The present invention is directed to methods for setting the contact pressure of a displaceably seated roller. The contact pressure, or a spacing distance between the displaceable roller and a second roller is variable by the use of an actuator that can be charged with a pressure medium.
A plurality of rollers are contained in generally conventional printing presses, such as web-fed rotary printing presses, for example. Inking rollers, in particular, are provided in such presses, which inking rollers are used for transferring ink from an ink reservoir to the plate cylinder. It is possible to meter the ink that is transferred to the plate cylinder by the inking rollers, so that the ink is being transferred as a uniform film of a defined thickness. Because of this, it is possible to compensate for interferences, such as for example, fluctuations in speed and rotary vibrations.
Dampening rollers can also be provided. These dampening rollers transfer a dampening agent, for example water, to the printing group.
Pairs of rollers are often formed by rollers which are in engagement with each other. At least one of the rollers in the pair has a cylinder surface made of an elastic material, so that this cylinder surface can be deformed at least slightly, depending on the contact pressure exerted on it by the roller opposite it. As a result, a contact area, which extends in a straight line between the rollers, and which is called a contact strip, appears because of the elastic deformation of the roller surface. The circumferential width of the contact strip can be varied by adjusting the contact pressure between the rollers. The width of this contact strip has a considerable effect on the print result. If, for example, the contact strip in an inking unit is too narrow, not enough ink is being transferred. In cases in which the contact strips are too wide, the elastic roller can be damaged by the kneading effect occurring because of this excessively wide contact strip.
To be able to always correctly adjust the strip width, in particular as a function of the press operating conditions, such as, for example, the temperature of the printing presses or their degree of wear, it is necessary to seat one of the rollers displaceably. This displaceably seated roller can be pushed, by an actuator, with an adjustable force, in a direction toward the opposite roller. Once the correct contact pressure between the two rollers has been found, a fixation device for use in fixing the first roller in place, with respect to the second roller, is operated to maintain the contact pressure permanently.
A device for setting a contact pressure between two rollers is known from DE 197 19 305 A1. By use of the seating arrangement described in that document, the displaceably seated roller is pressed against the opposite roller by a spring, which spring is supported on the frame of the printing press. Because of this spring-biased roller displacement, a defined contact pressure between the two rollers always occurs as a function of the respectively selected characteristic curve of the spring. A clamping mechanism, with a clamping lever and with a clamping plate, and useable for fixing the roller in the pressed-on place, is described, by the use of which clamping mechanism the roller shaft can be fixed in place on the frame of the printing press by a frictional connection.
A device for the semi-automatic adjustment of rollers is known from DE 199 19 733 A1. An adjustably seated roller is maintained in a roller holder, which, in turn, is seated in a frame holder that is fixedly arranged on the frame. In this case, the roller holder and the frame holder can be displaced, in relation to each other, and are connected with each other by a spring-elastic assembly. The spring-elastic assembly here has a defined prestress, so that the roller, which is displaceably seated on the roller holder, can be pressed against the opposite roller with a defined contact pressure. Arresting bolts are provided for use in fixing the roller holder in place on the frame holder, and by whose advancement, the roller holder can be clamped, in a frictionally connected manner, on the frame holder.
DE 38 08 142 A1 describes a device for seating two cylinders. In this case, a contact pressure between two rollers, which two rollers can be placed against and away from each other, can be changed by altering the pressure of a pressure medium. A switching device is also provided, by use of which, the pressure medium can be selectively conducted to different actuators.
DE-OS 16 11 303 discloses a device for bringing a printing cylinder of a rotogravure press into and out of contact. A pressure reduction valve is provided.
Inking rollers are known from U.S. Pat. No. 2,774,301 and GB 1 213 935. These rollers can be brought into contact by the use of actuators which are operated by a pressure medium. Here, a valve for setting the level of the pressure and at least one shut-off valve are provided.
The object of the present invention is directed to providing methods for setting a contact pressure of an adjustably seated roller.
In accordance with the present invention, this object is attained by the provision of a method for setting the contact pressure between a displaceably seated first roller and a second roller. At least one actuator, which is chargeable with a pressure medium, is utilized. Two valves can be used to form two different contact pressures. The operation of the actuator can take place in a timed manner. If the second roller has a break in its surface, the contact between the rollers takes place at a defined angular position of the second roller. The movement of the one roller takes place at a low number of roller revolutions or speed. Selectively actuatable fixation devices can be used to hold selected rollers in position.
The actuator, which is useable for setting the contact pressure of the devices, is embodied in the manner of a pressure body, which pressure body can be charged with a pressure medium, such as a precompressed gas, and in particular compressed air. Valves are provided for use in adjusting the pressure of the pressure medium in order to be able to set the contact pressure. Since a multitude of adjustable rollers are provided in a typical dampening unit or inking unit, normally a number of valves corresponding to the number of actuators would be required, which large number of valves means a large outlay in technical apparatus. This large outlay is avoided by providing a switching device, by the use of which switching device, the control valves can be selectively connected with different actuators. This means that the adjustable rollers cannot all be adjusted at the same time. Instead, only those actuators, which are connected with the control valves via the switching device, can be operated. Depending on the configuration of the inking unit or the dampening unit, a few valves are sufficient for use in adjusting the entire inking or dampening unit, by the use of which few valves, the contact pressure of the different adjustable rollers can be set.
In accordance with a preferred embodiment of the present invention, only two valves are provided, by the use of which two valves the pressure exerted on two actuators, at an adjustable roller, can be set simultaneously. The process for setting the different adjustable rollers is performed in such a way that one adjustable roller is adjusted by operating the two valves and, following the adjustment of that one roller, the setting of that roller is fixed by operating a suitable fixation device. Following this fixation, the adjustment of the next adjustable roller can follow.
In accordance with the method of the present invention, an angular position of the second roller, against which the first roller can be pressed with an adjustable contact pressure, is determined. By controlling this angular position of the second roller, it is possible that the pressing, or the placement of the adjustable roller is then performed only in defined positions of the second roller.
This type of control of the pressure is important particularly in connection with forme cylinders on whose circumference fastening assemblies, for use in fastening the printing plates on the forme cylinder, are provided. If the adjustment or the bringing into contact of the adjustable rollers is performed at an angular position in which the adjustable roller comes to rest on the fastening device of the forme cylinder, the adjusted values are distorted because of the changed diameter of the forme cylinder in the area of the fastening device. This distortion can be avoided by controlling the angular position of the second roller.
In accordance with a further preferred embodiment of the present invention, the setting of the contact pressure and/or the placement of the first roller against the second roller takes place during simultaneous rotation of both of the rollers.
Preferred embodiments of the present invention are represented in the drawings and will be described in greater detail in what follows.
Shown are in:
Referring initially primarily to
The contact pressure setting device 20 is substantially put together from a frame holder 26 and a roller holder 27, which frame and roller holders 26 and 27, respectively can be displaced, in relation to each other, in an actuating plane that is extending perpendicularly, with respect to the drawing plane. The frame holder 26 is comprised of a base plate 28, which can be pivotably fastened, for example by the use of a pivot arm, on the frame of a printing press, and a sleeve body 29. On its side facing the roller 21, the sleeve body 29 has a recess 31, which is sized to be engaged by a cylinder-shaped section 32 of the roller holder 27. The interior diameter of the sleeve body recess 31, or the exterior diameter of the cylinder-shaped section 32 have been selected such that, in the base position depicted in
In order to be able to accomplish the actuation movement which is required for adjusting the first roller 21, or in order to obtain the desired contact pressure between the first roller 21 and the second roller 22, a total of four actuators 34, of which only two are shown in section in
To fix the roller holder 27 in place, relative to the frame holder 26, plate elements 37 are fastened on the roller holder 27. These roller holder plate elements 37 are arranged to mesh with cooperating plate elements 38 fastened on the sleeve body 29, thus forming a multi-disk packet. For clamping the multi-disk packet formed from the plate elements 37 and 28 in a frictionally connected manner, a T-shaped plunger 39 is provided. Plunger 39 includes a circular plunger head 40 which is provided with a plunger head circular flange 41 that is engageable against an outermost plate element 37 or 38 of the multi-disk packet. A pressure plate 42 is fastened on the end of the plunger 39 opposite the circular flange 41, and on which pressure plate 42 the spring force of a spring element 43, which is embodied in the manner of a plate spring package 43, acts. The spring element 43 is mounted, prestressed, between the pressure plate 42 and the sleeve body 29. The multi-disk packet constituted by the plate elements 37 and 38 is thereby clamped, by the spring force, which is transmitted from the plunger 39 to the plate elements 37 and 38.
To displace the roller holder 27 relative to the frame holder 26, in particular when adjusting the contact pressure between the rollers 21 and 22, the fixation device, which is constituted by the plate elements 37 and 38, or by the plunger 39 and the pressure plate 42, must be released. For this purpose, a pressure connector 44 is provided in the base plate 28. A pressure chamber 46, formed between the pressure plate 42 and the base plate 28, can be charged with a pressure medium, such as, for example, compressed air which is introduced into the pressure chamber 46 through the pressure connector 44. As soon as the air pressure in the pressure chamber 46, and acting on the pressure plate 42, exceeds the spring force of the spring element 43, the plunger head circular flange 41 of the plunger 39 is lifted off the outermost plate element 37 or 38. These plate elements 37 and 38 are no longer clamped in a frictionally connected manner and can be displaced in relation to each other.
Adjustment of the contact pressure between the rollers 21 and 22 takes place, for example, in the following manner. First, the pressure chamber 46 is charged with sufficient pressure, through the pressure connector, so that the plate elements 37 and 38 are no longer clamped in a frictionally connected manner. Subsequently, the actuators 34 are each charged with just enough pressure that the desired contact pressure between the rollers 21 and 22, or between the roller 21 and further rollers, which are not specifically represented in
The operative principle of the device 20 during the required actuating movement is represented, in a schematic manner, in
As represented, by way of example in
In
The extraordinarily compact construction of the device 20 can be appreciated which device 20, because of its entirely rotationally symmetrical design, except for the base plate 28, has a smaller diameter than the roller 21 itself, as may be seen in
An inking unit 56 is represented in
Also, four or five rollers 21a, 21b, 21c, 21d, 21e, for example a dampening application roller and three or four ink application rollers, can be placed against the forme cylinder 22a.
The rollers 21a, 21c, 21e can be placed against the roller 22a by the corresponding actuators 34 being charged with pressure. After bringing the rollers 21a, 21c, 21e into contact, the contact pressure between the various rollers 57, 21a to 21e, 22a can be adjusted by charging the various actuators 34 at the rollers 21a to 21e with pressure.
One or several plate end fastening devices 58 or axially extending cylinder channels or breaks 58 are provided on the roller 22a, which fastening devices or breaks 58 are, in particular, each structured in the form of a gap 58. The front or the rear edges of a printing plate can be fixed in place in the fastening device 58, which is thus used for fastening the printing plate on the roller 22a. The angle of rotation of the roller 22a is detected by a sensor 30, which is represented schematically in
A switching device 59, as represented in
A pressure medium, such as, for example, compressed air, can be taken, at a sufficiently high pressure level, from a pressure reservoir 61. The pressure medium flows via two valves 62, 63, and in particular via two pressure control valves 62, 63, into two separate pressure chambers 64, 66. A specific pressure level thus prevails in each of the separate pressure chamber 64, 66 as a function of the position of the respective pressure control valves 62 and 63 associated with each of the separate pressure chambers 64, 66. The pressure set in each of the two separate pressure chambers 64 or 66 can be transmitted to the actuators 34 associated with each such pressure chamber 64, 66 via pressure lines 67 assigned to each actuator 34.
Switching of the switching device 59 takes place in a clocked or timed manner. The length of a time pulse, for adjusting an adjustable roller 21a to 21e of the inking unit 56 or the dampening unit, is from 0.1 to 2 seconds, and, in particular, is 0.5 seconds.
Blocking arrangements, which are not specifically represented in
The following alternative is possible in place of the switching device 59 with its blocking arrangement.
The air pressures set by the two pressure control valves 62, 63 are simultaneously present at the actuators 34, 50 of several adjusting devices. An adjustment of the contact pressure takes place only at adjustment devices whose fixation device is opened.
The placement of the roller 21, 21a, 21b, 21c, 21d, 21e, to be put into contact with the surface area of the second roller 22, 22a takes place, in relation to the circumferential direction, at a distance of less than 20 mm from the leading end of the break 58.
Setting the contact pressure means that the contact pressure, in the state where the roller is placed against, or in contact with, another roller, can be changed prior to it being brought into such contact. In the contacted state, the surface pressure of the roller can be changed, in addition to the roller being moved to the disengaged state.
While preferred embodiments of devices and methods for setting the contact pressure of a displaceably mounted roller, in accordance with the present invention, have been set for fully and completely hereinabove, it will be apparent to one of skill in the art that various changes in, for example the overall sizes of the rollers, the source of the pressure medium, and the like can be made without departing from the true spirit and scope of the present invention which is accordingly to be limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
102 44 046 | Sep 2002 | DE | national |
This U.S. patent application is a division of U.S. application Ser. No. 10/528,468, filed Mar. 21, 2005, now U.S. Pat. No. 7,387,069, issued Jun. 17, 2008. That application was the U.S. national phase, under 35 U.S.C. 371, of PCT/DE2003/002946, filed Sep. 5, 2003; published as WO 2004/028810A1 on Apr. 8, 2004, and claiming priority to DE 102 44 046.8, filed Sep. 21, 2002, the disclosures of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2306044 | Davidson | Dec 1942 | A |
2774301 | Worthington | Dec 1956 | A |
3157118 | Mosemiller | Nov 1964 | A |
3389450 | Robertson | Jun 1968 | A |
4899656 | Thomas et al. | Feb 1990 | A |
5048362 | Becker et al. | Sep 1991 | A |
5448949 | Bucher | Sep 1995 | A |
5575572 | Schaede | Nov 1996 | A |
5967043 | Mayr | Oct 1999 | A |
6098542 | Dufour | Aug 2000 | A |
6230622 | Dilling | May 2001 | B1 |
6761112 | Faisat et al. | Jul 2004 | B2 |
7021209 | Faist et al. | Apr 2006 | B2 |
7124683 | Faist et al. | Oct 2006 | B2 |
7258065 | Faist et al. | Aug 2007 | B2 |
7387069 | Schneider et al. | Jun 2008 | B2 |
20040112232 | Faist et al. | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
64 064 | Oct 1968 | DE |
1 611 303 | Dec 1970 | DE |
38 08 142 | Sep 1989 | DE |
42 31 673 | Mar 1994 | DE |
44 36 629 | Apr 1996 | DE |
197 19 305 | Nov 1998 | DE |
199 19 733 | Nov 1999 | DE |
100 01 582 | Aug 2000 | DE |
1 212 801 | Nov 1970 | GB |
1 213 903 | Nov 1970 | GB |
1 213 935 | Nov 1970 | GB |
2 271 082 | Apr 1994 | GB |
WO 03049947 | Jun 2003 | WO |
WO 03049948 | Jun 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080229960 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10528468 | US | |
Child | 12153937 | US |