCA
miR-20RP
T+AA+AGTGCTTATAGTG
−0.2979
7.9929
0.16
1.60




AGACTACCTGC

CA




SEQ ID NO:71

SEQ ID NO:72





miR-21
miR-21GsP2
CATGATCAGGTGGGCCAA
miR-21RP
T+AG+CTTATCAGACTGA
−0.2849
8.1624
1.80
17.99




GATCAACATCA

TG




SEQ ID NO: 73

SEQ ID NO:74





miR-23a
miR-23aGSP
CATGATCAGCTGGGCCA
miR-23aRP
A+TC+ACATTGCCAGG
−0.3172
9.4253
2.41
24.08




AGAGGAAATCCCT

SEQ ID NO:76




SEQ ID NO:75





miR-23b
miR-23bGSP
CATGATCAGCTGGGCCA
miR-23bRP
A+TG+ACATTGCCAGG
−0.2944
9.0985
5.39
53.85




AGAGGTAATCCCT

SEQ ID NO:78




SEQ ID NO:77


miR-25
miR-25GSP
CATGATCAGCTGGGCCA
miR-25RP
C+AT+TGCACTTGTCTC
−0.3009
0.2482
1.52
15.19




AGATCAGACCGAG

SEQ ID NO:80




SEQ ID NO:79





miR-26a
miR-26aGSP9#
CATGATCAGCTGGGCCA
miR-
TT+CA+AGTAATCCAGGA
−0.2807
8.558
0.26
2.56




AGAGCCTATCCT
26aRP#
T




SEQ ID NO:81

SEQ ID NO:82





miR-26b
miR-26bGSP9#
CATGATCAGCTGGGCCA
miR-
TT+CA+AGT+AATTCAGG
−0.2831
8.7885
0.37
3.67




AGAAACCTATCC
26bPR2#
AT




SEQ ID NO:83

SEQ ID NO:84





miR-27a
miR-27aGSP
CATGATCAGCTGGGCCA
miR-27aRP
TT+CA+CAGTGGCTAA
−0.2765
9.5239
5.15
51.51




AGAGCGGAACTTA

SEQ ID NO:86




SEQ ID NO:85





miR-27b
miR-27bGSP
CATGATCAGCTGGGCCA
miR-27bRP
TT+CA+CAGTGGCTAA
−0.28
9.5483
5.97
59.71




AGAGCAGAACTTA

SEQ ID NO:88




SEQ ID NO:87





miR-28
miR-28GSP
CATGATCAGCTGGGCCA
miR-28RP
A+AG+GAGCTCACAGT
−0.3226
10.071
7.19
71.87




AGACTCAATAGAC

SEQ ID NO:90




SEQ ID NO:89





miR-29a
miR-29aGSP8#
CATGATCAGCTGGGCCA
miR-
T+AG+CACCATCTGAAAT
−0.29
8.8731
0.04
0.38




AGAAACCGATT
29aRP#
SEQ ID NO:92




SEQ ID NO:91





miR-29b
miR-29bGSP2
CATGATGAGCTGGGCCA
miR-29bRP2
T+AG+CACCATTTGAAAT
−0.3162
9.6276.
3.56
35.57




AGAAACACTGAT

CAG




SEQ ID NO:93

SEQ ID NO:94





miR-30a-
miR-30a-
CATGATCAGCTGGGCCA
miR-30a-
T+GT+AAACATCCTCGAC
−0.2772
9.0694
1.92
19.16


5p
5pGSP
AGACTTCCAGTCG
5pRP
SEQ ID NO:96




SEQ ID NO:95





miR-30b
miR-30bGSP
CATGATCAGCTGGGCCA
miR-30bRP
TGT+AAA+GATCCTACAC
−0.2621
8.5974
0.11
1.13




AGAAGCTGAGTGT

T




SEQ ID NO:97

SEQ ID NO:98





miR-30c
miR-30cGSP
CATGATCAGCTGGGCCA
miR-30cRP
TGT+AAA+CATCCTACAC
−0.2703
8.699
0.15
1.48




AGAGCTGAGAGTG

T




SEQ ID NO:99

SEQ ID NO:100





miR-30d
miR-30dGSP
CATGATCAGCTGGGCCA
miR-30dRP
T+GTAAA+CATCCCCG
−0.2506
9.3875
0.23
2.31




AGACTTCCAGTCG

SEQ ID NO:102




SEQ ID NO:101





miR-30e-
miR-30e-
CATGATCAGCTGGGCCA
miR-30e-
CTTT+CAGT+CGGATGT
−0.325
11.144
6.37
63.70


3p
GSP9#
AGAGCTGTAAAC
3pRP5#
TT




SEQ ID NO: 103

SEQ ID NO:104





miR-30e-
miR-30e-
CATGATCAGCTGGGCCA
miR-30e-
TG+TAAA+CATCCTTGAC
−0.2732
8.1604
8.50
85.03


5p
GSP
AGATCCAGTCAAG
5pRY
SEQ ID NO:106




SEQ ID NO:105





miR-31
miR-31GSP
CATGATCAGCTGGGCCA
miR-31RP
G+GC+AAGATGCTGGC
−0.3068
8.2605
3.74
37.43




AGACAGCTATGCC

SEQ ID NO:108




SEQ ID NO:107





miR-32
miR-32GSP
CATGATCAGCTGGGCCA
miR-32RP
TATTG+CA+CATTACTAA
−0.2785
8.958
0.39
3.93




AGAGCAAGTTAGT

G




SEQ ID NO:109

SEQ ID NO:110





miR-33
miR-33GSP2
CATGATCAGCTGGGCCA
miR-33RP
G+TG+GATTGTAGTTGC
−0.3031
8.42
2.81
28.14




AGACAATGCAAC

SEQ ID NO:112




SEQ ID NO:111





miR-34a
miR-34aGSP
CATGATGAGCTGGGCCA
miR-34aRP
T+GG+CAGTGTCTTAG
−0.3062
9.1522
2.40
23.99




AGAAACAACCAGC

SEQ ID NO:114




SEQ ID NO:113





miR-34b
miR-34bGSP
CATGATCAGCTGGGCCA
miR-34bRP
TA+GG+CAGTGTCATT
−0.3208
9.054 .
0.04
0.37




AGACAATCAGCTA

SEQ ID NO:116




SEQ ID NO:115





miR-34c
miR-34cGSP
CATGATCAGCTGGGCCA
miR-34cRP
A+GG+CAGTGTAGTTA
−0.2995
10.14
1.08.
10.83




AGAGCAATCAGCT

SEQ ID NO:118




SEQ ID NO:117





miR-92
miR-92GSP
CATGATCAGCTGGGCCA
miR-92RP
T+AT+TGCACTTGTCCC
−0.3012
8.6908
8.92
89.17




AGACAGGCCGGGA

SEQ ID NO:120




SEQ ID NO:119





miR-93
miR-93GSP
CATGATCAGCTGGGCCA
miR-93RP
AA+AG+TGCTGTTCGT
−0.3025
7.9933
4.63
46.30




AGACTACCTGCAC

SEQ ID NO:122




SEQ ID NO:121





miR-95
miR-95GSP#
CATGATCAGCTGGGCCAA
miR-
TT+CAAC+GGGTATTTAT
−0.3436
9.655
1.68
16.80




GATGCTCAATAA
95_RP4#
TGA




SEQ ID NO:123

SEQ ID NO:124





miR-96
miR-96GSP
CATGATCAGCTGGGCCAA
miR-96RP
T+TT+GGCACTAGCAG
−0.2968
9.2611
0.00
0.05




GAGCAAAAATGT

SEQ ID NO:126




SEQ ID NO:125





miR-98
miR-98GSP
CATGATCAGCTGGGCCAA
miR-98RP
TGA+GGT+AGTAAGTTG
−0.2797
9.5654
1.05
10.48




GACTAATACAA

SEQ ID NO:128




SEQ ID NO:127





miR-99a
miR-99aGSP
CATGATCAGCTGGGCCAA
miR-99aRP
A+AC+CCGTAGATCGG
−0.2768
8.781
0.21
2.08




GACAGAAGATCG

SEQ ID NO:130




SEQ ID NO:129





miR-99b
miR-99bGSP
CATGATCAGCTGGGCCAA
miR-99bRP
C+AC+CCGTAGAACCG
−0.2747
7.9855
0.25
2.53




GACGCAAGGTCG

SEQ ID NO:132




SEQ ID NO:131





miR-100
miR-100GSP
CATGATCAGCTGGGCCAA
miR-100RP
A+AG+CCGTAGATCCG
−0.2902
8.669
0.04
0.35




GACACAAGTTCG

SEQ ID NO:134




SEQ ID NO:133





miR-101
miR-101GSP
CATGATCAGCTGGGCCAA
miR-101RP
TA+CAG+TACTGTGATAA
−0.3023
8.2976
0.46
4.63




GACTTCAGTTAT

CT




SEQ ID NO:135

SEQ ID NO:136





miR-103
miR-103GSP
CATGATCAGCTGGGCCAA
miR-103RP
A+GC+AGCATTGTACA
−0.3107
8.5776
0.02
0.21




GATCATAGCCCT

SEQ ID NO:138




SEQ ID NO:137





miR-105
miR-105GSP
CATGATCAGCTGGGCCAA
miR-105RP
T+CAAA+TGCTCAGACT
−0.2667
8.9832
0.93
9.28




GAACAGGAGTCT

SEQ ID NO:140




SEQ ID NO:139





miR-106a
miR-106aGSP
CATGATCAGCTGGGCCAA
miR-106aRP
AAA+AG+TGCTTACAGTG
−0.3107
8.358
0.03
0.31




GAGCTACCTGCA

SEQ ID NO:142




SEQ ID NO:141





miR-106b
miR-106bGSP
CATGATCAGCTGGGCCAA
miR-106bRP
T+AAAG+TGCTGACAGT
−0.2978
8.7838
0.10
1.04




GAATCTGCACTG

SEQ ID NO:144




SEQ ID NO:143





miR-107
miR107GSP8#
CATGATCAGCTGGGCCAA
miR-
A+GC+AGCATTGTACAG
−0.304
9.1666
0.34
3.41




GATGATAGCC
107RP2#
SEQ ID NO:146




SEQ ID NO:145





miR-122a
miR-122aGSP
CATGATCAGCTGGGCCAA
miR-122aRP
T+GG+AGTGTGACAAT
−0.3016
8.1479
0.06
0.58




GAACAAACACCA

SEQ ID NO:148




SEQ ID NO:147





miR-124a
miR-124aGSP
CATGATCAGCTGGGCCAA
miR-124aRP
T+TA+AGGCAGGCGGT
−0.3013
8.6906
0.56
5.63




GATGGCATTCAC

SEQ ID NO:150




SEQ ID NO:149





miR-125a
miR-125aGSP
CATGATCAGCTGGGCCAA
miR-125aRP
T+GC+GTGAGACCCTT
−0.2938
8.6754
0.09
0.91




GACACAGGTTAA

SEQ ID NO:152




SEQ ID NO:151





miR-125b
miR-125bGSP
CATGATCAGCTGGGCCAA
miR-125bRP
T+CC+CTGAGACCCTA
−0.283
8.1251
0.20
1.99




GATCACAAGTTA

SEQ ID NO:154




SEQ ID NO:153





miR-126
miR-126GSP
CATGATCAGCTGGGCCAA
miR-126RP
T+CG+TACCGTGAGTA
−0.26
8.937
0.18
1.80




GAGCATTATTAC

SEQ ID NO:156




SEQ ID NO:155





miR-126*
miR-126*GSP3
CATGATCAGCTGGGCCAA
miR-16*RP
C+ATT+ATTA+GTTTT
−0.2969
8.184
3.58
35.78




GACGCGTACC

GGTACG




SEQ ID NO:157

SEQ ID NO:158





miR-127
miR-127GSP
CATGATCAGCTGGGCCAA
miR-127RP
T+CG+GATCCGTCTGA
−0.2432
9.1013
1.11
11.13




GAAGCCAAGCTC

SEQ ID NO:160




SEQ ID NO:159





miR-128a
miR-128aGSP
CATGATCAGCTGGGCCAA
miR-128aRP
T+CA+CAGTGAACCGG
−0.2866
8.0867
0.16
1.60




GAAAAAGAGACC

SEQ ID NO:162




SEQ ID NO:161





miR-128b
miR-128bGSP
CATGATCAGCTGGGCCAA
miR-128bRP
T+CA+CAGTGAAGCGG
−0.2923
8.0608
0.07
0.74




GAGAAAGAGACC

SEQ ID NO:164




SEQ ID NO:163





miR-129
miR-129GSP
CATGATCAGCTGGGCCAA
miR-129RP
CTTTTTG+CGGTCTG
−0.2942
9.7731
0.88
8.85




GAGCAAGCCCAG

SEQ ID NO:166




SEQ ID NO:165





miR-130a
miR-130aGSP
CATGATCAGCTGGGCCAA
miR-130aRP
C+AG+TGCAATGTTAAAA
−0.2943
8.7465
1.28
12.78




GAATGCCCTTTT

G




SEQ ID NO:167

SEQ ID NO:168





miR-130b
miR-130hGSP
CATGATCAGCTGGGCCAA
miR-130bRP
C+AG+TGCAATGATGA
−0.2377
9.1403
3.14
31.44




GAATGCCCTTTC

SEQ ID NO:170




SEQ ID NO:169





miR-132
miR-132GSP
CATGATCAGCTGGGCCAA
miR-132RP
T+AA+CAGTCTACAGCC
−0.2948
8.1167
0.11
1.13




GACGACCATGGC

SEQ ID NO:172




SEQ ID NO:171





miR-133a
miR-133aGSP
CATGATCAGCTGGGCCAA
miR-133aRP
T+TG+GTCCCCTTCAA
−0.295
9.3679
0.10
1.04




GAACAGCTGGTT

SEQ ID NO:174




SEQ ID NO:173





mmR-133b
miR-133bGSP
CATGATCAGCTGGGCCAA
miR-133bRP
T+TG+GTCCCCTTGAA
−0.3062
8.3649
0.02
0.18




GATAGCTGGTTG

SEQ ID NO:176




SEQ ID NO:175





miR-134
miR-134GSP
CATGATCAGCTGGGCCAA
miR-134RP
T+GT+GACTGGTTGAC
−0.2965
9.0483
0.14
1.39




GACCCTCTGGTC

SEQ ID NO:178




SEQ ID NO:177





miR-135a
miR-135aGSP
CATGATCAGCTGGGCCAA
miR-135aRP
T+AT+GGCTTTTTATTCC
−0.2914
8.092
1.75
17.50




GATCACATAGGA

G




SEQ ID NO:179

SEQ ID NO:180





miR-135b
miR-135bGSP
CATGATCAGCTGGGCCAA
miR-135bRP
T+AT+GGGTTTTCATTCC
−0.2962
7.8986
0.05
0.49




GACACATAGGAA

SEQ ID NO:182




SEQ ID NO:181





miR-136
miR-136GSP
CATGATCAGCTGGGCCAA
miR-136RP
A+CT+CCATTTGTTTTGA
−0.3616
10.229
0.68
6.77




GATCCATCATCA

TG




SEQ ID NO:183

SEQ ID NO:184





miR-137
miR-137GSP
CATGATCAGCTGGGCCAA
miR-137RP
T+AT+TGCTTAAGAATAC
−0.2876
8.234
8.57
85.71




GATCCATCATCA

GC




SEQ ID NO:185

SEQ ID NO:186





miR-138
miR-138GSP2
CATGATCAGCTGGGCCAA
miR-138RP
A+GC+TGGTGTTGTGA
−0.3023
9.0814
0.22
2.19




GACGGCCTGAT

SEQ ID NO:188




SEQ ID NO:187





miR-139
miR-139GSP
CATGATCAGCTGGGCCAA
miR-139RP
T+CT+ACAGTGCACGT
−0.2983
8.1141
6.92
69.21




GAAGACACGTGC

SEQ ID NO:190




SEQ ID NO:189





miR-140
miR-140GSP
CATGATCAGCTGGGCCAA
miR-140RP
A+GT+GGTTTTACCCT
−0.2312
8.3231
0.13
1.34




GACTACCATAGG

SEQ ID NO:192




SEQ ID NO:191





miR-141
miR141GSP9#
CATGATCAGCTGGGCCAA
miR-
TAA+CAC+TGTCTGGTAA
−0.2805
9.6671
0.13
1.26




GAGCATCTTTA

141RP2#




SEQ ID NO:193

SEQ ID NO:194





miR-142-
miR-142-
CATGATCAGCTGGGCCAA
miR-142-
TGT+AG+TGTTTCCTACT
−0.2976 8.4046
0.03
0.27


3p
GSP3
GATCCATAAA
3pRP
SEQ ID NO:196




SEQ ID NO:195





miR143
miR-143GSP8#
CATGATCAGCTGGGCCAA
miR-
T+GA+GATGAAGCACTG
−0.3008
9.2675
0.37
3.71




GATGAGCTAC
143RP2#
SEQ ID NO:198




SEQ ID NO:197





miR-144
miR-144GSP2
CATGATCAGCTGGGCCAA
miR-144RP
TA+CA+GTAT+AGATGAT
−0.2407
9.4441
0.95
9.52




GACTAGTACAT

G




SEQ ID NO:199

SEQ ID NO:200





miR-145
miR-14SGSP2
CATGATCAGCTGGGCCAA
miR-145RP
G+TC+CAGTTTTCCCA
−0.2937
8.0791
0.39
3.86




GAAAGGGATTC

SEQ ID NO:202




SEQ ID NO:201





miR-146
miR-146GSP3
CATGATCAGCTGGGCCAA
miR-146RP
T+GA+GAACTGAATTCC
−0.2861
8.8246
0.08
0.75




GAAACCCATG

A




SEQ ID NO:203

SEQ ID NO:204





miR-147
miR-147GSP
CATGATCAGCTGGGCCAA
miR-147RP
G+TGTGTGGAAATGC
−0.2989
8.8866
1.65
16.47




GAGCAGAAGCAT

SEQ ID NO:206




SEQ ID NO:205





miR-148a
miR-148aGSP2
CATGATCAGCTGGGCCAA
miR-
T+CA+GTGCACTACAGAA
−0.2928
9.4654
1.27
12.65




GAACAAAGTTC
148aRP2
CT




SEQ ID NO:207

SEQ ID NO:208





miR-148b
miR-148bGSP2
CATGATCAGCTGGGCCAA
miR-148bRP
T+CA+GTGCATCACAG
−0.2982
10.417
0.24
2.44




GAACAAAAGTTC

SEQ ID NO:210




SEQ ID NO:209





miR-149
miR-149GSP2
CATGATCAGCTGGGCCAA
miR-149RP
T+GT+GGCTCCGTGTC
−0.2996
8.3392
2.15
21.50




GAGGAGTGAAG

SEQ ID NO:212




SEQ ID NO:211





miR-150
miR-150GSP3
CATGATCAGCTGGGCCAA
miR-150RP
T+CT+CGCAACCCTTG
−0.2943
8.3945
0.06
0.56




GACACTGGTA

SEQ ID NO:214




SEQ ID NO:213





miR-151
miR-151GSP2
CATGATCAGCTGGGCCAA
miR-151RP
A+CT+AGACTGAAGCTC
−0.2975
8.651
0.16
1.60




GACCTCAAGGA

SEQ ID NO:216




SEQ ID NO:215





miR-152
miR-152GSP2
CATGATCAGCTGGGCCAA
miR-152RP
T+CA+GTGCATGACAG
−0.2741
8.7404
0.33
3.25




GACCCAAGTTC

SEQ ID NO:218




SEQ ID NO:217





miR-153
miR-153GSP2
CATGATCAGCTGGGCCAA
miR-153RP
TTG+CAT+AGTCACAAAA
0.2723
9.5732
3.32
33.19




GATCACTTTTG

SEQ ID NO:220




SEQ ID NO:219





miR-154*
miR-
CATGATGAGCTGGGCCAA
miR-
AATCA+TA+CACGGTTGA
−0.3056
8.8502
0.07
0.74



154*GSP9#
GAAATAGGTCA
154*RP2#
C




SEQ ID NO:221

SEQ ID NO:222





miR-154
miR-154GSP9#
CATGATCAGCTGGGCCAA
miR-
TA+GGTTA+TCCGTGTT
−0.3062
9.3947
0.10
0.96




GACGAAGGCAA
154RP3#
SEQ ID NO:224




SEQ ID NO:223





miR-155
miR-155GSP8#
CATGATCAGCTGGGCCAA
miR-
TT+AA+TGCTAATCGTGA
−0.3201
8.474
5.49
54.91




GACCCCTATC
155RP2#
TAGG




SEQ ID NO:225

SEQ ID NO:226





miR-181a
miR-
CATGATCAGCTGGGCCAA
miR-
AA+CATT+CAACGCTGTC
−0.2919
7.968
1.70
17.05



181aGSP9#
GAACTCACCGA
181aRP2#
SEQ ID N0:228




SEQ ID NO:227





miR-181c
miR-
CATGATCAGCTGGGCCAA
miR-
AA+GATT+CAACCTGTCG
−0.3102
7.9029
1.08
10.78



181cGSP9#
GAACTCACCGA
181cRP2#
SEQ ID NO:230




SEQ ID NO:229





miR-182*
miR-182*GSP
CATGATCAGCTGGGCCAA
miR-182*RP
T+GG+TTCTAGACTTGC
−0.2978
8.5876
4.25
42.47




GATAGTTGGCAA

SEQ ID NO:232




SEQ ID NO:231





miR-182
miR-182GSP2
CATGATCAGCTGGGCCAA
miR-182RP
TTT+GG+CAATGGTAG
−0.2863
9.0854
1.52
15.20




GATGTGAGTTC

SEQ ID NO:234




SEQ ID NO:233





miR-183
miR-183GSP2
CATGATCAGCTGGGCCAA
miR-183RP
T+AT+GGGACTGGTAG
−0.2774
9.9254
1.95
19.51




GACAGTGAATT

SEQ ID NO:236




SEQ ID NO:235





miR-184
miR-184GSP2
CATGATCAGCTGGGCCAA
miR-184RP
T+GG+ACGGAGAACTG
−0.2906
7.9585
0.05
0.49




GAAACCCTTATC

SEQ ID NO:238




SEQ ID NO:237





miR-186
miR186GSP9#
CATGATCAGCTGGGCCAA
miR-
CA+AA+GAATT+CTCCTT
−0.2861
8.6152
0.32
3.18




GAAAGCCCAAA
186RP3#
TTGG




SEQ ID NO:239

SEQ ID NO:240





miR-187
miR-1870SP
CATGATCAGCTGGGCCAA
miR-187RP
T+CG+TGTCTTGTGTT
−0.2953
7.9329
1.23
12.31




GACGGCTGCAAC

SEQ ID NO:242




SEQ ID NO:241





miR-188
miR-188GSP
CATGATCAGCTGGGCCAA
miR-188RP
C+AT+CCCTTGCATGG
−0.2925
8.0782
8.49
84.92




GAACCCTCCACC

SEQ ID NO:244




SEQ ID NO:243





miR-189
miR-189GSP2
CATGATCAGCTGGGCCAA
miR-189RP
G+TG+CCTACTGAGCT
−0.2981
8.8964
0.21
2.08




GAACTGATATC

SEQ ID NO:246




SEQ ID NO:245





miR-190
miR1900SP9#
CATGATCAGCTGGGCCAA
miR-
T+GA+TA+TGTTTGATAT
−0.3317
9.8766
0.43
4.34




GAACCTAATAT
190RP4#
ATTAG




SEQ ID NO:247

SEQ ID NO:248





miR-191
miR-191GSP2
CATGATCAGCTGGGCCAA
miR-191RP2
C+AA+CGGAATCCCAAAA
−0.299
9.0317
0.41
4.07




GAAGCTGCTTT

G




SEQ ID NO:249

SEQ ID NO:250





miR-192
miR-192GSP2
CATGATCAGCTGGGCCAA
miR-192RP
C+TGA+CCTATGAATTGA
−0.2924
9.5012
1.10
10.98




GAGGCTGTCAA

C




SEQ ID NO:251

SEQ ID NO:252





miR-193
miR-193GSP9#
CATGATCAGCTGGGCCAA
miR-
AA+CT+GGCCTACAAAG
−0.3183
8.9942
0.17
1.72




GACTGGGACTT
193RP2#
SEQ ID NO:254




SEQ ID NO:253





miR194
mir194GSP8#
CATGATCAGCTGGGCCAA
mir194RP#
TG+TAA+GAGCAACTCCA
−0.3078
8.8045
0.37
3.69




GATCCACATG

SEQ ID NO:256




SEQ ID NO:255





miR-195
miR-195GSP9#
CATGATCAGCTGGGCCAA
miR-
T+AG+CAG+CACAGAAAT
−0.2955
10.213
0.76
7.58




GAGCCAATATT
195RP3#
SEQ ID NO:258




SEQ ID NO:257





miR-196b
miR-196bGSP
CATGATCAGCTGGGCCAA
miR-196bRP
TA+GGT+AGTTTGGTGT
−0.301
8.1641
1.47
14.66




GACCAACAACAG

SEQ ID NO:260




SEQ ID NO:259





miR-196a
miR-196aGSP
CATGATCAGCTGGGCCAA
miR-196aRP
TA+GG+TAGTTTTCATGTT
−0.2932
8.0448
8.04
80.37




GACCAACAACAT

G




SEQ ID NO:261

SEQ ID NO:262





miR-197
miR-197GSP2
CATGATCAGCTGGGCCAA
miR-197RP
TT+CA+CCACGTTGTC
−0.289
8.2822
0.71
7.10




GAGCTGGGTGG

SEQ ID NO:264




SEQ ID NO:263





miR-198
miR-198GSP3
CATGATCAGCTGGGCCAA
miR-198RP
G+GT+CCAGAGGGGAG
−0.2986
8.1359
0.31
3.15




GACCTATCTC

SEQ ID NO:266




SEQ ID NO:265





miR-
miR-
CATGATCAGCTGGGCCAA
miR-
T+AC+AGTAGTCTGCAC
−0.3029
9.0509
0.25
2.52


199a*
199a*GSP2
GAAACCAATGT
199A*RP
SEQ ID NO:268




SEQ ID NO:267





miR-199a
miR-199aGSP2
CATGATCAGCTGGGCCAA
miR-199aRP
C+CC+AGTGTTCAGAC
−0.3187
9.2268
0.12
1.16




GAGAACAGGTA

SEQ ID NO:270




SEQ ID NO:269





miR-199b
miR-199bGSP
CATGATCAGCTGGGCCAA
miR-199bRP
C+CC+AGTGTTTAGAC
−0.3165
9.3935
2.00
20.04




GAGAACAGATAG

SEQ ID NO:272




SEQ ID NO:271





miR-200a
miR-200aGSP2
CATGATCAGCTGGGCCAA
miR-200aRP
TAA+CAC+TGTCTGGT
−0.2754
9.1227
0.08
0.78




GAACATCGTTA

SEQ ID NO:274




SEQ ID NO:273





miR-200b
miR-200bGSP2
CATGATCAGCTGGGCCAA
miR-200bRP
TAATA+CTG+CCTGGTAA
−0.2935
8.5461
0.08
0.85




GAGTCATCATT

T




SEQ ID NO:275

SEQ ID NO:276





miR-202
miR-202
CATGATCAGCTGGGCCAA
miR-202RP#
A+GA+GGTATA+GGGCAT
−0.2684
9.056
0.25
2.48



GSP10#
GATTTTCCCATG

SEQ ID NO:278




SEQ ID NO:277





miR-203
miR-203GSP2
CATGATCAGCTGGGCCAA
miR-203RP
G+TG+AAATGTTTAGGAC
−0.2852
8.1279
1.60
16.03




GACTAGTGGTC

C




SEQ ID NO:279

SEQ ID NO:280





miR-204
miR-204GSP2
CATGATCAGCTGGGCCAA
miR-204RP
T+TC+CCTTTGTCATCC
−0.2925
8.7648
0.16
1.59




GAAGGCATAGG

SEQ ID NO:282




SEQ ID NO:281





miR-205
miR-205GSP
CATGATCAGCTGGGCCAA
miR-205RP
T+CCTT+CATTCCACC
−0.304
8.2407
9.21
92.15




GACAGACTCCGG

SEQ ID NO:284




SEQ ID NO:283





miR-206
mir206GSP7#
CATGATCAGCTGGGCCAA
miR-206RP#
T+G+GAA+TGTAAGGAAG
−0.2815
8.2206
0.29
2.86




GACCACACA

TGT




SEQ ID NO:285

SEQ ID NO:286





miR-208
miR-
CATGATCAGCTGGGCCAA
miR-
ATAA+GA+CG+AGCAAAA
−0.2072
7.9097
57.75
577.52



208_GsP13#
AACAAGCTTTTTGC
208_RP4#
AG




SEQ ID NO:287

SEQ ID NO:288





miR-210
miR-210GSP
CATGATCAGCTGGGCCAA
miR-210RP
C+TG+TGCGTGTGACA
−0.2717
8.249
0.18
1.77




GATCAGCCGCTG

SEQ ID NO:290




SEQ ID NO:289





miR-211
miR-211GSP2
CATGATCAGCTGGGCCAA
miR-211RP
T+TG+CCTTTGTCATCC
−0.2926
8.3 106
0.10
1.00




GAAGGCGAAGG

SEQ ID NO:292




SEQ ID NO:291





miR-212
miR-212GSP9#
CATGATCAGCTGGGCCAA
miR-
T+AA+CAGTCTCCAGTCA
-0,2916
8.0745
0.59
5.86




GAGGCCGTGAC
212RP2#
SEQ ID NO:294




SEQ ID NO:293





miR-213
miR-213GSP
CATGATCAGCTGGGCCAA
miR-213RP
A+CC+ATCGACCGTTG
−0.2934
8.1848
2.96
29.59




GAGGTACAATCA

SEQ ID NO:296




SEQ ID NO:295





miR-214
miR-214GSP
CATGATCAGCTGGGCCAA
miR-214RP
A+CA+GCAGGCACAGA
−0.2947
7.82
0.84
8.44




GACTGCCTGTCT

SEQ ID NO:298




SEQ ID NO:297





miR-215
miR-215GSP2
CATGATCAGCTGGGCCAA
miR-215RP
A+TGA+CCTATGAATTGA
−0.2932
8.9273
1.51
15.05




GAGTCTGTCAA

C




SEQ ID NO:299

SEQ ID NO:300





miR216
miR-216GSP9#
CATGATCAGCTGGGCCAA
mir216RP#
TAA+TCT+CAGCTGGCA
−0.273
8.5829
0.95
9.50




GACACAGTTGC

SEQ ID NO:302




SEQ ID NO:301





miR-217
miR-217GSP2
CATGATCAGCTGGGCCAA
miR-217RP2
T+AC+TGCATCAGGAAGT
−0.3089
9.6502
0.07
0.71




GAATCCAATCA

GA




SEQ ID NO:303

SEQ ID NO:304





miR-218
mmR-218GSP2
CATGATCAGCTGGGCCAA
miR-218RP
TTG+TGCTT+GATCTAAC
−0.2778
8.4363
1.00
10.05




GAACATCATGGTTA

SEQ ID NO:306




SEQ ID NO:305





miR-220
miR-220GSP
CATGATCAGCTGGGCCAA
miR-220RP
C+CA+CACCGTATCTG
−0.2755
9.0728
8.88
88.75




GAAAAGTGTCAG

SEQ ID NO:308




SEQ ID NO:307





mir-221
miR-221GSP9#
CATGATCAGCTGGGCCAA
miR-221RP#
A+GC+TACATTGTCTGC
−0.2886
8.5743
0.12
1.17




GAGAAACCCAG

SEQ ID NO:310




SEQ ID NO:309





miR-222
miR-222GSP8#
CATGATCAGCTGGGCCAA
miR-222RP#
A+GC+TACATCTGGCT
−0.283
8.91
1.64
16.41




GAGAGACCGA

SEQ ID NO:312




SEQ ID NO:311





miR-223
miR-223GSP
CATGATGAGCTGGGCCAA
miR-223RP
TG+TG+AGTTTGTCAAA
−0.2998
8.6669
0.94
9.44




GAGGGGTATTTG

SEQ ID NO:314




SEQ ID NO:313





miR-224
miR-224GSP8#
CATGATCAGCTGGGCCAA
miR-
C+AAG+TCACTAGTGGTT
−0.2802
7.5575
0.56
5.63




GATAAAACGGA
224RP2#
SEQ ID NO:316




SEQ ID NO:315





miR-296
miR-296GSP9#
CATGATCAGCTGGGCCAA
miR-
A+GG+GCCCCCCCTCAA
−0.3178
8.3856
0.10
0.96




GAACAGGATTG
296RP2#
SEQ ID NO:318




SEQ ID NO:317





miR-299
miR-299GSP9#
CATGATCAGCTGGGCCAA
miR-299RP#
T+GG+TTTACCGTCCC
−0.3155
7.9383
1.30
12.96




GTGTATGTG

SEQ ID NO:320




SEQ ID NO:319





miR-301
miR-301GSP
CATGATCAGCTGGGCCAA
miR-301RP
C+AG+TGCAATAGTATTT
−0.2839
8.314
2.55
25.52




GAGCTTTGACAA

GT




SEQ ID NO:321

SEQ ID NO:322





miR-
miR-302a*GSP
CATGATCAGCTGGGCCAA
miR-
TAAA+CG+TGGATGTAC
−0.2608
8.392
10.04
0.41


302a*

GAAAAGCAAGTA
302a*RP
SEQ ID NO:324




SEQ ID NO:323





miR-302a
miR-302aGSP
CATGATCAGCTGGGCCAA
miR-302aRP
T+AAG+TGCTTCCATGT
−0.2577
9.6657
2.17
21.67




GATCACCAAAAC

SEQ ID NO:326




SEQ ID NO:325





miR-
mmR-302b*GSP
CATGATCAGCTGGGCCAA
miR-
A+CTTTAA+CATGGAAGT
−0.2702
8.5153
0.02
0.24


302b*

GAAGAAAGCACT
302b*RP
G




SEQ ID NO:327

SEQ ID NO:328





miR-302b
miR-302bGSP
CATGATCAGCTGGGCCAA
miR-302bRP
T+AAG+TGCTTGCATGT
−0.2398
9.1459
5.11
51.11




GACTACTAAAAC

SEQ ID NO:330




SEQ ID NO:329





miR-302d
mmR-302dGSP
CATGATCAGCTGGGCCAA
miR-302dRP
T+AAG+TGCTTCCATGT
−0.2368
8.5602
5.98
59.78




GAACACTCAAAC

SEQ ID NO:332




SEQ ID NO:331





miR-
miR-
CATGATCAGCTGGGCCAA
miR-
TT+TAA+CAT+GGGGGTA
−0.312
8.290
40.33
3.28


302c*
302c_GSP9#
GACAGCAGGTA
302c-_RP2#
CC




SEQ ID NO:333

SEQ ID NO:334





miR-302c
miR-
CATGATCAGCTGGGCCAA
miR-
T+AAG+TGCTTCCATGTT
−0.2945
8.381
14.28
142.76



302cGSP9#
GACCACTGAAA
302CRP5#
TCA




SEQ ID NO:335

SEQ ID NO:336





miR-320
miR-
CATGATCAGCTGGGCCAA
miR-
AAAA+GCT+GGGTTGAGA
−0.2677
7.8956
6.73
67.29



320_GSP8#
GATTCGCCCT
320_RP3#
GG




SEQ ID NO:337

SEQ ID NO:338





miR-323
miR-323GSP
GATGATCAGGTGGGGCAA
miR-323RP
G+CA+CATTACACGGT
−0.2878
8.2546
0.19
1.92




GAAGAGGTCGAC

SEQ ID NO:340




SEQ ID NO:339





miR-324-
miR-324-
GATGATCAGCTGGGCCAA
miR-324-
C+CA+CTGCCCCAGGT
−0.2698
8.5223
2.54
25.41


3p
3pGSP
GACCAGCAGCAC

SEQ ID NO:342




SEQ ID NO:341





miR-324-
miR-324-
CATGATCAGCTGGGCCAA
miR-324-
C+GC+ATCCCGTAGGG
−0.2861
7.6865
0.06
0.62


5p
5pGSP
GAACAGCAATGC

SEQ ID NO:344




SEQ ID NO:343





miR-325
miR-325GSP
CATGATCAGCTGGGCCAA
miR-325RP
C+CT+AGTAGGTGTCC
−0.2976
8.1925
0.01
0.14




GAACACTTACTG

SEQ ID NO:346




SEQ ID NO:345





miR-326
miR-326GSP
CATGATCAGCTGGGCCAA
miR-326RP
C+CT+CTGGGGCCCTTC
−0.2806
7.897
0.59
5.87




GACTGGAGGAAG

SEQ ID NO:348




SEQ ID NO:347





miR-328
miR-328GSP
CATGATCAGCTGGGCCAA
miR-328RP
C+TG+GCCCTCTCTGC
−0.293
7.929
3.17
31.69




GAACGGAAGGGC

SEQ ID NO:350




SEQ ID NO:349





miR-330
miR-330GSP
CATGATCAGCTGGGCCAAGA
miR-330RP
G+CA+AAGCACACGGC
−0.3009
7.7999
0.13
1.30




GTCTCTGCAGG

SEQ ID NO:352




SEQ ID NO:351





miR-331
miR-331GSP
CATGATCAGCTGGGCCAA
miR-331RP
G+CC+CCTGGGCCTAT
−0.2816
8.1643
0.45
4.54




GATTCTAGGATA

SEQ ID NO:354




SEQ ID NO:353





miR-337
miR-337GSP
CATGATCAGCTGGGCCAA
miR-337RP
T+CC+AGCTCCTATATG
−0.2968
8.7313
0.10
1.02




GAAAAGGCATCA

SEQ ID NO:356




SEQ ID NO:355





miR-338
miR-338GSP
CATGATCAGGTGGGCCAA
miR-338RP2
T+CC+AGCATCAGTGATT
−0.2768
8.5618
0.52
5.17




GATCAACAAAAT

SEQ ID NO:358




SEQ ID NO:357





miR-339
miR339GSP9#
CATGATCAGCTGGGCCAG
miR-
T+CC+CTGTCCTCCAGG
−0.303
8.4873
0.27
2.72




GATGAGCTCCT
339RP2#
SEQ ID NO:360




SEQ ID NO:359





miR-340
miR-340GSP
CATGATCAGCTGGGCCAA
miR-340RP
TC+CG+TCTCAGTTAC
−0.2846
9.6673
0.15
1.45




GAGGCTATAAAG

SEQ ID NO:362




SEQ ID NO:361





miR-342
miR-342GSP3
CATGATCAGGTGGGCCAA
miR-342RP
T+CT+CACACAGAAATCG
−0.293
8.1553
4.69
46.85




GAGACGGGTG

SEQ ID NO:364




SEQ ID NO:363





miR-345
miR-345GSP
CATGATCAGCTGGGCGAA
miR-345RP
T+GC+TGACTCCTAGT
−0.2909
8.468
0.04
0.40




GAGCCCTGGACT

SEQ ID NO:366




SEQ ID NO:365





miR-346
miR-346GSP
CATGATGAGCTGGGCCAA
miR-346RP
T+GT+CTGCGCGCATG
−0.2959
8.1958
0.25
2.54




GAGAGGCAGGC

SEQ ID NO:368




SEQ ID NO:367





miR-363
miR-363
CATGATCAGCTGGGCGAA
miR-363RP#
AAT+TG+CAC+GGTATCC
−0.2362
8.9762
0.44
4.36



GSP10#
GATACAGATGGA

SEQ ID NO:370




SEQ ID NO:369





miR-367
miR-367GSP
CATGATCAGCTGGGCCAA
miR-367RP
AAT+TG+CACTTTAGC
−0.2819
8.6711
0.00
0.03




GATCACCATTGC

AAT




SEQ ID NO:371

SEQ ID NO:372





miR-368
miR-368GSP
CATGATCAGCTGGGCCAA
miR-368RP2
A+GATAGA+GGAAATT
−0.2953
8.0067
6.01
60.11




GAAAACGTGGAA

CCAC




SEQ ID NO:373

SEQ ID NO:374





miR-370
miR-370GSP
CATGATCAGCTGGGCCAA
miR-370RP
G+CC+TGCTGGGGTGG
−0.2825
8.3162
1.45
14.55




GACCAGGTTCCA

SEQ ID NO:376




SEQ ID NO:375





miR-371
miR-371GSP
CATGATCAGCTGGGCCAA
miR-371RP
G+TG+CCGCCATCTTT
−0.295
7.8812
2.51
25.12




GAACACTCAAAA

SEQ ID NO:378




SEQ ID NO:377





miR-372
miR-372GSP
CATGATCAGCTGGGCCAA
miR-372RP
A+AA+GTGCTGCGACA
−0.2984
8.9183
0.05
0.53




GAACGCTCAAAT

SEQ ID NO:380




SEQ ID NO:379





miR-373*
miR-373*GSP
CATGATCAGCTGGGCCAA
miR-373*RP
A+CT+CAAAATGGGGG
−0.2705
8.4513
0.20
1.99




GAGGAAAGCGCC

SEQ ID NO:382




SEQ ID NO:381





miR-373
miR-373GSP
CATGATCAGCTGGGGCAA
miR-373RP2
GA+AG+TGCTTCGATTTT
−0.307
7.9056
9.13
91.32




GAACACCCCAAA

G




SEQ ID NO:383

SEQ ID NO:384





miR-374
miR-374GSP2
CATGATCAGCTGGGCCAA
miR-374RP
TT+AT+AATA+CAACCTG
−0.2655
9.3795
9.16
91.60




ACACTTATCA

ATAAG




SEQ ID NO:385

SEQ ID NO:386





miR-375
miR-375GSP
CATGATCAGCTGGGCCAA
miR-375RP
TT+TG+TTCGTTCGGC
−0.3041
8.1181
0.09
0.90




GATCACGCGAGC

SEQ ID NO:388




SEQ ID NO:387





miR-376b
miR-376b
CATGATCAGCTGGGCCAA
miR-
AT+CAT+AGA+GGAAATC
−0.2934
9.0188
1.07
10.74



GSP8#
GAAAACATGGA
376bRP#
CA




SEQ ID NO:389

SEQ ID NO:390





miR-378
miR-378GSP
CATGATCAGGTGGGCCAA
miR-378RP
C+TC+CTGACTCCAGG
−0.2899
8.1467
0.07
0.73




GAACACAGGACCC

SEQ ID NO:392




SEQ ID NO:391





miR-379
miR-
CATGATCAGCTGGGCCAA
miR-
T+GGT+AGACTATGGAACG
−0.2902
8.2149
10.89
108.86



379_GSP7#
GATACGATACGTTC
379RP2#
AACG




SEQ ID NO:393

SEQ ID NO:394





miR-380-
miR-380-
CATGATCAGCTGGGCCAA
miR-380-
T+GGT+TGACCATAGA
−0.2462
9.4324
1.30
13.04


5p
5pGSP
GAGCGCATGTTC
5pRP
SEQ ID NO:396




SEQ ID NO:395





miR-380-
miR-380-
CATGATCAGCTGGGCCAA
miR-380-
TA+TG+TAATATGGTCC
−0.3037
8.0356
3.69
36.89


3p
3pGSP
GAAAGATGTGGA
3pRP
ACA




SEQ ID NO:397

SEQ ID NO:398





miR-381
miR-381GSP2
CATGATGAGCTGGGCCAA
miR-381RP2
TATA+CAA+GGGCAAGCT
−0.3064
8.8704
1.72
17.16




GAACAGAGAGC

SEQ ID NO:400




SEQ ID NO:399





miR-382
miR-382GSP
CATGATCAGCTGGGCCAA
miR-382RP
G+AA+GTTGTTCGTGGT
−0.2803
7.6738
0.66
6.57




GACGAATCCACC

SEQ ID NO:402




SEQ ID NO:401





miR-383
miR-383GSP
CATGATCAGCTGGGCCAA
miR-383RP2
A+GATC+AGAAGGTGATT
−0.2866
8.1463
0.54
5.45




GAAGCCACAATC

GT




SEQ ID NO:403

SEQ ID NO:404





miR-410
miR-410
CATGATCAGCTGGGCCAA
miR-401RP#
AA+TA+TAA+CA+CAGAT
−0.2297
8.5166
4.27
42.71



GSP9#
GAACAGGCCAT

GGC




SEQ ID NO:405

SEQ ID NO:406





miR-412
miR-412
CATGATCAGCTGGGCCAA
miR-412RP#
A+CTT+CACCTGGTCCAC
−0.3001
7.9099
4.24
42.37



GSP10#
GAACGGCTAGTG

TA




SEQ ID NO:407

SEQ ID NO:408





miR-422a
miR-422aGSP
CATGATCAGCTGGGCCAA
miR-422aRP
C+TG+GACTTAGGGTC
−0.3079
9.3108
5.95
59.54




GAGGCCTTCTGA

SEQ ID NO:410




SEQ ID NO:409





miR-422b
miR-422bGSP
CATGATCAGCTGGGCCAA
miR-422bRP
C+TG+GACTTGGAGTC
−0.2993
8.9437
4.86
48.56




GAGGCGTTCTGA

SEQ ID NO:412




SEQ ID NO:411





miR-423
miR-423GSP
CATGATCAGCTGGGCCAA
miR-423RP
A+GC+TGGGTCTGAGG
−0.3408
9.2274
6.06
60.62




GACTGAGGGGCC

SEQ ID NO:414




SEQ ID NO:413





miR424
miR-424GSP#
CATGATCAGCTGGGCCAA
miR-
C+AG+CAGCAATTCATGT
−0.3569
9.3419
10.78
107.85




GATTCAAAACAT
424RP2#
TTT




SEQ ID NO:415

SEQ ID NO:416





miR-425
miR-425GSP
CATGATCAGCTGGGCCAA
miR-425RP
A+TC+GGGAATGTCGT
−0.2932
7.9786
0.39
3.93




GAGGCGGACACG

SEQ ID NO:418




SEQ ID NO:417





miR-429
miR-
CATGATCAGCTGGGCCAA
miR-
T+AATAC+TG+TCTGGTA
−0.2458
8.2805
16.21
162.12



429_GSP11#
GAACGGTTTTACC
429RP5#
AAA




SEQ ID NO:419

SEQ ID NO:420





miR-431
miR-431
CATGATCAGCTGGGCCAA
miR-431RP#
T+GT+CTTGCAGGCCG
−0.3107
7.7127
7.00
70.05



GSP10#
GATGCATGACGG

SEQ ID NO:422




SEQ ID NO:421





miR-448
miR-448GSP
CATGATCAGCTGGGCCAA
miR-448RP
TTG+CATA+TGTAGGATG
−0.3001
8.4969
0.12
1.16




GAATGGGACATC

SEQ ID NO:424




SEQ ID NO:423





miR-449
miR-
CATGATCAGCTGGGCCAA
miR-
T+GG+CAGTGTATTGTTT
−0.3225
8.4953
2.57
25.70



449GSP10#
GAACCAGCTAAC
449RP2#
AGC




SEQ ID NO:425

SEQ ID NO:426





miR-450
miR-450GSP
CATGATCAGCTGGGCCAA
miR-450RP
TTTT+TG+GGATGTGTT
−0.2906
8.1404
0.48
4.82




GATATTAGGAAC

SEQ ID NO:428




SEQ ID NO:427





miR-451
miR-451
CATGATCAGCTGGGCCAA
miR-451RP#
AAA+CCG+TTA+CCATTA
−0.2544
8.0291
1.73
17.35



GSP10#
GAAAACTCAGTA

CTGA




SEQ ID NO:429

SEQ ID NO:430





let7a
let7a-GSP2#
CATGATCAGCTGGGCCAA
let7a-RP#
T+GA+GGTAGTAGGTTG
−0.3089
9.458
0.04
0.38




GAAACTATAC

SEQ ID NO:432




SEQ ID NO:431





let7b
let7b-GSP2#
CATGATCAGCTGGGCCAA
let7b-RP#
T+GA+GGTAGTAGGTTG
−0.2978
7.9144
0.05
0.54




GAAACGACAC

SEQ ID NO:432




SEQ ID NO:433





let7c
let7c-GSP211
CATGATCAGCTGGGCCAA
let7c-RP11
T+GA+GGTAGTAGGTTG
−0.308
7.9854
0.01
0.14




GAAACCATAC

SEQ ID NO:432




SEQ ID NO:434





let7d
let7d-GSP2#
CATGATCAGCTGGGCCAA
Iet7d-RP#
A+GA+GGTAGTAGGTTG
−0.3238
8.3359
0.06
0.57




GAACTATGCA

SEQ ID NO:436




SEQ ID NO:435





let7e
let7e-GSP2#
CATGATCAGCTGGGCCAA
let7e-RP#
T+GA+GGTAGGAGGTTG
−0.3284
9.7594
0.22
2.20




GAACTATACA

SEQ ID NO:438




SEQ ID NO:437





let7f
1et7f-GSP2#
CATGATCAGCTGGGCCAA
let7f-RP#
T+GA+GGTAGTAGATTG
−0.2901
11.107
0.32
3.18




GAAACTATAC

SEQ ID NO:440




SEQ ID NO:439





let7g
let7g-GSP2#
CATGATCAGCTGGGCCAA
let7g-RP#
T+GA+GGTAGTAGTTTG
−0.3469
9.8235
0.16
1.64




GAACTGTACA

SEQ ID NO:442




SEQ ID NO:441





let7i
let7i-GSP2#
CATGATCAGCTGGGCCAA
let7i-RP#
T+GA+GGTAGTAGTTTG
−0.321
10.82
0.20
1.99




GAACAGCACA

SEQ ID NO:444




SEQ ID NO:443





miR-377
miR-377GSP
CATGATCAGCTGGGCCAA
miR-377RP2
AT+CA+CACAAAGGCAAC
−0.2979
10.612
13.45
134.48




GAACAAAAGTTG

SEQ ID NO:446




SEQ ID NO:445





miR-376a
miR-
CATGATGAGCTGGGCCAA
miR-
AT+CAT+AGA+GGAAAAT
−0.2938
10.045
63.00
630.00



376a_GSP7
GAACGTGGA
376a_RP5
CC




SEQ ID NO:447

SEQ ID NO:448





miR-22
miR-22GSP
CATGATCAGCTGGGCCAA
miR-22RP
A+AG+CTGCCAGTTGA
−0.2862
8.883
20.46
204.58




GAACAGTTCTTC

SEQ ID NO:450




SEQ ID NO:449





miR-200c
miR-200cGSP2
CATGATCAGCTGGGCCAA
miR-200cRP
TAA+TACTGCCGGGT
−0.3094
11.5
15.99
159.91




GACCATCATTA

SEQ ID NO:452




SEQ ID NO:451





miR-24
miR-24GSP
CATGATCAGCTGGGCCAA
miR-24RP
T+GG+CTCAGTTCAGC
−0.3123
8.6824
24.34
243.38




GACTGTTCCTGC

SEQ ID NO:454




SEQ ID NO:453





miR-
miR-29cGSP10
CATGATCAGCTGGGCCAA
miR-29cRP
T+AG+CACCATTGAAAT
−0.2975
8.8441
23.22
232.17


29cDNA

GAACCGATTCA

SEQ ID NO:456




SEQ ID NO:455





miR-18
miR-18GSP
CATGATCAGCTGGGCCAA
miR-18RP
T+AA+GGTGCATCTAGT
−0.3209
9.0999
14.90
149.01




GATATCTGCACT

SEQ ID NO:458




SEQ ID NO:457





miR-185
miR-185GSP
CATGATCAGCTGGGCCAA
miR-185RP
T+GG+AGAGAAAGGCA
−0.3081
8.9289
15.73
157.32




GAGAACTGCCTT

SEQ ID NO:460




SEQ ID NO:459





miR-181b
miR-
CATGATCAGCTGGGCCAA
miR-
AA+CATT+CATTGCTGTC
−0.3115
10.846
15.87
158.67



181bGSP8#
GACCCACCGA
181bRP2#
SEQ ID NO:462




SEQ ID NO:461





miR-128a
miR-128aGSP
CATGATGAGCTGGGCCAA
miR-
TCAGAGTGAACCGGT
approx.
approx.
approx.
approx.




GAAAAAGAGACC
128-anLRP
SEQ ID NO: 494
−0.2866
8.0867
0.16
1.60




SEQ ID NO:161





miR-138
miR-138GSP2
CATGATCAGCTGGGCCAA
miR-
AGCTGGTGTTGTGAA
approx.
approx.
approx.
approx.




GACGGCGTGAT
138nLRP
SEQ ID NO:495
−0.3023
9.0814
0.22
2.19




SEQ ID NO:187





miR-143
miR-143GSP8-
CATGATCAGCTGGGCCAA
miR-
TGAGATGAAGCACTGT
approx.
approx.
approx.
approx.




GATGAGCTAC
143nLRP
SEQ ID NO:496
−0.3008
9.2675
0.37
3.71




SEQ ID NO:197





miR-150
miR-150GSP3
CATGATCAGCTGGGCCAA
miR-
TCTCCCAACCCTTGTA
approx.
approx.
approx.
approx.




GACACTGGTA
150nLRP
SEQ ID NO:497
−0.2943
8.3945
0.06
0.56




SEQ ID NO:213





miR-181a
miR-
CATGATCAGCTGGGCCAA
miR-
AACATTCAACGCTGT
approx.
approx.
approx.
approx.



181aGSP9#
GAAGTCACCGA
181anLRP
SEQ ID NO: 498
−0.2919
7.968
1.70
17.05




SEQ ID NO:227





miR-194
mir194GSP8#
CATGATGAGCTGGGGCAA
miR-
TGTAACAGCAACTCCA
approx.
approx.
approx.
approx.




GATCCACATG
194nLRP
SEQ ID NO: 499
−0.3078
8.8045
0.37
3.69




SEQ ID NO:255





# denotes primers for assays that required extensive testmg and primer design modification to achieve optimal assay results mcludmg high sensitivity and high dynamic range.






EXAMPLE 4

This Example describes assays and primers designed for quantitative analysis of murine miNRA expression patterns.


Methods: The representative murine microRNA target templates described in TABLE 7 are publicly available accessible on the World Wide Web at the Wellcome Trust Sanger Institute website in the “miRBase sequence database” as described in Griffith-Jones et al. (2004), Nucleic Acids Research 32:D109-D111 and Griffith-Jones et al. (2006), Nucleic Acids Research 34: D140-D144. As indicated below in TABLE 7, the murine microRNA templates are either totally identical to the corresponding human microRNA templates, identical in the overlapping sequence with differing ends, or contain one or more base pair changes as compared to the human microRNA sequence. The murine microRNA templates that are identical or that have identical overlapping sequence to the corresponding human templates can be assayed using the same primer sets designed for the human microRNA templates, as indicated in TABLE 7. For the murine microRNA templates with one or more base pair changes in comparison to the corresponding human templates, primer sets have been designed specifically for detection of the murine microRNA, and these primers are provided in TABLE 7. The extension primer reaction and quantitative PCR reactions for detection of the murine microRNA templates may be carried out as described in EXAMPLE 3.









TABLE 7







Primers to detect murine microRNA target templates













Mouse
Exten-

Reverse

Mouse microRNA



Target
sion Primer
Extension
Primer
Reverse
as compared to


microRNA:
Name
Primer Sequence
Name
Primer Sequence
Human microRNA





miR-1
miR1GSP10
CATGATCAGCTGGGCCAAGATACATA
miR-1RP
T+G+GAA+TG+TAAAGAAGT
Identical





CTTC

SEQ ID NO:48




SEQ ID NO:47





miR-7
miR-7GSP10
CATGATCAGCTGGGCCAAGAAACAAA
miR-7_RP6
T+GGAA+GACTTGTGATTTT
one or more base




ATC

SEQ ID NO:487
pairs differ




SEQ ID NO:486





miR-9*
miR-9*GSP
CATGATCAGCTGGGCCAAGAACTTTC
miR-9*RP
TAAA+GCT+AGATAACCG
Identical overlapping




GGTT

SEQ ID NO:52
sequence, ends differ




SEQ ID NO:51





miR-10a
miR-10aGSP
CATGATCAGCTGGGCCAAGACACAAA
miR-10aRP
T+AC+CCTGTAGATCCG
Identical




TTCG

SEQ ID NO:54




SEQ ID NO:53





miR-10b
miR-10b_GSP11
CATGATCAGCTGGGCCAAGAACACAA
miR-10b_RP2
C+CC+TGT+AGAACCGAAT
one or more base




ATTCG

SEQ ID NO:493
pairs differ




SEQ ID NO:492





miR-15a
miR-15aGSP
CATGATCAGCTGGGCCAAGACACAAA
miR-15aRP
T+AG+CAGCACATAATG
Identical




CCAT

SEQ ID NO:58




SEQ ID NO:57





miR-15b
miR-15bGSP2
CATGATCAGCTGGGCCAAGATGTAAA
miR-15bRP
T+AG+CAGCACATCAT
Identical




CCA

SEQ ID NO:60




SEQ ID NO:59





miR-16
miR-16GSP2
CATGATCAGCTGGGCCAAGACGCCAA
miR-16RP
T+AG+CAGCACGTAAA
Identical




TAT

SEQ ID NO:62




SEQ ID NO:61





miR-17-3p
miR-17-3pGSP
CATGATCAGCTGGGCCAAGAACAAGT
miR-17-3pRP
A+CT+GCAGTGAGGGC
one or more base




GCCC

SEQ ID NO:464
pairs differ




SEQ ID NO:463





miR-17-5p
miR-17-5pGSP2
CATGATCAGCTGGGCCAAGAACTACC
miR-17-5pRP
C+AA+AGTGCTTACAGTG
Identical




TGC

SEQ ID NO:66




SEQ ID NO:65





miR-19a
miR-19aGSP2
CATGATCAGCTGGGCCAAGATCAGTT
miR-19aRP
TG+TG+CAAATCTATGC
Identical




TTG

SEQ ID NO:68




SEQ ID NO:67





miR-19b
miR-19bGSP
CATGATCAGCTGGGCCAAGATCAGTT
miR-19bRP
TG+TG+CAAATCCATG
Identical




TTGC

SEQ ID NO:70




SEQ ID NO:69





miR-20
miR-20GSP3
CATGATCAGCTGGGCCAAGACTACCT
miR-20RP
T+AA+AGTGCTTATAGTGCA
Identical




GC

SEQ ID NO:72




SEQ ID NO:71





miR-21
miR-21GSP2
CATGATCAGCTGGGCCAAGATCAACA
miR-21RP
T+AG+CTTATCAGACTGATG
Identical




TCA

SEQ ID NO:74




SEQ ID NO:73





miR-23a
miR-23aGSP
CATGATCAGCTGGGCCAAGAGGAAAT
miR-23aRP
A+TC+ACATTGCCAGG
Identical




CCCT

SEQ ID NO:76




SEQ ID NO:75





miR-23b
miR-23bGSP
CATGATCAGCTGGGCCAAGAGGTAAT
miR-23bRP
A+TC+ACATTGCCAGG
Identical




CCCT

SEQ ID NO:78




SEQ ID NO:77





miR-24
miR-24P5
CATGATCAGCTGGGCCAAGACTGTTC
miR24-1, 2R
TGG+CTCAGTTCAGC
Identical




CTGCTG

SEQ ID NO: 19




SEQ ID NO:7





miR-25
miR-25GSP
CATGATCAGCTGGGCCAAGATCAGAC
miR-25RP
C+AT+TGCACTTGTCTC
Identical




CGAG

SEQ ID NO:80




SEQ ID NO:79





miR-26a
miR-26aGSP9
CATGATCAGCTGGGCCAAGAGCCTAT
miR-26aRP2
TT+CA+AGTAATCCAGGAT
Identical




CCT

SEQ ID NO:82




SEQ ID NO:81





miR-26b
miR-26bGSP9
CATGATCAGCTGGGCCAAGAAACCTA
miR-26bRP2
TT+CA+AGT+AATTCAGGAT
Identical




TCC

SEQ ID NO:84




SEQ ID NO:83





miR-27a
miR-27aGSP
CATGATCAGCTGGGCCAAGAGCGGAA
miR-27aRP
TT+CA+CAGTGGCTAA
Identical




CTTA

SEQ ID NO:86




SEQ ID NO:85





miR-27b
miR-27bGSP
CATGATCAGCTGGGCCAAGAGCAGAA
miR-27bRP
TT+CA+CAGTGGCTAA
Identical




CTTA

SEQ ID NO:88




SEQ ID NO:87





miR-28
miR-28GSP
CATGATCAGCTGGGCCAAGACTCAAT
miR-28RP
A+AG+GAGCTCACAGT
Identical




AGAC

SEQ ID NO:90




SEQ ID NO:89





miR-29a
miR-29aGSP8
CATGATCAGCTGGGCCAAGAAACCGA
miR-29aRP2
T+AG+CACCATCTGAAAT
Identical




TT

SEQ ID NO:92




SEQ ID NO:91





miR-29b
miR-29bGSP2
CATGATCAGCTGGGCCAAGAAACACT
miR-29bRP2
T+AG+CACCATTTGAAATCAG
Identical




GAT

SEQ ID NO:94




SEQ ID NO:93





miR-30a-
miR-30a-5pGSP
CATGATCAGCTGGGCCAAGACTTCCA
miR30a-5pRP
T+GT+AAACATCCTCGAC
Identical


5p

GTCG

SEQ ID NO:96




SEQ ID NO:95





miR-30b
miR-30bGSP
CATGATCAGCTGGGCCAAGAAGCTGA
miR-30bRP
TGT+AAA+CATCCTACACT
Identical




GTGT

SEQ ID NO:98




SEQ ID NO:97





miR-30c
miR-30cGSP
CATGATCAGCTGGGCCAAGAGCTGAG
miR-30cRP
TGT+AAA+CATCCTACACT
Identical




AGTG

SEQ ID NO:100




SEQ ID NO:99





miR-30d
miR-30dGSP
CATGATCAGCTGGGCCAAGACTTCCA
miR-30dRP
T+GTAAA+CATCCCCG
Identical




GTCG

SEQ ID NO:102




SEQ ID NO:101





miR-30e-
miR-30e-
CATGATCAGCTGGGCCAAGAGCTGTA
miR-30e-
CTTT+CAGT+CGGATGTTT
Identical


3p
3pGSP9
AAC
3pRP5
SEQ ID NO:104




SEQ ID NO:103





miR-31
miR-31GSP
CATGATCAGCTGGGCCAAGACAGCTA
miR-31RP
G+GC+AAGATGCTGGC
Identical overlapping




TGCC

SEQ ID NO:108
sequence, ends differ




SEQ ID NO:107





miR-32
miR-32GSP
CATGATCAGCTGGGCCAAGAGCAACT
miR-32RP
TATTG+CA+CATTACTAAG
Identical




TAGT

SEQ ID NO:110




SEQ ID NO:109





miR-33
miR-33GSP2
CATGATCAGCTGGGCCAAGACAATGC
miR-33RP
G+TG+CATTGTAGTTGC
Identical




AAC

SEQ ID NO:112




SEQ ID NO:111





miR-34a
miR-34aGSP
CATGATCAGCTGGGCCAAGAAACAAC
miR-34aRP
T+GG+CAGTGTCTTAG
Identical




CAGC

SEQ ID NO:114




SEQ ID NO:113





miR-34b
miR-34bGSP
CATGATCAGCTGGGCCAAGACAATCA
miR-34bRP
TA+GG+CAGTGTAATT
one or more base




GCTA

SEQ ID NO:482
pairs differ




SEQ ID NO:115





miR-34c
miR-34cGSP
CATGATCAGCTGGGCCAAGAGCAATC
miR-34cRP
A+GG+CAGTGTAGTTA
Identical




AGCT

SEQ ID NO:118




SEQ ID NO:117





miR-92
miR-92GSP
CATGATCAGCTGGGCCAAGACAGGCC
miR-92RP
T+AT+TGCACTTGTCCC
Identical




GGGA

SEQ ID NO:120




SEQ ID NO:119





miR-93
miR-93GSP
CATGATCAGCTGGGCCAAGACTACCT
miR93RP
AA+AG+TGCTGTTCGT
Identical overlapping




GCAC

SEQ ID NO:122
sequence, ends differ




SEQ ID NO:121





miR-96
miR-96GSP
CATGATCAGCTGGGCCAAGAGCAAAA
miR96RP
T+TT+GGCACTAGCAC
Identical overlapping




ATGT

SEQ ID NO:126
sequence, ends differ




SEQ ID NO:125





miR-98
miR-98GSP
CATGATCAGCTGGGCCAAGAAACAAT
miR-98RP
TGA+GGT+AGTAAGTTG
Identical




ACAA

SEQ ID NO:128




SEQ ID NO:127





miR-99a
miR-99aGSP
CATGATCAGCTGGGCCAAGACACAAG
miR-99aRP
A+AC+CCGTAGATCCG
Identical overlapping




ATCG

SEQ ID NO:130
sequence, ends differ




SEQ ID NO:129





miR-99b
miR-99bGSP
CATGATCAGCTGGGCCAAGACGCAAG
miR-99bRP
C+AC+CCGTAGAACCG
Identical




GTCG

SEQ ID NO:132




SEQ ID NO:131





miR-100
miR-100GSP
CATGATCAGCTGGGCCAAGACACAAG
miR-100RP
A+AC+CCGTAGATCCG
Identical




TTCG

SEQ ID NO:134




SEQ ID NO:133





miR-101
miR-101GSP
CATGATCAGCTGGGCCAAGACTTCAG
miR-101RP
TA+CAG+TACTGTGATAACT
Identical




TTAT

SEQ ID NO:136




SEQ ID NO:135





miR-103
miR-103GSP
CATGATCAGCTGGGCCAAGATCATAG
miR-103RP
A+GC+AGCATTGTACA
Identical




CCCT

SEQ ID NO:138




SEQ ID NO:137





miR-106a
miR-106aGSP
CATGATCAGCTGGGCCAAGATACCTG
miR-106aRP
CAA+AG+TGCTAACAGTG
one or more base




CAC

SEQ ID NO:473
pairs differ




SEQ ID NO:472





miR-106b
miR-106bGSP
CATGATCAGCTGGGCCAAGAATCTGC
miR-106bRP
T+AAAG+TGCTGACAGT
Identical




ACTG

SEQ ID NO:144




SEQ ID NO:143





miR-107
miR-107GSP8
CATGATCAGCTGGGCCAAGATGATAG
miR-107RP2
A+GC+AGCATTGTACAG
Identical




CC

SEQ ID NO:146




SEQ ID NO:145





miR-122a
miR-122aGSP
CATGATCAGCTGGGCCAAGAACAAAC
miR-122aRP
T+GG+AGTGTGACAAT
Identical




ACCA

SEQ ID NO:148




SEQ ID NO:147





miR-124a
miR-124aGSP
CATGATCAGCTGGGCCAAGATGGCAT
miR-124aRP
T+TA+AGGCACGCGGT
Identical overlapping




TCAC

SEQ ID NO:150
sequence, ends differ




SEQ ID NO:149





miR-125a
miR-125aGSP
CATGATCAGCTGGGCCAAGACACAGG
miR-125aRP
T+CC+CTGAGACCCTT
Identical




TTAA

SEQ ID NO:152




SEQ ID NO:151





miR-125b
miR-125bGSP
CATGATCAGCTGGGCCAAGATCACAA
miR-125bRP
T+CC+CTCAGACCCTA
Identical




GTTA

SEQ ID NO:154




SEQ ID NO:153





miR-126
miR-126GSP
CATGATCAGCTGGGCCAAGAGCATTA
miR-126R2
T+CG+TACCGTGAGTA
Identical




TTAC

SEQ ID NO:156




SEQ ID NO:155





miR-126*
miR-126*GSP3
CATGATCAGCTGGGCCAAGACGCGTA
miR-126*RP
C+ATT+ATTA+CTTTTGGT
Identical




CC

ACG




SEQ ID NO:157

SEQ ID NO:158





miR-127
miR-127GSP
CATGATCAGCTGGGCCAAGAAGCCAA
miR-127RP
T+CG+GATCCGTCTGA
Identical overlapping




GCTC

SEQ ID NO:160
sequence, ends differ




SEQ ID NO:159





miR-128a
miR-128aGSP
CATGATCAGCTGGGCCAAGAAAAAGA
miR-128aRP
T+CA+CAGTGAACCGG
Identical




GACC

SEQ ID NO:162




SEQ ID NO:161





miR-128b
miR-128bGSP
CATGATCAGCTGGGCCAAGAGAAAGA
miR-128bRP
T+CA+CAGTGAACCGG
Identical




GACC

SEQ ID NO:164




SEQ ID NO:163





miR-130a
miR-130aGSP
CATGATCAGCTGGGCCAAGAATGCCC
miR-130aRP
C+AG+TGCAATGTTAAAAG
Identical




TTTT

SEQ ID NO:168




SEQ ID NO:167





miR-130b
miR-130bGSP
CATGATCAGCTGGGCCAAGAATGCCC
miR-130bRP
C+AG+TGCAATGATGA
Identical




TTTC

SEQ ID NO:170




SEQ ID NO:169





miR-132
miR-132GSP
CATGATCAGCTGGGCCAAGACGACCA
miR-132RP
T+AA+CAGTCTACAGCC
Identical




TGGC

SEQ ID NO:172




SEQ ID NO:171





miR-133a
miR-133aGSP
CATGATCAGCTGGGCCAAGAACAGCT
miR-133aRP
T+TG+GTCCCCTTCAA
Identical




GGTT

SEQ ID NO:174




SEQ ID NO:173





miR-133b
miR-133bGSP
CATGATCAGCTGGGCCAAGATAGCTG
miR-133bRP
T+TG+GTCCCCTTCAA
Identical




GTTG

SEQ ID NO:176




SEQ ID NO:175





miR-134
miR-134GSP
CATGATCAGCTGGGCCAAGACCCTCT
miR-134RP
T+GT+GACTGGTTGAC
Identical overlapping




GGTC

SEQ ID NO:178
sequence, ends differ




SEQ ID NO:177





miR-135a
miR-135aGSP
CATGATCAGCTGGGCCAAGATCACAT
miR-135aRP
T+AT+GGCTTTTTATTCCT
Identical




AGGA

SEQ ID NO:180




SEQ ID NO:179





miR-135b
miR-135bGSP
CATGATCAGCTGGGCCAAGACACATA
miR-135bRP
T+AT+GGCTTTTCATTCC
Identical




GGAA

SEQ ID NO:182




SEQ ID NO:181





miR-136
miR-136GSP
CATGATCAGCTGGGCCAAGATCCATC
miR-136RP
A+CT+CCATTTGTTTTGATG
Identical




ATCA

SEQ ID NO:184




SEQ ID NO:183





miR-137
miR-137GSP
CATGATCAGCTGGGCCAAGACTACGC
miR-137RP
T+AT+TGCTTAAGAATACGC
Identical overlapping




GTAT

SEQ ID NO:186
sequence, ends differ




SEQ ID NO:185





miR-138
miR-138GSP2
CATGATCAGCTGGGCCAAGACGGCCT
miR-138RP
A+GC+TGGTGTTGTGA
Identical




GAT

SEQ ID NO:188




SEQ ID NO:187





miR-139
miR-139GSP
CATGATCAGCTGGGCCAAGAAGACAC
miR-139RP
T+CT+ACAGTGCACGT
Identical




GTGC

SEQ ID NO:190




SEQ ID NO:189





miR-140
miR-140GSP
CATGATCAGCTGGGCCAAGACTACCA
miR-140RP
A+GT+GGTTTTACCCT
Identical overlapping




TAGG

SEQ ID NO:192
sequence, ends differ




SEQ ID NO:191





miR-141
miR-141GSP9
CATGATCAGCTGGGCCAAGACCATCT
miR-141RP2
TAA+CAC+TGTCTGGTAA
Identical




TTA

SEQ ID NO:194




SEQ ID NO:193





miR-142-
miR-142-
CATGATCAGCTGGGCCAAGATCCATA
miR-142-
TGT+AG+TGTTTCCTACT
Identical overlapping


3p
3pGSP3
AA
3pRP
SEQ ID NO:196
sequence, ends differ




SEQ ID NO:195





miR-143
miR-143GSP8
CATGATCAGCTGGGCCAAGATGAGCT
miR-143RP2
T+GA+GATGAAGCACTG
Identical




AC

SEQ ID NO:198




SEQ ID NO:197





miR-144
miR-144GSP2
CATGATCAGCTGGGCCAAGACTAGTA
miR-144RP
TA+CA+GTAT+AGATGATG
Identical




CAT

SEQ ID NO:200




SEQ ID NO:199





miR-145
miR-145GSP2
CATGATCAGCTGGGCCAAGAAAGGGA
miR-145RP
G+TC+CAGTTTTCCCA
Identical




TTC

SEQ ID NO:202




SEQ ID NO:201





miR-146
miR-146GSP3
CATGATCAGCTGGGCCAAGAAACCCA
miR-146RP
T+GA+GAACTGAATTCCA
Identical




TG

SEQ ID NO:204




SEQ ID NO:203





miR-148a
miR-148aGSP2
CATGATCAGCTGGGCCAAGAACAAAG
miR-148aRP2
T+CA+GTGCACTACAGAACT
Identical




TTC

SEQ ID NO:208




SEQ ID NO:207





miR-148b
miR-148bGSP2
CATGATCAGCTGGGCCAAGAACAAAG
miR-148bRP
T+CA+GTGCATCACAG
Identical




TTC

SEQ ID NO:210




SEQ ID NO:209





miR-149
miR-149GSP2
CATGATCAGCTGGGCCAAGAGGAGTG
miR-149RP
T+CT+GGCTCCGTGTC
Identical




AAG

SEQ ID NO:212




SEQ ID NO:211





miR-150
miR-150GSP3
CATGATCAGCTGGGCCAAGACACTGG
miR-150RP
T+CT+CCCAACCCTTG
Identical




TA

SEQ ID NO:214




SEQ ID NO:213





miR-151
miR-151GSP2
CATGATCAGCTGGGCCAAGACCTCAA
miR-151RP
A+CT+AGACTGAGGCTC
one or more base




GGA

SEQ ID NO:477
pairs differ




SEQ ID NO: 215





miR-152
miR-152GSP2
CATGATCAGCTGGGCCAAGACCCAAG
miR-152RP
T+CA+GTGCATGACAG
Identical




TTC

SEQ ID NO:218




SEQ ID NO:217





miR-153
miR-153GSP2
CATGATCAGCTGGGCCAAGATCACTT
miR-153RP
TTG+CAT+AGTCACAAAA
Identical overlapping




TTG

SEQ ID NO:220
sequence, ends differ




SEQ ID NO:219





miR-154
miR-154GSP9
CATGATCAGCTGGGCCAAGACGAAGG
miR-154RP3
TA+GGTTA+TCCGTGTT
Identical




CAA

SEQ ID NO:224




SEQ ID NO:223





miR-155
miR-155GSP8
CATGATCAGCTGGGCCAAGACCCCTA
miR-155RP2
TT+AA+TGCTAATTGTGATA
one or more base




TC

GG
pairs differ




SEQ ID NO:225

SEQ ID NO:489





miR-181a
miR-
CATGATCAGCTGGGCCAAGAACTCAC
miR-181aRP2
AA+CATT+CAACGCTGTC
Identical



181aGSP9
CGA

SEQ ID NO:228




SEQ ID NO:227





miR-181c
miR-
CATGATCAGCTGGGCCAAGAACTCAC
miR-181cRP2
AA+CATT+CAACCTGTCG
Identical



181cGSP9
CGA

SEQ ID NO:230




SEQ. ID NO:229





miR-182
miR-182*GSP
CATGATCAGCTGGGCCAAGATAGTTG
miR-182*RP
T+GG+TTCTAGACTTGC
Identical




GCAA

SEQ ID NO:232




SEQ ID NO:231





miR-183
miR-183GSP2
CATGATCAGCTGGGCCAAGACAGTGA
miR-183RP
T+AT+GGCACTGGTAG
Identical




ATT

SEQ ID NO:236




SEQ ID NO:235





miR-184
miR-184GSP2
CATGATCAGCTGGGCCAAGAACCCTT
miR-184RP
T+GG+ACGGAGAACTG
Identical




ATC

SEQ ID NO:238




SEQ ID NO:237





miR-186
miR-186GSP9
CATGATCAGCTGGGCCAAGAAAGCCC
miR-186RP3
CA+AA+GAATT+CTCCTTTT
Identical




AAA

GG




SEQ ID NO:239

SEQ ID NO:240





miR-187
miR-187GSP
CATGATCAGCTGGGCCAAGACGGCTG
miR-187RP
T+CG+TGTCTTGTGTT
Identical overlapping




CAAC

SEQ ID NO:242
sequence, ends differ




SEQ ID NO:241





miR-188
miR-188GSP
CATGATCAGCTGGGCCAAGAACCCTC
miR-188RP
C+AT+CCCTTGCATGG
Identical




CACC

SEQ ID NO:244




SEQ ID NO:243





miR-189
miR-189GSP2
CATGATCAGCTGGGCCAAGAACTGAT
miR-189RP
G+TG+CCTAGTGAGCT
Identical




ATC

SEQ ID NO:246




SEQ ID NO:245





miR-190
miR-190GSP9
CATGATCAGCTGGGCCAAGAACCTAA
miR-190RP4
T+GA+TA+TGTTTGATATAT
Identical




TAT

TAG




SEQ ID NO:247

SEQ ID NO:248





miR-191
miR-191GSP2
CATGATCAGCTGGGCCAAGAAGCTGC
miR-191RP2
C+AA+CGGAATCCCAAAAG
Identical




TTT

SEQ ID NO:250




SEQ ID NO:249





miR-192
miR-192GSP2
CATGATCAGCTGGGCCAAGAGGCTGT
miR-192RP
C+TGA+CCTATGAATTGAC
Identical overlapping




CAA

SEQ ID NO:252
sequence, ends differ




SEQ ID NO:251





miR-193
miR-193GSP9
CATGATCAGCTGGGCCAAGACTGGGA
miR-193RP2
AA+CT+GGCCTACAAAG
Identical




CTT

SEQ ID NO:254




SEQ ID NO:253





miR-194
mir-194GSP8
CATGATCAGCTGGGCCAAGATCCACA
mir194RP
TG+TAA+CAGCAACTCCA
Identical




TG

SEQ ID NO:256




SEQ ID NO:255





miR-195
miR-195GSP9
CATGATCAGCTGGGCCAAGAGCCAAT
miR-195RP3
T+AG+CAG+CACAGAAATA
Identical




ATT

SEQ ID NO:258




SEQ ID NO:257





miR-196a
miR-196aGSP
CATGATCAGCTGGGCCAAGACCAACA
miR-196aRP
TA+GG+TAGTTTCATGTTG
Identical




ACAT

SEQ ID NO:262




SEQ ID NO:261





miR-196b
miR-196bGSP
CATGATCAGCTGGGCCAAGACCAACA
miR-196bRP
TA+GGT+AGTTTCCTGT
Identical




ACAG

SEQ ID NO:260




SEQ ID NO:259





miR-199a*
miR-199a*GSP2
CATGATCAGCTGGGCCAAGAAACCAA
miR-199a*RP
T+AC+AGTAGTCTGCAC
Identical




TGT

SEQ ID NO:268




SEQ ID NO:267





miR-199a
miR-199aGSP2
CATGATCAGCTGGGCCAAGAGAACAG
miR-199aRP
C+CC+AGTGTTCAGAC
Identical




GTA

SEQ ID NO:270




SEQ ID NO:269





miR-199b
miR-199bGSP
CATGATCAGCTGGGCCAAGAGAACAG
miR-199bRP
C+CC+AGTGTTTAGAC
one or more base




GTAG

SEQ ID NO:272
pairs differ




SEQ ID NO:475





miR-200a
miR-200aGSP2
CATGATCAGCTGGGCCAAGAACATCG
miR-200aRP
TAA+CAC+TGTCTGGT
Identical




TTA

SEQ ID NO:274




SEQ ID NO:273





miR-200b
miR-200bGSP2
CATGATCAGCTGGGCCAAGAGTCATC
miR-200bRP
TAATA+CTG+CCTGGTAAT
Identical




ATT

SEQ ID NO:276




SEQ ID NO:275





miR-203
miR-203GSP2
CATGATCAGCTGGGCCAAGACTAGTG
miR-203RP
G+TG+AAATGTTTAGGACC
Identical overlapping




GTC

SEQ ID NO:280
sequence, ends differ




SEQ ID NO:279





miR-204
miR-204GSP2
CATGATCAGCTGGGCCAAGAAGGCAT
miR-204RP
T+TC+CCTTTGTCATCC
Identical overlapping




AGG

SEQ ID NO:282
sequence, ends differ




SEQ ID NO:281





miR-205
miR-205GSP
CATGATCAGCTGGGCCAAGACAGACT
miR-205RP
T+CCTT+CATTCCACC
Identical




CCGG

SEQ ID NO:284




SEQ ID NO:283





miR-206
mir-206GSP7
CATGATCAGCTGGGCCAAGACCACA
miR-206RP
T+G+GAA+TGTAAGGAAGTGT
Identical




CA

SEQ ID NO:286




SEQ ID NO:285





miR-208
miR-208_GSP13
CATGATCAGCTGGGCCAAGAACAAGC
miR-208_RP4
ATAA+GA+CG+AGCAAAAAG
Identical




TTTTTGC

SEQ ID NO:288




SEQ ID NO:287





miR-210
miR-210GSP
CATGATCAGCTGGGCCAAGATCAGCC
miR-210RP
C+TG+TGCGTGTGACA
Identical




GCTG

SEQ ID NO:290




SEQ ID NO:289





miR-211
miR-211GSP2
CATGATCAGCTGGGCCAAGAAGGCAA
miR-211RP
T+TC+CCTTTGTCATCC
one or more base




AGG

SEQ ID NO:292
pairs differ




SEQ ID NO:491





miR-212
miR-212GSP9
CATGATCAGCTGGGCCAAGAGGCCGT
miR-212RP2
T+AA+CAGTCTCCAGTCA
Identical




GAC

SEQ ID NO:294




SEQ ID NO:293





miR-213
miR-213GSP
CATGATCAGCTGGGCCAAGAGGTACA
miR-213RP
A+CC+ATCGACCGTTG
Identical




ATCA

SEQ ID NO:296




SEQ ID NO:295





miR-214
miR-214GSP
CATGATCAGCTGGGCCAAGACTGCCT
miR-214RP
A+CA+GCAGGCACAGA
Identical




GTCT

SEQ ID NO:298




SEQ ID NO:297





miR-215
miR-215GSP2
CATGATCAGCTGGGCCAAGAGTCTGT
miR-215RP
A+TGA+CCTATCATTTGAC
one or more base




CAA

SEQ ID NO:469
pairs differ




SEQ ID NO:299





miR-216
miR-216GSP9
CATGATCAGCTGGGCCAAGACACAGT
mir-216RP
TAA+TCT+CAGCTGGCA
Identical




TGC

SEQ ID NO:302




SEQ ID NO:301





miR-217
miR-217GSP2
CATGATCAGCTGGGCCAAGAATCCAG
miR-217RP2
T+AC+TGCATCAGGAACTGA
one or more base




TCA

SEQ ID NO:304
pairs differ




SEQ ID NO:481





miR-218
miR-218GSP2
CATGATCAGCTGGGCCAAGAACATGG
miR-218RP
TTG+TGCTT+GATCTAAC
Identical




TTA

SEQ ID NO:306




SEQ ID NO:305





miR-221
miR-221GSP9
CATGATCAGCTGGGCCAAGAGAAACC
miR-221RP
A+GC+TACATTCTCTGC
Identical overlapping




CAG

SEQ ID NO:310
sequence, ends differ




SEQ ID NO:309





miR-222
miR-222GSP8
CATGATCAGCTGGGCCAAGAGAGACC
miR-222RP
A+GC+TACATCTGGCT
Identical




CA

SEQ ID NO:312




SEQ ID NO:311





miR-223
miR-223GSP
CATGATCAGCTGGGCCAAGAGGGGTA
miR-223RP
TG+TC+AGTTTGTCAAA
Identical




TTTG

SEQ ID NO:314




SEQ ID NO:313





miR-224
miR-224GSP8
CATGATCAGCTGGGCCAAGATAAACG
miR-224RP2
C+AAG+TCACTAGTGGTT
Identical overlapping




GA

SEQ ID NO:316
sequence, ends differ




SEQ ID NO:315





miR-296
miR-296GSP9
CATGATCAGCTGGGCCAAGAACAGGA
miR-296RP2
A+GG+GCCCCCCCTCAA
Identical




TTG

SEQ ID NO:318




SEQ ID NO:317





miR-299
miR-299GSP9
CATGATCAGCTGGGCCAAGAATGTAT
miR-299RP
T+GG+TTTACCGTGCC
Identical




GTG

SEQ ID NO:320




SEQ ID NO:319





miR-301
miR-301GSP
CATGATCAGCTGGGCCAAGAGCTTTG
miR-301RP
C+AG+TGCAATAGTATTGT
Identical




ACAA

SEQ ID NO:322




SEQ ID NO:321





miR-302a
miR-302aGSP
CATGATCAGCTGGGCCAAGATCACCA
miR-302aRP
T+AAG+TGCTTCCATGT
Identical




AAAC

SEQ ID NO:326




SEQ ID NO:325





miR-320
miR-320_GSP8
CATGATCAGCTGGGCCAAGATTCGCC
miR-320_RP3
AAAA+GCT+GGGTTGAGAGG
Identical




CT

SEQ ID NO:338




SEQ ID NO:337





miR-323
miR-323GSP
CATGATCAGCTGGGCCAAGAAGAGGT
miR-323RP
G+CA+CATTACACGGT
Identical




CGAC

SEQ ID NO:340




SEQ ID NO:339





miR-324-
miR-324-
CATGATCAGCTGGGCCAAGACCAGCA
miR-324-
C+CA+CTGCCCCAGGT
Identical


3p
3pGSP
GCAC
3pRP
SEQ ID NO:342




SEQ ID NO:341





miR-324-
miR-324-
CATGATCAGCTGGGCCAAGAACACCA
miR-324-
C+GC+ATCCCCTAGGG
Identical overlapping


5p
5pGSP
ATGC
5pRP
SEQ ID NO:344
sequence, ends differ




SEQ ID NO:343





miR-325
miR-325GSP
CATGATCAGCTGGGCCAAGAACACTT
miR-325RP
C+CT+AGTAGGTGCTC
one or more base




ACTG

SEQ ID NO:476
pairs differ




SEQ ID NO:345





miR-326
miR-326GSP
CATGATCAGCTGGGCCAAGACTGGAG
miR-326RP
C+CT+CTGGGCCCTTC
Identical overlapping




GAAG

SEQ ID NO:348
sequence, ends differ




SEQ ID NO:347





miR-328
miR-328GSP
CATGATCAGCTGGGCCAAGAACGGAA
miR-328RP
C+TG+GCCCTCTCTGC
Identical




GGGC

SEQ ID NO:350




SEQ ID NO:349





miR-330
miR-330GSP
CATGATCAGCTGGGCCAAGATCTCTG
miR-330RP
G+CA+AAGCACAGGGC
one or more base




CAGG

SEQ ID NO:478
pairs differ




SEQ ID NO:351





miR-331
miR-331GSP
CATGATCAGCTGGGCCAAGATTCTAG
miR-331RP
G+CC+CCTGGGCCTAT
Identical




GATA

SEQ ID NO:354




SEQ ID NO:353





miR-337
miR-337GSP
CATGATCAGCTGGGCCAAGAAAAGGC
miR-337RP
T+TC+AGCTCCTATATG
one or more base




ATCA

SEQ ID NO:490
pairs differ




SEQ ID NO:355





miR-338
miR-338GSP
CATGATCAGCTGGGCCAAGATCAACA
miR-338RP2
T+CC+AGCATCAGTGATTT
Identical




AAAT

SEQ ID NO:358




SEQ ID NO:357





miR-339
miR-339GSP9
CATGATCAGCTGGGCCAAGATGAGCT
miR-339RP2
T+CC+CTGTCCTCCAGG
Identical




CCT

SEQ ID NO:360




SEQ ID NO:359





miR-340
miR-340GSP
CATGATCAGCTGGGCCAAGAGGCTAT
miR-340RP
TC+CG+TCTCAGTTAC
Identical




AAAG

SEQ ID NO:362




SEQ ID NO:361





miR-342
miR-342GSP3
CATGATCAGCTGGGCCAAGAGACGGG
miR-342RP
T+CT+CACACAGIAAATCG
Identical




TG

SEQ ID NO:364




SEQ ID NO:363





miR-345
miR-345GSP
CATGATCAGCTGGGCCAAGAGCACTG
miR-345RP
T+GC+TGACCCCTAGT
one or more base




GACT

SEQ ID NO:485
pairs differ




SEQ ID NO:484





miR-346
miR-346GSP
CATGATCAGCTGGGCCAAGAAGAGGC
miR-346RP
T+GT+CTGCCCGAGTG
one or more base




AGGC

SEQ ID NO:488
pairs differ




SEQ ID NO:367





miR-363
miR-363GSP10
CATGATCAGCTGGGCCAAGATACAGA
miR-363RP
AAT+TG+CAC+GGTATCC
Identical




TGGA

SEQ ID NO:370




SEQ ID NO:369





miR-370
miR-370GSP
CATGATCAGCTGGGCCAAGACCAGGT
miR-370RP
G+CC+TGCTGGGGTGG
Identical overlapping




TCCA

SEQ ID NO:376
sequence, ends differ




SEQ ID NO:375





miR-375
miR-375GSP
CATGATCAGCTGGGCCAAGATCACGC
miR-375RP
TT+TG+TTCGTTCGGC
Identical




GAGC

SEQ ID NO:388




SEQ ID NO:387





miR-376a
miR-376aGSP3
CATGATCAGCTGGGCCAAGAACGTGG
miR-376aRP2
A+TCGTAGA+GGAAAATCCAC
one or more base




AT

SEQ ID NO:468
pairs differ




SEQ ID NO:467





miR-378
miR-378GSP
CATGATCAGCTGGGCCAAGAACACAG
miR-378RP
C+TC+CTGACTCCAGG
Identical




GACC

SEQ ID NO:392




SEQ ID NO:391





miR-379
miR-379_GSP7
CATGATCAGCTGGGCCAAGATACGT
miR-379RP2
T+GGT+AGACTATGGAACG
Identical overlapping




TC

SEQ ID NO:394
sequence, ends differ




SEQ ID NO:393





miR-380-
miR-380-5pGSP
CATGATCAGCTGGGCCAAGAGCGCAT
miR-380-
T+GGT+TGACCATAGA
Identical


5p

GTTC
5pRP
SEQ ID NO:396




SEQ ID NO:395





miR-380-
miR-380-3pGSP
CATGATCAGCTGGGCCAAGAAAGATG
miR-380-
TA+TG+TAGTATGGTCCACA
one or more base


3p

TGGA
3pRP
SEQ ID NO:483
pairs differ




SEQ ID NO:395





miR-381
miR-381GSP2
CATGATCAGCTGGGCCAAGAACAGAG
miR-381RP2
TATA+CAA+GGGCAAGCT
Identical




AGC

SEQ ID NO:400




SEQ ID NO:399





miR-382
miR-382GSP
CATGATCAGCTGGGCCAAGACGAATC
miR-382RP
G+AA+GTTGTTCGTGGT
Identical




CACC

SEQ ID NO:402




SEQ ID NO:401





miR-383
miR-383GSP
CATGATCAGCTGGGCCAAGAAGCCAC
miR-383RP2
A+GATC+AGAAGGTGACTGT
one or more base




AGTC

SEQ ID NO:466
pairs differ




SEQ ID NO:465





miR-384
miR-384_GSP9
CATGATCAGCTGGGCCAAGATGTGAA
miR-384_RP5
ATT+CCT+AG+AAATTGTTC
one or more base




CAA

SEQ ID NO:471
pairs differ




SEQ ID NO:470





miR-410
miR-410GSP9
CATGATCAGCTGGGCCAAGAACAGGC
miR-410RP
AA+TA+TAA+CA+CAGATGGC
Identical




CAT

SEQ ID NO:406




SEQ ID NO:405





miR-412
miR-412GSP10
CATGATCAGCTGGGCCAAGAACGGCT
miR-412RP
A+CTT+CACCTGGTCCACTA
Identical




AGTG

SEQ ID NO:408




SEQ ID NO:407





miR-424
miR-424GSP
CATGATCAGCTGGGCCAAGATCCAAA
miR-424RP2
C+AG+CAGCAATTCATGTTTT
one or more base




ACAT

SEQ ID NO:414
pairs differ




SEQ ID NO:474





miR-425
miR-425GSP
CATGATCAGCTGGGCCAAGAGGCGGA
miR-425RP
A+TC+GGGAATGTCGT
Identical




CACG

SEQ ID NO:418




SEQ ID NO:417





miR-429
miR-429_GSP11
CATGATCAGCTGGGCCAAGAACGGCA
miR-429RP5
T+AATAC+T+TCTGGTAATG
one or more base




TTACC

SEQ ID NO: 480
pairs differ




SEQ ID NO:479





miR-431
miR-431GSP10
CATGATCAGCTGGGCCAAGATGCATG
miR-431RP
T+GT+CTTGCAGGCCG
Identical overlapping




ACGG

SEQ ID NO: 422
sequence, ends differ




SEQ ID NO:421





miR-448
miR-448GSP
CATGATCAGCTGGGCCAAGAATGGGA
miR-448RP
TTG+CATA+TGTAGGATG
Identical




CATC

SEQ ID NO: 424




SEQ ID NO:423





miR-449
miR-449GSP10
CATGATCAGCTGGGCCAAGAACCAGC
miR-449RP2
T+GG+CAGTGTATTGTTAGC
Identical




TAAC

SEQ ID NO:426




SEQ ID NO:425





miR-450
miR-450GSP
CATGATCAGCTGGGCCAAGATATTAG
miR-450RP
TTTT+TG+CGATGTGTT
Identical




GAAC

SEQ ID NO:428




SEQ ID NO:427





miR-451
miR-451GSP10
CATGATCAGCTGGGCCAAGAAAACTC
miR-451RP
AAA+CCG+TTA+CCATTAC
Identical overlapping




AGTA

TGA
sequence, ends differ




SEQ ID NO:429

SEQ ID NO:430





let7a
let7a-GSP2
CATGATCAGCTGGGCCAAGAAACTAT
let7a-RP
T+GA+GGTAGTAGGTTG
Identical overlapping




AC

SEQ ID NO:432
sequence, ends differ




SEQ ID NO:431





let7b
let7b-GSP2
CATGATCAGCTGGGCCAAGAAACCAC
let7b-RP
T+GA+GGTAGTAGGTTG
Identical




AC

SEQ ID NO:432




SEQ ID NO:433





let7c
let7c-GSP2
CATGATCAGCTGGGCCAAGAAACCAT
let7c-RP
T+GA+GGTAGTAGGTTG
Identical




AC

SEQ ID NO:432




SEQ ID NO:434





let7d
let7d-GSP2
CATGATCAGCTGGGCCAAGAACTATG
let7d-RP
A+GA+GGTAGTAGGTTG
Identical




CA

SEQ ID NO:436




SEQ ID NO:435





let7e
let7e-GSP2
CATGATCAGCTGGGCCAAGAACTATA
let7e-RP
T+GA+GGTAGGAGGTTG
Identical




CA

SEQ ID NO:438




SEQ ID NO:437





let7f
let7f-GSP2
CATGATCAGCTGGGCCAAGAAACTAT
let7f-RP
T+GA+GGTAGTAGATTG
Identical overlapping




AC

SEQ ID NO:440
sequence, ends differ




SEQ ID NO:439





let7g
let7g-GSP2
CATGATCAGCTGGGCCAAGAACTGTA
let7g-RP
T+GA+GGTAGTAGTTTG
Identical




CA

SEQ ID NO:442




SEQ ID NO:441





let7i
let7i-GSP2
CATGATCAGCTGGGCCAAGAACAGCA
let7i-RP
T+GA+GGTAGTAGTTTG
Identical




CA

SEQ ID NO:444




SEQ ID NO:443









EXAMPLE 5

This Example describes the detection and analysis of expression profiles for three microRNAs in total RNA isolated from twelve different tissues using methods in accordance with an embodiment of the present invention.


Methods: Quantitative analysis of miR-1, miR-124 and miR-150 microRNA templates was determined using 0.5 μg of First Choice total RNA (Ambion, Inc.) per 10 μl primer extension reaction isolated from the following tissues: brain, heart, intestine, kidney, liver, lung, lymph, ovary, skeletal-muscle, spleen, thymus and uterus. The primer extension enzyme and quantitative PCR reactions were carried out as described above in EXAMPLE 3, using the following PCR primers:











miR-1 template:




extension primer:


CATGATCAGCTGGGCCAAGATACATACTTC
(SEQ ID NO: 47)





reverse primer:


T+G+GAA+TG+ATAAAGAAGT
(SEQ ID NO: 48)





forward primer:


CATGATCAGCTGGGCCAAGA
(SEQ ID NO: 13)





miR-124 template:


extension primer:


CATGATCAGCTGGGCCAAGATGGCATTCAC
(SEQ ID NO: 149)





reverse primer:


T+TA+AGGCACGCGGT
(SEQ ID NO: 150)





forward primer:


CATGATCAGCTGGGCCAAGA
(SEQ ID NO: 13)





miR-150 template:


extension primer:


CATGATCAGCTGGGCCAAGACACTGGTA
(SEQ ID NO: 213)





reverse primer:


T+CT+CCCAACCCTTG
(SEQ ID NO: 214)





forward primer:


CATGATCAGCTGGGCCAAGA
(SEQ ID NO: 13)







Results: The expression profiles for miR-1, miR-124 and miR-150 are shown in FIGS. 3A, 3B, and 3C, respectively. The data in FIGS. 3A-3C are presented in units of microRNA copies per 10 pg of total RNA (y-axis). These units were chosen since human cell lines typically yield ≦10 pg of total RNA per cell. Hence the data shown are estimates of microRNA copies per cell. The numbers on the x-axis correspond to the following tissues: (1) brain, (2) heart, (3) intestine, (4) kidney, (5) liver, (6) lung, (7) lymph, (8) ovary, (9) skeletal muscle, (10) spleen, (11) thymus and (12) uterus.


Consistent with previous reports, very high levels of striated muscle-specific expression were found for miR-1 (as shown in FIG. 3A), and high levels of brain expression were found for miR-124 (as shown in FIG. 3B) (see Lagos-Quintana et al., RNA 9:175-179, 2003). Quantitative analysis reveals that these microRNAs are present at tens to hundreds of thousands of copies per cell. These data are in agreement with quantitative Northern blot estimates of miR-1 and miR-124 levels (see Lim et al., Nature 433:769-773, 2005). As shown in FIG. 3C, miR-150 was found to be highly expressed in the immune-related lymph node, thymus and spleen samples which is also consistent with previous findings (see Baskerville et al., RNA 11:241-247, 2005).


While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Claims
  • 1. A method for amplifying a microRNA molecule to produce DNA molecules, the method comprising the steps of: (a) producing a first DNA molecule that is complementary to a target microRNA molecule using primer extension; and(b) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward primer and a reverse primer.
  • 2. The method of claim 1, wherein at least one of the universal forward primer and the reverse primer comprises at least one locked nucleic acid molecule.
  • 3. A method of claim 1 wherein the primer extension uses an extension primer having a length in the range of from 10 to 100 nucleotides.
  • 4. A method of claim 1 wherein the primer extension uses an extension primer having a length in the range of from 20 to 35 nucleotides.
  • 5. A method of claim 1 wherein the extension primer comprises a first portion that hybridizes to a portion of the microRNA molecule.
  • 6. A method of claim 5 wherein the first portion has a length in the range of from 3 to 25 nucleotides.
  • 7. A method of claim 5 wherein the extension primer comprises a second portion.
  • 8. A method of claim 7 wherein the second portion has a length of from 18 to 25 nucleotides.
  • 9. A method of claim 7 wherein the second portion has a nucleic acid sequence comprising the nucleic acid sequence of SEQ ID NO:1.
  • 10. A method of claim 1 wherein the universal forward primer has a length in the range of from 16 nucleotides to 100 nucleotides.
  • 11. A method of claim 1 wherein the universal forward primer consists of the nucleic acid sequence set forth in SEQ ID NO:13.
  • 12. A method of claim 7 wherein the universal forward primer hybridizes to the complement of the second portion of the extension primer.
  • 13. A method of claim 2 wherein the universal forward primer comprises at least one locked nucleic acid molecule.
  • 14. A method of claim 13 wherein the universal forward primer comprises from 1 to 25 locked nucleic acid molecules.
  • 15. A method of claim 1 wherein the reverse primer has a length in the range of from 10 nucleotides to 100 nucleotides.
  • 16. A method of claim 2 wherein the reverse primer comprises at least one locked nucleic acid molecule.
  • 17. A method of claim 16 wherein the reverse primer comprises from 1 to 25 locked nucleic acid molecules.
  • 18. A method of claim 1 wherein the reverse primer is selected to specifically hybridize to a DNA molecule complementary to a selected microRNA molecule under defined hybridization conditions.
  • 19. A method of claim 1 further comprising the step of measuring the amount of amplified DNA molecules.
  • 20. A method of claim 1 wherein amplification is achieved by multiple successive PCR reactions.
  • 21. A method for measuring the amount of a target microRNA in a sample from a living organism, the method comprising the step of measuring the amount of a target microRNA molecule in a multiplicity of different cell types within a living organism, wherein the amount of the target microRNA molecule is measured by a method comprising the steps of: (1) producing a first DNA molecule complementary to the target microRNA molecule in the sample using primer extension;(2) amplifying the first DNA molecule to produce amplified DNA molecules using a universal forward and a reverse primer; and(3) measuring the amount of the amplified DNA molecules.
  • 22. The method of claim 21, wherein at least one of the universal forward primer and the reverse primer comprises at least one locked nucleic acid molecule.
  • 23. The method of claim 21, wherein the amount of the amplified DNA molecules are measured using fluorescence-based quantitative PCR.
  • 24. The method of claim 21, wherein the amount of the amplified DNA molecules are measured using SYBR green dye.
  • 25. A kit for detecting at least one mammalian target microRNA comprising at least one primer set specific for the detection of a target microRNA, the primer set comprising: (1) an extension primer for producing a cDNA molecule complementary to a target microRNA, the extension primer comprising a first portion that hybridizes to a target microRNA and a second portion having a hybridization sequence for a universal forward PCR primer;(2) a universal forward PCR primer for amplifying the cDNA molecule, comprising a sequence selected to hybridize to the hybridization sequence on the extension primer; and(3) a reverse PCR primer for amplifying the cDNA molecule, comprising a sequence selected to hybridize to a portion of the cDNA molecule.
  • 26. The kit according to claim 25, wherein at least one of the universal forward and reverse PCR primers includes at least one locked nucleic acid molecule.
  • 27. The kit according to claim 25, wherein the extension primer has a length in the range of from 10 to 100 nucleotides.
  • 28. The kit according to claim 25, wherein the first portion of the extension primer has a length in the range of from 3 to 25 nucleotides.
  • 29. The kit according to claim 25, wherein the second portion of the extension primer has a length in the range of from 18 to 25 nucleotides.
  • 30. The kit according to claim 25, wherein the second portion of the extension primer has a nucleic acid sequence comprising the nucleic acid sequence of SEQ ID NO: 1.
  • 31. The kit according to claim 25, wherein the universal forward PCR primer has a length in the range of from 16 to 100 nucleotides.
  • 32. The kit according to claim 25, wherein the universal forward primer consists of the nucleic acid sequence set forth in SEQ ID NO: 13.
  • 33. The kit according to claim 25, wherein the reverse PCR primer has a length in the range of from 10 to 100 nucleotides.
  • 34. The kit according to claim 25, wherein the reverse PCR primer comprises from 1 to 25 locked nucleic acid molecules.
  • 35. The kit according to claim 25, wherein the at least one mammalian target microRNA is a human microRNA.
  • 36. The kit according to claim 35, wherein the at least one target microRNA is selected from the group consisting of miR-1, miR-7, miR-9*, miR-10a, miR-10b, miR-15a, miR-15b, miR-16, miR-17-3p, miR-17-5p, miR-18, miR-19a, miR-19b, miR-20, miR-21, miR-22, miR-23a, miR-23b, miR-24, miR-25, miR-26a, miR-26b, miR-27a, miR-28, miR-29a, miR-29b, miR-29c, miR-30a-5p, miR-30b, miR-30c, miR-30d, miR-30e-5p, miR-30e-3p, miR-31, miR-32, miR-33, miR-34a, miR-34b, miR-34c, miR-92, miR-93, miR-95, miR-96, miR-98, miR-99a, miR-99b, miR-100, miR-101, miR-103, miR-105, miR-106a, miR-107, miR-122, miR-122a, miR-124, miR-124, miR-124a, miR-125a, miR-125b, miR-126, miR-126*, miR-127, miR-128a, miR-128b, miR-129, miR-130a, miR-130b, miR-132, miR-133a, miR-133b, miR-134, miR-135a, miR-135b, miR-136, miR-137, miR-138, miR-139, miR-140, miR-141, miR-142-3p, miR-143, miR-144, miR-145, miR-146, miR-147, miR-148a, miR-148b, miR-149, miR-150, miR-151, miR-152, miR-153, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-182*, miR-182, miR-183, miR-184, miR-185, miR-186, miR-187, miR-188, miR-189, miR-190, miR-191, miR-192, miR-193, miR-194, miR-195, miR-196a, miR-196b, miR-197, miR-198, miR-199a*, miR-199a, miR-199b, miR-200a, miR-200b, miR-200c, miR-202, miR-203, miR-204, miR-205, miR-206, miR-208, miR-210, miR-211, miR-212, miR-213, miR-213, miR-214, miR-215, miR-216, miR-217, miR-218, miR-220, miR-221, miR-222, miR-223, miR-224, miR-296, miR-299, miR-301, miR-302a*, miR-302a, miR-302b*, miR-302b, miR-302d, miR-302c*, miR-302c, miR-320, miR-323, miR-324-3p, miR-324-5p, miR-325, miR-326, miR-328, miR-330, miR-331, miR-337, miR-338, miR-339, miR-340, miR-342, miR-345, miR-346, miR-363, miR-367, miR-368, miR-370, miR-371, miR-372, miR-373*, miR-373, miR-374, miR-375, miR-376b, miR-378, miR-379, miR-380-5p, miR-380-3p, miR-381, miR-382, miR-383, miR-410, miR-412, miR-422a, miR-422b, miR-423, miR-424, miR-425, miR-429, miR-431, miR-448, miR-449, miR-450, miR-451, let7a, let7b, let7c, let7d, let7e, let7f, let7g, let7i, miR-376a, and miR-377.
  • 37. The kit according to claim 35, wherein the at least one target microRNA is selected from the group consisting of: miR-1, miR-7, miR-10b, miR-26a, miR-26b, miR-29a, miR-30e-3p, miR-95, miR-107, miR-141, miR-143, miR-154*, miR-154, miR-155, miR-181a, miR-181b, miR-181c, miR-190, miR-193, miR-194, miR-195, miR-202, miR-206, miR-208, miR-212, miR-221, miR-222, miR-224, miR-296, miR-299, miR-302c*, miR-302c, miR-320, miR-339, miR-363, miR-376b, miR-379, miR-410, miR-412, miR-424, miR-429, miR-431, miR-449, miR-451, let7a, let7b, let7c, let7d, let7e, let7f, let7g, and let7i.
  • 38. The kit according to claim 25, wherein the at least one target microRNA is a murine microRNA.
  • 39. A kit for detecting at least one mammalian microRNA comprising at least one oligonucleotide primer selected from the group consisting of SEQ ID NO: 2 to SEQ ID NO:499.
  • 40. The kit according to claim 39 comprising at least one or more oligonucleotide primers selected from the group consisting of SEQ ID NOS: 47, 48, 49, 50, 55, 56, 81, 82, 83, 84, 91, 92, 103, 104, 123, 124, 145, 146, 193, 194, 197, 198, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 239, 240, 247, 248, 253, 254, 255, 256, 257, 258, 277, 278, 285, 286, 287, 288, 293, 294, 301, 302, 309, 310, 311, 312, 315, 316, 317, 318, 319, 320, 333, 334, 335, 336, 337, 338, 359, 360, 369, 370, 389, 390, 393, 394, 405, 406, 407, 408, 415, 416, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 461 and 462.
  • 41. An oligonucleotide primer for detecting a human microRNA selected from the group consisting of SEQ ID NO: 2 to SEQ ID NO: 499.
  • 42. An oligonucleotide primer according to claim 41, wherein the primer is selected from the group consisting of SEQ ID NO: 47, 48, 49, 50, 55, 56, 81, 82, 83, 84, 91, 92, 103, 104, 123, 124, 145, 146, 193, 194, 197, 198, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 239, 240, 247, 248, 253, 254, 255, 256, 257, 258, 277, 278, 285, 286, 287, 288, 293, 294, 301, 302, 309, 310, 311, 312, 315, 316, 317, 318, 319, 320, 333, 334, 335, 336, 337, 338, 359, 360, 369, 370, 389, 390, 393, 394, 405, 406, 407, 408, 415, 416, 419, 420, 421, 422, 425, 426, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 461 and 462.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US06/02591 1/25/2006 WO 00 11/19/2008
Provisional Applications (1)
Number Date Country
60647178 Jan 2005 US