Methods for restoring blood flow within blocked vasculature

Information

  • Patent Grant
  • 10806473
  • Patent Number
    10,806,473
  • Date Filed
    Sunday, April 1, 2018
    6 years ago
  • Date Issued
    Tuesday, October 20, 2020
    4 years ago
Abstract
The devices and methods described herein relate to clearing of blockages within body lumens, such as the vasculature, by addressing the frictional resistance on the obstruction prior to attempting to translate and/or mobilize the obstruction within the body lumen.
Description
FIELD OF THE INVENTION

The devices and methods described herein relate to clearing of blockages within body lumens, such as the vasculature, by addressing the frictional resistance on the obstruction prior to attempting to translate the obstruction within the body lumen. In one variation, the devices and methods described below may treat conditions of ischemic stroke by remove blockages within arteries leading to the brain. Accordingly, variations of such methods and devices must navigate tortuous anatomy and vasculature without causing unacceptable damage to the anatomy. Also, the devices and methods first secure and surround the obstruction (such as a clot) prior to significantly moving the clot within the anatomy.


BACKGROUND OF THE INVENTION

Ischemic stroke occurs when a blockage in an artery leading to the brain causes a lack of supply of oxygen and nutrients to the brain tissue. The brain relies on its arteries to supply oxygenated blood from the heart and lungs. The blood returning from the brain carries carbon dioxide and cellular waste. Blockages that interfere with this supply eventually cause the brain tissue to stop functioning. If the disruption in supply occurs for a sufficient amount of time, the continued lack of nutrients and oxygen causes irreversible cell death (infarction). Accordingly, immediate medical treatment of an ischemic stroke is critical for the recovery of a patient.


The infarction may not develop or may be greatly limited, given a rapid clearing of the blockage to reestablish the flow of blood. However, if left untreated, ischemic stroke may lead to the permanent loss of brain tissue, and can be marked by full or partial paralysis, loss of motor control, memory loss, or death.


Several different diseases may lead to an ischemic stroke. Typically, deposition of cholesterol (artheroselerosis), formation of blood clots, or other objects in the vessels may disrupt blood flow and lead to ischemic stroke. Furthermore, the substances that cause the blockages may break free from larger vessels outside the brain and become lodged within narrower arteries closer to the brain embolism).


Ischemic stroke may be divided into thrombotic strokes and embolic strokes. A thrombotic stroke occurs when the building and rupturing of atheromatous plaque within the brain blocks cerebral arteries. Clinically referred to as cerebral thrombosis or cerebral infarction, this condition represents approximately 10% of all strokes. An embolic stroke occurs when a clot or emboli forms somewhere other than in the brain, such as in the cervical carotid artery or in the heart, and travels in the bloodstream until the clot becomes lodged and can not travel any further. When such a condition occurs in the arteries supplying the brain, the condition results in almost immediate physical and neurological effects.


While these are the most common causes of ischemic stroke, there are many other possible causes. Examples include use of drugs, trauma to the blood vessels of the neck, or blood clotting disorders.


Apart from surgical techniques, medical practitioners could address such blockages with the use of Tissue Plasminogen Activator (t-PA). However, t-PA must be used within the first three hours of the onset of stroke symptoms and may take hours or even days to successfully restore flow. In addition, t-PA carries an increased risk of intracerebral hemorrhage. It is currently believed that the use of t-PA results in a 30% success rate as well as a 6% major complication rate. In view of these limitations, the majority of stroke patients in the U.S. do not receive t-PA treatment.


In addition, there are a number of surgical techniques used to remove blockages. For example, an embolectomy, involves incising a blood vessel and introducing a balloon tipped device (such as the Fogarty catheter) to the location of the occlusion. The balloon is then inflated at a point beyond the clot and used to translate the obstructing material back to the point of incision. The obstructing material is then removed by the surgeon. Concentric Medical, Inc. of Mountain View, Calif. supplies devices for an interventional approach to the removal of obstructions. Concentric supplies a Merci®. Retriever system as a device based approach for the removal of clots. This system engages and ensnares a clot. Once captured, a balloon catheter inflates to temporarily halt forward blood flow while the clot is withdrawn. The clot, is then pulled into the catheter and out of the body.


Typically, the existing means to remove obstructions do not address the frictional forces that act on the obstruction during removal of the obstruction. For example, some conventional devices engage the clot from the distal (or downstream) side. As the device is pulled proximally (or upstream), the device attempts to either engulf or ensnare the clot. However, due to the consistency of the clot and because the clot is typically well lodged, within the vessel, the act of pulling, the clot in a proximal direction cause the clot to also compress in an axial direction. This axial compression (when viewed along the axis of the vessel) causes a contemporaneous radial expansion of the clot (when viewed relative to the vessel). As a result, the increase in diameter of the clot causes an increase in the frictional forces applied against the arterial wall. Thus, by not addressing the frictional forces acting on the obstruction, the process of removing the clot may actually increase the static force that would otherwise be required to remove or translate the clot within the vessel. Unfortunately, increasing the amount of force applied upon one side of the clot also increases the probability of complications during the procedure (e.g., fragmenting the clot, failing to remove the clot, failure to fully engulf/ensnare the clot, and/or device failure) and can cause potential damage to the surrounding vessel.


While there are other drugs and suppliers of devices for removal of blockages, there remains a need for methods and devices that improve the success rate and/or reduce the complication rate in restoring flow and thereby limit the damage from an ischemic stroke.


SUMMARY OF THE INVENTION

It should be noted that the present methods and devices may be used to treat blockages leading to ischemic stroke as well as to treat blockages (caused by “obstructions”) within other parts of the body (i.e., unless specifically noted, the devices and methods are not simply limited to the cerebral vasculature). The term obstructions may include blood clot, plaque, cholesterol, thrombus, naturally occurring, foreign bodies (i.e., a part of the body that is lodged within the lumen), a non-naturally occurring foreign body (i.e., a portion of a medical device or other non-naturally occurring substance lodged within the lumen.)


In one variation of the devices described herein, the device allows for surrounding the obstruction prior to attempting to translate or move the obstruction within the vessel. It should be noted that although minimal axial movement of the obstruction may take place, the device surrounds the obstruction before such movement causes significant distortion to the geometry of the obstruction resulting in an increase in the static force required to remove the obstruction from the vessel.


In another variation of the device, the device may include a low friction mode (such as a set of parallel wires, or wires extending axially along the lumen or vessel) that converts to an increased friction mode (such as a compressed set of wires acting on the obstruction or a twisted set of wires acting on the obstruction). The increase in friction is an increase in the friction between the obstruction and the device (as opposed to the vessel wall. In some cases, the low friction modes is a low surface area mode and the high friction mode is a high surface area mode. When configured in the low friction mode, the device is better suited to engage the obstruction without the undesirable effect of prematurely mobilizing the obstruction or compacting the obstruction (e.g., when wires are slid across the obstruction in a transverse motion). Upon engaging the obstruction, the device will conform to a high friction mode with respect to the obstruction (in some cases the device will have an increased surface area mode). This high friction mode permits the device to better grip the obstruction for ultimate removal of the obstruction.


The operation of the devices and method described herein secure the obstruction, overcome the elastic forces of the obstruction, then remove the obstruction from the anatomy without losing or fractionating the obstruction. In one variation of the invention, this is accomplished by the obstruction removal device interacting with the obstruction in the following manner: (1) the traversing filaments traverse the obstruction by passing either through the obstruction or between the obstruction and the vascular wall; (2) the traversing portion is pulled proximally to engage the surrounding portion of the device around the obstruction, the surrounding portion engaging the obstruction without causing significant mobilization of the obstruction; (3) the obstruction removal device is pulled further proximally and the surrounding portion now mobilizes the obstruction.


As shown below, variations of the devices have a configuration that provides a path for a portion of the device to surround the obstruction. The paths are made using traversing filaments that allow for low frictional translation of a surrounding portion of the device over the obstruction without causing axial translation of the obstruction. This mechanism is described in more detail below.


Once in the proper position, a portion of the device (e.g., a surrounding portion) increases the frictional contact with the obstruction to disperse the pulling force more evenly across the obstruction. The increase points of contact allow for removal of the obstruction through tortuous anatomy while ensuring that the obstruction will not escape the encapsulation.


The surrounding portion may be fabricated in a variety of ways. For example, the surrounding portion may comprise one or more filaments. The surrounding portion may comprise a filter/bag, a coil, helical filament, a mesh structure, corrugated sheet, braided filaments, single wound or crossing filaments, tubes, membranes, films, solid wires, filled tubes, castings. Furthermore, the surrounding portion may have one or more ports, openings, slits, and/or holes. The surrounding portion may be made by photochemical etching, mechanical drilling, weaving, braiding, laser cutting, or other means.


It should be noted that reference to surrounding or securing the obstruction includes partially and/or fully surrounding, engulfing, encapsulating, and/or securing the obstruction. In any case, the surrounding portion engages the obstruction prior to translation of the obstruction within the lumen. As noted herein, a porn on of the device may convert into a surrounding section (e.g., when traversing wires reorient to increase the friction acting on the obstruction). Accordingly, the traversing section converts into a surrounding section.


The various devices described herein rely on a reduced profile for delivery and an expanded profile for ultimate removal of the clot. The devices, or components of the devices, may expand when released from a constraint, which allows the device, or component, to assume a predetermined shape. Alternatively, or in combination, the devices may be actuated to assume the expanded profiles. For example, the devices may be shape memory alloys that assume a profile when reaching a predetermined temperature (e.g., body temperature, or another temperature via delivery of energy to the shape memory alloy to trigger a phase change). Actuation may also include use any expandable member (such as a coiled spring, balloon, wedge, etc.) that mechanically or fluidly forces expansion of the device. These modes are well known by those skilled in the art and are intended to be within the scope of the disclosure. When combined with the inventive concepts disclosed herein, such combinations fall within the inventive scope of this disclosure.


As noted above, the filaments of the invention may be used to translate the device or may be used to form the surrounding; section. Accordingly, the filaments may be single wound or crossing filaments, tubes, membranes, films, solid wires, filled tubes, castings or any similar structure. Moreover, the cross section of such filaments may vary as required (e.g., circular, oval, rectangular, square, or any such shape.) The filaments may be constructed from metals, polymers, composites, hydrogels, membranes, shape memory metals, shape memory polymers, or shape memory alloys, superelastic metals, superelastic polymers, or superelastic alloys, or combinations thereof. The filaments may have uniform diameters or varying diameters. The characteristics of the filament may be selected to better suit their required function. For example, they can be stiff, floppy, or even have different zones of flexibility. Moreover, the filaments may be braided or woven members, or the construction may provide that the filaments cross at one or many points in an overlapping, interwoven, criss-crossing or similar manner.


It should be noted that in some variations of the invention, all or some of the filaments (used in the surrounding portion of the device) can be designed to increase their ability to adhere to the obstruction. For example, the filaments of the surrounding portion may be coupled to an energy source (e.g., RF, ultrasonic, or thermal energy) to “weld” to the obstruction. Application of energy to the filaments may allow the surrounding portion to deform into the obstruction and “embed” within the obstruction. Alternatively, the filaments may impart a positive charge to the obstruction to partially liquefy the obstruction sufficiently to allow for easier removal. Alternatively, a negative charge could be applied to further build thombus and nest the device for better pulling force. The filaments may be made stickier by use of a hydrophilic substance(s), or by chemicals that would generate a chemical bond to the surface of the obstruction. Alternatively, the filaments may reduce the temperature of the obstruction to congeal or adhere to the obstruction. The present brief description of the drawings





BRIEF DESCRIPTION OF THE DRAWINGS

Each of the following figures diagrammatically illustrates aspects of the invention. Variation of the invention from the aspects shown in the figures is contemplated.



FIG. 1 illustrates a system for removing obstructions from body lumens.



FIG. 2A illustrates an example of an obstruction lodged within a body lumen.



FIGS. 2B to 2F illustrate advancement of a catheter beyond an obstruction and placement of traversing wires around the obstruction.



FIG. 3A illustrates an obstruction removal device once converted to a high friction mode.



FIGS. 3B to 3E, show variations of a device having filaments that do not cross one another over the length of the obstruction when converted to a high friction mode.



FIG. 3F to 3G illustrate positioning a surrounding portion and translating the surrounding portion over the obstruction.



FIGS. 3H to 3I illustrate an obstruction removal device deployed distally to an obstruction and then translated proximally over the obstruction.



FIGS. 4A to 4E illustrate various additional configurations of devices able to assume a high friction mode covering over an obstruction.



FIG. 4F illustrates a variation of a device using an end of a catheter for converting the device to a high friction mode.



FIG. 5A to 5B illustrate another variation of a portion of an obstruction removal device configured to convert from a low friction mode to a high friction mode.



FIGS. 6A to 6G illustrate various configurations of connectors for use with obstruction removal devices.



FIGS. 6H to 6I illustrate a variation of a leading wire and connector having an unconstrained shape that is selected to be larger or simply different than the intended vessel to provide increased, stability upon deployment.



FIG. 7A to 7D illustrates variations in which the connector is offset.



FIGS. 8A to 8B illustrate hooks, fibers, and/or barbs for increasing the ability of the device to remove obstructions.



FIGS. 9A to 9C illustrate additional variations of obstruction removal devices.



FIGS. 10A to 10H also illustrate additional variations of obstruction removal devices, focusing mainly on variations of the surrounding portion.



FIGS. 11A to 11C illustrate a variation where use of mechanical expansion distends the vessel wall and loosens the obstruction from the vessel.





DETAILED DESCRIPTION

It is understood that the examples below discuss uses in the cerebral vasculature (namely the arteries). However, unless specifically noted, variations of the device and method are not limited to use in the cerebral vasculature. Instead, the invention may have applicability in various parts of the body. Moreover, the invention may be used in various procedures where the benefits of the method and/or device are desired.



FIG. 1 illustrates a system 10 for removing obstructions from body lumens as described herein. In the illustrated example, this variation of the system 10 is suited for removal of an obstruction in the cerebral vasculature. Typically, the system 10 includes a catheter 12 microcatheter, sheath, guide-catheter, or simple tube/sheath configuration for delivery of the obstruction removal device to the target anatomy. The catheter should be sufficient to deliver the device as discussed below. The catheter 12 may optionally include an inflatable balloon 18 for temporarily blocking blood flow or for expanding the vessel to release the obstruction


It is noted that any number of catheters or microcatheters maybe used to locate the catheter/microcatheter 12 carrying the obstruction removal device (not illustrated) at the desired target site. Such techniques are well understood standard interventional catheterization techniques. Furthermore, the catheter 12 may be coupled to auxiliary or support components 14, 16 (e.g., energy controllers, power supplies, actuators for movement of the device(s), vacuum sources, inflation sources, sources for therapeutic substances, pressure monitoring, flow monitoring, various bio-chemical sensors, bio-chemical substance, etc.) Again, such components are within the scope of the system 10 described herein.


In addition, devices of the present invention may be packaged in kits including the components discussed above along with guiding catheters, various devices that assist in the stabilization or removal of the obstruction (e.g., proximal-assist devices that holds the proximal end of the obstruction in place preventing it from straying during removal or assisting in the removal of the obstruction), balloon-tipped guide catheters, dilators, etc.



FIGS. 2A to 2F show one example of the deployment of the basic structure of connectors and traversing filaments about an obstruction in a vessel. The figures are intended to demonstrate the initial placement of the connectors and filaments immediately prior to removal of the obstruction either using a filter or by torquing, rotating and/or twisting the near connector relative to the far connector. This action converts the device from a low friction device to a high friction device (where the low/high friction is the friction between the device and the obstruction). This action may also be referred to as a low surface area mode converting to a high surface area mode (in cases where the device extends beyond the obstruction and relative motion between ends of the device causes the device to shrink in axial length as it is twisted.) In addition, the number of connectors used, the shape of the connectors, as well as the number of filaments is intended to be for illustrative purposes only. It is contemplated that any variation of connector and/or filament may be deployed in a similar manner.



FIG. 2A illustrates an example of an obstruction 2 lodged within a body lumen or vessel 6. In the case where the vessel is a cerebral artery, the obstruction may result in an ischemic stroke. Using standard interventional catheterization techniques, a microcatheter 102 and guidewire 104 traverse the obstruction. The microcatheter 102 may be advanced through the obstruction 2. Alternatively, the microcatheter 102 may “push” aside the obstruction and is advanced around the obstruction. In any case, the microcatheter 102 travels from the near end 3 (or proximal side) of the obstruction 2 to the far end 4 (or distal side) of the obstruction 2. It is noted that the catheter 102 may be centered or off-center with respect to the obstruction 2. Furthermore, the device may or may not be used with a guidewire to navigate to the site and traverse the obstruction.



FIG. 2B shows another variation where a microcatheter 102 traverses the obstruction 2 between the wall of the vessel 6 and the obstruction 2. As shown, the open end of the microcatheter 102 is distal to the obstruction 2 and is now positioned to deploy devices for removal of the obstruction 2. This variation shows the device after removal of any guidewire. However, some variations of the device may be placed without an accompanying guidewire. Moreover, the structures discussed herein may be directly incorporated into a guidewire assembly where deployment may require a sheath or other covering to release the components from constraint.



FIG. 2C illustrates deployment of a far connector 110 from within the microcatheter 102 distal to the obstruction 2. The far connector 110 can be self-expanding such that it assumes, or moves towards, the expanded profile as shown) upon deployment from the constraint of the microcatheter 102.


The connectors 108, 110 and/or traversing filaments 112 are designed to expand to the wall of the vessel when released from the catheter. This action allows the device 100 to surround the obstruction 2 prior to attempting to dislodge it. The components of the obstruction removal device 100 (e.g., the leading wires 106, the connectors 108110, the traversing filaments 112, and/or the surrounding portion 114, may be fabricated from any biocompatible material that permits the function as described herein. In sonic variations, the material may comprise a shape memory or super-elastic alloy such as nitinol.



FIG. 2D shows withdrawal of the microcatheter 102 to the proximal side 3 of the obstruction 2. The spacing between the far connector 110 and the obstruction 2 may vary. In some cases, the far connector 110 will move closer towards the obstruction 2 during spacing of the traversing; filaments 112 as discussed below. The far connector 110 remains in place either using the inherent friction of the connector against the vessels and/or obstruction 2. Alternatively, or in combination, a wire-type member (not shown) may provide an opposing, force against the connector 110 as the catheter 102 moves proximal to the obstruction 2.


As discussed herein, the obstruction removal devices include a plurality of filaments affixed between connectors. Since the far connector 110 is deployed at the distal side 4 of the obstruction 2, withdrawal of the microcatheter 102 results in the plurality of filaments 112 spanning across the obstruction 2 as shown.



FIG. 2E illustrates deployment of a near connector 108. Although the illustrated variation depicts the near connector 108 as being deployed from within the microcatheter 102, alternative variations of the device include a near connector 108 that is located about the exterior of the microcatheter 102 or that is located about another delivery device (not shown) that is external to the microcatheter 102. In this case, the near connector 108 is similar in profile and design to the far connector 110. Accordingly, the near connector 108 self expands within the vessel 6 upon deployment from the microcatheter 102. In some variations of the device, the near and far connectors 108, 110 may have different shapes or profiles. In any case, the profile of the connectors should be sufficient to expand the traversing wires sufficiently within the vessel to prepare for ensnaring or encapsulation of the obstruction 2.



FIG. 2E also illustrates a connecting or leading wire/member 106 that couples the microcatheter 102 to the near connector 108. The term leading wire, leading member, lead wire, etc. is intended to encompass a wire, tube, or any other structure that organizes and sometimes houses the smaller traversing filaments and/or near connectors described herein. Naturally, variations of the device include a leading wire 106 that is affixed to the far connector or the traversing wires. Moreover, the illustration depicts a single leading wire 106. However, as noted below, the device can include a number of traversing wire 106 affixed to the near and/or far connectors 108, 110.



FIG. 2F illustrates spacing the traversing filaments/wires 112 from simply spanning the obstruction 2 (as depicted in FIG. 2E). This action causes the filaments 112 to span the obstruction 2 while reorienting towards an exterior of the obstruction 2. As noted herein, the traversing filaments 112 may remain partially or fully within the obstruction 2. However, given that the filaments are spaced about the connectors, the filaments shall separate radially over the obstruction allowing for the subsequent ensnaring and removal.


Spacing the filaments may occur via a number of modes such as tensioning, expanding, spreading separating and/or withdrawing the filaments. In certain variations of the device, the filaments are moveable relative to a near connector and/or a far connector. Such a feature allows application of tension to the filaments while keeping the connector in place. This causes the filament to enter a state of tension for spacing about the wall of the vessel. Alternatively, the filaments may be fixed relative to the connectors. Upon deployment, the filaments either self expand or are actuated to space about the vessel wall for eventual translation of the device over the obstruction. Regardless of the mode used, the filaments are intended to be positioned at or near a surface of the obstruction so that they can reduce the effects of any friction between the obstruction and the lumen or vessel wall.



FIGS. 3A to 3I provide illustrations of device variations that ensnare the obstruction 2 after the device is in the configuration demonstrated by FIG. 2F above. FIGS. 3A, 3C, and 3E represent variations of the device 100 after transforming from a low friction mode to a higher friction mode for removal of the obstruction. FIGS. 3F and 3G illustrate a variation Where a surrounding portion or filter covers the obstruction for its ultimate removal from the body.



FIG. 3A illustrates rotation of the near connector 108 relative to the far connector 110 to ensnare the obstruction 2 within the traversing wires 112. As noted herein, either connector may rotate while another connector remains stationary. Alternatively, each connector may rotate with the rate of rotation for one connector being, slower than another. In yet another variation, each connector may be rotated in opposite directions.


Although the variation shows only four traversing, wires 112 any number of wires may be used so long as the rotation converts the traversing wires 112 into a relatively increased friction mode as compared to the low friction mode (when the traversing wires are in a parallel configuration). The low friction mode is represented by FIG. 2F. FIG. 3A illustrates the obstruction removal device 100 after rotation of the sets of traversing filaments and connectors. The result is that the obstruction 2 becomes ensnared (and/or encapsulated) and may be removed from the body. It should be noted that the same effect may be achieved by only rotating one connector or set of wires while keeping the other connector or set of wires stationary.


The rotation of the connector 108 can be performed in any number of ways as known to those skilled in the art. However, as shown in FIG. 3A, the lead wire 106 may comprise additional secondary wires attached to the connector 108. So rotation of the connector 108 may occur via rotation of the lead wire and/or microcatheter. In any case, once the device assumes the increased friction mode condition, the obstruction 2 can be moved laterally within the vessel for removal.



FIGS. 3A to 3E illustrate various configurations where relative rotation of the connectors 108, 110 convert the device into a high friction mode. In FIG. 3A, the traversing filaments 112 twist and cross one another over the length of the obstruction 2. However, as shown in FIGS. 3B to 3E, variations of the device 100 can have filaments 112 that do not cross one another over the length of the obstruction 2. Although these variations are depicted to have single connectors on each end and four filaments, the design of the devices may vary as required by the particular application. In addition, the variations shown in FIGS. 3B to 3E are shown without any catheter or leading wire for convenience to better illustrate the conversion of the device from a low friction mode to a high friction mode. Naturally, rotation of the catheter and/or lead wire will cause relative rotation between connectors.


In FIG. 3B, the device 100 is in a similar position as that shown in FIG. 2E. However, FIG. 3B shows a variation of a device 100 that is selected to have a length greater than the targeted obstruction 2. Upon rotation, the traversing filaments 112 remain uncrossed over the length of the obstruction 2. In some cases, the filaments 112 may experience some twisting and will not remain parallel. However, the filaments 112 twist at twist points 116 that are proximal to and distal to the obstruction 2. The relative motion of the connectors 108, 110 as well as the twist point 116 causes the filaments 112 to exert a compressive force on the obstruction 2 without crossing one another over the length of the construction. Accordingly, while the surface area in contact between the filaments 112 and obstruction 2 remains relatively the same, the compressive action of the filaments 112 onto the obstruction converts the device 100 to a high friction mode on the obstruction.



FIG. 3D illustrates another variation of a device in a similar position as that shown in FIG. 2E. However, FIG. 3D shows a variation of a device 100 that extends proximally from the near end of the obstruction 2. The relative motion between connectors 108. 110 causes a twist point 116 that is proximal to the obstruction 2. As with the previous variation, the twist point 116 forces the filaments 112 against the obstruction 2 without crossing one another over the length of the obstruction 2. As a result, the device 100 is now in high friction mode. In some cases, the filaments 112 may experience some twisting and will not remain parallel.


The variation of FIGS. 3D and 3E also show the device 100 as including a cap or cover 118 about the distal connector 110. The cap or cover 118 may be a bag, mesh, a continuation of the filaments 112, and/or a surrounding, portion 114 as discussed herein. The cap or cover 118 reduces the likelihood that the obstruction is driven through the far connector 110 during conversion of the device 100 from a low friction mode to a high friction mode.



FIG. 3F illustrates another variation of a device where the far connector 110 includes a filter or surrounding; portion 114. In variations of the device, the filter 114 is sufficiently permeable to allow blood flow therethrough. As noted above, the surrounding portion 114 may be any structure that covers, encapsulates, engulfs, and/or ensnares the obstruction either fully or partially. Accordingly, although the surrounding portion 114 is illustrated as a filter/bag, the surrounding portion 114 may comprise a coil, helical wire, a plurality of filaments, mesh structure, corrugated sheet, braided filaments, single wound or crossing filaments, tubes, filled tubes, castings, solid wires, membranes, films, capturing sections, (and may include ports, openings, slits, and/or holes made from photochemical etching, mechanical drilling) or any other structure that may translate or remove the obstruction 2 once the frictional component is addressed.


In this variation, the obstruction removal device 100 includes leading filaments 106 connected to a near connector 108. In this example, the lead filament 106 may be a single wire or filament. Alternatively, the lead filament may comprise a single wire with a plurality of wires connecting the single wire to the ring.


As with the above examples, the illustrated variation shows the connector 108 as comprising a loop. However, as described herein, the connectors may also comprise various alternate shapes (e.g., a circle, an arcuate shape, a partial circular shape, a loop, an oval, a square, a rectangle, a polygon, an overlapping loop, a pair of semi-circles, a flower shape, and a FIG. 8, other shapes, etc.) The near connector 108 is joined to a far connector 110 via a plurality of filaments 112. It is noted that the inventive device shall include at least one, but preferably two or more traversing filaments 112. It is further noted that the obstruction removal device 100 may be part of or integrated with the microcatheter 102.



FIG. 3G illustrates withdrawal of the microcatheter 102 and the proximal translation of device 100 to place the surrounding portion 114 over the obstruction 2. As the obstruction removal device 100 translates proximally, the traversing filaments 112 locate towards the exterior region of the obstruction 2. As discussed above, the connectors 108, 110 and traversing filaments 112 are designed to expand to (or near to) the perimeter of the wall of the vessel 2 and will usually locate to an exterior of the obstruction 2. However, variations of the device and method include situations where the filaments locate substantially, but not fully, towards the outer region of the obstruction. In any case, the location of the filaments 112 will sufficiently overcome the frictional forces discussed herein. In the illustrated variation, the traversing filaments 112 substantially span the length of the obstruction 2 by extending across the (proximal) 3 and (distal) 4 sides. These traversing filaments 112 provide paths for movement of the device 100 around the obstruction 2. These paths allow for the surrounding portion 114 to engulf the entire obstruction 2 so that it may be removed from the vasculature and body.



FIG. 3H depicts an obstruction removal device 100 similar to that shown in FIG. 3F. However, in this variation, the near and far connectors 108, 110 are both deployed distally to the obstruction 2 and then translated back over the obstruction 2. As shown, this deployment allows the traversing filaments 112 and the surrounding portion 114 to separate prior to contacting the occlusion 2. Next, the entire device 100 is pulled over the occlusion 2 as described above. The variation of the device shown in FIGS. 3F and 3H addresses the frictional forces that act between the obstruction and the vessel wall. Conventional devices that provide a bag attached to a wire (such as a vascular filter or distal protection device), are typically unable to remove the obstruction because they cannot overcome these frictional forces that lodge the clot against the vessel wall. Typically, such conventional devices are only designed to “catch” free floating clots. The traversing filaments described herein are configured to be positioned surrounding the obstruction. Their low friction with respect to the clot and the vessel allows for positioning of the filaments without disrupting or further compacting the clot against the vessel wall. Once the filaments surround or are spaced about the obstruction, they reduce the friction between the clot and vessel wall by reducing points of contact. Once these filaments surrounded the clot, they permit translation of the device to permit an encapsulating section 114 to surround the obstruction for removal.



FIG. 3I illustrates the device 100 of FIG. 3H when translated over the obstruction 2. Eventually, the device 100 is pulled so that the surrounding portion or blood permeable filter 114 covers the obstruction 2 (as shown in FIGS. 3F and 3G.



FIG. 4A illustrates another variation of a portion of an obstruction removal device 120 that is able to convert from a low friction mode covering to a higher friction mode covering. As noted above, this variation allows the medical practitioner to engage an obstruction with sparse coverage or low friction mode to overcome frictional forces. Upon properly engaging the obstruction, the device configuration allows conversion to a high friction mode for removal of the device and obstruction.


As shown, this variation of the obstruction removal device 120 includes two sets of traversing filaments 122, 124 and accompanying connectors 108, 110, and 126, 128. The first set 122 comprises a first near connector 108 and first far connector 110 with the accompanying traversing filaments. The second set 124 comprises the second near connector 126 and second far connector 128 with the accompanying traversing filaments 124. The second set 124 is coaxially located over the first set 122. The materials of the components may be as described above. In any case, the components are designed to expand to the perimeter of the vessel wall upon release from the catheter.



FIG. 4B shows the conversion of the obstruction removal device converting from a low friction mode (from FIG. 4A) to the high friction mode. For example, the first near connector 108 may be rotated relative to the second near connector 126 (where the second near connector may remain still or it may be rotated in an opposite direction relative to the first near connector as shown by the arrows). As a result, the traversing filaments 122, 124 deform in opposite directions to form a braid-type pattern increasing the friction mode over the obstruction.



FIG. 4C illustrates another variation of an obstruction removal device 100 in a low friction mode state. In this variation, the device 100 includes a near connector 108, a far connector 110 with traversing filaments between the connectors 108, 110. The device 100 also includes an additional connector 132 with non-rotating filaments 134 extending to the far connector 110. FIG. 4D illustrates the device 100 of FIG. 4C when the near connector 108 is rotated as shown by arrow 136. However, the additional connector 132 and associated filaments 134 do not rotate. Upon rotation of the near connector 108 and twisting of the filaments 112, all of the filaments 112 and 134 compress the obstruction over the length of the filaments. Such a feature creates additional friction on the obstruction by the device.



FIG. 4E shows another variation of an obstruction removal device 100 configured to move between low and high friction mode states. This variation includes additional support rings 138 located between connectors 108, 110 and within the filaments 112. The support rings keep the device 100 at a relatively constant diameter upon assuming the increased friction mode state. The support rings may be slightly undersized compared to the connectors, allowing the filaments to slightly compress the obstruction when converted to a high friction mode, but limiting the amount of compression by limiting the resulting diameter. The support rings 138 can be freely placed within the traversing filaments 112. Alternatively, the rings 138 can be attached to one or more than one filament 112 to prevent undesired migration during deployment of the device.



FIG. 4F illustrates one example of a microcatheter 102 having a near connector 108 located externally to the catheter 102 with traversing filaments 112 extending out of the catheter and through the connector 108. In this variation, rotation or torquing of the catheter 102 twists the filaments 112 resulting in increased friction mode of the filaments 112 over an obstruction. FIG. 4F illustrates an additional connector 132 having stationary filaments 134. This variation of the device includes the external connector 108 directly coupled to a far connector not shown.)



FIG. 5A illustrates a variation of the device 120 having only connectors 108 at one side of the device 120. In this variation, the device 120 may still include two sets 108, 122 of connectors and two sets of traversing filaments 112, 124. FIG. 5B illustrates the variation of FIG. 5A after conversion to a high friction mode over the obstruction 2. As discussed herein, the connectors may be other structures than loops. Moreover, variations of the invention include connectors that may be drawn down to a smaller size to facilitate removal from the body after securing the obstruction. This may be accomplished by torquing: the device or pan thereof, by re-sheathing part or all of the device, or by any mechanical means designed into the features of the device itself. Any of these actions, or combination thereof, may also serve to compress or decrease the diameter of the obstruction itself to facilitate removal from the body.


In another variation, the devices described herein may be assembled or constructed in-situ. For example, components of the device may include connectors, portions of the connectors, traversing elements, and/or surrounding sections. Any combination of these components can be placed in sequential fashion. Doing so forms a completed structure from deployment of a number of individual components. The end result is the formation of a device as shown in the figures. Accordingly, such components of the device may be separately deployed in a manner that requires “assembly” of the components by a medical practitioner during the procedure.



FIGS. 6A-6G illustrate variations of the connectors 108, 110. FIG. 6A shows a loop-shaped connector 108, 110 having attachment points 140 for the filaments (not shown). As noted above, the connectors can be self-expanding or actuated to expand. The connectors may be fabricated from a polymer, a shape memory metal, polymer, or alloy, a super-elastic metal, polymer, or alloy, or any type of acceptable medical grade alloy, polymer, or composite structure. Also, the devices described herein can be fabricated from solid material, sheet or film, hollow or solid or filled rod or wire, braids, coils, etc. In the case of the polymer, additional strength may be added by constructing a composite layered device. For example, a hydrogel polymer with a hydrophilic fiber net inside that acts as exoskeleton to strengthen underlying polymer. As discussed herein, some variations of the device may include a distal connector having a cap or cover to prevent the obstruction from escaping as the device is removed. Furthermore, the sizing of the connectors within the vessel can assist in controlling relative rotation between connectors. For example, as a connector moves towards its expanded shape and engages a vessel or lumen wall, the rotational friction between the connector and lumen wall may prevent rotation. Accordingly, an adjacent connector may have a smaller expanded profile so that the connector experiences less friction when rotated.



FIG. 6A also illustrates the connector as having attachment points 140 for coupling the filaments to the connectors. These attachment points may allow for movement of the filaments relative to the connector to tension or separate the connectors (as described above.) The filaments may also be coupled such that they are fixed relative to the connectors. In such a case, pulling of the lead wire will cause the entire assembly (e.g., connectors, filaments, and/o surrounding portion) to translate through the vessel.



FIGS. 6B through 6G show various configurations of connectors for use in the present device. The connectors may be cut from sheets, fabricated from wire, molded, stamped, laser cut, photo or chemically etched, or fabricated in any other customary manner. Moreover, the connectors 108, 110 shown may be used in the near and/or far ends of the traversing wires Different connector profiles may be incorporated into the device. In most cases, as shown, the connectors will form an arcuate shape so that they can expand against a vessel wall without causing trauma to the vessel. To illustrate the connector configurations, FIGS. 6B to 6E are shown without any accompanying traversing filaments.



FIG. 6B shows a connector 108, 110 that is a loop shape as shown above. However, alternative configurations include a discontinuous profile, as illustrated in FIG. 6C and an overlapping profile, as illustrated in FIG. 6D. Such constructions allows the connector to adjust to varying diameters of body lumens. It is noted that a device may comprise loops of either construction. It should be also noted that although loops are shown, other variations may work equally well. Variations of the invention include connectors that may be drawn down to a smaller size to facilitate removal from the body once the obstruction is secured. This may be accomplished by torquing the device or part thereof, by re-sheathing part or all of the device or by any mechanical means designed into the features of the device itself. Any of these actions, or combination thereof, may also serve to compress or decrease the diameter of the obstruction itself to facilitate removal from the body. In addition, the overlapping connector, as shown in FIG. 6D, may include a sliding ring type fastener that allows the overlapping connector loop to expand in the same plane.


In another example, the device may be fabricated from a polymer composite that makes up the fasteners, filaments, bags, etc. where the polymeric composite is very floppy until it is exposed to either the body fluids and or some other delivered activator that causes the polymer to further polymerize or stiffen for strength. Various coatings could protect the polymer from further polymerizing before the device is properly placed. The coatings could provide a specific duration for placement (e.g., 5 minutes) after which the covering degrades or is activated with an agent (that doesn't affect the surrounding tissues) allowing the device to increase in stiffness so that it doesn't stretch as the thrombus is pulled out. For example, shape memory polymers would allow the device to increase in stiffness.



FIG. 6E shows a connector 108, 110 having multiple sections 146. As noted above, the connector sections 146 are arcuate shaped to minimize trauma to a vessel wall. However, other shapes are also intended to be within the scope of this disclosure.



FIGS. 6B through 6G also illustrate various configurations of leading wires 106. The connectors may have any number of leading wires. In some variations, it may be desirable to space the leading wires about the profile of the connector to aid in uniform movement of the device as it is pulled over the obstruction in the vessel.



FIGS. 6F and 6G illustrate additional variations of leading wires 106 comprising shaped wire structures that form a “c” portion 142 of the connector. In one variation, when constrained the “c” shaped portions 142 move together to allow for deliver within the catheter. Upon release from the catheter, the portions 142 assume their resting shape and expand within the vessel. The connecting portions 142 can be selected to have a size that is slightly greater than that of the vessel. Sizing the device relative to the target vessel may assist in placing the connecting portions 142 and accompanying traversing wires 112 against the wall of the vessel.



FIG. 6G shows an additional variation where a portion 144 of a leading wire 106 also has a “c” or semi-circular shape. In this configuration, the “c” shaped portion 144 of the leading wire 106 can also be sized relative to the target vessel. Accordingly, the portion 144 of the leading wire 106 functions to drive the connecting portion 142 against the vessel wall, while the shape of the connecting portion 142 also drives the traversing wire 112 against the vessel wall.



FIG. 6H illustrates another variation of a leading wire 106 having an unconstrained shape that is selected to be larger than the intended vessel or simply different than a cross sectional profile of the intended vessel (i.e., not circular or tubular, but e.g., linear or other different shape). In this variation, the leading wire 106 has portions 144 that extend in opposite directions. This configuration is intended for illustrative purposes only. Variations include connecting portions pointing in an orthogonal direction from the main lead wire 106, oblique, parallel as shown), or a combination thereof. In any case, the unconstrained shape is intended to have a larger profile or size than the intended vessel. Moreover, the unconstrained shape may have an entirely different profile than the intended vessel. As shown in the figures, the profile of the device extends radially from the vessel. So when the device and leading wire are released, the leading wire attempts to return to the unconstrained shape. In those variations where the unconstrained shape is different from the circular profile of the vessel, the leading, wire assumes a shape that accommodates the vessel but is more rigid and stable since its unconstrained shape is entirely different from that of the vessel.



FIG. 6I shows the same device of FIG. 6H when released from a microcatheter, sheath, or tube when in the vessel. Once released, the leading wire 106 and accompanying portions 144 attempt to revert to the unconstrained shape (as shown in FIG. 6H). However, the vessel 6 restrains the leading wire 106 and portions 144 such that the portions 144 act on the walls of the vessel. This feature allows for improved stability when deploying the leading wires and attached connectors and filaments within the vessel.



FIGS. 7A through 7C illustrate variations of connectors 108, 110 where the connector portions are axially spaced by an offset 152. One benefit of placing the connector portions 142, 146 in different planes is that the device may be delivered via a smaller microcatheter because the connector portions may be collapsed to a smaller diameter. FIG. 7A illustrates an offset 152 between connector portions 142 where each portion 142 is coupled to leading wires 148, 150 of varying lengths. FIG. 7B illustrates connector portions 146 spaced axially along a leading wire 106 to provide a gap 152. FIG. 7C illustrates a connector 108, 110 having multiple components 146 where one or more components is axially spaced to provide a gap 152. FIG. 7D shows a variation 108, 110 having a flower shape where each connector portion 146 is lion-planar such that the gap 152 occurs over the length of the connector portion 146.


Another aspect applicable to all variations of the devices is to configure the devices (whether the traversing filament or the surrounding portion) for better adherence to the obstruction. One such mode includes the use of coatings that bond to certain clots (or other materials causing the obstruction.) For example, the traversing filament and/or surrounding portion may be coated with a hydrogel or adhesive that bonds to a thrombus. Accordingly, as the surrounding portion covers the clot, or as the device twists about the clot, the combination of the additive and the mechanical structure of the device may improve the effectiveness of the device in removing the obstruction.


Such improvements may also be mechanical or structural. For example, as shown in FIG. 8A, the traversing members may have hooks, fibers, or barbs 154 that grip into the obstruction when the device converts to a high friction mode. The hooks, fibers, or barbs 154 may also be incorporated into the surrounding portion. However, it will be important that such features do not hinder the ability of the practitioner to remove the device from the body. For example, FIG. 8B illustrates a magnified view of the area 8B from FIG. 8A. As illustrated, the barbs may be configured such that rotation in a particular direction causes the barbs to adhere to the obstruction. Such a configuration could also allow lateral movement, without the barbs interfering with the vessel.


In addition to additives, the device can be coupled to an RF or other power source such as 14 or 16 in FIG. 1), to allow current, ultrasound or RF energy to transmit through the device and induce clotting or cause additional coagulation of a clot or other the obstruction.


The methods described herein may also include treating the obstruction prior to attempting to remove the obstruction. Such a treatment can include applying a chemical or pharmaceutical agent with the goal of making the occlusion shrink or to make it more rigid for easier removal. Such agents include, but are not limited to chemotherapy drugs, or solutions, a mild formalin or aldehyde solution.


Although not illustrated, the devices and methods described herein may also be useful in removing obstructions lodged within bifurcations in the anatomy. Generally, bifurcations greatly increase the frictional forces on the obstructions since the obstruction tends to be lodged in both branching sections of the bifurcation. In such cases, the use of the presently described devices and methods may also include an additional “puller” device that advances beyond the portion of the obstruction partially located in the bifurcated vessel.


As for other details of the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts that are commonly or logically employed. In addition, though the invention has been described in reference to several examples, optionally incorporating various features, the invention is not to be limited to that which is described or indicated as contemplated with respect to each variation of the invention.



FIGS. 9A through 9C illustrate additional variations of obstruction removal devices. In these variations, the traversing filaments 112 may comprise a mesh of wires or single connector. FIGS. 9A to 9B illustrate a variation in which the connector 108 comprises a wire rather than a loop. However, the filaments and connectors should be configured to expand to the perimeter of the vessel wall as described previously.



FIGS. 10A-10H illustrate various additional embodiments of obstruction removal devices 130 according to the present invention. In these variations, the connector 108 may form a rigid wire or hard polymer to assist in placement of the device 130. The surrounding portion 132 may be fabricated from less rigid filaments that increase the point of contact with the obstruction. The surrounding portion may also have filaments that undergo a phase change from non-rigid for less rigid) to rigid.


It should be noted that any number of traversing filaments 112 or sets may be used in these variations.


In additional aspect of the invention, as shown in FIG. 11A to 11C, the methods and or devices may include expansion of the vessel wall adjacent to the obstruction either with a balloon, coil, or similar mechanical expansion means, drugs, fluids, etc. Such an improvement may aid where the obstruction expands part, of the vessel wall thereby increasing the amount of force required for displacement. By distending the vessel wall as described above, the forces on the obstruction may be reduced allowing for ease of removal. FIG. 11A illustrates an obstruction 2 embedded within the vessel 6. FIGS. 11B to 11C illustrate variations where use of a coil (FIG. 11B) or a non-distensible balloon 162 (FIG. 11C) proximal to the obstruction 2 distends the vessel wall to loosen the obstruction 2 from the vessel. Accordingly, devices (whether described, herein or other conventional devices) may then remove the obstruction 2.


In those variations with a mechanical expansion means, the expansion means may be located on the delivery catheter of the obstruction removal device, on a wire member of the device, and/or on a separate catheter or wire used in combination with the first delivery catheter. However, variations of such configurations are within the scope of the invention.


In addition, devices and methods described herein may also use balloons proximal to the obstruction to stop or slow blood flow thereby preventing the blood from dislodging part or all of the obstruction.


Various changes may be made to the invention described and equivalents (whether recited herein or not included for the sake of some brevity) may be substituted without departing from the true spirit and scope of the invention. Also, any optional feature of the inventive variations may be set forth and claimed independently, or in combination with any one or more of the features described herein. Accordingly, the invention contemplates combinations of various aspects of the embodiments or combinations of the embodiments themselves, where possible. Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural references unless the context clearly dictates otherwise.

Claims
  • 1. A method comprising: advancing a catheter through an obstruction within a blood vessel, the catheter containing an obstruction removal device having an expandable structure located at the end of a leading member, the expandable structure having a central longitudinal axis and comprising a plurality of filaments, wherein the expandable structure includes an intermediate portion extending between a proximal end and a distal end, and wherein the intermediate portion includes first and second regions,deploying the obstruction removal device from the catheter such that the expandable structure expands to a deployed state, wherein, in the deployed state, the filaments of the expandable structure converge radially inwardly toward the central longitudinal axis to meet at the first and second regions;withdrawing the catheter relative to the expandable structure such that the intermediate portion self-expands within the obstruction to engage the obstruction via the first and second regions;and withdrawing the obstruction removal device and obstruction from the blood vessel.
  • 2. The method of claim 1, further comprising positioning the obstruction removal device across the obstruction such that the obstruction removal device is initially offset from a longitudinal axis of the obstruction.
  • 3. The method of claim 1, wherein withdrawing the catheter includes withdrawing the catheter relative to the obstruction removal device such that the distal end of the obstruction removal device remains distal to the obstruction.
  • 4. The method of claim 1, further comprising allowing the intermediate portion to embed into the obstruction.
  • 5. The method of claim 1, further comprising allowing the intermediate portion to embed into the obstruction without dislocating or mobilizing the obstruction within the blood vessel.
  • 6. The method of claim 1, wherein the obstruction removal device further comprises a surrounding portion attached to the distal end of the obstruction removal device and further comprising covering the obstruction with the surrounding portion.
  • 7. The method of claim 6, wherein the surrounding portion comprises a structure selected from the group consisting of a basket, a filter, a bag, a coil, a helical wire structure, a mesh, a corrugated sheet, braided wires, a single wound wire, a plurality of crossing wires, a tube, a membrane, a filled tube, a solid wire, a casting, and a film.
  • 8. The method of claim 1, wherein the obstruction removal device is fabricated from a process selected from the group consisting of a photochemical etching, mechanical drilling, weaving, braiding, and laser cutting.
  • 9. The method of claim 1, further comprising advancing the catheter adjacent to the obstruction such that the obstruction removal device is advanced through the catheter to the obstruction.
  • 10. The method of claim 1, further comprising withdrawing at least a portion of the obstruction removal device within the catheter and removing the catheter from the vessel.
  • 11. The method of claim 1, wherein the obstruction comprises a blood clot, plaque, cholesterol, thrombus, a naturally occurring foreign body, a non-naturally occurring foreign body or a combination thereof.
  • 12. The method of claim 1, further comprising expanding the vessel adjacent to the obstruction to decrease a friction between the vessel and the obstruction.
  • 13. The method of claim 1, wherein the intermediate portion forms a shaped section about the obstruction between the first and second regions.
  • 14. The method of claim 1, wherein the proximal and distal ends of the expandable structure are expanded towards the vessel wall when the first and second regions of the intermediate portion converge radially inwardly.
  • 15. The method of claim 1, wherein each of the filaments are prevented from moving apart from other ones of the filaments where the filaments meet along the first and second regions.
  • 16. A method comprising: advancing an obstruction removal device through an obstruction within a blood vessel, the obstruction removal device including an expandable structure comprising a plurality of filaments, the expandable structure having a central longitudinal axis and an intermediate portion, wherein the intermediate portion extends between a proximal end and a distal end and has first and second regions;deploying the expandable structure to a deployed state such that (i) the filaments converge radially inwardly toward the central longitudinal axis to meet within each of the first and second regions, and (ii) the intermediate portion of the expandable structure engages the obstruction between the first and second regions; andwithdrawing the obstruction removal device and obstruction from the blood vessel to improve blood flow in the blood vessel.
  • 17. The method of claim 16, wherein the intermediate portion forms a shaped section about the obstruction between the first and second regions.
  • 18. The method of claim 16, further comprising positioning the obstruction removal device across the obstruction such that the obstruction removal device is initially offset from a longitudinal axis of the obstruction.
  • 19. The method of claim 16, wherein the expandable structure of the obstruction removal device is self-expanding.
  • 20. The method of claim 16, wherein the obstruction removal device is fabricated from a process selected from the group consisting of photochemical etching, mechanical drilling, weaving, braiding, and laser cutting.
  • 21. The method of claim 16, further comprising withdrawing at least a portion of the obstruction removal device within a catheter and removing the catheter from the vessel.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/038,461, filed Sep. 26, 2013, which is a continuation of U.S. patent application Ser. No. 11/684,546, filed Mar. 9, 2007, which is a continuation of U.S. patent application Ser. No. 11/671,450, filed Feb. 5, 2007, which is a non-provisional of U.S. Provisional Application No. 60/765,496, filed Feb. 3, 2006, each of which are incorporated by reference herein in their entireties.

US Referenced Citations (399)
Number Name Date Kind
2918919 Wallace Dec 1959 A
2943626 Dormia Jul 1960 A
3996938 Clark Dec 1976 A
4347846 Dormia Sep 1982 A
4611594 Grayhack et al. Sep 1986 A
4660466 Luther Mar 1987 A
4699147 Chilson et al. Oct 1987 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4807626 McGirr Feb 1989 A
4832055 Palestrant May 1989 A
4873978 Ginsburg Oct 1989 A
4969891 Gewertz Nov 1990 A
4998539 Delsanti Mar 1991 A
5034001 Garrison et al. Jul 1991 A
5057114 Wittich et al. Oct 1991 A
5059178 Ya Oct 1991 A
5102415 Guenther et al. Apr 1992 A
5147400 Kaplan et al. Sep 1992 A
5152777 Goldberg et al. Oct 1992 A
5192286 Phan et al. Mar 1993 A
5300086 Gory et al. Apr 1994 A
5329942 Gunther et al. Jul 1994 A
5443478 Purdy Aug 1995 A
5449372 Schmaltz et al. Sep 1995 A
5458375 Anspach et al. Oct 1995 A
5490859 Mische et al. Feb 1996 A
5496330 Bates et al. Mar 1996 A
5509900 Kirkman Apr 1996 A
5653684 Laptewicz et al. Aug 1997 A
5658296 Bates et al. Aug 1997 A
5709704 Nott et al. Jan 1998 A
5733302 Myler et al. Mar 1998 A
5741325 Chaikof et al. Apr 1998 A
5792156 Perouse Aug 1998 A
5827324 Cassell et al. Oct 1998 A
5846251 Hart Dec 1998 A
5895398 Wensel et al. Apr 1999 A
5941869 Patterson et al. Aug 1999 A
5947995 Samuels Sep 1999 A
5968090 Ratcliff et al. Oct 1999 A
5971938 Hart et al. Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5984957 Laptewicz et al. Nov 1999 A
6001118 Daniel et al. Dec 1999 A
6033394 Vidlund et al. Mar 2000 A
6042598 Tsugita et al. Mar 2000 A
6053932 Daniel et al. Apr 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson et al. May 2000 A
6096053 Bates Aug 2000 A
6099534 Bates et al. Aug 2000 A
6146403 St. Germain Nov 2000 A
6159220 Gobron et al. Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6168570 Ferrera Jan 2001 B1
6168603 Leslie et al. Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6176873 Ouchi Jan 2001 B1
6190394 Lind et al. Feb 2001 B1
6217609 Haverkost Apr 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6245088 Lowery Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6248113 Fina Jun 2001 B1
6264664 Avellanet Jul 2001 B1
6302895 Gobron et al. Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6348056 Bates et al. Feb 2002 B1
6350266 White et al. Feb 2002 B1
6364895 Greenhalgh Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383196 Leslie et al. May 2002 B1
6391044 Yadav et al. May 2002 B1
6402771 Palmer et al. Jun 2002 B1
6409750 Hyodoh et al. Jun 2002 B1
6416505 Fleischman et al. Jul 2002 B1
6425909 Dieck et al. Jul 2002 B1
6436112 Wensel et al. Aug 2002 B2
6443972 Bosma et al. Sep 2002 B1
6458139 Palmer et al. Oct 2002 B1
6475169 Ferrera Nov 2002 B2
6485497 Wensel et al. Nov 2002 B2
6494884 Gifford, III et al. Dec 2002 B2
6506204 Mazzocchi Jan 2003 B2
6514273 Voss et al. Feb 2003 B1
6530935 Wensel et al. Mar 2003 B2
6540657 Cross, III et al. Apr 2003 B2
6540768 Diaz et al. Apr 2003 B1
6551342 Shen et al. Apr 2003 B1
6575997 Palmer et al. Jun 2003 B1
6585753 Eder et al. Jul 2003 B2
6592605 Lenker et al. Jul 2003 B2
6592607 Palmer et al. Jul 2003 B1
6602271 Adams et al. Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi et al. Sep 2003 B1
6620148 Tsugita Sep 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6636758 Sanchez et al. Oct 2003 B2
6638245 Miller et al. Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6645199 Jenkins et al. Nov 2003 B1
6652505 Tsugita Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6660021 Palmer et al. Dec 2003 B1
6663650 Sepetka et al. Dec 2003 B2
6673042 Samson et al. Jan 2004 B1
6679893 Tran Jan 2004 B1
6685738 Chouinard et al. Feb 2004 B2
6692508 Wensel et al. Feb 2004 B2
6692509 Wensel et al. Feb 2004 B2
6695858 Dubrul et al. Feb 2004 B1
6702782 Miller et al. Mar 2004 B2
6730104 Sepetka et al. May 2004 B1
6745080 Koblish Jun 2004 B2
6746468 Sepetka et al. Jun 2004 B1
6749619 Ouriel et al. Jun 2004 B2
6755813 Ouriel et al. Jun 2004 B2
6800080 Bates Oct 2004 B1
6824545 Sepetka et al. Nov 2004 B2
6855155 Denardo et al. Feb 2005 B2
6872211 White et al. Mar 2005 B2
6872216 Daniel et al. Mar 2005 B2
6890341 Dieck et al. May 2005 B2
6893431 Naimark et al. May 2005 B2
6905503 Gifford, III et al. Jun 2005 B2
6913612 Palmer et al. Jul 2005 B2
6936059 Belef Aug 2005 B2
6939362 Bovie et al. Sep 2005 B2
6945977 Demarais et al. Sep 2005 B2
6953465 Dieck et al. Oct 2005 B2
6964672 Brady et al. Nov 2005 B2
7004955 Shen et al. Feb 2006 B2
7004956 Palmer et al. Feb 2006 B2
7037320 Brady et al. May 2006 B2
7041126 Shin et al. May 2006 B2
7048014 Hyodoh et al. May 2006 B2
7058456 Pierce Jun 2006 B2
7097653 Freudenthal et al. Aug 2006 B2
7101380 Khachin et al. Sep 2006 B2
7169165 Belet et al. Jan 2007 B2
7179273 Palmer et al. Feb 2007 B1
7182771 Houser et al. Feb 2007 B1
7235061 Tsugita Jun 2007 B2
7240516 Pryor Jul 2007 B2
7279000 Cartier et al. Oct 2007 B2
7285126 Sepetka et al. Oct 2007 B2
7286866 Okerlund et al. Oct 2007 B2
7288112 Denardo et al. Oct 2007 B2
7294311 Coville Nov 2007 B2
7300428 Ingenito Nov 2007 B2
7303758 Falotico et al. Dec 2007 B2
7306619 Palmer Dec 2007 B1
7314477 Ravenscroft et al. Jan 2008 B1
7314728 Toombs Jan 2008 B2
7316692 Huffmaster Jan 2008 B2
7329265 Burbank et al. Feb 2008 B2
7332330 Humes et al. Feb 2008 B2
7341569 Soltani et al. Mar 2008 B2
7344550 Carrison et al. Mar 2008 B2
7367982 Nash et al. May 2008 B2
7399308 Borillo et al. Jul 2008 B2
7491210 Dubrul et al. Feb 2009 B2
7534252 Sepetka et al. May 2009 B2
7578830 Kusleika et al. Aug 2009 B2
7621870 Berrada et al. Nov 2009 B2
7837702 Bates Nov 2010 B2
8070791 Ferrera et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8105333 Sepetka et al. Jan 2012 B2
8197493 Ferrera et al. Jun 2012 B2
8545526 Martin et al. Oct 2013 B2
8603014 Alleman et al. Dec 2013 B2
8837800 Bammer et al. Sep 2014 B1
9119656 Bose et al. Sep 2015 B2
9126018 Garrison Sep 2015 B1
9211132 Bowman Dec 2015 B2
9241699 Kume et al. Jan 2016 B1
9265512 Garrison et al. Feb 2016 B2
9308007 Cully et al. Apr 2016 B2
9399118 Kume et al. Jul 2016 B2
9445828 Turjman et al. Sep 2016 B2
9445829 Brady et al. Sep 2016 B2
9492637 Garrison et al. Nov 2016 B2
9539022 Bowman Jan 2017 B2
9561345 Garrison et al. Feb 2017 B2
9579119 Cully et al. Feb 2017 B2
9585741 Ma Mar 2017 B2
9642635 Vale et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9737318 Monstadt et al. Aug 2017 B2
9770251 Bowman et al. Sep 2017 B2
9801643 Hansen et al. Oct 2017 B2
9861783 Garrison et al. Jan 2018 B2
9993257 Losordo et al. Jun 2018 B2
10028782 Orion Jul 2018 B2
10029008 Creighton Jul 2018 B2
10039906 Kume et al. Aug 2018 B2
20010041909 Tsugita et al. Nov 2001 A1
20010044632 Daniel et al. Nov 2001 A1
20010044634 Don et al. Nov 2001 A1
20010051810 Dubrul et al. Dec 2001 A1
20020002396 Fulkerson Jan 2002 A1
20020004667 Adams et al. Jan 2002 A1
20020026211 Khosravi et al. Feb 2002 A1
20020058904 Boock et al. May 2002 A1
20020062135 Mazzocchi et al. May 2002 A1
20020072764 Sepetka et al. Jun 2002 A1
20020082558 Samson et al. Jun 2002 A1
20020123765 Sepetka et al. Sep 2002 A1
20020138094 Borillo et al. Sep 2002 A1
20020143349 Gifford et al. Oct 2002 A1
20020151928 Leslie et al. Oct 2002 A1
20020169473 Sepetka et al. Nov 2002 A1
20020169474 Kusleika et al. Nov 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20020193812 Patel et al. Dec 2002 A1
20020193813 Helkowski et al. Dec 2002 A1
20020193825 McGuckin et al. Dec 2002 A1
20030004533 Dieck et al. Jan 2003 A1
20030004542 Wensel et al. Jan 2003 A1
20030004568 Ken et al. Jan 2003 A1
20030023265 Forber Jan 2003 A1
20030040771 Hyodoh et al. Feb 2003 A1
20030050663 Khachin et al. Mar 2003 A1
20030060782 Bose et al. Mar 2003 A1
20030078605 Bashiri Apr 2003 A1
20030093087 Jones et al. May 2003 A1
20030093111 Ken et al. May 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030153935 Mialhe Aug 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030195556 Staci et al. Oct 2003 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka et al. Apr 2004 A1
20040079429 Miller et al. Apr 2004 A1
20040098024 Dieck et al. May 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040138692 Phung et al. Jul 2004 A1
20040153025 Seifert et al. Aug 2004 A1
20040153118 Clubb et al. Aug 2004 A1
20040161451 Pierce et al. Aug 2004 A1
20040172056 Guterman et al. Sep 2004 A1
20040199201 Kellett et al. Oct 2004 A1
20040199243 Yodfat Oct 2004 A1
20040210116 Nakao Oct 2004 A1
20040267301 Boylan et al. Dec 2004 A1
20050004594 Nool et al. Jan 2005 A1
20050033348 Sepetka et al. Feb 2005 A1
20050038447 Huffmaster Feb 2005 A1
20050043680 Segal et al. Feb 2005 A1
20050043756 Lavelle et al. Feb 2005 A1
20050049619 Sepetka Mar 2005 A1
20050055033 Leslie et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050059995 Sepetka et al. Mar 2005 A1
20050080356 Dapolito et al. Apr 2005 A1
20050085826 Nalr et al. Apr 2005 A1
20050085847 Galdonik et al. Apr 2005 A1
20050085849 Sepetka et al. Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050090858 Pavlovic Apr 2005 A1
20050125024 Sepetka et al. Jun 2005 A1
20050131450 NIcholson et al. Jun 2005 A1
20050137680 Ortiz et al. Jun 2005 A1
20050171566 Kanamaru Aug 2005 A1
20050203571 Mazzocchi et al. Sep 2005 A1
20050209609 Wallace Sep 2005 A1
20050216030 Sepetka et al. Sep 2005 A1
20050216050 Sepetka et al. Sep 2005 A1
20050222580 Gifford, III et al. Oct 2005 A1
20050228417 Teitelbaum et al. Oct 2005 A1
20050234501 Barone Oct 2005 A1
20050234505 Diaz et al. Oct 2005 A1
20050277978 Greenhalgh Dec 2005 A1
20050283166 Greenhalgh Dec 2005 A1
20050283182 Pierce et al. Dec 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20050288686 Sepetka et al. Dec 2005 A1
20060004404 Khachin et al. Jan 2006 A1
20060009784 Behl et al. Jan 2006 A1
20060036280 French et al. Feb 2006 A1
20060047286 West Mar 2006 A1
20060058836 Bose et al. Mar 2006 A1
20060058837 Bose et al. Mar 2006 A1
20060058838 Bose et al. Mar 2006 A1
20060095070 Gilson et al. May 2006 A1
20060129166 Lavelle Jun 2006 A1
20060129180 Tsugita et al. Jun 2006 A1
20060155305 Freudenthal et al. Jul 2006 A1
20060190070 Dieck et al. Aug 2006 A1
20060195137 Sepetka et al. Aug 2006 A1
20060229638 Abrams et al. Oct 2006 A1
20060253145 Lucas Nov 2006 A1
20060276805 Yu Dec 2006 A1
20060282111 Morsi Dec 2006 A1
20060287668 Fawzi et al. Dec 2006 A1
20070112374 Paul et al. May 2007 A1
20070118165 DeMello et al. May 2007 A1
20070149996 Coughlin Jun 2007 A1
20070185500 Martin et al. Aug 2007 A1
20070185501 Martin et al. Aug 2007 A1
20070197103 Martin et al. Aug 2007 A1
20070198029 Martin et al. Aug 2007 A1
20070198030 Martin et al. Aug 2007 A1
20070198051 Clubb et al. Aug 2007 A1
20070208367 Fiorella et al. Sep 2007 A1
20070208371 French et al. Sep 2007 A1
20070225749 Martin et al. Sep 2007 A1
20070233236 Pryor Oct 2007 A1
20070258971 Heslet et al. Nov 2007 A1
20070265656 Amplatz et al. Nov 2007 A1
20070270905 Osborne Nov 2007 A1
20080015541 Rosenbluth et al. Jan 2008 A1
20080050389 Muzvkantov et al. Feb 2008 A1
20080051708 Kumar et al. Feb 2008 A1
20080058256 Boone et al. Mar 2008 A1
20080065012 Hebert et al. Mar 2008 A1
20080076722 Roberts et al. Mar 2008 A1
20080077175 Palmer Mar 2008 A1
20080091174 Alam et al. Apr 2008 A1
20080095760 Toombs Apr 2008 A1
20080109031 Sepetka et al. May 2008 A1
20080114393 Carrison et al. May 2008 A1
20080119888 Huffmaster May 2008 A1
20080167678 Morsi Jul 2008 A1
20080183198 Sepetka et al. Jul 2008 A1
20080183206 Batiste Jul 2008 A1
20080188885 Sepetka et al. Aug 2008 A1
20080206134 Lo et al. Aug 2008 A1
20080249409 Fraser et al. Oct 2008 A1
20080262487 Wensel et al. Oct 2008 A1
20080262528 Martin Oct 2008 A1
20080262532 Martin Oct 2008 A1
20080264216 Duffy Oct 2008 A1
20080269871 Eli Oct 2008 A1
20080275464 Abrams et al. Nov 2008 A1
20090069828 Martin et al. Mar 2009 A1
20090105722 Fulkerson et al. Apr 2009 A1
20090105737 Fulkerson et al. Apr 2009 A1
20090125053 Ferrera et al. May 2009 A1
20090192518 Golden et al. Jul 2009 A1
20090287291 Becking et al. Nov 2009 A1
20090299393 Martin et al. Dec 2009 A1
20100076452 Sepetka et al. Mar 2010 A1
20100100106 Ferrera Apr 2010 A1
20100174309 Fulkerson et al. Jul 2010 A1
20100185210 Hauser et al. Jul 2010 A1
20100217187 Fulkerson et al. Aug 2010 A1
20100256600 Ferrera Oct 2010 A1
20100318097 Ferrera et al. Dec 2010 A1
20110160742 Ferrera et al. Jun 2011 A1
20110160757 Ferrera et al. Jun 2011 A1
20110160760 Ferrera et al. Jun 2011 A1
20110160761 Ferrera et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110166586 Sepetka et al. Jul 2011 A1
20110288572 Martin Nov 2011 A1
20110319917 Ferrera et al. Dec 2011 A1
20120143230 Sepetka et al. Jun 2012 A1
20120197285 Martin et al. Aug 2012 A1
20130030461 Marks et al. Jan 2013 A1
20130281788 Garrison Oct 2013 A1
20140276074 Warner Sep 2014 A1
20140343595 Monstadt et al. Nov 2014 A1
20150359547 Vale et al. Dec 2015 A1
20160015402 Brady et al. Jan 2016 A1
20160015935 Chan et al. Jan 2016 A1
20160106448 Brady et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160151618 Powers et al. Jun 2016 A1
20160157985 Vo et al. Jun 2016 A1
20160199620 Pokorney et al. Jul 2016 A1
20160296690 Kume et al. Oct 2016 A1
20160302808 Loganathan et al. Oct 2016 A1
20160375180 Anzai Dec 2016 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170086862 Vale Mar 2017 A1
20170100143 Grandfield Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170164963 Goyal Jun 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170290599 Youn et al. Oct 2017 A1
20180049762 Seip et al. Feb 2018 A1
20180084982 Yamashita et al. Mar 2018 A1
20180116717 Taff et al. May 2018 A1
20180132876 Zaidat May 2018 A1
20180140314 Goyal et al. May 2018 A1
20180140315 Bowman et al. May 2018 A1
20180140354 Lam et al. May 2018 A1
20180185614 Garrison et al. Jul 2018 A1
Foreign Referenced Citations (65)
Number Date Country
102036611 Apr 2011 CN
3501707 Jul 1986 DE
10 2004 040 868 Mar 2006 DE
10 2005 059 670 Jun 2007 DE
0200668 Nov 1986 EP
1312314 May 2003 EP
2319575 Nov 2013 EP
2001-517527 Oct 2001 JP
2008-539958 Nov 2002 JP
2003-530944 Oct 2003 JP
2002-537943 Jul 2012 JP
2014004219 Jan 2014 JP
2018118132 Aug 2018 JP
20180102877 Sep 2018 KR
WO 2000053120 May 1994 WO
WO 1995009586 Apr 1995 WO
WO 1996001591 Jan 1996 WO
WO 1996017634 Jun 1996 WO
WO 1996019941 Jul 1996 WO
WO 1997027808 Aug 1997 WO
WO 19971027893 Aug 1997 WO
WO 1998003120 Jan 1998 WO
WO 1999016364 Apr 1999 WO
WO 1994009845 Sep 2000 WO
WO 2000072909 Dec 2000 WO
WO 2001032254 May 2001 WO
WO 2001054622 Aug 2001 WO
WO 2001067967 Sep 2001 WO
WO 2001080748 Nov 2001 WO
WO 2002002162 Jan 2002 WO
WO 2002028291 Apr 2002 WO
WO 2003000334 Jan 2003 WO
WO 2003061730 Jul 2003 WO
WO 2003089039 Oct 2003 WO
WO 2006031410 Mar 2006 WO
WO 2006084019 Aug 2006 WO
WO 2007092820 Aug 2007 WO
WO 2007136660 Nov 2007 WO
WO 2007143602 Dec 2007 WO
WO 2008034615 Mar 2008 WO
WO 2008036156 Mar 2008 WO
WO 2008063156 May 2008 WO
WO 2008072243 Jun 2008 WO
WO 2008086180 Jul 2008 WO
WO 2008097956 Aug 2008 WO
WO 2008097998 Aug 2008 WO
WO 2008113122 Sep 2008 WO
WO 2008127287 Oct 2008 WO
WO 2008131116 Oct 2008 WO
WO 2009034456 Mar 2009 WO
WO 2009086482 Jul 2009 WO
WO 2011091383 Jul 2011 WO
WO 2012009675 Jan 2012 WO
WO 2013106146 Jul 2013 WO
2015141317 Sep 2015 WO
2017192999 Nov 2017 WO
2018019829 Feb 2018 WO
2018033401 Feb 2018 WO
2018046408 Mar 2018 WO
2018137029 Aug 2018 WO
2018137030 Aug 2018 WO
2018145212 Aug 2018 WO
2018156813 Aug 2018 WO
2018172891 Sep 2018 WO
2018187776 Oct 2018 WO
Related Publications (1)
Number Date Country
20180228504 A1 Aug 2018 US
Provisional Applications (1)
Number Date Country
60765496 Feb 2006 US
Continuations (3)
Number Date Country
Parent 14038461 Sep 2013 US
Child 15942547 US
Parent 11684546 Mar 2007 US
Child 14038461 US
Parent 11671450 Feb 2007 US
Child 11684546 US