Methods for separating frozen-thawed spermatozoa into X-chromosome bearing and Y-chromosome bearing populations

Information

  • Patent Grant
  • 8652769
  • Patent Number
    8,652,769
  • Date Filed
    Monday, August 9, 2010
    14 years ago
  • Date Issued
    Tuesday, February 18, 2014
    10 years ago
Abstract
Devices, compositions, and methods for handling, separating, packaging, and utilization of spermatozoa (1) that can be derived from previously frozen sperm samples collected from a male mammal. Specifically, techniques to uniformily stain (2) spermatozoal DNA even when derived from previously frozen sperm and separation techniques to separate and isolate spermatozoa even when derived from previously frozen sperm samples into X-chromosome bearing and Y-chromosome bearing populations having high purity.
Description
I. TECHNICAL FEILD

The invention involves the substantially uniform binding of fluorochrome(s) to the DNA within mammalian spermatozoa (or sperm cells) allowing such labeled spermatozoa to be separated into high purity X-chromosome bearing and Y-chromosome bearing populations. Specifically, methods for the substantially uniform binding of fluorochrome(s) to the DNA of mammalian spermatozoa contained within previously frozen and then thawed semen. In addition, the invention further involves devices, methods, and compositions for the use of high purity separated X-chromosome bearing and Y-chromosome bearing populations of spermatozoa from previously frozen-thawed semen in processes involving, but not limited to, artificial insemination, surgical insemination, and in-vitro fertilization and embryo culturing techniques.


II. BACKGROUND

Sperm can be collected from a great variety of mammals and then separated into X-chromosome bearing and Y-chromosome bearing populations based upon the difference in DNA content. In some conventional methods of spermatozoa separation, the DNA content of the spermatozoa to be separated can be stained with a fluorochrome(s) that upon excitation emit(s) a measurable amount of fluorescence. Because X-chromosome bearing spermatozoa contain a greater amount of DNA than Y-chromosome bearing spermatozoa, each X-chromosome bearing spermatozoa has the capacity to bind a relatively greater amount of fluorochrome than the corresponding Y-chromosome bearing spermatozoa. Comparison of the relative magnitude of emitted fluorescence upon excitation of the fluorochrome(s) allows the isolation of X-chromosome bearing spermatozoa from Y-chromosome bearing spermatozoa as described by U.S. Pat. No. 5,135, 759, hereby incorporated by reference.


Even though X-chromosome bearing spermatozoa and Y-chromosome bearing spermatozoa have been differentiated by and separated based upon the difference in emitted fluorescence for many years, and even though there is large commercial market for isolated populations of X-chromosome bearing spermatozoa and Y-chromosome bearing spermatozoa, there remain significant problems yet to be resolved.


A significant problem with conventional methods of separating X-chromosome bearing spermatozoa from Y-chromosome bearing spermatozoa can be that each resulting population contains a significant number of incorrectly separated spermatozoa that belong in the other population. This problem in differentiating between spermatozoa can, in part, be attributed to the lack of uniformity in the amount of fluorochrome bound to the spermatozoal DNA. As such, a range in the amount of fluorochrome bound by X-chromosome bearing spermatozoa is generated and a range in the amount of fluorochrome bound by Y-chromosome bearing spermatozoa is generated. When these ranges in the amount of fluorochrome overlap or yield some values that are similar, it can be difficult or impossible to classify those individual spermatozoa to one population or the other with any degree of certainty and cross contamination of the populations can occur.


This particular problem can be exacerbated with regard to spermatozoa obtained from frozen and subsequently thawed mammalian semen. The mean purity for separated Y-chromosome bearing spermatozoa population derived from previously frozen-thawed semen can be 85% or less, and the mean purity for separated X-chromosome bearing spermatozoa population derived from previously frozen-thawed semen can be 82% or less.


Another significant problem associated with staining of spermatozoal DNA can be the detrimental effects on fertilization rates and subsequent embryonic development of fertilized oocyte(s) (oocyte, ootid, or ovum, or a plurality of same, as may be appropriate within a specific application). One aspect of this problem may be that the amount of stain bound to the DNA may effect the viability of the spermatozoa resulting in lower fertilization rates. Another aspect of this problem can be that the amount of time that elapses during the staining of the DNA may effect the viability of the sperm resulting in lower fertilization rates. Another aspect of this problem may be that the amount of time that elapses during staining of the DNA may lower subsequent cleavage rates of oocytes fertilized with such stained spermatozoa. A 20% decline in cleavage rates have been observed for oocytes when staining time requires 190 minutes as compared to when staining time requires 60 minutes. Another aspect of this problem may be that the percent of oocytes fertilized with stained spermatozoa that proceed to blastulation may be lower as described in the journal article entitled “In vitro Fertilization with Flow-Cytometrically-Sorted Bovine Sperm”, Theriogenology 52: 1393-1405 (1999), hereby incorporated by reference herein.


Another significant problem may be that cryopreserved sperm may demostrate increased capacitation, and the length of time such spermatozoa are viable may be shortened. As such, if previously frozen spermatozoa are to be separated into X-chromosome bearing and Y-chromosome bearing populations that are to be subsequently used in applications such as in-vitro fertilization, in-vivo artificial insemination, or the like, then routine staining procedures may have to be abbreviated to maintain suitable number of viable sperm cells.


As relating to the problems of staining spermatozoa uniformly, even when spermatozoa are obtained from previously frozen-thawed semen; maintaining sperm viability; separating stained spermatozoa into X-chromosome bearing and Y-chromosome bearing populations, even when the spermatozoa being separated are obtained from previously frozen semen; generating populations of X-chromosome bearing and Y-chromosome bearing spermatozoa having high purity; and successfully using separated spermatozoa for artificial insemination, surgical insemination, and in-vitro fertilization techniques it can be understood there are significant problems with conventional technology which are addressed by the instant invention.


III. DISCLOSURE OF THE INVENTION

A broad object of embodiments of the invention can be to provide DNA staining technology that allows substantially uniform amounts of fluorochrome to be bound to the DNA of all individual spermatozoa bearing an X-chromosome and substantially uniform amounts of fluorochrome to be bound to all individual spermatozoa bearing a Y-chromosome within an amount of semen.


One aspect of this broad object of the invention can be to narrow the range in magnitude of emitted fluorescence for each of the X-chromosome bearing population and the Y-chromosome bearing population of spermatozoa upon passing through a fluorochrome excitation source.


Another aspect of this broad object of the invention can be to increase the difference between the mean values of magnitude of emitted fluorescence for each of the X-chromosome bearing population and the Y-chromosome bearing population of spermatozoa upon passing through a fluorochrome excitation source.


Another aspect of this broad object of the invention can be to decrease the number of spermatozoa incorrectly assigned to each of the X-chromosome bearing population and the Y-chromosome bearing population of spermatozoa.


Another aspect of this broad object of the invention can be to generate separate X-chromosome bearing and Y-chromosome bearing populations having greater than 85% purity or greater than 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or even 99% purity.


Another broad object of embodiment of the invention can be to allow assessment of a wide range of genetics. Rather than being limited to the genetics of individuals from species of mammals having proximity to a spermatozoa separating or sorting facility, genetics representing a wide variety of individuals from numerous species can be transported as frozen semen to distant spermatozoa separation facilities for subsequent separation into X-chromosome bearing and into Y-chromosome bearing populations. These species of mammals may include, but are not limited to primates, such as chimpanzees, gorillas, humans, or the like; marine mammals, such as whales, porpoises, or the like; bovids; ovids; swine; canids; felids; or equids, as but a few examples. It may also include genetics that are considered rare because the species of mammal may be endangered or few in number; or considered rare because the individual has desirable morphological, physiological, or intellectual attributes.


Another broad object of embodiments of the invention can provide separation technology for differentiating between X-chromosome bearing and Y-chromosome bearing spermatozoa obtained from frozen-thawed semen.


Another object of embodiments of the invention can be to provide DNA staining technology to more uniformly stain the DNA of spermatozoa contained in frozen-thawed semen to improve the apparent resolution between X-chromosome bearing and Y-chromosome bearing spermatozoa.


Another object of embodiments of the invention can be to provide high purity artificial insemination samples prepared from separated spermatozoa from frozen-thawed semen.


Another object of embodiments of the invention can be to provide high purity low dose artificial insemination samples prepared from separated spermatozoa from frozen-thawed semen.


Another object of embodiments of the invention can be to provide high purity insemination samples for surgical insemination procedures prepared from separated spermatozoa from frozen-thawed semen.


Another object of an embodiment of the invention can be to provide high purity insemination samples for in-vitro fertilization procedures prepared from separated spermatozoa from frozen-thawed semen.


Another object of an embodiment of the invention can be to provide high purity insemination samples for in-vitro fertilization procedures prepared from separated spermatozoa from frozen-thawed human semen.


Another object of an embodiment of the invention can be to provide technology for staining and separation of spermatozoa from frozen-thawed sperm into X-chromosome bearing populations and Y-chromosome bearing populations for in-vitro fertilization of oocyte(s) that is not detrimental to cleavage rates or embryonic development.


Naturally further objects of the invention are disclosed throughout other areas of specification.





IV. BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a particular embodiment of the invention for staining the DNA of spermatozoa contained in frozen-thawed semen.



FIG. 2 shows a particular embodiment of the invention for separating spermatozoa from frozen-thawed semen into X-chromosome bearing and Y-chromosome bearing spermatozoa.



FIG. 3 shows a further view of a particular embodiment of the invention for separating spermatozoa from frozen-thawed semen into X-chromosome bearing and Y-chromosome bearing spermatozoa.





V. MODE(S) FOR CARRYING OUT THE INVENTION

To routinely separate spermatozoa (live, fixed, viable, non-viable, or nuclei) into high purity X-chromosome bearing samples and into Y-chromosome bearing samples, the method used to sort the X-chromosome bearing and Y-chromosome bearing spermatozoa must provide sufficient resolution of the X-chromosome bearing spermatozoa from the Y-chromosome bearing spermatozoa so that separation or sorting step(s) can be achieved without substantial cross contamination.


Resolution or differentiation of spermatozoa can be based upon ascertaining the difference in the fluorescent emission from the amount of fluorochrome bound to the DNA within the X-chromosome bearing spermatozoa upon excitation and the fluorescent emission from the amount of fluorochrome bound to the DNA within the Y-chromosome bearing spermatozoa upon excitation. Separation of X-chromosome bearing spermatozoa and Y-chromosome bearing spermatozoa based upon this measurable difference may then be achieved by a number of methods such as flow cytometry, liquid chromatography, gel electrophoresis, and other technologies that similarly compare the relative magnitude of fluorescence to differentiate between X-chromosome bearing spermatozoa and the Y-chromosome bearing spermatozoa.


Spermatozoa separation systems can have problems differentiating between the fluorescent emission generated by the fluorochrome bound to the DNA of X-spermatozoa, and the fluorescent emission generated by the fluorochrome bound to the DNA of Y-spermatozoa upon excitation when the amount of the fluorochrome bound to the DNA of individual spermatozoa is not consistent within the Y-chromosome bearing or X-chromosome bearing populations. These difficulties in differentiating between the amount of fluorescent emissions generated by the bound fluorochrome(s) become exacerbated when spermatozoa are obtained from frozen-thawed sperm which are stained by conventional techniques.


The failure to stain the spermatozoal DNA consistently can generate a broader range of fluorescing species for both X-chromosome bearing and Y-chromosome bearing populations of spermatozoa. This broader range of fluorescing species for the two populations results in an increased range of apparent DNA molecular weights and a decreased ability to resolve X-chromosome bearing from Y-chromosome bearing spermatozoa. The decrease in resolution makes separation of the X-chromosome bearing spermatozoa from the Y-chromosome bearing spermatozoa more difficult and results in cross contamination between populations and a lower purity of separated spermatozoa samples are obtained.


Particular embodiments of the invention provide technology to stain the DNA of live viable spermatozoa or the spermatozoal DNA of frozen-thawed semen specimens to allow increased resolution of X-chromosome bearing from the Y-chromosome bearing spermatozoa resulting in high purity X-chromosome bearing and high purity Y-chromosome bearing populations of sperm cells. As such, it is understood that the term high purity can mean greater resolution of the X-chromosome bearing from the Y-chromosome bearing spermatozoa compared to conventional staining technology for a given application. High purity can also mean less cross contamination between separated spermatozoa populations compared to conventional separation technologies.


For example, in particular flow cytometry embodiments of the invention, high purity for stained frozen-thawed live spermatozoa can mean sorted populations of X-chromosome bearing spermatozoa and Y-chromosome bearing spermatozoa having a purity greater than about 85%. However, if live viable sperm or sperm nuclei are being sorted high purity may mean X-chromosome bearing and Y-chromosome bearing populations having a purity greater than about 90%. As can be understood, the definition of high purity is contextual involving a comparison of the results obtained from each embodiment of the invention compared to the results obtained when utilizing convention technologies for a particular application. In the context of spermatozoa having DNA that stains poorly, such as previously frozen-thawed spermatozoal DNA, high purity can mean populations of isolated spermatozoa bearing greater than 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of either an X-chromosome or a Y-chromosome.


Embodiments of the invention can include spermatozoa collected from numerous species of male mammals, and the invention should be understood not to be limited to the species of male mammals described by the specific examples within this application. Rather the specific examples within this application are intended to be illustrative of the varied and numerous species of male mammals from which semen can be collected and utilized in certain embodiments of the invention. Embodiments of the invention, for example, may include the spermatozoa of animals having commercial value for meat or dairy production such as swine, ovids, bovids, equids, buffalo, or the like (naturally the mammals used for meat or dairy production may vary from culture to culture). It may also include the spermatozoa of various domesticated mammalian species encompassed by canids and felids. It may also include spermatozoa from individuals of various mammalian species that have uncommon attribute(s), such as morphological characteristics including weight, size, or conformation, or other desired characteristics such as speed, agility, intellect, or the like. It may also include spermatozoa of primates, including but not limited to chimpanzees, gorillas, or humans and the spermatozoa from marine mammals such as whales and dolphins It may also include frozen-thawed spermatozoa from all the various mammals above-described and further, including but not limited to, the spermatozoa of deceased donors, from rare or exotic mammals, zoological specimens, or endangered species.


Now referring primarily to FIG. 1, particular embodiments of the invention can comprise semen containing spermatozoa (1) collected from a male mammal, including but not limited to, those above-described. The spermatozoa can be incubated in a concentration of Hoechst 33342 stain (2) of greater than about 40 μM at a temperature between about 30° Centigrade and about 40° Centigrade for a duration of time between 50 minutes to 200 minutes to stain spermatozoal DNA with sufficient uniformity to allow X-chromosome bearing spermatozoa to be differentiated from Y-chromosome bearing spermatozoa based upon the magnitude of fluorescence at a rate greater than about 85%.


The concentration of Hoechst 33342 stain between 40 μM and 2500 μM, the temperature between 30° Centigrade and about 40° Centigrade, and the duration of time between 50 minutes and 200 minutes can be selected to adjust the purity of the separated X-chromosome bearing and Y-chromosome bearing populations, or can be selected to promote cleavage rates and embryonic development, as further discussed below.


For example, when staining spermatozoal DNA from certain bovine species, the concentration of Hoechst 33342 can be increased to between about 200 μM and about 2500 μM, incubated for a period of time between about 60 minutes to about 190 minutes at a temperature of about 37° Centigrade. Specifically with respect to certain frozen-thawed bovine spermatozoa, the Hoechst 33342 stain (2) can be adjusted to establish a concentration of 2240 μM and then incubated for about 60 minutes at about 39° Centigrade.


With respect to the cleavage rates of oocytes inseminated with mammalian sperm cells treated according to the invention, the increase in stain concentration up to at least 2240 μM does not appear to have a depressive effect on either cleavage or embryonic development. Higher stain concentrations may actually be beneficial with respect to certain embodiments of the invention because the length of incubation time may be decreased improving percent cleavage or blastocyst formation. From application to application the concentration of Hoechst 33342, the length of incubation time, or both can be adjusted to obtain the maximal cleavage rate and blastocyst formation, if desired.


Now referring primarily to FIGS. 2 and 3, flow cytometric embodiments of the invention can include a cell source (3) which acts to establish or supply stained spermatozoa (fresh, frozen-thawed, sperm nuclei, or the like) to be analyzed by flow cytometry. The cells are deposited within a nozzle (4) in a manner such that the stained sperm cells are surrounded by a sheath fluid (5). The sheath fluid (5) is usually supplied by a sheath fluid source (6) so that as the cell source (3) supplies sperm cells, the sheath fluid (5) is concurrently fed through the nozzle (4). In this manner the sheath fluid (5) forms a sheath fluid environment for the sperm cells. Since the various fluids are provided to the flow cytometer at some pressure, they flow out of the nozzle (4) and exit at the nozzle orifice (7). By providing a type of oscillator (8) which may be very precisely controlled through an oscillator control (9), pressure waves may be established within the nozzle (4) and transmitted to the fluids exiting the nozzle (4) at the nozzle orifice (7). Since the oscillator (9) acts upon the sheath fluid (5), the stream (10) exiting the nozzle orifice (7) eventually and regularly forms drops (11). Because the sperm cells are at least partially surrounded by a sheath fluid environment, the drops (11) can contain within them individually isolated sperm cells.


Since the drops (11) generally contain individual isolated sperm cells, the flow cytometer can distinguish and separate droplets based upon the magnitude of fluorescence emitted from the fluorochrome bound to the spermatozoal DNA. This is accomplished through a cell sensing system (12). The cell sensing system involves at least some type of sensor (13) which responds to the magnitude of fluorescence emitted by each sperm cell contained within each drop (11). The sperm cell sensing system (13) may cause an action depending upon the relative presence or relative absence of fluorescence emitted by the bound fluorochrome upon excitation by some stimulant such as the laser exciter (14). While each spermatozoon can be stained by the fluorochrome, such as Hoechst 33342, as described above, the differing amount of DNA comprising the X-chromosome and the Y-chromosome causes different amounts of stain to be bound. Thus, by sensing the degree of fluorescence emitted by the fluorochrome upon excitation it is possible to discriminate between X-bearing spermatozoa and Y-bearing spermatozoa by their differing emission levels.


In order to achieve separation and isolation of the appropriate sperm cells, the signals received by sensor (14) are fed to some type of sorter discrimination system (15) which very rapidly makes a differentiation decision and can differentially charge each drop (11) based upon whether it has decided that the desired sperm cell does or does not exist within that drop (11). In this manner the separation or discrimination system (15) acts to permit the electrostatic deflection plates (16) to deflect drops (11) based on whether or not they contain the appropriate sperm cell. As a result, the flow cytometer acts to sort cells by causing them to land in one or more collectors or containment elements (17). Thus by sensing some property of the sperm cells (such as magnitude of fluorescense), the flow cytometer can discriminate between sperm cells based on that particular characteristic and place them in the appropriate collector or containment element (17). In particular embodiments of the invention using flow cytometry to sort spermatozoa, the X-bearing sperm cell containing droplets are charged positively and thus deflect in one direction, and the Y-bearing sperm cell containing droplets are charged negatively and thus deflect the other way, and the wasted stream (containing unsortable sperm cells) remain uncharged and thus can be collected in an undeflected stream into a suction tube, or the like.


Now referring primarily to FIG. 3, the nozzle (4) emits a stream (10) which because of the oscillator (8) (not shown in FIG. 3) forms drops (11). Since the sperm cell source (3) (not shown in FIG. 3) may supply sperm cells (1) which may be stained according to the above-described invention, the light emission from the bound fluorochrome excited by laser exciter (13) can be differentially determined by sensor (14) so that the existence or nonexistence of a charge on each drop (11) as it separates from stream (10) can be controlled by the flow cytometer. This control results in positively charged, negatively charged, or uncharged drops (8) based upon the sperm cell contained within each drop (11). As shown by FIG. 3, certain drops are shown as deflected drops (18). These deflected drops (18) are those containing spermatozoon differentiated by bearing either an X-chromosome or a Y-chromosome. Separated spermatozoa are then isolated in an appropriate collection element or containment element (17) for later use.


Embodiments of the invention can comprise droplets (11) each containing a sperm cell (15) bearing either an X-chromosome or a Y-chromosome. Droplets containing X-chromosome bearing sperm cells can be isolated into containment element(s) (17) at a rate of at least 1000 per second or at a rate greater than about 1000 per second, such as 2000 per second, 3000 per second, 4000 per second, 5000 per second, or higher. Similarly Y-chromosome bearing sperm cells can be isolated at a rate of at least 1000 per second or at a rate greater than about 1000 per second, such as 2000 per second, 3000 per second, 4000 per second, 5000 per second, or higher. In some embodiments of the invention, droplets containing X-chromosome bearing sperm cells and droplets containing Y-chromosome bearing sperm cells are simultaneously separated and isolated into containment elements each at a rate of at least 1000 per second, or greater than 1000 per second, such as 2000 per second, 3000 per second, 4000 per second, 5000 per second, or at even higher rates.


Embodiments of the invention can also include artificial insemination samples prepared from sperm cells collected from male mammals (which can be frozen and thawed with respect to some embodiments of the invention) that are then stained and separated according to embodiments of the invention above-described. The artificial insemination samples can then be utilization in artificial insemination protocols. For example, a bovine artificial insemination sample prepared from separated spermatozoa according to the invention can comprise fewer than 10×106 viable spermatozoa contained within a straw. Low dose artificial insemination samples for bovine artificial insemination can contain as few as 1−3×106 viable spermatozoa, or even as few as 150,000 spermatozoa as described in U.S. patent application Ser. No. 09/001,394, or PCT patent application Ser. No. US98/27909, each hereby incorporated by reference. Artificial insemination samples, having a regular number of separated sperm cells or a low dose of separated sperm cells can be used in animal breeding programs, such as those described in U.S. Patent Applications 60/224,050 and 60/21,093, each hereby incorporated by reference. Artificial insemination samples containing previously frozen and thawed spermatozoa stained and separated according to the invention can also be utilized in conjunction with synchronized breeding programs using superovulated animals as described in U.S. patent application Ser. No. 09/001,454, hereby incorporated by reference herein. Naturally, for frozen sperm cells that are of limited availability because the male mammal is deceased, or the male mammal is a rare or exotic animal, an artificial insemination sample prepared according to the invention may contain even fewer spermatozoa.


The number of viable separated spermatozoa that are stained, separated, and isolated into X-chromosome bearing or Y-chromosome bearing populations according to the invention that are used in an artificial insemination sample can vary based upon the species of mammal to be artificially inseminated. For example, equine artificial insemination samples prepared from separated spermatozoa may require a higher number of viable separated spermatozoa relative to the bovine application, as described in PCT patent application Ser. No. US99/17165, hereby incorporated by reference. An embodiment of an equine insemination sample may, as but one example, contain between about forty million to about one-hundred million spermatozoa.


In certain embodiments of the invention, the insemination sample containing separated spermatozoa collected from a male mammal or obtained from frozen-thawed sperm may be packaged for use with surgical insemination procedures


Sperm cells stained, separated, or isolated according to the invention can also be used to fertilize oocyte(s) in-vitro (IVF). An attractive feature of IVF can be that fewer separated sperm are need than for artificial insemination. It may be desirable to use the fewest sperm possible, especially if the male mammal is deceased, rare, or exotic or if the spermatozoa are stained or separated in accordance with various embodiments of the invention. Also, commercial availability of sperm cells separated into X-chromosome bearing and Y-chromosome bearing populations, especially when the male mammal is located a distance from the female mammal, or is exotic, rare, or has desirable attributes, will likely result in greatly expanded use of IVF in breeding programs. Certain embodiments of the invention can include devices and methodologies for the use of separated spermatozoa, including but not limited to frozen-thawed sperm cells, with respect to the in-vitro fertilization of oocytes, the in-vitro oocyte maturation, or the in-vitro culture of zygotes, such as those described in the journal article by Lu, K. H., Cran D. G., and Seidel, G. E., In-vitro Fertilization With Flow Cytometrically-Sorted Bovine Sperm, Theriogenology, 52, 1393-1405 (1999), hereby incorporated by reference.


Certain embodiments of the invention involving the production or generation of mammalian embryos can comprise collection of semen (1) from a male mammal or obtaining semen or spermatozoa (1) that are or have been previously frozen. According to embodiments of the invention described above, the semen is combined wtih Hoechst 33342 (2) stain to establish a concentration of between 40 μM and 2500 μM. The sperm cells are incubated with the Hoechst 33342 stain at a temperature between about 30° Centigrade and about 40° Centigrade for a duration of between about 50 minutes to about 200 minutes. The stained sperm cells may be separated and isolated into X-chromosome bearing and Y-chromosome bearing populations according to embodiments of the invention described above or by other sperm cell separation techniques that also differentiate X-chromosome bearing spermatozoa from Y-chromosome bearing spermatozoa based upon the magnitude of fluorescence. The isolated sperm cells may then be used to fertilize oocytes from a female mammal of the same species, and in some cases from female mammals of different species, in-vitro.


As an example of an application of embodiments of the invention involving frozen bull sperm in IVF applications, sperm samples from two bulls were stained either at a concentration of 224 μM or 2,240 of Hoechst 33342 and the stained spermatozoa were then bulk sorted on a flow cytometer at 1000 sperm/sec into 2% egg yolk citrate. Spermatozoa were inseminated at 1×106/mL and embryos were cultured in the mSOF system described by Tervit H. R. et al., Successful Culture In-Vitro of Sheep and Cattle Ova, J. Reprod. Fertil., 30:493-497(1992), hereby incorporated by reference. Three replicates were carried out for bull 1 and one replicate for bull 2 (Table 1). With conventional procedures, blastocyst production with separated spermatozoa can be 70-90% of controls with spermatozoa that have not been separated. For example, development of blastocyst has been shown to be 17% with bovine oocytes inseminated with separated spermatozoa, compared with >25% which might be expected with IVF using unseperated spermatozoa.









TABLE 1







Effect of stain concentration on cleavage and developmental


rates of oocytes inseminated with separated stained spermatozoa


from frozen-thawed sperm.















Hoechst
Staining







33342
time


%



No.
conc.
required
No.
%
blastocysts/


Bull
Ejaculates
(μM)
(min)
oocytes
cleave
oocyte
















1
3
224
190
368
44a
17


1
3
2240
60
373
60b
23


2
1
224
190
86
23a

 0a



2
1
2240
60
81
42b

16b







a,bPercentages within bulls within columns with different superscripts differ (P < .025, χ2)







As can be understood, it can take much longer to stain frozen-thawed sperm so that they can be resolved during separation at the lower stain concentration than at 10×stain concentration. The differences observed in cleavage rates between the two stain concentrations most likely can be attributed to the extended incubation time at the lower stain level. It appears that a 10-fold increase in stain concentration does not have depressive effect on either cleavage of embryonic development.


As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. It involves the staining of spermatozoa, whether fresh spermatozoa or frozen-thawed spermatozoa, separation and isolation techniques which may be used with such stained spermatozoa, as well as devices to accomplish the staining, separation, and isolation of such stained spermatozoa into X-chromosome bearing and Y-chromosome bearing populations. In this patent application, the staining and separating techniques used with spermatozoa are disclosed as part of the results shown to be achieved by the various devices described and as steps which are inherent to utilization. They are simply the natural result of utilizing the devices as intended and described. In addition, while some devices are disclosed, it should be understood that these not only accomplish certain methods but also can be varied in a number of ways. Importantly, as to all of the foregoing, all of these facets should be understood to be encompassed by this disclosure.


The discussion included in this patent application is intended to serve as a basic description. The reader should be aware that the specific discussion may not explicitly describe all embodiments possible; many alternatives are implicit. It also may not fully explain the generic nature of the invention and may not explicitly show how each feature or element can actually be representative of a broader function or of a great variety of alternative or equivalent elements. Again, these are implicitly included in this disclosure. Where the invention is described in functionally-oriented terminology, each aspect of the function is accomplished by a device, subroutine, or program. Apparatus claims may not only be included for the devices described, but also method or process claims may be included to address the functions the invention and each element performs. Neither the description nor the terminology is intended to limit the scope of the claims which now be included.


Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these. Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms—even if only the function or result is the same. Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action. Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates. Regarding this last aspect, as but one example, the disclosure of a “sorter” should be understood to encompass disclosure of the act of “sorting”—whether explicitly discussed or not—and, conversely, were there only disclosure of the act of “sorting”, such a disclosure should be understood to encompass disclosure of a “sorter” and even a “means for sorting”. Such changes and alternative terms are to be understood to be explicitly included in the description. Additionally, the various combinations and permutations of all elements or applications can be created and presented. All can be done to optimize the design or performance in a specific application.


Any acts of law, statutes, regulations, or rules mentioned in this application for patent: or patents, publications, or other references mentioned in this application for patent are hereby incorporated by reference. Specifically, U.S. Provisional Patent Application No. 60/253,787, filed Nov. 29, 2000, U.S. Provisional Patent Application No. 60/253,785, filed Nov. 29, 2000, International Patent Application No. PCT/US01/45023 filed Nov. 29, 2001 and U.S. application Ser. No. 10/433,183 filed May 5, 2003 are hereby incorporated by reference including any figures or attachments, and each of references in the following table of references are hereby incorporated by reference.












US Patent Documents












DOCUMENT NO.
DATE
NAME
CLASS
SUBCLASS
FILING DATE















32,350
Feb. 10, 1987
Bhattacharya


Nov. 22, 1974


3,687,806
Aug. 29, 1972
Van den Bovenkamp
195
1.3
Nov. 04, 1969


3,829,216
Aug. 13, 1974
Persidsky
356
36
Oct. 02, 1972


3,894,529
Jul. 15, 1975
Shrimpton
128
1 R
Apr. 10, 1969


4,009,260
Feb. 22, 1977
Ericsson
424
105
Dec. 11, 1974


4,067,965
Jan. 10, 1978
Bhattacharya
424
105
Dec. 17, 1975


4,083,957
Apr. 11, 1978
Lang
424
78
Feb. 04, 1976


4,085,205
Apr. 18, 1978
Hancock
424
105
Jan. 24, 1977


4,092,229
May 30, 1978
Bhattacharya
204
180 R
Oct. 20, 1976


4,155,831
May 22, 1979
Bhattacharya
207
299 R
Feb. 23, 1978


4,191,749
Mar. 04, 1980
Bryant
424
105
Oct. 11, 1977


4,225,405
Sep. 30, 1980
Lawson
204
180 R
Aug. 16, 1978


4,276,139
Jun. 30, 1981
Lawson
204
180 R
Oct. 09, 1979


4,339,434
Jul. 13, 1982
Ericsson
424
105
Aug. 17, 1981


4,362,246
Dec. 07, 1982
Adair
209
3.3
Jul. 14, 1980


4,448,767
May 15, 1984
Bryant
424
85
Feb. 15, 1980


4,474,875
Oct. 02, 1984
Shrimpton
435
002
Aug. 18, 1980


4,501,366
Feb. 26, 1985
Thompson
209
556
Dec. 14, 1982


4,511,661
Apr. 16, 1985
Goldberg
436
503
Dec. 30, 1983


4,605,558
Aug. 12, 1986
Shrimpton
424
561
Apr. 20, 1984


4,660,971
Apr. 28, 1987
Sage et al.
356
39
May 03, 1984


4,680,258
Jul. 14, 1987
Hammerling et al
435
7
Aug. 09, 1983


4,673,288
Jun. 16, 1987
Thomas et al.


4,683,195
Jul. 28, 1997
Mullis et al


4,683,202
Jul. 28, 1987
Mullis


4,698,142
Oct. 06, 1987
Muroi et al
204
182.3
Jul. 31, 1985


4,749,458
Jun. 07, 1988
Muroi et al
204
182.3
Mar. 02, 1987


4,790,653
Dec. 13, 1988
North, Jr.


4,988,619
Jan. 29, 1991
Pinkel
435
30
Nov. 30, 1987


4,999,283
Mar. 12, 1991
Zavos et al
435
2
Aug. 18, 1989


5,021,244
Jun. 04, 1991
Spaulding
424
561
May 12, 1989


5,055,393
Oct. 08, 1991
Kwoh et al


5,135,759
Aug. 04, 1992
Johnson
424
561
Apr. 26, 1991


5,346,990
Sep. 13, 1994
Spaulding
530
350
Mar. 12, 1991


5,371,585
Dec. 06, 1994
Morgan et al.
356
246
Nov. 10, 1992


5,437,987
Aug. 01, 1995
Ten et al


5,439,362
Aug. 08, 1995
Spaulding
424
185.1
Jul. 25, 1994


5,461,145
Oct. 24, 1995
Kudo et al


5,466,572
Nov. 14, 1995
Sasaki et al.
435
2
Apr. 25, 1994


5,480,774


5,483,469
Jan. 09, 1996
Van den Engh et al.
364
555
Aug. 02, 1993


5,494,795
Feb. 27, 1996
Guerry et al.
435
6
May 5, 1993


5,503,994
Apr. 02, 1996
Shear et al.
436
90
Oct. 08, 1993


5,578,449
Nov. 26, 1996
Frasch et al.
435
6
Apr. 20, 1995


5,514,537
May 07, 1996
Chandler
435
002
Nov. 28, 1994


5,589,457
Dec. 31, 1996
Wiltbank
514
12
07-03-95


5,602,039
Feb. 11, 1997
Van den Engh
436
164
Oct. 14, 1994


5,602,349
Feb. 11, 1997
Van den Engh
73
864.85
Oct. 14, 1994


5,622,820
Apr. 11, 1997
Rossi
435
5
Nov. 3, 1994


5,641,457
Mar. 09, 1999
Tomiyama et al.
250
207
Jun. 16, 1997


5,643,796
Jul. 01, 1997
Van den Engh et al
436
50
Oct. 14, 2004


5,660,997
Aug. 26, 1997
Spaulding
435
7.21
Jun. 07, 1995


5,690,895
Nov. 25, 1997
Matsumoto et al.
422
73
Dec. 06, 1996


5,700,692
Dec. 23, 1997
Sweet
436
50
Sep. 27, 1994


5,726,364
Mar. 10, 1998
Van den Engh
73
864.85
Feb. 10, 1997


5,819,948
Oct. 13, 1998
Van den Engh
209
158
Aug. 21, 1997


5,876,942
Mar. 2, 1999
Cheng et al
435
6
Jul. 24, 1997


5,880,457
Mar. 09, 1999
Tomiyama et al.
250
207
Jun. 16, 1997


5,985,216
Nov. 16, 1999
Rens, et al.
422
073
Jul. 24, 1997


6,071,689
Jun. 06, 2000
Seidel et al.
435
2
Jan. 29, 1998



















Foreign Patent Documents











DOCUMENT NO
DATE
COUNTRY







WO 96/12171
Oct. 13, 1995
United States



WO 98/34094
Jun. 08, 1998
NZ



WO 99/05504
Jul. 24, 1998
US



WO 99/33956
Aug. 07, 1999
US



WO 99/38883
May 08, 1999
US



WO 99/42810
Aug. 26, 1999
US



WO 00/06193
Oct. 02, 2000
US




















Other Reference Documents















Roser, JF., Evans, J. W., Kiefer, DP., Neeley, D. P. and Pacheco, C. A. 1980. Reproductive efficiency in mares


with anti-hCG antibodies. Proc 9th Int. Congr. Artira. Repro. and A.I. 4: 627. abstr.


“Applying Semen Sexing Technology to the AI Industry”, National Association of Animal Breeders, September


2000, pp. 1-16


“Sexed Semen Offers Faster Genetic Gain”, Farming News, Livestock Supplement, February 1997, p. 28.


Akhtar, S., et al., “Prevalence of Five Stereotypes of Bluetongue Virus in a Rambouillet Sheep Flock in


Pakistan”, Veterinary ecord 136, 1995, p. 495.


Akhtar, S., et al., “Sex Preselected in Cattle: a Field Trial”, Veterinary Record 136, 1995, p. 495-496.


Aldrich, S. L., Berger, L. L., Reiling, B. A., Kegler, D. I., and Nagh, T. G.. 1995. “Parturition and periparturient


reproductive and metabolic hormone concentration in prenatally androgenized beefheifer”, I. Anim. Sci.


73: 3712.


Amann, R. P. “Issues affecting commercialization of sexed sperm”. Therio: 52: 1441, 1999


Amann, R. P. et al, “Prospects For Sexing Mammalian Sperm,” Colorado Associated University Press, Animal


Reproduction Laboratory College of Veterinary Medicine and Biomedical Sciences, Colorado State University,


Fort Collins, CO, 80523, 1982


American Meat Science Association in cooperation with National Livestock and Meat Board. “Research


guidelines for cookery, sensory evaluation and instrumental tenderness measurements of fresh meatK”, 1995


Amoah, E. A. and Gelaye, S. 1996. Biotechnological advances in goat reproduction. J. Anim. Sci. 75(2): 578-585.


Andersen, V. K., Aamdal, J. and Fougner, J. A. 1973. Intrauterine und tiefzervikale Insemination mit


Gefriersperma bein Schat. Zuchthygiene. 8: 113-118.


Bagley, C. P. 1993. Nutritional management of replacement beef heifers-A review. J. Anim. Sci. 71: 3155-3163.


Bailey, C. M., Reid, C. R., Ringkob, T. P., Koh, Y. O., and Foote, W. D. “Nulliparous versus primiparous crossbred


females for beef.” J. Anim. Sci. 69: 1403., 1991


Baker, R. D., Dziuk, P. J. and Norton, H. W. 1968. Effect of volume of semen, number of sperm and drugs on


transport of sperm in artificially inseminated gilts. J. Anim. Sci. 27: 88-93.


Barnes, F. L.. and Eyestone, W. H., “Early Cleavage and the Maternal Zygotic Transition in Bovine Embryos”,


Theriogeneology, Vol. 33, No. 1, January 1990, pp. 141-149


Becker, S. E. and Johnson, A. L. 1992. Effects of gonadotropin releasing hormone infused in a pulsatite or


continuous fashion on serum gonadotropin concentrations and ovulation in the mare. J. Anim. Sci. 70: 1208-1215.


Bedford, S. J. and Hinrichs, K. 1994. The effect of insemination volume on pregnancy rates of pony mares.


Theriogenology 42: 571-578.


Bellows, R. A., Short, R. E., Anderson, D. C., Knapp, B. W., and Pahnish, O. F. “Cause and effect relationships


associated with calving difficulty and calfbirth weight”, J. Anim. Sci. 33: 407, 1971


Berardinelli, J. G., R. A. Dailey, R. L. Butcher, and E. K. lnskeep. “Source of progesterolle prior to puberty in beef


heifers”. J. Anim. Sci. 49: 1276., 1979


Berger, G. S. 1987. Intratubal insemination. Fert. Steril. 48: 328-330.


Bergfeld, E. G., Kojima, F. N., Cupp, A. S., Wehnnan, M. E., Peters, K. T., Garciawinder, M., and Kinder, J. E.,


“Ovarian follicular development in prepubertal heifers is influenced by level of dietary energy-intake”, Bio. of


Repro. 51: 1051, 1994


Berry, B. W., Smith, G. C., and Carpente.zl, “Beef carcass maturity indicators and palatability attributes”, J. Anim.


Sci. 38: 507, 1974


Beyhan, Z., et al., “Sexual Dimorphism in IVF Bovine Embryos Produced by Sperm Sorted by High Speed Flow


Cytometry”, Theriogenology 49, 1998, p. 359.


Blanchard, T. and Dickson, V., “Stallion Management”, The Veterinary Clinics of North America, Equine


Practice, Vol. 8, No. 1, April 1992, pp 207-218.


Bond, J., et al., “Growth and carcass traits of open beef heifers versus beef heifers that have calved”, Nutrition


Reports International 34: 621. 1986


Boucque, C. V., et al., “Beef-production with maiden and once-calved heifers”, Livestock Prod. Sci. 7: 121. 1980


Bourdon, R. M. and J. S. Brinks. “Simulated efficiency of range beef-production”. Culling strategies and


nontraditional management-systems. J. Anim. Sci. 65: 963. 1987


Bracher, V. and Allen, W. R., “Videoendoscopic Examination of the Mare's Uterus: Findings in Normal Fertile


Mares”, Equine Veterinary Journal, Vol. 24 (1992), pp. 274-278


Braselton, W. E. and McShan, W. H. 1970. “Purification and properties of follicle stimulating and luteinizing


hormones from horse pituitary glands”, Arch. Biochem. Biophys. 139: 45-48.


Brethour, J. R., “The single-calfheifer system”, Kans. Agric. Sta. Rep. Frog. 570. 1989


Bristol, S. P. 1982. Breeding behavior of a stallion at pasture with 20 mares in synchronized oestrus. J. Reprod.


Fert. Suppl. 32: 71.


Brookes, A. J. and Obyme, M., “Use of cow-heifers in beef production”, J. of the Royal Agricultural Society of


England 126: 30. 1965


Buchanan, B. R., et al, “Insemination of Mares with Low Numbers of Either Unsexed or Sexed Spermatozoa”,


Theriogenology, Vol. 53, pp 1333-1344, (2000)


Burns, P. D. and Spitzer, J. C., “Influence of biostimulation on reproduction in postpartum beef-cows”, J. Anim.


Sci. 70: 358. 1992


Burwash, L. D., Pickett, B. W., Voss, J. L. and Back, D. G. 1974. “Relatioship of duration of estms to pregnancy


rate in normally cycling, non-lactating mares” J.A.V.M.A. 165: 714-716.


Byerley, D. J., et al., “Pregnancy rates of beef heifers bred either on puberal or 3rd estrus”. J Anim. Sci. 65: 645.


1987


Caslick, E. A., “The Vulva and the Vulvo-vaginal Orifice and its Relation to Genital Health of the Thoroughbred


Mare”, Cornell Veterinarian, Vol. 27, 1937, pp. 178-187


Catt, et al., “Assessment of Ram and Boar Spermatozoa During Cell-Sorting by Flow Cytometry”, Reproduction


Dom Animal, Vol. 32, 1997, pp 251-258.


Catt, S. L., et al., “Birth of a Male Lamb Derived from an In Vitro Matured Oocyte Fertilized by Intracytoplasmic


Injection of a Single Presumptive Male Sperm”, Veterinary Record 139, 1996, pp. 494-495.


Chin, W. W. and Boime, I. 1990. In: Glycoprotein Hormones. Serona Symp. Norwell, MA. pp. 19-20


Chung, Y. G., Schenk, J. L., Herickhoff, L. A. and Seidel, G. E. Jr. 1998. Artificial insemination of superovulated


heifers with 600,000 sexed sperm. J Anim. Sci. Suppl. 1. 836: 215. abstr.


Clement, F., Vincent, P., Mahla, R., Meriaux, J. C. and Palmer, E. 1998. Which insemination fertilizes when


several successive inseminations are performed before ovulation. 7th Int. Symp. Eq. Repro. 151. abstr.


Coleou, J., et al., “Essai de velage tres precoce de genisses en vue de la production de viande.” Essai Vauz/Aure


no. 50, programme USFGC-INAPG-ITFC. 1974


Cran, D. G., et al., “Production of Bovine Calves Following Separation of X- and Y-Chromosome Bearing Sperm


and In Vitro Fertilisation”, Veterinary Record 132, 1993, pp. 40-41.


Cran, D. G., et al., “Production of Lambs by Low Dose Intrauterine Insemination with Flow Cytometrically Sorted


and Unsorted Semen”, Theriogenology 47, 1997, p. 267.


Crowley, J. P. The facts of once-bred heifer production. (Ed) J. B. Owens. The maiden female-a means of


increasing meat production. School of Agric., Univ. of Aberdeen, Scotland. 1973


Curran, S. 1998. In: Equine Diagnostic Ultrasonography. Fetal gender determination. Rantanen & McKinnon. 1st


Ed. Williams and Wilkins. pp. 165-169.


Day, B. N., Abeydeera, L. R., Johnson, L. A., Welch, G. R., Wang, W. H., Cantley, T. C. and Rieke, A. 1998. Birth


of piglets preselected for gender following in vitro fertilization of in vitro matured pig oocytes by X and Y


bearing spermatozoa sorted by high speed flow cytometry. Theriogenology. 49(1): 360. abstr.


Dean, P. N., Pinkel, D. and Mendelsob. n, M. L. 1978. Hydrodynamic orientation of spermatozoa heads for flow


cytometry. Biophys. J. 23: 7-13.


Demick, D. S., Voss, J. L. and Pickett, B. W. 1976. Effect of cooling, storage, glycerization and spermatozoal


numbers on equine fertility. J. Anim. Sci. 43: 633-637.


DenDaas, J. H. G., De Jong, G., Lansbergen, L. M. T. E. and Van Wagtendonk-De Leeuw, A. M. 1998. The


relationship between the number of spermatozoa inseminated and the reproductive efficiency of dairy bulls. J


Dairy Sci. 81: 1714-1723.


Denham, A. “In-vitro studies on sandhill range forage as related to cattle preference”, M. S. Thesis. 1965.


Colorado State University.


Deutscher, G. H. “Extending interval from seventeen to nineteen days in the melengestrol acetate-prostaglandin


estrous synchronization program for heifers”. The Professional Animal Scientist 16: 164. 2000


“Diagnostic Products Corporation. Coat-A-Count”, Progesterone.com. 1998.


Dikeman, M. E. “Cattle production systems to meet future consumer demands. J. Anim. Sci. 59: 1631, 1984


Dinnyes, A., et al., “Timing of the First Cleavage Post-insemination Affects Cryosurvival of In Vitro-produced


Bovine Blastocysts”, Molec Reprod Develop 53, 1999, pp 318-324.


Donaldson, L. E., “Effect of Insemination Regimen on Embryo Production in Superovulated Cows”, The


Veterinary Record, Jul. 13, 1985, pp. 35-37


Donoghue, A. M., Byers, A. P., Johnston, L. A., Armstrong, D. L. and Wildt, D. E. 1996. Timing of ovulation after


gonadotropin induction and its importance to successful intrauterine insemination in the tiger (Panthera tigris). J.


Reprod. Fert. 107: 53-58.


Douglas, R. H. 1979. Review of superovulation and embryo transfer in the equine. Theriogenology. 11: 33-46.


Douglas, R. H., Nuti, L. and Ginther, O. J. 1974. Induction of ovulation and multiple ovulation on seasonally-


anovulatory mares with equine pituitary fractions. Theriogenology. 2(6): 133-142.


Doyle, S. P., et al. “Artificial insemination of lactating angus cows with sexed semen”. Proc. Western Sect.


Am. Soc. Anim. Sci. 50: 203. 1999


Duchamp, G., Bour, B., Combamous, Y. and Palmer, E. 1987. Alternative solutions to hCG induction of


ovulation in the mare. J. Reprod. Fert. Suppl. 35: 221-228.


Evans, M. J. and Irvine, C. H. G. 1977. Induction of follicular development, maturation and ovulation by


gonadotropin releasing hormone administration to acyclic mares. Bio. Reprod. 16: 452-462.


Ferrell, C. L. and T. G. Jenkins. “Energy-Utilization by Mature, nonpregnant, nonlactating cows of different


types” J. Anim. Sci. 58: 234. 1984


Ferrell, C. L. “Effects of post-weaning rate of gain on onset of puberty and productive performance of heifers of


different breeds. J. Anim. Sci. 55: 1272. 1982


Field, R. A., et al., “Bone-ossification and carcass characteristics of wethers given silastic implants containing


estradiol”. I. Anim. Sci. 68: 3663-3668. 1990


Field, R., R. et al., “Growth, carcass, and tenderness characteristics of virgin, spayed, and single-calfheifers.”, J.


Anim. Sci. 74: 2178. 1996


Fitzgerald, B. P., Peterson, K. D. and Silvia, P. J. 1993. Effect of constant administration of a gonadotropin-


releasing hormone agonist on reproductive activity in mares: Preliminary evidence on suppression of ovulation


during the breeding season. Am. J. Vet. Res. 54: 1746-1751.


Fluharty, F. L., et al., “Effect of weaning and diet on growth of calves.” Research and Reviews. The Ohio State


University Department of Animal Sciences. 1996


Fluharty, F. L., et al., “Effects of Age at Weaning and Diet on Growth of Calves”, Ohio Agri. Res. and Dev.


Circular, 1996, 156: 29.


Foulkes, J. A., Stewart, D. L. and Herbert, C. N. 1977. Artificial insemination of cattle using varying numbers of


spermatozoa. Vet. Rec. 101: 205.


Fugger, E. F., “Clinical Experience with Flow Cytometric Separation of Human X- and Y-Chromosome Bearing


Sperm”, Theriogenology, Vol. 52, pp. 1435-1440 (1999)


Fulwyler, M. J. 1965. Electronic separation of biological cells by volume. Science. 150: 910.


Fulwyler, M. J. 1977. Hydrodynamic orientation of cells. J Histochem. Cytochem. 25: 781-783.


Seidel, G. E.. Jr., “Artificial Insemination With X-and Y-Bearing Bovine Sperm”, Animal Reproduction and


Biotechnology Laboratory, Colorado State University, Fort Collins, CO; Germplasm and Gamete Physiology


Lab, ARS, USDA, Beltsville, MD; Atlantic Breeders Coop, Lancaster, PA; DUO Diary, Loveland, CO, USA


January 1996.


Garner, D. L., Gledhill, B. L., Pinkel, D., Lake, S., Stephenson, D., Van Dilla, M. A. and Johnson, L. A. 1983.


“Quantification of the X and Y chromosome-bearing spermatozoa of domestic animals by flow cytometry”. Biol.


Reprod. 28: 312-321.


Ginther, O. J. 1983. Sexual behavior following introduction of a stallion into a group of mares. Theriogenology.


19: 877.


Ginther, O. J. 1992. In: Reproductive Biology of the Mare. (2nd Ed.) Equiservices, Cross Plains, WI.


Gledhill, B. L. 1988. Gender preselection: historical, technical and ethical perspective. Semin Reprod. Endocrinol.


6: 385-395.


Gombe, S. and Hansel, W. “Plasma luteinizing-hormone (LH) and progesterone levels in heifers on restricted


energy intakes.” J. Anim. Sci. 37: 728. 1973


Gourley, D. D. and Riese, R. L. 1990. Laparoscopic artificial insemination in sheep. Vet. Clin. N. Amer: Food


Anim. Prac. 6(3): 615-633.


Gravert, H. 0., “Genetic Aspects of Early Calving.” In: J. C. Taylor (Ed.) The early calving of heifers and it's


impact on beef production. 59. 1975


Gregory, K. E., et al., “Characterization of biological types of cattle III.2.” Growth-rate and puberty in females. J.


Anim. Sci. 49: 461. 1979


Grimes, I. F, and T. B. Turner. “Early weaning of fall born calves II.” Post weaning performance of early and


normal-weaned calves. I. Prod. Agric. 4: 168. 1991


Grondahl, C., et al, “In Vitro Production of Equine Embryos”, Biology of Reproduction, Monograph Series I, pp.


299-307 (1995)


Guillou, F. and Combamous, Y. 1983. Purification of equine gonadotropins and comparative study of their acid-


dissociation and receptor-binding specificity. Biochem. Biophys. Acta. 755: 229-236.


Gurnsey, M. P., and Johnson, L. A., “Recent improvements in efficiency of flow cytometric sorting of X and Y-


chromosome bering sperm of domestic animals: a review”, 1998, New Zealand Society of Animal Protection,


three pages.


Hall, J. B., et al., “Effect of age and pattern of gain on induction of puberty with a progestin in beef heifers.” J.


Anim. Sci. 75: 1606. 1997


Hamano, K., et al., “Gender Preselection in Cattle with Intracytoplasmically Injected, Flow Cytometrically Sorted


Sperm Heads”, biology of Reproduction 60, 1999, pp. 1194-1197.


Harrison, L. A., Squires, E. L. and McKinnon, A. O. 1991. Comparison of hCG, buserelin and luprostiol for


induction of ovulation in cycling mares. Eq. Vet. Sci. 3: 163-166.


Harte, F. J. “System of production of bee from once calved heifers.” In: J. C. Taylor (Ed.) The early calving


of heifers and it's impact on beef production. 123. 1975


Hawk, H. W., et al., “Fertilization Rates in Superovulating Cows After Deposition of Semen on the Infundibulum


Near the Uterotubal Junction or After Insemination with High Numbers of Sperm”, XP-002103478,


Theriogenology, May 1988, Vol. 29, No. 5, pp 1131-1142.


Hemlesmeyer, G. N., et al. “Effects of lactation and prenatal androgenization on the perfomlance, carcass


coompostion and longissimus muscle sensory characteristics of heifers in the single-calfheifer system.” The


Professional Animal Scientist 15: 14. 1999


Hennegmeyer, G. N., et al. “Effects of prenatal androgenization and implantation on the performance and carcass


composition of lactating heifers in the single-calfheifer system.” The Professional Animal Scientist 15: 173. 1999


Hilton, G. G., et al., “An evaluation of current and alternative systems for quality grading carcasses of mature


slaughter cows.” I. Anim. Sci. 76: 2094. 1998


Ho, L., et al., “Influence of gender, breed and age on maturity characteristics of sheep.” J. Anim. Sci.


67: 2460-2470. 1989


Hofferer, S., Lecompte, F., Magallon, T., Palmer, E. and Combamous, Y. 1993. Induction of ovulation and


superovulation in mares using equine LH and FSH separated by hydrophobic interaction chromatography. J.


Reprod. Fert. 98: 597-602.


Hohenboken, W. D. “Applications of sexed semen in cattle production.” Therio.52: 1421. 1999


Holtan, D. W., Douglas, R. H. and Ginther, O. J. 1977. Estrus, ovulation and conception following synchronization


with progesterone, prostaglandin F2 ct and human chorionic gonadotropin in pony mares. J. Anim. Sci. 44: 431-437.


Householder, D. D., Pickett, B. W., Voss, J. L. and Olar, T. T. 1981. Effect of extender, number of spermatozoa and


hCG on equine fertility. J. Equine Vet. Sci. 1: 9-13.


Howard, J. G., Bush, M., Morton, C., Morton, F., Wentzel, K. and Wildt, D. E. 1991. Comparative semen


cryopreservation in ferrets (Mustela putorious furo) and pregnancies after laparoscopic intrauterine insemination


with frozen-thawed spermatozoa. J. Reprod. Fert. 92: 109-118.


Howard, J. G., Roth, T. L., Byers, A. P., Swanson, W. F. and Wildt, D. E. 1997. Sensivity to exogenous


gonadotropins for ovulation and laparoscopic artificial insemination in the theetab and clouded leopard. Biol.


Reprod. 56: 1059-1068.


Hunter, R. H. F. 1980. Transport and storage of spermatozoa in the female reproductive tract. Proc 4th Int. Congr.


Artira. Repro. and A.I. 9: 227-233.


Hyland, J. H., Ainsworth, C. G. V. and Langsford, D. A. 1988. Gonadotropin-releasing hormone (GnRH) delivered


by continuous infusion induces fertile estrus in mares during seasonal acyclicity. Proc. Amer. Assoc. Eq. Prac.


181-190.


Irvine, C. H. G. and Alexander, S. L. 1993. In: Equine Reproduction. Edited by McKirmon and Voss. Lea and


Febiger. Philadelphia, London. pp. 37.


Jafar, et al., “Sex Selection in Mammals: A Review”, Theriogenology, vol. 46, 1996, pp 191-200.


Jarriage, R. “Age of cows at first calving in France.” J. C. Taylor (Ed.) The early calving of heifers and it's impact


on beef production. 10. 1975


Jasko, D. J., Martin, J. M. and Squires, E. L. 1992. Effect of volume and concentration of spermatozoa on embryo


recovery in mares. Theriogenology. 37: 1233-1239


Johnson L. A., et al., 1987. Flow cytometry of X- and Y-chromosome bearing sperm for DNA using an improved


preparation method and staining with Hoechst 333-42. Garnete Research 17: 203-212


Johnson, “Gender preselection in Mammals: An overview”, Dtsch. Tierarztl. Wschr, Vol. 103, August/September 1996,


pp 288-291.


Johnson, A. L. 1986. Pulsatile release of gonadotropin releasing hormone advances ovulation in cycling mares. Biol.


Reprod. 35: 1123E 1130.


Johnson, A. L. and Becker, S. E. 1988. Use of gonadotropin-releasing hormone (GnRH) treatment to induce


multiple ovulations in the anestrous mare. Eq. Vet. Sci. 8: 130-134.


Johnson, L., “Sex Preselection by Flow Cytometric Separation of X and Y Chromosome-Bearing Sperm Based on


DNA Difference: a Review”, Reproduction and Fertilization Development 7, 1995, pp. 893-903.


Johnson, L., “Successful Gender Preselection in Farm Animals”, Agricultural Biotechnology, 1998, pp. 439-452.


Johnson, L. A. 1988. Flow cytometric determination of spermatozoa sex ratio in semen purportedly enriched for X


or Y bearing spermatozoa. Theriogenology. 29: 265. abstr.


Johnson, L. A. 1992. Gender preselection in domestic animals using flow cytometrically sorted sperm. J Anim.


Sci. Suppl 1.70: 8-18.


Johnson, L. A. 1994. Isolation of X- and Y-bearing spermatozoa for sex preselection. In: Oxford Reviews of


Reproductive Biology. Ed. HH Charlton. Oxford University Press. 303-326.


Johnson, L. A. 1995. Sex preselection by flow cytometric separation of X and Y chromosome bearing


spermatozoa based on DNA difference: a review. Reprod. Fert. Dev. 7: 893-903.


Johnson, L. A. and Schulman, J. D. 1994. The safety of sperm selection by flow cytometry. Ham. Reprod.


9(5): 758.


Johnson, L. A., “Sex preselection in swine: altered sex ratios in offspring following surgical insemination of flow-


sorted X- and Y-bearing sperm”, Reprod. Domest. Anim. 26: 309-314, 1991


Johnson, L. A., and Pinkel, D., “Modification of a Laser-Based flow Cytometer for High-Resolution DNA


Analysis of Mammalian Spermatozoa”, Cytometry 7, 1986, pp 268-273.


Johnson, L. A., et al., “Sex Preselection in Rabbits: Live Births from X and Y Sperm Separated by DNA and Cell


Sorting”, Exceptional Paper-Rapid Publication, XP-002103476, Biology of Reproduction 41, 199-203, 1989, pp


199-203.


Johnson, L. A., et al., 1994. Improved flow sorting resolution of X- and Y-chromosome bering viable sperm


separation using dual staining and dead cell gating. Cytometry 17 (suppl 7): 83.


Johnson, L. A., Flook, J. P., Look, M. V. and Pinkel, D. 1987b. Flow sorting of X and Y chromosome bearing


spermatozoa into two populations. Gam. Res. 16: 203-212.


Johnson, L. A., Welch, G. R., Rens, W. and Dobrinsky, J. R. 1998. Enhanced flow cytometric sorting of


manunalian X and Y sperm: high speed sorting and orienting no77.1e for artificial insemination. Theriogenology.


49(1): 361. abstr.


Joseph, R. L. “Carcass composition and meat quality in once calved heifers.” In: J. C. Taylor (Ed.) The early


calving of heifers and it's impact on beef production. 143. 1975


Joseph, R. L. and J. P. Crowley. “Meat quality of once-calved heifers.” Irish J. of Agric. Research 10: 281. 1971


Kachel, V., et al., A Uniform Lateral Orientation, Cused by Flow Forces, of Flat Particles in Flow-Through


Systems@, The Journal of Histochemistry and Cytochemistry, 1997, Vol. 25, No. 7, pp 774-780.


Kanayama, K., Sankai, T., Nariaik, K., Endo, T. and Sakuma, Y. 1992b. Pregnancy by means of tubal


insemination and subsequent spontaneous pregnancy in rabbits. J. Int. Med. Res. 20: 401-405.


Karabinus, et al., “Effects of Egg Yolk-Citrate and Milk Extenders on Chromatin Structured Viability of


Cryopreserved Bull Sperm”, Journal of Dairy Science, Vol. 74, No. 11, 1999, pp 3836-3848.


Keeling, P. C. B. M. S. T. G. D. I. a. P. W. J., “A modeling study of once-bred heifer beef production.”


Proceedings of the New Zealand Society of Animal Production. 51. 1991


Kilicarslan, M. R., Horoz, H., Senunver, S. C., Konuk, S. C., Tek, C. and Carioglu, B. 1996. Effect of GrnRH and


hCG on ovulation and pregnancy in mares. Vet. Rec. 139: 119-120.


Kinder, J. E., et al. “Endocrine basis for puberty in heifers and ewes.” J. Repro. and Fertility 393. 1995


Klindt, J. and J. D. Crouse. “Effect of ovariectomy and ovariectomy with ovarian auto transplantation on feedlot


performance and carcass characteristics of heifers.” J. Anim. Sci. 68: 3481. 1990


Klosterman, E. W. and C. F. Parker. “Effect of size, beed and sex upon feed efficiency in beef cattle.” North


Central Regional Research Publication 235, Ohio Agric. Research and Development Center 1090: 3. 1976


Kniffen, D. M., Wagner, W. R., and Lewis. P. E. “Effects of long-tenn estrogen implants in beef heifers.” I. Anim.


Sci. 77: 2886. 1999


Koch, R. M., et al., “Characterization of biological types of cattle-Cycle-II.3.” Carcass composition, quality and


palatability. I. Anim. Sci. 49: 448. 1919


Lapin, D. R. and Ginther, O. J. 1977. Induction of ovulation and multiple ovulations in seasonally anovulatory and


ovulatory mares with an equine pituitary extract. J. Anim. Sci. 44: 834-842.


Laster, D. B., “Factors affecting dystocia and effects of dystocia on subsequent reproduction in beef-cattle.” J.


Anim. Sci. 36: 695. 1973


Lawrenz, R. 1985. Preliminary results of non-surgical intrauterine insemination of sheep with thawed frozen


semen. J S Afr. Vet. Assoc. 56(2): 61-63.


Levinson, G., et al, 1995. DNA-based X-enriched sperm separation as an adjunct to preimplantation genetic


testing for the preparation of X-linked disease. Mol. Human Reprod. 10: 979-982.


Lindsey, A., et al., A Hysteroscopic Insemination of Mares with Nonfrozen Low-dose Unsexed or Sex-sorted


Spermatozoa@, currently unpublished, pp. 1-15.


Linge, F. 1972. Faltforsok med djupfrost sperma (field trials with frozen sperm). Farskotsel. 52: 12-13.


Lonergan, P., et al., “Effect of Time Interval from Insemination to First Cleavage on the Development of Bovine


Embryos In Vitro and In Vivo”, Theriogenology, 1999, p. 326


Long, C. R., Rath, D., Welch, G. R., Schreier, L. L., Dobrinsky, J. R. and Johnson, L. A. 1998. AIn vitro production


of porcine embryos from semen sorted for sex with a high speed cell sorter: comparison of two fertilization


media.@, Theriogenology. 49(1): 363. abstr.


Loy, R. G. and Hughes, J. P. 1965. The effects of human chorionic gonadotropin on ovulation, length of estrus,


and fertility in the mare. Cornell Vet. 56: 41-50.


Lu, K. H., et al., “In Vitro Fertilization with Flow-Cytometrically-Sorted Bovine Sperm”, Theriogenology 52,


1999, pp. 1393-1405.


Lynch, I. M., et al., “Influence of timing of gain on growth and reproductive performance of beef replacement


heifers.” I. Anim. Sci. 75: 1715. 1997


Macmillan, K. L. and A. M. Day, “Prostaglandin F2a - A Fertility Drug In Dairy Cattle?”,, Ruakura Animal


Research Station, Private Bag, Hamilton, New Zealand, Theriogenology, September 1982, Vol. 18 No. 3, pages


245-253


Martin, A. H., et al., “Characteristics of youthful beef carcasses in relation to weight, age and sex .3. meat quality


attributes.” Canadian I. Anim. Sci. 51: 305. 1971


Martin, L. C., J. S. Brinks, R. M. Bourdon, and L. V. Cundiff. “Genetic-effects on beef heifer puberty and


subsequent reproduction.” J. Anim. Sci. 70: 4006. 1992


Matsuda, Y. and Tobari, I. 1988. Chromosomal analysis in mouse eggs fertilized in vitro with sperm exposed to


ultraviolet light (UV) and methyl and ethyl methanesulfonate (MMS and EMS). Mutat. Res. 198: 131-144.


Matulis, R. J., F. K. Mckeith, D. B. Faulkner, L. L. Berger, and P. George. “Growth and carcass characteristics of


cull cows after different times-on-feed.” J. Anim. Sci. 65: 669. 1987


Mauleon, P. “Recent research related to the physiology of puberty.” Commission of the European Communities.


The early calving of heifers and it's impact on beef production. 1975


Maxwell, W. and Johnson, L., “Chlortetracycline Analysis of Boar Spermatozoa after Incubation, Flow


Cytometric Sorting, Cooling, or Cryopreservation”, Molecular Reproduction and Development 46, 1997, pp. 408-418.


Maxwell, W. M. C., Evans, G., Rhodes, S. L., Hillard, M. A. and Bindon, B. M. 1993. Fertility of Superovulated


Ewes after Intrauterine or Oviductal Insemination with Low Numbers of Fresh or Frozen-Thawed Spermatozoa.


Reprod. Fertil. Dev. 5: 57-63.


Mccomlick, R. J. “The flexibility of the collagen compartment of muscle.” Meat Sci. 36: 79. 1994


McCue, P. M. 1996. Superovulation. Vet. Clin. N. Amer. Eq. Prac. 12: 1-11.


McCue, P. M., Fleury, J. J., Denniston, D. J., Graham, J. K. and Squires, E. L. 1997. Oviductal insemination in the


mare. 7th Int Symp. Eq. Reprod. 133. abstr.


McDonald, L. E. 1988. Hormones of the pituitary gland. In: Veterinary Pharmacology and Therapeutics. 6th ed.


Edited by N. H. Booth and L. E. McDonald. Ames, Iowa State Univ. Press. pp. 590.


McKenna, T., Lenz, R. W., Fenton, S. E. and Ax, R. L. 1990. Nonreturn rates of dairy cattle following uterine body


or comual insemination. J. Dairy Sci. 73: 1179-1783.


McKinnin, A. and Voss, J., “Equine Reproduction”, Lea & Febiger, Philadelphia, 1993, pp 291, 299-302, 345-348,


739-797.


McKinnon, A. et al, 1993. Predictable ovulation in mares treated with an implant of the GnRH analogue


deslorelin. Eq. Vet. J. 25: 321-323.


McKinnon, A. O. et al, 1996. Repeated use of a GnRH analogue deslorelin (Ovuplant) for hastening ovulation in


the transitional mare. Eq. Vet. J. 29: 153-155.


McNutt, et al., “Flow Cytometric Sorting of Sperm: Influence on Fertilization and Embryo/Fetal Development in


the Rabbits”, Molecular Reproduction and Development, Vol. 43, 1996, pp 261-267.


Meilgaard, M., G. V. Civille, and B. T. Carr. “Sensor Evaluation Techniques.” CRC Press Inc., Boca Raton, FL.


1991


Meinert, C., et al., “Advancing the time of ovulation in the mare with a short-term implant releasing the GnRH


analogue deslorelin”, Equine Veterinary Journal, 25, 1993, pp 65-68.


Merton, J., et al., “Effect of Flow Cytometrically Sorted Frozen/Thawed Semen on Success Rate of In Vitro


Bovine Embryo Production”, Theriogenology 47, 1997, pp. 295.


Meyers, P. J., Bowman, T., Blodgett, G., Conboy, H. S., Gimenez, T., Reid, M. P., Taylor, B. C., Thayer, J., Jochle, W.


and Trigg, T. E. 1997. Use of the GnRH analogue, deslorelin acetate, in a slow release implant to accelerate


ovulation in oestrous mares. Vet. Rec. 140: 249-252.


Michaels, Charles, “Beef A.I. Facilities that work”, Proc. Fifth N.A.A.B Tech. Conf. A.I. Reprod. Columbia, MO.


pp. 20-22.


Michel, T. H., Rossdale, P. D. and Cash, R. S. G. 1986. Efficacy of human chorionic gonadotrophin and


gonadatrophin releasing hormone for hastening ovulation in Thoroughbred mares. Eq. Vet. J. 6: 438-442.


Miller, S. J. 1986. Artificial Breeding Techniques in Sheep. In Morrow, D. A. (ed): Current Therapy in


Theriogenology 2. Philadelphia, WB Saunders.


Mirskaja, L. M. and Petrapavlovskii, V. V. 1937. The reproduction of normal duration of heat in the mare by the


administration of Prolan. Probl. Zivotn. Anim. Breed. Abstr. 5: 387.


Moe, P. W., H. F. Tyrrell, and W. P. Flatt. “Energetics of bodytissue mobilization.” J. of Dairy Sci. 54: 548.


Molinia, F. C., Gibson, R. J., Brown, A. M., Glazier, A. M. and Rodger, J. C. 1998. Successful fertilization after


superovulation and laparoscopic intrauterine insemination of the brushtail possum, Trichosurus vulpecula, and


tammar wallaby, Macropus eugenii. J. Reprod. Fert. 112: 9-17.


Moms, S. T., et al., “Biological efficiency: How relevent is this concept to beef cows in a mixed livestock


seasonal pasture supply context?” Proceedings of the New Zealand Society of Animal Production 54: 333. 1994


Monensin.” J. Anim. Sci. 55: 357-362. 1982


Moran, C., J. F. Quirke, and J. F. Roche. “Puberty in heifers-a review.” Animal Reproduction Sci. 18: 167. 1989


Morcom, C. B. and Dukelow, W. R. 1980. A research technique for the oviductal insemination of pigs using


laparoscopy. Lab. Anim. Sci. 1030-I031.


Morgan, J. B., et al., “National beef tenderness survey.” J. Anim. Sci. 69: 3274. 1991


Morris, L. H., et al., “Hysteroscopic insemination of small numbers of spermatozoa at the uterotubal junction of


preovulatory mares”, Journal of Reproduction and Fertility, Vol. 118, pp. 95-100 (2000)


Moseley, W. M., et al., 1982. “Relationship of Growth and Puberty in Beef Heifers Fed


Mount, D. E. “Fibrous and non-fibrous carbohydrate supplementation to ruminants grazing forage from small


grain crops.” M. S. Thesis. Colorado State University. 2000


Muller, W. and Gautier, F. 1975. Interactions of heteroaromatic compounds with nucleic acids. Euro. J Biochem.


54: 358.


Munne, S. 1994. Flow cytometry separation of X and Y spermatozoa could be detrimental to human embryos.


Hum. Reprod. 9(5): 758


Myers, S. E., “Performance and carcass traits of early-weaned steers receiving either a pasture growing period or


a finishing diet at weaning.” J. Anim. Sci. 77: 311. 1999


Myers, S. E., et al., “Comparison of three weaning ages on cow-calfperformance and steer carcass traits.” J.


Anim. Sci. 77: 323. 1999


Myers, S. E., et al., “Production systems comparing early weaning to normal weaning with or without creep


feeding for beef steers.” J. Anim. Sci. 77: 300. 1999


Nix, I. P., I. C. Spitzer, and P. I. Chenoweth. “Serum testosterone concentration, efficiency of estrus detection and


libido expression in androgenized beef cows.” Therio. 49: 1195. 1998


Nowshari, et al., “Superovulation of Goats with Purified pFSH Supplemented with Defined Amounts of pLH”,


Theriogenology, Vol 43, 1995, pp 797-802.


Nowshari, et al., Theriogenology, Vol 43, 1995, pp 797-802.


NRC. Nutrient requirements for beef cattle. National Academy of Sci. National Research Council, Washington,


DC. 1996


Olson, S. E. and Seidel, G. E. Jr., “Reduced Oxygen Tension and EDTA improve Bovine Zygote Development in a


Chemically Defined Medium”, Journal of Animal Science 78, 2000, pp. 152-157.


Owen, J. B. “The maiden female-a means of increasing meat production.” Proc. Symp. on the use of once bred


heifers and gilts. 1973


Pace, M. M. and Sullivan, J. J. 1975. Effect of timing of insemination, numbers of spermatozoa and extender


components on pregnancy rates in mares inseminated with frozen stallion semen. J Reprod. Fert. Suppl. 23: 115-121.


Parent US Application 09/001,394, entitled “Sheath Fluids and Collection Systems for Sex-Specific Cytometer


Sorting of Sperm”, filed on Dec. 31, 1997, 87 total pages which includes four drawings.


Parrish, J., et al., “Capacitation of Bovine Sperm by Heparin”, Technology of Reproduction 38, 1988, pp. 1171-1180.


PCT application, PCT/US99/17165, filed 28 Jul. 1999, entitled “Equine System for Non-Surgical Artificial


Insemination”.


PCT application, PCT/US98/27909, filed 31 Dec. 1998, entitled “Commercially Practical Sex-Specific


Insemination of Mammals”.


Peippo, J., et al., “Sex diagnosis of equine preimplantation embryos using the polymerase chain reaction”,


Theriogenology, Vol. 44 619-627 (1995)


Perry, E. J. 1968. Historical Background In: The Artificial Insemination of Farm Animals. 4th ed. Edited by E. J. Perry.


New Brunswick, Rutgers University Press, pp. 3-12.


Petersen, G. A., et al, “Cow and Calf Performance and Economic Considerations of Early Weaning of Fall-Born


Beef Calves”, J. Anim. Sci., 1987, 64: 15, pp 15-22.


Petit, M. “Early Calving in Suckling Herds.” In: (Ed.) J. C. Taylor. The early calving of heifers and it's impact on


beef production. 157. 1975


Pickett GW, et al., “Management of the mare for maximum reproductive efficiency”, Bulletin No. 6 Colorado


State University, Ft. Collins CO. (1989)


Pickett, B. W, et al., 1976. Factors influencing the fertility of stallion spermatozoa in an A.I. program. Proc. 8th


Internat. Congr. Anim. Reprod. A.I. Krakow, Poland. 4: 1049-1052.


Pickett, B. W. and Back, D. G. 1973. Procedures for preparation, collection, evaluation and insemination of


stallion semen. C. S. U. Exp. Sta. Artira. Reprod. Lab. Gen. Series Bull. 935.


Pickett, B. W., and Shiner, K. A., “Recent developments in artificial insemination in horses”, Livestock Production


Science, 40, 1994, pp 31-36.


Pickett, B. W., Burwash, L. D., Voss, J. L. and Back, D. G. 1975b. Effect of seminal extenders on equine fertility. J.


Anim. Sci. 40: 1136-1143.


Pinkel, D., et al, “Flow Cytometric Determination of the Proportions of X- and Y-Chromosome-Bearing Sperm


in Samples of Purportedly Separated Bull Sperm”, Journal of Animal Science, Vol. 60, No. 5, 1985, pp 1303-1307.


Pinkel, D., Gledhill, B. L., Van Dilla, M. A., Stephenson, D. and Watchmaker, G. 1982b. High resolution DNA


measurements of mammalian spermatozoa. Cytometry. 3: 1-9. (1982b)


Polge, E. J., “Historical Perspective of AI: Commercial Methods of Producing Sex Specific Semen, IVF


Procedures”, Proceedings of the 16th Technical Conference on Artificial Insemination & Reproduction,


Cambridge, England, 1996, pp. 7-11.


Purvis, H. T. and J. C. Whittier. “Effects of ionophore feeding and anthelmintic administration on age and weight


at puberty in spring-bom beef heifers.” J. Anim. Sci. 74: 736-744. 1996


Randel, R. D. “Nutrition and postpartum rebreeding in cattle.” J. Anim. Sci. 68: 853. 1990


Rath, D., et al., “Low Dose Insemination Technique in the Pig”, Boar Semen Preservation IV, 2000, pp. 115-118.


Rath, D., et al., “Production of Piglets Preselected for Sex Following in Vitro Fertilization with X and Y


Chromosome-Bearing Spermatozoa Sorted by Flow Cytometry”, Theriogenology, 47, 1997, pp 795-800.


Reiling, B. A., et al., “Effect of Prenatal Androgenization on Performance, Location, and Carcass and Sensory


Traits on Heifers in Single Calf Heifer System”, J. Anim. Sci., 1995, 73: 986, pp 986-992.


Rens, W., et al, “A Novel Nozzle for More Efficient Sperm Orientation to Improve Sorting Efficiency of X and Y


Chromosome-Bearing Sperm”, Cytometry 33, 1998, pp. 476-481


Rens, W., et al., “Improved Flow Cytometric Sorting of X- and Y-Chromosome Bearing Sperm: Substantial


Increase in Yield of Sexed Semen”, Molecular Reproduction and Development, 1999, pp 50-56.


Rieger, D., et al, “The Relationship Between the Time of First Cleavage of Fertilized Cattle Oocytes and Their


Development to the Blastocyst Stage”, Theriogenology, 1999, pp. 190.


Ritar, A. and Ball, A. 1991. Fertility of young cashmere goats after laparoscopic insemination. J. Agr. Sci.


117: 271-273.


Roberts, J. R. 1971. In: Veterinary Obstetrics and Genital Diseases. Ithaca, New York. pp. 740-749.


Romita, A. “Some considerations on the beef situation in Italy.” (Ed.) J. C. Taylor. The early calving of heifers


and it's impact on beef production. 23. 1975


Roth, T. L., Wolfe, B. A., Long, J. A., Howard, J. and Wildt, D. E. 1997. Effects of equine chorionic gonadotropin,


human chorionic gonadotropin, and laparoscopic artificial insemination on embryo, endocrine, and luteal


characteristics in the domestic cat. Bio Reprod. 57: 165-171.


Roux, M., J. H. Teissier, J. Bonnemaire, and R. Dumont. “Early calving heifers versus maiden heifers for beef-


production from dairy herds. 1.” The effects of genotype (Friesian and Charolais × Friesian) and 2 feeding levels


in the rearing period on growth and carcass quality. Livestock Prod. Sci. 16: 1. 1987


Rowley, H-S., Squires, E. L. and Pickett, B. W. 1990. Effect ofinsemination volume on embryo recover}′ in mares.


J. Equine Vet. Sci. 10: 298-300.


Roy, J. H. B. “Rearing dairy-herd replacements.” J. of the Soc. of Dairy Technology 31: 73-79. 1978


Rutter, L. M., et al., “Effect of abomasal infusion of propionate on the GnRH-induced luteinizing-hormone


release in prepuberal heifers.” J. Anim. Sci. 56: 1167. 1983


Salamon, S. 1976. Artificial Insemination of Sheep. Chippendale, New South Whales. Publicity Press. p.83-84.


Salisbury, G. W. and VanDemark, N. L. 1961. Physiology of Reproduction and Artificial Insemination of Cattle.


San Francisco: Freeman and Company.


SAS, SAS/STAT, “Useres Guide (Release 6.03)”, SAS Inst. Inc., Cary, NC., 1988. 3 pages


SAS. “The SAS System for Windows.” Ver 7.0. ReI 6.12. SAS Inst. Inc., Cary, NC. 2000


Schenk, J. L., T. K. Suh, D. G. Cran, and G. E. Seidel. “Cryopreservation of flow-sorted bovine spennatozoa.”


Therio. 52: 1375. 1999


Schenk, J. L. and Seidel, Jr., G. E., “Imminent Commercialization of Sexed Bovine”, Proceedings, The Range Beef


Cow Symposium XVL, 1999, pp 89-96.


Schillo, K. K., J. B. Hall, and S. M. Hileman. “Effects of nutrition and season on the onset of puberty in the beef


heifer.” J. Anim. Sci. 70: 3994. 1992


Schmid R. L., et al, “Fertilization with Sexed Equine Spermatozoa Using Intracytoplasmic Sperm Injection and


Oviductal Insemination”, 7th International Symposium On Equine Reproduction, pp. 139 (Abstract) (1998)


Schnell, T. D., K. E. Belk, J. D. Tatum, R. K. Miller, and G. C. Smith. “Performance, carcass, and palatability


traits for cull cows fed high-energy concentrate diets for 0, 14, 28, 42, or 56 days.” J. Anim. Sci. 75: 1195. 1997


Schoonmaker, J. P., et al., “Effects of age at weaning and implant strategy on growth of steer calves.” J. Anim.


Sci. (SuppI2) 76: 71 (Abstr.). 1998


Seidel, G. E. and L. A. Johnson. “Sexing mammalian spenn-overview.” Therio. 52: 1267. 1999


Seidel, G. E., “Insemination of heifers with sexed sperm.” Therio. 52: 1407. 1999


Seidel, G. E. Jr., “Uterine Horn Insemination of Heifers With Very Low Numbers of Nonfrozen and Sexed


Spermatozoa”, Atlantic Breeders Cooperative, Theriogenology 48: pp. 1255-1264, (1997)


Seidel, G. E. Jr., Cran, D. G., Herickoff, L. A., Schenk, J. L., Doyle, S. P. and Green, R. D. 1999. Insemination of


heifers with sexed frozen or sexed liquid semen. Theriogenology. 51. (in press). abstr.(1999)


Seidel, G. E., Jr., et al, “Artificial Insemination With X- and Y-Bearing Bovine Sperm”, Animal Reproduction and


Biotechnology Laboratory, Colorado State University, Fort Collins, CO; Germplasm and Gamete Physiology


Lab, ARS, USDA, Beltsville, MD; Atlantic Breeders Coop, Lancaster, PA; DUO Diary, Loveland, CO, USA


January 1996.


Seidel, G. E., Jr., et al, “Insemination Of Heifers With Very Low Numbers Of Frozen Spermatozoa.”, Colorado


State University, Fort Collins, Atlantic Breeders Cooperative, Lancaster, PA, DUO Dairy, Loveland, CO, July


1996.


Seidel, Jr., G. E., et al, “Insemination of Holstein Heifers With Very Low Numbers Of Unfrozen Spermatozoa”,


Colorado State University, Atlantic Breeders Cooperative, (1995)


Seidel, Jr., G. E. et al, “Insemination Of Heifers With Very Low Numbers Of Frozen Spermatozoa”, Colorado


State University (1996)


Sell, R. S., D. L. Watt, R. D. Little, and T. A. Petry. “Single-calfheifer profitability compared to other north


dakota beef production systems.” Department of Ag. Eco., North Dakota State University, Ag. Econ. Rpt. 20.


Senger, P. L., Becker, W. C., Davidge, S. T., Hillers, J. K. and Reeves, J. J. 1988. Influence of comual insemination


on conception rates in dairy cattle. J Anim. Sci. 66: 3010-3016.


Shackelford, S. D., M. Koohmaraie, and T. L. Wheeler. “Effects of slaughter age on meat tenderness and usda


carcass maturity scores of beef females.” I. Anim. Sci. 73: 3304. 1995


Shelton, J. N. and Moore, N. W. 1967. The response of the ewe tot pregnant mare gonadotropin and to horse


anterior pituitary extract. J. Reprod. Fert. 14: 175-177.


Shilova, A. V., Platov, E. M. and Lebedev, S. G. 1976. The use of human chorionic gonadothrophin for ovulation


date regulation in mares. VIIIth Int. Congr. On Anim. Repro. and A.I. 204-208.


Shorthose, W. R. and P. V. Harris. “Effect of animal age on the tenderness of selected beef muscles.” I. Food Sci.


55: 1-. 1990


Silbennann, M., “Honnones and Cartilage. Cartilage: development, differentiation, and growth.” pp. 327-368.


Academic Press, Inc. 1983


Simon, M., “The effect of management option on the perfonnance of pregnant feedlot heifers.” M. S. Thesis.


Kansas State University. 1983


Smith, G. C., B. W. Berry, J. W. Savell, and H. R. Cross. “USDA maturity indexes and palatability of beefrib


steaks.” J. of Food Quality 11: 1. 1988


Smith, G. C., et al., “Relationship of usda maturity groups to palatability of cooked beef.” J. of Food Sci. 47: 1100.


1982


Squires, E., “Simultaneous Analysis of Multiple Sperm Attributes by Flow Cytometry□, Diagnostic Techniques


and Assisted Reproductive Technology, The Veterinary Clinics of North America, Equine Practice, Vol. 12, No.


1, April 1996, pp127-130.


Squires, E. L, Moran, D. M., Farlin, ME., Jasko, D. J., Keefe, T. J., Meyers, S. A., Figueiredo, E., McCue, P. M. and


Jochle, W. 1994. Effect of dose of GnRH analogue on ovulation in mares. Theriogenology. 41: 757-769.


Squires, E. L., “Early Embryonic Loss in Equine Diagnostic Ultrasonography”, 1st Ed. pp 157-163 Eds Rantanen


& McKinnon. Williams and Wilkins, Baltimore, Maryland (1998)


Squires, E. L.., et al, “Cooled and frozen stallion semen”, Bulletin No. 9, Colorado State University, Ft. Collins,


CO. (1999)


Stellflug, J. N., D. K. Ran, R. D. Randel, and Eo L. Moody. “Plasma estrogens in peri-parturient cow.” Therio


10: 269. 1978


Stevenson, J. S., M. W. Smith, J. R. Jaeger, L. R. Corah, and D. G. Lefever. “Detection of estrus by visual


observation and radiotelemetry in peripubertal, estrus-synchronized beefheifers.” J. Anim. Sci. 74: 729. 1996


Story, C. E., R. J. Rasby, R. T. Clark, and C. T. Milton. “Age of calf at weaning of spring-calving beef cows and


the effect on cow and calf perfomlance and production economics.” J. Anim. Sci. 78: 1403. 2000


Sullivan, J. J., Parker, W. G. and Larson, LL. 1973. Duration of estrus and ovulation time in nonlactating mares


given human chorionic gonadotropin during three successive estrous periods. J.A.V.M.A. 162: 895-898.


Swanson, E. W. “Future research on problems of increasing meat production by early calving.” Comm. Eur.


Commun., Eur. 5545. 1975. The Early Calving of Heifers and its Impact on Beef Production.


Taljaard, T. L., Terblanche, S. J., Bertschinger, H. J. and Van Vuuren, L. J. 1991. The effect of the laparoscopic


insemination technique on the oestrus cycle of the ewe. J. S Afr. Vet. Assoc. 62(2): 60-61.


Tatum, J. D., G. C. Smith, B. W. Berry, C. E. Murphey, F. L. Williams, and Z. L. Carpenter. “Carcass


characteristics, time on feed and cooked beef palatability attributes.” J. Anim. Sci. 50: 833. 1980


Taylor, C. S., Moore, A. J. Thiessen, R. B. and Bailey, C. M., AFRC Animal Breeding Research Organisation, West


Mains Road, Edinburg EH9 3JQ, “Efficiency of Food Utilization in Traditional and Sex-Controlled Systems of


Beef Production”, pp 401-440.


Taylor, S. C. S., A. J. Moore, R. B. Thiessen, and C. M. Bailey. “Efficiency of food utilization in traditional and


sex-controlled systems of beef-production.” Animal Production 40: 401. 1985


Tervit, H. R., et al., “Successful Culture In Vitro of Sheep and Cattle Ova”, Agricultural Research Council, Unit


of Reproduction Physiology and Biochemistry, University of Cambridge, 1972, p. 493-497.


Unruh, J. A. “Effects of endogenous and exogenous growth-promoting compounds on carcass composition, meat


quality and meat nutritional-value~.” J. Anim. Sci. 62: 1441. 1986


US Application, 09/454,488, entitled “Improved Flow Cytometer Nozzle and Flow Cytometer Sample Handling


Methods”, filed Dec. 3, 1999.


US Application, 60/238,294, entitled “Hysteroscopic Insemination of Mares” filed Oct. 5, 2000.


US Application, 09/448,643, entiled “Multiple Sexed Embryo Production System for Mammals”, filed


Nov. 24, 1999.


US Application, 09/511,959 entitled “Methods For Improving Sheath Fluids and Collection Systems For Sex-


Specific Cytometer Sorting of Sperm”, filed Feb. 23, 2001.


US Application 09/001,394, entitled “Sheath Fluids and Collection Systems for Sex-Specific Cytometer Sorting


of Sperm”, filed on Dec. 31, 1997, 87 total pages which includes four drawings.


US Application 09/015,454, entitled “System for Improving Yield of Sexed Embryos in Mammals”, filed on


Jan. 29, 1998, 59 total pages which includes drawings.


US Application 60/211093, entitled “Integrated System for Herd Management Using Sexed Semen”, filed Jun.


12, 2000.


US Application entitled “System For Separating Frozen-Thawed Sperm Cells Into X-Chromosome And Y-


Chromosome Bearing Populations”, filed Nov. 28, 2000.


US Application Serial Number 60/094,720, entitled “System for Low Dose Insemination of Equines”, filed Jul.


30, 1998.


US Application Serial Number 60/113,143, entitled “Equine Insemination System”, Dec. 18, 1998.


US Application Serial Number 60/203,089, entitled “Detector System for Resolving Small Differences in Photo-


generated Signal”, filed May 9, 2000.


US Application Serial Number 60/211,093, entitled “Integrated System for Herd Management Using Sexed


Semen”, filed Jun. 12, 2000.


US Application Serial Number 60/224,050., entitled “Integrated System for Herd Management With Terminal-


Cross Program Using Sexed Semen”, filed Aug. 9, 2000.


USDA “Official United States standards for grades of carcass beef.” Agric, Marketing Serv., USDA. Washington,


DC. 1997


Vazquez, J. et al., “Nonsurgical Uterotubal Insemination in the Mare”, Proceedings of the 44th Annual


Convention of the American Association of Equine Practitioners, Baltimore, Maryland, Dec. 6-9, 1998, Vol.


44, pp 68-69


Vazquez, J., et al., “A.I. in Swine; New Strategy for Deep Insemination with Low Number of Spermatozoa Using


a Non-surgical Methodology”, 14th International Congress on Animal Reproduction, Vol. 2, Stockhlom, July,


2000, p. 289.


Vazquez, J., et al., “Development of a Non-surgical Deep Intra Uterine Insemination Technique”, IV International


Conference on Boar Semen Preservation, Maryland, August, 1999, p 35 and photo of display board.


Vazquez, J., et al., “Successful Low-Dose Insemination by a Fiberoptic Endoscope Technique in the Sow”,


Proceedings Annual Conference of the International Embryo Transfer Society, Netherlands, Theriogenology, Vol.


53, January, 2000, pp. 201.


Vazquez, J., et al., “Hypoosmotic Swelling Test as Predictor of the Membrane Integrity in Boar Spermatozo”,


Boar Semen Preservation IV, IVth International Conference on Boar Semen Preservation, Maryland, pp. 263.


Vidament, M., Dupere, A. M., Julienne, P., Evain, A., Noue, P. and Palmer, E. 1997. Equine frozen semen


freezeability and fertility field results. Theriogenology. 48: 907.


Vincent, B. C., S. D. M. Jones, L. E. Jeremiah, M. A. Price, and J. A. Newman. “Carcass characteristics and meat


quality of once-calved heifers.” Canadian J. Anim. Sci. 71: 311. 1991


Voss, J. L. and Pickett, B. W. 1976. Reproductive management of the broodmare. C.S.U. Exp. Sta. Anim. Reprod.


Lab. Gen. Series. Bull. 1-12


Voss, J. L., Pickett, B. W., Burwash, L. D. and Daniels, W. H. 1974. Effect of human chorionic gonadotropin on


duration of estrous cycle and fertility of normally cycling, nonlactating mares. J.A.V.M.A. 165: 704-706.


Voss, J. L., Squires, E. L., Pickett, B. W., Shideler, R. K. and Eikenberry, D. J. 1982. Effect of number and


frequency of inseminations on fertility in mares. J. Reprod. Fertil. Suppl. 32: 53-57.


Waggoner, A. W., M. E. Dikeman, I. R. Brethour, and K. E. Kemp. “Performance, carcass, cartilage calcium,


sensory and collagen traits of longissimus muscles of open versus 30-month-old heifers that produced one calf.” I.


Anim. Sci. 68: 2380. 1990


Welch G. R., et al., 1994. Fluidic and optical modifications to a FACS IV for flow sorting of X- and Y-


chromosome bearing sperm based on DNA. Cytometry 17 (suppl. 7): 74.


Welch, G., et al., “Flow Cytometric Sperm Sorting and PCR to Confirm Separation of X- and Y-Chromosome


Bearing Bovine Sperm□, Animal Biotechnology, 6 (2), 131-139, 1995, pp 131-139.


Wheeler, T. L., L. v. Cundiff, and R. M. Koch. “Effect of marbling degree on beef palatability in Bos-Taurus and


Bos-Indicus cattle.” J. Anim. Sci. 72: 3145. 1994


Wickersham, E. W. and L. H. Schultz. “Infilience of age at first breeding on growth, reproduction, and production


of well-fed holstein heifers.” J. Dairy Sci. 46: 544. 1963


Wilson, C. G., Downie, C. R., Hughes, J. P. and Roser, J. F. 1990. Effects of repeated hCG injections on


reproductive efficiency in mares. Eq. Vet. Sci. 4: 301-308.


Wilson, M. S. 1993. Non-surgical intrauterine artificial insemination in bitches using frozen semen. J. Reprod. Fert


Suppl. 47: 307-311.


Woods, J. and Ginther, O. J. 1983. Recent studies related to the collection of multiple embryos in mares.


Theriogenology. 19: 101-108.


Woods, J., Bergfelt, D. R. and Ginther, O. J. 1990. Effects of time of insemination relative to ovulation on


pregnancy rate and embryonic-loss rate in mares. Eq. Vet. J. 22(6): 410-415.


XP-002103478, File Biosis, one page.









In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such interpretation, common dictionary definitions should be understood as incorporated for each term and all definitions, alternative terms, and synonyms such as contained in the Random House Webster's Unabridged Dictionary, second edition are hereby incorporated by reference. However, as to each of the above, to the extent that such information or statements incorporated by reference might be considered inconsistent with the patenting of this/these invention(s) such statements are expressly not to be considered as made by the applicant(s).


In addition, unless the context requires otherwise, it should be understood that the term “comprise” or variations such as “comprises” or “comprising”, are intended to imply the inclusion of a stated element or step or group of elements or steps but not the exclusion of any other element or step or group of elements or steps. Such terms should be interpreted in their most expansive form so as to afford the applicant the broadest coverage legally permissible in countries such as Australia and the like.


Thus, the applicant(s) should be understood to have support to claim at least: i) each of the staining, separation, isolation, insemination, or fertilization procedures as herein disclosed and described, ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these devices and methods, iv) those alternative designs which accomplish each of the functions shown as are disclosed and described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, ix) methods and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, and x) the various combinations and permutations of each of the elements disclosed.


The claims set forth in this specification are hereby incorporated by reference as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incorporated content of such claims as additional description to support any of or all of the claims or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incorporated content of such claims or any element or component thereof from the description into the claims or vice-versa as necessary to define the subject matter for which protection is sought by this application or by any subsequent continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incorporated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon.

Claims
  • 1. A method of producing a frozen-thawed sorted artificial insemination sample comprising: thawing frozen sperm cells;staining said thawed sperm cells with a concentration of a Hoechst 33342 greater than 40 micromolar;establishing the staining temperature between about 30° C. and about 40 C.°;determining a sex characteristic of said sperm cells;separating said sperm cells according to the determination of their sex characteristic;isolating sperm cells separated according to the determination of their sex characteristic in a collection element at a rate of greater than 1000 sperm per second for either X-chromosome bearing sperm or Y-chromosome bearing sperm;establishing a frozen-thawed sorted artificial insemination sample from said sperm cells isolated in said collection element; andfertilizing an egg with said frozen-thawed sorted artificial insemination sample at success levels of at least about 70% of the success levels with sperm cells that have not been separated and/or frozen.
  • 2. The method according to claim 1 wherein the sperm cells isolated in said collection element comprise spermatozoa sorted into separate populations, wherein the spermatozoa of one of the populations comprises a purity greater than 85% Y chromosome bearing sperm cells.
  • 3. The method according to claim 1 wherein the sperm cells isolated in said collection element comprise spermatozoa sorted into separate populations, wherein the spermatozoa of one of the populations comprises a purity greater than 85% X chromosome bearing sperm cells.
  • 4. The method according to claim 1 wherein the frozen sperm cells comprise bovine sperm cells.
  • 5. The method according to claim 4 wherein said frozen-thawed sorted artificial insemination sample has a number of isolated sperm cells between about one hundred and fifty thousand to about one million.
  • 6. The method according to claim 1 wherein the frozen sperm cells comprise equine sperm cells and wherein said frozen-thawed sorted artificial insemination sample has a number of isolated sperm cells between about forty million and one hundred million.
  • 7. The method according to claim 1 wherein the step of fertilizing an egg further comprises: fertilizing an egg in vitro.
  • 8. A method of producing an embryo in vitro in vitro comprising sorting sperm by the method of claim 1, and fertilizing an egg with said sorted sperm to produce an embryo in vitro.
  • 9. The method according to claim 1 wherein the sperm cells isolated in said collection element comprise spermatozoa sorted into separate populations, wherein the spermatozoa of one of the populations comprises at least about 85% Y chromosome bearing sperm cells.
  • 10. The method according to claim 1 wherein the sperm cells isolated in said collection element comprise spermatozoa sorted into separate populations, wherein the spermatozoa of one of the populations comprises at least about 85% X chromosome bearing sperm cells.
  • 11. The method according to claim 1 wherein the frozen sperm cells comprise bovine sperm cells and wherein said frozen-thawed sorted artificial insemination sample has a number of isolated sperm cells between about one million to about three million.
  • 12. The method according to claim 1 wherein the frozen sperm cells comprise bovine sperm cells and wherein said frozen-thawed sorted artificial insemination sample has a number of isolated sperm cells between about one hundred and fifty thousand to about one million.
  • 13. The method according to claim 1 wherein the frozen sperm cells comprise equine sperm cells and wherein said frozen-thawed sorted artificial insemination sample has a number of isolated sperm cells between about forty million and one hundred million.
  • 14. The method according to claim 1 wherein the frozen-thawed sorted artificial insemination sample is capable of fertilizing an egg in vitro.
  • 15. A method of producing an embryo in vitro comprising sorting sperm by the method of claim 1, and fertilizing an egg with said sorted sperm to produce an embryo in vitro.
  • 16. A method of producing a frozen-thawed sorted sperm sample comprising: thawing frozen sperm cells;staining said thawed sperm cells with a concentration of Hoechst 33342 greater than 40 micromolar for a period of time sufficient to achieve uniform staining;establishing the staining temperature between about 30° C. and about 40 C.°;determining a sex characteristic of said sperm cells;separating said sperm cells according to the determination of their sex characteristic;isolating sperm cells separated according to the determination of their sex characteristic in a collection element; andestablishing a frozen-thawed sorted sperm sample from said sperm cells isolated in said collection element, the frozen-thawed sorted sperm sample being capable of fertilizing an egg at success levels of at least about 70% of the success levels with sperm cells that have not been separated and/or frozen.
Parent Case Info

This application is a continuation of, and claims priority to, U.S. patent application No. 11/536,576 filed Sep. 28, 2006, issuing on Jul. 21, 2011 as U.S. Pat. No. 7,771,921 which is continuation of U.S. patent application No. 10/433,183 filed May 29, 2003, issuing on Apr. 21, 2011 as U.S. Pat. No. 7,713,687, which is a national stage of International Application No. PCT/US01/45023, filed Nov. 29, 2001, which claims benefit of U.S. Provisional Patent Application No. 60/253,787, filed Nov. 29, 2000 and U.S. Provisional Patent Application No. 60/253,785, filed Nov. 29, 2000, each hereby incorporated by reference herein.

US Referenced Citations (556)
Number Name Date Kind
3005756 VanDemark et al. Oct 1961 A
3299354 Hogg Jan 1967 A
3499435 Rockwell et al. Mar 1970 A
3547526 Devereux Dec 1970 A
3644128 Lipner Feb 1972 A
3661460 Elking et al. May 1972 A
3687806 Van den Bovenkamp Aug 1972 A
3710933 Fulwyler et al. Jan 1973 A
3738759 Dittrich et al. Jun 1973 A
3756459 Bannister Sep 1973 A
3761187 Dittrich et al. Sep 1973 A
3761941 Robertson Sep 1973 A
3788744 Friedman et al. Jan 1974 A
3791384 Richter et al. Feb 1974 A
3791517 Friedman Feb 1974 A
3810010 Thom May 1974 A
3816249 Bhattacharya Jun 1974 A
3826364 Bonner et al. Jul 1974 A
3829216 Persidsky Aug 1974 A
3833796 Fetner et al. Sep 1974 A
3877430 Wieder Apr 1975 A
3893766 Hogg Jul 1975 A
3894529 Shrimpton Jul 1975 A
3906929 Augspurger Sep 1975 A
3909744 Wisner et al. Sep 1975 A
3944917 Hogg et al. Mar 1976 A
3947093 Goshima et al. Mar 1976 A
3960449 Carleton et al. Jun 1976 A
3963606 Hogg Jun 1976 A
3973003 Colas Aug 1976 A
3973196 Hogg Aug 1976 A
4006360 Mueller Feb 1977 A
4007087 Ericsson Feb 1977 A
4009260 Ericsson Feb 1977 A
4014611 Simpson et al. Mar 1977 A
4056324 Gohde Nov 1977 A
4058732 Wieder Nov 1977 A
4067965 Bhattacharya Jan 1978 A
4070617 Kachel et al. Jan 1978 A
4083957 Lang Apr 1978 A
4085205 Hancock Apr 1978 A
4092229 Bhattacharya May 1978 A
4110604 Haynes et al. Aug 1978 A
4148718 Fulwyler Apr 1979 A
4155831 Bhattacharya May 1979 A
4162282 Fulwyler et al. Jul 1979 A
4175662 Zold Nov 1979 A
4178936 Newcomb Dec 1979 A
4179218 Erdmann et al. Dec 1979 A
4189236 Hogg et al. Feb 1980 A
4191749 Bryant Mar 1980 A
4200802 Salzman et al. Apr 1980 A
4225229 Gohde Sep 1980 A
4225405 Lawson Sep 1980 A
4230558 Fulwyler Oct 1980 A
4255021 Brunsden Mar 1981 A
4263508 Leary et al. Apr 1981 A
4267268 Nelson, Jr. May 1981 A
4274408 Nimrod Jun 1981 A
4274740 Eidenschink et al. Jun 1981 A
4276139 Lawson Jun 1981 A
4302166 Fulwyler et al. Nov 1981 A
4317520 Lombardo et al. Mar 1982 A
4318480 Lombardo et al. Mar 1982 A
4318481 Lombardo et al. Mar 1982 A
4318482 Barry et al. Mar 1982 A
4325483 Lombardo et al. Apr 1982 A
4327177 Shrimpton Apr 1982 A
4339434 Ericsson Jul 1982 A
4341471 Hogg et al. Jul 1982 A
4348107 Leif Sep 1982 A
4350410 Minott Sep 1982 A
4352558 Eisert Oct 1982 A
4361400 Gray et al. Nov 1982 A
4362246 Adair Dec 1982 A
4367043 Sweet et al. Jan 1983 A
4395397 Shapiro Jul 1983 A
4395676 Hollinger et al. Jul 1983 A
4400764 Kenyon Aug 1983 A
4408877 Lindmo et al. Oct 1983 A
4422761 Frommer Dec 1983 A
4448767 Bryant May 1984 A
4474875 Shrimpton Oct 1984 A
4487320 Auer Dec 1984 A
4492436 Bergmann Jan 1985 A
4498766 Unterleitner Feb 1985 A
4501366 Thompson Feb 1985 A
4511661 Goldberg Apr 1985 A
4515274 Hollinger et al. May 1985 A
4523809 Toboada et al. Jun 1985 A
4538733 Hoffman Sep 1985 A
4545677 Chupp Oct 1985 A
4559309 Evenson Dec 1985 A
4573796 Martin Mar 1986 A
4585736 Dolbeare et al. Apr 1986 A
4598408 O'Keefe Jul 1986 A
4600302 Sage, Jr. Jul 1986 A
4605558 Shrimpton Aug 1986 A
4609286 Sage, Jr. Sep 1986 A
4629687 Schindler et al. Dec 1986 A
4631483 Proni et al. Dec 1986 A
4637691 Uehara et al. Jan 1987 A
32350 Bhattacharya Feb 1987 A
4654025 Cassou et al. Mar 1987 A
4659185 Aughton Apr 1987 A
4660971 Sage et al. Apr 1987 A
4661913 Wu et al. Apr 1987 A
4662742 Chupp May 1987 A
4673288 Thomas et al. Jun 1987 A
4673289 Gaucher Jun 1987 A
4680258 Hammerling et al. Jul 1987 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4691829 Auer Sep 1987 A
4698142 Muroi et al. Oct 1987 A
4702598 Böhmer Oct 1987 A
4704891 Recktenwald et al. Nov 1987 A
4710635 Chupp Dec 1987 A
4714680 Civin Dec 1987 A
4737025 Steen Apr 1988 A
4744090 Freiberg May 1988 A
4749458 Muroi et al. Jun 1988 A
4752131 Eisenlauer et al. Jun 1988 A
4756427 Gohde et al. Jul 1988 A
4758729 Monnin Jul 1988 A
4764013 Johnston Aug 1988 A
4765737 Harris et al. Aug 1988 A
4770992 den Engh et al. Sep 1988 A
4778593 Yamashita et al. Oct 1988 A
4780406 Dolbeare et al. Oct 1988 A
4780451 Donaldson Oct 1988 A
4786165 Yamamoto et al. Nov 1988 A
4790653 North, Jr. Dec 1988 A
4794086 Kasper et al. Dec 1988 A
4796788 Bond Jan 1989 A
4818103 Thomas et al. Apr 1989 A
4831385 Archer et al. May 1989 A
4836038 Baldwyn Jun 1989 A
4845025 Lary et al. Jul 1989 A
4846785 Cassou Jul 1989 A
4867908 Recktenwald et al. Sep 1989 A
4871249 Watson Oct 1989 A
4876458 Takeda et al. Oct 1989 A
4877965 Dandliker et al. Oct 1989 A
4887721 Martin et al. Dec 1989 A
4915501 Steen Apr 1990 A
4936465 Zold Jun 1990 A
4942305 Sommer Jul 1990 A
4954715 Zold Sep 1990 A
4957363 Takeda et al. Sep 1990 A
4959354 Barbetti Sep 1990 A
4965204 Civin Oct 1990 A
4979093 Laine et al. Dec 1990 A
4980277 Junilla Dec 1990 A
4981580 Auer Jan 1991 A
4983038 Ohki et al. Jan 1991 A
4987539 Moore et al. Jan 1991 A
4988619 Pinkel Jan 1991 A
4989977 North, Jr. Feb 1991 A
4999283 Zavos et al. Mar 1991 A
5005981 Schulte et al. Apr 1991 A
5007732 Ohki et al. Apr 1991 A
5017497 Grooth et al. May 1991 A
5021244 Spaulding Jun 1991 A
5030002 North, Jr. Jul 1991 A
5034613 Denk et al. Jul 1991 A
5040890 North, Jr. Aug 1991 A
5043591 Ludlow et al. Aug 1991 A
5055393 Kwoh et al. Oct 1991 A
5057413 Terstappen et al. Oct 1991 A
5072382 Kamentsky Dec 1991 A
5076472 Gross et al. Dec 1991 A
5079959 Miyake et al. Jan 1992 A
5084004 Ranoux Jan 1992 A
5087295 Gross et al. Feb 1992 A
5088816 Tomioka et al. Feb 1992 A
5089714 Ludlow et al. Feb 1992 A
5098657 Blackford et al. Mar 1992 A
5101978 Marcus Apr 1992 A
5116125 Rigler May 1992 A
5127729 Oetliker et al. Jul 1992 A
5132548 Borden et al. Jul 1992 A
5135759 Johnson Aug 1992 A
5138181 Lefevre et al. Aug 1992 A
5142140 Yamazaki et al. Aug 1992 A
5142462 Kashima Aug 1992 A
5144224 Larsen Sep 1992 A
5150313 Van den Engh et al. Sep 1992 A
5158889 Hirako et al. Oct 1992 A
5159397 Kosaka et al. Oct 1992 A
5159403 Kosaka Oct 1992 A
5162306 Donaldson Nov 1992 A
5167926 Kimura et al. Dec 1992 A
5180065 Touge et al. Jan 1993 A
5182617 Yoneyama et al. Jan 1993 A
5195979 Schinkel et al. Mar 1993 A
5199576 Corio et al. Apr 1993 A
5204884 Leary et al. Apr 1993 A
5215376 Schulte et al. Jun 1993 A
5219729 Hodgen Jun 1993 A
5247339 Ogino Sep 1993 A
5259593 Orme et al. Nov 1993 A
5260764 Fukuda et al. Nov 1993 A
5274240 Mathies et al. Dec 1993 A
5275787 Yuguchi et al. Jan 1994 A
5298967 Wells Mar 1994 A
5315122 Pinsky et al. May 1994 A
5316540 McMannis et al. May 1994 A
5317162 Pinsky et al. May 1994 A
5346990 Spaulding Sep 1994 A
34782 Dandliker et al. Nov 1994 A
5359907 Baker et al. Nov 1994 A
5366888 Fry et al. Nov 1994 A
5367474 Auer et al. Nov 1994 A
5370842 Miyazaki et al. Dec 1994 A
5371585 Morgan et al. Dec 1994 A
5395588 North, Jr. et al. Mar 1995 A
5400179 Ito Mar 1995 A
5412466 Ogino May 1995 A
5437987 Ten et al. Aug 1995 A
5439362 Spaulding Aug 1995 A
5444527 Kosaka Aug 1995 A
5447841 Grey et al. Sep 1995 A
5447842 Simons Sep 1995 A
5452054 Dewa et al. Sep 1995 A
5457526 Kosaka Oct 1995 A
5461145 Kudo et al. Oct 1995 A
5464581 Van den Engh Nov 1995 A
5466572 Sasaki et al. Nov 1995 A
5467189 Kreikebaum et al. Nov 1995 A
5469375 Kosaka Nov 1995 A
5471294 Ogino Nov 1995 A
5471299 Kaye et al. Nov 1995 A
5475487 Mariella, Jr. et al. Dec 1995 A
5480774 Hew et al. Jan 1996 A
5480775 Ito et al. Jan 1996 A
5483469 Van den Engh et al. Jan 1996 A
5488469 Yamamoto et al. Jan 1996 A
5492534 Atheyde Feb 1996 A
5494795 Guerry et al. Feb 1996 A
5495719 Gray, Jr. Mar 1996 A
5496272 Chung et al. Mar 1996 A
5503994 Shear et al. Apr 1996 A
5514537 Chandler May 1996 A
5523573 Hanninen et al. Jun 1996 A
5532155 Ranoux Jul 1996 A
5547849 Baer et al. Aug 1996 A
5548395 Kosaka Aug 1996 A
5548661 Price et al. Aug 1996 A
5550058 Corio et al. Aug 1996 A
5556764 Sizto et al. Sep 1996 A
5558998 Hammond et al. Sep 1996 A
5559032 Pomeroy et al. Sep 1996 A
5578449 Fr asch et al. Nov 1996 A
5579159 Ito Nov 1996 A
5584982 Dovichi et al. Dec 1996 A
5589457 Wiltbank Dec 1996 A
5596401 Kusuzawa Jan 1997 A
5601234 Larue Feb 1997 A
5601235 Booker et al. Feb 1997 A
5601533 Hancke et al. Feb 1997 A
5602039 Van den Engh Feb 1997 A
5602349 Van den Engh Feb 1997 A
5608519 Grouley et al. Mar 1997 A
5620842 Davis et al. Apr 1997 A
5622820 Rossi Apr 1997 A
5627037 Ward et al. May 1997 A
5633503 Kosaka May 1997 A
5641457 Vardanega Jun 1997 A
5643796 Van Den Engh et al. Jul 1997 A
5650847 Maltsev et al. Jul 1997 A
5658751 Yue et al. Aug 1997 A
5660997 Spaulding Aug 1997 A
5663048 Winkfein et al. Sep 1997 A
5665315 Robert et al. Sep 1997 A
5672880 Kain Sep 1997 A
5674743 Ulmer Oct 1997 A
5675401 Wangler et al. Oct 1997 A
5682038 Hoffman Oct 1997 A
5684575 Steen Nov 1997 A
5687727 Kraus et al. Nov 1997 A
5690815 Krasnoff et al. Nov 1997 A
5690895 Matsumoto et al. Nov 1997 A
5691133 Critser et al. Nov 1997 A
5693534 Alak et al. Dec 1997 A
5696157 Wang et al. Dec 1997 A
5700692 Sweet Dec 1997 A
5701012 Ho Dec 1997 A
5707808 Roslaniec et al. Jan 1998 A
5708868 Ishikawa Jan 1998 A
5712807 Bangham Jan 1998 A
5719666 Fukuda et al. Feb 1998 A
5719667 Miers Feb 1998 A
5726009 Connors et al. Mar 1998 A
5726364 Van den Engh Mar 1998 A
5726751 Altendorf et al. Mar 1998 A
5730941 Lefevre et al. Mar 1998 A
5736330 Fulton Apr 1998 A
5739902 Gjelsnes et al. Apr 1998 A
5745308 Spangenberg Apr 1998 A
5747349 den Engh et al. May 1998 A
5777732 Hanninen et al. Jul 1998 A
5780230 Li et al. Jul 1998 A
5786560 Tatah et al. Jul 1998 A
5790692 Price et al. Aug 1998 A
5793485 Gourley Aug 1998 A
5795767 Tsukada et al. Aug 1998 A
5796112 Ichie Aug 1998 A
5798276 Haugland et al. Aug 1998 A
5799830 Carroll et al. Sep 1998 A
5804436 Okun et al. Sep 1998 A
5815262 Schrof et al. Sep 1998 A
5819948 Van den Engh Oct 1998 A
5824269 Kosaka et al. Oct 1998 A
5831723 Kubota et al. Nov 1998 A
5835262 Iketaki et al. Nov 1998 A
5840504 Blecher Nov 1998 A
5844685 Gontin Dec 1998 A
5846737 Kang Dec 1998 A
5866344 Georgiou Feb 1999 A
5868767 Farley et al. Feb 1999 A
5872627 Miers Feb 1999 A
5873254 Arav Feb 1999 A
5874266 Paisson Feb 1999 A
5876942 Cheng et al. Mar 1999 A
5880457 Tomiyama et al. Mar 1999 A
5880474 Norton et al. Mar 1999 A
5883378 Irish et al. Mar 1999 A
5888730 Gray et al. Mar 1999 A
5891734 Gill et al. Apr 1999 A
5893843 Rodrigues Claro Apr 1999 A
5895764 Sklar et al. Apr 1999 A
5895922 Ho Apr 1999 A
5899848 Haubrich May 1999 A
5909278 Deka et al. Jun 1999 A
5912257 Prasad et al. Jun 1999 A
5916144 Prather et al. Jun 1999 A
5916449 Ellwart et al. Jun 1999 A
5917733 Bangham Jun 1999 A
5919360 Contaxis, III et al. Jul 1999 A
5919621 Brown Jul 1999 A
5934885 Farrell et al. Aug 1999 A
5962238 Sizto et al. Oct 1999 A
5972710 Weigl et al. Oct 1999 A
5973842 Spangenberg Oct 1999 A
5985216 Rens et al. Nov 1999 A
5985538 Stachecju Nov 1999 A
5990479 Weiss et al. Nov 1999 A
5991028 Cabib et al. Nov 1999 A
5998140 Dervan et al. Dec 1999 A
5998212 Corio et al. Dec 1999 A
6002471 Quake Dec 1999 A
6003678 Van den Engh Dec 1999 A
6042249 Spangenberg Mar 2000 A
6050935 Ranoux et al. Apr 2000 A
6071689 Seidel et al. Jun 2000 A
6079836 Burr et al. Jun 2000 A
6086574 Carroll et al. Jul 2000 A
6087352 Trout Jul 2000 A
6090947 Dervan et al. Jul 2000 A
6097485 Lievan Aug 2000 A
6111398 Graham Aug 2000 A
6117068 Gourley et al. Sep 2000 A
6119465 Mullens et al. Sep 2000 A
6120735 Zborowski et al. Sep 2000 A
6128133 Bergmann Oct 2000 A
6130034 Aitken Oct 2000 A
6132961 Gray et al. Oct 2000 A
6133044 Van den Engh Oct 2000 A
6133995 Kubota Oct 2000 A
6139800 Chandler Oct 2000 A
6140121 Ellington et al. Oct 2000 A
6143535 Paisson Nov 2000 A
6143901 Dervan Nov 2000 A
6146837 van de Winkel Nov 2000 A
6149867 Seidel et al. Nov 2000 A
6153373 Benjamin et al. Nov 2000 A
6154276 Mariella, Jr. Nov 2000 A
6175409 Nielsen et al. Jan 2001 B1
6177277 Soini Jan 2001 B1
6193647 Beebe et al. Feb 2001 B1
6201628 Basiji et al. Mar 2001 B1
6207392 Weiss et al. Mar 2001 B1
6208411 Vaez-Iravani Mar 2001 B1
6211477 Cardott et al. Apr 2001 B1
6214560 Yguerabide et al. Apr 2001 B1
6221654 Quake et al. Apr 2001 B1
6221671 Groner et al. Apr 2001 B1
6238920 Nagai et al. May 2001 B1
6247323 Maeda Jun 2001 B1
6248590 Malachowski Jun 2001 B1
6256096 Johnson Jul 2001 B1
6263745 Buchanan et al. Jul 2001 B1
6283920 Eberle et al. Sep 2001 B1
6296810 Ulmer Oct 2001 B1
6309815 Tash et al. Oct 2001 B1
6316234 Bova Nov 2001 B1
6317511 Horiuchi Nov 2001 B1
6322901 Bawendi et al. Nov 2001 B1
6323632 Husher et al. Nov 2001 B1
6326144 Bawendi et al. Dec 2001 B1
6328071 Austin Dec 2001 B1
6329158 Hoffman et al. Dec 2001 B1
6332540 Paul et al. Dec 2001 B1
6357307 Buchanan et al. Mar 2002 B2
6368786 Saint-Ramon et al. Apr 2002 B1
6372422 Seidel et al. Apr 2002 B1
6372506 Norton Apr 2002 B1
6384951 Basiji et al. May 2002 B1
6395305 Buhr et al. May 2002 B1
6400453 Hansen Jun 2002 B1
6411835 Modell et al. Jun 2002 B1
6411904 Chandler Jun 2002 B1
6416190 Grier et al. Jul 2002 B1
6423505 Davis Jul 2002 B1
6423551 Weiss et al. Jul 2002 B1
6432630 Blankenstein Aug 2002 B1
6432638 Dervan et al. Aug 2002 B2
6452372 Husher et al. Sep 2002 B1
6454945 Weigl et al. Sep 2002 B1
6456055 Shinabe et al. Sep 2002 B2
6463314 Haruna Oct 2002 B1
6465169 Walderich et al. Oct 2002 B2
6473176 Basiji et al. Oct 2002 B2
6482652 Furlong et al. Nov 2002 B2
6489092 Benjamin et al. Dec 2002 B1
6495333 Willmann et al. Dec 2002 B1
6495366 Briggs Dec 2002 B1
6503698 Dobrinsky et al. Jan 2003 B1
6511853 Kopf-Sill et al. Jan 2003 B1
6514722 Paisson et al. Feb 2003 B2
6524860 Seidel et al. Feb 2003 B1
6528802 Koenig et al. Mar 2003 B1
6534308 Palsson et al. Mar 2003 B1
6537829 Zarling et al. Mar 2003 B1
6540895 Spence et al. Apr 2003 B1
6563583 Ortyn et al. May 2003 B2
6576291 Bawendi et al. Jun 2003 B2
6577387 Ross, III et al. Jun 2003 B2
6580504 Ortyn et al. Jun 2003 B1
6587203 Colon Jul 2003 B2
6589792 Malachowski Jul 2003 B1
6590911 Spinelli et al. Jul 2003 B1
6596143 Wang et al. Jul 2003 B1
6596499 Jalink Jul 2003 B2
6604435 Buchanan et al. Aug 2003 B2
6613525 Nelson et al. Sep 2003 B2
6617107 Dean Sep 2003 B1
6618143 Roche et al. Sep 2003 B2
6618679 Loehrlein et al. Sep 2003 B2
6641708 Becker et al. Nov 2003 B1
6642018 Koller et al. Nov 2003 B1
6658357 Chandler Dec 2003 B2
6664550 Rader et al. Dec 2003 B2
6667830 Iketaki et al. Dec 2003 B1
6671044 Ortyn et al. Dec 2003 B2
6673095 Nordquist Jan 2004 B2
6674525 Bardell et al. Jan 2004 B2
6698627 Garcia et al. Mar 2004 B2
6700130 Fritz Mar 2004 B2
6703621 Wolleschensky Mar 2004 B2
6704133 Gates et al. Mar 2004 B2
6706163 Seul et al. Mar 2004 B2
6707555 Kusuzawa et al. Mar 2004 B1
6713019 Ozasa et al. Mar 2004 B2
6729369 Neas et al. May 2004 B2
6746873 Buchanan et al. Jun 2004 B1
6752298 Garcia et al. Jun 2004 B2
6753161 Koller et al. Jun 2004 B2
6761286 Py et al. Jul 2004 B2
6761288 Garcia Jul 2004 B2
6767706 Quake Jul 2004 B2
6780377 Hall et al. Aug 2004 B2
6782768 Buchanan et al. Aug 2004 B2
6789706 Abergel et al. Sep 2004 B2
6789750 Heldt Sep 2004 B1
6793387 Neas et al. Sep 2004 B1
6813017 Hoffman et al. Nov 2004 B1
6819411 Sharpe et al. Nov 2004 B1
6849394 Rozenboom et al. Feb 2005 B2
6849423 Mutz et al. Feb 2005 B2
6861265 Van den Engh Mar 2005 B1
6941005 Lary et al. Sep 2005 B2
7015310 Remington et al. Mar 2006 B2
7094527 Seidel et al. Aug 2006 B2
7105355 Kurabayashi et al. Sep 2006 B2
7195920 Seidel et al. Mar 2007 B2
7208265 Schenk Apr 2007 B1
7221453 Sharpe et al. May 2007 B2
7713687 Seidel et al. May 2010 B2
7771921 Seidel et al. Aug 2010 B2
20010006416 Johnson Jul 2001 A1
20020047697 Husher et al. Apr 2002 A1
20020058332 Quake et al. May 2002 A1
20020064809 Mutz et al. May 2002 A1
20020113965 Roche et al. Aug 2002 A1
20020115055 Matta Aug 2002 A1
20020119558 Seidel et al. Aug 2002 A1
20020131957 Gavin Sep 2002 A1
20020141902 Ozasa et al. Oct 2002 A1
20020171827 Van den Engh Nov 2002 A1
20020182590 Strange et al. Dec 2002 A1
20020186375 Asbury et al. Dec 2002 A1
20020186874 Price et al. Dec 2002 A1
20020198928 Bukshpan et al. Dec 2002 A1
20030048433 Desjonqueres Mar 2003 A1
20030059764 Ravkin et al. Mar 2003 A1
20030059945 Dzekunov et al. Mar 2003 A1
20030078703 Potts Apr 2003 A1
20030096405 Takayama et al. May 2003 A1
20030098421 Ho May 2003 A1
20030113765 Dempcy et al. Jun 2003 A1
20030119050 Shai Jun 2003 A1
20030119206 Shai Jun 2003 A1
20030129091 Seidel et al. Jul 2003 A1
20030157475 Schenk Aug 2003 A1
20030165812 Takayama et al. Sep 2003 A1
20030175917 Cumming Sep 2003 A1
20030175980 Hayenga et al. Sep 2003 A1
20030190681 Shai Oct 2003 A1
20030207461 Bell et al. Nov 2003 A1
20030209059 Kawano Nov 2003 A1
20040005582 Shipwast Jan 2004 A1
20040031071 Morris et al. Feb 2004 A1
20040034879 Rothstein et al. Feb 2004 A1
20040049801 Seidel Mar 2004 A1
20040053243 Evans Mar 2004 A1
20040055030 Maxwell et al. Mar 2004 A1
20040061070 Hansen Apr 2004 A1
20040061853 Blasenheim Apr 2004 A1
20040062685 Norton et al. Apr 2004 A1
20040072278 Chou et al. Apr 2004 A1
20040096123 Shih May 2004 A1
20040107150 Neas et al. Jun 2004 A1
20040132001 Seidel et al. Jul 2004 A1
20050003472 Anzar Jan 2005 A1
20050011582 Haug Jan 2005 A1
20050064383 Bashkin et al. Mar 2005 A1
20050112541 Durack May 2005 A1
20050214733 Graham Sep 2005 A1
20050244805 Ludwig et al. Nov 2005 A1
20050282245 Ludwig et al. Dec 2005 A1
20060118167 Neas et al. Jun 2006 A1
20060147894 Sowter Jul 2006 A1
20060203226 Roche et al. Sep 2006 A1
20060263829 Evans et al. Nov 2006 A1
20060281176 Seidel et al. Dec 2006 A1
20070026378 Schenk Feb 2007 A1
20070026379 Seidel et al. Feb 2007 A1
20070042342 Seidel et al. Feb 2007 A1
20070092860 Schenk Apr 2007 A1
20070099171 Schenk May 2007 A1
20070099260 Seidel et al. May 2007 A1
20070117086 Evans et al. May 2007 A1
20070123461 Josephson May 2007 A1
20070248976 Harding Oct 2007 A1
Foreign Referenced Citations (215)
Number Date Country
9704313 Jun 1999 BR
1029833 Apr 1978 CA
1 250 808 Mar 1989 CA
2113957 Jan 1994 CA
ZL 03109426.0 Dec 2005 CN
0025296 Mar 1981 EP
0 046 345 Feb 1982 EP
0 068 404 Jan 1983 EP
0071538 Feb 1983 EP
0 026 770 Mar 1983 EP
0 029 662 Feb 1984 EP
0 025 296 May 1985 EP
0140616 May 1985 EP
0 158 147 Oct 1985 EP
0160201 Nov 1985 EP
0189702 Aug 1986 EP
0 229 814 Jul 1987 EP
0 246 604 Nov 1987 EP
0288029 Apr 1988 EP
0276166 Jul 1988 EP
0 289 677 Nov 1988 EP
0 316 173 May 1989 EP
0 317 809 May 1989 EP
A-0 366794 May 1990 EP
0 409 293 Jan 1991 EP
0461618 Dec 1991 EP
0 463 562 Jan 1992 EP
0468100 Jan 1992 EP
0474 187 Mar 1992 EP
0 316 172 Jul 1992 EP
0 316 171 81 Sep 1992 EP
0570102 Mar 1993 EP
0538786 Apr 1993 EP
0 279 000 Jul 1993 EP
0 553 951 Aug 1993 EP
0 288 029 Jan 1994 EP
0 381 694 Jun 1994 EP
0 361 504 Jul 1994 EP
606847 Jul 1994 EP
0 289 200 Aug 1994 EP
0 555 212 Oct 1994 EP
0 361 503 Nov 1994 EP
0 696 731 Feb 1996 EP
0 705 978 Apr 1996 EP
0 711 991 May 1996 EP
0 471 758 Sep 1996 EP
0 736 765 Oct 1996 EP
0 545 284 Feb 1997 EP
0 360 487 Jul 1997 EP
0 412 431 Oct 1997 EP
0 526 131 Jan 1998 EP
A-0 478155 Jan 1998 EP
0 822 404 Feb 1998 EP
0 822 401 Apr 1998 EP
0 556 748 Oct 1998 EP
0 430 402 Jan 1999 EP
0 529 666 Apr 2000 EP
0 994 342 Apr 2000 EP
0 752 133 Jun 2000 EP
1 018 644 Jul 2000 EP
1 118 268 Jul 2001 EP
1 147 774 Oct 2001 EP
0 534 033 Nov 2001 EP
0 925 494 Dec 2001 EP
0 748 316 May 2002 EP
0 662 124 Jun 2002 EP
1 245 944 Oct 2002 EP
1 249 502 Oct 2002 EP
1250897 Oct 2002 EP
1 380 304 Jan 2004 EP
1403633 Apr 2004 EP
1 100 400 May 2004 EP
1 257 168 Feb 2005 EP
2574656 Jun 1986 FR
A-2 635453 Feb 1990 FR
2 647 668 Dec 1990 FR
2699678 Jun 1994 FR
1471019 Apr 1977 GB
2 121 976 Jan 1984 GB
2 122 369 Jan 1984 GB
2 125 181 Feb 1984 GB
2 136 561 Sep 1984 GB
2 137 352 Oct 1984 GB
2145112 Feb 1985 GB
2 144 542 Mar 1985 GB
2 153 521 Aug 1985 GB
2 243 681 Nov 1991 GB
2 360 360 Sep 2001 GB
61139747 Jun 1986 JP
61159135 Jul 1986 JP
2024535 Jan 1990 JP
4126064 Apr 1992 JP
4126065 Apr 1992 JP
4126066 Apr 1992 JP
4126079 Apr 1992 JP
4126080 Apr 1992 JP
4126081 Apr 1992 JP
1056008 Nov 1983 SU
1260778 Sep 1986 SU
WO 8401265 Apr 1984 WO
WO 8504014 Sep 1985 WO
WO 8807198 Sep 1988 WO
WO 8904470 May 1989 WO
WO 8904471 May 1989 WO
WO 8904472 May 1989 WO
WO 9013315 Nov 1990 WO
9105236 Apr 1991 WO
WO 9208120 May 1992 WO
WO 9217288 Oct 1992 WO
WO 9310803 Jun 1993 WO
9317322 Sep 1993 WO
WO 9422001 Sep 1994 WO
WO 9604542 Feb 1996 WO
WO 9612171 Apr 1996 WO
WO 9612172 Apr 1996 WO
WO 9612173 Apr 1996 WO
WO 9631764 Oct 1996 WO
WO 9633806 Oct 1996 WO
WO 9729354 Aug 1997 WO
WO 9730338 Aug 1997 WO
WO 9735189 Sep 1997 WO
WO 9743620 Nov 1997 WO
WO 9834094 Aug 1998 WO
WO 9848259 Oct 1998 WO
WO 9857152 Dec 1998 WO
WO 9905504 Feb 1999 WO
WO 9933956 Jul 1999 WO
WO 9938883 Aug 1999 WO
WO 9942810 Aug 1999 WO
WO 9944035 Sep 1999 WO
WO 9944037 Sep 1999 WO
WO 9947906 Sep 1999 WO
WO 9960397 Nov 1999 WO
WO 9957955 Nov 1999 WO
WO 9961888 Dec 1999 WO
WO 0006193 Feb 2000 WO
WO 0012204 Mar 2000 WO
WO 0036396 Jun 2000 WO
WO 0049387 Aug 2000 WO
WO 0054026 Sep 2000 WO
WO 0056444 Sep 2000 WO
WO 0070080 Nov 2000 WO
WO 0102836 Jan 2001 WO
WO 0128700 Apr 2001 WO
WO 0129538 Apr 2001 WO
WO 0137655 May 2001 WO
WO 0140765 Jun 2001 WO
WO 0140765 Jun 2001 WO
WO 0142757 Jun 2001 WO
WO 0151612 Jul 2001 WO
WO 0161313 Aug 2001 WO
WO 0168110 Sep 2001 WO
WO 0168226 Sep 2001 WO
WO 0171348 Sep 2001 WO
WO 0175161 Oct 2001 WO
WO 0175176 Oct 2001 WO
WO 0185913 Nov 2001 WO
WO 0185913 Nov 2001 WO
WO 0190295 Nov 2001 WO
WO 0195815 Dec 2001 WO
WO 0201189 Jan 2002 WO
WO 0204666 Jan 2002 WO
WO 0219594 Mar 2002 WO
WO 0219943 Mar 2002 WO
WO 0220850 Mar 2002 WO
WO 0221102 Mar 2002 WO
WO 0223163 Mar 2002 WO
WO 0225269 Mar 2002 WO
WO 0226114 Apr 2002 WO
WO 0228311 Apr 2002 WO
WO 0229106 Apr 2002 WO
0241906 May 2002 WO
WO 0241906 May 2002 WO
WO 0243486 Jun 2002 WO
WO 0243574 Jun 2002 WO
WO 0244319 Jun 2002 WO
WO 02052244 Jul 2002 WO
WO 02054044 Jul 2002 WO
WO 02057775 Jul 2002 WO
WO 02060880 Aug 2002 WO
WO 02077637 Oct 2002 WO
WO 02092161 Nov 2002 WO
WO 02092247 Nov 2002 WO
WO 03008102 Jan 2003 WO
WO 03008937 Jan 2003 WO
WO 03012403 Feb 2003 WO
WO 03016875 Feb 2003 WO
2003020877 Mar 2003 WO
WO 03056330 Jul 2003 WO
WO 03056335 Jul 2003 WO
WO 03 072765 Sep 2003 WO
WO 03078065 Sep 2003 WO
WO 03078972 Sep 2003 WO
WO 04001401 Dec 2003 WO
WO 2004006916 Jan 2004 WO
WO 2004009237 Jan 2004 WO
WO 2004009237 Jan 2004 WO
WO 2004012837 Feb 2004 WO
WO 2004017041 Feb 2004 WO
WO 2004024227 Mar 2004 WO
WO 2004024227 Mar 2004 WO
WO 2004046712 Jun 2004 WO
WO 2004059282 Jul 2004 WO
WO 2004003697 Oct 2004 WO
WO 2004087177 Oct 2004 WO
WO 2004088283 Oct 2004 WO
WO 2004104178 Dec 2004 WO
WO 2004104178 Dec 2004 WO
WO 2005094852 Oct 2005 WO
WO 2005095590 Oct 2005 WO
WO 2005095960 Oct 2005 WO
2006012597 Feb 2006 WO
WO 2006015056 Feb 2006 WO
2006060770 Aug 2006 WO
2007016090 Feb 2007 WO
Non-Patent Literature Citations (727)
Entry
WO 04/017041 A3 Search Report, XY Inc., Feb. 26, 2004.
WO 04/012837 A3 Search Report, XY, Inc., Feb. 12, 2004.
Abdel-Ghaffar, A. E., et al., “Rabbit Semen Metabolism” in Rabbit Production in Hot Climates Baselga and Marai (eds); International Conference of Rabbit Production in Hot Climates 1994, p. 305-312.
Akhtar, S., et al., “Prevalence of Five Stereotypes of Bluetongue Virus in a Rambouillet Sheep Flock in Pakistan”, Veterinary Record 136, p. 495. (1995).
Aldrich, S. L., et al., “Parturition and Periparturient Reproductive and Metabolic Hormone Concentration in Prenatally Androgenized Beef Heifers”, J. Anim. Sci. 73:3712. (1995).
Amann, R. P. et al., “Issues Affecting Commercialization of Sexed Sperm” Therio. 52:1441. (1999).
Amann, R. P., et al. “Prospects for Sexing Mammalian Sperm,” Animal Reproduction Laboratory College of Veterinary Medicine and Biomedical Sciences, Colorado State University. (1982).
Amann, R.P. “Fertilizing Potential Vitro of Semen from Young Beef Bulls Containing a High or Low Percentage of Sperm with a Proximal Droplet” Theriogenology 54: 1499-1515, 2000.
Amann, Rupert P. “Cryopreservation of Sperm” 1999, Encyclopedia of Reproduction 1:733-783.
American Meat and Science Association in Cooperation with National Livestock and Meat Board, “Research Guidelines for Cookery and Sensory Evaluation and Instrumental Tenderness Measurements for Fresh Meat”. (1995).
Amoah, E. A. and Gelaye, S., “Biotechnological Advances in Goat Reproduction”, J. Anim. Sci. 75(2): 578-585. (1996).
Anderson, V. K., et al., Intrauterine and liefzervikale Insemination mit Gefriersperma bein Schat (Intrauterine and Deep Cervical Insemination With Frozen Semen in Sheep). Zuchthygiene 8:113-118. (1973).
Arriola, J. and Foote, R.H.: “Glycerolation and Thawing Effects on Bull Spermatozoa frozen in Detergent-Treated Egg Yok and Whole Egg Extenders,” J Dairy Sci, 70:1664-1670 (1987).
Asbury, Charles A. “Fluorescence Spectra of DNA Dyes Measured in a Flow Cytometer,” University of Washington Feb. 19, 1996.
Bagley, C. P. “Nutritional Management of Replacement Beef Heifers: a Review” J. Anim. Science 71:3155-3163. (1993).
Bailey, C. M. et al., “Nulliparous Versus Primiparous Crossbred Females for Beef”, J. Anim. Sci. 69:1403. (1991).
Baker, R.D., et al., “Effect of Volume of Semen, Number of Sperm and Drugs on Transport of Sperm in Artificially Inseminated Gilts”, J. Anim. Sci. 27:88-93. (1968).
Bakker Schut, Tom C. “A New Principle of Cell Sorting by Using Selective Electroportation in a Modified Flow Cytometry,” University of Twente, Mar. 10, 1990.
Barnes, F. L. and Eyestone, W. H., “Early Cleavage and the Maternal Zygotic Transition in Bovine Embryos”, Therio. vol. 33, No. 1, pp. 141-149. (1990).
Batellier, F. et al., “Advances in Cooled Semen Technology” Animal Reproduction Science 68 p. 181-190 (2001).
Becker, S.E. and Johnson, A. L. “Effects of Gonadotropin-Releasing Hormone Infused in a Pulsatile or Continuous Fashion on Serum Gonadotropin Concentrations and Ovulation in the Mare”, J. Anim. Sci. 70:1208-1215. (1992).
Bedford, S .J. and Hinrichs, K., “The Effect of Insemination Volume on Pregnancy Rates of Pony Mares”, Therio. 42:571-578. (1994).
Behrman, S. J., et al., “Freeze Preservation of Human Sperm” American Journal of Obstetrics and Gynecology vol. 103 (5) p. 654-664 Mar. 1, 1969.
Bellows, R. A., et al., “Cause and Effect Relationships Associated With Calving Difficulty and Calf Birth Weight”, J. Anim. Sci. 33:407. (1971).
Berardinelli, J. G., et al., “Source of Progesterolle Prior to Puberty in Beef Heifers”. J. Anim. Sci. 49:1276. (1979).
Berger, G. S. “Intratubal Insemination”, Fertil. Steril. 48:328-330, (1987).
Bergfeld, E. G., et al., “Ovarian Follicular Development in Prepubertal Heifers is Influenced by Level of Dietary Energy Intake”, Bio. of Repro. 51:1051. (1994).
Berry, B. W., et al., “Beef Carcass Maturity Indicators and Palatability Attributes”, J. Anim. Sci. 38:507 (1974).
Beyhan, Z., et al., “Sexual Dimorphism in IVF Bovine Embryos Produced by Sperm Sorted by High Speed Flow Cytometry”, abstr. Therio. 49(1): 359 (1998).
Beyhan, Z., Et Al., 1999 Sexual Dimorphism in IVM-IVF Bovine Embryos Produced from X and Y Chromosome-Bearing Spermatozoa Sorted by High Speed Flow Cytometry. Theriogenology. 52: 35-48.
Bigos, Martin “Nine Color Eleven Parameter Immunophenotyping Using Three Laser Flow Cytometry,” Stanford University Dec. 22, 1998.
Bioxcell, Bovine Sperm Preservation, Advertisement Jun. 28, 2005.
Bond, J., et al., “Growth and Carcass Traits of Open Beef Heifers Versus Beef Heifers That Have Calved”, Nutrition Reports International 34:621. 1986.
Boucque, C. V., et al., “Beef-Production With Maiden and Once-Calved Heifers”, Livestock Prod. Sci. 7:121. 1980.
Bourdon, R. M. and J. S. Brinks. “Simulated Efficiency of Range Beef—Production III. Culling Strategies and Nontraditional Management-Systems”, J. Anim. Sci. 65:963. 1987.
Bracher, V. and Allen, W.R., “Videoendoscopic Examination of the Mare's Uterus: I. Findings in Normal Fertile Mares”, Equine Veterinary Journal, vol. 24, p. 274-278. 1992.
Braselton, W. E. and McShan, W. H., “Purification and Properties of Follicle Stimulating and Luteinizing Hormones From Horse Pituitary Glands” Arch. Biochem. Biophys. 139:45-48. 1970.
Braun, J. et al, “Effect of Different Protein Supplements on Motility and Plasma Membrane Integrity of Frozen—Thawed Stallion Spermatozoa”, Cryobiology (1995) 32:487-492.
Brethour, J. R. and Jaeger, J. R., “The Single Calf Heifer System”, Kansas Agric. Sta. Rep of Progress 570. 1989.
Brinsko, S.P. et al., “Artificial Insemination and Preservation of Semen.” Veterinary Clinics of North America:Equine Practice vol. 8 No. 1 Apr. 1992 pp. 205-218.
Bristol, F. “Breeding Behavior of a Stallion at Pasture With 20 Mares in Synchronized Oestrus” J. Reprod. Fertil. Suppl. 32:71. 1982.
Brookes, A. J. and O'Byrne, M., “Use of Cow-Heifers in Beef Production” J. of the Royal Agricultural Society of England 126:30. 1965.
Buchanan, B. R., et al, “Insemination of Mares with Low Numbers of Either Unsexed or Sexed Spermatozoa”, Theo. vol. 53, p. 1333-1344. 2000.
Burns, P. D. and Spitzer, J.C., “Influence of Biostimulation on Reproduction in Postpartum Beef-Cows”, J. Anim. Sci. 70:358. 1992.
Burwash, L. D., et al., “Relationship of Duration of Estrus to Pregnancy Rate in Normally Cycling, Non Lactating Mares” J.A.V.M.A. 165:714-716. 1974.
Byerley, D. J., et al., “Pregnancy Rates of Beef Heifers Bred Either on Puberal or Third Estrus”. J Anim. Sci. 65:645. 1987.
Caslick, E. A., “The Vulva and the Vulvo-Vaginal Orifice and its Relation to Genital Health of the Thoroughbred Mare”, Cornell Veterinarian, vol. 27, p. 178-187. 1937.
Catt, et al., “Assessment of Ram and Boar Spermatozoa During Cell-Sorting by Flow Cytometry”, Reproduction Dom Animal, vol. 32, pp. 251-258. 1997.
Catt, S. L., et al., “Birth of a Male Lamb Derived from an In Vitro Matured Oocyte Fertilized by Intracytoplasmic Injection of a Single Presumptive Male Sperm”, Veterinary Record 139, p. 494-495. 1996.
Cave-Penney, Tony, “Sexed Semen Offers Faster Genetic Gain”, Farming News, Livestock Supplement, Feb. 1997, p. 28.
Chandler, J. E., “Videomicroscopic Comparison of Bull Sperm and Leukocyte Chromosome Areas as Related to Gender”, J Dairy Sci 73, p. 2129-2135. 1990.
Chandler, J. E., et al, “Bovine Spermatozoal Head Size Variation and Evaluation of a Separation Technique Based on this Size”, Therio. 52, p. 1021-1034. 1999.
Chen, S.H. “Effects of Oocyte Activation and Treatment of Spermatozoa on Embryonic Development Following Intracytoplasmic Sperm Injection in Cattle” Theriogenology 48: 1265-1273, 1997.
Chen, Y. et al., Survival of Bull Spermatozoa Seeded and Frozen at Different Rates in Egg Yolk-Tris and Whole Milk Extenders, 1993 J Dairy Sci 76:1028-1034.
Chin, W. W. and Boime, I. 1990. In Glycoprotein Hormones. Serona Symp. Norwell, MA. pp. 19-20.
Choi, Y.H. “Developmental Cappacity of Equine Oocytes Matured and Cultured in Equine Trophoblast-Conditioned Media” Theriogenoogy 56: 320-339, 2001.
Chung, Y. G., et al. “Artificial insemination of Superovulated Heifers With 600,000 Sexed Sperm”. J Anim. Sci. Suppl. 1. 836:215. 1998 abstr.
Clement, F., et al., “Which Insemination Fertilizes When Several Successive Inseminations are Performed Before Ovulation” 7th Int. Symp. Eq. Repro. 151. 1998 abstr.
Cran, D. G., et al, “Production of Lambs by Low Dose Intrauterine Insemination With Flow Cytometrically Sorted and Unsorted Semen”, Therio. p. 267. 1997.
Cran, D. G., et al., “Production of Bovine Calves Following Separation of X- and Y-Chromosome Bearing Sperm and In Vitro Fertilization”. Vet. Rec. 132:40-41. 1993.
Cran, D. G., et al., “The Predetermination of Embryonic Sex Using Flow Cytometrically Separated X and Y Spermatozoa” Human Reproduction Update 1996, vol. 2 (4) p. 355-63.
Crowley, J. P. “The facts of Once-Bred Heifer Production” School of Agric., Univ. of Aberdeen, Scotland. 1973.
Cui, K. et al, “X Larger than Y”, Nature 366, p. 177-118, 1993.
Cui, K., “Size Differences Between Human X and Y Spermatozoa and Prefertilization Diagnosis”, Molecular Human Reproduction, vol. 3, No. 1, pp. 61-67. 1997.
Curran, S. “Fetal Gender Determination” in Equine Diagnostic Ultrasonography 1st ed. Rantanen, N. W. and McKinnon A.O. (eds.) Williams and Williams, 1998, p. 165-69.
da Silva, Coutinho M.A..“Effect of time of oocyte collection and site of insemination on oocyte transfer in mares.” Animal Reproduction and Biotechnology Laboratiory, Colorado State Uniuversity, Fort Collins Journal of Animal Science 2002. 80:1275-1279.
DakoCytomation, “MoFlo® Sorters” http://www.dakocytomation.us/prod—productrelatedinformation?url=gprod—moflo—index.htm one page, printed Jun. 26, 2003.
Database up 1 BR9704313 (Alves, De Resende et al) Jun. 4, 1999.
Day, B. N., et al. Birth of Piglets Preselected for Gender Following In Vitro Fertilization of In Vitro Matured Pig Oocytes by X and Y Bearing Spermatozoa Sorted by High Speed Flow Cytometry. Therio. 49(1): 360. 1998 abstr.
de Leeuw, F.E. et al:“Effects of carious cryoprotective agents and membrane-stabilizing compounds on bull sperm emebrane integrity after cooling and freezing” Cryobiology US, Academic Press Inc 1993 pp. 32-44.
Dean, P.N., et al. “Hydrodynamic Orientation of Spermatozoa Heads for Flow Cytometry”. Biophys. J. 23:7-13. 1978.
Demick, D.S., et al. “Effect of Cooling, Storage, Glycerization and Spermatozoal Numbers on Equine Fertility” J. Anim. Sci. 43:633-637. 1976.
DenDaas, J. H. G., et al. “The relationship between the number of spermatozoa inseminated and the reproductive efficiency of dairy bulls” J Dairy Sci. 81: 1714-1723. 1998.
Denham, A. “In-vitro studies on Sandhill Range Forage as Related to Cattle Preference”, M.S. Thesis. Colorado State University. 1965.
Denk, Winfried. “Two-Photon Molecular Excitation in Laser-Scanning Microscopy,” Handbook of Biological Confocal Microscopy. 1995.
Deutscher, G. H. “Extending Interval From Seventeen to Nineteen Days in the Melengestrol Acetate-Prostaglandin Estrous Synchronization Program for Heifers”. The Professional Animal Scientist 16:164. 2000.
Diagnostic Products Corporation, “Coat-A-Count” http://www.Progesterone.com. 1998.
Dikeman, M. E. “Cattle Production Systems to Meet Future Consumer Demands” J. Anim. Sci. 59:1631, 1984.
Dinnyes, A., et al., “Timing of the First Cleavage Post-Insemination Affects Cryosurvival of In Vitro-produced Bovine Blastocysts”, Molec. Reprod. Develop. 53, p. 318-324. 1999.
Dippert, K.D. “Fertilization Rates in Superovulated and Spontaneously Ovulating Mares” Theriogenology 41: 1411-1423, 1994.
Donaldson, L. E., “Effect of Insemination Regimen on Embryo Production in Superovulated Cows”, The Veterinary Record, Jul. 13, p. 35-37, 1985.
Donoghue, A.M., et al. “Timing of Ovulation after Gonadotropin Induction and its Importance to Successful Intrauterine Insemination in the Tiger (Panthera tigris)” J. Reprod. Fertil. 107:53-58. 1996.
Douglas, R. H., “Review of Induction of Superovulation and Embryo Transfer in the Equine” Therio. 11:33-46. 1979.
Douglas, R. H., et al. “Induction of Ovulation and Multiple Ovulation on Seasonally-Anovulatory Mares with Equine Pituitary Fractions.” Therio. 2(6): 133-142. 1974.
Doyle, S. P., et al. “Artificial Insemination of Lactating Angus Cows with Sexed Semen”. Proc. Western Sect. Am. Soc. Anim. Sci. 50:203. 1999.
Dresser D.W. et at. Analysis of DNAcontent ofLiving Spermatozoa Using Flow Cytometry Technique Journal of Reproduction and Fertility, 1993, vol. 98, pp. 357-365.
Duchamp, G., et al. “Alternative Solutions to hCG Induction of Ovulation in the Mare” J. Reprod. Fertil. Suppl. 35:221-228. 1987.
Evans, M. J. and Irvine, C. H. G. “Induction of Follicular Development, Maturation and Ovulation by Gonadotropin Releasing Hormone Administration to Acyclic Mares” Bio. Reprod. 16:452-462. 1977.
Ferrell, C. L. Effects of Post-Weaning Rate of Gain on Onset of Puberty and Productive Performance of Heifers of Different Breeds. J. Anim. Sci. 55:1272. 1982.
Ferrell, C. L. and T. G. Jenkins. “Energy-Utilization by Mature, Nonpregnant, Nonlactating Cows of Different Types” J. Anim. Sci. 58:234. 1984.
Field, R. A., et al., “Bone-Ossification and Carcass Characteristics of Wethers Given Silastic Implants Containing Estradiol”, J. Anim. Sci. 68:3663-3668. 1990.
Field, R. et al., “Growth, Carcass, and Tenderness Characteristics of Virgin, Spayed, and Single-Calf Heifers”, J. Anim. Sci. 74:2178. 1996.
Fitzgerald, B. P., et al. “Effect of Constant Administration of a Gonadotropin-Releasing Hormone Agonist on Reproductive Activity in Mares: Preliminary Evidence on Suppression of Ovulation During the Breeding Season.” Am. J. Vet. Res. 54:1746-1751. 1993.
Fluharty, F. L., et al., “Effects of Age at Weaning and Diet on Growth of Calves”,Ohio State University Dept. of Animal Sciences. 1966 Ohio Agri. Res. And Den. Circular, 156:29 1966.
Foote, et al. Motility and Fertility of Bull Sperm Frozen-Thawed Differently in Egg Yolk and Milk Extenders Containing Detergent, 1987 J Dairy Sci 70:2642-2647.
Foote, R.H., “Buffers and Extenders: What Do They Do? Why Are They Important?” Proc of the NAAB Tech. Conf. On Artificial Insemination and Reproduction, 62-70 (1984).
Foulkes, J. A., et al. “Artificial Insemination of Cattle Using Varying Numbers of Spermatozoa.” Vet. Rec. 101:205. 1977.
Francon, M. and Yamamoto, T., “Un Noveau et tres simple dispositif interferentiel applicable as microscope” Optica Acta 9, p. 395-408.1962.
Fugger, E. F. “Clinical Experience with Flow Cytometric Separation of Human X- and Y-Chromosome Bearing Sperm”, Therio. vol. 52, pp. 1435-1440.1999.
Fuller, Robert R. “Characterizing Submicron Vesicles With Wavelenth-Resolved Fluorescence in Flow Cytometry,” University of Illinois, May 13, 1996.
Fulwyler, M. J. “Electronic Separation of Biological Cells by Volume.” Science. 150:910. 1965.
Fulwyler, M. J. “Hydrodynamic Orientation of Cells.” J of Histochem. and Cytochem. 25:781-783. 1977.
Gamer, D. L., et al. “Quantification of the X and Y Chromosome-Bearing Spermatozoa of Domestic Animals by Flow Cytometry.” Biol. Reprod. 28:312-321. 1983.
Ginther, O. J., “Sexual Behavior Following Introduction of a Stallion into a Group of Mares” Therio. vol. 19 (6) Jun. 1983.
Ginther, O. J., “Some Factors Which Alter Estrus Cycle in Mares.” J. Anim. Sci. 33:1158. 1971 abstr.
Ginther, O. J., Reproductive Biology of the Mare. (2nd Ed.) Equiservices, Cross Plains, WI. 1992.
Gledhill, B. L. “Gender Preselection: Historical, Technical and Ethical Perspective.” Semen Reprod. Endocrinol. 6:385-395. 1988.
Gombe, S. and Hansel, W. “Plasma Luteinizing Hormone (LH) and Progesterone Levels in Heifers on Restricted Energy Intakes.” J. Anim. Sci. 37:728. 1973.
Gottlinger et al., “Operation of a Flow Cytometer”, Flow Cytometry and Cell Sorting, A. Radbruch (Ed.), 1992, pp. 7-23.
Gourley, D. D. and Riese, R. L. “Laparoscopic Artificial Insemination in Sheep.” Vet. Clin. N. Amer: Food Anim. Prac. 6(3): 615-633 (1990).
Graham, J. Analysis of Stallion semen and its Relation to Fertility. Abstract Complete article from Reproductive Technology vol. 12 # Apr. 1, 1996 now included in XYIDS000213.
Graham, J.K. and Hammerstedt, R.H.: “Differential Effects of Butylated Hydroxytoluene Analogs on Bull Sperm Subjected to Cold-Induced Membrane Stress,” Cryobiology, 29:106-117 (1992).
Graham, James K. “Effect of Cholesterol-Loaded Cyclodextrins in Semen Extenders”, Proceedings of the 19th Technidal Conference on Artificial Insemination & Reproduction, 2003, pp. 91-95.
Gravert, H. O., “Genetic Aspects of Early Calving.” In: J.C. Taylor (Ed.) The Early Calving of Heifers and its Impact on Beef Production. 59 (1975).
Gregory, K. E., et al., “Characterization of Biological Types of Cattle—Cycle III: II Growth Rate and Puberty in Femalei” J. Anim. Sci. 49:461 (1979).
Grimes, I. F, and T. B. Turner. “Early Weaning of Fall Born Calves II. Post Weaning Performance of Early and Normal Weaned Calves”. I. Prod. Agric. 4:168 (1991).
Grondahl, C., et al: “In Vitro Production of Equine Embryos”, Biology of Reproduction, Monograph Series I, p. 299-307 (1995).
Guillou, F. and Conibamous, Y. “Purification of Equine Gonadotropins and Comparative Study of Their Acid-Dissociation and Receptor-Binding Specificity.” Biochemica Et Biophysica Acta 755:229-236 (1983).
Gumsey, M. P., and Johnson, L.A., “Recent Improvements in Efficiency of Flow Cytometric Sorting of X and Y-Chromosome Bering Sperm of Domestic Animals: a Review” New Zealand Society of Animal Protection, three pages (1998).
Hall, J. B., et al., “Effect of Age and Pattern of Gain on Induction of Puberty with a Progestin in Beef Heifers.” J. Anim. Sci. 75:1606 (1997).
Hamamatsu, “Technical Information. Optical Detector Selection: A Delicate Balancing Act”, web page, http://www.optics.org/hamamatsu/photodiode.html, printed on Apr. 15, 2000, 6 pages total.
Hamano, K., et al., “Gender Preselection in Cattle with Intracytoplasmically Injected, Flow Cytometrically Sorted Sperm Heads”, Biology of Reproduction 60, p. 1194-1197 (1999).
Hammerstedt, et al., “Cryopreservation of Mammalian Sperm: What We Ask Them to Survive,” Journal of Andrology, 11:1:73-88 (1990).
Harrison, L.A., et al., “Comparison of HCG, Buserelin and Luprostiol for Induction of Ovulation in Cycling Mares.” Eq. Vet. Sci. 3:163-166 (1991).
Harte, F. J. “System of Production of Beef From Once Calved Heifers.” In: J.C. Taylor (Ed.) The Early Calving of Heifers and its Impact on Beef Production. 123 (1975).
Hawk, H. W., et al., “Fertilization Rates in Superovulating Cows After Deposition of Semen on the Infundibulum Near the Uterotubal Junction or After Insemination with High Numbers of Sperm”, XP-002103478, Therio. vol. 29, No. 5, p. 1131-1142 (1988).
Hermesmeyer, G. N., et al. “Effects of Prenatal Androgenization and Implantation on the Performance and Carcass Composition of Lactating Heifers in the Single-Calf Heifer System.” The Professional Animal Scientist 15:173. 1999.
Herweijer, Hans. “High-Speed Photodamage Cell Selection Uing Bromodeoxyuridine/Hoechst 33342 Photosensitized Cell Killing,” Sep. 23, 1987.
Hilton, G. G., et al., “An Evaluation of Current and Alternative Systems for Quality Grading Carcasses of Mature Slaughter Cows.” J. Anim. Sci. 76:2094. 1998.
Ho, L., et al., “Influence of Gender, Breed and Age on Maturity Characteristics of Sheep.” J. Anim. Sci. 67:2460-2470. 1989.
Hofferer, S., et al. “Induction of Ovulation and Superovulation in Mares Using Equine LH and FSH Separated by Hydrophobic Interaction Chromatography.” J. Reprod. Fertil. 98:597-602. 1993.
Hohenboken, W. D. “Applications of sexed semen in cattle production.” Therio. 52:1421. 1999.
Holtan, D. W., et al., “Estrus, Ovulation and Conception Following Synchronization With Progesterone, Prostaglandin F2a and Human Chorionic Gonadotropin in Pony Mares.” J. Anim. Sci. 44:431-437. 1977.
Householder, D. D., et al. “Effect of Extender, Number of Spermatozoa and hCG on Equine Fertility.” J. Equine Vet. Sci. 1:9-13. 1981.
Howard, J. G., et al., “Comparative Semen Cryopreservation in Ferrets (Mustela putorious furo) and Pregnancies After Laparoscopic Intrauterine Insemination With Frozen-Thawed Spermatozoa.” J. Reprod. Fertil. 92:109-118. 1991.
Howard, J. G., et al., “Sensitivity to Exogenous Gonadotropins for Ovulation and Laparoscopic Artificial Insemination in the Cheetah and Clouded Leopard.” Biol. Reprod. 56:1059-1068. 1997.
Hunter, R. H. F. “Transport and Storage of Spermatozoa in the Female Tract.” Proc 4th Int. Congress Anim. Repro. and A. I. 9:227-233. 1980.
Hyland, J. H., et al., “Gonadotropin Releasing Hormone (GnRH) Delivered by Continuous Infusion Induces Fertile Estrus in Mares During Seasonal Acyclity” Proceedings of the Annual Convention of the American Association of Equine Practitioners (34th) 989, p. 181-190.
IMV Technologies, Protocol of Bioxcell with Fresh Semen, 1 page, 2000.
IMV Technologies, Protocol of Bioxcell with Frozen Semen, 2 pages, 2000.
Irvine, C H. G. and Alexander, S. L. “GnRH” Chapter 4 in Equine Reproduction, McKinnon and Voss eds. Lea and Febiger. Philadelphia, London. p. 37. (1993).
Iwazumi, Y., et al., “Superovulation Using CIDR in Holstein Cows” J. of Reprod. Dev. vol. 40 (3) 1994, pp. 259-266.
Jafar, et al., “Sex Selection in Mammals: A Review”, Therio. vol. 46, p. 191-200. (1996).
Jakubiczka, S. et al. “A Bovine Homologue of the Human TSPY Gene.” Genomics. 1993, vol. 17, No. 3, pp. 732-735.
Jarriage, R. “Age of Cows at First Calving in France.” In: J.C. Taylor (Ed.) The Early Calving of Heifers and its Impact on Beef Production. 10. (1975).
Jasko, D. J., et al., “Effect of Insemination Volume and Concentration of Spermatozoa on Embryo Recovery in Mares”, Therio. 37:1233-1239, (1992).
Jasko, D. J., et al., “Pregnancy Rates Utilizing Fresh, Cooled and Frozen-Thawed Stallion Semen”, American Association of Equine Practitioners 38th Annual Convention Proceedings, 1992, p. 649-60.
Johnson, A. L. “Pulsatile Administration of Gonadotropin Releasing Hormone Advances Ovulation in Cycling Mares”, Biol. Reprod. 35:1123-1130, (1986).
Johnson, A. L., et al. “Use of Gonadotropin-Releasing Hormone (GnRH) Treatment to Induce Multiple Ovulations in the Anestrous Mare” Eq. Vet. Sci. 8:130-134, (1988).
Johnson, L.A., “Gender Preselection in Domestic Animals Using Flow Cytometrically Sorted Sperm” J. Anim. Sci. (Suppl I) 70:8-18. (1992).
Johnson, L.A., “The Safety of Sperm Selection by Flow Cytometry” Ham. Reprod. 9(5): 758. (1994).
Johnson, L.A., “Advances in Gender Preselection in Swine” Journal of Reproduction and Fertility Supplement, vol. 52, p. 255-266 (1997).
Johnson, L.A., “Gender Preselection in Humans? Flow Cytometric Separation of X and Y Spermatozoa for the Prevention of X-Linked Diseases” Human Reproduction vol. 8 No. 10, p. 1733-1739 (1993).
Johnson, L.A., “Gender Preselection in Mammals: An Overview”, Deutsch. Tierarztl. Wschr, vol. 103, p. 288-291 (1996).
Johnson, L.A., “Isolation of X- and Y-Bearing Spermatozoa for Sex Preselection.” Oxford Reviews of Reproductive Biology. Ed. H. H. Charlton. Oxford University Press. 303-326. (1994).
Johnson, L.A., “Sex Preselection by Flow Cytometric Separation of X and Y Chromosome Bearing Spermatozoa Based on DNA Difference: a Review.” Reprod. Fertil. Dev. 7:893-903. (1995).
Johnson, L.A., “Sex Preselection in Rabbits: Live Births from X and Y Sperm Separated by DNA and Cell Sorting”, Biology of Reproduction 41, pp. 199-203 (1989).
Johnson, L.A., “Sex Preselection in Swine: Altered Sex Rations in Offspring Following Surgical Insemination of Flow Sorted X- and Y-Bearing Sperm”, Reproduction in Domestic Animals, vol. 26, pp. 309-314 (1991).
Johnson, L.A., “Sex Preselection in Swine: Flow Cytometric Sorting of X- and Y-Chromosome Bearing Sperm to Produce Offspring”, Boar Semen Preservation IV, p. 107-114. (2000).
Johnson, L.A., “Successful Gender Preselection in Farm Animals”, Agricultural Biotechnology, p. 439-452. (1998).
Johnson, L.A., et al. “Sex Preselection: High-speed Flow Cytometric Sorting of X and Y Sperm for Maximum Efficiency”, Therio. vol. 52, p. 1323-1341 (1999).
Johnson, L.A., et al., “Enhanced Flow Cytometric Sorting of Mammalian X and Y Sperm: High Speed sorting and Orienting Nozzle for Artificial Insemination”, Therio. 49(1): 361 (1988) abstr.
Johnson, L.A., et al., “Flow Sorting of X and Y Chromosome-Bearing Spermatozoa into Two Populations”, Gamete Res. 16:203-212. (1987).
Johnson, L.A., et al., “Improved Flow Sorting Resolution of X- and Y-Chromosome Bearing Viable Sperm Separation Using Dual Staining and Dead Cell Gating” Cytometry 17 (suppl 7): 83, (1994).
Johnson, L.A., et al., “Flow Cytometry of X- and Y-Chromosome Bearing Sperm for DNA Using an Improved Preparation Method and Staining with Hoechst 33342.” Gamete Research 17: 203-212. (1987).
Johnson, LA., et al., “Modification of a Laser-Based Flow Cytometer for High-Resolution DNA Analysis of Mammalian Spermatozoa” Cytometry 7, pp. 268-273 (1986).
Joseph, R. L. “Carcass composition and meat quality in once calved heifers.” In: J.C. Taylor (Ed.) The Early Calving of Heifers and its Impact on Beef Production. 143. (1975).
Joseph, R. L. and J. P. Crowley. “Meat Quality of Once-Calved Heifers.” Irish J. of Agric. Research 10:281. (1971).
Kachel, V., et al., “Uniform Lateral Orientation, Caused by Flow Forces, of Flat Particles in Flow-Through Systems”, The Journal of Histochemistry and Cytochemistry, vol. 25, No. 7, pp. 774-780. (1997).
Kanayama, K., et al., “Pregnancy by Means of Tubal Insemination and Subsequent Spontaneous Pregnancy in Rabbits.” J. Int. Med. Res. 20:401-405. (1992).
Karabinus, et al., “Effects of Egg Yolk-Citrate and Milk Extenders on Chromatin Structured Viability of Cryopreserved Bull Sperm”, Journal of Dairy Science, vol. 74, No. 11, p. 3836-3848. (1999).
Keeling, P. “A Modeling Study of Once-Bred Heifer Beef Production.” Proceedings of the New Zealand Society of Animal Production. 51. (1991).
Kilicarslan, M. R., et al., “Effect of GnRH and hCG on Ovulation and Pregnancy in Mares.” Vet. Rec. 139:119-120. (1996).
Kinder, J. E., et al. “Endocrine Basis for Puberty in Heifers and Ewes.” J. Repro. and Fertility, p. 393. (1995).
Kinder, J. E., et al., “Endocrine Regulation of Puberty in Cows and Ewes.” J. Repro. and Fertility, Suppl. 34:167. (1987).
Kinoshita, Shuichi. “Spectroscopic Properties of Fluorescein in Living Lymphocytes,” Osaka Uinversity Aug. 7, 1986.
Klindt, J. and J. D. Crouse. “Effect of Ovariectomy and Ovariectomy with Ovarian Autotransplantation on Feedlot Performance and Carcass Characteristics of Heifers.” J. Anim. Sci. 68:3481. (1990).
Klosterman, E. W. and C. F. Parker. “Effect of Size, Breed and Sex Upon Feed Efficiency in Beef Cattle.” North Central Regional Research Publication 235, Ohio Agric. Research and Development Center 1090:3. (1976).
Kniffen, D. M., et al., “Effects of Long-Term Estrogen Implants in Beef Heifers.” J. Anim. Sci. 77:2886. (1999).
Kobata, Akira, “Structures and Functions of the Sugar Chains of Human Chorionic Gonadotropin”, in Glycoprotein Hormones Chin, W.W. and Boime, I., eds. Serono Symposia, Norwell, MA. p. 19-20. 1990.
Koch, R. M., et al., “Characterization of Biological Types of Cattle-Cycle-II .3.” Carcass Composition, Quality and Palatability. J. Anim. Sci. 49:448. (1919).
Kommisrud E., et al. “Comparison of Two Processing Systems for Bull Semen with Regard to Post-Thaw Motility and Nonreturn Rates.” Theriogenology, vol. 45, 1996, pp. 1515-1521.
Lapin, D. R. and Ginther, O. J. “Induction of Ovulation and Multiple Ovulations in Seasonally Anovulatory and Ovulatory Mares with an Equine Pituitary Extract.” J. Anim. Sci. 44:834-842. (1977).
Laster, D. B., “Factors Affecting Dystocia and Effects of Dystocia on Subsequent Reproduction in Beef-Cattle.” J. Anim. Sci. 36:695. (1973).
Lawrenz, R. “Preliminary Results of Non-Surgical Intrauterine Insemination of Sheep With Thawed Frozen Semen.” J S Afr. Vet. Assoc. 56(2): 61-63. (1985).
Levinson, G., et al., “DNA-based X-Enriched Sperm Separation as an Adjunct to Preimplantation Genetic Testing for the Preparation of X-linked Disease.” Mol. Human Reprod. 10:979-982. (1995).
Lindsey, A. C., et al., “Low Dose Insemination of Mares Using Non-Sorted and Sex-Sorted Sperm” Animal Reproduction Science 68 p. 279-89 (2001).
Linge, F. “Faltforsok med djupfrost sperma (Field Trials With Frozen Sperm).” Farskotsel. 52:12-13. (1972).
Liu, Z, et al. “Survival of Bull Sperm Frozen at Different rates in Media Varying in Osmolarity.” Cryobiology, vol. 27, 1998, pp. 219-230.
Lonergan, P., et al., “Effect of Time Interval from Insemination to First Cleavage on the Development of Bovine Embryos In Vitro and In Vivo”, Therio. p. 326 (1999).
Long, C.R., et al., “In Vitro Production of Porcine Embryos From Semen Sorted for Sex With a High Speed Cell Sorter. Comparison of Two Fertilization Media.” Therio. 49(1): 363 (1998) abstr.
Loy, R. G. and Hughes, J.P. “The Effects of Human Chorionic Gonadotropin on Ovulation, Length of Estrus, and Fertility in the Mare.” Cornell Vet. 56:41-50 (1965).
Lu, K. H., et al., “In Vitro Fertilization with Flow-Cytometrically-Sorted Bovine Sperm”, Therio 52, p. 1393-1405. (1999).
Lynch, I. M., et al., “Influence of timing of gain on growth and reproductive performance of beef replacement heifers.” J. Anim. Sci. 75:1715. (1997).
Macmillan, K. L. and Day, A.M., “Prostaglandin F2a: A Fertility Drug in Dairy Cattle?”, Animal Research Station, Private Bag, Hamilton, New Zealand, Therio. vol. 18, No. 3, p. 245-253 (1982).
Manning, S.T., et al., “Development of Hysteroscopic Insemination of the Uterine Tube in the Mare”, Proceedings of the Annual Meeting of the Society for Theriogenology, 1998, p. 84-85.
Martin, A. H., et al., “Characteristics of Youthful Beef Carcasses in Relation to Weight, Age and Sex. III. Meat Quality Attributes.” Canadian J. Anim. Sci. 51:305. (1971).
Martin, L. C., et al., “Genetic-effects on Beef Heifer Puberty and Subsequent Reproduction.” J. Anim. Sci. 70:4006. (1992).
Martinez, E. A., et al., “Successful Low-Dose Insemination by a Fiberoptic Endoscope Technique in the Sow”, Proceedings Annual Conference of the International Embryo Transfer Society, Netherlands, Therio. vol. 53 p. 201, Jan. 2000.
Matsuda, Y. and Tobari, I. “Chromosomal Analysis in Mouse Eggs Fertilized In Vitro With Sperm Exposed to Ultraviolet Light (UV) and Methyl and Ethyl Methanesulfonate (MMS and EMS).” Mutat. Res. 198:131-144. (1988).
Matulis, R. J., “Growth and carcass characteristics of cull cows after different times-on-feed.” J. Anim. Sci. 65:669. (1987).
Mauleon, P. “Recent research related to the physiology of puberty.” In: J.C. Taylor (ed.) The Early Calving of Heifers and its Impact on Beef Production. (1975).
Maxwell, W. and Johnson, L., “Chlortetracycline Analysis of Boar Spermatozoa After Incubation, Flow Cytometric Sorting, Cooling, or Cryopreservation”, Molecular Reproduction and Development 46, p. 408-418. (1997).
Maxwell, W. M. C., et al., “Fertility of Superovulated Ewes After Intrauterine or Oviductal Insemination with Low Numbers of Fresh or Frozen-Thawed Spermatozoa.” Reprod. Fertil. Dev. 5:57-63. (1993).
Maxwell, W. M. C., et al., “The Relationship Between Membrane Status and Fertility of Boar Spermatozoa After Flow Cytometric Sorting in the Presence or Absence of Seminal Plasma” Reprod. Fertil. Dev. vol. 10 p. 433-40 (1998).
Maxwell, W. M. C., et al., “Viability and Membrane Integrity of Spermazota after Dilution and Flow Cytometric Sorting in the Presence or Absence of Seminal Plasma.” Reprod. Fertil. Dev. 8:1165-78. (1997).
McCormick, R. J. “The Flexibility of the Collagen Compartment of Muscle.” Meat Sci. 36:79. (1994).
McCue, P.M. “Superovulation” Vet. Clin. N. Amer. Eq. Prac. 12:1-11. (1996).
McCue, P.M., et al., “Oviductal insemination in the mare.” 7th Internat. Symp. Eq. Reprod. 133 (1997) abstr.
McDonald, L. E. “Hormones of the Pituitary Gland.” Veterinary Pharmacology and Therapeutics. 6th ed. Edited by N. H. Booth and L. E. McDonald. Ames, Iowa State Univ. Press. p. 590 (1988).
McKenna, T. et al., “Nonreturn Rates of Dairy Cattle Following Uterine Body or Comual Insemination.” J. Dairy Sci. 73:1179-1783 (1990).
McKinnon, A.O. and Voss, J. L. Equine Reproduction. Lea and Febiger. Philadelphia, London (1993).
McKinnon, A.O., et al., “Predictable Ovulation in Mares Treated With an Implant of the GnRH Analogue Deslorelin.” Eq. Vet. J. 25:321-323. (1993).
McKinnon, A.O., et al., “Repeated Use of a GnRH Analogue Deslorelin (Ovuplant) for Hastening Ovulation in the Transitional Mare.” Eq. Vet. J. 29:153-155. (1996).
McLeod, John H., “The Axicon: A New type of Optical Element”, Journal of the Optical Society of America, vol. 44 No. 8, Aug. 1954, Eastman Kodak Company, Hawk-Eye Works, Rochester, New York.
McNutt, T. L. et al., “Flow Cytometric Sorting of Sperm: Influence on Fertilization and Embryo/Fetal Development in the Rabbit”, Molecular Reproduction and Development, vol. 43, p. 261-267 (1996).
Meilgaard, M., et al., “Sensor Evaluation Techniques.” CRC Press Inc., Boca Raton, FL. (1991).
Meinert, C., et al., “Advancing the Time of Ovulation in the Mare With a Short-Term Implant Releasing the GnRH Analogue Deslorelin”, Equine Veterinary Journal, 25, p. 65-68 (1993).
Melamed et al, “An Historical Review of the Development of Flow Cytometers and Sorters”, 1979, pp. 3-9.
Mendes Jr., J.O.B. “Effect of heparin on cleavage rates and embryo production with four bovine sperm prepration protocols” Theriogenology 60 (2003) 331-340.
Menke,E. A Volume Activated Cell Sorter Journal of Histo chemistry and Cyto Chemistry, 1977, vol. 25,No. 7, pp. 796-803.
Merton, J., et al., “Effect of Flow Cytometrically Sorted Frozen/Thawed Semen on Success Rate of In Vitro Bovine Embryo Production”, Therio. 47, p. 295. (1997).
Metezeau P. et al. Improvement of Flow Cytometry Analysis and Sorting of Bull Spermatozoa by Optical Monitoring of Cell Orientation as Evaluated by DAN Specific Probing Molecular Reproduction and Development, 1991,vol. 30 pp. 250-257.
Meyers, P. J., et al., “Use of the GnRH Analogue, Deslorelin Acetate, in a Slow Release Implant to Accelerate Ovulation in Oestrous Mares.” Vet. Rec. 140:249-252. (1997).
Michel, T. H., et al., “Efficacy of Human Chorionic Gonadotropin and Gonadotropin Releasing Hormone for Hastening Ovulation in Thoroughbred Mares.” Eq. Vet. J. 6:438-442. (1986).
Miller, S. J. “Artificial Breeding Techniques in Sheep.” Morrow, D.A. (ed): Current Therapy in Therio 2. Philadelphia, WB Saunders. (1986).
Mirskaja, L. M. and Petropavloskii, V.V. “The Reduction of Normal Duration of Heat in the Mare by the Administration of Prolan.” Probl. Zivotn. Anim.. Breed. Abstr. 5:387. (1937).
Molinia, F. C., et al., “Successful Fertilization After Superovulation and Laparoscopic Intrauterine Insemination of the Brushtail Possum Trichosurus vulpecula, and Tammar wallaby, Macropus eugenii.” J. Reprod. Fertil. 112:9-17. (1998).
Moran, C., et al., “Puberty in Heifers—a Review.” Animal Reproduction Sci. 18:167. (1989).
Moran, D. M. et al., “Determination of Temperature and Cooling Rate Which Induce Cold Shock in Stallion Spermatozoa”, Therio. vol. 38 p. 999-1012 (1992).
Morcom, C. B. and Dukelow, W.R. “A Research Technique for the Oviductal Insemination of Pigs Using Laparoscopy.” Lab. Anim. Sci. p. 1030-1031. (1980).
Morgan, J. B., et al., “National Beef Tenderness Survey.” J. Anim. Sci. 69: 3274. (1991).
Morris, L. H., et al., “Hysteroscopic Insemination of Small Numbers of Spermatozoa at the Uterotubal Junction of Preovulatory Mares”, Journal of Reproduction and Fertility, vol. 118, pp. 95-100 (2000).
Morris, S. T., et al., “Biological efficiency: How relevant is this concept to beef cows in a mixed livestock seasonal pasture supply context?” Proceedings of the New Zealand Society of Animal Production 54:333. (1994).
Moseley, W. M., et al., “Relationship of Growth and Puberty in Beef Heifers Fed Monensin” J. Anim. Sci. vol. 55 No. 2 p. 357-62 (1982).
Mount, D. E. “Fibrous and Non-fibrous Carbohydrate Supplementation to Ruminants Grazing Forage From Small Grain Crops.” M.S. Thesis. Abstr. Colorado State University. (2000).
Muller, W. and Gautier, F. “Interactions of Heteroaromatic Compounds with Nucleic Acids.” Euro. J Biochem. 54:358. (1975).
Mullis, K. B. and F. A. Faloona, “Specific Synthesis of DNA in Vitro Via a Polymerase-Catalyzed Chain Reaction” Methods in Enzymology vol. 155 p. 335-350 (1978).
Munne, S. “Flow Cytometry Separation of X and Y Spermatozoa Could be Detrimental to Human Embryos”, Hum. Reprod. 9(5): 758 (1994).
Myers, S. E., “Performance and Carcass Traits of Early-Weaned Steers Receiving Either a Pasture Growing Period or a Finishing Diet at Weaning.” J. Anim. Sci. 77:311. (1999).
Myers, S. E., et al., “Comparison of Three Weaning Ages on Cow-Calf Performance and Steer Carcass Traits.” J. Anim. Sci. 77:323. (1999).
Myers, S. E., et al., “Production Systems Comparing Early Weaning to Normal Weaning With or Without Creep Feeding for Beef Steers.” J. Anim. Sci. 77:300. (1999).
Nix, J. P., et al., “Serum Testosterone Concentration, Efficiency of Estrus Detection and Libido Expression in Androgenized Beef Cows.” Therio. 49: 1195. (1998).
Nowshari, et al., “Superovulation of Goats with Purified pFSH Supplemented with Defined Amounts of pLH”, Therio. vol. 43, p. 797-802 (1995).
NRC. “Nutrient Requirements for Beef Cattle.” National Academy of Sci. National Research Council, Washington, DC. (1996).
O'Brien, Justine K. et al., “Preliminary Developments of Sperm Sorting Technology in Non-human Primates”, Biology of Reproduction 2001(Su;;I. 1) 64:158.
Olive, M.D., “Detection of Enterotoxigenic Escherichia coli after Polymerase Chain Reaction Amplification with a Tehrmostable DNA Polymerase”, J of Clinical Microbiology, Feb. 1989 p. 261-265.
Olson, S.E. and Seidel, G. E. Jr., “Reduced Oxygen Tension and EDTA improve Bovine Zygote Development in a Chemically Defined Medium”, J. of Anim. Sci. 78, pp. 152-157. (2000).
Owen, J. B. “The Maiden Female—A Means of Increasing Meat Production.” Proc. Symp. On the Use of Once Bred Heifers and Gilts. (1973).
Ozhin F.V. et al. Artificial insemination of farm animals. Moscow, Izdatelstvo Selskokhozyaastvennoi Literatury, 1961, pp. 350-361 and pp. 380-393.
Parrish, J. J., et al., “Capacitation of Bovine Sperm by Heparin”, Department of Meat and Animal Science, Biology of Reproduction 38, p. 1171-1180 (1988).
Patterson, D. J., et al., “Estrus Synchronization with an Oral Progestogen Prior to Superovulation of Postpartum Beef Cows” Therio. 48, 1025-33 (1997).
Peippo, J., et al., “Sex Diagnosis of Equine Preimplantation Embryos Using the Polymerase Chain Reaction”, Therio. vol. 44:619-627 (1995).
Penfold, L.M.et at., “Comparative Motility of X and Y Chromosome-Bearing Bovine Sperm Separated on the Basis of DNA Content”, Mol. Reprod. and Develop. 1998, vol. 50,pp. 323-327.
Perry, E. J., “Historical Background” The Artificial Insemination of Farm Animals. 4th ed. E. J. Perry (ed.) New Brunswick, Rutgers University Press, pp. 3-12. (1968).
Petersen, G. A., et al, “Cow and Calf Performance and Economic-Considerations of Early Weaning of Fall-Born Beef Claves”, J. Anim. Sci., 64:15, pp. 15-22. (1987).
Petit, M. “Early Calving in Suckling Herds.” In: J.C. Taylor (ed.) The Early Calving of Heifers and its Impact on Beef Production. p. 157-176. (1975).
Picket B.W., et al., “Livestock Production Science,” 1998.
Pickett, B. W, et al., “Factors Influencing the Fertility of Stallion Spermatozoa in an A. I. Program.” Proc. 8th International Congress Anim. Reprod. A. I. Krakow, Poland. 4:1049-1052. (1976).
Pickett, B. W., et al., “Effect of Seminal Extenders on Equine Fertility.” J. Anim. Sci. 40:1136-1143. (1975).
Pickett B. W., et al., “Influence of Seminal Additives and Packaging Systems on Fertility of Bovine Spermatozoa.” J. Anim. Sci. Suppl. II. 47:12. (1978).
Pickett, B. W., et al., “Management of the Mare for Maximum Reproductive Efficiency.” CSU Anim. Repro. Lab. Bull. No. 06. Fort Collins CO. (1989).
Pickett, B. W., et al., “Procedures for Preparation, Collection, Evaluation and Insemination of Stallion Semen.” CSU Exp. Sta. Artira. Reprod. Lab. Gen. Series Bull. 935. (1973).
Pickett, B. W., et al., “Recent Developments in Artificial Insemination in Horses”, Livestock Production Science, 40, p. 31-36 (1994).
Pickett, B. W., et al., “The Effect of Extenders, Spermatozoal Numbers and Rectal Palpation on Equine Fertility.” Proc. Fifth N.A.A.B Tech. Conf. A. I. Reprod. Columbia, MO. pp. 20-22. (1974).
Pinkel et al., “Flow Chambers and Sample Handling”, Flow Cytometry: Instrumentation and Data Analysis, Van Dilla et al. (Eds.), 1985, pp. 77-128.
Pinkel, D., et al, “Flow Cytometric Determination of the Proportions of X- and Y-Chromosome-Bearing Sperm in Samples of Purportedly Separated Bull Sperm”, J. of Anim. Sci., vol. 60, p. 1303-1307 (1998).
Pinkel, D., et al., “High Resolution DNA Content Measurements of Mammalian Sperm”, Cytometry 3:1-9. (1982).
Pinkel, D., et al., “Sex Preselection in Mammals? Separation of Sperm Bearing the Y and “O” Chromosomes in the Vole Microtus Oregoni”, Science vol. 218 p. 904 (1982).
Piston, D.W. “Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy,” Journal of Microscopy, vol. 178, Nov. 29, 1994.
Polge, E. J., “Historical Perspective of AI: Commercial Methods of Producing Sex Specific Semen, IVF Procedures”, Proceedings of the 16th Technical Conference on Artificial Insemination & Reproduction, Cambridge, England, pp. 7-11. (1996).
Polge, et al, “Revival of Spermatozoa After Vitrification and Dehydration at Low Temperatures,” Nature, 164:666 (1994).
Preza, C. et al, “Determination of Direction-Independent Optical Path-Length Distribution of Cells Using Rotational-Diversity Transmitted-Light Differential Interference Contrast (DIC) Images”, Presented at the Multidimensional Microscopy: Image Acquisition and Processing V, p. 1-11 (1998).
Prokofiev M.I. Regoulyatsia Razmnozhenia Selskokhozyastvennykh Zhivotnykh, Leningrad, NAOUKA Publishing House, 1983, pp. 181-195.
Province, C.A., et al., Cooling Rates, Storage, Temperatures and Fertility of Extended Equine Spermatozoa Therio. vol. 23 (6) p. 925-934, Jun. 1985.
Pursel, et al, “Effect of Orvus ES Paste on Acrosome Morphology, Motility and Fertilizing Capacity of Frozen-Thawed Boar Sperm,” Journal of Animal Science, 47:1:198-202 (1978).
Purvis, H. T. and J. C. Whittier. “Effects of Ionophore Feeding and Anthelmintic Administration on Age and Weight at Puberty in Spring-Born Beef Heifers.” J. Anim. Sci. 74:736-744. (1996).
Randel, R. D. “Nutrition and Postpartum Rebreeding in Cattle.” J. Anim. Sci. 68:853. (1990).
Rath, D., et al., “Low Dose Insemination Technique in the Pig”, Boar Semen Preservation IV, p. 115-118. (2000).
Rath, D., et al., “Production of Piglets Preselected for Sex Following in Vitro Fertilization with X and Y Chromosome-Bearing Spermatozoa Sorted by Flow Cytometry”, Therio. 47, p. 795-800 (1997).
Rathi, R. et al., “Evaluation of In Vitro Capacitation of Stallion Spermatoza”, Biology of Reproduction 2001,vol. 65, pp. 462-470.
Recktenwald, Diether. “Cell Separation Methods and Applications,” New York 1997.
Reiling, B.A., et al., “Effect of Prenatal Androgenization on Performance, Location, and Carcass and Sensory Traits on Heifers in Single Calf Heifer System”, J. Anim. Sci., 1995, 73: 986, p. 986-992.
Reiling, B.A., et al., “Effects of Prenatal Androgenization and Lactation on Adipose Tissue Metabolism in Finishing Single-Calf Heifers” J. Anim. Sci. vol. 75 p. 1504-1512 (1997).
Rens, W., et al., “A Novel Nozzle for More Efficient Sperm Orientation to Improve Sorting Efficiency of X and Y Chromosome-Bearing Sperm”, Technical Notes, Cytometry 33, p. 476-481 (1998).
Rens, W., et al., “Improved Flow Cytometric Sorting of X- and Y-Chromosome Bearing Sperm: Substantial Increase in Yield of Sexed Semen”, Molecular Reproduction and Development, p. 50-56(1999).
Rieger, D., et al, “The Relationship Between the Time of First Cleavage of Fertilized Cattle Oocytes and Their Development to the Blastocyst Stage”, Therio. 1999, p. 190.
Rigby, S. L., et al., “Pregnancy Rates in Mares Following Hysterscopic or Rectally-Guided Utero-Tubal insemination with Low Sperm Numbers” Abstracts/Animal Reproduction Science vol. 68 p. 331-333 (2001).
Riggs, B.A. “Integration of Early Weaning and Use of Sexed Semen in a Single-Calf Heifer System to Increase Value of Non-Replacement Heifers” MS Thesis, Colorado State University, Spring 2000.
Ritar, A. and Ball, A., “Fertility of Young Cashmere Goats After Laparoscopic Insemination.” J. Agr. Sci. 117: p. 271-273. (1991).
Roberts, J. R., Veterinary Obstetrics and Genital Diseases. Ithaca, New York. p. 740-749. (1971).
Romero-Arredondo, A. “Effects of Bovine Folicular Fluid on Maturation of Bovine Oocytes” Theriogenology 41: 383-394, 1994.
Romero-Arrendondo, A. “Effects of Follicular Fluid dring In Virto Maturation of Bovine Oocytes on In Vitro Fertilization and Early Embryonic Development” Biology of Reproduction 55, 1012-1016 1996.
Romita, A. “Some Considerations on the Beef Situation in Italy.” In: J.C. Taylor (ed.) The Early Calving of Heifers and its Impact on Beef Production. 23. (1975).
Roser, J. F., et al., “Reproductive Efficiency in Mares With Anti-hCG Antibodies.” Proc 9th Int. Congr. Anim. Repro. and A. I. 4:627 (1980) abstr.
Roth, T. L., et al., “Effects of Equine Chorionic Gonadotropin, Human Chorionic Gonadotropin, and Laparoscopic Artificial Insemination on Embryo, Endocrine, and Luteal Characteristics in the Domestic Cat.” Bio. Reprod. 57:165-171 (1997).
Roux, M., et al., “Early Calving Heifers Versus Maiden Heifers for Beef-Production from Dairy herds. I. The Effects of Genotype (Friesian and Carloads x Friesian) and Two Feeding Levels in the Rearing Period on Growth and Carcass Quality.” Livestock Prod. Sci. 16:1 (1987).
Rowley, H. S., et al., “Effect of Insemination Volume on Embryo Recovery in Mares.” J. Equine Vet. Sci. 10:298-300 (1990).
Roy, J. H., “Rearing Dairy-Herd Replacements.” Journal of the Society of Dairy Technology 31:73-79 (1978).
Rutter, L. M., et al., “Effect of Abomasal Infusion of Propionate on the GnRH-Induced Luteinizing Hormone Release in Prepuberal Heifers.” J. Anim. Sci. 56:1167 (1983).
Salamon, S., Artificial Insemination of Sheep, Chippendale, New South Whales. Publicity Press. p. 83-84 (1976).
Salisbury, G. W. and VanDemark, N. L. “Physiology of Reproduction and Artificial Insemination of Cattle.” San Francisco: Freeman and Company. p. 442-551 (1978) ( 1961 & 1978 Combined) Chapters 16 and 17 are the complete article.
Schenk, J. L. “Applying Semen Sexing Technology to the AI Industry”, Proceedings of the 18th Technical Conference on Artificial insemination & Reproduction, 2000.
Schenk, J. L, et al., “Imminent Commercialization of Sexed Bovine Sperm”, Proceedings, The Range Beef Cow Symposium XVL, p. 89-96 (1999).
Schenk, J. L, “Cryopreservation of Flow-Sorted Bovine Spermatozoa”, Therio. vol. 52, 1375-1391 (1999).
Schiewe, M. C., et al., “Transferable Embryo Recovery Rates Following Different Insemination Schedules in Superovulated Beef Cattle” Therio. 28 (4) Oct. 1997, pp. 395-406.
Schillo, K. K., et al, “Effects of Nutrition and Season on the Onset of Puberty in the Beef Heifer.” J. Anim. Sci. 70:3994 (1992).
Schmid, R. L., et al, “Fertilization with Sexed Equine Spermatozoa Using Intracytoplasmic Sperm Injection and Oviductal Insemination”, 7th International Symposium on Equine Reproduction, pp. 139 (1998) abstr.
Schnell, T. D., et al, “Performance, Carcass, and Palatability Traits for Cull Cows Fed High-Energy Concentrate Diets for 0, 14, 28, 42, or 56 days.” J. Anim. Sci. 75:1195. (1997).
Schoonmaker, J. P., et al., “Effects of Age at Weaning and Implant Strategy on Growth of Steer Calves.” J. Anim. Sci. (Suppl. II) 76:71. (1998) abstr.
Seidel, G. E. Jr. “Cryopreservation of Equine Embryos” Veterinary Cliniics of North America: Equine Practice vol. 12, No. 1, Apr. 1996.
Seidel, G. E. Jr. Sexing mammalian spermatozoa and embryos-state of the art Journal of Reproduction and Fertility Supp 54, 477-487 1999.
Seidel, G. E. Jr. “Uterine Horn Insemination of Heifers With Very Low Numbers of Nonfrozen and Sexed Spermatozoa”, Atlantic Breeders Cooperative, Therio. 48: pp. 1255-1264, (1997).
Seidel, G. E. Jr et al., “Current Status of Sexing Mammalian Spermatozoa,” Society for Reproduction and fertiity, pp. 733-743, 2002.
Seidel, G. E. Jr., “Commercilizing Repreductive Biotechnology—The Approach used by XY, Inc.,” Theriogenology, p. 5, 1999.
Seidel, G. E. Jr. et al., “Insemination of Heifers with Sexed Sperm”, Therio, vol. 52, pp. 1407-1421 (1999).
Seidel, G. E. Jr., “Use of Sexed Bovine Sperm for In Vitro Fertilization and Superovulation”, Animal Reproduction and Biotech Lab, CSU, Proceedings of the 2000 CETA/ACTE Convention, Charlottetown, Prince Edward Island, Aug. 2000, pp. 22-24.
Seidel, G. E. Jr., “Artificial Insemination With X-and Y-Bearing Bovine Sperm”, Animal Reproduction and Biotechnology Laboratory, Colorado State University, (1996).
Seidel, G. E. Jr., “Status of Sexing Semen for Beef Cattle”, Texas A & M University 45th Annual Beef Cattle Short Course and Trade Show Proceedings, Aug. 9-11, p. III24-III27, (1999).
Seidel, G. E. Jr., et al, “Insemination of Heifers With Very Low Numbers of Frozen Spermatozoa”, CSU, Atlantic Breeders Cooperative, Lancaster, PA, DUO Dairy, Loveland, CO, Jul. 1996.
Seidel, G. E. Jr., et al, “Insemination of Holstein Heifers With Very Low Numbers of Unfrozen Spermatozoa”, CSU, Atlantic Breeders Cooperative, (1995).
Seidel, G. E. Jr., et al, “Sexing Mammalian Sperm—Overview”, Therio. 52: 1267-1272, (1999).
Seidel, G. E. Jr., et al., “Artificial Insemination of Heifers with Cooled, Unfrozen Sexed Semen”, Therio, vol. 49 pp. 365 (1998) abstr.
Seidel, G. E. Jr., et al., “Insemination of Heifers with Sexed Frozen or Sexed Liquid Semen.” Therio. 51. (in press) (1999) abstr.
Seidel, G. E. Jr., Economics of Selecting for Sex: The Most Important Genetic Trait, Theriogenology 59, (2003), pp. 585-598.
Senger, P. L., et al., “Influence of Cornual Insemination on Conception in Dairy Cattle.” J Anim. Sci. 66:3010-3016. (1988).
Shabpareh, V. “Methods for Collecting and Maturing Equine Oocytes in Vitro” Theriogenology 40: 1161-1175, 1993.
Shackelford, S. D., et al, “Effects of Slaughter Age on Meat Tenderness and USDA Carcass Maturity Scores of Beef Females.” J. Anim. Sci. 73:3304. (1995).
Shapiro, Howard M. MD., PC. “Practical Flow Cytometry Third Edition,” New York 1994.
Sharpe, J.C., et al., “A New Optical Configuration for Flow Cytometric Sorting of Aspherical Cells” Horticulture and Food Research Institute of New Zealand Ltd., Hamilton, New Zealand (PNS) Nov. 2, 1997 Abstract.
Sharpe, Johnathan, Thesis; “An Introduction of Flow Cytometry”, Ch. 2-2.2, 1997.
Sharpe, Johnathan, Thesis; “Gender Preselection-Principle Scientific Options,” Ch. 3.4-3.4.8, 1997.
Sharpe, Johnathan, Thesis; “Sperm Sexing using Flow Cytometry,” Ch. 3.5-3.5.8, 1997.
Sharpe, Johnathan, Thesis; “Sperm Sexing-Method of Johnson et al,” Ch. 3.6-4.3.4, 1997.
Shelton, J. N. and Moore, N.W. “The Response of the Ewe to Pregnant Serum Mare Gonadotropin and to Horse Anterior Pituitary Extract” J. Reprod. Fertil. 14:175-177. (1967).
Shilova, A. V., et al., “The Use of Human Chorionic Gonadotropin for Ovulation Date Regulation in Mares.” VIIIth Int. Congress on Anim. Repro. and A. I. 204-208. (1976).
Shorthose, W. R. and P. V. Harris. “Effect of Animal Age on the Tenderness of Selected Beef Muscles.” J. Food Sci. 55:1-. (1990).
Silbermann, M., “Hormones and Cartilage. Cartilage: Development, Differentiation, and Growth.” pp. 327-368. Academic Press, Inc. (1983).
Simon, M., “The Effect of Management Option on the Performance of Pregnant Feedlot Heifers.” M.S. Thesis. Kansas State University. (1983).
Skogen-Hagenson, M. J. et al; “A High Efficiency Flow Cytometer,” The Journal of Histochemistry and Cytochemistry, vol. 25, No. 7, pp. 784-789, 1977, USA.
Smith, G. C., et al, “USDA Maturity Indexes and Palatability of Beef Rib Steaks.” J. of Food Quality 11:1. (1988).
Smith, G. C., et al., “Relationship of USDA Maturity Groups to Palatability of Cooked Beef.” J. of Food Sci. 47:1100. (1982).
Smith, R. L., et al, Influence of Percent Egg Yolk during Cooling and Freezing on Survival of Bovine Spermatozoa, Dairy Science 1979 J 62:1297-1303.
Soisberry G.U., Van-Denmark N.L., Theory and practice of artificial cow insemination in USA, Moscow, KOLOS Publishing House, 1966, p. 346.
Spectra Physics, The Solid State Laser Company, “Vangaurd 4 Watts of UV from a Quasi-CW, All Solid State Laser,” http://www.splasers.com/products/isl—products/vangaurd.html three pages, printed Nov. 14, 2002.
Spectra-Physics Products, “Fcbar” http://www.splasers.com/products/oem—products/ov—fcbar.html two pages printed Nov. 14, 2002.
Spectra-Physics, The Solid State Laser Company, Vanguard 2000-HMD 532, www.specra-physics.com.
Spectra-Physics, The Solid State Laser Company, Vanguard 350-HMD 355, www.specra-physics.com.
Squires, E. L, et al., “Effect of Dose of GnRH Analog on Ovulation in Mares.” Therio. 41:757-769. (1994).
Squires, E. L, “Simultaneous Analysis of Multiple Sperm Attributes by Flow Cytometry”, Diagnostic Techniques and Assisted Reproductive Technology, The Veterinary Clinics of North America, Equine Practice, vol. 12, No. 1, p. 127-130 (1996).
Squires, E. L., “Early Embryonic Loss” Equine Diagnostic Ultrasonography, first ed., Rantanen & McKinnon. Williams and Wilkins, Baltimore, Maryland, p. 157-163 (1998).
Squires, E. L., et al, “Cooled and Frozen Stallion Semen”, Bulletin No. 9, Colorado State University, Ft. Collins, CO. (1999).
Staigmiller, R.B. “Superovulation of Cattle with Equine Pituitary Extract and Porcine FSH” Theriogenology 37: 1091-1099 1992.
Stap J. Et al Improving the Resolution of Cryopreserved X- and Y-Sperm During DNA Flow Cytometric Analysis with the Addition of Percoll to quench the Fluorescence of Dead Sperm: Academic Medical Center, University of Amsterdam (1998) Journal of Animal Science vol. 76 1998, pp. 1896-1902.
Steel, N. L., “Cost Effectiveness of Utilizing Sexed-Semen in a Commercial Beef Cow Operation”, MS Thesis, Colorado State University, Summer 1998.
Steinkamp: “Flow Cytometry” vol. 55, No. 9, Sep. 1984 pp. 1375-1400, New York Review of Scientific Instruments Abstract Only.
Stellflug, J. N., “Plasma Estrogens in Periparturient Cow.” Therio 10:269. (1978).
Stevenson, J. S., et al., “Detection of Estrus by Visual Observation and Radiotelemetry in Peripubertal, Estrus-Synchronized Beef Heifers.” J. Anim. Sci. 74:729. (1996).
Story, C. E., et al., “Age of Calf at Weaning of Spring-Calving Beef Cows and the Effect on Cow and Calf Performance and Production Economics.” J. Anim. Sci. 78:1403. (2000).
Stovel R.T. A Means for Orienting Flat Cells in flow systems Biophysical Journal, 1978,vol. 23,pp. 1-5.
Sullivan, J. J., et al., “Duration of Estrus and Ovulation Time in Nonlactating Mares Given Human Chorionic Gonadotropin During Three Successive Estrous Periods.” J.A.V.M.A. 162:895-898. (1973).
Sumner, A. T. and Robinson, J. A., “A Difference in Dry Mass Between the Heads of X and Y-Bearing Human Spermatozoa”, J Reprod Fertil. 48, p. 9-15 (1976).
Swanson, E. W. “Future Research on Problems of Increasing Meat Production by Early Calving.” In: J.C. Taylor (ed.) The Early Calving of Heifers and its Impact on Beef Production. (1975).
Swenson, S. L., et al., “PRRS Virus Infection in Boars: Isolation From Semen and Effect on Semen Quality” from the 1995 Research Investment Report, Iowa State University, Veterinary Clinical Sciences, Iowa State University.
Taljaard, T. L., et al., “The Effect of the Laparoscopic Insemination Technique on the Oestrus Cycle of the Ewe.” J. South Afr. Vet. Assoc. 62(2): 60-61. (1991).
Tatum, J. D., et al., “Carcass Characteristics, Time on Feed and Cooked Beef Palatability Attributes.” J. Anim. Sci. 50:833. (1980).
Tervit, H.R., et al., “Successful Culture In Vitro of Sheep and Cattle Ova”, Agricultural Research Council, Unit of Reprod. Physio. and Biochem., Univ of Cambridge, p. 493-497 (1972).
Thun, Rico, et al., Comparison of Biociphos-Plus® and TRIS-Egg Yolk Extender for Cryopreservation of Bull Semen; Theriogenology Symposium, Dec. 1999, vol. 52, #8.
Time-Bandwidth Products “GE—100—XHP”, www.tbsp.com, 2 pages, Jan. 2002.
Unruh, J. A. “Effects of Endogenous and Exogenous Growth-Promoting Compounds on Carcass Composition, Meat Quality and Meat Nutritional-Value.” J. Anim. Sci. 62:1441. (1986).
USDA “Official United States Standards for Grades of Carcass Beef.” Agric, Marketing Serv., USDA, Washington, DC. (1997).
Van Dilla, Martin, “Overview of Flow Cytometry: Instrumentation and Data Analysis”, Flow Cytometry: Instrumentation and Data Analysis, Van Dilla et al. (Eds.), 1985, pp. 1-8.
van Munster, E. B., “Geslachtsbepaling met interferometrie”, Derde prijs NtvN-prijsvraag voor pas-gepromoveerden 65/4, (Sex Determination with Interferometry) p. 95-98 (1999).
van Munster, E. B., et al, “Difference in Sperm Head Volume as a Theoretical Basis for Sorting X & Y-Bearing Spermatozoa: Potentials and Limitations”, Therio 52, pp. 1281-1293 (1999).
van Munster, E. B., et al, “Difference in Volume of X- and Y-chromosome Bearing Bovine Sperm Heads Matches Difference in DNA Content” Cytometry vol. 35 p. 125-128 (1999).
van Munster, E. B., et al, “Measurement-Based Evaluation of Optical Path Length Distributions Reconstructed From Simulated Differential Interference Contrast Images”, J of Microscopy 191, Pt. 2, p. 170-176 (1998).
van Munster, E. B., et al, “Reconstruction of Optical Pathlength Distributions From Images Obtained by a Wide Field Differential Interference Contrast Microscope”, J of Microscopy 188, Pt. 2, p. 149-157 (1997).
Vazquez, J. J. et al., “Nonsurgical Uterotubal Insemination in the Mare”, Proceedings of the 44th Annual Convention of the American Association of Equine Practitioners, vol. 44, pp. 68-69 (1998).
Vazquez, J. M., et al., “A. I. in Swine; New Strategy for Deep Insemination with Low Number of Spermatozoa Using a Non-surgical Methodology”, 14th International Congress on Animal Reproduction, vol. 2, Stockholm, Jul. 2000, p. 289.
Vazquez, J., et al., “Successful low dose insemination by a fiber optic Endoscope technique in the Sow”, Proceedings Annual Conference of the International Embryo Transfer Society, Netherlands, Theriogenology, vol. 53 Jan. 2000.
Vidament, M., et al., “Equine Frozen Semen Freezability and Fertility Field Results.” Therio. 48:907. (1997).
Vincent, B.C., et al, “Carcass Characteristics and Meat Quality of Once-Calved Heifers.” Canadian J. Anim. Sci. 71:311. (1991).
Vogel, T., et al, “Organization and Expression of Bovine TSPY”, Mammalian Genome, vol. 8, pp. 491-496 (1997).
Voss, J. L. and Pickett, B. W., “Reproductive Management of the Broodmare.” CSU Exp. Sta. Anim. Reprod. Lab. Gen. Series. Bull. 961. (1976).
Voss, J. L., et al., “Effect of Number and Frequency of Inseminations on Fertility in Mares.” J. Reprod. Fertil. Suppl. 32:53-57. (1982).
Voss, J. L., et al., Effect of Human Chorionic Gonadotropin on Duration of Estrous Cycle and Fertility of Normally Cycling, Nonlactating Mares. J.A.V.M.A. 165:704-706. (1974).
Waggoner, A. W., et al., “Performance, Carcass, Cartilage Calcium, Sensory and Collagen Traits of Longissimus Muscles of Open Versus 30-month-old Heifers That Produced One Calf.” J. Anim. Sci. 68:2380. 1990.
Watson, “Recent Developments and Concepts in the Cryopreservation of Spermatozoa and the Assessment of Their Post-Thawing Function,” Reprod. Fertil. Dev. 7:871-891 (1995) Abstract.
Welch G., et al., Fluidic and Optical Modifications to a FACS IV for Flow Sorting of X- and Y-Chromosome Bearing Sperm Based on DNA. Cytometry 17 (Suppl. 7): 74. (1994).
Welch, G., et al., “Flow Cytometric Sperm Sorting and PCR to Confirm Separation of X- and Y-Chromosome Bearing Bovine Sperm”, Animal Biotechnology, 6, pp. 131-139 (1995).
Wheeler, T. L., et al., “Effect of Marbling Degree on Beef Palatability in Bos-taurus and Bos-indicus cattle.” J. Anim. Sci. 72:3145. (1994).
Wickersham, E. W. and L. H. Schultz. “Influence of Age at First Breeding on Growth, Reproduction, and Production of Well-Fed Holstein Heifers.” J. Dairy Sci. 46:544. (1963).
Wilhelm, K.M. et al, “Effects of Phosphatidylserine and Cholesterol Liposomes on the Viability, Motility, and Acrosomal Integrity of Stallion Spermatozoa Prior to and after Cryopreservation”, Cryobiology 33:320, 1996.
Wilson, C. G., et al., “Effects of Repeated hCG Injections on Reproductive Efficiency in Mares.” Eq. Vet. Sci. 4:301-308. (1990).
Wilson, D. E. et al., “Mammal Species of the World”, Smithsonian Institution Press, 1993, 1206 pp.
Wilson, M.S. “Non-surgical Intrauterine Artificial Insemination in Bitches Using Frozen Semen.” J. Reprod. Fertil. Suppl. 47:307-311. (1993).
Windsor, D. P., et al, “Sex Predetermination by Separation of X and Y Chromosome-bearing Sperm: A Review”, Reproduction of Fertilization and Development 5, pp. 155-171, (1993).
Wintzer Et al.:“Krankheiten des Pferdes Ein Leitfaden fur Studium und Praxiz,” 1982, nParey, Berlin Hamburg XP002281450.
Woods, G. L. and Ginther, O. J. “Recent Studies Related to the Collection of Multiple Embryos in Mares.” Therio. 19:101-108. (1983).
Woods, J., et al., “Effects of Time of Insemination Relative to Ovulation on Pregnancy Rate and Embryonic-Loss Rate in Mares.” Eq. Vet. J. 22(6): 410-415. (1990).
Zhou, Hongwei, et al. “Research on and Development of Flow Cell Sorting Apparatuses,” Gazette of Biophysics, vol. 13, ed. 3, 1997.
Hamamatsu, “Photomultiplier Tubes,” web page, http://www.optics.org/hamamatsu/pmt.html. Printed on Apr. 15, 2000 4.
Hermesmeyer, G.N. ,et al. Effects of Lactation and Prenatal Androgenization on the Performance, Carcass Composition, and Longissimus muscle sensory characteristics of heifers in the single-calf heifer system. The Professional Animal Scientist 15: 14-23.
Seidel, G. E. Jr., “Fertility of Bulls on the Edge of the Dose-Response Curve for Numbers of Sperm per Inseminate”; Proceedings of the 17th Technical comference on Artificial Insemination & Reproduction. 1998.
Hollinshead, F.K. et al. “In vitro and in vivo assessment of functional capacity of flow cytometrically sorted ram spermatozoa after freezing and thawing.” Reprod. Fertil. and Develop. 2003. vol. 15, pp. 351-359.
Hollinshead F. K. et al. “Production of lambs of predetermined sex after the insemination of ewes with low numbers of frozen-thawed sorted X- or Y-Chromosome-bearing spermatozoa”, Reprod. Fertil. and Develop. 2002, vol. 14, pp. 503-508.
Hollinshead F. K. et al. “Sex-Sorting and Re-cryopreservation of Frozen-Thawed Ram Sperm for In Vitro Embryo Production” Theriogenology , vol. 59. (2003) pp. 209.
Dhali et al. Vitrification of Buffalo (Bubalus bubalis)Oocytes, Embryo Theriogenology vol. 53, pp. 1295-1303 (2000).
Borini et al. Cryopreservation of Mature Oocytes: The use of a trypsin inhibitor enhances fertilization and obtained embryos rates, Fertil. Steril. (1997), vol. 68 (Suppl.).
Hamamatsu Photonics K.K. Electronic Tube Center, Photomultiplier Tubes, Brochure Dec. 1997.
Johnson, L. A., et al. The Beltsville Sperm Sexing Technology: High-speed sperm sorting gives improved sperm output for In Vitro fertiliation and AI, Journal of Animal Science,vol. 77, Suppl 2/J, Dairy Sci. vol. 82, Suppl. 2/1999 pp. 213-220.
Peters D., The LLNL high-speed sorter: Design features,operational characteristics, and bioloical utility, Cyometry, 6:290-301 (1985).
Rens W., et al Slit-scan flow cytometry for consistent high resdolution DNA analysis of X- and Y-chromosome bearing sperm, Cytometry 25:191-199 (1996).
van Munster, E. B. Interferometry in flor to sort unstained X- and Y-Chromosome-Bearing Bull Spermatozoa, Cytometry 47:192-199 (2002).
Scmid, R. L., et al. Effects of follicular fluid or progesterone on in vitro maturation of equine oocytes before intracytoplasmic sperm injection with non-sorted and sex-sorted spermatozoa, Journal of Reproduction and Fertility 56:519-525, 2000.
Brink, Z et al. A reliable procedure for superovulating cattle to obtain zygotes and early emryos for microinjection, Theriogenology vol. 41, p. 168, (1994).
Spectra-Physics, The Solid State Laser Company, Vanguard 350-HMD 355, User's Manual, Dec. 2002.
Photon, Inc. Light MeasuringSolutions, NanoScan for High-powered beam Applications, 2005.
Fluorescense Lifetime Systems, www.picoquant.com, Jan. 28, 2005 pp. 2.
NCI ETI Branch, Flow CytometryCore Laboratory, http://home.ncifcrf.gov/ccr/flowcore/ndyag.htm, pp. 5, May 11, 2004.
NCI ETI Branch, Flow CytometryCore Laboratory, http://home.ncifcrf.gov/ccr/flowcore/Isrll.htm, pp. 14, May 11, 2004.
Saacke,R.G., Can Spermatozoa with abnormal heads gain access to the ovum in artificially inseminated super- and single-ovulating cattle?, Theriogenology 50:117-128. 1998.
Hawk, H.W., Gamete Transport in the Superovulated Cow. Theriogenology: Jan. 1998 vol. 29 No. 1 pp. 125-142.
Blecher, S.R., et al. A new approach to immunological sexing of sperm, Theriogenology, 59, pp. 1309-1321, 1999 Vol.
Wheeler, M. B., et al. Application of sexed semen technology to in vitro embryo production in cattle, Theriogenology, vol. 65 (2006) 219-227.
Garverick, H. A., et al. mRNA and protein expression of P450 aromatase (AROM) and estrigen recepters (ER) α and β during early development of bovine fetal ovaries; The society for the study of reproduction 38th annual meeting Jul. 24-27, 2005; Abstract only.
Bodmer, M., et al., Fertility in heifers and cows after low does insemination with sex-sorted and non-sorted sperm under field conditions; Theriogenology, vol. 64, (2005) 1647-1655.
Schenk J. L., et al. Embryo production from superovulated cattle following insemination of sexed sperm, Theriogenology, 65 (2006) 299-307.
Garner, D. L., Flow cytometric sexing of mammalian sperm, Theriogenology, 65 (2006) 943-957.
Habermann F. A., et al., Validation of sperm sexing in the cattle (Bos taurus) by dual colour flourescence in situ hybridization; J Anim Breed Genet. Apr. 2005; 122 Suppl 1:22-7 (Abstract only).
Johnson, L. A., Sexing mammalian sperm for production of offspring: the state-of-the-art; Animal Reproduction Science; 60-61 (2000) pp. 93-107.
Seidel, G.E. Jr., et al., Methods of Ovum Recovery and Factors Affecting Fertilization of Superovulated Bovine Ova, Control of Reproduction in the Cow, Sneenan ed., 1978, pp. 268-280.
Hawk, H. W. et al., Effect of Unilateral Comual Insemination upon Fertilization Rate in Superovulating and Single-Ovulating Cattle, Journal of Animal Sciences, 1986 vol. 63, pp. 551-560.
Andersson, M. et al., Pregnancy Rates in Lactating Holstein-Greisian Cows after Artificial Insemination with Sexed Sperm. Reprod. Dom. Anim 41, 95-97, 2006.
Morton, K. M., et al., In vitro and in vivo survival of bisected sheep embryos derived from frozen-thawed unsorted, and frozen-thawed sex-sorted and refrozen-thawed ram spermatozoa; Theriogenology, 65 (2006) 1333-1345.
Wilson, R. D., et al., In vitro production of bovine embryos using sex-sorted sperm, Theriogenology, 65 (2006) 1007-1015.
Johnson, L.A., et al, 1996 Gender preselection in mammals. XX Beltsville Symposium in Agricultural Research Technolgy's Role in the Genetic Improvement of Farm Animals. pp. 151-164, Amer. Soc. Anim. Sci. IL, USA.
Smorag, Z., et al., Cattle Sex Regulation by Separation of X and Y Spermatozoa—Preliminary Results of Field Experiment in Poland, Reproduction, Fertility and Development 17(2) 306-306; Jan. 1, 2005.
Crichton, E., et al. (Abstract) Artificial Insemination of Lactating Holstein Cows with Sexed Sperm, Reproduction, Fertility and Development 18(2) 281-281, Dec. 14, 2005.
Lindsey, A.C., et al. Hysteroscopic insemination of low numbers of flow sorted fresh and frozen/thawed stallion spermatozoa, Equine Vet J. Mar. 2002;34(2):106-7.
Drobnis, E. Z, Cold shock damage is due to lipid phase transitions in cell membranes : a demonstration using sperm as a model, Journal of experimental zoology (J. exp. zool.) 1993, vol. 265, No. 4, pp. 432-437 (22 ref.).
Hagele, W.C., et al., Effect of Separating Bull Semen into X and Y Chromosome-bearing Fractions on the Sex Ratio of Resulting Embryos; Cran J. Comp. Med, 1984: 48:294-298.
U.S. Appl. No. 11/422,735, filed May 25, 2006 entitled Apparatus, Methods and Processes for Sorting Particles and for Providing Sex-Sorted Animal Sperm.
Suh, T.K, et al., Pressure during flow sorting of bull sperm affects post-thaw motility characteristics; Theriogenology vol. 59, No. 1, Jan. 2003 p. 516.
Garner, D.L. et al., Viability Assessment of Mammalian Sperm Using SYBR-14 and Propidium Lodide, 1996, Biology of Reporduction, vol. 53, pp. 276-284.
Salisbury, G.W. et al., Substrate-Free Epididymal-Like Bovine Spermatozoa, J Repord Fertil, 1963, vol. 6, pp. 351-359.
Wong, P.Y.D., et al. Potassium Movement During sodium-Induced Motility Initiation in the Rat Caudal Epididymal Spermatozoa; Biology of Reproduction 28, 206-212 (1983).
Shirai, H., et al. Regulation of Sperm Motility in Starfish; Development, Growth, and Differentiation; 24, (5), 419-428 (1982).
Padilla, A.W. et al. Extender and Centrifugation Effects on the Motility Patterns of Slow-Cooled Stallion Spermatozoa; J. Anim. Sci 1991, 69:3308-3313.
Ohta H., et al., Acquisition and Loss of Potential for Motility Ofspermatozoa of the Japanese Eel Anguilla Japonica, National Research Institute of Aquaculture, UNJR Aquiculture; 28th Panel Proceedings (1999).
Morisawa, M. The Process of the Initiation of Sperm Motility; Laboratory of Physiology, Ocean Research Institute, University of Tokyo (1986).
McGrady, A.V., et al. Cholinergic Effects on Bull and Chimpanzee Sperm Motility; Biology of Reproduction 15, 248-253 (1976).
Klinc, P. Dissertation—Improved Fertility of Flowcytometrically Sex Selected Bull Spermatozoa , School of Veterinary Medicine Hanover Germany, 2005.
Jenkins, A. D., et al. Concentrations of Seven Elements in the Intraluminal Fluids of the Rat Seminiferous Tubules, ReteTestis, and Epididymis; Biology of Reproduction 23, 981-987 (1980).
Darszon, A., et al. Ion Channels in Sperm Physiology, Physiological Reviews, vol. 27, No. 2, Apr. 1999.
Babcock, D. F., et al. Potassium-dependent increases in cytosolic pH stimulate metabolism and motility of mammalian sperm, Proc. Natl. Acad. Sci. USA, vol. 80, pp. 1327-1331, Mar. 1983.
Zilli, L., et al. Adenosine Triphosphate Concentration and β-D-Glucuron idase Activity as Indicators of Sea Bass Semen Quality; Biology of Reproduction 70,1679-1684 (2004) Published online before print Feb. 11, 2004.
Hanania, E. G, et al. A novel Automated Method of Scanning Cytometry and Laser-Induced Necrosis Applied to Tumor Cell Purging, Blood. Nov. 15, 1999, vol. 94, No. 10, suppl 1 part 1.
Purdy, P. H. et al., Effect of Adding Cholesterol to Bull Sperm Membranes on Sperm Capacitation, the Acrosome Reaction, and Fertility, Biology of Reproduction 71, 522-527 (2004).
Purdy, P. H. et al., Effect of cholesterol-loaded cyclodextrin on the cryosurvival of bull sperm, Cryobiology 48 (2004) 36-45.
Moce E., et al., Cholesterol-loaded cyclodextrins added to fresh bull ejaculates improve sperm cryosurvival, J. Anim. Sci, 2006, 84:826-833.
Ereth, B.A., et al. Integration of Early Weaning and Sexed Semen into a Single-Calf Heifer System to Increase Value of Non-Replacement Heifers; Proceedings, Western Section, American Society of Animal Science, vol. 51,441-443, Jun. 2000.
Ereth, B.A., et al. Integration of Early Weaning and Sexed Semen into a Single-Calf Heifer System to Increase Value of Non-Replacement Heifers; Abstract Only, Journal of Animal Science, vol. 78, Supplement 2, 2000.
Bavister, B.D. et al., The effects of Sperm Extracts and Energy Sources on the Motility and Acromosome Reaction of hamster Spermatozoa in vitero; Biology of Reporduction 16, 228-237 (1997).
Fattouh, EI-S.M. et al., Effect of Caffine on the Post-Thaw Motility of Buffalo Spermatozoa; Theriogenology, Jul. 1991, vol. 36 No. 1.
U.S. Appl. No. 11/092,313, Response to Restriction filed Sep. 11, 2006.
U.S. Appl. No. 11/092,313, OA mailed Oct. 6, 2006.
U.S. Appl. No. 11/092,509, response to Restriction filed Jun. 21, 2006.
U.S. Appl. No. 11/092,509, OA mailed Jul. 21, 2006.
U.S. Appl. No. 11/092,338, Response to restriction filed Jan. 16, 2007.
U.S. Appl. No. 11/092,509, Resonse to OA filed Dec. 21, 2006.
U.S. Appl. No. 11/092,313, Response to OA filed Feb. 6, 2007.
U.S. Appl. No. 10/433,183, Office Action mailed Jan. 22, 2007.
Parallel Australian Application No. 2002237689; Office Action dated Jan. 9, 2006.
U.S. Appl. No. 11/092,509, Final OA dated Mar. 26, 2007.
U.S. Appl. No. 10/812,351, Response to Restrictive OA filed Apr. 5, 2007.
Lindsey, A. C., et al., Hysteroscopic insemination of mares with low numbers of nonsorted or flow sorted spermatozoa; Equine vet. J. (2002) 34(2) 128-132.
Sharpe, Johnathan, Advances in flow cytometry for sperm sexing. Unpublished paper, 2008.
Johnson, S.K., Possibilities with today's reproductive technologies. Available online at www.sciencedirect.com; Therio 64(2005) pp. 639-656.
Brogliatti, G. et al., Pregnancy Rates and First Born Calves by Artificial Insemination using Sexed Semen in Argentina: Therio. Jan. 2, 2002, vol. 57, No. 1 . p. 369.
Palma, G. et al., Sperm Physiology: The Ability to Produce Embryos In Vitro using Semen from Bulls with a Low Non-Return Rate. Therio. p. 308.
Gottlinger, Christopher et al., Cell-Cooling in Flow Cytometry by Peltier Elements. Cytometry 7:295-297 (1986).
Abstracts: American Dairy Science Assoc., American Society of Animal Science, Jun. 22-26, 2003 Phoenix AZ. J.Anim Sci. vol. 81 Supp1.1/J. Dairy Sci. vol. 86, Suppl. 1.
Garner, Duane L., et al, Effect of Semen Dilution on Bovine Sperm Viability as Determined by Dual-DNA Staining and Flow Cytometry. J. of Andrology, vol. 18, No. 3 May/Jun. 1997.
Lindsey, A. L., et al., Hysteroscopic or rectally guided, deep-uterine insemination of mares with spermatozoa stored 18 h at either 5° C. or 15° C. prior to flow-cytometric sorting, Animal Reproduction Science, vol. 85, Issues 1-2, Jan. 2005, pp. 125-130.
Schenk, J. L., et al., Pregnancy rates in heifers and cows with cryopreserved sexed sperm: Effects of sperm numbers per inseminate, sorting pressure, and sperm storage before sorting, Theriogenology (2008), doi:10.1016/j. theriogenolology. 2008:08:016.
Suh, T.K., et al., High pressure flow cytometric sorting damages sperm, Theriogenology 64 (2005) 1035-1048.
Upreti, G. C., et al., Studies on aromatic amino acid oxidase activity in ram spermatozoa: role of pyruvate as an antioxidant, Animal Reproduction Science 51 (1998) 275-287.
Schafer, D. J., et al., Comparison of progestin-based protocols to synchronize estrus and ovulation before fixed-time artificial insemination in postpartum beef cows, Journal of Animal Science Mar. 30, 2007, pp. 1-21.
Lamb, G. C., Synchronization of estrus and artificial insemination in replacement beef heifers using gonadotropin-releasing hormone, prostaglandin F2a and progesterone, Journal of Animal Science Nov. 1, 2006, vol. 84, pp. 3000-3009.
Saladarriaga, J. P., Ovarian, hormonal, and reproductive events associated with synchronization of ovulation and timed appointment breeding in Bos indicus-influenced cattle using intravaginal progesterone, gonadotropin-releasing hormone, and prostaglandin F2a, Journal of Animal Science Jan. 2007, vol. 85, pp. 151-162.
O'Brien, J. K. et al., Semen collection, characterization an preservation in a beluga (Delphinapterus leucas), 1st International workshop on Beluga whale research, husbandry and management in wild and captive environments Mar. 2007.
O'Brien, J. K. et al., Development of sperm sexing and associated assisted reproductive technology for sex preselection of captive bottlenose dolphins (Tursiops truncatus), Reproduction, Fertility and Development 2008, 18, 319-329.
Parallel Australian Patent Application No. 200237689; Office Action dated May 21, 2007.
Parallel Australian Patent Application No. 200237689; Office Action dated Oct. 3, 2007.
Parallel Australian Patent Application No. 200237689; Notice of Acceptance dated Jan. 2, 2008.
Parallel Australian Patent Application No. 200237689; Issued Patent dated Apr. 24, 2008.
Parallel Canadian Patent Application No. 2468772; Office Action dated May 9, 2008.
Parallel U.S. Appl. No. 10/433,183; Office Action dated Oct. 28, 2008.
Weigel, K. A., Exploring the Role of Sexed Semen in Dairy Production Systems; J. Dairy Sci. 87: (E.Suppl.): E120-E130; 2004 American Dairy Science Assoc.
Ferre, L., In vitro-derived embryo production with sexed and unsexed semen from different bulls; Reproduction Fertility and Development, vol. 16, Part 1/2, p. 253, 2004.
Dransfield, M.B.G., et al., Timing of Inseminatio for Dairy Cows Identified in Estrus by a Radiotelemetric Etrus Detection System. 1998 J Dairy Sci. 81: 1874-1882.
Nebel, R.L. et al. Timing of Artificial Insemination of Dairy Cows: Fixed Time Once Daily Versus Morning and Afternoon 1994 J Dairy Sci. 77:3185-3191.
Pursley, J. Richard, et al. Effect of Time of Artificial Insemination on Pregnancy Rates, Calving Rates, Pregnancy Loss, and Gender Ratio After Synchronization of Ovulation in Lactating Dairy Cows. 1998 J Dairy Sci. 81: 2139-2144.
Rozeboom, K. J. et al. Late Estrus or Metestrus Insemination After Estrual Inseminations Decreases Farrowing Rate and Litter Size in Swine J. Animal Sci. 1997. 75: 2323-2327.
Peeler, I. D. et al. Pregnancy Rates After Times AI of Heifers Following Removal of Intravaginal Progesterone Inserts, J. Dair Sci., 87:2868-2873; 2004.
Rath, D. Low Dose Insemination in the Sow—A Review, Reprod. Dom Anim. 37, 201-205 (2002) www.blackwell.de/synergy.
Lukaszewicz, M. et al. Attempts on freezing the Greylag (Anser anser L.) gander semen Animal Reproduction Science 80 (2004) 163-173.
Foote, R. H. et al. Sperm Numbers Inseminated in Dairy Cattle and Nonretum Rates Revisited 1997 J Dairy Science 80:3072-3076.
Conley, H.H. et at. Intensification by Intrauterine Devices of Sperm Loss from the Sheep Uterus Biology of Reproduction 2, 401-407 (1970).
Chrenek, Peter et al. Fertilizing Capacity of Transgenic and Non-Transgenic Rabbit Spermatozoa after Heterospermic Insemination Bull Vet. Inst. Pulawy 49, 307-310, 2005.
Johnson L.A., et al. use of boar spermatozoa for artificial insemination, II. Fertilization Capacity of fresh and frozen spermatozoa in gilts inseminated either at a fixed time or according to walsmeta readings, Journal of Animal Science, vol. 54 No. 1, 1982 pp. 126-131.
Pursel, V. G., et al. Distribution and morphology of fresh and frozen-thawed sperm in the reproductive tract of gilts after artificial insemination; Biology of Reproduction 19, 69-76 (1978).
Rath, D., “On the Status of Sex-Specific Sperm Sorting” Review lecture ET Conference 2002, Department of Animal Production and Animal Behaviour, Mariensee, Germany.
Grossfeld, R., “Experiments to Improve the Quality of Sex-Sorted Fresh and Frozen Porcine Spermatozoa” PhD thesis of the Faculty of Agricultural Sciences, Georg-August University, Gottingen, May 2007.
de Graaf, S.P. et al., Birth of offspring of pre-determined sex after artificial insemination of frozen-thawed, sex-sorted and re-frozen-thawed ram spermatozoa, Theriogenology, 67 (2007) 391-398.
O'Brien, J.K. et al., Development fo sperm sexing and associated assisted reproductive technology for sex preselection of captive bottlenose dolphins, Reproduction Fertility and Development, 2006, 18, 319-329.
Zhang, M, et al., In vitro fertilization with flow-sorted buffalo sperm, Reproduction Fertility and Development, 2005, 18(2), 283-284.
Schenk, J.L. et al., Insemination of cow elk with sexed frozen semen, 2003 Theriogenology 59, 514.
BD Biosciences Brochure, BD FACSCalibur Flow Cytometer, the Automated, Multicolor Flow Cytometry System, 2006.
Johnson, L. A. et al., Cryopreservation of flow cytometrically sorted boar sperm: effects on in vivo embryo developmen; J. Anim Sci. vol. 78, Suppl 1/J. Dairy Sci., vol. 83, Suppl 1, 2000.
Lindsey, A., et al., “Hysteroscopic Insemination of Fresh and Frozen Unsexed and Sexed Equine Spermatozoa”, pp. 152-153, Proc. 5th Int. Symp. Equine Embryo Transfer, p. 13, 2000.
Presicce, G.A., et al., First established pregnancies in mediterranean italian buffaloes (Bubalus bubalis) following deposition of sexed spermatozoa near the utero tubal junction, Reproduction in Domestic Animals, vol. 40, No. 1, Feb. 2005 , pp. 73-75(3).
Dielemann, S.J., Superovulation in cattle: from understanding the biological mechanisms to genomics of the oocyte; 23rd Annual Meeting A.E.T.E.—Alghero; Sep. 2007.
Hasler, J. F., Factors influencing the success of embryo transfer in cattle; 23rd World Buiatrics Congress, Quebec, Canada Jul. 2004.
Mapletoft, R. J. et al., Superovulation in perspective, Bioniche Animal Health, Dec. 2002.
Bahr, G.F.et al., Considerations of volume, mass, DNA, and arrangement of mitochondria in the midpiece of bull spermatozoa, Experimental Cell Research 60 (1970) 338-340.
Baumber, J., et al., “The Effect of Reactive Oxygen Species on Equine Sperm Motility, Viability, Acrosomal Integrity, Mitochondrial Membrane Potential, and Membrane Lipid Peroxidation”, 2000, Journal of Andrology, vol. 21 (6),pp. 895-902.
BD LSR II Flow Cytometer, BD Biosciences Clontech Discovery labware Immunocytometry systems Pharmingen Jan. 28, 2004.
Bermudez, D.et al., The immediate effect of IR, laser radiation on rat , germ, cells, was studied by cytophotometric quantification, Scisearch 2001.
Sequent Biotechnologies Inc., Welcome to the Sequent Biotechnologies Inc. website., http://www.sequentbiotech.com/ Dec. 6, 2003.
Sabuer K. et al.“Effects of Angiotensin II on the Acrosome Reaction in Equine Spermatozoa” Journal of Reproduction and Fertility vol. 120, 2002 p. 135-142.
Brooks, D.E., Manipulation of Mammalian Gametes in Vitro, Biennial Report, Waite Agricultural Research Institute 1986-1989.
Bruemmer, J.E. et al., “Effect of Pyruvate on the Function of Stallion Spermatozoa Stored for up to 48 Hours”, Journal of Animal Science 2002, vol. 80*1, pp. 12-18.
Catt, S.L. et al., Hoechst staining and exposure to UV laser during flow cytometric sorting does not affect the frequency of detected endogenous DNA nicks in abnormal and normal human spermatozoa, Molecular Human Reproduction vol. 3 No. 9 pp. 821-825,(1997).
Chaudhry, P., et al., Casein Kinase II activity and polyamine-stimulated protein phosphorylation of cytosolic and plasma membrane protiens in bovine sperm, Archives of Biochemistry and Biophyeics vol. 271, No. 1 pp. 98-106, May 15, 1989.
Chen, Y. et al., Effects of sucrose, trehalose, hypotaurine, taurine, and blood serum on survival of frozen bull sperm, Cryobiology 30,423-431 (1993).
Chapter 16 Semen processing, storage, thawing, and handling, http://nongae.gsnu.ac.kr/˜cspark/teaching/chap16.html Sep. 23, 2002.
Conover,J. et al., Pre-loading of mouse oocytes with DNA-specific fluorochrome (Hoechst 33342) permits rapid detection of sperm-oocyte fusion, Journals of Reproductive & Fertility Ltd. 82, 681-690 (1988).
Cressman, B.E. MD. et al., Effect of sperm dose on pregnancy rate from intrauterine insemination: a retrospective analysis, Texas Medicine, 92:74-79 (1996).
Crissman, H.A. et al., Use of DIO-C5-3 to improve hoechst 33342 uptake, resolution of DNA content, and survival of CHO cells, Experimental cell research 174: 338-396 (1988).
Graves, C.N., et al., “Metabolism of Pyruvate by Epididymal-Like Bovine Spermatozoa”, 1964 Journal of Dairy Science vol. 47 (12), pp. 1407-1411.
Certified Semen Services, CSS Minimum requirements for disease control of semen produced for AI, http://www.naab-css.org/about—css/disease—control-2002.html Sep. 22, 2003.
De Grooth, B. et al., Simple delay monitor for droplet sorters, Cytometry 12:469-472 (1991).
Lodge, J.R., et al., “Carbon Dioxide in Anaerobic Spermatozoan Metabolism” 1968, Journal of Dairy Science, vol. 51(1), pp. 96-103.
Delgado,N. et al., Correlation between sperm membrane destabilization by heparin and aniline blue staining as membrane integrity index, Archives of Andrology40:147-152 (1998).
Denniston, D.J. et al., “Effect of Antioxidants on the Motility and Viability of Cooled Stallion Spermatozoa”, Journal Reproduction Supplement 56, 2001, pp. 121-126.
De Pauw M.C. et al. Sperm Binding to Epithelial Oviduct Explants in Bulls with Different Nonreturn Rates Investigated with a new In-Vitro Model Biology of Reproduction, 2002, vol. 67 p. 1073-1079.
Donoghue, A. et al., Effects of water- and lipid-soluble antioxidants on turkey sperm viability, membrane integrity, and motility during liquid storage, Poultry Science 76:1440-1445 (1997).
Zucker, R. et al., Utility of light scatter in the Morphological analysis of sperm, Cytometry 13:39-47 (1992).
Ericsson, S. et al., Interrelationships among fluorometric analyses of spermatozoal function, classical semen quality parameters and the fertility of frozen-thawed bovine spermatozoal, Theriogenology 39:1009-1024 (1993).
Ericsson, et al. “Flow Cytometric Evaluation of Cryopreserved Bovine Spermatozoa Processed Using a New Antiobiotic Combination”, Theriogenology, 1990, vol. 33(6), pp. 1211-1220.
Esteves, S. et al., Improvement in motion characteristics and acrosome status in cryopreserved human spermatozoa by swim-up processing before freezing, Human Reproduction vol. 15 No. 10 pp. 2173-2179 (2000).
Evenson, D.et al., Physiology and Management, Rapid determination on sperm cell concentration in bovine semen by flow cytometry, J Dairy Sci. 76: 86-94 (1993).
Farrell et al., “Quantification of Bull Sperm Characteristics measured by Computer-Assisted Sperm Analysis (CASA) and the Relationship of Fertility”, Theriogenology, 1998, vol. 49 (4), pp. 871-879.
Fitzgerald, D., Cell sorting: An enriching Experience, The Scientist Jul. 23, 2001.
Foote,R., The history of artificial insemination: Selected notes and notables, American Society of Animal Science (2002).
Zhanga, M.et al.,Development of bovine embryos after in vitro fertilization of oocytes with flow cytometrically sorted, stained and unsorted sperm from different bulls, Abstract: Theriogenology vol. 60 Issue 9,pp. 1657-1663, Dec. 2003.
Johnson, L. et al., Recent advances in sex preselection of cattle: Flow cytometric sorting of X-&Y-chromosome bearing sperm based on DNA to produce progeny, Theriogenology 41:51-56 (1994).
Ashwood-Smith, M., Debate Human sperm sex selection, Human Reproduction vol. 9 No. 5 pp. 757-759 ( 1994).
Pinkel,D.et al.,Flow cytometry of mammalian sperm progress in DNA and morphology measurement, The Journal of Histochemical and Cytochemistryvol. 27 No. 1 pp. 353-358 (1979).
Fugger, E. et al., Birth of normal daughters after MicroSort sperm separation and intrauterine insemination, in-vitro fertilization, or intracytoplasmic sperm injection, http://www.microsort.net/HumRepro.htm Mar. 19, 2003.
Johnson, L. et al., Flow sorting of X and Y Chromosome-bearing Mammalian sperm: Activation and pronuclear development of sorted bull, boar, and ram sperm microinjected into hamster oocytes, Gamete Research 21:335-343 (1988).
Salisbury; G.W., et al., Reversal by Metabolic Regulators of CO2-induced Inhibition of Mammalian Spermatozoa, 1959, Proc Soc Exp Biology Med, vol. 101 (1) pp. 187-189.
Centola, G.et al., Cryopreservation of human semen. Comparison of cryopreservatives, sources of variability, and prediction of post-thaw survival. PMID: 1601749 May-Jun. 1992.
Bencic, D.C., et al., “Carbon Dioxide Reversibly Inhibits Sperm Motility and Fertilizing Ability in Steelhead (Oncorhynchus mykiss)” 2000, Fish Physiology and Biochemistry, vol. 23(4), pp. 275-281.
Boatman, D.E. et al., “Bicarbonate Carbon Dioxide Regulation of Sperm Capacitation Hyperactivated Motility and Acrosome Reactions”, 1991, Biology of Reproduction vol. 44(5), pp. 806-813.
Garcia, M.A. et al., “Development of a Buffer System for Dialysis of Bovine Spermatozoa Before Freezing III.Effect of Different Inorganic and Organic Salts on Fresh and Frozen-Thawed Semen”, 1989, Theriogenology, vol. 31(5),pp. 1039-1048.
Eiman, M.et al., Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing, Biology of Reproduction 69: 1245-1250 (2003).
Foote, R.et al., Physiology and Management, Fertility of bull spermatozoa frozen in whole milk extender with trehalose, taurine, or blood serum, J. Dairy Sci. 76:1908-1913 (1993).
Johnson, L. et al., Storage of bull semen, Animal Reproduction Science 62: 143-172 (2000).
Johnson, L. et al.,Erratum to “Storage of bull semen”, Animal Reproduction Science 62: 143-172 (2000).
McNutt,T.et al., Electrophoretic gel analysis of Hoechst 33342 stained and flow cytometrically sorted bovine sperm membrane proteins, Reprod. Dom Anim.31: 703-709 (1996).
Best, T. P. et al. “Nuclear Localization of Pyrrole-Imidazole Ployamide-Flourescein Conjugates in Cell Culture”, PNAS, 2003, vol. 100(21), pp. 12063-12068.
Gygi, M.P., et al. “Use of Fluorescent Sequence-Specific Polyamides to Discriminate Human Chromosomes by Microscopy and Flow Cytometry”, Nuci Acids Res. 2002, vol. 30(13),pp. 2790-2799.
BD Biosciences, BD AccuDrop Potion, www.bdbiosciences.com, Sep. 2002.
Agarwal, A.et al., Filtration of spermatozoa through L4 membrane:a new method, Fertility and Sterility, vol. 06, No. 6, Dec. 1991.
Anzar, M.et al., Optimizing and Quantifing fusion of liposomes to mammalian sperm using resonance energy transfer and flow cytometric methods, Cytometry49:22-27 (2002).
Anzar, M.et al., Sperm Apoptosis in fresh and cryopreserved bull semen detected by flow cytometry and it's relationship with fertility, Biology of Reproduction 66: 354-360 (2002).
Arav, A.et al., New trends in gamete's cryopreservation, Molecular and Cellular Endocrinology 187:77-81 (2002).
Arndt-Jovin et al., “Analysis and Sorting of Living Cells According to Deoxyribonucleic Acid Content”, Journal Histochem. And Cytochem., 1977, vol. 25(7), pp. 585-589.
Arts,E.et al.,Evidence for the existence of lipid-diffusion barriers in the equatorial segment of human spermatozoa, Boichem J.384:211-218 (1994).
Gadella B,et al., Dynamics in the membrain organization of the mammalian sperm cell and functionality in fertilization, Vet Quart. 21:142-146 (1999).
Garner,D. et al., Morphological and ultrastrutural Characterization of mammalian spermatozoa processed for flow cytometric DNA analyses, Gamete Research 10:339-351 (1984).
Gamer, D., et al., Effect of hoechst 33342 staining and laser illumination on the viability of sex-sorted bovine sperm, Theriogenology, vol. 57 No. 1, 1-810 (2002).
Garner, D. et al., Assessment of spermatozoal function using dual fluorescent staining and flow cytometric analyses, Biology of Reproduction 34:, 127-138 (1986).
Gebhard D., Sorting Viability . . . one more time, http://www.cyto.purdue.edu/hmarchiv/1998/2263.htm Feb. 14, 2004.
Givan,A., Flow Cytometry First Principles, (1992).
Gledhill, B.et al., Identifying and separating X- and Y-Chromosome-bearing mammalian sperm by flow cytometry, Lawrence Livermore National Laboratory, Feb. 8, 1984.
Gledhill, B.et al., Flow cytometry and sorting of sperm and male germ cells, Flow Cytometry and sorting, second edition, pp. 531-551 (1990).
Gordon et al., “Genetic Transformation of Mouse Embryos by Microinjection of Purified DNA”, Proc. Natil Acad. Sci., 1980, vol. 77 (12), pp. 7380-7384.
Graham, J.et al.,Analysis of sperm cell viability, Acrosomal integrity, and Mitocondrial function using flow cytometry, Biology of Reproduction 43: 55-64 (1990).
Graham, J.et al., Effect of some Zwitter Ion buffers on freezing and storage of spermatozoa I, Bull, J. Dairy Sci 55: 372-378 ( 1992).
Grogan, W. et al., DNA Analysis and sorting of viable mouse testis cells, The Journal of Histochemistry and Cytochemistry, vol. 29 No. 6 pp. 738-746, (1981).
Guthrie, et al., “Flow Cytometric Sperm Sorting: Effects of Varying laser Power on Embryo Development in Swine”, Mol. Reprod. And Develop., 2002,vol. 61 (1), pp. 87-92.
Hacker-Klom, U.B., et al., Effect of doxorubicin and 4′-epi-doxorubicin on mouse spermatogenesis. Mutation Research International Journal on Mutagenesis vol. 159, pp. 39-46. 1986.
Hasler, J., Symposium: Reproductive Technology and Genetic improvementJ. Dairy Sci. 75:2857-2879 (1992).
Held, A.et al., Quasi-CW Solid-state lasers Expand their reach, Photonics Spectra, Dec. 2002.
Hinkley, R.et al., Rapid visual detection of sperm-egg fusion using the DNA-Specific Fluorochrome Hoechst 33342, Developmental Biology 118: 148-154 (1986).
Januskauskas, A.et al.,Assessment of sperm quality through Fluorometry and sperm chromatin structure assay in relation to field fertility of frozen-thawed semen from Swedish AI bulls, Theriogenology 55: 947-961 (2001).
Janendran, R.et al., Effect of glycerol and cryopreservation on oocyte penetration by human spermatozoa, PMID: 4025843, Jul. 6, 2006.
Johnson, L., A flow cytometric/ sorting method for sexing mammalian sperm validated by DNA analysis and live births, Cytometry, p. 42 of supplement , Sep. 4, 1990.
Johnson, L., Flow sorting of intact X & Y chromosome-bearingmammalian spermatozoa, The Journal of the Society for Analytical Cytology Cytometry, (1988).
Zhang,M. et al., Development of bovine embryos after in vitro fertilzation of oocytes with a flow cytometrically sorted, stained and unsorted sperm from different bulls, Theriogenology 60: 1657-1663 (2003).
Jones,R.et al., Effect of Osmolality and Phosphate, “Tris”, “Tes”, “Mes”, nd “Herpes” Hydrogen ion buffers on the motility of bull spermatozoa stored at 37 or 5° C., Ausi J. Biol. Sci.25:1047-1055 (1972).
Jones,R., Plasma membrane structures and remodelling during sperm maturation in the epididymis, Journal of Reproduction and Fertility (1998).
Edited by Johnson, L., Boar Semen Preservation, Supplement to Reproduction in Domestic Animals (1991).
Johnson, M.,The Macromolecular Organization of membranes and its bearing on events leading up to Fertilization, Journal of Reproduction and Fertility (1975).
Johnson, L., Progress towards achieving sex preselection in farm animals, USDA Agricultural Research Service, (1989).
Kordwig, V.et al., Uniform Lateral Orentation, caused by flow forces, of flat particles in flow-through systrms, The Journal of Histochemistry and Cytochemistry, vol. 25 No. 7 pp. 774-780 (1977).
Keeler, K.et al., Flow microfluorometric analysis of living spermatozoa stained with Hoechst 33342, J. Reprod.Fert. 68:205-212 (1983).
Keij, J.et al., High speed Photodamage cell sorting: An evaluation of the Zapper Prototype, Methods in cell Biology vol. 42, (1994).
Kirchhoff, C.et al., The Molecular biology of the sperm surface:Post-Testicular Membrane Remodelling, The Fate of the Male Germ Cell, (1997).
Krueger, C.et al.,Low dose Insemination in synchronized gilts, Theriogenology 52: 1363-1373 (1999).
Lahdetie,J.,Induction and survival of micronuclei in rat spermatids. Comparison of two meiotic micronucleus techniques using cyclophosphamide, Mutation Research, 203:47-53 (1988).
Laser Innovations—Applications, http://www.laserinnovations.com/488nm.htm Feb. 2, 2004.
Libbus, B.et al.,Incidence of chromosome aberrations in mammalian sperm stained with Hoechst 33342 and UV-laser irradiated during flow sorting, Mutation Research, 182: 265-274 (1987).
Loken, M., Separation of viable T and B lymphocytes using a cytochemical stain, Hoechst 33342, The Journal of Histochemistry and Cytochemistry,vol. 28, No. 1, pp. 36-39 (1980).
Lucas, J.et al., Orientation measurments of microsphere doublets and metaphase chromosomes in flow, Cytometry 7:575-581 (1986).
Luttmer, S.et al.,Examination of living and fixed gametes and early embryos stained with supravital fluorochromes (Hoechst 33342 and 3,3′-dihexyloxacarocyanine Iodide), Gamete Research 15:267-283 (1986).
Maxwell, W.et al.,Physiology of spermatozoa at high dilution rates:The influence of seminal plasma, Theriogenology 52: 1353-1362 (1999).
Mazur, P., The role of Intracellular freezing in the death of cells cooled at supraoptimal rates, Cryobiology 14:251-272 (1977).
McSweeney,K.et al., Abstract: Insemination of lactating holstein cows with sexed frozen/thawed sperm, http://www.cvmbs.colostate.edu/physio/abstract/ges12.html Mar. 16, 2004.
Medeiros,C. et al., Current status of sperm cryopreservation: Why isn't it better? Theriogenology 57: 327-344 (2002).
Meistrich, M.et al., “Cytogenetic” studies of spermatids of mice carrying Cattanach's translocation by flow cytometry, Chromosome 74:141-151 (1979).
Morrell, J. et al., Offspring from inseminations with mammalian sperm stained with Hoechst 33342, either with or without flow cytometry, Mutation Research 224:177-183 (1989).
Morrell et al.,“Sexing of Sperm by Flow Cytometry”, The Veterinary Record, 1988, pp. 322-324.
Morrier, A.et al., Glycerol addition and conservation of fresh and crypreserved ram spermatozoa, Canadian Journal of AnimalScience, Sep. 2002http://pubs.nrc-cnrc.gc.ca/aic-journals/2002ab/cjas02/sep02/cjas01-045.html.
Moruzzi, J., Selecting a mammalian species for the separationof X- and Y-chromosome-bearing spermatozoa, J. Reprod. Fert. 57:319-323 (1979).
Murthi S. et al., Improved data acquisition system for digital flow cytometry, (2002).
Studt, T., MEMS-based Cell Sorter Speeds Clinical Studies, R& D Magazine, Dec. 2003: pp. 36-37 as currently presented on and printed from http;//www.rdmag.com 2 pgs.
R&D Technologies & Strategies for Research & Development pp. 2 www.rdmag.com printed Feb. 17, 2007.
Gwo-Bin, L.et al., Multi-cell-line micro flow cytometers with buried SU-8/SOG Optical waveguides, Feb. 2002.
Shapiro, H. M. et al., Multistation Multparameter Flow Cytometry: Some Influences of Instrumental Factors on System Performance, 1983,pp. 11-19,4,AIIan R. Liss, Inc.
OcanaQuero, J.et al., Biological effects of helium-neon irradiation on acrosome reaction in bull, Scisearch Journal of Photochemistry and Photobiology, vol. 40 No. 3, pp. 294-298 (1997).
Pangawkar, G. et al., Physical and biochemical characteristics of semen in relation to fertility of Holstein-Friesian bulls, Indian vet. Med.J. vol. 13: 21-26 (1989).
Papa, S. et al., Chromatin organization in Isolated nuclei: Flow cytometric characterization employing forward and perpendicular light scatter, Cell Biochemistry and Function vol. 6: 31-38 (1988).
Parks, J. et al., Lipids of plasma membrane and outer acrosomal membrane from bovine spermatozoa, Biology of Reproduction 37:1249-1258 (1987).
Partec, Taking flow cytometry to the next generation, Catalogue 2001-2002.
Perez-Pe, R.et al., Semen plasma proteins prevent cold shock membrane damage to ram spermatozoa, Theriogenology 56 (3) : 425-434, Aug. 1, 2001, PMID: 11516122 http.//www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed.
Peter, A. et al., Fractionation of bovine spermatozoa for sex selection: A rapid immunomagnetic technique to remove spermatozoa that contain the H-Y antigen, Theriogenology 40:1177-1185 (1993).
Petersen, Timothy W., et al, Stability of the Breakoff Point in a High-Speed Cell Sorter The Journal of the international society for Analytical Cytology, vol. 56A Num.2, Dec. 2003.
Pinkel Dan, Flow Cytometry and Sorting Analytical Chemistry, Mar. 1982 vol. 54 No. 3.
Pinkel Dan, Cytometric Analysis of Mammalian Sperm for Induced Morphologic and DNA Content Errors; Biological Dosimetry (Cytometric Approaches to Mammalian Systems) 1984.
Pinkel, D. et al; Radiation-Induced DNA Content Variability in Mouse Sperm. Radiation Research an International Journal, vol. 95, Num.3, Sep. 1983.
Piumi, F. et al., Specific cytogenetic labeling of bovine spermatozoa bearing X or Y chromosomes using florescent in situ hybridization (FISH), Genet, Sel. vol. 33: 89-98 (2001).
Edited by Bell-Prince, C. , NFCR Newsletter, http://www.ls.lanl.gov/NFCR/newsletter-Oc98/oct98.html Jan. 6, 2004.
Zahid, R.et al., Changes in motion characteristics, plasma membrane integrity, and acrosome morphology during cryopreservation of buffalo spermatozoa, Journal of Andrology, vol. 22 Num.2, Mar. 4, 2001.
Rees, William A., et al,Betaine Can Eliminate the Base Pair Composition Dependence of DNA Melting; Biochemistry 1993, 32, pp. 137-144.
Rens, W.et al.,An X-Y paint set and sperm FISH protocol that can be used for validation of cattle sperm separation procedures, Journals of Reproduction and Fertility, 121: 541-546 (2001).
Reyes, C.et al., Characterization of Secretory Proteins from cultured Cauda Epididymal Cells that significantly sustain bovine sperm motility, Molecular Reproduction and Development 63: 500-509 (2002).
Rippel,N.et al., Transcervical insemination: Effects of variation in total sperm number/dose on fertility, 83rd Annual Fall Conference for Veterinarians, Oct. 2002.
Rizzo, W. et al.,Liposome-mediated transfer of simian virus 40 DNA and minichromosome into mammalian cells, J. Gen. Virol 64:911-919 (1983).
Ruch, F., Determination of DNA content by microfluorometry, Introduction to Quanitative Cytochemistry, pp. 281-294 (1966).
Saacke, R.et al., Semen Quality test and their relationship to fertility, 4th National Association of Animal Breeders, (1972).
Salisbury, G.W.,et al.“Preservation of Bovine Spermatozoa in Yolk-Citrate Diluent and Field Results from its Use”, Journal of Dairy Science, 1941, vol. 24(11),pp. 905-910.
Schroter, S.et al., The glycocalyx of the sperm surface, Human Reproduction Update: vol. 5, Num.4, pp. 302-313 (1999).
Schuster, T. et al., Isolation of motile spermatozoa from semen samples using microfluidics, Reproductive BioMedicine Online,vol. 7 Num.1 75-81,www.rbmonline.com/Article/847, Apr. 16, 2003.
Seidel, George E. Jr. “What about sexed semen?” Hoard's Dairyman, The National Dairy Farm Magazine, May 10, 2001.
Sexing Technologies, Welcome to sexing Technologies, http://www.sexingtechnologies.com/ Dec. 11, 2003.
Sharp, J. et al., Radially symmetric excitation and collection optics for flow cytometric sorting of aspherical cells, Cytometry. 29:363-370 (1997).
Shapiro, H., Re: cheap laser idea??, http://www.cyto.purdue.edu/hmarchiv/1998/1015.htm Feb. 3, 2004.
Smith, P.et al., Characteristics of a Novel Deep Red/ Infrared Fluorescent Cell-Permeant DNA Probe, DRAQ5, in Intact human Cells Analyzed by Flow Cytometry, Confocal and Multiphoton Microscopy, Cytometry 40:280-291 (2000).
Stanger, J.et al, The Relationship between motility and the FITC-BSA binding Properties of Mouse epididymal spermatozoa, The Journal of Experimental Zoology 227: 323-327 (1983).
Stanic,P. et al.,Comparison of protective media and freezing techniques for cryopreservation of human semen, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pubmed , Jul. 11, 2000.
Stewart,R., Georgia Beef Challenge, Livestock Newsletter Jan. 2, 2002.
Takacs, T.et al.,Flow Cytometric determination of the sperm cell number in diluted bull semen samples by DNA staining method, Acta Biochim.Biophys.Hung. vol. 22 Num.1, pp. 45-57 (1987).
Thurston,L. et al., Identification of Amplified restriction fragment length polymorphism markers linked to genes controlling boar sperm viability following cryopreservation, Biology of Reproduction 66: 545-554 (2002).
Tone,S.et al., A method of vital staining of mouse eggs using Hoechst dye, Department of Developmential Biology (1986).
Tubman,L.et al., Abstract:Normality of calves resulting from sexed sperm, http://www.cvmbs.colostate.edu/bms/abstract/ges12.html Mar. 16, 2004.
Tucker,K.et al., Sperm separation techniques:Comparison of gradient products, Proceedings 2ed International workshop for Embryologists: Troubleshooting activities in the ART lab. (2002).
Van Dilla, M.et al., Measurement of Mammalian Sperm Deoxyribonucleic acid by Flow Cytometry, The journal of Histochemistry and Cytochemistry vol. 25 Num.7 pp. 763-773 (1977).
Vazquez, J.et al., Nonsurgical Uterotubal Insemination in the Mare, Reproduction: Mare vol. 44 (1998).
Vishwanath,R.et al., Storage of bovine semen in liquid and frozen state, Animal Reproduction Science 62: 23-53 (2000).
Washburn, S., Sex-Sorted Semen; Still several steps short of sensational, http://www.cals.ncsu.edu/an sci/extention/animal/news/apri196/april1965.html Mar. 16, 2004.
Welch,G.et al., Sex preselection: Laboratory Validation of the sperm sex ratio of Flow sorted X- and Y-sperm by sort reanal ysis for DNA, Theriogenology 52:1343-1352 (1999).
Welch, G.et al., Fluidic and optical modification to a facs IV for flow sorting of X&Y Chromosomes bearing sperm based on DNA, International Society for Analytical Cytology (1994).
Wiltshire, M.et al., A Novel Deep Red/ Low infrared fluorescent flow cytometric probe DRAQ5NO, For the Discrimination of intact nucleated cells in apoptotic cell populations, Cytometry 39: 217-223 (2000).
Woelders, H. et al., Effects of Trehalose and Sucrose, Osmolality oh the freezing medium, and cooling Rate on Viability and intactness of bull sperm after freezing and thawing, Cryobiology 35: 93-105 (1997).
Wolf, D., Lipid domains in sperm plasma membranes, Molecular Membrane Biology 12: 101-104 (1995).
Wolf, D.et al., Changes in sperm plasma membrane lipid diffusibility after hyperactivation during In vitro capacitation in the mouse, The Journal of Cell Biology, vol. 102: 1372-1377(1986).
Wolf, D.et al., Diffusion and regionalization in membranes of maturing ram spermatozoa,The Journal of Cell Biology, vol. 98:1678-1684 (1984).
XY Files, Issue 1 Jun. 1999.
X Y, Inc. , Sex selection Procedure, http://www.xyinc.com/sex select.html, Feb. 21, 2003.
XY Files, Issue 4 Aug. 2000.
XY Files, Issue 2 Oct. 1999.
XY Files, Issue 3 Mar. 2000.
XY Files, Issue 5 Mar. 2001.
XY Files, Issue 6 Mar. 2002.
Zilli, L., et al. Adenosine Triphosphate Concentration and -D-Glucuron idase Activity as Indicators of Sea Bass Semen Quality; Biology of Reproduction 70,1679-1684 (2004).
Fattouh, El-S.M. et al., Effect of Caffine on the Post-Thaw Motility of Buffalo Spermatozoa; Theriogenology, Jul. 1991, vol. 36 No. 1.
Koh-ichi Hamano, et al., Gender Preselection in Cattle with Intracytoplasmically injected, flow cytometrically sorted sperm heads, Biology of Reporduction 60, 1194-1197 (1990).
Hollinshead, F.K. et al., Birth of lambs of pre-determined sex after in vitro production of embryos using frozen-thawed sex-sorted and re-frozen-thawed ram spermatozoa, Reproduction (Cambridge, England) May 2004, vol. 127, o. 5, pp. 557-568.
Nikkei Biotech, Supplement, Latest Information of Biological Instruments and Reagents, 1988, pp. 93-94.
Pursley, J.R. et al., Reproductive Management of Lactating Dairy Cows Using Synchronization of Ovulation; 1997 J. Dairy Sci 80:301-306.
Bagnato, A., Genetic and Breeding; Phenotypic Evaluation of Fertility Traits and Their Association with Milk Production of Italian Friesian Cattle; 1994 J. Dairy Sci 77:874-882.
Panskowski, J., A., et al. Use of Prostaglandin F2a as a Postpartum Reproductive Management Tool for Lactating Dairy Cows; 1995 J. Dairy Sci 78:1477-1488.
Scipioni, R. L., et al., Short Communication: An Electronic Probe Versus Milk Protesterone as Aids for Reproductive Management of Small Dairy Herds; 1999 J. Dairy Sci 82:1742-1745.
Grant, V. J., et al., Sex-Sorted Sperm and Fertility: An Alternative View; Biology of Reproduction 76, 184-188 (2007).
Garner, D. L., Sex-Sorting Mamallian Sperm: Concept to Application in Aminals; Journal of Andrology, vol. 22, No. 4 Jul./Aug. 2001.
Tubman, L.M. et al., Characteristics of calves produced with sperm sexed by flow cytometry/cell sorting; 2004 Amer. Society of Animal Sciences; 82:1029-1036.
U.S. Appl. No. 60/253,787, filed Nov. 29, 2000.
U.S. Appl. No. 60/253,785, filed Nov. 29, 2000.
Parallel Australian Application No. 2002237689, Office Action dated Jan. 9, 2006.
Rath, D, et al., In Vitro Production of Sexed Embryos for Gender Preselection: High-speed sorting of X-Chromosome-Bearing Sperm to Produce Pigs After Embryo Transfer, J. Anim. Sci. 1999, 77:3346-3352.
Auchtung, T.L., et al., Effects of Photoperiod During the Dry Period on Prolactin, Prolactin Receptor, and Milk Production of Dairy Cows; Journal of Dairy Sci. 88: 121-127; American Dairy Sci. Assoc., 2005.
Bailey, Tom and Currin, John Milk Production Evaluation in First Lactation Heifers; 1999 Virginia Cooperation Extension/Dairy Science Publication 404-285.
Belloin, J.C., Milk and Dairy products: prduction and processing costs Food and Agriculture Organization of United Nations Rome 1988 FAO; web page where found: www.fao.org/docrep/003/x6931e/X6931E00.htm.
Lopez, H.,Caraviello, D.Z., Satter, L.D. ,Fricke, P.M. and Wiltbank, M.C.; Relationship Between Level of Milk Production and Multiple Ovulation in Lactating Dairy Cows Journal of Dairy Sci. 88:2783-2793; American Dairy Science Association, 2005.
Milk Production Released Jul. 18, 2006, by the National Agricultural Statistics Service (NASS), Agri. Stats. Board, US Dept of Agri.
De Vries, A. Economic Value of Pregnancy in Dairy Cattle Journal of Dairy Sci. 89:3876-3885/American Dairy Sci. Assoc. 2006.
Chile Office Action issued in corresponding Chilean Application No. 3017-2001 (3 pages).
Defendants Disclosure of Invalidity Contentions, XY, LLC v. Trans Ova Genetics, L.C., Case No. 5:12-CV-208-OLG, U.S. Dist. Ct., W.D. Texas, dated Aug. 20, 2012, 45 total pages.
Defendant's Answer, Affirmative Defenses and Jury Demand, XY, LLC v. Trans Ova Genetics, L.C., Case No. 5:12-CV-208-OLG, U.S. Dist. Ct., W.D. Texas, dated Aug. 1, 2012, 64 total pages.
Amblard. Method to Assess the Strength of Cell-Cell Adhesion Using a Modified Flow Cytometer; Chapter 7 in “Studying Cell Adhesion,” P. Bongrand, P.M. Claesson, A.S.G. Curtis, eds., Springer-Verlag, Berlin, 1994, pp. 93-108.
Amblard, et al. New Chamber for Flow Cytometric Analysis Over an Extended Range of Stream Velocity and Application to Cell Adhesion Measurements; Cytometry, 1992, 13:15-22.
Kay, et al. Experimental Findings on Gynecologic Cell Orientation and Dynamics for Three Flow Nozzle Geometries; J. of Histochemistry and Cytochemistry, Jul. 1977, vol. 25, No. 7, pp. 870-874.
Lorton, et al., A New Antibiotic Combination for Frozen Bovine Semen: 2. Evaluation of Seminal Quality; Theriogenology, Mar. 1988, vol. 29, No. 3, pp. 593-607.
Shin, et al. A New Antibiotic Combination for Frozen Bovine Semen: 1. Control of Mycoplasmas, Ureaplasmas, Campylobacter fetus subsp. venerealis and Haemophilus somnus; Theriogenology, Mar. 1988, vol. 29, No. 3, pp. 577-591.
Watkins, et al. Analysis of the flow Cytometer Stain Hoechst 33342 on Human Spermatozoa; Molecular Human Reproduction, 1996, vol. 2, No. 9, pp. 709-712.
Januskauskas, A. et al.; “Effect of Cooling Rates on Post-Thaw Sperm Motility, Membrane Integrity, Capacitation Status and Fertility of Dairy Bull Semen Used for Artificial Insemination in Sweden”; Article, Apr. 26, 1999, pp. 641-658, vol. 52, Theriogenology (7 pages).
Canadian Office Action dated Mar. 29, 2012 issued in corresponding CA Application No. 2,468,772 (3 pages).
Fugger, E.F., et al.; “Births of Normal Daughters After MicroSort Sperm Separation and Intrauterine Insemination, in-vitro Fertilization, or Intracytoplasmic Sperm Injection”; Article, 1998, pp. 2367-2370; vol. 13, No. 9, European Society for Human Reproduction and Embryology (4 pages).
AU Examiner's Report dated Sep. 2, 2010, issued in corresponding Australian Application No. 2008200810 (2 pages).
AU Notice of Acceptance dated Dec. 14, 2010, issued in corresponding Australian Application No. 2008200810 (3 pages).
AU Examiner's Report dated Oct. 4, 2011, issued in corresponding Australian Application No. 2011201281. (2 pages).
AU Notice of Acceptance dated Dec. 16, 2011, issued in corresponding Australian Application No. 2011201281 (3 pages).
Related Publications (1)
Number Date Country
20100304354 A1 Dec 2010 US
Provisional Applications (2)
Number Date Country
60253785 Nov 2000 US
60253787 Nov 2000 US
Continuations (2)
Number Date Country
Parent 11536576 Sep 2006 US
Child 12853196 US
Parent 10433183 US
Child 11536576 US