Methods for reducing operational latency of data storage systems

Information

  • Patent Grant
  • 9236086
  • Patent Number
    9,236,086
  • Date Filed
    Wednesday, October 15, 2014
    11 years ago
  • Date Issued
    Tuesday, January 12, 2016
    10 years ago
Abstract
Systems and methods for reducing operational latency of data storage systems are disclosed. More particularly, a data storage device can perform conditioning operations on inactive zones while the data storage device is idle. When an active zone is the target of a write command, the data storage device can exchange a conditioned inactive zone for the unconditioned target zone. The write operation can be performed immediately on the previously-inactive already-conditioned zone. At a later time, the target zone can be conditioned.
Description
TECHNICAL FIELD

This disclosure relates to information storage and, more particularly, to systems and methods for reducing operational latency of data storage systems.


BACKGROUND

Many computing systems generate or receive data that may be desirable to store persistently. These computing systems often utilize a data storage device, such as a hard disk drive (“HDD”), for data storage and retrieval. In many cases, a HDD can include a circular recording disk made from a magnetic material onto (and/or into) which data can be recorded as patterns of magnetic polarity. A write head of the HDD can write data to the recording disk in response to a write instruction, and a read head can retrieve data from the recording disk in response to a read instruction.


A HDD may perform certain tasks upon each read or write instruction as a result of a particular magnetic recording implementation. For one example, a data storage device can implement shingled magnetic recording (“SMR”) to increase the data density of the recording disk. For example, an SMR data storage device can write data in tracks that partially overlap radially and/or circumferentially. Accordingly, in part as a result of the overlap of SMR tracks, an SMR data storage device can overwrite data tracks adjacent to the written data track during a write operation. Accordingly, many SMR data storage devices write data sequentially, and data may be organized into to one or more zones.





BRIEF DESCRIPTION OF THE DRAWINGS

Reference will now be made to representative embodiments illustrated in the accompanying figures. It should be understood that the following descriptions are not intended to limit the disclosure to one preferred embodiment. To the contrary, each is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the described embodiments as defined by the appended claims.



FIG. 1 depicts a simplified block diagram of an example data storage system that may be configured to perform one or more maintenance and/or conditioning operations prior to writing.



FIG. 2 depicts a simplified block diagram of an example SMR data storage system implementing multiple zones separated by guard bands.



FIG. 3A depicts a simplified block diagram of an example SMR data storage system implemented with auxiliary zones.



FIG. 3B depicts the example SMR data storage system of FIG. 3A after the data storage system receives a write pointer reset instruction.



FIG. 3C depicts a simplified block diagram of an example SMR data storage system implemented with multiple auxiliary zone queues.



FIG. 4 depicts a flow chart of sample operations of a method of operating an SMR data storage system implemented with auxiliary zones.



FIG. 5 depicts a flow chart of sample operations of another method of operating an SMR data storage system implemented with auxiliary zones.



FIG. 6 depicts a flow chart of sample operations of another method of operating an SMR data storage system implemented with auxiliary zones.



FIG. 7A-7B depicts a flow chart of sample operations of another method of operating an SMR data storage system implemented with auxiliary zones.





The use of the same or similar reference numerals in different drawings indicates similar, related, or identical items where appropriate.


DETAILED DESCRIPTION

Embodiments described herein relate to systems and methods for decreasing the operational latency of data storage systems implementing shingled magnetic recording, although the various systems and methods described herein are not limited to particular form factors and can apply equally to magnetic or non-magnetic data storage system types. Further, it should be appreciated that the various embodiments described herein, as well as functionality, operation, components, and capabilities thereof may be combined with other elements as necessary, and so any physical, functional, or operational discussion of any element or feature is not intended to be limited solely to a particular embodiment to the exclusion of others.


Many embodiments described herein take the form of a data storage system that performs various maintenance operations to physical sections of a magnetic recording disk. A variety of maintenance operations (such as block, zone, and/or sector conditioning, managing relocation lists, facilitating discovery of write pointer locations, etc.) can be performed as initialization operations (for example on power up) to minimize writing to physically defective sectors. For example, in certain embodiments, a zone conditioning operation can include writing a particular pattern to one or more blocks within a particular zone of the data storage system. Thereafter, the pattern may be read back by the data storage system. The written and read patterns can be compared to determine whether the data was written correctly. In the event that the patterns do not match, the data storage system may attempt to write the pattern again. If the patterns do not match for subsequent write/read comparisons, the data storage system can conclude that a physical defect is present. The data storage system can note the location of the physical defect so as to avoid writing to that location during future write operations.


In other examples, a zone conditioning operation can include writing a known pattern or applying a known signal one or more times to one or more blocks of a particular zone so as to normalize the magnetic polarity of the various blocks within the zone. For example, an alternating current signal (“AC”) can be applied at a particular frequency to various blocks of a selected zone as a write operation. In this manner, the operation can have the effect of securely erasing old data before new data is written. Accordingly, the conditioning operation of applying an AC signal at a selected frequency to erase one or more blocks of a particular zone is referred to herein as an “AC erase” operation.


In still further examples, a zone conditioning operation can include reading data currently stored within a zone. For one example, as noted above, a data storage device can implement SMR to increase the data density of the recording disk. Upon receiving a write instruction to a specific zone, an SMR data storage device may condition the zone by first reading the entire zone (or a portion of the zone) into a separate memory location such as a data buffer. In this manner, the data stored within the zone is not lost as a result of the SMR write operation.


In still further examples, a zone conditioning operation can include determining a safe write location within the data storage system as an initialization operation performed on power up. For example, certain data storage systems may only write data sequentially (e.g., SMR data storage systems). In such systems, a non-volatile memory within the data storage system can maintain a table or database of pointers to safe write locations. For example, the non-volatile memory can store a pointer to the last block that contains data within a particular zone. In this manner, when the data storage system next receives an instruction to write to that zone, the non-volatile memory can be queried to retrieve the appropriate write pointer. Thereafter, the data storage system can write data sequentially from the retrieved write pointer. Once the data write operation is complete, the non-volatile memory can be updated to include a new write pointer for the particular zone.


However, in certain cases, a write pointer may not be properly updated. For example, if the data storage device loses power during a write operation, the non-volatile memory may not be updated. In such examples, if the data storage system attempts to write to a zone based on the write pointer retrieved from the non-volatile memory, data can be overwritten and permanently lost. Accordingly, certain sequential data system embodiments described herein, including SMR data storage systems, can include a conditioning operation to facilitate the discovery and/or verification of the location of a write pointer within a particular zone when the data storage device powers up after a power loss. In one embodiment, the conditioning operation can include reading data from that zone until a block is encountered that does not contain data.


Furthermore, in some cases, a sequential data system can receive a write-pointer reset command for a particular zone. In response to the write pointer reset command, the sequential data system can set that zone's write pointer back to the first block of the zone. In these examples the sequential data system may perform one or more conditioning operations prior to writing data at the newly-reset write pointer in order to, for example, discover defects on the magnetic recording disk, write a known pattern to facilitate discovery of write pointer locations, perform an AC erase operation, and so on.


However, although zone conditioning may improve the reliability of certain data storage systems (e.g., AC erase, facilitation of write pointer discovery, and so on), such conditioning operations typically are high latency operations. In other words, although data may be more reliably stored as a result of conditioning, the time required to condition a zone and then write to the zone may be undesirable for certain data storage devices.


Accordingly, embodiments described herein relate to systems and methods for reducing operational latency of data storage systems that may be configured to perform one or more maintenance and/or conditioning operations.


For example, many embodiments include a data storage system having an inactive zone configured to be substituted for an active zone upon receiving an instruction from a host device (such as a computing system) to reset of the write pointer of the active zone. In these examples, the inactive zone may already be conditioned for writing data. In this manner, once the inactive zone is substituted for the active zone, write operations can be performed on the previously-inactive and already-conditioned zone immediately. Sometime later, for example while the data storage system is idle, one or more conditioning operations can be performed on the previously-active zone, as a background task for example. In this manner, from the perspective of the host device, write operations following write pointer reset commands occur immediately whereas conditioning operations occur in a manner that is transparent to the host device. In an alternative non-limiting phrasing, the data storage system of certain embodiments accelerates the performance of write operations by delaying the performance of conditioning operations.


In some embodiments, a data storage system can be implemented with a plurality of auxiliary zones. For example, a data storage system can include a magnetic recording disk divided into ten writeable zones. These zones can be organized into six ‘active’ zones and four auxiliary ‘inactive’ zones. When the data storage system receives a write pointer reset instruction to one of the six active zones, the data storage system can substitute one of the four inactive zones with the active zone to be written. Thereafter, the status of the substituted zones can be toggled; the previously-inactive zone can be set to an ‘active’ status and the previously-active zone can be set to an ‘inactive’ status.


In many examples, each zone of a data storage system can be associated with a unique address. In some embodiments, the address for a particular zone can be implemented as a pointer to a particular physical location along a magnetic recording disk. In these embodiments, the operation of substituting an active zone with an inactive zone can be performed by substituting the addresses and/or pointer of each respective zone.


Continuing the ten-zone example presented above, the data storage system can internally address the ten zones as zones 1-10. The six active zones can be reported to the host device as writable zones A-F. For example, if zones 1-6 are ‘active’ and zones 7-10 are ‘inactive’, the data storage system can associate the address of zone 1 with zone A, the address of zone 2 with zone B, and so on. In this manner, if the host device provides an instruction to read data from zone A, the data storage system can read from zone 1, if the host device provides an instruction to read data from zone B, the data storage system can read from zone 2, and so on.


Accordingly, for many embodiments described herein, when the host device provides an instruction to write to zone A, the data storage system can replace the address of zone 1 with the address of an inactive zone such as, in this example, zone 7. Thereafter, the data storage system can write to zone 7 in response to the write instruction to zone A. Next, the data storage system can report to the host device that the write operation to zone A is commenced. As a result of this operation, zone 7 may be set to ‘active’ status and zone 1 may be set to ‘inactive’ status. In this manner, if the host device subsequently provides an instruction to read data from zone A, the data storage system can read from zone 7.


In certain some embodiments, a data storage system can have a number of inactive zones organized as a queue. When idle, the data storage system can perform conditioning operations on the inactive zones within the queue. In one example, the data storage system can condition the inactive zones in a first-in-first-out order. In these embodiments, when the data storage system receives a write instruction to an active zone, the active zone can be pushed onto the inactive zone queue while an inactive zone (that is already conditioned) can be popped from the inactive zone queue and substituted for the previously-active zone. The data storage system can thereafter perform the write operation to the previously-inactive zone. In still further examples, more than one zone queue can be used.


In some embodiments, the number of active and inactive zones can vary. For example, one may appreciate that the greater the number of inactive zones, the faster data may be written. In other words, continuing the example above, if a host device submits an instruction to write data to zones A-E, an implementation with at least five ‘inactive’ zones may be suited to execute the five write operations faster than an implementation with only four ‘inactive’ zones. In other words, the implementation with four ‘inactive’ zones may need to condition one zone prior to writing zone E.


In further embodiments, the number of active and inactive zones can dynamically vary based on one or more parameters. For example, a data storage system storing a small amount of data may set a larger number of zones ‘inactive’ than a data storage system storing a large amount of data. As the data storage system stores more and more data, it may dynamically reduce the number of ‘inactive’ zones. In other words, certain data storage systems can set the number of ‘inactive’ zones based on the amount of data stored within the data storage system.


In some embodiments, a data storage system can set the number of ‘inactive’ zones based on a measured, predicted, estimated, or determined write throughput. For example, if a large amount of data is expected to be written, the data storage system may increase the number of ‘inactive’ zones. In another example, if a small amount of data is expected to be written, the data storage system may decrease the number of inactive zones.


In some embodiments, a host device can set or influence the number of active and inactive zones.



FIG. 1 depicts a simplified block diagram of an example data storage system that may be configured to perform one or more maintenance and/or conditioning operations. The data storage system 100 can be configured to communicate with a host device 102. The host device 102 may be any suitable electronic device such as a laptop computer, desktop computer, server, cellular phone, tablet computer, and so on. In some embodiments, the host device 102 can be implemented as a system of individual electronic devices, for example, as a network of servers.


The host device 102 can send commands 104 to the data storage system 100. The commands 104 can be any number of suitable commands including, but not necessarily limited to, write commands, erase commands, and read commands. Upon receiving a command 104, the data storage system 100 may return a response 106. For one example, if the host device 102 sends a read command 104 the data storage system 100 can send a response 106 including the requested data.


The data storage system 100 can include a storage device 108. In many examples, the storage device 108 can implement SMR within a storage location 110. For example, the storage location 110 can include one or more circular recording disks made from a magnetic material onto (and/or into) which data can be recorded as patterns of magnetic polarity.


A write head (not shown) of the storage device 108 can write data to specific regions (or zones) of the recording disk in response to a write instruction from the host device 102, and a read head (not shown) can retrieve data from the storage device 108 in response to a read instruction from the host device 102. In an SMR implementation, independent zones can be separated by guard bands of a particular size.


The storage device 108 can also include a memory for storing commands 104. For example, in certain embodiments, the storage device 108 may include a command queue 112. The command queue 112 can receive commands 104 from the host device 102 and can execute the commands in a first-in-first-out order.


The storage device 108 can also include control circuitry 114. The control circuitry 114 can be implemented as a controller, an electrical circuit, an integrated circuit, or as instructions executed by a processor associated with the storage device 108 or the data storage system 100. In many embodiments, the control circuitry 114 can perform or coordinate one or more operations of the storage device 108 and/or data storage system 100. For example, the control circuitry 114 can control the read and write head of the storage location 110, can control the command queue 112, and can send the responses 106 to the host device 102.


In some embodiments, the control circuitry 114 can perform additional or fewer functions. For example, in certain embodiments, the control circuitry 114 can control the number of zones within the storage location 110 that are active and inactive.



FIG. 2 depicts a simplified block diagram of an example SMR data storage system 200 implementing multiple zones separated by guard bands, such as may be implemented by the storage location 110 of FIG. 1. The SMR data storage system can be divided into N number of equally sized zones, each physically separated by a guard band. The size of the N zones and the size of the respective guard bands may vary from embodiment to embodiment. As illustrated each of the N zones is defined by twenty-two blocks to which data can be written.


The SMR data storage system 200 can also include a non-volatile memory 210 that can store information related to the N zones. For example, the non-volatile memory 210 can store a write pointer for each zone. In one embodiment, a write pointer can be a physical location within a particular zone that indicates a safe write location for subsequent write commands. For example, as noted above, an SMR system may be configured to write data sequentially. In many cases, a single write command may not write enough data to fill the entire zone. For example, as illustrated, ZONE 1 can be defined by twenty-two distinct blocks of data. As shown, only two of the twenty-two available blocks contain data (illustrated as shaded regions). Accordingly, the non-volatile memory 210 can store a write pointer 202 to record that the third block of ZONE 1 is the block from which subsequent write operations should begin. Similarly, ZONE 2 is illustrated containing three blocks of written data (illustrated as shaded regions). The write pointer 204 associated with ZONE 2 references the fourth block as the block from which subsequent write operations should begin. In addition, ZONE N is illustrated containing ten blocks of written data (illustrated as shaded regions). The write pointer 206 associated with ZONE N references the eleventh block as the block from which subsequent write operations may begin.


In addition, each individual zone can be configured to receive a write pointer reset command. As may be appreciated, resetting the write pointer of a particular zone to the beginning of the zone has the effect of erasing the data contained within the zone.


In many embodiments, an SMR data storage system 200 can perform one or more conditioning operations upon receiving or issuing a write pointer reset command for a particular zone. As noted above, the SMR data storage system 200 can physically inspect the zone to determine whether the zone has a defect 208. For example, in certain embodiments and as noted above, a zone conditioning operation can include writing a particular pattern to one or more blocks within the selected zone. Thereafter, the pattern may be read back by the data storage system. The written and read patterns can be compared to determine whether the data was written correctly. In the event that the patterns do not match, the SMR data storage system 200 can store the detected defect 208 in the non-volatile memory 210, so as to avoid writing to that location during future write operations.


In many cases, the written pattern can be used to facilitate discovery of the current write pointer of the SMR data storage system 200. For example, in the case of power loss, the SMR data storage system 200 can read data from a particular zone or block and monitor for the known pattern that was previously written. Upon discovery of the location of the known pattern, the SMR data storage system 200 can update the write pointer associated with that zone to the location of the known pattern.


In other examples, other conditioning and/or maintenance operations can be performed. For example, some conditioning operations can determine whether a particular block or set of blocks or sectors within a particular block have failed. In these embodiments, the location of such failed blocks and/or sectors can be recorded such that the SMR data storage system 200 can prevent writing to the failed blocks during future write operations.



FIG. 3A depicts a simplified block diagram of an example SMR data storage system implemented with a plurality of auxiliary zones. The SMR data storage system can include a magnetic recording disk divided into 2N writeable zones. These zones can be organized into several ‘active’ zones and several auxiliary ‘inactive’ zones.


The SMR data storage system can include a mapping table 302 that stores pointers for all active zones. As illustrated, the mapping table 302 can include pointers to ZONE 1-ZONE N. Similarly, an auxiliary zone queue 304 can store pointers for all inactive zones. As illustrated, the auxiliary zone queue 304 can include pointers to ZONE_AUX 1-ZONE_AUX N. In the illustrated embodiment, the SMR data storage system includes 2N zones; one half of the zones are active and referenced within the mapping table 302 and one half of the zones are inactive and referenced within the auxiliary zone queue 304.


When the SMR data storage system receives a write instruction to one of the active zones, the SMR data storage system can substitute one of the inactive zones with the active zone to be written. Thereafter, the status of the substituted zones can be toggled; the previously-inactive zone can be set to an ‘active’ status and the previously-active zone can be set to an ‘inactive’ status.


For example, as shown in FIG. 3B, if ZONE 1 receives a write instruction (e.g., write pointer reset command in FIG. 3A), an auxiliary zone that is inactive, such as ZONE_AUX 1, can be selected to replace ZONE 1 within the mapping table 302. Thereafter, ZONE 1 may be moved to the bottom of the auxiliary zone queue 304. Next, the SMR data storage system can perform conditioning operations, such as those described herein, on the inactive zones within the auxiliary zone queue 304. More particularly, the SMR data storage system can perform conditioning operations on ZONE 1.


In still further embodiments, such as the embodiment depicted in FIG. 3C, more than one auxiliary zone queue can be used.



FIG. 4 depicts a flow chart of sample operations of a method of operating an SMR data storage system implemented with an auxiliary zone queue and a processing queue. A selected zone may be a member of mapping table of active zones at operation 402. Thereafter, the SMR data storage system can set the selected zone to an inactive state and can pass the selected zone into a conditioning queue at operation 404. In many examples, the SMR data storage system may pass the selected zone to the conditioning queue in response to a write instruction (e.g., write pointer reset command). In many examples, conditioning of the selected zone can take place while the SMR data storage system is idle.


Next, after the selected zone is conditioned within the conditioning queue, it can be passed to the auxiliary zone queue at operation 406. At a later point, the selected zone can replace a second selected zone within the mapping table at 402, by returning to active status.



FIG. 5 depicts a flow chart of sample operations of another method of operating an SMR data storage system implemented with auxiliary zones. The method can begin at operation 500 at which a write pointer reset instruction is received for ZONE 1 while the zone is in the active state (e.g., referenced by a mapping table).


Next, ZONE 1 can be set to an inactive state and can be pushed into an auxiliary zone queue at operation 502. As with some embodiments described herein, one or more conditioning and/or maintenance operations can be performed on ZONE 1, when the zone is in the auxiliary zone queue.


Next, ZONE_TOP can be popped from the auxiliary zone cue at operation 504. Once popped from the auxiliary zone queue, ZONE_TOP can be set to the active state and added to the mapping table.



FIG. 6 depicts a flow chart of sample operations of yet another method of operating an SMR data storage system implemented with auxiliary zones. The method can begin at operation 600 in which a write pointer reset command is received for a particular active zone. The selected zone may be set to an inactive state and can be passed immediately to a conditioning queue at 602. Once in the conditioning queue, an inactive zone from the zone queue can be popped and added to the mapping table in the place of the selected zone at operation 604.


Returning to the selected zone within the conditioning queue, the method may detect whether the selected zone is conditioned at 606. If the zone is not conditioned (or needs to be conditioned and has yet to be conditioned), the method can continue to operation 608 during which the zone can be conditioned. However, if the zone is already conditioned (or does not need to be conditioned), the method can continue to operation 610 during which the zone is popped from the conditioning queue onto the zone queue.


In this manner, all members of the zone queue are fully conditioned prior to being added back to the mapping table at operation 604.



FIG. 7A-7B depicts a flow chart of sample operations of another method of operating an SMR data storage system implemented with auxiliary zones. The method of FIG. 7A can begin at operation 700 at which a write pointer reset command is received for a first zone. Next, at operation 702, the first zone is set to the inactive state. Next, at operation 704, a second zone can be set to an active state. Finally, at operation 706, the second zone may be substituted for the first zone within a mapping table associated with the SMR data storage system.


In many embodiments, the method of FIG. 7A can be implemented by an SMR data storage device, such as depicted by the simplified flow chart of FIG. 7B. As one example, the SMR data storage device can include a processor 710 that can perform or coordinate one or more of the operations of the SMR data storage device. The processor 710 can be connected to a voice coil motor 712 (“VCM”) that controls the location of a read head and a write head along a rotatable disk 714 that is formed from a magnetic material. The processor 710 may also communicate with one or more host devices 708.


The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not meant to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings. In particular, any features described with respect to one embodiment may also be used in some embodiments, where compatible. Likewise, the features of the different embodiments may be exchanged, substituted, or omitted where compatible and appropriate.


Many embodiments of the foregoing disclosure may include or may be described in relation to various methods of operation, use, manufacture, and so on. Notably, the operations of methods presented herein are meant only to be exemplary and, accordingly, are not necessarily exhaustive. For example an alternate operation order, or fewer or additional steps may be required or desired for particular embodiments.

Claims
  • 1. A method for writing data to a data storage system, the method comprising: receiving a reset command for a sequential write pointer of a first zone of a plurality of active zones defined in the data storage system, the first zone associated with a first pointer;updating a status of a second zone not within the plurality of active zones to an active status; andupdating a status of the first zone to an inactive status.
  • 2. The method of claim 1, wherein the data storage system comprises a shingled magnetic recording system.
  • 3. The method of claim 1, further comprising conditioning the first zone after updating the status of the first zone to an inactive status.
  • 4. The method of claim 3, wherein conditioning the first zone comprises conditioning physical disk sectors.
  • 5. The method of claim 3, wherein conditioning the first zone comprises validating media defects associated with the first zone.
  • 6. The method of claim 3, wherein conditioning the first zone comprises managing relocation lists associated with the first zone.
  • 7. The method of claim 3, wherein conditioning the first zone is performed with the data storage system is in an idle state.
  • 8. The method of claim 1, further comprising: releasing all write-relocated sectors of the first zone;determining a plurality of write-relocated sectors are failing sectors; andpreventing future writes to the failing sectors.
  • 9. The method of claim 8, further comprising writing a known pattern to all write-relocated sectors that are not failing sectors.
  • 10. The method of claim 1, further comprising: associated the first pointer with an auxiliary zone queue, the auxiliary zone queue comprising a plurality of pointers not within an active zone map;removing from the auxiliary zone queue, a second pointer to a second zone, the second pointer from the plurality of pointers not within the active zone map; andupdating the zone map to replace the first pointer with the second pointer.
  • 11. A data storage system comprising: a data storage device; anda controller configured to: receive a reset command for a sequential write pointer of a first zone of a plurality of active zones defined in the data storage device, the first zone associated with a first pointer;update a status of a second zone not within the plurality of active zones to an active status; andupdate a status of the first zone to an inactive status.
  • 12. The data storage system of claim 11, wherein the data storage device comprises a shingled magnetic recording system.
  • 13. The data storage system of claim 11, wherein the controller is further configured to condition the first zone after updating the status of the first zone to an inactive status.
  • 14. The data storage system of claim 13, wherein the controller is further configured to condition the first zone by conditioning physical disk sectors.
  • 15. The data storage system of claim 11, wherein the controller is further configured to validate media defects associated with the first zone.
  • 16. The data storage system of claim 11, wherein the controller is further configured to manage relocation lists associated with the first zone.
  • 17. The data storage system of claim 11, wherein conditioning the first zone is performed with the data storage system is in an idle state.
  • 18. The data storage system of claim 11, wherein the controller is further configured to: release all write-relocated sectors of the first zone;determine a plurality of write-relocated sectors are failing sectors; andprevent future writes to the failing sectors.
  • 19. The data storage system of claim 18, further comprising writing a known pattern to all write-relocated sectors that are not failing sectors.
  • 20. A controller for managing a data storage device associated with a data storage system, the controller configured to: receive a reset command for a sequential write pointer of a first zone of a plurality of active zones defined in the data storage device, the first zone associated with a first pointer;update a status of a second zone not within the plurality of active zones to an active status; andupdate a status of the first zone to an inactive status.
US Referenced Citations (446)
Number Name Date Kind
6018789 Sokolov et al. Jan 2000 A
6065095 Sokolov et al. May 2000 A
6078452 Kittilson et al. Jun 2000 A
6081447 Lofgren et al. Jun 2000 A
6092149 Hicken et al. Jul 2000 A
6092150 Sokolov et al. Jul 2000 A
6094707 Sokolov et al. Jul 2000 A
6105104 Guttmann et al. Aug 2000 A
6111717 Cloke et al. Aug 2000 A
6145052 Howe et al. Nov 2000 A
6175893 D'Souza et al. Jan 2001 B1
6178056 Cloke et al. Jan 2001 B1
6191909 Cloke et al. Feb 2001 B1
6195218 Guttmann et al. Feb 2001 B1
6205494 Williams Mar 2001 B1
6208477 Cloke et al. Mar 2001 B1
6223303 Billings et al. Apr 2001 B1
6230233 Lofgren et al. May 2001 B1
6246346 Cloke et al. Jun 2001 B1
6249393 Billings et al. Jun 2001 B1
6256695 Williams Jul 2001 B1
6262857 Hull et al. Jul 2001 B1
6263459 Schibilla Jul 2001 B1
6272694 Weaver et al. Aug 2001 B1
6278568 Cloke et al. Aug 2001 B1
6279089 Schibilla et al. Aug 2001 B1
6289484 Rothberg et al. Sep 2001 B1
6292912 Cloke et al. Sep 2001 B1
6310740 Dunbar et al. Oct 2001 B1
6317850 Rothberg Nov 2001 B1
6327106 Rothberg Dec 2001 B1
6337778 Gagne Jan 2002 B1
6369969 Christiansen et al. Apr 2002 B1
6384999 Schibilla May 2002 B1
6388833 Golowka et al. May 2002 B1
6405342 Lee Jun 2002 B1
6408357 Hanmann et al. Jun 2002 B1
6408406 Parris Jun 2002 B1
6411452 Cloke Jun 2002 B1
6411458 Billings et al. Jun 2002 B1
6412083 Rothberg et al. Jun 2002 B1
6415349 Hull et al. Jul 2002 B1
6425128 Krapf et al. Jul 2002 B1
6441981 Cloke et al. Aug 2002 B1
6442328 Elliott et al. Aug 2002 B1
6445524 Nazarian et al. Sep 2002 B1
6449767 Krapf et al. Sep 2002 B1
6453115 Boyle Sep 2002 B1
6470420 Hospodor Oct 2002 B1
6480020 Jung et al. Nov 2002 B1
6480349 Kim et al. Nov 2002 B1
6480932 Vallis et al. Nov 2002 B1
6483986 Krapf Nov 2002 B1
6487032 Cloke et al. Nov 2002 B1
6490635 Holmes Dec 2002 B1
6493173 Kim et al. Dec 2002 B1
6499083 Hamlin Dec 2002 B1
6519104 Cloke et al. Feb 2003 B1
6525892 Dunbar et al. Feb 2003 B1
6545830 Briggs et al. Apr 2003 B1
6546489 Frank, Jr. et al. Apr 2003 B1
6550021 Dalphy et al. Apr 2003 B1
6552880 Dunbar et al. Apr 2003 B1
6553457 Wilkins et al. Apr 2003 B1
6578106 Price Jun 2003 B1
6580573 Hull et al. Jun 2003 B1
6594183 Lofgren et al. Jul 2003 B1
6600620 Krounbi et al. Jul 2003 B1
6601137 Castro et al. Jul 2003 B1
6603622 Christiansen et al. Aug 2003 B1
6603625 Hospodor et al. Aug 2003 B1
6604220 Lee Aug 2003 B1
6606682 Dang et al. Aug 2003 B1
6606714 Thelin Aug 2003 B1
6606717 Yu et al. Aug 2003 B1
6611393 Nguyen et al. Aug 2003 B1
6615312 Hamlin et al. Sep 2003 B1
6639748 Christiansen et al. Oct 2003 B1
6647481 Luu et al. Nov 2003 B1
6654193 Thelin Nov 2003 B1
6657810 Kupferman Dec 2003 B1
6661591 Rothberg Dec 2003 B1
6665772 Hamlin Dec 2003 B1
6687073 Kupferman Feb 2004 B1
6687078 Kim Feb 2004 B1
6687850 Rothberg Feb 2004 B1
6690523 Nguyen et al. Feb 2004 B1
6690882 Hanmann et al. Feb 2004 B1
6691198 Hamlin Feb 2004 B1
6691213 Luu et al. Feb 2004 B1
6691255 Rothberg et al. Feb 2004 B1
6693760 Krounbi et al. Feb 2004 B1
6694477 Lee Feb 2004 B1
6697914 Hospodor et al. Feb 2004 B1
6704153 Rothberg et al. Mar 2004 B1
6708251 Boyle et al. Mar 2004 B1
6710951 Cloke Mar 2004 B1
6711628 Thelin Mar 2004 B1
6711635 Wang Mar 2004 B1
6711660 Milne et al. Mar 2004 B1
6715044 Lofgren et al. Mar 2004 B2
6724982 Hamlin Apr 2004 B1
6725329 Ng et al. Apr 2004 B1
6735650 Rothberg May 2004 B1
6735693 Hamlin May 2004 B1
6744772 Eneboe et al. Jun 2004 B1
6745283 Dang Jun 2004 B1
6751402 Elliott et al. Jun 2004 B1
6757481 Nazarian et al. Jun 2004 B1
6772281 Hamlin Aug 2004 B2
6781826 Goldstone et al. Aug 2004 B1
6782449 Codilian et al. Aug 2004 B1
6791779 Singh et al. Sep 2004 B1
6792486 Hanan et al. Sep 2004 B1
6799274 Hamlin Sep 2004 B1
6811427 Garrett et al. Nov 2004 B2
6826003 Subrahmanyam Nov 2004 B1
6826614 Hanmann et al. Nov 2004 B1
6832041 Boyle Dec 2004 B1
6832929 Garrett et al. Dec 2004 B2
6845405 Thelin Jan 2005 B1
6845427 Atai-Azimi Jan 2005 B1
6850443 Lofgren et al. Feb 2005 B2
6851055 Boyle et al. Feb 2005 B1
6851063 Boyle et al. Feb 2005 B1
6853731 Boyle et al. Feb 2005 B1
6854022 Thelin Feb 2005 B1
6862660 Wilkins et al. Mar 2005 B1
6880043 Castro et al. Apr 2005 B1
6882486 Kupferman Apr 2005 B1
6884085 Goldstone Apr 2005 B1
6888831 Hospodor et al. May 2005 B1
6892217 Hanmann et al. May 2005 B1
6892249 Codilian et al. May 2005 B1
6892313 Codilian et al. May 2005 B1
6895455 Rothberg May 2005 B1
6895500 Rothberg May 2005 B1
6898730 Hanan May 2005 B1
6910099 Wang et al. Jun 2005 B1
6928470 Hamlin Aug 2005 B1
6931439 Hanmann et al. Aug 2005 B1
6934104 Kupferman Aug 2005 B1
6934713 Schwartz et al. Aug 2005 B2
6940873 Boyle et al. Sep 2005 B2
6943978 Lee Sep 2005 B1
6948165 Luu et al. Sep 2005 B1
6950267 Liu et al. Sep 2005 B1
6954733 Ellis et al. Oct 2005 B1
6961814 Thelin et al. Nov 2005 B1
6965489 Lee et al. Nov 2005 B1
6965563 Hospodor et al. Nov 2005 B1
6965966 Rothberg et al. Nov 2005 B1
6967799 Lee Nov 2005 B1
6968422 Codilian et al. Nov 2005 B1
6968450 Rothberg et al. Nov 2005 B1
6973495 Milne et al. Dec 2005 B1
6973570 Hamlin Dec 2005 B1
6976190 Goldstone Dec 2005 B1
6983316 Milne et al. Jan 2006 B1
6986007 Procyk et al. Jan 2006 B1
6986154 Price et al. Jan 2006 B1
6995933 Codilian et al. Feb 2006 B1
6996501 Rothberg Feb 2006 B1
6996669 Dang et al. Feb 2006 B1
7002926 Eneboe et al. Feb 2006 B1
7003674 Hamlin Feb 2006 B1
7006316 Sargenti, Jr. et al. Feb 2006 B1
7009820 Hogg Mar 2006 B1
7023639 Kupferman Apr 2006 B1
7024491 Hanmann et al. Apr 2006 B1
7024549 Luu et al. Apr 2006 B1
7024614 Thelin et al. Apr 2006 B1
7027716 Boyle et al. Apr 2006 B1
7028174 Atai-Azimi et al. Apr 2006 B1
7031902 Catiller Apr 2006 B1
7046465 Kupferman May 2006 B1
7046488 Hogg May 2006 B1
7050252 Vallis May 2006 B1
7054937 Milne et al. May 2006 B1
7055000 Severtson May 2006 B1
7055167 Masters May 2006 B1
7057836 Kupferman Jun 2006 B1
7062398 Rothberg Jun 2006 B1
7075746 Kupferman Jul 2006 B1
7076604 Thelin Jul 2006 B1
7082007 Liu et al. Jul 2006 B2
7082494 Thelin et al. Jul 2006 B1
7088538 Codilian et al. Aug 2006 B1
7088545 Singh et al. Aug 2006 B1
7092186 Hogg Aug 2006 B1
7095577 Codilian et al. Aug 2006 B1
7099095 Subrahmanyam et al. Aug 2006 B1
7106537 Bennett Sep 2006 B1
7106947 Boyle et al. Sep 2006 B2
7110202 Vasquez Sep 2006 B1
7111116 Boyle et al. Sep 2006 B1
7114029 Thelin Sep 2006 B1
7120737 Thelin Oct 2006 B1
7120806 Codilian et al. Oct 2006 B1
7126776 Warren, Jr. et al. Oct 2006 B1
7129763 Bennett et al. Oct 2006 B1
7133600 Boyle Nov 2006 B1
7136244 Rothberg Nov 2006 B1
7146094 Boyle Dec 2006 B1
7149046 Coker et al. Dec 2006 B1
7150036 Milne et al. Dec 2006 B1
7155616 Hamlin Dec 2006 B1
7171108 Masters et al. Jan 2007 B1
7171110 Wilshire Jan 2007 B1
7194576 Boyle Mar 2007 B1
7200698 Rothberg Apr 2007 B1
7205805 Bennett Apr 2007 B1
7206497 Boyle et al. Apr 2007 B1
7215496 Kupferman et al. May 2007 B1
7215771 Hamlin May 2007 B1
7237054 Cain et al. Jun 2007 B1
7240161 Boyle Jul 2007 B1
7249365 Price et al. Jul 2007 B1
7263709 Krapf Aug 2007 B1
7274639 Codilian et al. Sep 2007 B1
7274659 Hospodor Sep 2007 B2
7275116 Hanmann et al. Sep 2007 B1
7280302 Masiewicz Oct 2007 B1
7292774 Masters et al. Nov 2007 B1
7292775 Boyle et al. Nov 2007 B1
7296284 Price et al. Nov 2007 B1
7302501 Cain et al. Nov 2007 B1
7302579 Cain et al. Nov 2007 B1
7318088 Mann Jan 2008 B1
7319806 Willner et al. Jan 2008 B1
7325244 Boyle et al. Jan 2008 B2
7330323 Singh et al. Feb 2008 B1
7346790 Klein Mar 2008 B1
7366641 Masiewicz et al. Apr 2008 B1
7369340 Dang et al. May 2008 B1
7369343 Yeo et al. May 2008 B1
7372650 Kupferman May 2008 B1
7380147 Sun May 2008 B1
7392340 Dang et al. Jun 2008 B1
7404013 Masiewicz Jul 2008 B1
7406545 Rothberg et al. Jul 2008 B1
7415571 Hanan Aug 2008 B1
7436610 Thelin Oct 2008 B1
7437502 Coker Oct 2008 B1
7440214 Ell et al. Oct 2008 B1
7451344 Rothberg Nov 2008 B1
7471483 Ferris et al. Dec 2008 B1
7471486 Coker et al. Dec 2008 B1
7486060 Bennett Feb 2009 B1
7496493 Stevens Feb 2009 B1
7518819 Yu et al. Apr 2009 B1
7526184 Parkinen et al. Apr 2009 B1
7539924 Vasquez et al. May 2009 B1
7543117 Hanan Jun 2009 B1
7551383 Kupferman Jun 2009 B1
7562282 Rothberg Jul 2009 B1
7577973 Kapner, III et al. Aug 2009 B1
7596797 Kapner, III et al. Sep 2009 B1
7599139 Bombet et al. Oct 2009 B1
7619841 Kupferman Nov 2009 B1
7647544 Masiewicz Jan 2010 B1
7649704 Bombet et al. Jan 2010 B1
7653927 Kapner, III et al. Jan 2010 B1
7656603 Xing Feb 2010 B1
7656763 Jin et al. Feb 2010 B1
7657149 Boyle Feb 2010 B2
7672072 Boyle et al. Mar 2010 B1
7673075 Masiewicz Mar 2010 B1
7688540 Mei et al. Mar 2010 B1
7724461 McFadyen et al. May 2010 B1
7725584 Hanmann et al. May 2010 B1
7730295 Lee Jun 2010 B1
7760458 Trinh Jul 2010 B1
7768776 Szeremeta et al. Aug 2010 B1
7804657 Hogg et al. Sep 2010 B1
7813954 Price et al. Oct 2010 B1
7827320 Stevens Nov 2010 B1
7839588 Dang et al. Nov 2010 B1
7843660 Yeo Nov 2010 B1
7852596 Boyle et al. Dec 2010 B2
7859782 Lee Dec 2010 B1
7872822 Rothberg Jan 2011 B1
7898756 Wang Mar 2011 B1
7898762 Guo et al. Mar 2011 B1
7900037 Fallone et al. Mar 2011 B1
7907364 Boyle et al. Mar 2011 B2
7929234 Boyle et al. Apr 2011 B1
7933087 Tsai et al. Apr 2011 B1
7933090 Jung et al. Apr 2011 B1
7934030 Sargenti, Jr. et al. Apr 2011 B1
7940491 Szeremeta et al. May 2011 B2
7944639 Wang May 2011 B1
7945727 Rothberg et al. May 2011 B2
7949564 Hughes et al. May 2011 B1
7974029 Tsai et al. Jul 2011 B2
7974039 Xu et al. Jul 2011 B1
7982993 Tsai et al. Jul 2011 B1
7984200 Bombet et al. Jul 2011 B1
7990648 Wang Aug 2011 B1
7992179 Kapner, III et al. Aug 2011 B1
8004785 Tsai et al. Aug 2011 B1
8006027 Stevens et al. Aug 2011 B1
8014094 Jin Sep 2011 B1
8014977 Masiewicz et al. Sep 2011 B1
8019914 Vasquez et al. Sep 2011 B1
8040625 Boyle et al. Oct 2011 B1
8078943 Lee Dec 2011 B1
8079045 Krapf et al. Dec 2011 B2
8082433 Fallone et al. Dec 2011 B1
8085487 Jung et al. Dec 2011 B1
8089719 Dakroub Jan 2012 B1
8090902 Bennett et al. Jan 2012 B1
8090906 Blaha et al. Jan 2012 B1
8091112 Elliott et al. Jan 2012 B1
8094396 Zhang et al. Jan 2012 B1
8094401 Peng et al. Jan 2012 B1
8116020 Lee Feb 2012 B1
8116025 Chan et al. Feb 2012 B1
8134793 Vasquez et al. Mar 2012 B1
8134798 Thelin et al. Mar 2012 B1
8139301 Li et al. Mar 2012 B1
8139310 Hogg Mar 2012 B1
8144419 Liu Mar 2012 B1
8145452 Masiewicz et al. Mar 2012 B1
8149528 Suratman et al. Apr 2012 B1
8154812 Boyle et al. Apr 2012 B1
8159768 Miyamura Apr 2012 B1
8161328 Wilshire Apr 2012 B1
8164849 Szeremeta et al. Apr 2012 B1
8174780 Tsai et al. May 2012 B1
8190575 Ong et al. May 2012 B1
8194338 Zhang Jun 2012 B1
8194340 Boyle et al. Jun 2012 B1
8194341 Boyle Jun 2012 B1
8201066 Wang Jun 2012 B1
8271692 Dinh et al. Sep 2012 B1
8279550 Hogg Oct 2012 B1
8281218 Ybarra et al. Oct 2012 B1
8285923 Stevens Oct 2012 B2
8289656 Huber Oct 2012 B1
8305705 Roohr Nov 2012 B1
8307156 Codilian et al. Nov 2012 B1
8310775 Boguslawski et al. Nov 2012 B1
8315006 Chahwan et al. Nov 2012 B1
8316263 Gough et al. Nov 2012 B1
8320067 Tsai et al. Nov 2012 B1
8324974 Bennett Dec 2012 B1
8332695 Dalphy et al. Dec 2012 B2
8341337 Ong et al. Dec 2012 B1
8350628 Bennett Jan 2013 B1
8356184 Meyer et al. Jan 2013 B1
8370683 Ryan et al. Feb 2013 B1
8375225 Ybarra Feb 2013 B1
8375274 Bonke Feb 2013 B1
8380922 DeForest et al. Feb 2013 B1
8390948 Hogg Mar 2013 B2
8390952 Szeremeta Mar 2013 B1
8392689 Lott Mar 2013 B1
8407393 Yolar et al. Mar 2013 B1
8413010 Vasquez et al. Apr 2013 B1
8417566 Price et al. Apr 2013 B2
8421663 Bennett Apr 2013 B1
8422172 Dakroub et al. Apr 2013 B1
8427771 Tsai Apr 2013 B1
8429343 Tsai Apr 2013 B1
8433937 Wheelock et al. Apr 2013 B1
8433977 Vasquez et al. Apr 2013 B1
8458526 Dalphy et al. Jun 2013 B2
8462466 Huber Jun 2013 B2
8467151 Huber Jun 2013 B1
8489841 Strecke et al. Jul 2013 B1
8493679 Boguslawski et al. Jul 2013 B1
8498074 Mobley et al. Jul 2013 B1
8499198 Messenger et al. Jul 2013 B1
8512049 Huber et al. Aug 2013 B1
8514506 Li et al. Aug 2013 B1
8531791 Reid et al. Sep 2013 B1
8554741 Malina Oct 2013 B1
8560759 Boyle et al. Oct 2013 B1
8565053 Chung Oct 2013 B1
8576511 Coker et al. Nov 2013 B1
8578100 Huynh et al. Nov 2013 B1
8578242 Burton et al. Nov 2013 B1
8589773 Wang et al. Nov 2013 B1
8593753 Anderson Nov 2013 B1
8595432 Vinson et al. Nov 2013 B1
8599510 Fallone Dec 2013 B1
8601248 Thorsted Dec 2013 B2
8611032 Champion et al. Dec 2013 B2
8612650 Carrie et al. Dec 2013 B1
8612706 Madril et al. Dec 2013 B1
8612798 Tsai Dec 2013 B1
8619383 Jung et al. Dec 2013 B1
8621115 Bombet et al. Dec 2013 B1
8621133 Boyle Dec 2013 B1
8626463 Stevens et al. Jan 2014 B2
8630052 Jung et al. Jan 2014 B1
8630056 Ong Jan 2014 B1
8631188 Heath et al. Jan 2014 B1
8634158 Chahwan et al. Jan 2014 B1
8635412 Wilshire Jan 2014 B1
8640007 Schulze Jan 2014 B1
8654619 Cheng Feb 2014 B1
8661193 Cobos et al. Feb 2014 B1
8667248 Neppalli Mar 2014 B1
8670205 Malina et al. Mar 2014 B1
8683295 Syu et al. Mar 2014 B1
8683457 Hughes et al. Mar 2014 B1
8687306 Coker et al. Apr 2014 B1
8693133 Lee et al. Apr 2014 B1
8694841 Chung et al. Apr 2014 B1
8699159 Malina Apr 2014 B1
8699171 Boyle Apr 2014 B1
8699172 Gunderson et al. Apr 2014 B1
8699175 Olds et al. Apr 2014 B1
8699185 Teh et al. Apr 2014 B1
8700850 Lalouette Apr 2014 B1
8743502 Bonke et al. Jun 2014 B1
8749910 Dang et al. Jun 2014 B1
8751699 Tsai et al. Jun 2014 B1
8755141 Dang Jun 2014 B1
8755143 Wilson et al. Jun 2014 B2
8756361 Carlson et al. Jun 2014 B1
8756382 Carlson et al. Jun 2014 B1
8769593 Schwartz et al. Jul 2014 B1
8773802 Anderson et al. Jul 2014 B1
8780478 Huynh et al. Jul 2014 B1
8782334 Boyle et al. Jul 2014 B1
8793532 Tsai et al. Jul 2014 B1
8797669 Burton Aug 2014 B1
8799977 Kapner, III et al. Aug 2014 B1
8819375 Pruett et al. Aug 2014 B1
8825976 Jones Sep 2014 B1
8825977 Syu et al. Sep 2014 B1
20070174582 Feldman Jul 2007 A1
20090113702 Hogg May 2009 A1
20100205623 Molaro et al. Aug 2010 A1
20100306551 Meyer et al. Dec 2010 A1
20110197035 Na et al. Aug 2011 A1
20110226729 Hogg Sep 2011 A1
20120159042 Lott et al. Jun 2012 A1
20120275050 Wilson et al. Nov 2012 A1
20120281963 Krapf et al. Nov 2012 A1
20120324980 Nguyen et al. Dec 2012 A1
20130242425 Zayas et al. Sep 2013 A1
20140201424 Chen et al. Jul 2014 A1
Non-Patent Literature Citations (1)
Entry
James N. Malina, et al., U.S. Appl. No. 13/662,353, filed Oct. 26, 2012, 42 pages.