Methods for thermally-induced renal neuromodulation

Information

  • Patent Grant
  • 10124195
  • Patent Number
    10,124,195
  • Date Filed
    Friday, June 6, 2014
    10 years ago
  • Date Issued
    Tuesday, November 13, 2018
    6 years ago
Abstract
Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues.
Description
TECHNICAL FIELD

The present invention relates to methods and apparatus for neuromodulation. More particularly, the present invention relates to methods and apparatus for achieving renal neuromodulation via thermal heating and/or cooling mechanisms.


BACKGROUND

Congestive Heart Failure (“CHF”) is a condition that occurs when the heart becomes damaged and reduces blood flow to the organs of the body. If blood flow decreases sufficiently, kidney function becomes altered, which results in fluid retention, abnormal hormone secretions and increased constriction of blood vessels. These results increase the workload of the heart and further decrease the capacity of the heart to pump blood through the kidneys and circulatory system.


It is believed that progressively decreasing perfusion of the kidneys is a principal non-cardiac cause perpetuating the downward spiral of CHF. Moreover, the fluid overload and associated clinical symptoms resulting from these physiologic changes result in additional hospital admissions, poor quality of life and additional costs to the health care system.


In addition to their role in the progression of CHF, the kidneys play a significant role in the progression of Chronic Renal Failure (“CRF”), End-Stage Renal Disease (“ESRD”), hypertension (pathologically high blood pressure) and other cardio-renal diseases. The functions of the kidneys can be summarized under three broad categories: filtering blood and excreting waste products generated by the body's metabolism; regulating salt, water, electrolyte and acid-base balance; and secreting hormones to maintain vital organ blood flow. Without properly functioning kidneys, a patient will suffer water retention, reduced urine flow and an accumulation of waste toxins in the blood and body. These conditions result from reduced renal function or renal failure (kidney failure) and are believed to increase the workload of the heart. In a CHF patient, renal failure will cause the heart to further deteriorate as fluids are retained and blood toxins accumulate due to the poorly functioning kidneys.


It has been established in animal models that the heart failure condition results in abnormally high sympathetic activation of the kidneys. An increase in renal sympathetic nerve activity leads to decreased removal of water and sodium from the body, as well as increased renin secretion. Increased renin secretion leads to vasoconstriction of blood vessels supplying the kidneys, which causes decreased renal blood flow. Reduction of sympathetic renal nerve activity, e.g., via denervation, may reverse these processes.


Applicants have previously described methods and apparatus for treating renal disorders by applying a pulsed electric field to neural fibers that contribute to renal function. See, for example, Applicants' U.S. Pat. Nos. 7,653,438, 8,145,316, and 7,620,451, all of which are incorporated herein by reference in their entireties. A pulsed electric field (“PEF”) may initiate renal neuromodulation, e.g., denervation, for example, via irreversible electroporation or via electrofusion. The PEF may be delivered from apparatus positioned intravascularly, extravascularly, intra-to-extravascularly or a combination thereof. Additional methods and apparatus for achieving renal neuromodulation, e.g., via localized drug delivery (such as by a drug pump or infusion catheter) or via use of a stimulation electric field, etc, are described, for example, in Applicants' U.S. Pat. Nos. 7,162,303 and 6,978,174, both of which are incorporated herein by reference in their entireties.


A potential challenge of using PEF systems for treating renal disorders is to selectively electroporate target cells without affecting other cells. For example, it may be desirable to irreversibly electroporate renal nerve cells that travel along or in proximity to renal vasculature, but it may not be desirable to damage the smooth muscle cells of which the vasculature is composed. As a result, an overly aggressive course of PEF therapy may persistently injure the renal vasculature, but an overly conservative course of PEF therapy may not achieve the desired renal neuromodulation.


Applicants have previously described methods and apparatus for monitoring changes in tissue impedance or conductivity in order to determine the effects of pulsed electric field therapy, e.g., to determine an extent of electroporation and/or its degree of irreversibility. See, for example, Applicants' co-pending U.S. Patent Application Publication No. US 2007/0083239, which is incorporated herein by reference in its entirety. However, in some patients it may be difficult or impractical to achieve such real-time monitoring when utilizing pulsed electric field neuromodulatory mechanisms. In some patients, this may necessitate re-intervention should it be established after the procedure that a degree of induced neuromodulation was not sufficient to achieve a desired treatment outcome. Thus, it would be desirable to achieve renal neuromodulation via more easily monitored and/or controlled neuromodulatory mechanisms.





BRIEF DESCRIPTION OF THE DRAWINGS

Several embodiments of the present invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:



FIG. 1 is a schematic view illustrating human renal anatomy.



FIG. 2 is a schematic isometric detail view showing the location of the renal nerves relative to the renal artery.



FIG. 3 is a schematic side view, partially in section, illustrating an example of an extravascular method and apparatus for thermal renal neuromodulation.



FIGS. 4A and 4B are schematic side views, partially in section, illustrating examples of intravascular methods and apparatus for thermal renal neuromodulation.



FIGS. 5A and 5B are schematic side views, partially in section, illustrating an alternative embodiment of the intravascular methods and apparatus of FIG. 4 comprising wall-contacting electrodes.



FIGS. 6A and 6B are schematic side views, partially in section, illustrating an additional alternative embodiment of the intravascular methods and apparatus of FIG. 4 comprising alternative wall-contacting electrodes.



FIGS. 7A and 7B are schematic side views, partially in section, illustrating other alternative embodiments of the intravascular methods and apparatus of FIG. 4 comprising multiple wall-contacting electrodes.



FIG. 8 is a schematic side view, partially in section, illustrating an example of an intra-to-extravascular method and apparatus for thermal renal neuromodulation.



FIG. 9 is a schematic side view, partially in section, of an alternative embodiment of the method and apparatus of FIG. 8 configured for thermal renal neuromodulation via direct application of thermal energy.



FIG. 10 is a schematic side view, partially in section, illustrating a method and apparatus for thermal renal neuromodulation comprising a thermoelectric element suitable for direct application of thermal energy to target neural fibers.



FIG. 11 is a schematic side view, partially in section, illustrating another method and apparatus for thermal renal neuromodulation comprising a thermoelectric element.



FIGS. 12A and 12B are schematic side views, partially in section, illustrating a method and apparatus for thermal renal neuromodulation via high-intensity focused ultrasound.



FIG. 13 is a schematic side view, partially in section, illustrating an alternative embodiment of the apparatus and method of FIG. 12.



FIGS. 14A and 14B are schematic diagrams for classifying the various types of thermal neuromodulation that may be achieved with the apparatus and methods of the present invention.





DETAILED DESCRIPTION

A. Overview


The present invention provides methods and apparatus for renal neuromodulation via thermal heating and/or thermal cooling mechanisms, e.g., to achieve a reduction in renal sympathetic nerve activity. Thermally-induced (via heating and/or cooling) neuromodulation may be achieved via apparatus positioned proximate target neural fibers, for example, positioned within renal vasculature (i.e., positioned intravascularly), positioned extravascularly, positioned intra-to-extravascularly or a combination thereof. Thermal neuromodulation by either heating or cooling may be due to direct effect to, or alteration of, the neural structures that is induced by the thermal stress. Additionally or alternatively, the thermal neuromodulation may at least in part be due to alteration of vascular structures, e.g., arteries, arterioles, capillaries or veins, which perfuse the target neural fibers or surrounding tissue. Furtherstill, the modulation may at least in part be due to electroporation of the target neural fibers or of surrounding tissue.


As used herein, thermal heating mechanisms for neuromodulation include both thermal ablation and non-ablative thermal injury or damage (e.g., via sustained heating or resistive heating). Thermal heating mechanisms may include raising the temperature of target neural fibers above a desired threshold, for example, above a body temperature of about 37° C., e.g., to achieve non-ablative thermal injury, or above a temperature of about 45° C. (e.g., above about 60° C.) to achieve ablative thermal injury.


As used herein, thermal cooling mechanisms for neuromodulation include non-freezing thermal slowing of nerve conduction and/or non-freezing thermal nerve injury, as well as freezing thermal nerve injury. Thermal cooling mechanisms may include reducing the temperature of target neural fibers below a desired threshold, for example, below the body temperature of about 37° C. (e.g., below about 20° C.) to achieve non-freezing thermal injury. Thermal cooling mechanisms also may include reducing the temperature of the target neural fibers below about 0° C., e.g., to achieve freezing thermal injury.


In addition to monitoring or controlling the temperature during thermal neuromodulation, a length of exposure to thermal stimuli may be specified to affect an extent or degree of efficacy of the thermal neuromodulation. The length of exposure to thermal stimuli is longer than instantaneous exposure, such as longer than about 30 seconds, or even longer than 2 minutes. Furthermore, the length of exposure can be less than 10 minutes, though this should in no way be construed as the upper limit of the exposure period. Exposure times measured in hours, days or longer, may be utilized to achieve desired thermal neuromodulation.


When conducting neuromodulation via thermal mechanisms, the temperature threshold discussed previously may be determined as a function of the duration of exposure to thermal stimuli. Additionally or alternatively, the length of exposure may be determined as a function of the desired temperature threshold. These and other parameters may be specified or calculated to achieve and control desired thermal neuromodulation.


In some embodiments, thermally-induced renal neuromodulation may be achieved via direct application of thermal cooling or heating energy to the target neural fibers. For example, a chilled or heated fluid can be applied at least proximate to the target neural fiber, or heated or cooled elements (e.g., a thermoelectric element or a resistive heating element) can be placed in the vicinity of the neural fibers. In other embodiments, thermally-induced renal neuromodulation may be achieved via indirect generation and/or application of the thermal energy to the target neural fibers, such as through application of a ‘thermal’ electric field, of high-intensity focused ultrasound, of laser irradiation, etc., to the target neural fibers. For example, thermally-induced renal neuromodulation may be achieved via delivery of a pulsed or continuous thermal electric field to the target neural fibers, the electric field being of sufficient magnitude and/or duration to thermally induce the neuromodulation in the target fibers (e.g., to heat or thermally ablate or necrose the fibers). Additional and alternative methods and apparatus may be utilized to achieve thermally-induced renal neuromodulation, as described hereinafter.


When utilizing thermal heating mechanisms for thermal neuromodulation, protective cooling elements, such as convective cooling elements, optionally may be utilized to protect smooth muscle cells or other non-target tissue from thermal damage during the thermally-induced renal neuromodulation. Likewise, when utilizing thermal cooling mechanisms, protective heating elements, such as convective heating elements, may be utilized to protect the non-target tissue. When thermal neuromodulation is achieved via thermal energy delivered intravascularly, the non-target tissue may be protected by utilizing blood flow as a conductive and/or convective heat sink that carries away excess thermal energy (hot or cold). For example, when blood flow is not blocked, the circulating blood may provide a relatively constant temperature medium for removing the excess thermal energy from the non-target tissue during the procedure. The non-target tissue additionally or alternatively may be protected by focusing the thermal heating or cooling energy on the target neural fibers such that an intensity of the thermal energy is insufficient to induce the thermal damage in the non-target tissue distant from the target neural fibers.


In some embodiments, methods and apparatus for real-time monitoring of an extent or degree of neuromodulation or denervation (e.g., an extent or degree of thermal damage) in the target neural fibers and/or of thermal damage in the non-target tissue may be provided. Likewise, real-time monitoring of the thermal energy delivery element may be provided. Such methods and apparatus may, for example, comprise a thermocouple or other temperature sensor for measuring the temperature of the monitored tissue or of the thermal energy delivery element. Power or total energy delivered additionally or alternatively may be monitored.


To better understand the structures of devices of the present invention and the methods of using such devices for thermally-induce renal neuromodulation, it is instructive to examine the renal anatomy in humans.


B. Renal Anatomy Summary


With reference to FIG. 1, the human renal anatomy includes the kidneys K, which are supplied with oxygenated blood by the renal arteries RA. The renal arteries are connected to the heart via the abdominal aorta AA. Deoxygenated blood flows from the kidneys to the heart via the renal veins RV and the inferior vena cava IVC.



FIG. 2 illustrates a portion of the renal anatomy in greater detail. More specifically, the renal anatomy also includes renal nerves RN extending longitudinally along the lengthwise dimension L of renal artery RA, generally within the adventitia of the artery. The renal artery RA has smooth muscle cells SMC that surround the arterial circumference and spiral around the angular axis θ of the artery. The smooth muscle cells of the renal artery accordingly have a lengthwise or longer dimension extending transverse (i.e., non-parallel) to the lengthwise dimension of the renal artery. The misalignment of the lengthwise dimensions of the renal nerves and the smooth muscle cells is defined as “cellular misalignment.”


C. Embodiments of Apparatus and Methods for Neuromodulation



FIGS. 3-13 illustrate examples of systems and methods for thermally-induced renal neuromodulation. FIG. 3 shows one embodiment of an extravascular apparatus 200 that includes one or more electrodes configured to deliver a thermal electric field to renal neural fibers in order to achieve renal neuromodulation via heating. The apparatus of FIG. 3 is configured for temporary extravascular placement; however, it should be understood that partially or completely implantable extravascular apparatus additionally or alternatively may be utilized. Applicants have previously described extravascular pulsed electric field systems, for example, in Applicants' U.S. Pat. No. 8,145,316, which has been incorporated herein by reference in its entirety.


In FIG. 3, apparatus 200 comprises a laparoscopic or percutaneous system having a probe 210 configured for insertion in proximity to the track of the renal neural supply along the renal artery or vein or hilum and/or within Gerota's fascia under, e.g., CT or radiographic guidance. At least one electrode 212 is configured for delivery through the probe 210 to a treatment site for delivery of a thermal electric field therapy. The electrode(s) 212, for example, may be mounted on a catheter and electrically coupled to a thermal electric field generator 50 via wires 211. In an alternative embodiment, a distal section of the probe 210 may have at least one electrode 212, and the probe may have an electrical connector to couple the probe to the field generator 50 for delivering a thermal electric field to the electrode(s) 212.


The field generator 50 is located external to the patient. The generator, as well as any of the electrode embodiments described herein, may be utilized with any embodiment of the present invention for delivery of a thermal electric field with desired field parameters, e.g., parameters sufficient to thermally or otherwise induce renal neuromodulation in target neural fibers via heating and/or electroporation. It should be understood that electrodes of embodiments described hereinafter may be electrically connected to the generator even though the generator is not explicitly shown or described with each embodiment. Furthermore, the field generator optionally may be positioned internal to the patient. Furtherstill, the field generator may additionally comprise or may be substituted with an alternative thermal energy generator, such as a thermoelectric generator for heating or cooling (e.g., a Peltier device), or a thermal fluid injection system for heating or cooling, etc.


The electrode(s) 212 can be individual electrodes that are electrically independent of each other, a segmented electrode with commonly connected contacts, or a continuous electrode. A segmented electrode may, for example, be formed by providing a slotted tube fitted onto the electrode, or by electrically connecting a series of individual electrodes. Individual electrodes or groups of electrodes 212 may be configured to provide a bipolar signal. The electrodes 212 may be dynamically assignable to facilitate monopolar and/or bipolar energy delivery between any of the electrodes and/or between any of the electrodes and an external ground pad. Such a ground pad may, for example, be attached externally to the patient's skin, e.g., to the patient's leg or flank. In FIG. 3, the electrodes 212 comprise a bipolar electrode pair. The probe 210 and the electrodes 212 may be similar to the standard needle or trocar-type used clinically for RF nerve block. Alternatively, the apparatus 200 may comprise a flexible and/or custom-designed probe for the renal application described herein.


In FIG. 3, the percutaneous probe 210 has been advanced through a percutaneous access site P into proximity with a patient's renal artery RA. The probe pierces the patient's Gerota's fascia F, and the electrodes 212 are advanced into position through the probe and along the annular space between the patient's artery and fascia. Once properly positioned, the target neural fibers may be heated via a pulsed or continuous electric field delivered across the bipolar electrodes 212. Such heating may, for example, ablate or cause non-ablative thermal injury to the target neural fibers, thereby at least partially denervating the kidney innervated by the target neural fibers. The electric field also may induce reversible or irreversible electroporation in the target neural fibers, which may compliment the thermal injury induced in the neural fibers. After treatment, the apparatus 200 may be removed from the patient to conclude the procedure.


Referring now to FIGS. 4A and 4B, embodiments of intravascular systems for thermally-induced renal neuromodulation is described. Applicants have previously described intravascular pulsed electric field systems, for example, in U.S. Pat. No. 7,653,438, which has been incorporated herein by reference in its entirety. The embodiments of FIG. 4 include an apparatus 300 comprising a catheter 302 having an optional positioning element 304 (e.g., a balloon, an expandable wire basket, other mechanical expanders, etc.), shaft electrodes 306a and 306b disposed along the shaft of the catheter, and optional radiopaque markers 308 disposed along the shaft of the catheter in the region of the positioning element 304. The electrodes 306a-b, for example, can be arranged such that the electrode 306a is near a proximal end of the positioning element 304 and the electrode 306b is near the distal end of the positioning element 304. The electrodes 306 are electrically coupled to the field generator 50 (see FIG. 3), which is disposed external to the patient, for delivery of a thermal electric field for heating of target neural fibers. In an alternative embodiment, one or more of the electrodes may comprise Peltier electrodes for cooling the target neural fibers to modulate the fibers.


The positioning element 304 optionally may center or otherwise position the electrodes 306a and 306b within a vessel. Additionally, as in FIG. 4A, the positioning element may comprise an impedance-altering element that alters the impedance between electrodes 306a and 306b during the therapy, for example, to better direct the thermal electric field across the vessel wall. This may reduce an energy required to achieve desired renal neuromodulation and may reduce a risk of injury to non-target tissue. Applicants have previously described use of a suitable impedance-altering element in Applicants' U.S. Pat. No. 7,756,583, which is incorporated herein by reference in its entirety. When the positioning element 304 comprises an inflatable balloon as in FIG. 4A, the balloon may serve as both a centering element for the electrodes 306 and as an impedance-altering electrical insulator for directing an electric field delivered across the electrodes, e.g., for directing the electric field into or across the vessel wall for modulation of target neural fibers. Electrical insulation provided by the positioning element 304 may reduce the magnitude of applied energy or other parameters of the thermal electric field necessary to achieve desired heating at the target fibers.


Furthermore, the positioning element 304 optionally may be utilized as a cooling element and/or a heating element. For example, the positioning element 304 may be inflated with a chilled fluid that serves as a heat sink for removing heat from tissue that contacts the element. Conversely, the positioning element 304 optionally may be a heating element by inflating it with a warmed fluid that heats tissue in contact with the element. The thermal fluid optionally may be circulated and/or exchanged within the positioning element 304 to facilitate more efficient conductive and/or convective heat transfer. Thermal fluids also may be used to achieve thermal neuromodulation via thermal cooling or heating mechanisms, as described in greater detail herein below. The positioning element 304 (or any other portion of apparatus 300) additionally or alternatively may comprise one or more sensors for monitoring the process. In one embodiment, the positioning element 304 has a wall-contacting thermocouple 310 (FIG. 4A) for monitoring the temperature or other parameters of the target tissue, the non-target tissue, the electrodes, the positioning element and/or any other portion of the apparatus 300.


The electrodes 306 can be individual electrodes (i.e., independent contacts), a segmented electrode with commonly connected contacts, or a single continuous electrode. Furthermore, the electrodes 306 may be configured to provide a bipolar signal, or the electrodes 306 may be used together or individually in conjunction with a separate patient ground pad for monopolar use. As an alternative or in addition to placement of the electrodes 306 along the central shaft of the catheter 302, as in FIG. 4, the electrodes 306 may be attached to the positioning element 304 such that they contact the wall of the renal artery RA. In such a variation, the electrodes may, for example, be affixed to the inside surface, outside surface or at least partially embedded within the wall of the positioning element. FIG. 5 illustrate alternative wall-contacting electrodes.


In use, the catheter 302 may be delivered to the renal artery RA as shown, or it may be delivered to a renal vein or to any other vessel in proximity to neural tissue contributing to renal function, in a low profile delivery configuration through a guide catheter or other device. Alternatively, catheters may be positioned in multiple vessels for thermal renal neuromodulation, e.g., within both the renal artery and the renal vein. Multi-vessel techniques for pulsed electric field renal neuromodulation have been described previously, for example, in Applicants' U.S. Pat. No. 7,853,333, which is incorporated herein by reference in its entirety.


Once positioned within the renal vasculature as desired, the optional positioning element 304 may be expanded into contact with an interior wall of the vessel. A thermal electric field then may be generated by the field generator 50, transferred through the catheter 302 to the electrodes 306, and delivered via the electrodes 306 across the wall of the artery. The electric field thermally modulates the activity along neural fibers that contribute to renal function via heating. In several embodiments, the thermal modulation at least partially denervates the kidney innervated by the neural fibers via heating. This may be achieved, for example, via thermal ablation or via non-ablative damage of the target neural fibers. The electric field also may induce electroporation in the neural fibers.


In the embodiment of FIG. 4A, the positioning element 304 illustratively comprises an inflatable balloon, which may preferentially direct the electric field as discussed. In the embodiment of FIG. 4B, the positioning element comprises an expandable wire basket that substantially centers the electrodes 306 within the vessel without blocking blood flow through the vessel. During delivery of the thermal electric field (or of other thermal energy), the blood may act as a heat sink for conductive and/or convective heat transfer for removing excess thermal energy from the non-target tissue, thereby protecting the non-target tissue. This effect may be enhanced when blood flow is not blocked during energy delivery, as in the embodiment of FIG. 4B.


Use of the patient's blood as a heat sink is expected to facilitate delivery of longer or higher energy thermal treatments with reduced risk of damage to the non-target tissue, which may enhance the efficacy of the treatment at the target neural fibers. Although the embodiment of FIG. 4B illustratively comprises a positioning element for centering the electrodes without blocking flow, it should be understood that the positioning element may be eliminated and/or that the electrodes may be attached to the positioning element such that they are not centered in the vessel upon expansion of the centering element. In such embodiments, the patient's blood may still mitigate excess thermal heating or cooling to protect non-target tissues.


In addition or as an alternative to utilizing the patient's blood as a heat sink, a thermal fluid (hot or cold) may be injected into the vessel to remove excess thermal energy and protect the non-target tissues. The thermal fluid may, for example, be injected through the device catheter or through a guide catheter at a location upstream from an energy delivery element or at other locations relative to the tissue for which protection is sought. Furthermore, this method of using an injected thermal fluid to remove excess thermal energy from non-target tissues to protect the non-target tissues from thermal injury during therapeutic treatment of target tissues may be utilized in body lumens other than blood vessels.


One or more sensors, such as the thermocouple 310 of FIG. 4A, may be used to monitor the temperature(s) or other parameter(s) at the electrodes 306, at the wall of the vessel and/or at other desired locations along the apparatus or the patient's anatomy. The thermal neuromodulation may be controlled using the measured parameter(s) as feedback. This feedback may be used, for example, to maintain the parameter(s) below a desired threshold. For example, the parameter(s) may be maintained below a threshold that may cause injury to the non-target tissues. With blood flowing through the vessel, more thermal energy may be carried away, which may allow for longer or higher energy treatments than when blood flow is blocked in the vessel.


As discussed, when utilizing intravascular apparatus to achieve thermal neuromodulation, in addition or as an alternative to central positioning of the electrode(s) within a blood vessel, the electrode(s) optionally may be configured to contact an internal wall of the blood vessel. Wall-contacting electrode(s) may facilitate more efficient transfer of a thermal electric field across the vessel wall to target neural fibers, as compared to centrally-positioned electrode(s). In some embodiments, the wall-contacting electrode(s) may be delivered to the vessel treatment site in a reduced profile configuration, then expanded in vivo to a deployed configuration wherein the electrode(s) contact the vessel wall. In some embodiments, expansion of the electrode(s) is at least partially reversible to facilitate retrieval of the electrode(s) from the patient's vessel.



FIGS. 5A and 5B depict an illustrative embodiment of intravascular apparatus having electrodes configured to contact the interior wall of a vessel. The apparatus of FIGS. 5A and 5B is an alternative embodiment of the apparatus 300 of FIGS. 4A and 4B wherein the proximal electrode 306a of FIGS. 4A and 4B has been replaced with wall-contacting electrode 306a′. The wall-contacting electrode comprises proximal attachment 312a that connects the electrode to the shaft of the catheter 302 and is electrically coupled to the pulse generator. Extensions 314a extend from proximal attachment 312a and at least partially extend over a surface of positioning element 304. The extensions 314a optionally may be selectively insulated such that only a selective portion of the extensions, e.g., the distal tips of the extensions, are electrically active. The electrode 306a′ optionally may be fabricated from a slotted tube, such as a stainless steel or shape-memory (e.g., NiTi) slotted tube. Furthermore, all or a portion of the electrode may be gold-plated to improve radiopacity and/or conductivity.


As seen in FIG. 5A, catheter 302 may be delivered over a guidewire G to a treatment site within the patient's vessel with the electrode 306a′ positioned in a reduced profile configuration. Catheter 302 optionally may be delivered through a guide catheter 303 to facilitate such reduced profile delivery of the wall-contacting electrode. When positioned as desired at a treatment site, the electrode may be expanded into contact with the vessel wall by expanding the optional positioning element 304, as in FIG. 5B. A thermal monopolar or bipolar electric field then may be delivered across the vessel wall and between the electrodes 306a′ and 306b to induce thermal neuromodulation, as discussed previously. The optional positioning element 304 may alter impedance within the blood vessel and more efficiently route the electrical energy across the vessel wall to the target neural fibers.


After delivery of the electric field, the electrode 306a′ may be returned to a reduced profile to facilitate removal of the apparatus 300 from the patient. For example, the positioning element 304 may be collapsed (e.g., deflated), and the electrode 306a′ may be contracted by withdrawing the catheter 302 within the guide catheter 303. Alternatively, the electrode may be fabricated from a shape-memory material biased to the collapsed configuration, such that the electrode self-collapses upon collapse of the positioning element.


Although in FIGS. 5A and 5B the electrode 306a′ is expanded into contact with the vessel wall, it should be understood that the electrode alternatively may be fabricated from a self-expanding material biased such that the electrode self-expands into contact with the vessel wall upon positioning of the electrode distal of the guide catheter 303. A self-expanding embodiment of the electrode 306a′ may obviate a need for the positioning element 304 and/or may facilitate maintenance of blood flow through the blood vessel during delivery of an electric field via the electrode. After delivery of the electric field, the self-expanding electrode 306a′ may be returned to a reduced profile to facilitate removal of the apparatus 300 from the patient by withdrawing the catheter 302 within the guide catheter 303.



FIGS. 6A and 6B depict another embodiment of the apparatus and methods of FIGS. 4A and 4B comprising a wall-contacting electrode. As an alternative to the proximal attachment 312a of electrode 306a′ of FIGS. 5A and 5B, the electrode 306a″ of FIG. 6 comprises distal attachment 316a for coupling the electrode to the shaft of catheter 302 on the distal side of the positioning element 304. Distal attachment of the electrode allows the electrode to extend over the entirety of the positioning element 304 and may facilitate contraction of the electrode 306a″ after thermal neuromodulation. For example, the electrode 306a″ can be contracted by proximally retracting the extensions 312a relative to the catheter 302 during or after contraction of the positioning element 304. FIG. 6A shows the electrode 306a″ in the reduced profile configuration, while FIG. 6B shows the electrode in the expanded, wall-contacting configuration.



FIGS. 7A and 7B show additional alternative embodiments of the methods and apparatus of FIGS. 4A and 4B. In FIGS. 7A and 7B, the apparatus 300 comprises both the proximal electrode 306a′ of FIGS. 5A and 5B, as well as a wall-contacting distal electrode 306b′. The embodiment of FIG. 7A comprises proximal and distal positioning elements 304a and 304b, respectively, for expanding the proximal and distal wall-contacting electrodes 306a′ and 306b′, respectively, into contact with the vessel wall. The embodiment of FIG. 7B comprises only a single positioning element 304, but the distal wall-contacting electrode 306b′ is proximal facing and positioned over the distal portion of the positioning element 304 to facilitate expansion of the distal electrode 306b′. In the embodiment of FIG. 7B, the extensions of the proximal and distal electrodes optionally may be connected along non-conductive connectors 318 to facilitate collapse and retrieval of the electrodes post-treatment.


A bipolar electric field may be delivered between the proximal and distal wall-contacting electrodes, or a monopolar electric field may be delivered between the proximal and/or distal electrode(s) and an external ground. Having both the proximal and distal electrodes in contact with the wall of the vessel may facilitate more efficient energy transfer across the wall during delivery of a thermal electric field, as compared to having one or both of the proximal and distal electrodes centered within the vessel.


In addition to extravascular and intravascular systems for thermally-induced renal neuromodulation, intra-to-extravascular systems may be provided. The intra-to-extravascular systems may, for example, have electrode(s) that are delivered to an intravascular position, and then at least partially passed through/across the vessel wall to an extravascular position prior to delivery of a thermal electric field. Intra-to-extravascular positioning of the electrode(s) may place the electrode(s) in closer proximity to target neural fibers for delivery of a thermal electric field, as compared to fully intravascular positioning of the electrode(s). Applicants have previously described intra-to-extravascular pulsed electric field systems, for example, in Applicants' U.S. Pat. No. 7,620,451, which is incorporated herein by reference in its entirety.


With reference to FIG. 8, one embodiment of an intra-to-extravascular (“ITEV”) system for thermally-induced renal neuromodulation is described. ITEV system 320 comprises a catheter 322 having (a) a plurality of proximal electrode lumens terminating at proximal side ports 324, (b) a plurality of distal electrode lumens terminating at distal side ports 326, and (c) a guidewire lumen 323. The catheter 322 preferably comprises an equal number of proximal and distal electrode lumens and side ports. The system 320 also includes proximal needle electrodes 328 that may be advanced through the proximal electrode lumens and the proximal side ports 324, as well as distal needle electrodes 329 that may be advanced through the distal electrode lumens and the distal side ports 326.


Catheter 322 comprises an optional expandable positioning element 330, which may comprise an inflatable balloon or an expandable basket or cage. In use, the positioning element 330 may be expanded prior to deployment of the needle electrodes 328 and 329 in order to position or center the catheter 322 within the patient's vessel (e.g., within renal artery RA). Centering the catheter 322 is expected to facilitate delivery of all needle electrodes to desired depths within/external to the patient's vessel (e.g., to deliver all of the needle electrodes approximately to the same depth). In FIG. 8, the illustrated positioning element 330 is positioned between the proximal side ports 324 and the distal side ports 326, i.e., between the delivery positions of the proximal and distal electrodes. However, it should be understood that the positioning element 330 additionally or alternatively may be positioned at a different location or at multiple locations along the length of the catheter 322 (e.g., at a location proximal of the side ports 324 and/or at a location distal of the side ports 326).


As illustrated in FIG. 8, the catheter 322 may be advanced to a treatment site within the patient's vasculature (e.g., to a treatment site within the patient's renal artery RA) over a guidewire (not shown) via the lumen 323. During intravascular delivery, the electrodes 328 and 329 may be positioned such that their non-insulated and sharpened distal regions are positioned within the proximal and distal lumens, respectively. Once positioned at a treatment site, a medical practitioner may advance the electrodes via their proximal regions that are located external to the patient. Such advancement causes the distal regions of the electrodes 328 and 329 to exit side ports 324 and 326, respectively, and pierce the wall of the patient's vasculature such that the electrodes are positioned extravascularly via an ITEV approach.


The proximal electrodes 328 can be connected to electric field generator 50 as active electrodes, and the distal electrodes 329 can serve as return electrodes. In this manner, the proximal and distal electrodes form bipolar electrode pairs that align the thermal electric field with a longitudinal axis or direction of the patient's vasculature. As will be apparent, the distal electrodes 329 alternatively may comprise the active electrodes and the proximal electrodes 328 may comprise the return electrodes. Furthermore, the proximal and/or the distal electrodes may comprise both active and return electrodes. Furtherstill, the proximal and/or the distal electrodes may be utilized in combination with an external ground for delivery of a monopolar thermal electric field. Any combination of active and distal electrodes may be utilized, as desired.


When the electrodes 328 and 329 are connected to generator 50 and positioned extravascularly, and with the positioning element 330 optionally expanded, delivery of the thermal electric field may proceed to achieve desired renal neuromodulation via heating. The electric field also may induce electroporation. After achievement of the thermally-induced renal neuromodulation, the electrodes may be retracted within the proximal and distal lumens, and the positioning element 330 may be collapsed for retrieval. ITEV system 320 then may be removed from the patient to complete the procedure. Additionally or alternatively, the system may be repositioned to provide therapy at another treatment site, such as to provide bilateral renal neuromodulation.


As discussed previously, cooling elements, such as convective cooling elements, may be utilized to protect non-target tissues like smooth muscle cells from thermal damage during thermally-induced renal neuromodulation via heat generation. Non-target tissues additionally or alternatively may be protected by focusing the thermal energy on the target neural fibers such that an intensity of the thermal energy is insufficient to induce thermal damage in non-target tissues distant from the target neural fibers.


Although FIGS. 3-8 illustratively show bipolar apparatus, it should be understood that monopolar apparatus alternatively may be utilized. For example, an active monopolar electrode may be positioned intravascularly, extravascularly or intra-to-extravascularly in proximity to target neural fibers that contribute to renal function. A return electrode ground pad may be attached to the exterior of the patient. Finally, a thermal electric field may be delivered between the in vivo monopolar electrode and the ex vivo ground pad to effectuate desired thermally-induced renal neuromodulation. Monopolar apparatus additionally may be utilized for bilateral renal neuromodulation.


The embodiments of FIGS. 3-8 illustratively describe methods and apparatus for thermally-induced renal neuromodulation via delivery of thermal electric fields that modulate the target neural fibers. However, it should be understood that alternative methods and apparatus for thermally-induced (via both heating and cooling) renal neuromodulation may be provided. For example, electric fields may be used to cool and modulate the neural fibers, e.g., via thermoelectric or Peltier elements. Thermally-induced renal neuromodulation optionally may be achieved via direct application of thermal energy to the target neural fibers. Such direct thermal energy may be generated and/or transferred in a variety of ways, such as via resistive heating, via delivery of a heated or chilled fluid (see FIGS. 9 and 11), via a Peltier element (see FIG. 10), etc. Thermally-induced renal neuromodulation additionally or alternatively may be achieved via application of high-intensity focused ultrasound to the target neural fibers (see FIG. 12). Additional and alternative methods and apparatus for thermally-induced renal neuromodulation may be used in accordance with the present invention.


With reference now to FIG. 9, an alternative embodiment of the apparatus and methods of FIG. 8 is described that is configured for thermally-induced neuromodulation via direct application of thermal energy. In the embodiment of FIG. 9, the electrodes 328 and 329 of FIG. 8 have been replaced with infusion needles 328′ and 329′, respectively. A thermal fluid F may be delivered through the needles to the target neural fibers. The thermal fluid may be heated in order to raise the temperature of the target neural fibers above a desired threshold. For example, the temperature of the neural fibers can be raised above a body temperature of about 37° C., or above a temperature of about 45° C. Alternatively, the thermal fluid may be chilled to reduce the temperature of the target neural fibers below a desired threshold. For example, the neural fibers can be cooled to below the body temperature of about 37° C., or further cooled below about 20° C., or still further cooled below a freezing temperature of about 0° C. As will be apparent, in addition to intra-to-extravascular delivery of a thermal fluid, the thermal fluid may be delivered intravascularly (e.g., may inflate and/or be circulated through a balloon member), extravascularly (e.g., may be circulated through a vascular cuff) or a combination thereof.


In addition or as alternative to injection of a thermal fluid to the target neural fibers through infusion needles 328′ and 329′, an alternative neuromodulatory agent, such as a drug or medicament, may be injected to modulate, necrose or otherwise block or reduce transmission along the target neural fibers. Examples of alternative neuromodulatory agents include, but are not limited to, phenol and neurotoxins, such as botulinum toxin. Additional neuromodulatory agents, per se known, will be apparent to those of skill in the art.



FIG. 10 shows another method and apparatus for thermal renal neuromodulation via direct application of thermal energy to the target neural fibers. The apparatus 340 comprises renal artery cuff 342 having one or more integrated thermoelectric elements that are electrically coupled to an internal or external power supply 344. The thermoelectric element utilizes the well-known Peltier effect (i.e., the establishment of a thermal gradient induced by an electric voltage) to achieve thermal renal neuromodulation.


An electric current is passed from the power supply to the thermoelectric element, which comprises two different metals (e.g., a p-type and an n-type semiconductor) that are connected to each other at two junctions. The current induces a thermal gradient between the two junctions, such that one junction cools while the other is heated. Reversal of the polarity of the voltage applied across the two junctions reverses the direction of the thermal gradient.


Either the hot side or the cold side of the thermoelectric element faces radially inward in order to heat or cool, respectively, the target neural fibers that travel along the renal artery to achieve thermal renal neuromodulation. Optionally, the radially outward surface of the thermoelectric element may be insulated to reduce a risk of thermal damage to the non-target tissues. The cuff 342 may comprise one or more temperature sensors, such as thermocouples, for monitoring the temperature of the target neural fibers and/or of the non-target tissues.



FIG. 11 shows another method and apparatus utilizing the Peltier effect. The apparatus 350 comprises an implanted or external pump 352 connected to a renal artery cuff 354 via inlet fluid conduit 356a and outlet fluid conduit 356b. The inlet fluid conduit transfers fluid from the pump to the cuff, while the outlet fluid conduit transfers fluid from the cuff to the pump to circulate fluid through the cuff. A reservoir of fluid may be located in the cuff, the pump and/or in the fluid conduits.


The pump 352 further comprises one or more thermoelectric or other thermal elements in heat exchange contact with the fluid reservoir for cooling or heating the fluid that is transferred to the cuff to thermally modulate the target neural fibers. The apparatus 350 optionally may have controls for automatic or manual control of fluid heating or cooling, as well as fluid circulation within the cuff. Furthermore, the apparatus may comprise temperature and/or renal sympathetic neural activity monitoring or feedback control. Although the apparatus illustratively is shown unilaterally treating neural fibers innervating a single kidney, it should be understood that bilateral treatment of neural fibers innervating both kidneys alternatively may be provided.


Thermal renal neuromodulation alternatively may be achieved via high-intensity focused ultrasound, either pulsed or continuous. High intensity focused ultrasound also may induce reversible or irreversible electroporation in the target neural fibers. Furthermore, the ultrasound may be delivered over a full 360° (e.g. when delivered intravascularly) or over a radial segment of less than 360° (e.g., when delivered intravascularly, extravascularly, intra-to-extravascularly, or a combination thereof). In FIG. 12, the apparatus 360 comprises a catheter 362 having ultrasound transducers 364 positioned along the shaft of the catheter within an inflatable balloon 366. The ultrasound transducers are coupled to an ultrasound signal generator via conductors 365. The balloon comprises an acoustically reflective portion 368 of a surface of the balloon for reflecting an ultrasound wave, as well as an acoustically transmissive portion 369 of the surface for passage of the wave through the balloon. In this manner, the wave may be focused as shown at a focal point or radius P positioned a desired focal distance from the catheter shaft. In an alternative embodiment, the transducers may be attached directly to the balloon.


The focal distance may be specified or dynamically variable such that, when positioned within a blood vessel, the ultrasonic wave is focused at a desired depth on target neural fibers outside of the vessel. For example, a family of catheter sizes may be provided to allow for a range of specified focal distances. A dynamically variable focal distance may be achieved, for example, via calibrated expansion of the balloon.


Focusing the ultrasound wave may produce a reverse thermal gradient that protects the non-target tissues and selectively affect the target neural fibers to achieve thermal renal neuromodulation via heating. As a result, the temperature at the vessel wall may be less than the temperature at the target tissue. FIG. 12A shows the apparatus 360 in a reduced delivery and retrieval configuration, while FIG. 12B shows the apparatus in an expanded deployed configuration. FIG. 13 shows an alternative embodiment of the apparatus 360 wherein the ultrasound transducers 364′ are concave, such that the ultrasound signal is self-focusing without need of the reflective portion of the balloon 366 (e.g., the balloon may be acoustically transmissive at all points).


The apparatus described above with respect to FIGS. 3-13 optionally may be used to quantify the efficacy, extent or cell selectivity of thermally-induced renal neuromodulation in order to monitor and/or control the neuromodulation. As discussed previously, the apparatus may further comprise one or more sensors, such as thermocouples or imaging transducers, for measuring and monitoring one or more parameters of the apparatus, of the target neural fibers and/or of the non-target tissues. For example, a temperature rise or drop above or below certain thresholds is expected to thermally ablate, non-ablatively injure, freeze or otherwise damage the target neural fibers, thereby modulating the target neural fibers.



FIGS. 14A and 14B classify the various types of thermal neuromodulation that may be achieved with the apparatus and methods of the present invention. FIGS. 14A and 14B are provided only for the sake of illustration and should in no way be construed as limiting. FIG. 14A classifies thermal neuromodulation due to heat exposure. As shown, exposure to heat in excess of a body temperature of about 37° C., but below a temperature of about 45° C., may induce thermal injury via moderate heating of the target neural fibers or of vascular structures that perfuse the target fibers. For example, this may induce non-ablative thermal injury in the fibers or structures. Exposure to heat above a temperature of about 45° C., or above about 60° C., may induce thermal injury via substantial heating of the fibers or structures. For example, such higher temperatures may thermally ablate the target neural fibers or the vascular structures. Regardless of the type of heat exposure utilized to induce the thermal neuromodulation, a reduction in renal sympathetic nerve activity (“RSNA”) is expected.


As seen in FIG. 14B, thermal cooling for neuromodulation includes non-freezing thermal slowing of nerve conduction and/or nerve injury, as well as freezing thermal nerve injury. Non-freezing thermal cooling may include reducing the temperature of the target neural fibers or of the vascular structures that feed the fibers to temperatures below the body temperature of about 37° C., or below about 20° C., but above the freezing temperature of about 0° C. This non-freezing thermal cooling may either slow nerve conduction or may cause direct neural injury. Slowed nerve conduction may imply continuous or intermittent cooling of the target neural fibers to sustain the desired thermal neuromodulation, while direct neural injury may require only a discrete treatment to achieve sustained thermal neuromodulation. Thermal cooling for neuromodulation also may include freezing thermal nerve injury, e.g., reducing the temperature of the target neural fibers or of the vascular structures that feed the fibers to temperatures below the freezing point of about 0° C. Regardless of the type of cold exposure utilized to induce the thermal neuromodulation (freezing or non-freezing), a reduction in renal sympathetic nerve activity (“RSNA”) is expected.


It is expected that thermally-induced renal neuromodulation, whether delivered extravascularly, intravascularly, intra-to-extravascularly or a combination thereof, may alleviate clinical symptoms of CHF, hypertension, renal disease, myocardial infarction, atrial fibrillation, contrast nephropathy and/or other cardio-renal diseases for a period of months, potentially up to six months or more. This time period may be sufficient to allow the body to heal; for example, this period may reduce the risk of CHF onset after an acute myocardial infarction, thereby alleviating a need for subsequent re-treatment. Alternatively, as symptoms reoccur, or at regularly scheduled intervals, the patient may receive repeat therapy.


Although preferred illustrative variations of the present invention are described above, it will be apparent to those skilled in the art that various changes and modifications may be made thereto without departing from the invention. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.

Claims
  • 1. A method for thermally affecting renal nerves proximate renal vasculature of a human patient, the method comprising: delivering a catheter having an infusion needle to a renal blood vessel of the patient and adjacent the renal nerves;delivering a thermal fluid to the renal nerves via the infusion needle;thermally modulating a function of the renal nerves via the thermal fluid; andremoving the catheter from the patient after delivering the thermal fluid to conclude the therapy.
  • 2. The method of claim 1 wherein thermally modulating a function of the renal nerves via the thermal fluid comprises delivering the thermal fluid to block neural signaling along the renal nerves.
  • 3. The method of claim 1 wherein thermally modulating a function of the renal nerves via the thermal fluid comprises delivering the thermal fluid to necrose the renal nerves.
  • 4. The method of claim 1 wherein delivering a thermal fluid to the renal nerves comprises delivering a heated fluid to heat the renal nerves above a desired threshold temperature.
  • 5. The method of claim 4 wherein the delivered thermal fluid heats the renal nerves above a temperature of 45° C.
  • 6. The method of claim 1 wherein delivering a thermal fluid to the renal nerves comprises delivering a chilled fluid to cool the renal nerves below a desired threshold temperature.
  • 7. The method of claim 6 wherein the delivered thermal fluid cools the renal nerves below a temperature of 0° C.
  • 8. The method of claim 1 wherein delivering a catheter having an infusion needle to a renal blood vessel comprises intravascularly delivering the catheter to a renal artery of the patient over a guidewire.
  • 9. The method of claim 1 wherein thermally modulating a function of the renal nerves results in a therapeutically beneficial reduction in blood pressure of the patient.
  • 10. The method of claim 1 wherein thermally modulating a function of the renal nerves at least partially denervates a kidney of the patient.
  • 11. The method of claim 1, further comprising monitoring a temperature of the renal nerves and/or non-target tissue proximate the renal nerves during therapy.
  • 12. The method of claim 11, further comprising altering delivery of the thermal fluid in response to the monitored parameter.
REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 13/765,487, filed Feb. 12, 2013, now U.S. Pat. No. 8,784,463, which is a continuation of U.S. patent application Ser. No. 12/700,524, filed Feb. 4, 2010, now U.S. Pat. No. 8,986,294, which is a continuation of U.S. patent application Ser. No. 11/840,142, filed Aug. 16, 2007, now U.S. Pat. No. 7,717,948, which is a continuation of U.S. patent application Ser. No. 11/504,117, filed Aug. 14, 2006, now U.S. Pat. No. 7,617,005, which claims the benefit of U.S. Provisional Application No. 60/816,999 filed on Jun. 28, 2006. U.S. patent application Ser. No. 11/504,117, filed Aug. 14, 2006, now U.S. Pat. No. 7,617,005 is also a Continuation-In-Part application of each of the following: (A) U.S. patent application Ser. No. 10/408,665, filed on Apr. 8, 2003, now U.S. Pat. No. 7,162,303, which claims the benefit of U.S. Provisional Application No. 60/370,190, filed on Apr. 8, 2002, U.S. Provisional Application No. 60/415,575, filed on Oct. 3, 2002, and U.S. Provisional Application No. 60/442,970, filed on Jan. 29, 2003. (B) U.S. patent application Ser. No. 11/189,563, filed on Jul. 25, 2005, now U.S. Pat. No. 8,145,316, which is a Continuation-In-Part application of U.S. patent application Ser. No. 11/129,765, filed on May 13, 2005, now U.S. Pat. No. 7,653,438, which claims the benefit of U.S. Provisional Application No. 60/616,254, filed on Oct. 5, 2004, and U.S. Provisional Application No. 60/624,793, filed on Nov. 2, 2004. All of these applications are incorporated herein by reference in their entireties. All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

US Referenced Citations (894)
Number Name Date Kind
2130758 Rose Sep 1938 A
2276995 Milinowski Mar 1942 A
2276996 Milinowski Mar 1942 A
3043310 Milinowski Jul 1962 A
3127895 Kendall et al. Apr 1964 A
3181535 Milinowski May 1965 A
3270746 Kendall et al. Sep 1966 A
3329149 Kendall et al. Jul 1967 A
3522811 Scchwartz et al. Aug 1970 A
3563246 Puharich et al. Feb 1971 A
3650277 Sjostrand et al. Mar 1972 A
3670737 Pearo Jun 1972 A
3752162 Newash Aug 1973 A
3760812 Timm et al. Sep 1973 A
3774620 Hansjurgens et al. Nov 1973 A
3794022 Nawracaj et al. Feb 1974 A
3800802 Berry et al. Apr 1974 A
3803463 Cover Apr 1974 A
3894532 Morey Jul 1975 A
3895639 Rodler et al. Jul 1975 A
3897789 Blanchard Aug 1975 A
3911930 Hagfors et al. Oct 1975 A
3952751 Yarger Apr 1976 A
3987790 Eckenhoff et al. Oct 1976 A
4011861 Enger Mar 1977 A
4026300 DeLuca et al. May 1977 A
4055190 Tany et al. Oct 1977 A
4071033 Nawracaj et al. Jan 1978 A
4105017 Ryaby et al. Aug 1978 A
4141365 Fischell et al. Feb 1979 A
4266532 Ryaby et al. May 1981 A
4266533 Ryaby et al. May 1981 A
4305115 Armitage et al. Dec 1981 A
4315503 Ryaby et al. Feb 1982 A
4345602 Yoshimura et al. Aug 1982 A
4360019 Portner et al. Nov 1982 A
4379462 Borkan et al. Apr 1983 A
4405305 Stephen et al. Sep 1983 A
4454883 Fellus et al. Jun 1984 A
4467808 Brighton et al. Aug 1984 A
4487603 Harris Dec 1984 A
4530840 Tice et al. Jul 1985 A
4587975 Salo et al. May 1986 A
4602624 Naples et al. Jul 1986 A
4608985 Crish et al. Sep 1986 A
4649936 Ungar et al. Mar 1987 A
4658828 Dory Apr 1987 A
4671286 Renault et al. Jun 1987 A
4674482 Waltonen et al. Jun 1987 A
4692147 Duggan Sep 1987 A
4709698 Johnston et al. Dec 1987 A
4715852 Reinicke et al. Dec 1987 A
4764504 Johnson et al. Aug 1988 A
4774967 Zanakis et al. Oct 1988 A
4791931 Slate Dec 1988 A
4816016 Schulte et al. Mar 1989 A
4824436 Wolinsky Apr 1989 A
4852573 Kennedy Aug 1989 A
4858613 Fry et al. Aug 1989 A
4865845 Eckenhoff et al. Sep 1989 A
4890623 Cook et al. Jan 1990 A
4955377 Lennox et al. Sep 1990 A
4976711 Parins et al. Dec 1990 A
4979511 Terry, Jr. Dec 1990 A
4981146 Bertolucci Jan 1991 A
4986275 Ishida et al. Jan 1991 A
4998532 Griffith Mar 1991 A
5006119 Acker et al. Apr 1991 A
5014699 Pollack et al. May 1991 A
5019034 Weaver et al. May 1991 A
5038789 Frazin Aug 1991 A
5057318 Magruder et al. Oct 1991 A
5058584 Bourgeois et al. Oct 1991 A
5059423 Magruder et al. Oct 1991 A
5061492 Okada et al. Oct 1991 A
5065740 Itoh Nov 1991 A
5080101 Dory Jan 1992 A
5087244 Wolinsky et al. Feb 1992 A
5094242 Gleason et al. Mar 1992 A
5102402 Dror et al. Apr 1992 A
5111815 Mower May 1992 A
5112614 Magruder et al. May 1992 A
5125928 Parins et al. Jun 1992 A
5131409 Lobarev et al. Jul 1992 A
5137727 Eckenhoff Aug 1992 A
5188837 Domb Feb 1993 A
5190045 Frazin Mar 1993 A
5193048 Kaufman et al. Mar 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5199428 Obel et al. Apr 1993 A
5203326 Collins et al. Apr 1993 A
5213098 Bennett et al. May 1993 A
5215086 Terry, Jr. et al. Jun 1993 A
5231988 Wernicke et al. Aug 1993 A
5234692 Magruder et al. Aug 1993 A
5234693 Magruder et al. Aug 1993 A
5251634 Weinberg Oct 1993 A
5251643 Osypka et al. Oct 1993 A
5263480 Wernicke et al. Nov 1993 A
5269303 Wernicke et al. Dec 1993 A
5282468 Klepinski Feb 1994 A
5282785 Shapland et al. Feb 1994 A
5286254 Shapland et al. Feb 1994 A
5299569 Wernicke et al. Apr 1994 A
5300068 Rosar et al. Apr 1994 A
5304120 Crandell et al. Apr 1994 A
5304206 Baker, Jr. et al. Apr 1994 A
5306250 March et al. Apr 1994 A
5317155 King May 1994 A
5324255 Passafaro et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5326341 Lew et al. Jul 1994 A
5334193 Nardella Aug 1994 A
5335657 Terry, Jr. et al. Aug 1994 A
5338662 Sadri Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5351394 Weinberg Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5368591 Lennox et al. Nov 1994 A
5370680 Proctor Dec 1994 A
5389069 Weaver Feb 1995 A
5397308 Ellis et al. Mar 1995 A
5397338 Grey et al. Mar 1995 A
5400784 Durand et al. Mar 1995 A
5405367 Schulman et al. Apr 1995 A
5415654 Daikuzono May 1995 A
5419767 Eggers et al. May 1995 A
5419777 Hofling May 1995 A
5423744 Gencheff et al. Jun 1995 A
5425364 Imran Jun 1995 A
5429634 Narciso, Jr. Jul 1995 A
5433739 Sluijter et al. Jul 1995 A
5439440 Hofmann Aug 1995 A
5454782 Perkins Oct 1995 A
5454809 Janssen Oct 1995 A
5458568 Racchini et al. Oct 1995 A
5458626 Krause Oct 1995 A
5458631 Xavier Oct 1995 A
5464395 Faxon et al. Nov 1995 A
5470352 Rappaport Nov 1995 A
5471988 Fujio et al. Dec 1995 A
5472406 de la Torre et al. Dec 1995 A
5478303 Foley-Nolan et al. Dec 1995 A
5484400 Edwards et al. Jan 1996 A
5494822 Sadri Feb 1996 A
5498238 Shapland et al. Mar 1996 A
5499971 Shapland et al. Mar 1996 A
5505700 Leone et al. Apr 1996 A
5507724 Hofmann et al. Apr 1996 A
5507791 Sit'ko et al. Apr 1996 A
5531778 Maschino et al. Jul 1996 A
5538504 Linden et al. Jul 1996 A
5540730 Terry, Jr. et al. Jul 1996 A
5540734 Zabara Jul 1996 A
5553611 Budd et al. Sep 1996 A
5560360 Filler et al. Oct 1996 A
5569198 Racchini Oct 1996 A
5571147 Sluijter et al. Nov 1996 A
5571150 Wernicke et al. Nov 1996 A
5573552 Hansjurgens et al. Nov 1996 A
5584863 Rauch et al. Dec 1996 A
5588434 Fujimoto Dec 1996 A
5588960 Edwards et al. Dec 1996 A
5588962 Nicholas et al. Dec 1996 A
5588964 Imran et al. Dec 1996 A
5589192 Okabe et al. Dec 1996 A
5590654 Prince Jan 1997 A
5599345 Edwards et al. Feb 1997 A
5618563 Berde et al. Apr 1997 A
5626576 Janssen May 1997 A
5626862 Brem et al. May 1997 A
5628730 Shapland et al. May 1997 A
5634462 Tyler et al. Jun 1997 A
5634899 Shapland et al. Jun 1997 A
5667490 Keith et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5688266 Edwards et al. Nov 1997 A
5689877 Grill, Jr. et al. Nov 1997 A
5690691 Chen et al. Nov 1997 A
5700282 Zabara Dec 1997 A
5700485 Berde et al. Dec 1997 A
5704908 Hofmann et al. Jan 1998 A
5707400 Terry, Jr. et al. Jan 1998 A
5709874 Hanson et al. Jan 1998 A
5711326 Thies et al. Jan 1998 A
5713847 Howard, III et al. Feb 1998 A
5722401 Pietroski et al. Mar 1998 A
5723001 Pilla et al. Mar 1998 A
5725563 Klotz et al. Mar 1998 A
5728396 Peery et al. Mar 1998 A
5747060 Sackler et al. May 1998 A
5755750 Petruska et al. May 1998 A
5756115 Moo-Young et al. May 1998 A
5772590 Webster, Jr. Jun 1998 A
5779644 Eberle et al. Jul 1998 A
5792187 Adams Aug 1998 A
5800464 Kieval Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5814079 Kieval Sep 1998 A
5817144 Gregory Oct 1998 A
5824087 Aspden et al. Oct 1998 A
5836935 Ashton et al. Nov 1998 A
RE35987 Harris et al. Dec 1998 E
5843016 Lugnani et al. Dec 1998 A
5843069 Butler et al. Dec 1998 A
5860974 Abele Jan 1999 A
5861021 Thome et al. Jan 1999 A
5865787 Shapland et al. Feb 1999 A
5865801 Houser Feb 1999 A
5871449 Brown Feb 1999 A
5876374 Alba et al. Mar 1999 A
5891181 Zhu et al. Apr 1999 A
5893885 Webster et al. Apr 1999 A
5906636 Casscells, III et al. May 1999 A
5906817 Moullier et al. May 1999 A
5913876 Taylor et al. Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5916227 Keith et al. Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5919187 Guglielmi et al. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5924997 Campbell Jul 1999 A
5928272 Adkins et al. Jul 1999 A
5935075 Casscells et al. Aug 1999 A
5938670 Keith et al. Aug 1999 A
5944710 Dev et al. Aug 1999 A
5954719 Chen et al. Sep 1999 A
5983131 Weaver et al. Nov 1999 A
5983141 Sluijter et al. Nov 1999 A
5989208 Nita Nov 1999 A
5997497 Nita et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6006134 Hill et al. Dec 1999 A
6009877 Edwards Jan 2000 A
6010613 Walters et al. Jan 2000 A
6024740 Lesh et al. Feb 2000 A
6026326 Bardy Feb 2000 A
6036687 Laufer et al. Mar 2000 A
6041252 Walker et al. Mar 2000 A
6051017 Loeb et al. Apr 2000 A
6058328 Levine et al. May 2000 A
6058331 King May 2000 A
6066134 Eggers et al. May 2000 A
6073048 Kieval et al. Jun 2000 A
6077227 Miesel et al. Jun 2000 A
6086527 Talpade Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6117101 Diederich et al. Sep 2000 A
6117128 Gregory Sep 2000 A
6122548 Starkebaum et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6135999 Fanton et al. Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6146380 Racz et al. Nov 2000 A
6161048 Sluijter et al. Dec 2000 A
6171306 Swanson et al. Jan 2001 B1
6178349 Kieval Jan 2001 B1
6190353 Makower et al. Feb 2001 B1
6192889 Morrish Feb 2001 B1
6205361 Kuzma et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6210356 Anderson et al. Apr 2001 B1
6211247 Goodman Apr 2001 B1
6214032 Loeb et al. Apr 2001 B1
6219577 Brown, III et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6231516 Keilman et al. May 2001 B1
6238702 Berde et al. May 2001 B1
6245026 Campbell et al. Jun 2001 B1
6245045 Stratienko Jun 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6251130 Dobak, III et al. Jun 2001 B1
6254598 Edwards et al. Jul 2001 B1
6258087 Edwards et al. Jul 2001 B1
6259952 Sluijter et al. Jul 2001 B1
6269269 Ottenhoff et al. Jul 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6272383 Grey et al. Aug 2001 B1
6273886 Edwards et al. Aug 2001 B1
6280377 Talpade Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6287304 Eggers et al. Sep 2001 B1
6287608 Levin et al. Sep 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6302870 Jacobsen et al. Oct 2001 B1
6304777 Ben-Haim et al. Oct 2001 B1
6304787 Kuzma et al. Oct 2001 B1
6306423 Donovan et al. Oct 2001 B1
6309379 Willard et al. Oct 2001 B1
6314325 Fitz Nov 2001 B1
6322558 Taylor et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6326020 Kohane et al. Dec 2001 B1
6326177 Schoenbach et al. Dec 2001 B1
6328699 Eigler et al. Dec 2001 B1
6334069 George et al. Dec 2001 B1
6347247 Dev et al. Feb 2002 B1
6353763 George et al. Mar 2002 B1
6356786 Rezai et al. Mar 2002 B1
6356787 Rezai et al. Mar 2002 B1
6366808 Schroeppel et al. Apr 2002 B1
6366815 Haugland et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6389314 Feiring May 2002 B2
6393324 Gruzdowich et al. May 2002 B2
6400982 Sweeney et al. Jun 2002 B2
6405079 Ansarinia Jun 2002 B1
6405732 Edwards et al. Jun 2002 B1
6413255 Stern Jul 2002 B1
6415183 Scheiner et al. Jul 2002 B1
6415187 Kuzma et al. Jul 2002 B1
6438423 Rezai et al. Aug 2002 B1
6442424 Ben-Haim et al. Aug 2002 B1
6449507 Hill et al. Sep 2002 B1
6450942 Lapanashvili et al. Sep 2002 B1
6461314 Pant et al. Oct 2002 B1
6464687 Ishikawa et al. Oct 2002 B1
6473644 Terry, Jr. et al. Oct 2002 B1
6482619 Rubinsky et al. Nov 2002 B1
6484052 Visuri et al. Nov 2002 B1
6488679 Swanson et al. Dec 2002 B1
6506189 Rittman, III et al. Jan 2003 B1
6508774 Acker et al. Jan 2003 B1
6514226 Levin et al. Feb 2003 B1
6514236 Stratienko Feb 2003 B1
6516211 Acker et al. Feb 2003 B1
6517811 John et al. Feb 2003 B2
6522926 Kieval et al. Feb 2003 B1
6522932 Kuzma et al. Feb 2003 B1
6524274 Rosenthal et al. Feb 2003 B1
6524607 Goldenheim et al. Feb 2003 B1
6534081 Goldenheim et al. Mar 2003 B2
6536949 Heuser Mar 2003 B1
6542781 Koblish et al. Apr 2003 B1
6546934 Ingle et al. Apr 2003 B1
6547767 Moein Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6558382 Jahns et al. May 2003 B2
6564096 Mest May 2003 B2
6571127 Ben-Haim et al. May 2003 B1
6592567 Levin et al. Jul 2003 B1
6595959 Stratienko Jul 2003 B1
6599256 Acker et al. Jul 2003 B1
6600954 Cohen et al. Jul 2003 B2
6600956 Maschino et al. Jul 2003 B2
6601459 Jenni Aug 2003 B1
6605084 Acker et al. Aug 2003 B2
6613045 Laufer et al. Sep 2003 B1
6615071 Casscells, III et al. Sep 2003 B1
6616624 Kieval Sep 2003 B1
6620151 Blischak et al. Sep 2003 B2
6622041 Terry, Jr. et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623452 Chien et al. Sep 2003 B2
6623453 Guibert et al. Sep 2003 B1
6632196 Houser Oct 2003 B1
6635054 Fjield et al. Oct 2003 B2
6640120 Swanson et al. Oct 2003 B1
6654636 Dev et al. Nov 2003 B1
6666845 Hooper et al. Dec 2003 B2
6669655 Acker et al. Dec 2003 B1
6671556 Osorio et al. Dec 2003 B2
6672312 Acker Jan 2004 B2
6676657 Wood Jan 2004 B2
6681136 Schuler et al. Jan 2004 B2
6684105 Cohen et al. Jan 2004 B2
6689086 Nita et al. Feb 2004 B1
6689148 Sawhney et al. Feb 2004 B2
6690971 Schauerte et al. Feb 2004 B2
6692738 MacLaughlin et al. Feb 2004 B2
6695830 Vigil et al. Feb 2004 B2
6697670 Chomenky et al. Feb 2004 B2
6699231 Sterman et al. Mar 2004 B1
6706011 Murphy-Chutorian et al. Mar 2004 B1
6711444 Koblish Mar 2004 B2
6714822 King et al. Mar 2004 B2
6718208 Hill et al. Apr 2004 B2
6723064 Babaev Apr 2004 B2
6735471 Hill et al. May 2004 B2
6738663 Schroeppel et al. May 2004 B2
6749598 Keren et al. Jun 2004 B1
6752805 Maguire et al. Jun 2004 B2
6767544 Brooks et al. Jul 2004 B2
6780183 Jimenez, Jr. et al. Aug 2004 B2
6786904 Doscher et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6814730 Li Nov 2004 B2
6830568 Kesten et al. Dec 2004 B1
6845267 Harrison et al. Jan 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6850801 Kieval et al. Feb 2005 B2
6862479 Whitehurst et al. Mar 2005 B1
6865416 Dev et al. Mar 2005 B2
6866662 Fuimaono et al. Mar 2005 B2
6869431 Maguire et al. Mar 2005 B2
6885888 Rezai Apr 2005 B2
6893414 Goble et al. May 2005 B2
6916656 Walters et al. Jul 2005 B2
6927049 Rubinsky et al. Aug 2005 B2
6936047 Nasab et al. Aug 2005 B2
6939345 KenKnight et al. Sep 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6953460 Maguire et al. Oct 2005 B2
6954977 Maguire et al. Oct 2005 B2
6958060 Mathiesen et al. Oct 2005 B2
6969388 Goldman et al. Nov 2005 B2
6972013 Zhang et al. Dec 2005 B1
6978174 Gelfand et al. Dec 2005 B2
6985774 Kieval et al. Jan 2006 B2
6991617 Hektner et al. Jan 2006 B2
6994700 Elkins et al. Feb 2006 B2
6994706 Chornenky et al. Feb 2006 B2
7004911 Tu et al. Feb 2006 B1
7054685 Dimmer et al. May 2006 B2
7063679 Maguire et al. Jun 2006 B2
7066904 Rosenthal et al. Jun 2006 B2
7074233 Gowda et al. Jul 2006 B1
7081114 Rashidi Jul 2006 B2
7081115 Taimisto Jul 2006 B2
7083614 Fjield et al. Aug 2006 B2
7122019 Kesten et al. Oct 2006 B1
7127284 Seward Oct 2006 B2
7141041 Seward Nov 2006 B2
7155284 Whitehurst et al. Dec 2006 B1
7162303 Levin et al. Jan 2007 B2
7191015 Lamson et al. Mar 2007 B2
7197354 Sobe Mar 2007 B2
7241273 Maguire et al. Jul 2007 B2
7241736 Hunter et al. Jul 2007 B2
7273469 Chan et al. Sep 2007 B1
7297475 Koiwai et al. Nov 2007 B2
7326235 Edwards Feb 2008 B2
7329236 Kesten et al. Feb 2008 B2
7335192 Keren et al. Feb 2008 B2
7364566 Elkins et al. Apr 2008 B2
7373204 Gelfand et al. May 2008 B2
7381200 Katoh et al. Jun 2008 B2
7407671 McBride et al. Aug 2008 B2
7413556 Zhang et al. Aug 2008 B2
7444183 Knudson et al. Oct 2008 B2
7465298 Seward et al. Dec 2008 B2
7481803 Kesten et al. Jan 2009 B2
7485104 Kieval Feb 2009 B2
7507235 Keogh et al. Mar 2009 B2
7529589 Williams et al. May 2009 B2
7540870 Babaev Jun 2009 B2
7558625 Levin et al. Jul 2009 B2
7563247 Maguire et al. Jul 2009 B2
7599730 Hunter et al. Oct 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7640046 Pastore et al. Dec 2009 B2
7647115 Levin et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7666163 Seward et al. Feb 2010 B2
7691080 Seward et al. Apr 2010 B2
7706882 Francischelli et al. Apr 2010 B2
7717948 Demarais et al. May 2010 B2
7744584 Seward et al. Jun 2010 B2
7756583 Demarais et al. Jul 2010 B2
7766892 Keren et al. Aug 2010 B2
7837720 Mon Nov 2010 B2
7905862 Sampson Mar 2011 B2
7917208 Yomtov et al. Mar 2011 B2
8016786 Seward et al. Sep 2011 B2
8027740 Altman et al. Sep 2011 B2
8119183 O'Donoghue et al. Feb 2012 B2
8131371 Demarais et al. Mar 2012 B2
8131372 Levin et al. Mar 2012 B2
8145316 Deem et al. Mar 2012 B2
8145317 Demarais et al. Mar 2012 B2
8150518 Levin et al. Apr 2012 B2
8150519 Demarais et al. Apr 2012 B2
8150520 Demarais et al. Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8175711 Demarais et al. May 2012 B2
8257724 Cromack et al. Sep 2012 B2
8257725 Cromack et al. Sep 2012 B2
8263104 Ho et al. Sep 2012 B2
8317776 Ferren et al. Nov 2012 B2
8388680 Starksen et al. Mar 2013 B2
8396548 Perry et al. Mar 2013 B2
8399443 Seward Mar 2013 B2
8403881 Ferren et al. Mar 2013 B2
8444640 Demarais et al. May 2013 B2
8465752 Seward Jun 2013 B2
8562573 Fischell Oct 2013 B1
8620423 Demarais et al. Dec 2013 B2
8663190 Fischell et al. Mar 2014 B2
8684998 Demarais et al. Apr 2014 B2
8708995 Seward et al. Apr 2014 B2
8721590 Seward et al. May 2014 B2
8728137 Zarins et al. May 2014 B2
8728138 Zarins et al. May 2014 B2
8740849 Fischell et al. Jun 2014 B1
8740895 Mayse et al. Jun 2014 B2
8774913 Demarais et al. Jul 2014 B2
8777943 Mayse et al. Jul 2014 B2
8852163 Deem Oct 2014 B2
8975233 Stein et al. Mar 2015 B2
9011879 Seward Apr 2015 B2
9033917 Magana et al. May 2015 B2
9055956 McRae et al. Jun 2015 B2
9056184 Stein et al. Jun 2015 B2
9056185 Fischell et al. Jun 2015 B2
9108030 Braga Aug 2015 B2
9114123 Azamian et al. Aug 2015 B2
9131983 Fischell et al. Sep 2015 B2
9179962 Fischell et al. Nov 2015 B2
9199065 Seward Dec 2015 B2
9237925 Fischell et al. Jan 2016 B2
9265558 Zarins Feb 2016 B2
9278196 Fischell et al. Mar 2016 B2
9320850 Fischell et al. Apr 2016 B2
9526827 Fischell et al. Dec 2016 B2
9539047 Fischell et al. Jan 2017 B2
9554849 Fischell et al. Jan 2017 B2
9636174 Zarins May 2017 B2
20010039419 Francischelli et al. Nov 2001 A1
20010044596 Jaafar Nov 2001 A1
20020002329 Avitall Jan 2002 A1
20020002349 Flaherty et al. Jan 2002 A1
20020026222 Schauerte et al. Feb 2002 A1
20020026228 Schauerte Feb 2002 A1
20020032468 Hill et al. Mar 2002 A1
20020038137 Stein Mar 2002 A1
20020040204 Dev et al. Apr 2002 A1
20020045853 Dev et al. Apr 2002 A1
20020065541 Fredricks et al. May 2002 A1
20020072782 Osorio et al. Jun 2002 A1
20020077592 Barry Jun 2002 A1
20020082552 Ding et al. Jun 2002 A1
20020087156 Maguire et al. Jul 2002 A1
20020087208 Koblish et al. Jul 2002 A1
20020103445 Randert et al. Aug 2002 A1
20020107515 Edwards et al. Aug 2002 A1
20020107553 Hill et al. Aug 2002 A1
20020116030 Rezai Aug 2002 A1
20020120304 Mest Aug 2002 A1
20020138075 Edwards et al. Sep 2002 A1
20020139379 Edwards et al. Oct 2002 A1
20020165532 Hill et al. Nov 2002 A1
20020165586 Hill et al. Nov 2002 A1
20020169413 Keren et al. Nov 2002 A1
20020177846 Mulier et al. Nov 2002 A1
20020183682 Darvish et al. Dec 2002 A1
20020183684 Dev et al. Dec 2002 A1
20020188325 Hill et al. Dec 2002 A1
20020198512 Seward Dec 2002 A1
20030004549 Hill et al. Jan 2003 A1
20030009145 Struijker-Boudier et al. Jan 2003 A1
20030013971 Makin et al. Jan 2003 A1
20030018367 DiLorenzo Jan 2003 A1
20030040774 Terry et al. Feb 2003 A1
20030045909 Gross et al. Mar 2003 A1
20030050635 Truckai et al. Mar 2003 A1
20030050681 Pianca et al. Mar 2003 A1
20030055421 West et al. Mar 2003 A1
20030060848 Kieval et al. Mar 2003 A1
20030060857 Perrson et al. Mar 2003 A1
20030060858 Kieval et al. Mar 2003 A1
20030069619 Fenn et al. Apr 2003 A1
20030069620 Li Apr 2003 A1
20030074039 Puskas Apr 2003 A1
20030082225 Mason May 2003 A1
20030083653 Maguire et al. May 2003 A1
20030100924 Foreman et al. May 2003 A1
20030114791 Rosenthal et al. Jun 2003 A1
20030120270 Acker Jun 2003 A1
20030125790 Fastovsky et al. Jul 2003 A1
20030150464 Casscells Aug 2003 A1
20030158584 Cates et al. Aug 2003 A1
20030176816 Maguire et al. Sep 2003 A1
20030178032 Ingle et al. Sep 2003 A1
20030181897 Thomas et al. Sep 2003 A1
20030181963 Pellegrino et al. Sep 2003 A1
20030181965 Levy et al. Sep 2003 A1
20030195496 Maguire et al. Oct 2003 A1
20030195507 Stewart et al. Oct 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20030199767 Cespedes et al. Oct 2003 A1
20030199768 Cespedes et al. Oct 2003 A1
20030199806 Kieval Oct 2003 A1
20030199863 Swanson et al. Oct 2003 A1
20030204161 Ferek-Petric Oct 2003 A1
20030216721 Diederich et al. Nov 2003 A1
20030216792 Levin et al. Nov 2003 A1
20030220521 Reitz et al. Nov 2003 A1
20030229340 Sherry et al. Dec 2003 A1
20030233099 Danaek et al. Dec 2003 A1
20030236443 Cespedes et al. Dec 2003 A1
20040008978 Lin Jan 2004 A1
20040010289 Biggs et al. Jan 2004 A1
20040010303 Bolea et al. Jan 2004 A1
20040019349 Fuimaono et al. Jan 2004 A1
20040019364 Kieval et al. Jan 2004 A1
20040019371 Jaafar et al. Jan 2004 A1
20040043030 Griffiths et al. Mar 2004 A1
20040054367 Jimenez et al. Mar 2004 A1
20040062852 Schroeder et al. Apr 2004 A1
20040064090 Keren et al. Apr 2004 A1
20040064091 Keren et al. Apr 2004 A1
20040064093 Hektner et al. Apr 2004 A1
20040065615 Hooper et al. Apr 2004 A1
20040073238 Makower Apr 2004 A1
20040082978 Harrison et al. Apr 2004 A1
20040101523 Reitz et al. May 2004 A1
20040106953 Yomtov et al. Jun 2004 A1
20040111080 Harper et al. Jun 2004 A1
20040127942 Yomtov et al. Jul 2004 A1
20040147921 Edwards et al. Jul 2004 A1
20040162590 Whitehurst et al. Aug 2004 A1
20040163655 Gelfand et al. Aug 2004 A1
20040167415 Gelfand et al. Aug 2004 A1
20040167509 Taimisto Aug 2004 A1
20040176699 Walker et al. Sep 2004 A1
20040176757 Sinelnikov et al. Sep 2004 A1
20040181178 Aldrich et al. Sep 2004 A1
20040186468 Edwards Sep 2004 A1
20040193228 Gerber Sep 2004 A1
20040215186 Cornelius et al. Oct 2004 A1
20040220511 Scott et al. Nov 2004 A1
20040243102 Berg et al. Dec 2004 A1
20040243206 Tadlock Dec 2004 A1
20040249416 Yun et al. Dec 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040254616 Rossing et al. Dec 2004 A1
20040260277 Maguire Dec 2004 A1
20050004522 Katoh et al. Jan 2005 A1
20050010263 Schauerte Jan 2005 A1
20050021092 Yun et al. Jan 2005 A1
20050038409 Segal et al. Feb 2005 A1
20050049542 Sigg et al. Mar 2005 A1
20050065562 Rezai Mar 2005 A1
20050065573 Rezai Mar 2005 A1
20050065574 Rezai Mar 2005 A1
20050075681 Rezai et al. Apr 2005 A1
20050080409 Young et al. Apr 2005 A1
20050080459 Jacobson et al. Apr 2005 A1
20050096647 Steinke et al. May 2005 A1
20050096710 Kieval May 2005 A1
20050113822 Fuimaono et al. May 2005 A1
20050149173 Hunter et al. Jul 2005 A1
20050149175 Hunter et al. Jul 2005 A1
20050153885 Yun et al. Jul 2005 A1
20050154418 Kieval et al. Jul 2005 A1
20050154445 Hunter et al. Jul 2005 A1
20050154453 Hunter et al. Jul 2005 A1
20050154454 Hunter et al. Jul 2005 A1
20050165467 Hunter et al. Jul 2005 A1
20050171523 Rubinsky et al. Aug 2005 A1
20050171574 Rubinsky et al. Aug 2005 A1
20050171575 Dev et al. Aug 2005 A1
20050175661 Hunter et al. Aug 2005 A1
20050175662 Hunter et al. Aug 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050181004 Hunter et al. Aug 2005 A1
20050182479 Bonsignore et al. Aug 2005 A1
20050186242 Hunter et al. Aug 2005 A1
20050186243 Hunter et al. Aug 2005 A1
20050187579 Danek et al. Aug 2005 A1
20050192638 Gelfand et al. Sep 2005 A1
20050197624 Goodson et al. Sep 2005 A1
20050209548 Dev et al. Sep 2005 A1
20050209642 Palti Sep 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050234437 Baxter et al. Oct 2005 A1
20050234523 Levin et al. Oct 2005 A1
20050240126 Foley et al. Oct 2005 A1
20050240173 Palti Oct 2005 A1
20050240228 Palti Oct 2005 A1
20050240241 Yun et al. Oct 2005 A1
20050245882 Elkins et al. Nov 2005 A1
20050245892 Elkins et al. Nov 2005 A1
20050251212 Kieval et al. Nov 2005 A1
20050261672 Deem et al. Nov 2005 A1
20050267010 Goodson et al. Dec 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050282284 Rubinsky et al. Dec 2005 A1
20050283195 Pastore et al. Dec 2005 A1
20050288730 Deem et al. Dec 2005 A1
20060004417 Rossing et al. Jan 2006 A1
20060004430 Rossing et al. Jan 2006 A1
20060018949 Ammon et al. Jan 2006 A1
20060025821 Gelfand et al. Feb 2006 A1
20060030814 Valencia et al. Feb 2006 A1
20060036218 Goodson et al. Feb 2006 A1
20060041277 Deem et al. Feb 2006 A1
20060041283 Gelfand et al. Feb 2006 A1
20060058678 Vitek et al. Mar 2006 A1
20060058711 Harhen et al. Mar 2006 A1
20060067972 Kesten et al. Mar 2006 A1
20060069323 Elkins et al. Mar 2006 A1
20060074453 Kieval et al. Apr 2006 A1
20060079859 Elkins et al. Apr 2006 A1
20060084966 Maguire et al. Apr 2006 A1
20060085046 Rezai et al. Apr 2006 A1
20060085054 Zikorus et al. Apr 2006 A1
20060089674 Walters et al. Apr 2006 A1
20060095029 Young et al. May 2006 A1
20060100618 Chan et al. May 2006 A1
20060100667 Machado et al. May 2006 A1
20060106429 Libbus et al. May 2006 A1
20060111672 Seward May 2006 A1
20060111754 Rezai et al. May 2006 A1
20060116720 Knoblich Jun 2006 A1
20060121016 Lee Jun 2006 A1
20060121610 Rubinsky et al. Jun 2006 A1
20060135998 Libbus et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060155344 Rezai et al. Jul 2006 A1
20060167437 Valencia Jul 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060167499 Palti Jul 2006 A1
20060189941 Seward et al. Aug 2006 A1
20060189960 Kesten et al. Aug 2006 A1
20060190044 Libbus et al. Aug 2006 A1
20060206149 Yun Sep 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060212076 Demarais et al. Sep 2006 A1
20060212078 Demarais et al. Sep 2006 A1
20060229677 Moffitt et al. Oct 2006 A1
20060235474 Demarais Oct 2006 A1
20060240070 Cromack et al. Oct 2006 A1
20060263393 Demopulos et al. Nov 2006 A1
20060265014 Demarais et al. Nov 2006 A1
20060265015 Demarais et al. Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20060276852 Demarais et al. Dec 2006 A1
20060280858 Kokish Dec 2006 A1
20070055328 Mayse et al. Mar 2007 A1
20070066957 Demarais et al. Mar 2007 A1
20070066959 Seward Mar 2007 A1
20070066972 Ormsby et al. Mar 2007 A1
20070078620 Seward et al. Apr 2007 A1
20070083239 Demarais et al. Apr 2007 A1
20070100318 Seward et al. May 2007 A1
20070106249 Seward et al. May 2007 A1
20070106250 Seward et al. May 2007 A1
20070106251 Seward et al. May 2007 A1
20070106255 Seward et al. May 2007 A1
20070106256 Seward et al. May 2007 A1
20070106257 Seward et al. May 2007 A1
20070118107 Francischelli et al. May 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070129761 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070142864 Libbus et al. Jun 2007 A1
20070156200 Kornet et al. Jul 2007 A1
20070173899 Levin et al. Jul 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070208291 Patel Sep 2007 A1
20070208382 Yun Sep 2007 A1
20070219576 Cangialosi Sep 2007 A1
20070248639 Demopulos et al. Oct 2007 A1
20070254833 Hunter et al. Nov 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070269385 Yun et al. Nov 2007 A1
20070278103 Hoerr et al. Dec 2007 A1
20070282376 Shuros et al. Dec 2007 A1
20070282407 Demarais et al. Dec 2007 A1
20070288070 Libbus et al. Dec 2007 A1
20070299043 Hunter et al. Dec 2007 A1
20080004596 Yun et al. Jan 2008 A1
20080004673 Rossing et al. Jan 2008 A1
20080015659 Zhang et al. Jan 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080039904 Bulkes et al. Feb 2008 A1
20080045890 Seward et al. Feb 2008 A1
20080086072 Bonutti et al. Apr 2008 A1
20080091255 Caparso et al. Apr 2008 A1
20080140150 Zhou et al. Jun 2008 A1
20080208162 Joshi Aug 2008 A1
20080213331 Gelfand et al. Sep 2008 A1
20080221551 Goodson et al. Sep 2008 A1
20080245371 Gruber Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080317818 Griffith et al. Dec 2008 A1
20080319513 Pu et al. Dec 2008 A1
20090024195 Rezai et al. Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090074828 Alexis et al. Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090105631 Kieval Apr 2009 A1
20090142306 Seward et al. Jun 2009 A1
20090156988 Ferren et al. Jun 2009 A1
20090157057 Ferren et al. Jun 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090221955 Babaev Sep 2009 A1
20100010567 Deem et al. Jan 2010 A1
20100057150 Demarais et al. Mar 2010 A1
20100069837 Rassat et al. Mar 2010 A1
20100087782 Ghaffari et al. Apr 2010 A1
20100087809 Edwards et al. Apr 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100137952 Demarais et al. Jun 2010 A1
20100168731 Wu et al. Jul 2010 A1
20100168739 Wu et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100217162 Hissong et al. Aug 2010 A1
20100222851 Deem et al. Sep 2010 A1
20100222854 Demarais et al. Sep 2010 A1
20100228122 Keenan et al. Sep 2010 A1
20100249702 Magana et al. Sep 2010 A1
20100249773 Clark et al. Sep 2010 A1
20100268307 Demarais et al. Oct 2010 A1
20100324472 Wulfman Dec 2010 A1
20110060324 Wu et al. Mar 2011 A1
20110104060 Seward May 2011 A1
20110104061 Seward May 2011 A1
20110112400 Emery et al. May 2011 A1
20110137155 Weber et al. Jun 2011 A1
20110137298 Nguyen et al. Jun 2011 A1
20110178570 Demarais Jul 2011 A1
20110182912 Evans et al. Jul 2011 A1
20110184337 Evans et al. Jul 2011 A1
20110200171 Beetel et al. Aug 2011 A1
20110202098 Demarais et al. Aug 2011 A1
20110208096 Demarais et al. Aug 2011 A1
20110257564 Demarais et al. Oct 2011 A1
20110257622 Salahieh et al. Oct 2011 A1
20110257647 Mayse et al. Oct 2011 A1
20110264011 Wu et al. Oct 2011 A1
20110264075 Leung et al. Oct 2011 A1
20110301587 Deem et al. Dec 2011 A1
20120101413 Beetel et al. Apr 2012 A1
20120172837 Demarais Jul 2012 A1
20120209261 Mayse et al. Aug 2012 A1
20120259269 Meyer Oct 2012 A1
20120271277 Fischell et al. Oct 2012 A1
20120271301 Fischell et al. Oct 2012 A1
20120310233 Dimmer et al. Dec 2012 A1
20130006232 Pellegrino et al. Jan 2013 A1
20130012844 Demarais et al. Jan 2013 A1
20130053792 Fischell et al. Feb 2013 A1
20130053821 Fischell et al. Feb 2013 A1
20130053822 Fischell et al. Feb 2013 A1
20130096604 Hanson et al. Apr 2013 A1
20130131668 Schaer May 2013 A1
20130158441 Demarais et al. Jun 2013 A1
20130158442 Demarais et al. Jun 2013 A1
20130165822 Demarais et al. Jun 2013 A1
20130172815 Perry et al. Jul 2013 A1
20130204131 Seward Aug 2013 A1
20130252932 Seward Sep 2013 A1
20130274673 Fischell et al. Oct 2013 A1
20130274674 Fischell et al. Oct 2013 A1
20130287698 Seward Oct 2013 A1
20130296853 Sugimoto et al. Nov 2013 A1
20130317497 Edwards et al. Nov 2013 A1
20140012231 Fischell Jan 2014 A1
20140046298 Fischell et al. Feb 2014 A1
20140058294 Gross et al. Feb 2014 A1
20140107478 Seward et al. Apr 2014 A1
20140121641 Fischell et al. May 2014 A1
20140121644 Fischell et al. May 2014 A1
20140135661 Garrison et al. May 2014 A1
20140236103 Fischell et al. Aug 2014 A1
20140271717 Goshayeshgar et al. Sep 2014 A1
20140276621 Braga Sep 2014 A1
20140296279 Seward et al. Oct 2014 A1
20140303569 Seward et al. Oct 2014 A1
20140316351 Fischell et al. Oct 2014 A1
20140358079 Fischell et al. Dec 2014 A1
20140378906 Fischell et al. Dec 2014 A1
20150005719 Fischell et al. Jan 2015 A1
20150132409 Stein et al. May 2015 A1
20150202220 Stein et al. Jul 2015 A1
20150224289 Seward Aug 2015 A1
20150231386 Meyer Aug 2015 A1
20150245863 Fischell et al. Sep 2015 A1
20150335384 Fischell et al. Nov 2015 A1
20150343156 Fischell et al. Dec 2015 A1
20150343175 Braga Dec 2015 A1
20160008387 Stein et al. Jan 2016 A9
20160051465 Azamian et al. Feb 2016 A1
20160058489 Fischell et al. Mar 2016 A1
20160120587 Fischell et al. May 2016 A1
20160235464 Fischell et al. Aug 2016 A1
20160242661 Fischell et al. Aug 2016 A1
20160310200 Wang Oct 2016 A1
20160354137 Fischell et al. Dec 2016 A1
20170332926 Fischell Nov 2017 A1
Foreign Referenced Citations (137)
Number Date Country
2384866 Apr 2001 CA
2575458 Mar 2006 CA
3151180 Aug 1982 DE
0233100 Aug 1987 EP
0497041 Aug 1992 EP
0774991 May 1997 EP
0811395 Dec 1997 EP
1782852 May 2007 EP
2092957 Aug 2009 EP
2352542 Aug 2011 EP
2429641 Mar 2012 EP
2528649 Dec 2012 EP
2656807 Oct 2013 EP
2675458 Dec 2013 EP
2694150 Feb 2014 EP
2747688 Jul 2014 EP
2885041 Jun 2015 EP
2911735 Sep 2015 EP
2914326 Sep 2015 EP
3060148 Aug 2016 EP
3132828 Feb 2017 EP
3158866 Apr 2017 EP
S499882 Jan 1974 JP
62181225 Aug 1987 JP
3041967 Oct 1997 JP
2003510126 Mar 2003 JP
2004016333 Jan 2004 JP
WO-8501213 Mar 1985 WO
WO-9104725 Apr 1991 WO
WO-9220291 Nov 1992 WO
WO-9302740 Feb 1993 WO
WO-9307803 Apr 1993 WO
WO-9400188 Jan 1994 WO
WO-199407446 Apr 1994 WO
WO-9411057 May 1994 WO
WO-9525472 Sep 1995 WO
WO-9531142 Nov 1995 WO
WO-9533514 Dec 1995 WO
WO-9600039 Jan 1996 WO
WO-9604957 Feb 1996 WO
WO-9611723 Apr 1996 WO
WO-9703604 Feb 1997 WO
WO-9713463 Apr 1997 WO
WO-9713550 Apr 1997 WO
WO-1997036548 Oct 1997 WO
WO-9742990 Nov 1997 WO
WO-9749453 Dec 1997 WO
WO-9837926 Sep 1998 WO
1998042403 Oct 1998 WO
WO-9842403 Oct 1998 WO
WO-9843700 Oct 1998 WO
WO-9843701 Oct 1998 WO
WO-9848888 Nov 1998 WO
WO-199900060 Jan 1999 WO
WO-1999002096 Jan 1999 WO
WO-9933407 Jul 1999 WO
WO-9951286 Oct 1999 WO
WO-9952424 Oct 1999 WO
WO-2000056237 Sep 2000 WO
WO-0126729 Apr 2001 WO
WO-2001022897 Apr 2001 WO
WO-0170114 Sep 2001 WO
WO-0209808 Feb 2002 WO
WO-0226314 Apr 2002 WO
WO-02053207 Jul 2002 WO
WO-02058549 Aug 2002 WO
WO-02070039 Sep 2002 WO
WO-02070047 Sep 2002 WO
WO-02085448 Oct 2002 WO
WO-2002085192 Oct 2002 WO
WO-03018108 Mar 2003 WO
WO-03024311 Mar 2003 WO
WO-2003022167 Mar 2003 WO
WO-03028802 Apr 2003 WO
WO-03063692 Aug 2003 WO
WO-03071140 Aug 2003 WO
WO-03076008 Sep 2003 WO
WO-03082403 Oct 2003 WO
WO-2003082080 Oct 2003 WO
WO-2004011055 Feb 2004 WO
WO-2004026370 Apr 2004 WO
WO-2004026371 Apr 2004 WO
WO-2004026374 Apr 2004 WO
WO-2004028583 Apr 2004 WO
WO-2004030718 Apr 2004 WO
WO-2004032791 Apr 2004 WO
WO-2004049976 Jun 2004 WO
WO-2004107965 Dec 2004 WO
WO-2005007000 Jan 2005 WO
WO-2005014100 Feb 2005 WO
WO-2005016165 Feb 2005 WO
WO-05032646 Apr 2005 WO
WO-2005032646 Apr 2005 WO
WO-2005030072 Apr 2005 WO
WO-2005041748 May 2005 WO
WO-2005065284 Jul 2005 WO
WO-2005084389 Sep 2005 WO
WO-2005097256 Oct 2005 WO
WO-2005110528 Nov 2005 WO
WO-2005123183 Dec 2005 WO
WO-2006007048 Jan 2006 WO
WO-2006018528 Feb 2006 WO
WO-2006022790 Mar 2006 WO
WO-2006031899 Mar 2006 WO
WO-2006041847 Apr 2006 WO
WO-2006041881 Apr 2006 WO
WO-2006105121 Oct 2006 WO
WO-2007008954 Jan 2007 WO
WO-2007035537 Mar 2007 WO
WO-2007078997 Jul 2007 WO
WO-2007086965 Aug 2007 WO
WO-2007103879 Sep 2007 WO
WO-2007103881 Sep 2007 WO
WO-2007121309 Oct 2007 WO
WO-2007146834 Dec 2007 WO
WO-2008003058 Jan 2008 WO
WO-2008049084 Apr 2008 WO
WO-2008061150 May 2008 WO
WO-2008061152 May 2008 WO
WO-2008070413 Jun 2008 WO
WO-2009088678 Jul 2009 WO
WO-2010042653 Apr 2010 WO
WO-2010078175 Jul 2010 WO
WO-2011094367 Aug 2011 WO
WO-2011133724 Oct 2011 WO
WO-2012161875 Nov 2012 WO
WO-2013028781 Feb 2013 WO
WO-2013059735 Apr 2013 WO
WO-2013063331 May 2013 WO
WO-2013112844 Aug 2013 WO
WO-2013169741 Nov 2013 WO
WO-2013188689 Dec 2013 WO
WO-2014031167 Feb 2014 WO
WO-2014070820 May 2014 WO
WO-2014070999 May 2014 WO
WO-2014078301 May 2014 WO
WO-2014189887 Nov 2014 WO
Non-Patent Literature Citations (585)
Entry
European Search Report for European Application No. 13159256, dated Oct. 17, 2013, 6 pages.
U.S. Appl. No. 95/002,110, filed Aug. 29, 2012, Demarais et al.
U.S. Appl. No. 95/002,209, filed Sep. 13, 2012, Levin et al.
U.S. Appl. No. 95/002,233, filed Sep. 13, 2012, Levin et al.
U.S. Appl. No. 95/002,243, filed Sep. 13, 2012, Levin et al.
U.S. Appl. No. 95/002,253, filed Sep. 13, 2012, Demarais et al.
U.S. Appl. No. 95/002,255, filed Sep. 13, 2012, Demarais et al.
U.S. Appl. No. 95/002,292, filed Sep. 14, 2012, Demarais et al.
U.S. Appl. No. 95/002,327, filed Sep. 14, 2012, Demarais et al.
U.S. Appl. No. 95/002,335, filed Sep. 14, 2012, Demarais et al.
U.S. Appl. No. 95/002,336, filed Sep. 14, 2012, Levin et al.
U.S. Appl. No. 95/002,356, filed Sep. 14, 2012, Demarais et al.
“2011 Edison Award Winners.” Edison Awards: Honoring Innovations & Innovators, 2011, 6 pages, <http://www.edisonawards.com/BestNewProduct_2011.php>.
“2012 top 10 advances in heart disease and stroke research: American Heart Association/America Stroke Association Top 10 Research Report.” American Heart Association, Dec. 17, 2012, 5 pages, <http://newsroom.heart.org/news/2012-top-10-advances-in-heart-241901>.
“Ardian(R) Receives 2010 EuroPCR Innovation Award and Demonstrates Further Durability of Renal Denervation Treatment for Hypertension.” PR Newswire, Jun. 3, 2010, 2 pages, <http://www.prnewswire.com/news-releases/ardianr-receives-2010-europcr-innovation-award-and-demonstrates-further-durability-of-renal-denervation-treatment-for-hypertension-95545014.html>.
“Boston Scientific to Acquire Vessix Vascular, Inc.: Company to Strengthen Hypertension Program with Acquisition of Renal Denervation Technology.” Boston Scientific: Advancing science for life—Investor Relations, Nov. 8, 2012, 2 pages, <http://phx.corporate-ir.net/phoenix.zhtml?c=62272&p=irol-newsArticle&id=1756108>.
“Cleveland Clinic Unveils Top 10 Medical Innovations for 2012: Experts Predict Ten Emerging Technologies that will Shape Health Care Next Year.” Cleveland Clinic, Oct. 6, 2011, 2 pages. <http://my.clevelandclinic.org/media_relations/library/2011/2011-10-6-cleveland-clinic-unveils-top-10-medical-innovations-for-2012.aspx>.
“Does renal denervation represent a new treatment option for resistant hypertension?” Interventional News, Aug. 3, 2010, 2 pages. <http://www.cxvascular.com/in-latest-news/interventional-news---latest-news/does-renal-denervation-represent-a-new-treatment-option-for-resistant-hypertension>.
“Iberis—Renal Sympathetic Denervation System: Turning innovation into quality care.” [Brochure], Terumo Europe N.V., 2013, Europe, 3 pages.
“Neurotech Reports Announces Winners of Gold Electrode Awards.” Neurotech business report, 2009. 1 page. <http://www.neurotechreports.com/pages/goldelectrodes09.html>.
“Quick. Consistent. Controlled. OneShot renal Denervation System” [Brochure], Covidien: positive results for life, 2013, (n.l.), 4 pages.
“Renal Denervation Technology of Vessix Vascular, Inc. been acquired by Boston Scientific Corporation (BSX) to pay up to $425 Million.” Vessix Vascular Pharmaceutical Intelligence: A blog specializing in Pharmaceutical Intelligence and Analytics, Nov. 8, 2012, 21 pages, <http://pharmaceuticalintelligence.com/tag/vessix-vascular/>.
“The Edison Awards™” Edison Awards: Honoring Innovations & Innovators, 2013, 2 pages, <http://www.edisonawards.com/Awards.php>.
“The Future of Renal denervation for the Treatment of Resistant Hypertension.” St. Jude Medical, Inc., 2012, 12 pages.
“Vessix Renal Denervation System: So Advanced It's Simple.” [Brochure], Boston Scientific: Advancing science for life, 2013, 6 pages.
Asbell, Penny, “Conductive Keratoplasty for the Correction of Hyperopia.” Tr Am Ophth Soc, 2001, vol. 99, 10 pages.
Badoer, Emilio, “Cardiac afferents play the dominant role in renal nerve inhibition elicited by volume expansion in the rabbit.” Am J Physiol Regul Integr Comp Physiol, vol. 274, 1998, 7 pages.
Bengel, Frank, “Serial Assessment of Sympathetic Reinnervation After Orthotopic Heart Transplantation: A longitudinal Study Using PET and C-11 Hydroxyephedrine.” Circulation, vol. 99, 1999,7 pages.
Benito, F., et al. “Radiofrequency catheter ablation of accessory pathways in infants.” Heart, 78:160-162 (1997).
Bettmann, Michael, Carotid Stenting and Angioplasty: A Statement for Healthcare Professionals From the Councils on Cardiovascular Radiology, Stroke, Cardio-Thoracic and Vascular Surgery, Epidemiology and Prevention, and Clinical Cardiology, American Heart Association, Circulation, vol. 97, 1998, 4 pages.
Bohm, Michael et al., “Rationale and design of a large registry on renal denervation: the Global SYMPLICITY registry.” EuroIntervention, vol. 9, 2013, 9 pages.
Brosky, John, “EuroPCR 2013: CE-approved devices line up for renal denervation approval.” Medical Device Daily, May 28, 2013, 3 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines_article&forceid=83002>.
Davis, Mark et al., “Effectiveness of Renal Denervation Therapy for Resistant Hypertension.” Journal of the American College of Cardiology, vol. 62, No. 3, 2013, 11 pages.
Dubuc, M., et al., “Feasibility of cardiac cryoablation using a transvenous steerable electrode catheter.” J Interv Cardiac Electrophysiol, 2:285-292 (1998).
Final Office Action; U.S. Appl. No. 12/827,700; dated Feb. 5, 2013, 61 pages.
Geisler, Benjamin et al., “Cost-Effectiveness and Clinical Effectiveness of Catheter-Based Renal Denervation for Resistant Hypertension.” Journal of the American College of Cardiology, col. 60, No. 14, 2012, 7 pages.
Gelfand, M., et al., “Treatment of renal failure and hypertension.” U.S. Appl. No. 60/442,970, filed Jan. 29, 2003, 23 pages.
Gertner, Jon, “Meet the Tech Duo That's Revitalizing the Medical Device Industry.” Fast Company, Apr. 15, 2013, 6:00 AM, 17 pages, <http://www.fastcompany.com/3007845/meet-tech-duo-thats-revitalizing-medical-device-industry>.
Golwyn, D. H., Jr., et al. “Percutaneous Transcatheter Renal Ablation with Absolute Ethanol for Uncontrolled Hypertension or Nephrotic Syndrome: Results in 11 Patients with End-Stage Renal Disease.” JVIR, 8: 527-533 (1997).
Hall, W. H., et al. “Combined embolization and percutaneous radiofrequency ablation of a solid renal tumor.” Am. J. Roentgenol,174: 1592-1594 (2000).
Han, Y.-M, et al., “Renal artery embolization with diluted hot contrast medium: An experimental study.” J Vasc Interv Radiol, 12: 862-868 (2001).
Hansen, J. M., et al. “The transplanted human kidney does not achieve functional reinnervation.” Clin. Sci, 87: 13-19 (1994).
Hendee, W. R. et al. “Use of Animals in Biomedical Research: The Challenge and Response.” American Medical Association White Paper (1988) 39 pages.
Hering, Dagmara et al., “Chronic kidney disease: role of sympathetic nervous system activation and potential benefits of renal denervation.” EuroIntervention, vol. 9, 2013, 9 pages.
Imimdtanz, “Medtronic awarded industry's highest honour for renal denervation system.” The official blog of Medtronic Australasia, Nov. 12, 2012, 2 pages, <http://97waterlooroad.wordpress.com/2012/11/12/medtronic-awarded-industrys-highest-honour-for-renal-denervation-system/>.
Kaiser, Chris, AHA Lists Year's Big Advances in CV Research, medpage Today, Dec. 18, 2012, 4 pages, <http://www.medpagetoday.com/Cardiology/PCI/36509>.
Kompanowska, E., et al., “Early Effects of renal denervation in the anaesthetised rat: Natriuresis and increased cortical blood flow.” J Physiol, 531. 2:527-534 (2001).
Lee, S.J., et al. “Ultrasonic energy in endoscopic surgery.” Yonsei Med J, 40:545-549 (1999).
Linz, Dominik et al., “Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs.” Heart Rhythm, vol. 0, No. 0, 2013, 6 pages.
Lustgarten, D. L., et al., “Cryothermal ablation: Mechanism of tissue injury and current experience in the treatment of tachyarrhythmias.” Progr Cardiovasc Dis, 41:481-498 (1999).
Mabin, Tom et al., “First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension.” EuroIntervention, vol. 8, 2012, 5 pages.
Mahfoud, Felix et al., “Ambulatory Blood Pressure Changes after Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Circulation, 2013, 25 pages.
Mahfoud, Felix et al., “Expert consensus document from the European Society of Cardiology on catheter-based renal denervation.” European Heart Journal, 2013, 9 pages.
Mahfoud, Felix et al., “Renal Hemodynamics and Renal Function After Catheter-Based Renal Sympathetic Denervation in Patients With Resistant Hypertension.” Hypertension, 2012, 6 pages.
Medical-Dictionary.com, Definition of “Animal Model,” http://medical-dictionary.com (search “Animal Model”), 2005, 1 page.
Medtronic, Inc., Annual Report (Form 10-K) (Jun. 28, 2011) 44 pages.
Millard, F. C., et al, “Renal Embolization for ablation of function in renal failure and hypertension.” Postgraduate Medical Journal, 65, 729-734, (1989).
Oliveira, V., et al., “Renal denervation normalizes pressure and baroreceptor reflex in high renin hypertension in conscious rats.” Hypertension, 19:II-17-II-21 (1992).
Ong, K. L., et al. “Prevalence, Awareness, Treatment, and Control of Hypertension Among United States Adults 1999-2004.” Hypertension, 49: 69-75 (2007) (originally published online Dec. 11, 2006).
Ormiston, John et al., “First-in-human use of the OneShot™ renal denervation system from Covidien.” EuroIntervention, vol. 8, 2013, 4 pages.
Ormiston, John et al., “Renal denervation for resistant hypertension using an irrigated radiofrequency balloon: 12-month results from the Renal Hypertension Ablation System (RHAS) trial.” EuroIntervention, vol. 9, 2013, 5 pages.
Pedersen, Amanda, “TCT 2012: Renal denervation device makers play show and tell.” Medical Device Daily, Oct. 26, 2012, 2 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines_article&forceid=80880>.
Peet, M., “Hypertension and its Surgical Treatment by bilateral supradiaphragmatic splanchnicectomy” Am J Surgery (1948) pp. 48-68.
Renal Denervation (RDN), Symplicity RDN System Common Q&A (2011), 4 pages, http://www.medtronic.com/rdn/mediakit/RDN%20FAQ.pdf.
Schlaich, Markus et al., “Renal Denervation in Human Hypertension: Mechanisms, Current Findings, and Future Prospects.” Curr Hypertens Rep, vol. 14, 2012, 7 pages.
Schmid, Axel et al., “Does Renal Artery Supply Indicate Treatment Success of Renal Denervation.” Cardiovasc Intervent Radiol, vol. 36, 2013, 5 pages.
Schmieder, Roland E. et al., “Updated ESH position paper on interventional therapy of resistant hypertension.” EuroIntervention, vol. 9, 2013, 9 pages.
Sievert, Horst, “Novelty Award EuroPCR 2010.” Euro PCR, 2010, 15 pages.
Stella, A., et al., “Effects of reversible renal denervation on haemodynamic and excretory functions on the ipsilateral and contralateral kidney in the cat.” Hypertension, 4:181-188 (1986).
Stouffer, G. A. et al., “Catheter-based renal denervation in the treatment of resistant hypertension.” Journal of Molecular and Cellular Cardiology, vol. 62, 2013, 6 pages.
Swartz, J. F., et al., “Radiofrequency endocardial catheter ablation of accessory atrioventricular pathway atrial insertion sites.” Circulation, 87: 487-499 (1993).
Uchida, F., et al., “Effect of radiofrequency catheter ablation on parasympathetic denervation: A comparison of three different ablation sites.” PACE, 21:2517-2521 (1998).
Verloop, W. L. et al., “Renal denervation: a new treatment option in resistant arterial hypertension.” Neth Heart J., Nov. 30, 2012, 6 pages, <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547427/>.
Weinstock, M., et al., “Renal denervation prevents sodium retention and hypertension in salt sensitive rabbits with genetic baroreflex impairment.” Clinical Science, 90:287-293 (1996).
Wilcox, Josiah N., Scientific Basis Behind Renal Denervation for the Control of Hypertension, ICI 2012, Dec. 5-6, 2012. 38 pages.
Worthley, Stephen et al., “Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial.” European Heart Journal, vol. 34, 2013, 9 pages.
Worthley, Stephen, “The St. Jude Renal Denervation System Technology and Clinical Review.” The University of Adelaide Australia, 2012, 24 pages.
Zuern, Christine S., “Impaired Cardiac Baroflex Sensitivity Predicts Response to Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Journal of the American College of Cardiology, 2013, doi: 10.1016/j.jacc.2013.07.046, 24 pages.
Ahmed, Humera et al., Renal Sympathetic Denervation Using an Irrigated Radiofrequency Ablation Catheter for the Management of Drug-Resistant Hypertension, JACC Cardiovascular Interventions, vol. 5, No. 7, 2012, pp. 758-765.
Avitall et al., “The creation of linear contiguous lesions in the atria with an expandable loop catheter,” Journal of the American College of Cardiology, 1999; 33; pp. 972-984.
Beale et al., “Minimally Invasive Treatment for Varicose Veins: A Review of Endovenous Laser Treatment and Radiofrequency Ablation”. Lower Extremity Wounds 3(4), 2004, 10 pages.
Blessing, Erwin et al., Cardiac Ablation and Renal Denervation Systems Have Distinct Purposes and Different Technical Requirements, JACC Cardiovascular Interventions, vol. 6, No. 3, 2013, 1 page.
ClinicalTrials.gov, Renal Denervation in Patients with uncontrolled Hypertension in Chinese (2011), 6pages. www.clinicaltrials.gov/ct2/show/NCT01390831.
Excerpt of Operator's Manual of Boston Scientific's EPT-1000 XP Cardiac Ablation Controller & Accessories, Version of Apr. 2003, (6 pages).
Excerpt of Operator's Manual of Boston Scientific's Maestro 30000 Cardiac Ablation System, Version of Oct. 17, 2005 , (4 pages).
Schneider, Peter A., “Endovascular Skills—Guidewire and Catheter Skills for Endovascular Surgery,” Second Edition Revised and Expanded, 10 pages, (2003).
Kandarpa, Krishna et al., “Handbook of Interventional Radiologic Procedures”, Third Edition, pp. 194-210 (2002).
ThermoCool Irrigated Catheter and Integrated Ablation System, Biosense Webster (2006), 6 pages.
Mount Sinai School of Medicine clinical trial for Impact of Renal Sympathetic Denervation of Chronic Hypertension, Mar. 2013, 11 pages. http://clinicaltrials.gov/ct2/show/NCT01628198.
Opposition to European Patent No. EP1802370, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 20 pages.
Opposition to European Patent No. EP2037840, Granted Dec. 7, 2011, Date of Opposition Sep. 7, 2012, 25 pages.
Opposition to European Patent No. EP2092957, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 26 pages.
Oz, Mehmet, Pressure Relief, TIME, Jan. 9, 2012, 2 pages. <www.time.come/time/printout/0,8816,2102378,00.html>.
Prochnau, Dirk et al., Catheter-based renal denervation for drug-resistant hypertension by using a standard electrophysiology catheter; Euro Intervention 2012, vol. 7, pp. 1077-1080.
Papademetriou, Vasilios, Renal Sympathetic Denervation for the Treatment of Difficult-to-Control or Resistant Hypertension, Int. Journal of Hypertension, 2011, 8 pages.
Holmes et al., Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation: Clinical Spectrum and Interventional Considerations, JACC: Cardiovascular Interventions, 2: 4, 2009, 10 pages.
Purerfellner, Helmut et al., Incidence, Management, and Outcome in Significant Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation, Am. J. Cardiol , 93, Jun. 1, 2004, 4 pages.
Tsao, Hsuan-Ming, Evaluation of Pulmonary Vein Stenosis after Catheter Ablation of Atrial Fibrillation, Cardiac Electrophysiology Review, 6, 2002, 4 pages.
Wittkampf et al., “Control of radiofrequency lesion size by power regulation,” Journal of the American Heart Associate, 1989, 80: pp. 962-968.
Zheng et al., “Comparison of the temperature profile and pathological effect at unipolar, bipolar and phased radiofrequency current configurations,” Journal of Interventional Cardiac Electrophysiology, 2001, pp. 401-410.
U.S. Appl. No. 60/813,589, filed Dec. 29, 2005, Demarais et al.
2003 European Society of Hypertension—European Society of Cardiology guidelines for the management of arterial hypertension, Guidelines Committee, Journal of Hypertension 2003, vol. 21, No. 6, pp. 1011-1053.
Aars, H. And S. Akre, Reflex Changes in Sympathetic Activity and Arterial Blood Pressure Evoked by Afferent Stimulation of the Renal Nerve, Feb. 26, 1999, Acta physiol. Scand., vol. 78, 1970, pp. 184-188.
Abramov, G.S. et al., Alteration in sensory nerve function following electrical shock, Burns vol. 22, No. 8, 1996 Elsevier Science Ltd., pp. 602-606.
Achar, Suraj, M.D., and Suriti Kundu, M.D., Principles of Office Anesthesia: Part I. Infiltrative Anesthesia, Office Procedures, American Family Physician, Jul. 1, 2002, vol. 66, No. 1, pp. 91-94.
Advanced Neuromodulation Systems' Comparison Chart, Dec. 16, 2008, pp. 1.
Advances in the role of the sympathetic nervous system in cardiovascular medicine, 2001 SNS Report, No. 3, Springer, Published with an educational grant from Servier, pp. 1-8.
Aggarwal, A. et al., Regional sympathetic effects of low-dose clonidine in heart failure. Hypertension. 2003;41:553-7.
Agnew, William F. et al., Evolution and Resolution of Stimulation-Induced Axonal Injury in Peripheral Nerve, May 21, 1999, Muscle & Nerve, vol. 22, Oct. 1999, John Wiley & Sons, Inc. 1999, pp. 1393-1402.
Ahadian, Farshad M., M.D., Pulsed Radiofrequency Neurotomy: Advances in Pain Medicine, Current Pain and Headache Reports 2004, vol. 8, 2004 Current Science Inc., pp. 34-40.
Alexander, B.T. et al., Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion, Hypertension, 2005; 45 (part 2): pp. 754-758.
Alford, J. Winslow, M.D. and Paul D. Fadale, M.D., Evaluation of Postoperative Bupivacaine Infusion for Pain Management After Anterior Cruciate Ligament Reconstruction, The Journal of Arthroscopic and Related Surgery, vol. 19, No. 8, Oct. 2003 Arthroscopy Association of North America, pp. 855-861.
Allen, E.V., Sympathectomy for essential hypertension, Circulation, 1952, 6:131-140.
Amersham Health. Hypaque-Cysto, 2003, 6 pages.
Andrews, B.T. et al., The use of surgical sympathectomy in the treatment of chronic renal pain. Br J Urol. 1997; 80: 6-10.
Antman, Elliott M. and Eugene Braunwald, Chapter 37—Acute Myocardial Infarction, Heart Disease—A Textbook of Cardiovascular Medicine, 5th Edition, vol. 2, 1997, Edited by Eugene Braunwald, pp. 1184-1288.
Archer, Steffen et al., Cell Reactions to Dielectrophoretic Manipulation, Mar. 1, 1999, Biochemical and Biophysical Research Communications, 1999 Academic Press, pp. 687-698.
Arentz, T. et al., Incidence of pulmonary vein stenosis 2 years after radiofrequency catheter ablation of refractory atrial fibrillation. European Heart Journal. 2003. 24; pp. 963-969.
Arias, M.D., Manuel J., Percutaneous Radio-Frequency Thermocoagulation with Low Temperature in the Treatment of Essential Glossopharyngeal Neuralgia, Surg. Neurol. 1986, vol. 25, 1986 Elsevier Science Publishing Co., Inc., pp. 94-96.
Aronofsky, David H., D.D.S., Reduction of dental postsurgical symptoms using nonthermal pulsed high-peak-power electromagnetic energy, Oral Surg., Nov. 1971, vol. 32, No. 5, pp. 688-696.
Aspelin, Peter, M.D., Ph.D. et al., Nephrotoxic Effects in High-Risk Patients Undergoing Angiography, Feb. 6, 2003, New England Journal of Medicine 2003, vol. 348, No. 6, 2003 Massachusetts Medical Society, pp. 491-499.
Atrial Fibrillation Heart and Vascular Health on Yahoo! Health. 2 pgs. <URL: http://health.yahoo.com/topic/heart/overview/article/healthwise/hw160872;_ylt=AiBT43Ey74HQ7ft3jAb4C.sPu7cF> Feb. 21, 2006.
Augustyniak, Robert A. et al., Sympathetic Overactivity as a Cause of Hypertension in Chronic Renal Failure, Aug. 14, 2001, Journal of Hypertension 2002, vol. 20, 2002 Lippincott Williams & Wilkins, pp. 3-9.
Awwad, Ziad M., FRCS and Bashir A. Atiyat, GBA, JBA, Pain relief using continuous bupivacaine infusion in the paravertebral space after loin incision, May 15, 2004, Saudi Med J 2004, vol. 25 (10), pp. 1369-1373.
Badyal, D. K., H. Lata and A.P. Dadhich, Animal Models of Hypertension and Effect of Drugs, Aug. 19, 2003, Indian Journal of Pharmacology 2003, vol. 35, pp. 349-362.
Baker, Carol E. et al., Effect of pH of Bupivacaine on Duration of Repeated Sciatic Nerve Blocks in the Albino Rat, Anesth Analg, 1991, vol. 72, The International Anesthesia Research Society 1991, pp. 773-778.
Balazs, Tibor, Development of Tissue Resistance to Toxic Effects of Chemicals, Jan. 26, 1974, Toxicology, 2 (1974), Elsevier/North-Holland, Amsterdam, pp. 247-255.
Barajas, L. Innervation of the renal cortex. Fex Proc. 1978;37:1192-201.
Barrett, Carolyn J. et al., Long-term control of renal blood flow: what is the role of the renal nerves?, Jan. 4, 2001, Am J Physiol Regulatory Integrative Comp Physiol 280, 2001, the American Physiological Society 2001, pp. R1534-R1545.
Barrett, Carolyn J. et al., What Sets the Long-Term Level of Renal Sympathetic Nerve Activity, May 12, 2003, Integrative Physiology, Circ Res. 2003, vol. 92, 2003 American Heart Association, pp. 1330-1336.
Bassett, C. Andrew L. et al., Augmentation of Bone Repair by Inductively Coupled Electromagnetic Fields, May 3, 1974, Science, vol. 184, pp. 575-577.
Bassett, C. Andrew L., Fundamental and Practical Aspects of Therapeutic Uses of Pulsed Electromagnetic Fields (PEMFs), Critical Reviews in Biomedical Engineering, vol. 17, Issue 5, 1989, pp. 451-514.
Beebe, Stephen J. et al., Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms, Apr. 8, 2004, Physiol. Meas. 25, 2004, IOP Publishing Ltd. 2004, pp. 1077-1093.
Beebe, Stephen J., et al., Nanosecond Pulsed Electric Field (nsPEF) Effects on Cells and Tissues: Apoptosis Induction and Tumor Growth Inhibition, Oct. 11, 2001, IEEE Transactions on Plasma Science, vol. 30, No. 1, Feb. 2002, IEEE 2002, pp. 286-292.
Bello-Reuss, E. et al., Acute unilateral renal denervation in rats with extracellular volume expansion, Departments of Medicine and Physiology, University of North Carolina School of Medicine. F26-F32 Jul. 1975.
Bello-Reuss, E. et al., Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption, J Clin Invest, 1976;57:1104-1107.
Bello-Reuss, E. et al., Effects of Acute Unilateral Renal Denervation in the Rat, J Clin Invest, 1975;56:208-217.
Berde, C. et al., Local Anesthetics, Anesthesia, Chapter 13, 5th addition, Churchill-Livingston, Philadelphia 2000, pp. 491-521.
Bhadra, Niloy and Kevin L. Kilgore, Direct Current Electrical Conduction Block of Peripheral Nerve, Feb. 25, 2004, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, No. 3, Sep. 2004, pp. 313-324.
Bhandari, A. and Ellias, M., Loin pain hematuria syndrome: Pain control with RFA to the Splanchanic plexus, The Pain Clinic, 2000, vol. 12, No. 4, pp. 323-327.
Bhatt, Deepak L. et al., Rhabdomyolysis Due to Pulsed Electric Fields, May 11, 1989, Plastic and Reconstructive Surgery Jul. 1990, pp. 1-11.
Bichet, D., et al., Renal intracortical blood flow and renin secretion after denervation by 6-hydroxydopamine. Can J Physiol Pharmacol. 1982;60:184-92.
Bigler, D. et al., Tachyphylaxis during postoperative epidural analgesia—new insights, Apr. 15, 1987, Letter to the Editor, Acta Anaesthesiol Scand. 1987, vol. 31, pp. 664-665.
Binder, Allan et al., Pulsed Electromagnetic Field Therapy of Persistent Rotator Cuff Tendinitis, The Lancet, Saturday Mar. 31, 1984, The Lancet Ltd., pp. 695-698.
Black, M.D., Henry R., Resistant Hypertension 2004, presentation at Rush University Medical Center, Jul. 15, 2004, 40 pages.
Blad, B., et al., An Electrical Impedance index to Assess Electroporation in Tissue, Tissue and Organ (Therapy), 2001, Oslo, www.bl.uk <http://www.bl.uk> British Library, pp. 31-34.
Blair, M. L. et al, Sympathetic activation cannot fully account for increased plasma renin levels during water deprivation, Sep. 23, 1996, Am. J. Physiol., vol. 272, 1997, the American Physiological Society 1997, pp. R1197-R1203.
Blomberg, S.G., M.D., PhD, Long-Term Home Self-Treatment with High Thoracic Epidural Anesthesia in Patients with Severe Coronary Artery Disease, Mar. 29, 1994, Anesth Analg 1994, vol. 79, 1994 International Anesthesia Research Society, pp. 413-421.
Boehmer, J.P., Resynchronization Therapy for Chronic CHF: Indications, Devices and Outcomes. Penn State College of Medicine: Penn State Heart and Vascular Institute. Transcatheter Cardiovascular Therapeutics 2005, 31 slides.
Bourge, R.C., Heart Failure Monitoring Devices: Rationale and Status 28 pages, Feb. 2001.
Braunwald, E., Heart Disease, A Textbook of Cardiovascular Medicine, 5th Ed., vol. 2, 1997, pp. 480-481, 824-825, 1184-1288 and 1923-1925, W.B. Saunders Company.
Bravo, E.L., et al., Renal denervation for resistant hypertension, American Journal of Kidney Diseases, 2009, 3 pgs.
Bunch, Jared T. et al. Mechanisms of Phrenic Nerve Injury During Radiofrequency Ablation at the Pulmonary Vein Orifice. Journal of Cardiovascular Electrophysiclody. vol. 16, No. 12. pp. 1318-1325. Dec. 2005.
Burkhoff, D., Interventional Device-Based Therapy for CHF Will Redefine Current Treatment Paradigms. Columbia University. 2004. 32 slides.
Burns, J. et al., Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation. 2007;115:1999-2005.
Cahana, A. et al., Acute Differential Modulation of Synaptic Transmission and Cell Survival During Exposure to Pulsed and Continuous Radiofrequency Energy, May 2003, The Journal of Pain, vol. 4, No. 4, © 2003 by the American Pain Society, pp. 197-202.
Cahana, Alex, M.D., Pulsed Radiofrequency: A Neurobiologic and Clinical Reality, May 17, 2005, Anesthesiology 2005, vol. 103, No. 6, Dec. 2005, 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc., p. 1311.
Calaresu, F.R. et al., Haemodynamic Responses and Renin Release During Stimulation of Afferent Renal Nerves in the Cat, Aug. 12, 1975, J. Physiol. 1976, vol. 255, pp. 687-700.
Cameron, Tracy. Micromodular Implants to Provide Electrical Stimulation of Paralyzed Muscles and Limbs. IEEE Transactions on Biomedical Engineering, vol. 44, No. 9, Sep. 1997. pp. 781-790.
Campese, V.M. et al., Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25:878-82.
Campese, V.M. et al., Renal Afferent Denervation Prevents the Progression of Renal Disease in the Renal Ablation Model of Chronic Renal Failure in the Rat, Am J Kidney Dis. 1995;26:861-5.
Campese, V.M., A new model of neurogenic hypertension caused by renal injury: pathophysiology and therapeutic implications, Clin Exp Nephrol (2003) 7: 167-171, Japanese Society of Nephrology 2003.
Campese, V.M., Neurogenic factors and hypertension in chronic renal failure, Journal of Nephrology, vol. 10, No. 4, 1997, Societa Italiana di Nefrologia, pp. 184-187.
Campese, V.M., Neurogenic factors and hypertension in renal disease. Kidney Int. 2000;57 Suppl 75:S2-3.
Canbaz, S. et al., Electrophysiological evaluation of phrenic nerve injury during cardiac surgery—a prospective, controlled clinical study. BioMed Central. 5 pgs. 2004.
Cardiac Glycosides, Heart Disease—A Textbook of Cardiovascular Medicine vol. 2, Edited by Eugene Braunwald, 5th Edition, 1997 WB Saunders Company, pp. 480-481.
Carls, G. et al., Electrical and magnetic stimulation of the intercostal nerves: a comparative study, Electromyogr, clin. Neurophysiol. 1997, vol. 37, pp. 509-512.
Carlson, Scott H. and J. Michael Wyss, e-Hypertension—Opening New Vistas, Introductory Commentary, Hypertension 2000, vol. 35, American Heart Association, Inc. 2000, p. 538.
Carson, P., Device-based Treatment for Chronic Heart Failure: Electrical Modulation of Myocardial Contractility. Transcatheter Cardiovascular Therapeutics 2005, 21 slides.
Chang, Donald C., Cell poration and cell fusion using an oscillating electric field, Biophysical Journal, vol. 56, Oct. 1989, Biophysical Society, pp. 641-652.
Chen, S.A. et al., Initiation of atrial fibrillation by ectopic beats originating from the pulmonary veins: electrophysiological characteristics, pharmacological responses, and effects of radiofrequency ablataion, Circulation, 1999, 100:1879-1886.
Chin, J.L. et al., Renal autotransplantation for the loin pain-hematuria syndrome: long term follow up of 26 cases, J Urol, 1998, vol. 160, pp. 1232-1236.
Chiou, C.W. et al., Efferent Vagal Innervation of the Canine Atria and Sinus and Atrioventricular Nodes. Circulation. Jun. 1997. 95(11):2573-2584. Abstract only. 2 pgs.
Chobanian, Aram V. et al., Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, Nov. 6, 2003, Hypertension 2003, vol. 42, 2003 American Heart Association, Inc., pp. 1206-1252.
Clinical Trials in Hypertension and Renal Diseases, Slide Source, www.hypertensiononline.org, 33 pages Aug. 13, 2001.
Conradi, E. and Ines Helen Pages, Effects of Continous and Pulsed Microwave Irradiation on Distribution of Heat in the Gluteal Region of Minipigs, Scand J Rehab Med, vol. 21, 1989, pp. 59-62.
Converse, R.L., Jr. et al., Sympathetic Overactivity in Patients with Chronic Renal Failure, N Engl J Med. Dec. 31, 1992, vol. 327 (27), pp. 1912-1918.
Cosman, E.R., Jr. et al., Electric and Thermal Field Effects in Tissue Around Radiofrequency Electrodes, Pain Medicine, vol. 6, No. 6, 2005, American Academy of Pain Medicine, pp. 405-424.
Cosman, E.R., Ph.D., A Comment on the History of the Pulsed Radiofrequency Technique for Pain Therapy, Anesthesiology Dec. 2005, vol. 103, No. 6, 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc., p. 1312.
Crawford, William H. et al., Pulsed Radio Frequency Therapy of Experimentally Induced Arthritis in Ponies, Dec. 18, 1989, Can. J. Vet. Res. 1991, vol. 55, pp. 76-85.
Curtis, J.J. et al., Surgical theray for persistent hypertension after renal transplantation, Transplantation, 1981, 31(2):125-128.
Dahm, Peter et al., Efficacy and Technical Complications of Long-Term Continuous Intraspinal Infusions of Opioid and/or Bupivacaine in Refractory Nonmalignant Pain . . . , Oct. 6, 1997, The Clinical Journal of Pain, vol. 14, No. 1, 1998, Lippincott-Raven Publishers 1998, pp. 4-16.
Dahm, Peter O. et al., Long-Term Intrathecal Infusion of Opioid and/or Bupivacaine in the Prophylaxis and Treatment of Phantom Limb Pain, Neuromodulation, vol. 1, No. 3, 1998, International Neuromodulation Society 1998, pp. 111-128.
Dang, Nicholas C. et al., A Novel Approach to Increase Total Urine Output in Heart Failure: Renal Nerve Blockade, ACC 2005 poster; 1 page.
Daniel, Alan and Honig, Carl R. Does Histamine Influence Vasodilation Caused by Prolonged Arterial Occlusion or Heavy Exercise? The Journal of Pharmacology and Experimental Therapeutics. vol. 215 No. 2. Aug. 21, 1980. pp. 533-538.
Davalos, R. et al., Electrical Impedance Tomography for Imaging Tissue Electroporation, Jul. 25, 2003, IEEE Transactions on Biomedical Engineering, vol. 51, No. 5, May 2004, IEEE 2004, pp. 761-767.
Davalos, R.V. et al., Tissue Ablation with Irreversible Electroporation, Sep. 7, 2004, Annals of Biomedical Engineering, Feb. 2005, vol. 33, No. 2, 2005 Biomedical Engineering Society, pp. 223-231.
De Leeuw, Peter W. et al., Renal Vascular Tachyphylaxis to Angiotensin II: Specificity of the Response for Angiotensin, Dec. 28, 1981, Life Sciences, vol. 30, 1982 Pergamon Press Ltd., pp. 813-819.
Deng, Jingdong et al., The Effects of Intense Submicrosecond Electrical Pulses on Cells, Nov. 26, 2002, Biophysical Journal, vol. 84, Apr. 2003, Biophysical Society 2003, pp. 2709-2714.
Denton, Kate M. et al., Differential Neural Control of Glomerular Ultrafiltration, Jan. 30, 2004, Proceedings of the Australian Physiological and Pharmacological Society Symposium: Hormonal, Metabolic and Neural Control of the Kidney, Clinical and Experimental Pharmacology and Physiology (2004) 31, pp. 380-386.
Dev, Nagendu B., Ph.D. et al., Intravascular Electroporation Markedly Attenuates Neointima Formation After Balloon Injury of the Carotid Artery in the Rat, Journal of Interventional Cardiology, vol. 13, No. 5, 2000, pp. 331-338.
Dev, Nagendu B., Ph.D. et al., Sustained Local Delivery of Heparin to the Rabbit Arterial Wall with an Electroporation Catheter, May 5, 1998, Catheterization and Cardiovascular Diagnosis, vol. 45, 1998, Wiley-Liss, Inc. 1998, pp. 337-345.
Devereaux, R.B. et al., Regression of Hypertensive Left Ventricular Hypertrophy by Losartan Compared With Atenolol: The Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) Trial, Circulation, 2004, vol. 110, pp. 1456-1462.
DiBona, Gerald F. and Linda L. Sawin, Role of renal nerves in sodium retention of cirrhosis and congestive heart failure, Sep. 27, 1990, Am. J. Physiol. 1991, vol. 260, 1991 the American Physiological Society, pp. R298-R305.
DiBona, Gerald F. and Susan Y. Jones, Dynamic Analysis of Renal Nerve Activity Responses to Baroreceptor Denervation in Hypertensive Rats, Sep. 19, 2000, Hypertension Apr. 2001, American Heart Association, Inc. 2001, pp. 1153-1163.
DiBona, Gerald F. and Ulla C. Kopp, Neural Control of Renal Function, Physiological Reviews, vol. 77, No. 1, Jan. 1997, the American Physiological Society 1997, pp. 75-197.
DiBona, Gerald F. and Ulla C. Kopp, Role of the Renal Sympathetic Nerves in Pathophysiological States, Neural Control of Renal Function, vol. 77, pp. 142-197 Jan. 1997.
DiBona, Gerald F., Functionally Specific Renal Sympathetic Nerve Fibers: Role in Cardiovascular Regulation, Mar. 6, 2001, American Journal of Hypertension, 2001, vol. 14, 2001 American Journal of Hypertension, Ltd. Published by Elsevier Science Inc., pp. 163S-170S.
DiBona, Gerald F., L.L. Sawin, Effect of renal nerve stimulation on NaCl and H2O transport in Henle's loop of the rat,: 1982, American Physiological Society, F576-F580, 5 pgs.
DiBona, Gerald F., Nervous Kidney—Interaction Between Renal Sympathetic Nerves and the Renin-Angiotensin System in the Control of Renal Function, Jun. 21, 2000, Hypertension 2000, vol. 36, 2000 American Heart Association, Inc., pp. 1083-1088.
DiBona, Gerald F., Neural Control of the Kidney—Past, Present and Future, Nov. 4, 2002, Novartis Lecture, Hypertension 2003, 41 part 2, 2002 American Heart Association, Inc., pp. 621-624.
DiBona, Gerald F., Neural Control of the Kidney: Functionally Specific Renal Sympathetic Nerve Fibers, Starling Lecture, Am J Physiol Regulatory Integrative Comp Physiol, 2000, 279, 2000 The American Physiological Society, pp. R1517-R1524.
DiBona, Gerald F., Peripheral and Central Interactions between the Renin-Angiotensin System and the Renal Sympathetic Nerves in Control of Renal Function, Annals New York Academy of Sciences, pp. 395-406 Jan. 25, 2006.
DiBona, Gerald F., Renal Innervation and Denervation: Lessons from Renal Transplantation Reconsidered, Artificial Organs, vol. 11, No. 6, Raven Press, Ltd., 1987 International Society for Artificial Organs, pp. 457-462.
DiBona, Gerald F., Sympathetic Nervous System and the Kidney in Hypertension, Current Opinion in Nephrology and Hypertension 2002, vol. 11, 2002 Lippincott Williams & Wilkins, pp. 197-200.
DiBona, Gerald F., The Sympathetic Nervous System and Hypertension, Dec. 4, 2003, Hypertension Highlights, Hypertension Feb. 2004, vol. 43, 2004 American Heart Association, Inc., pp. 147-150.
DiBona, Gerald, LL Sawin, Effect of renal denervation on dynamic autoregulation of renal blood flow, Feb. 12, 2004, AmJ Physiol Renal Physiol 286, pp. F1209-F1218.
Dong, Jun et al. Incidence and Predictors of Pulmonary Vein Stenosis Following Catheter Ablation of Atrial Fibrillation Using the Anatomic Pulmonary Vein Ablation Approach: Results from Paired Magnetic Resonance Imaging. Journal of Cardiovascular Electrophysiology. vol. 16, No. 8, Aug. 2005. pp. 845-852.
Dorros, Gerald, M.D., Renal Artery Stenting State of the Art, presentation, TCT, Washington D.C., Sep. 2003, 27 pages.
Dueck, Ron, M.D., Noninvasive Cardiac Output Monitoring, The Cardiopulmonary and Critical Care Journal, Chest, vol. 120, sec. 2, Aug. 2001, American College of Chest Physicians 2005, pp. 339-341, 5 pages.
Dunn, Matthew D. et al., Laparoscopic Nephrectomy in Patients With End-Stage Renal Disease and Autosomal Dominant Polycystic Kidney Disease,Oct. 25, 1999, American Journal of Kidney Diseases, vol. 35, No. 4 Apr. 2000, National Kidney Foundation, Inc. 2000, pp. 720-725.
Durand, D.M., Electric Field Effects in Hyperexcitable Neural Tissue: A Review, Radiation Protection Dosimetry, vol. 106, No. 4, 2003 Nuclear Technology Publishing, pp. 325-331.
Effects of Renal Failure on the Cardiovascular System, 5th Edition Heart Disease, A Textbook of Cardiovascular Medicine, vol. 2, Edited by Eugene Braunwald, 1997, W.B. Saunders Company, pp. 1923-1925.
Electrical Stimulation for the Treatment of Chronic Wounds, Radiation Protection Standard, Maximum Exposure Levels to Radiofrequency Fields—3 KHz to 300 GHz, Radiation Protection Series No. 3, Australian Radiation Protection and Nuclear Safety Agency, Apr. 1996, 322 pgs.
Electropermeabilization (Electroporation), Cyto Pulse Sciences, Inc., http://www.cytopulse.com/electroporation.html (last accessed Mar. 3, 2005), 3 pgs.
Electroporation based Technologies and Treatments, ESPE Newsletter No. 6, QLK 02002-2003, Jan. 2005, www.cliniporator.com, 4 pgs.
End-stage renal disease payment policies in traditional Medicare, Chapter 8, Report to the Congress: Medicare Payment Policy, Mar. 2001, Medpac, pp. 123-138.
Epidemiology of Renal Disease in Hypertension, slide presentation by hypertensiononline.org, 21 pages. Mar. 30, 2001.
Erdine, Serap and Alev Arat-Ozkan, Resistant Hypertension, European Society of Hypertension Scientific Newsletter: Update on Hypertension Management 2003, vol. 4, No. 15, 2 pages.
Esler, M. et al., Mechanism of elevated plasma noradrenaline in the course of essential hypertension. J Cardiovasc Pharmacol. 1986;8:S39-43.
Esler, M. et al., Noradrenaline release and the pathophysiology of primary human hypertension. Am J Hypertens. 1989; 2:140S-146S.
Esler, M. et al., Sympathetic nerve biology in essential hypertension, Clin and Exp Pharmacology and Physiology, 2001, 28:986-989.
European Examination Report; European Patent Application No. 07799148.7; Applicant: Ardian, Inc.; dated Jan. 19, 2010, 4 pgs.
European Examination Report; European Patent Application No. 09156661.2; Applicant: Ardian, Inc.; dated Jan. 19, 2010, 6 pgs.
European Search Report; European Patent Application No. 05806045.0; Applicant: Ardian, Inc.; dated Sep. 22, 2009, 8 pgs.
European Search Report; European Patent Application No. 05811851.4; Applicant: Ardian, Inc.; dated Oct. 1, 2009, 7 pgs.
European Search Report; European Patent Application No. 06847926.0; Applicant: Ardian, Inc.; dated Feb. 10, 2010, 6 pgs.
European Search Report; European Patent Application No. 07757925.8; Applicant: Ardian, Inc.; dated Apr. 29, 2010, 9 pgs.
European Search Report; European Patent Application No. 07798341.9; Applicant: Ardian, Inc.; dated Aug. 4, 2011; 6 pgs.
European Search Report; European Patent Application No. 07799148.7; Applicant: Ardian, Inc.; dated Jul. 23, 2009, 6 pgs.
European Search Report; European Patent Application No. 07868755.5; Applicant: Ardian, Inc.; dated Jul. 28, 2010, 7 pgs.
European Search Report; European Patent Application No. 09156661.2; Applicant: Ardian, Inc.; dated Jul. 23, 2009, 6 pgs.
European Search Report; European Patent Application No. 09167937.3; Applicant: Ardian, Inc.; dated Nov. 11, 2009, 6 pgs.
European Search Report; European Patent Application No. 09168202.1; Applicant: Ardian, Inc.; dated Nov. 11, 2009, 5 pgs.
European Search Report; European Patent Application No. 09168204.7; Applicant: Ardian, Inc.; dated Nov. 19, 2009, 6 pgs.
Evelyn, K.A. et al., Effect of thoracolumbar sympathectomy on the clinical course of primary (essential) hypertension, Am J Med, 1960;28:188-221.
Ex parte Quayle Office Action; U.S. Appl. No. 11/144,173; dated May 28, 2009, 4 pgs.
Fact Book Fiscal Year 2003, National Institutes of Health National Heart, Lung, and Blood Institute, Feb. 2004, 197 pgs.
Fajardo, J. et al., Effect of chemical sympathectomy on renal hydroelectrolytic handling in dogs with chronic caval constriction. Clin Physiol Biochem. 1986;4:252-6.
Fareed, Jawed, Ph.D. et al., Some Objective Considerations for the Use of Heparins and Recombinant Hirudin in Percutaneous Transluminal Coronary Angoplasty, Seminars in Thrombosis and Hemostasis 1991, vol. 17, No. 4, 1991 by Thieme Medical Publishers, Inc., pp. 455-470.
Ferguson, D.R. et al., Responses of the pig isolated renal artery to transmural electrical stimulation and drugs, Dec. 7, 1984, Br. J. Pharmac. 1985, vol. 84, The Macmillan Press Ltd. 1985, pp. 879-882.
Fernandez-Ortiz, Antonio, et al., A New Approach for Local Intravascular Drug Delivery—Iontophoretic Balloon, Intravascular Iontophoretic Local Delivery, Circulation, vol. 89, No. 4, Apr. 1994, pp. 1518-1522.
Fields, Larry E. et al., The Burden of Adult Hypertension in the United States 1999 to 2000—A Rising Tide, May 18, 2004, American Heart Association 2004, Hypertension Oct. 2004, pp. 1-7.
Final Office Action; U.S. Appl. No. 11/233,814; dated Jan. 29, 2009, 11 pgs.
Final Office Action; U.S. Appl. No. 11/266,993; dated Jan. 8, 2010, 7 pgs.
Final Office Action; U.S. Appl. No. 11/363,867; dated May 1, 2009, 8 pgs.
Final Office Action; U.S. Appl. No. 11/451,728; dated Jan. 13, 2009, 7 pgs.
Final Office Action; U.S. Appl. No. 11/599,649; dated Jan. 15, 2009, 10 pgs.
Final Office Action; U.S. Appl. No. 11/599,723; dated Apr. 5, 2010, 17 pgs.
Final Office Action; U.S. Appl. No. 11/599,890; dated Apr. 29, 2009, 9 pgs.
Fischell, Tim A. et al., Ultrasonic Energy: Effects on Vascular Function and Integrity, Circulation: Journal of the American Heart Association. 1991. 84;pp. 1783-1795.
Freeman, Scott A. et al., Theory of Electroporation of Planar Bilayer Membranes: Predictions of the Aqueous Area, Change in Capacitance, and Pore-Pore Separation, Feb. 23, 1994, Biophysical Journal, Jul. 1994, vol. 67, 1994 by the Biophysical Society, pp. 42-56.
Fukuoka, Yuko et al., Imaging of neural conduction block by neuromagnetic recording, Oct. 16, 2002, Clinical Neurophysiology, vol. 113, 2002, Elsevier Science Ireland Ltd. 2002, pp. 1985-1992.
Fuster, Valentin et al. ACC/AHA/ESC Practice Guidelines: ACA/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation. JACC vol. 48, No. 4, Aug. 15, 2006.
Gami, Apoor S., M.D. and Vesna D. Garovic, M.D., Contrast Nephropathy After Coronary Angiography, Mayo Clin Proc. 2004, vol. 79, 2004 Mayo Foundation for Medical Education and Research, pp. 211-219.
Gattone II, Vincent H. et al., Contribution of Renal Innervation to Hypertension in Polycystic Kidney Disease in the Rat, University of Chicago Section of Urology, 16 pages, Mar. 17, 2008.
Gaylor, D.C. et al., Significance of Cell Size and Tissue Structure in Electrical Trauma, Jan. 26, 1988, J. theor. Biol. 1988, vol. 133, 1988 Academic Press Limited, pp. 223-237.
Gazdar, A.F. and G.J. Dammin, Neural degeneration and regeneration in human renal transplants, NEJM, Jul. 30, 1970, 283:222-244.
Gehl, Julie et al., In Vivo Electroporation of Skeletal Muscle: Threshold, Efficacy and Relation to Electric Field Distribution, Biochimica et Biophysica Acta, 1428, 1999, Elsevier Science B.V. 1999, pp. 233-240, www.elsevier.com/locate/bba <http:www.elsevier.com/locate/bba>.
Getts, R.T. et al., Regression of left ventricular hypertrophy after bilateral nephrectomy, Nephrol Dial Transplant, 2006, vol. 21, pp. 1089-1091.
Ghoname, El-sayed A. et al., Percutaneous electrical nerve stimulation: an alternative to TENS in the management of sciatica, Apr. 26, 1999, Pain 1999, vol. 83, 1999 International Association for the Study of Pain / Published by Elsevier Science B.V., pp. 193-199.
Gimple, M.D., Lawrence et al., Effect of Chronic Subcutaneous or Intramural Administration of Heparin on Femoral Artery Restenosis After Balloon Angioplasty in Hypercholesterolemic Rabbits, Laboratory Investigation, Circulation, vol. 86, No. 5, Nov. 1992, pp. 1536-1546.
Goldberger, Jeffrey J. et al., New technique for vagal nerve stimulation, Jun. 2, 1999, Journal of Neuroscience Methods 91, 1999, Elsevier Science B.V. 1999, pp. 109-114.
Gorbunov, F.E. et al., The Use of Pulsed and Continuous Short Wave Diathermy (Electric Field) in Medical Rehabilitation of the Patients with Guillan-Barre Syndrome and Other Peripheral Myelinopathies, May 6, 1994, 5 pages (most of article in Russian language).
Gottschalk, C.W., Renal nerves and sodium excretion, Ann. Rev. Physiol., 1979, 41:229-240.
Greenwell, T.J. et al., The outcome of renal denervation for managing loin pain haematuria syndrome. BJU International, 2004; 4 pgs.
Gruberg, Luis, M.D. et al., The Prognostic Implications of Further Renal Function Deterioration Within 48 h of Interventional Coronary Procedures in Patients with Pre-existent Chronic Renal Insufficiency, Jun. 19, 2000, Journal of the American College of Cardiology 2000, vol. 36, No. 5, 2000 by the American College of Cardiology, pp. 1542-1548.
Guimaraes, Sarfim. Vascular Adrenoceptors: An Update. pp. 319-356, Jun. 1, 2001.
Haissaguerre, M. et al., Spontaneous initiation of atrial fibrillation by ectopic beats orginating in the pulmonary veins, New England Journal of Medicine, 1998, 339: 659-666.
Hajjar, Ihab, M.D., M.S. and Theodore A. Kotchen, M.D., Trends in Prevalence, Awareness, Treatment, and Control of Hypertension in the United States, 1988-2000, JAMA, Jul. 9, 2003, vol. 290, No. 2, pp. 199-206.
Hammer, Leah W. Differential Inhibition of Functional Dilation of Small Arterioles by Indomethacin and Glibenclamide. Hypertension. Feb. 2001 Part II. pp. 599-603.
Hampers, C.L. et al., A hemodynamic evaluation of bilateral nephrectomy and hemodialysis in hypertensive man, Circulation. 1967;35:272-288.
Hamza, M.D., Mohamed A. et al., Effect of the Duration of Electrical Stimulation on the Analgesic Response in Patients with Low Back Pain, Anesthesiology, vol. 91, No. 6, Dec. 1999, American Society of Anesthesiologists, Inc. 1999, pp. 1622-1627.
Han, Hyo-Kyung and Gordon L. Amidon, Targeted Prodrug Design to Optimize Drug Delivery, Mar. 21, 2000, AAPS Pharmsci 2000, 2 (1) article 6, pp. 1-11.
Hansen, J.M. et al., The transplanted human kidney does not achieve functional reinnervation, Clin Science, 1994, vol. 87, pp. 13-20.
Hasking, G.J. et al., Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615-21.
Hausberg, M. et al., Sympathetic nerve activity in end-stage renal disease, Circulation, 2002, 106: 1974-1979.
Heart Arrhythmia Heart and Vascular Health on Yahoo! Health. 13 pgs. <URL: http://health.yahoo.com/topic/heart/overview/article/mayoclinic/21BBE2B0-128D-4AA2-A5CE215065586678;_ylt=Aqd9M5rNyHD0sbPOmHXFhLcPu7cF> Feb. 16, 2005.
Heart Disease and Stroke Statistics—2004 Update, American Heart Association, American Stroke Association, Dallas, Texas, 2003 American Heart Association, 52 pgs.
Heida, Tjitske, et al., Investigating Membrane Breakdown of Neuronal Cells Exposed to Nonuniform Electric Fields by Finite-Element Modeling and Experiments, May 9, 2002, IEEE Transactions on Biomedical Engineering, vol. 49, No. 10, Oct. 2002, IEEE 2002, pp. 1195-1203.
Heuer, G.J., The surgical treatment of essential hypertension, Annals of Surgery, 1936; 104 (4): 771-786.
Higuchi, Yoshinori, M.D., Ph.D. et al, Exposure of the Dorsal Root Ganglion in Rats to Pulsed Radiofrequency Currents Activates Dorsal Horn Lamina I and II Neurons, Dec. 4, 2001, Experimental Studies, Neurosurgery, vol. 50, No. 4, Apr. 2002, pp. 850-856.
Hildebrand, Keith R., D.V.M., Ph.D. et al., Stability, Compatibility, and Safety of Intrathecal Bupivacaine Administered Chronically via an Implantable Delivery System, May 18, 2001, The Clinical Journal of Pain, vol. 17, No. 3, 2001 Lippincott Williams & Wilkins, Inc., pp. 239-244.
Hing, Esther, M.P.H. and Kimberly Middleton, B.S.N., M.P.H., National Hospital Ambulatory Medical Care Survey: 2001 Outpatient Department Summary, Aug. 5, 2003, Advance Data from Vital and Health Statistics, No. 338, CDC, 32 pages.
Hodgkin, Douglas D. et al., Electrophysiologic Characteristics of a Pulsed Iontophoretic Drug-Delivery System in Coronary Arteries, Journal of Cardiovascular Pharmacology. 29(1):pp. 39-44, Jan. 1997, Abstract, 2 pgs.
Hopp, F.A. et al., Respiratory Responses to Selective Blockade of Carotid Sinus Baroreceptors in the Dog, Jun. 22, 2005, Am J Physiol Regul Integr Comp Physiol 1998, vol. 275, 2005 American Physiological Society, pp. R10-R18.
Hortobagyi, Gabriel N., Randomized Trial of High-Dose Chemotherapy and Blood Cell Autographs for High-Risk Primary Breast Carcinoma, Journal of the National Cancer Institute, vol. 92, No. 3, Feb. 2, 2000, pp. 225-233.
Horwich, Tamara, M.D., New Advances in the Diagnosis and Management of Acute Decompensated Heart Failure, the heart.org satellite program, Rapid Review, CME Symposium presented on Nov. 8, 2004 at the Sheraton New Orleans Hotel, 4 pages.
Huang, Wann-Chu et al. Renal Denervation Prevents and Reverses Hyperinsulinemia-Induced Hypertension in Rats, Mar. 25, 1998, Hypertension 1998, vol. 32, 1998 American Heart Association, pp. 249-254.
Huang, Yifei et al., Remodeling of the chronic severely failing ischemic sheep heart after coronary microembolization: functional, energetic, structural and cellular responses, Jan. 8, 2004, Am J Physiol. Heart Circ. Physiol. 2004, vol. 286, 2004 the American Physiological Society, pp. H2141-H2150.
Hughes, Gordon B., M.D. et al., A Comparative Study of Neuropathologic Changes Following Pulsed and Direct Current Stimulation of the Mouse Sciatic Nerve, Jun. 27, 1980, American Journal of Otolaryngology, Nov. 1980, vol. 1, No. 5, pp. 378-384.
Hypertension and Renal Disease: Mechanisms, Slide Show by www.hypertensiononline.org, 22 pages Mar. 30, 2001.
Hypertension Incidence and Prevalence, Age-Specific Rates, by Gender, B.C., 2001/2002, Graph, Chronic Disease Management, May 2003, British Columbia Ministry of Health Services, 1 page.
Implantable Neurostimulation Systems, Medtronic Neurological, Jan. 18, 1999, 6 pages. http://medtronic.com/neuro/paintherapies/pain_treatment_ladder/pdf/implantable_brochure.pdf.
Implantable Pump—The Medtronic MiniMed 2007 Implantable Insulin Pump System, Medtronic MiniMed 2004, 4 pgs.
International Search Report and Written Opinion for PCT/US2009/069334; Applicant: Ardian, Inc.; dated Mar. 1, 2010, 10 pgs.
International Search Report and Written Opinion, PCT/US05/35693, dated Mar. 8, 2006, Applicant: Ardian, Inc., 29 pgs.
International Search Report and Written Opinion, PCT/US05/35757, dated Dec. 27, 2006, Applicant: Ardian, Inc., 8 pgs.
International Search Report and Written Opinion, PCT/US06/36120, dated Jun. 25, 2008, Applicant: Ardian, Inc., 10 pgs.
International Search Report and Written Opinion, PCT/US06/41889, dated Oct. 20, 2008, Applicant: Ardian, Inc., 7 pgs.
International Search Report and Written Opinion, PCT/US06/48822, dated Aug. 15, 2008, Applicant: Ardian, Inc., 12 pgs.
International Search Report and Written Opinion, PCT/US07/633222, dated Mar. 3, 2008, Applicant: Ardian, Inc., 10 pgs.
International Search Report and Written Opinion, PCT/US07/63324, dated Oct. 10, 2008, Applicant: Ardian, Inc., 10 pgs.
International Search Report and Written Opinion, PCT/US07/66539, dated Jan. 28, 2008, Applicant: Ardian, Inc., 6 pgs.
International Search Report and Written Opinion, PCT/US07/70799, dated Jul. 2, 2008, Applicant: Ardian, Inc., 7 pgs.
International Search Report and Written Opinion, PCT/US07/72396, dated Aug. 27, 2008, Applicant: Ardian, Inc., 9 pgs.
International Search Report and Written Opinion, PCT/US07/84701, dated Aug. 21, 2008, Applicant: Ardian, Inc., 11 pgs.
International Search Report and Written Opinion, PCT/US07/84705, dated Jul. 28, 2008, Applicant: Ardian, Inc., 12 pgs.
International Search Report and Written Opinion, PCT/US07/84708, dated Aug. 11, 2008, Applicant: Ardian, Inc., 9 pgs.
International Search Report, PCT/US02/0039, dated Sep. 11, 2002, Applicant: Advanced Neuromodulation Systems, Inc.
International Search Report, PCT/US02/25712, dated Apr. 23, 2003, Applicant: Cyberonics, Inc.
International Search Report, PCT/US03/08014, dated Sep. 23, 2003, Applicant: The General Hospital Corporation.
International Search Report, PCT/US03/09764, dated Oct. 28, 2003, Applicant: CVRX, Inc.
International Search Report, PCT/US04/38498, dated Feb. 18, 2005, Applicant: G & L Consulting, LLC, 4 pgs.
Introduction to Autonomic Pharmacology, Chapter 3, Part 2 Autonomic Pharmacology, pp. 18-26, May 24, 2002.
Isovue: Data Sheet. Regional Health Limited. 8 pgs. Mar. 11, 2003.
Israili, Z.H., Clinical pharmacokinetics of angiotensin II (AT) receptor blockers in hypertension, Journal of Human Hypertension, 2000, Macmillan Publishers Ltd., vol. 14, pp. S73-S86.
Janda, J., Impact of the electrical stimulation apparatus rebox on the course of ischemic renal damage in rats, British Library—The world's knowledge pp. 252-254 (translated and untranslated versions) 1996.
Janssen, Ben J.A. et al., Effects of complete renal denervation and selective afferent renal denervation on the hypertension induced by intrarenal norepinephrine infusion in conscious rats, Jan. 4, 1989, Journal of Hypertension 1989, vol. 7, No. 6, Current Science Ltd, pp. 447-455.
Jia, Jianping et al., Cold injury to nerves is not due to ischaemia alone, Brain. 121;pp. 989-1001. 1998.
Jia, Jianping et al.., The pathogenesis of non-freezing cold nerve injury: Observations in the rat, Brain. 120; pp. 631-646. 1997.
Jin, Yuanzhe et al., Pulmonary Vein Stenosis and Remodeling After Electrical Isolation for Treatment of Atrial Fibrillation: Short- and Medium-Term Follow-Up, PACE, vol. 27., Oct. 2004, pp. 1362-1370.
Johansson, Bjorn, Electrical Membrane Breakdown, A Possible Mediator of the Actions of Electroconvulsive Therapy, Medical Hypotheses 1987, vol. 24, Longman Group UK Ltd 1987, pp. 313-324.
Joles, J.A. et al., Causes and Consequences of Increased Sympathetic Activity in Renal Disease. Hypertension. 2004;43:699-706.
Jorgensen, William A. et al., Electrochemical Therapy of Pelvic Pain: Effects of Pulsed Electromagnetic Fields (PEMF) on Tissue Trauma, Eur J Surg 1994, Suppl 574, vol. 160, 1994 Scandinavian University Press, pp. 83-86.
Joshi, R. P. and K. H. Schoenbach, Mechanism for membrane electroporation irreversibility under high-intensity, ultrashort electrical pulse conditions, Nov. 11, 2002, Physical Review E 66, 2002, The American Physical Society 2002, pp. 052901-1-052901-4.
Joshi, R. P. et al., Improved energy model for membrane electroporation in biological cells subjected to electrical pulses, Apr. 9, 2002, Physical Review E, vol. 65, 041920-1, 2002 The American Physical Society, 8 pages.
Joshi, R. P. et al., Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses, Jun. 21, 2001, Physical Review E, vol. 64, 011913, 2001 The American Physcial Society, pp. 1-10.
Joye, James D.et al., In Vivo Study of Endovascular Cryotherapy for the Prevention of Restenosis, 4 pages, 2003.
Kanduser, Masa et al., Effect of surfactant polyoxyethylene glycol (C12E8) on electroporation of cell line DC3F, Aug. 20, 2002, Colloids and Surfaces A: Physicochem. Eng. Aspects 214, 2003, Elsevier Science B.V. 2002, pp. 205-217.
Kassab, S. et al., Renal denervation attenuates the sodium retention and hypertension associated with obesity, Hypertension, 1995, 25:893-897.
Katholi, R.E. et al., Importance of the renal nerves in established two-kidney, one clip Goldblatt hypertension, Hypertension, 1982, 4 (suppl II): II-166-II-174.
Katholi, R.E. et al., Role of the renal nerves in the pathogenesis of one-kidney renal hypertension in the rat, Hypertension, 1981, 3(4) 404-409.
Katholi, R.E., Renal nerves and hypertension: an update, Fed Proc., 1985, 44:2846-2850.
Katholi, Richard E., Renal nerves in the pathogenesis of hypertension in experimental animals and humans, Am. J. Physiol. vol. 245, 1983, the American Physiological Society 1983, pp. F1-F14.
Kaye, D.M. et al., Functional and neurochemical evidence for partial cardiac sympathetic reinnervation after cardiac transplantation in humans, Circulation, 1993, vol. 88, pp. 1101-1109.
Kelleher, Catherine L. et al., Characteristics of Hypertension in Young Adults with Autosomal Dominant Polycystic Kidney Disease Compared with the General U.S. Population, Jun. 9, 2004, American Journal of Hypertension 2004, pp. 1029-1034.
King, Ronald W. P., Nerves in a Human Body Exposed to Low-Frequency Electromagnetic Fields, Jun. 7, 1999, IEEE Transactions on Biomedical Engineering, vol. 46, No. 12, Dec. 1999, IEEE 1999, pp. 1426-1431.
Kinney, Brian M., M.D., High-Tech Healing—The evolution of therapeutic electromagnetic fields in plastic surgery, Plastic Surgery Products, Jun. 2004, pp. 32-36, 3 pages.
Kirchheim, H. et al., Sympathetic modulation of renal hemodynamics, renin release and sodium excretion, Klin Wochenschr, 1989, 67:858-864.
Klein, K. et al., Impaired autofeedback regulation of hypothalamic norepinephrine release in experimental uremia. J Am Soc Nephrol. 2005;16:2081-7.
Knot, H. J. et al., Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. The Journal of Physiology. 1998. 508; pp. 199-209.
Kok, Lai Chow et al. Effect of Heating on Pulmonary Veins: How to Avoid Pulmonary Vein Stenosis. Journal of Cardiovascular Electrophysiology. vol. 14, No. 3, Mar. 2003. pp. 250-254.
Kok, R. J. et al., Specific Delivery of Captopril to the Kidney with the Prodrug Captopril-Lysozyme, Aug. 16, 1998, Journal of Pharmacology and Experimental Therapeutics, vol. 288, No. 1, 1999 by The American Society for Pharmacology and Experimental Therapeutics, pp. 281-285.
Kon, V. Neural Control of Renal Circulation, Miner Electrolyte Metab. 1989;15:33-43.
Koomans, H.A., et al., Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol. 2004;15:524-37.
Kopp, U. et al., Dietary sodium loading increases arterial pressure in afferent renal-denervated rats, Hypertension, 2003, 42:968-973.
Kopp, U.C. et al., Renal sympathetic nerve activity modulates afferent renal nerve activity by PGE2-dependent activation of alpha1- and alpha2-adrenoceptors on renal sensory nerve fibers. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1561-72.
Koyama, Shozo et al., Relative Contribution of Renal Nerve and Adrenal Gland to Renal Vascular Tone During Prolonged Canine Hemorrhagic Hypotension, Sep. 24, 1992, Circulatory Shock 1993, vol. 39, Wiley-Liss, Inc. 1993, pp. 269-274.
Kozak, Lola Jean, Ph.D et al., National Hospital Discharge Survey: 2001 Annual Summary with Detailed Diagnosis and Procedure Data, Vital and Health Statistics, Serices 13 No. 156, Jun. 2004, CDC, 206 pages.
Kumagai, K. et al. New Approach to Pulmonary Vein Isolation for Atrial Fibrillation Using a Multielectrode Basket Catheter. Circulation Journal. 2006;70:88-93.
Lafayette, Richard A., M.D., How Does Knocking Out Angiotensin II Activity Reduce Renal Injury in Mice?, Jun. 14, 1999, Journal Club, American Journal of Kidney Diseases, vol. 35, No. 1, Jan. 2000, National Kidney Foundation, Inc. 2000, pp. 166-172.
Lavie, Peretz, Ph.D. and Victor Hoffstein, M.D., Sleep Apnea Syndrome: A Possible Contributing Factor to Resistant Hypertension, Jun. 2001, Sleep 2001, vol. 24, No. 6, pp. 721-725.
Le Noble, J.L. et al., Pharmacological evidence for rapid destruction of efferent renal nerves in rats by intrarenal infusion of 6-hydroxydopamine. J Hypertens Suppl. 1985;3:S137-40.
Lee, Michael A. (editor). SPORTSMed. Connecticut State Medical Society Committee on the Medical Aspects of Sports. Fall/Winter 2005. 10 pgs.
Lee, Raphael C. et al., Biophysical Injury Mechanisms in Electronic Shock Trauma, Annu. Rev. Biomed. Eng., 2000, vol. 2, Copyright © 2000 by Annual Reviews, pp. 477-509.
Lee, Raphael C. et al., Clinical Sequelae Manifested in Electrical Shock Survivors, Presentation by the Electrical Trauma Research Program, The University of Chicago, 37 pages Dec. 24, 2004.
Lee, Raphael C. et al., Membrane Biology and Biophysics, Chapter 25, Surgical Research, 2001 Academic Press, pp. 297-305.
Lee, Raphael C., M.D., Sc.D. And Michael S. Kolodney, S.B., Electrical Injury Mechanisms: Electrical Breakdown of Cell Membranes, Oct. 1, 1986, Plastic and Reconstructive Surgery, Nov. 1987, vol. 80, No. 5, pp. 672-679.
Lenoble, L.M. et al., Selective efferent chemical sympathectomy of rat kidneys. Am J Physiol. 1985;249:R496-501.
Ligtenberg, Gerry M.D. et al., Reduction of Sympathetic Hyperactivity by Enalapril in Patients with Chronic Renal Failure, Apr. 29, 1999, New England Journal of Medicine 1999, vol. 340, No. 17, 1999 Massachusetts Medical Society, pp. 1321-1328.
Lin, Vernon W. H. et al., High intensity magnetic stimulation over the lumbosacral spine evokes antinociception in rats, Apr. 16, 2002, Clinical Neurophysiology, vol. 113, 2002 Elsevier Science Ireland Ltd., pp. 1006-1012.
Lipfert, Peter, M.D. et al., Tachyphylaxis to Local Anesthetics Does Not Result form Reduced Drug Effectiveness at the Nerve Itself, Aug. 3, 1988, Anesthesiology 1989, vol. 70, pp. 71-75.
Lohmeier, Thomas E. and Drew A. Hildebrandt, Renal Nerves Promote Sodium Excretion in Angiotensin-Induced Hypertension, Oct. 20, 1997, Hypertension 1998, vol. 31, part 2, 1998 American Heart Association, Inc., pp. 429-434.
Lohmeier, Thomas E. et al., Prolonged Activation of the Baroreflex Produces Sustained Hypotension, Harry Goldblatt Award, Nov. 26, 2003, Hypertension 2004, vol. 43, Part 2, 2004 American Heart Association, Inc., pp. 306-311.
Lohmeier, Thomas E. et al., Renal Nerves Promote Sodium Excretion During Long-Term Increases in Salt Intake, Oct. 23, 1998, Hypertension 1999, vol. 33, part II, 1999 American Heart Association, Inc., pp. 487-492.
Lohmeier, Thomas E. et al., Sustained influence of the renal nerves to attenuate sodium retention in angiotensin hypertension, Apr. 13, 2001, Am J Physiol Regulatory Integrative Comp Physiol, vol. 281, 2001 the American Physiological Society, pp. R434-R443.
Lohmeier, Thomas E., et al., Baroreflexes prevent neurally induced sodium retention in angiotensin hypertension, American Journal Physiol Regulatory Integrative Comp Physiol, vol. 279, 2000 the American Physiological Society, pp. R1437-R1448.
Lohmeier, Thomas E., Interactions Between Angiotensin II and Baroreflexes in Long-Term Regulation of Renal Sympathetic Nerve Activity, Circulation Research, Jun. 27, 2003, American Heart Association, Inc.2003, pp. 1282-1284.
Luff, S.E. et al., Two types of sympathetic axon innervating the juxtaglomerular arterioles of the rabbit and rat kidney differ structurally from those supplying other arteries, May 1, 1991, Journal of Neurocytology 1991, vol. 20, 1991 Chapman and Hall Ltd., pp. 781-795.
Luippold, G. et al., Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats, Nephrol Dial Transplant (2004) 19:342-347.
Lundborg, C. et al., Clinical experience using intrathecal (IT) bupivacaine infusion in three patients with complex regional pain syndrome type I (CRPS-I), Acta Anaesthesiol Scand 1999, vol. 43, pp. 667-678.
Maeder, Micha, M.D. et al., Contrast Nephropathy: Review Focusing on Prevention, Jun. 22, 2004, Journal of the American College of Cardiology Nov. 2, 2004, vol. 44, No. 9, 2004 by the American College of Cardiology Foundation, pp. 1763-1771.
Malpas, Simon C., What sets the long-term level of sympathetic nerve activity: is there a role for arterial baroreceptors?, Invited Review, Am J Physiol Regul Integr Comp Physiol 2004, vol. 286, 2004 the American Physiological Society, pp. R1-R12.
Mancia, G., Grassi, G., Giannattasio, C., Seravalle, G., Sympathetic actrivation of pathogenesis of hypertension and progression of organ damage, Hypertension 1999, 34 (4 Pt 2): 724-728.
Marenzi, Giancarlo, M.D. et al., The Prevention of Radiocontrast-Agent-Induced Nephropathy by Hemofiltration, New England Journal of Medicine, Oct. 2, 2003, vol. 349 (14), 2003 Massachusetts Medical Society, pp. 1333-1340.
Market for infusion pumps grows with an aging population, NWL 97-01, The BBI Newsletter, vol. 20, No. 2, Feb. 1, 1997, American Health Consultants, Inc., pp. 6.
Martin, Jason B. et al., Gene Transfer to Intact Mesenteric Arteries by Electroporation, Mar. 27, 2000, Journal of Vascular Research 2000, vol. 37, 2000 S. Karger AG, Basel, pp. 372-380.
McCreery, Douglas B. et al., Charge Density and Charge Per Phase as Cofactors in Neural Injury Induced by Electrical Stimulation, IEEE Transactions on Biomedical Engineering, vol. 17, No. 10, Oct. 1990, pp. 996-1000.
McCullough, Peter A., M.D., MPH et al., Acute Renal Failure after Coronary Intervention: Incidence, Risk Factors and Relationship to Mortality, Apr. 14, 1997, Am J Med. 1997, vol. 103, 1997 Excerpta Medica, Inc., pp. 368-375.
McMurray, John J.V., M.D. and Eileen O'Meara, M.D., Treatment of Heart Failure with Spironolactone—Trial and Tribulations, Aug. 5, 2004, New England Journal of Medicine, vol. 351, No. 6, 2004 Massachusetts Medical Society, pp. 526-528.
McRobbie, D. and M.A. Foster, Thresholds for biological effects of time-varying magnetic fields, Dec. 16, 1983, Clin. Phys. Physiol. Meas. 1984, vol. 5, No. 2, 1984 The Institute of Physics, pp. 67-78.
Medtronic Neurostimulation Systems, Expanding the Array of Pain Control Solutions, informational pamphlet, 1999 Medtronic, Inc., 6 pages.
Medtronic, Spinal Cord Stimulation, Patient Management Guidelines for Clinicians, Medtronic, Inc. 1999, 115 pages.
Medtronic, SynchroMed Infusion System—Clinical Reference Guide for Pain Therapy, Medtronic, Inc. 1998, 198 pages.
Mehran, Roxana, Renal insufficiency and contrast nephropathy: The most common, least understood risk factor, Cardiovascular Research Foundation, Columbia University Medical Center, 2005, 86 slides.
Mess, Sarah A., M.D. et al., Implantable Baclofen Pump as an Adjuvant in Treatment of Pressure Sores, Mar. 1, 2003, Annals of Plastic Surgery, vol. 51, No. 5, Nov. 2003, Lippincott Williams & Wilkins 2003, pp. 465-467.
Micro ETS Hyperhidrosis USA Hyperhidrosis USA. 2 pgs. <URL: http://www.hyperhidrosis-usa.com/Index.html>. Nov. 6, 2006.
Mihran, Richard T. et al., Temporally-Specific Modification of Myelinated Axon Excitability in Vitro Following a Single Ultrasound Pulse, Sep. 25, 1989, Ultrasound in Med. & Biol. 1990, vol. 16, No. 3, pp. 297-309.
Miklav{hacek over (c)}i{hacek over (c)}, D. et al, A Validated Model of in Vivo Electric Field Distribution in Tissues for Electrochemotherapy and for DNA Electrotransfer for Gene Therapy, Biochimica et Biophysica Acta, 1523, 2000, pp. 73-83, <http:www.elsevier.com/locate/bba>.
Mitchell, G. A. G., The Nerve Supply of the Kidneys, Aug. 20, 1949, Acta Anatomica, vol. X, Fasc. ½, 1950, pp. 1-37.
Morrisey, D.M. et al., Sympathectomy in the treatment of hypertension: Review of 122 cases, Lancet. 1953;1:403-408.
Moss, Nicholas G., Renal function and renal afferent and efferent nerve activity, Am. J. Physiol. 1982, vol. 243, 1982 the American Physiological Society, pp. F425-F433.
Munglani, Rajesh, The longer term effect of pulsed radiofrequency for neuropathic pain, Jun. 8, 1998, Pain 80, 1999, International Association for the Study of Pain 1999, Published by Elsevier Science B.V., pp. 437-439.
Naropin (ropivacaine HCl) Injection, RX only Description, AstraZeneca 2001, 3 pages.
National High Blood Pressure Education Program, 1995 Update of the Working Group Reports on Chronic Renal Failure and Renovascular Hypertension, presentation, 13 pages.
National Kidney Foundation, Are You at Increased Risk for Chronic Kidney Disease?, 2002 National Kidney Foundation, Inc., 14 pages.
Nelson, L. et al., Neurogenic Control of Renal Function in Response to Graded Nonhypotensive Hemorrahage in Conscious Dogs, Sep. 13, 1992, Am J. Physiol. 264, 1993, American Physiological Society 1993, pp. R661-R667.
Nikolsky, Eugenia, M.D. et al., Radiocontrast Nephropathy: Identifying the High-Risk Patient and the Implications of Exacerbating Renal Function, Rev Cardiovasc Med. 2003, vol. 4, Supp. 1, 2003 MedReviews, LLC, pp. S7-S14.
Non-Final Office Action; U.S. Appl. No. 10/408,665; dated Mar. 21, 2006, 14 pgs.
Non-Final Office Action; U.S. Appl. No. 11/129,765; dated May 18, 2007, 10 pgs.
Non-Final Office Action; U.S. Appl. No. 11/129,765; dated Sep. 10, 2007, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/129,765; dated Oct. 6, 2006, 30 pgs.
Non-Final Office Action; U.S. Appl. No. 11/133,925; dated Oct. 8, 2008, 41 pgs.
Non-Final Office Action; U.S. Appl. No. 11/144,173; dated Apr. 5, 2007, 33 pgs.
Non-Final Office Action; U.S. Appl. No. 11/144,173; dated Sep. 10, 2007, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/144,298; dated Oct. 29, 2009, 8 pgs.
Non-Final Office Action; U.S. Appl. No. 11/144,298; dated Apr. 5, 2007, 33 pgs.
Non-Final Office Action; U.S. Appl. No. 11/144,298; dated Sep. 10, 2007, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/144,298; dated Dec. 29, 2008, 7 pgs.
Non-Final Office Action; U.S. Appl. No. 11/145,122; dated Apr. 11, 2007, 33 pgs.
Non-Final Office Action; U.S. Appl. No. 11/145,122; dated Sep. 10, 2007, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/189,563; dated May 28, 2009, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/233,814; dated Jun. 17, 2008, 12 pgs.
Non-Final Office Action; U.S. Appl. No. 11/252,462; dated Feb. 22, 2010, 6 pgs.
Non-Final Office Action; U.S. Appl. No. 11/266,993; dated Jul. 8, 2009, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/266,993; dated Dec. 30, 2008, 7 pgs.
Non-Final Office Action; U.S. Appl. No. 11/363,867; dated Sep. 25, 2008, 10 pgs.
Non-Final Office Action; U.S. Appl. No. 11/368,553; dated May 18, 2010, 4 pgs.
Non-Final Office Action; U.S. Appl. No. 11/368,553; dated Oct. 7, 2009, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/368,809; dated Dec. 3, 2009, 4 pgs.
Non-Final Office Action; U.S. Appl. No. 11/368,949; dated Jun. 11, 2010, 6 pgs.
Non-Final Office Action; U.S. Appl. No. 11/368,971; dated Aug. 24, 2010, 9 pgs.
Non-Final Office Action; U.S. Appl. No. 11/451,728; dated Jun. 12, 2008, 41 pgs.
Non-Final Office Action; U.S. Appl. No. 11/451,728; dated Jul. 2, 2009, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/451,728; dated Dec. 28, 2009, 7 pgs.
Non-Final Office Action; U.S. Appl. No. 11/504,117; dated Mar. 31, 2009, 10 pgs.
Non-Final Office Action; U.S. Appl. No. 11/599,649; dated Mar. 30, 2009, 10 pgs.
Non-Final Office Action; U.S. Appl. No. 11/599,649; dated Jun. 23, 2008, 9 pgs.
Non-Final Office Action; U.S. Appl. No. 11/599,723; dated Jun. 26, 2009, 17 pgs.
Non-Final Office Action; U.S. Appl. No. 11/599,723; dated Oct. 15, 2010, 16 pgs.
Non-Final Office Action; U.S. Appl. No. 11/599,882; dated Jul. 6, 2009, 13 pgs.
Non-Final Office Action; U.S. Appl. No. 11/688,178; dated Jun. 28, 2010, 5 pgs.
Non-Final Office Action; U.S. Appl. No. 11/840,142; dated Apr. 3, 2009, 13 pgs.
Non-Final Office Action; U.S. Appl. No. 12/567,521; dated Sep. 3, 2010, 9 pgs.
Non-Final Office Action; U.S. Appl. No. 12/616,708; dated Sep. 16, 2010, 10 pgs.
Non-Final Office Action; U.S. Appl. No. 12/725,375; dated Oct. 12, 2010, 14 pgs.
Nozawa, T.et al., Effects of Long Term Renal Sympathetic Denervation on Heart Failure After Myocardial Infarction in Rats, Sep. 22, 2001, Heart Vessels, 2002, 16, Springer-Verlag 2002, pp. 51-56.
O'Hagan, K.P. et al., Renal denervation decreases blood pressure in DOCA-treated miniature swine with established hypertension, Am J Hypertens., 1990, 3:62-64.
Onesti, G. et al., Blood pressure regulation in end-stage renal disease and anephric man, Circ Res Suppl., 1975, 36 & 37: 145-152.
Osborn, et al., Effect of renal nerve stimulation on renal blood flow autoregulation and antinatriuresis during reductions in renal perfusion pressure, in Proceedings of the Society for Experimental Biology and Medicine, vol. 168, 77-81, 1981. (Abstract).
Packer, Douglas L. et al., Clinical Presentation, Investigation, and Management of Pulmonary Vein Stenosis Complication Ablation for Atrial Fibrillation, Circulation: Journal of the American Heart Association. Feb. 8, 2005. pp. 546-554.
Page, I.H. et al., The Effect of Renal Denervation on the Level of Arterial Blood Pressure and Renal Function in Essential Hypertension. J Clin Invest. 1935;14:27-30.
Page, I.H., et al., The Effect of Renal Efficiencyof Lowering Arterial Blood Pressure in Cases of Essential Nephritis, Hospital of the Rockefeller Institue, Jul. 12, 1934, 7 pgs.
Palmer, Biff, F., M.D., Managing Hyperkalemia Caused by Inhibitors of the Renin-Angiotensin-Aldosterone System, Aug. 5, 2004, The New England Journal of Medicine 2004, vol. 351;6, 2004 Massachusetts Medical Society, pp. 585-592.
Pappone, Carlo et al., [2005][P2-70] Safety Report of Circumferential Pulmonary Vein Ablation. A 9-Year Single-Center Experience on 6,442 Patients with Atrial Fibrillation, Abstract only. 1 page, May 2005.
Pappone, Carlo et al., [2004][759] Pulmonary Vein Denervation Benefits Paroxysmal Atrial Fibrillation Patients after Circumferential Ablation, Abstract only. 1 page, Jan. 5, 2004.
Pappone, Carol and Santinelli, Vincenzo. Multielectrode basket catheter: A new tool for curing atrial fibrillation? Heart Rhythm, vol. 3, Issue 4, pp. 385-386. Apr. 2006.
Peacock, J.M. and R. Orchardson, Action potential conduction block of nerves in vitro by potassium citrate, potassium tartrate and potassium oxalate, May 6, 1998, Journal of Clinical Periodontology, Munksgaard 1999, vol. 26, pp. 33-37.
Petersson, M. et al., Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J. 2005;26:906-13.
Pettersson, A. et al., Renal interaction between sympathetic activity and ANP in rats with chronic ischaemic heart failure, Nov. 25, 1988, Acta Physiol Scand 1989, 135, pp. 487-492.
PHCL 762 Pharmacology of the Autonomic Nervous System, Chapter 2 and 6.8 in Mosby, http://www.kumc.edu/research/medicine/pharmacology/CAI/phcl762.html, last accessed Aug. 24, 2004, 14 pgs.
Pitt, B. et al., Effects of Eplerenone, Enalapril, and Eplerenone/Enalapril in Patients With Essential Hypertension and Left Ventricular Hypertrophy: The 4E-Left Ventricular Hypertrophy Study, Circulation, 2003, vol. 108, pp. 1831-1838.
Pliquett, U., Joule heating during solid tissue electroporation, Oct. 22, 2002, Med. Biol. Eng. Comput., 2003, vol. 41, pp. 215-219.
Podhajsky R.J. et al, The Histologic Effects of Pulsed and Continuous Radiofrequency Lesions at 42 C to Rat Dorsal Root Ganglion and Sciatic Nerve, Spine, vol. 30, No. 9, 2005, Lippincott Williams & Wilkins Inc., pp. 1008-1013.
Pope, Jill. Fixing a Hole: Treating Injury by Repairing Cells. The New York Academy of Sciences. Jul. 6, 2006. 6 pgs.
Popovic, Jennifer R. and Margaret J. Hall, 1999 National Hospital Discharge Survey, Apr. 24, 2001, Advance Data, No. 319, CDC, pp. 1-17 & 20.
Practice Guidelines Writing Committee and ESH/ESC Hypertension Guidelines Committee, Practice Guidelines for Primary Care Physicians: 2003 ESH/ESC Hypertension Guidelines, Published in Journal of Hypertension 2003, vol. 21, No. 10: 1011-1053, European Society of Hypertension 2003, pp. 1779-1786.
Programmable Infusion System, Pumps and Pump Selection, Medtronic Pain Therapies, Medtronic, Inc. Sep. 5, 2001, 2 pgs.
Pucihar, Gorazd et al., The influence of medium conductivity on electropermeabilization and survival of cells in vitro, May 31, 2001, Bioelectrochemistry, vol. 54, 2001, Elsevier Science B.V. 2001, pp. 107-115.
Pulmonary Concepts in Critical Care Breath Sounds, http://rnbob.tripod.com/breath.htm, last accessed Aug. 23, 2004, 5 pages.
Pulmonary Function Testing, http://jan.ucc.nau.edu/˜daa/lecture/pft.htm, last accessed Aug. 23, 2004, 8 pages.
Purerfellner, Helmut and Martinek, Martin. Pulmonary vein stenosis following catheter ablation of atrial fibrillation. Current Opinion in Cardiology. 20; pp. 484-490. 2005.
Purerfellner, Helmut et al., Pulmonary Vein Stenosis by Ostial Irrigated-Tip Ablation: Incidence, Time Course, and Prediction, Journal of Cardiovascular Electrophysiology. vol. 14, No. 2, Feb. 2003. pp. 158-164.
Raji, A. R. M. and R. E. M. Bowden, Effects of High-Peak Pulsed Electromagnetic Field on the Degeneration and Regeneration of the Common Peroneal Nerve in Rats, The Journal of Bone and Joint Surgery Aug. 1983, vol. 65-B, No. 4, 1983 British Editorial Society of Bone and Joint Surgery, pp. 478-492.
Ram, C. Venkata S., M.D., Understanding refractory hypertension, May 15, 2004, Patient Care May 2004, vol. 38, pp. 12-16, 7 pages from http://www.patientcareonline.com/patcare/content/printContentPopup.jsp?id=108324.
Ravalia, A. et al., Tachyphylaxis and epidural anaesthesia, Edgware General Hospital, Correspondence, p. 529, Jun. 1989.
Renal Parenchymal Disease, Ch. 26, 5th Edition Heart Disease, A Textbook of Cardiovascular Medicine vol. 2, Edited by Eugene Braunwald, WB Saunders Company, pp. 824-825 1997.
Ribstein, Jean and Michael H. Humphreys, Renal nerves and cation excretion after acute reduction in functioning renal mass in the rat, Sep. 22, 1983, Am. J. Physiol., vol. 246, 1984 the American Physiological Society, pp. F260-F265.
Richebe, Philippe, M.D. et al., Immediate Early Genes after Pulsed Radiofrequency Treatment: Neurobiology in Need of Clinical Trials, Oct. 13, 2004, Anesthesiology Jan. 2005, vol. 102, No. 1, 2004 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc., pp. 1-3.
Rihal, Charanjit S. et al., Incidence and Prognostic Importance of Acute Renal Failure After Percutaneous Coronary Intervention, Mar. 6, 2002, Circulation May 14, 2002, vol. 10, 2002 American Heart Association, Inc., pp. 2259-2264.
Rosen, S.M. et al., Relationship of Vascular Reactivity to Plasma Renin Concentration in Patients with Terminal Renal Failure, Proc. Dialysis Transplant Forum 1974, pp. 45-47.
Roth, Bradley J. and Peter J. Basser, A Model of the Stimulation of a Nerve Fiber by Electromagnetic Induction, IEEE Transactions on Biomedical Engineering, vol. 37, No. 6, Jun. 1990, pp. 588-597.
Rudin, Asa, M.D. et al., Postoperative Epidural or Intravenous Analgesia after Major Abdominal or Thoraco-Abdominal Surgery, The Journal of the American Society of Anesthesiologists, Inc., Anesthesiology 2001, vol. 95, A-970, 1 page.
Rudnick, Michael R. et al., Contrast-induced nephropathy: How it develops, how to prevent it, Cleveland Clinic Journal of Medicine Jan. 2006, vol. 73, No. 1, pp. 75-87.
Rump, L.C., The Role of Sympathetic Nervous Activity in Chronic Renal Failure, J Clinical Basic Cardiology 2001, vol. 4, pp. 179-182.
Ruohonen, Jarmo et al., Modeling Peripheral Nerve Stimulation Using Magnetic Fields, Journal of the Peripheral Nervous System, vol. 2, No. 1, 1997, Woodland Publications 1997, pp. 17-29.
Saad, Eduardo B. et al., Pulmonary Vein Stenosis After Radiofrequency Ablation of Atrial Fibrillation: Functional Characterization, Evolution, and Influence of the Ablation Strategy, Circulation. 108; pp. 3102-3107. 2003.
Sabbah, Hani N., Animal Models for Heart Failure and Device Development, Henry Ford Health System. 24 slides, Oct. 17, 2005.
Schauerte, P et al., Focal atrial fibrillation: experimental evidence for a pathophysiologic role of the autonomic nervous system, Journal of Cardiovascular Electrophysiology. 12(5). May 2001. Abstract only. 2 pgs.
Schauerte, P et al., Catheter ablation of cardiac autonomic nerves for prevention of vagal atrial fibrillation, Circulation. 102(22). Nov. 28, 2000. Abstract only. 2 pgs.
Schauerte, P et al., Transvenous parasympathetic nerve stimulation in the inferior vena cava and atrioventricular conduction, Journal of Cardiovascular Electrophysiology. 11(1). Jan. 2000. Abstract only. 2 pgs.
Scheiner, Avram, Ph.D., The design, development and implementation of electrodes used for functional electrial stimulation, Thesis paper, Case Western Reserve University, May 1992, 220 pages.
Scherlag, BJ and Po, S., The intrinsic cardiac nervous system and atrial fibrillation, Current Opinion in Cardiology. 21(1):51-54, Jan. 2006. Abstract only. 2 pgs.
Schlaich, M.P. et al., Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108:560-5.
Schlaich, M.P. et al., Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation, Hypertension, 2004, 43:169-175.
Schmitt, Joseph et al., Intravascular Optical Coherence Tomography—Opening a Window into Coronary Artery Disease, LightLab Imaging, Inc. Business Briefing: European Cardiology 2005.
Schoenbach, Karl H. et al, Intracellular Effect of Ultrashort Electrical Pulses, Dec. 26, 2000, Bioelectromagnetics, vol. 22, 2001, Wiley-Liss, Inc. 2001, pp. 440-448.
Schrier, Robert et al., Cardiac and Renal Effects of Standard Versus Rigorous Blood Pressure Control in Autosomal-Dominant Polycistic Kidney Disease, Mar. 23, 2002, Journal of the American Society of Nephrology, American Society of Nephrology 2002, pp. 1733-1739.
Scremin, Oscar U., M.D., Ph.D. and Daniel P. Holschneider, M.D., 31 & 32.. An Implantable Bolus Infusion Pump for the Neurosciences, FFP, Apr. 2005, 3 pages.
Sensorcaine—MPF Spinal Injection, informational document, AstraZeneca 2001, 2 pgs.
Shah, D.C., Haissaguerre, M., Jais, P., Catheter ablation of pulmonary vein foci for atrial fibrillation: pulmonary vein foci ablation for atrial firbrillation, Thorac Cardiovasc Surg, 1999, 47 (suppl. 3): 352-356.
Shannon, J.L. et al., Studies on the innervation of human renal allografts, J Pathol. 1998, vol. 186, pp. 109-115.
Shlipak, M.G. et al., The clinical challenge of cardiorenal syndrome. Circulation. 2004;110:1514-7.
Shupak, Naomi M., Therapeutic Uses of Pulsed Magnetic-Field Exposure: A Review, Radio Science Bulletin Dec. 2003, No. 307, pp. 9-32.
Shu-Qing, Liu et al., Old spinal cord injury treated by pulsed electric stimulation, General Hospital of Beijing Command, Beijing, Dec. 6, 1990, 5 pages (full article in Chinese; abstract on last page).
Siegel, RJ et al., Clinical demonstration that catheter-delivered ultrasound energy reverses arterial vasoconstriction, Journal of the American College of Cardiology. 1992. 20; 732-735. Summary only. 2 pgs.
Simpson, B. et al., Implantable spinal infusion devices for chronic pain and spasticity: an accelerated systematic review, ASERNIP-S Report No. 42, Adelaide, South Australia, ASERNIP-S, May 2003, 56 pages.
Sisken, B.F. et al., 229.17 Influence of Non-Thermal Pulsed Radiofrequency Fields (PRF) on Neurite Outgrowth, Society for Neuroscience, vol. 21, 1995, 2 pages.
Skeie, B. et al., Effect of chronic bupivacaine infusion on seizure threshold to bupivacaine, Dec. 28, 1986, Acta Anaesthesiol Scand 1987, vol. 31, pp. 423-425.
Skopec, M., A Primer on Medical Device Interactions with Magnetic Resonance Imaging Systems, Feb. 4, 1997, CDRH Magnetic Resonance Working Group, U.S. Department of Heatlh and Human Services, Food and Drug Administration, Center for Devices and Radiological Health, Updated May 23, 1997, 17 pages, http://www.fda.gov/cdrh/ode/primerf6.html, (last accessed Jan. 23, 2006.
Slappendel, Robert et al., The efficacy of radiofrequency lesioning of the cervical spinal dorsal root ganglion in a double blinded randomized study, Jun. 26, 1997, Pain 73, 1997 International Association for the Study of Pain, Elsevier Science B.V., pp. 159-163.
Sluijter, M.D., Ph.D., Pulsed Radiofrequency, May 17, 2005, Anesthesiology Dec. 2005, vol. 103, No. 6, 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc., pp. 1313-1314.
Sluijter, M.D., Ph.D., Radiofrequency Part 1: The Lumbosacral Region, Chapter 1 Mechanisms of Chronic Pain and part of Chapter 2 Spinal Pain, 2001 FlivoPress SA, Meggen (LU), Switzerland, pp. 1-26.
Sluijter, M.D., Ph.D., Radiofrequency Part 2: Thoracic and Cervical Region, Headache and Facial Pain, various pages from, FlivoPress SA, Meggen (LU), Switzerland, 13 pages 2002.
Sluijter, M.D., Ph.D., The Role of Radiofrequency in Failed Back Surgery Patients, Current Review of Pain 2000, vol. 4, 2000 by Current Science Inc., pp. 49-53.
Smithwick, R.H. et al., Hypertension and associated cardiovascular disease: comparison of male and female mortality rates and their influence on selection of therapy, JAMA, 1956, 160:1023-1033.
Smithwick, R.H. et al., Splanchnicectomy for essential hypertension, Journal Am Med Assn, 1953;152:1501-1504.
Smithwick, R.H., Surgical treatment of hypertension, Am J Med 1948, 4:744-759.
Sobotka, Paul A., Treatment Strategies for Fluid Overload, CHF Patients, CHF Solutions. Transcatheter Cardiovascular Therapeutics 2005. 20 slides.
Solis-Herruzo, J.A. et al., Effects of lumbar sympathetic block on kidney function in cirrhotic patients with hepatorenal syndrome, Journal of Hepatology, 1987; 5: 167-173.
Souza, D.R.B. et al., Chronic experimental myocardial infarction produces antinatriuresis by a renal nerve-dependent mechanism, Oct. 14, 2003, Brazilian Journal of Medical and Biological Research 2004, vol. 37, pp. 285-293.
Standl, Thomas, M.D., et al., Patient-controlled epidural analgesia reduces analgesic requirements compared to continuous epidural infusion after major abdominal surgery, Aug. 29, 2002, Canada Journal of Anesthesia 2003, vol. 50 (3), pp. 258-264.
Steffen, W. et al., Catheter-delivered high intensity, low frequency ultrasound induces vasodilation in vivo, European Heart Journal. 1994. 15; pp. 369-376.
Steg, PG et al., Pulsed ultraviolet laser irradiation produces endothelium-independent relaxation of vascular smooth muscle, Circulation: Journal of the American Heart Association. 1989. pp. 189-197.
Stone, Gregg W., M.D. et al., Fenoldopam Mesylate for the Prevention of Contrast-Induced Nephropathy, JAMA Nov. 5, 2003, vol. 290, No. 17, 2003 American Medical Association, pp. 2284-2291.
Strojek, K. et al., Lowering of microalbuminuria in diabetic patients by a sympathicoplegic agent: novel approach to prevent progression of diabetic nephropathy? J Am Soc Nephrol. 2001 ;12:602-5.
Summary, Critical Reviews in Biomedical Engineering, vol. 17, Issue 5, 1989, pp. 515-529.
Sung, Duk Hyun, M.D. et al., Phenol Block of Peripheral Nerve Conduction: Titrating for Optimum Effect, Jun. 27, 2000, Arch. Phys. Med. Rehabil. vol. 82, May 2001, pp. 671-676.
Taka, Tomomi et al., Impaired Flow-Mediated Vasodilation in vivo and Reduced Shear-Induced Platelet Reactivity in vitro in Response to Nitric Oxide in Prothrombotic, Stroke-Prone Spontaneously Hypertensive Rats, Pathophysiology of Haemostasis and Thrombosis. Dec. 23, 2002. pp. 184-189.
Taler, Sandra J. et al., Resistant Hypertension, Comparing Hemodynamic Management to Specialist Care, Mar. 12, 2002, Hypertension 2002, vol. 39, 2002 American Heart Association, Inc., pp. 982-988.
Tamborero, David et al., Incidence of Pulmonary Vein Stenosis in Patients Submitted to Atrial Fibrillation Ablation: A Comparison of the Selective Segmental Ostial Ablation vs. the Circumferential Pulmonary Veins Ablation, Journal of Intervocational Cardiac Electrophysiology. 14; pp. 41-25. 2005.
Tay, Victoria KM, et al., Computed tomography fluoroscopy-guided chemical lumbar sympathectomy: Simple, safe and effective, Oct. 31, 2001, Diagnostic Radiology, Australasian Radiology 2002, vol. 46, pp. 163-166.
Terashima, Mitsuyasu et al. Feasibility and Safety of a Novel CryoPlasty™ System. Poster. 1 page, Mar. 15, 2002.
Thatipelli et al., CT Angiography of Renal Artery Anatomy for Evaluating Embolic Protection Devices, Journal of Vascular and Interventional Radiology, Jul. 2007, pp. 842-846.
The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial, ALLHAT Research Group, JAMA, 2002, vol. 288, pp. 2981-2997.
Thomas, John R. and Oakley, E. Howard N. Chapter 15: Nonfreezing Cold Injury Medical Aspects of Harsh Environments, vol. 1. pp. 467-490, 2001.
Thompson, Gregory W., et al., Bradycardia Induced by Intravascular Versus Direct Stimulation of the Vagus Nerve, Aug. 24, 1997, The Society of Thoracic Surgeons 1998, pp. 637-642.
Thrasher, Terry N., Unloading arterial baroreceptors causes neurogenic hypertension, Dec. 4, 2001, Am J. Physiol Regulatory Integrative Comp Physiol, vol. 282, 2002 the American Physiological Society, pp. R1044-R1053.
Tokuno, Hajime A. et al., Local anesthetic effects of cocaethylene and isopropylcocaine on rat peripheral nerves, Oct. 7, 2003, Brain Research 996, 2004, Elsevier B.V. 2003, pp. 159-167.
Trapani, Angelo J. et al., Neurohumoral interactions in conscious dehydrated rabbit, Am. J. Physiol. 254, 1988, the American Physiological Society 1988, pp. R338-R347.
Trock, David H. et al., The Effect of Pulsed Electromagnetic Fields in the Treatment of Osteoarthritis of the Knee and Cervical Spine. Report of Randomized, Double Blind, Placebo Controlled Trials, Mar. 22, 1994, The Journal of Rheumatology 1994, vol. 21, pp. 1903-1911.
Troiano, Gregory C. et al., The Reduction in Electroporation Voltages by the Addition of a Surfactant to Planar Lipid Bilayers, May 12, 1998, Biophysical Journal, vol. 75, Aug. 1998, the Biophysical Society 1998, pp. 880-888.
Trumble, Dennis R. and James A. MaGovern, Comparison of Dog and Pig Models for Testing Substernal Cardiac Compression Devices, Nov. 2003, ASAIO Journal 2004, pp. 188-192.
Tsai, E., Intrathecal drug delivery for pain indications, technique, results, Pain Lecture presentation, Jun. 8, 2001, 31 pages.
Uematsu, Toshihiko, M.D., Ph.D., F.I.C.A. et al., Extrinsic Innervation of the Canine Superior Vena Cava, Pulmonary, Portal and Renal Veins, Angiology—Journal of Vascular Diseases, Aug. 1984, pp. 486-493.
United States Renal Data System, USRDS 2003 Annual Data Report: Atlas of End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2003, 593 pages.
Upadhyay, Pramod, Electroporation of the skin to deliver antigen by using a piezo ceramic gas igniter, Jan. 27, 2001, International Journal of Pharmaceutics, vol. 217, 2001 Elsevier Science B.V., pp. 249-253.
Valente, John F. et al., Laparoscopic renal denervation for intractable ADPKD-related pain, Aug. 24, 2000, Nephrol Dial Transplant 2001, vol. 16, European Renal Association—European Dialysis and Transplant Association, p. 160.
Van Antwerp, Bill and Poonam Gulati, Protein Delivery from Mechanical Devices Challenges and Opportunities, Medtronic presentation, 19 pages, Jul. 2003.
Velazquez, Eric J., An international perspective on heart failure and left ventricular systolic dysfunction complicating myocardial infarction: The VALIANT registry, Aug. 5, 2004, European Heart Journal vol. 25, 2004 Elsevier, pp. 1911-1919.
Velez-Roa, Sonia, M.D. et al., Peripheral Sympathetic Control During Dobutamine Infusion: Effects of Aging and Heart Failure, Jul. 7, 2003, Journal of the American College of Cardiology, vol. 42, No. 9, 2003, American College of Cardiology Foundation 2003, pp. 1605-1610.
Villarreal, Daniel et al., Effects of renal denervation on postprandial sodium excretion in experimental heart failure, Oct. 29, 1993, Am J Physiol 266, 1994, pp. R1599-R1604.
Villarreal, Daniel et al., Neurohumoral modulators and sodium balance in experimental heart failure, Nov. 6, 1992, Am. J. Physiol, vol. 264, 1993, pp. H1187-H1193.
Vonend, O. et al., Moxonidine treatment of hypertensive patients with advanced renal failure. J Hypertens. 2003;21:1709-17.
Wagner, C.D. et al., Very low frequency oscillations in arterial blood pressure after autonomic blockade in conscious dogs, Feb. 5, 1997, Am J Physiol Regul Integr Comp Physiol 1997, vol. 272, 1997 the American Physiological Society, pp. 2034-2039.
Wald, Jan D., Ph.D, et al., Cardiology Update: 2003, Sep. 11, 2003, AG Edwards 2003, 120 pages.
Wang, Xi et al., Alterations of adenylyl cyclase and G proteins in aortocaval shunt-induced heart failure, Jul. 2004, Am J Physiol Heart Circ Physiol vol. 287, 2004 the American Physiological Society, pp. H118-H125.
Weaver, James C., Chapter 1 Electroporation Theory, Concepts and Mechanisms, Methods in Molecular Biology, vol. 55, Plant Cell Electroporation and Electrofusion Protocols, Edited by J.A. Nickoloff, Humana Press Inc., pp. 3-28, 1995.
Weaver, James C., Electroporation: A General Phenomenon for Manipulating Cells and Tissues, Oct. 22, 1992, Journal of Cellular Biochemistry, vol. 51, 1993 Wiley-Liss, Inc., pp. 426-435.
Weiner, Richard L., M.D., Peripheral nerve neurostimulation, Neurosurg. Clin. N. Am. vol. 14, 2003, Elsevier, Inc. 2003, pp. 401-408.
Weisbord, Steven D., M.D. and Paul M. Palevsky, M.D., Radiocontrast-Induced Acute Renal Failure, Jul. 10, 2004, Journal of Intensive Care Medicine 2005, vol. 20 (2), 2005 Sage Publications, pp. 63-75.
Whitelaw, G.P., Kinsey, D., Smithwick, R.H., Factors influencing the choice of treatment in essential hypertension: surgical, medical, or a combination of both, Am J Surg, 1964, 107:220-231.
Wilson, D.H. et al., The Effects of Pulsed Electromagnetic Energy on Peripheral Nerve Regeneration, Annals New York Academy of Sciences, Oct. 1974, pp. 575-585.
Wolinsky, Harvey, M.D. PhD and Swan N. Thung, M.D., Use of a Perforated Balloon Catheter to Deliver Concentrated Heparin Into the Wall of the Normal Canine Artery, Aug. 30, 1989, JACC 1990, vol. 15, 1990 by the American College of Cardiology, pp. 475-481.
Wyss, J. Michael et al., Neuronal control of the kidney: Contribution to hypertension, Apr. 8, 1991, Can. J. Physiol. Pharmacol. 1992;70: 759-770.
Yamaguchi, Jun-ichi, M.D. et al., Prognostic Significance of Serum Creatinine Concentration for In-Hospital Mortality in Patients with Acute Myocardial Infarction Who Underwent Successful Primary Percutaneous Coronary Intervention (from the Heart Institute of Japan Acute Myocardial Infarction [HIJAMI] Registry), Feb. 24, 2004, The American Journal of Cardiology vol. 93, Jun. 15, 2004, 2004 by Excerpta Medica, Inc., pp. 1526-1528.
Ye, Richard D., M.D., Ph.D., Pharmacology of the Peripheral Nervous System, E-425 MSB, 6 pages, Jan. 2000.
Ye, S. et al., A limited renal injury may cause a permanent form of neurogenic hypertension. Am J Hypertens. 1998;11:723-8.
Ye, Shaohua et al., Renal Injury Caused by Intrarenal Injection of Pheno Increases Afferent and Efferent Renal Sympathetic Nerve Activity, Mar. 12, 2002, American Journal of Hypertension, Aug. 2002, vol. 15, No. 8, 2002 the American Journal of Hypertension, Ltd. Published by Elsevier Science Inc., pp. 717-724.
Yong-Quan, Dong et al., The therapeutic effect of pulsed electric field on experimental spinal cord injury, Beijing Army General Hospital of People's Liberation Army, Beijing, 5 pages (full article in Chinese; abstract on last page) Mar. 30, 1992.
Young, James B., M.D., FACC, Management of Chronic Heart Failure: What Do Recent Clinical Trials Teach Us?, Reviews in Cardiovascular Medicine, vol. 5, Suppl. 1, 2004, MedReviews, LLC 2004, pp. S3-S9.
Yu, Wen-Chung et al. Acquired Pulmonary Vein Stenosis after Radiofrequency Catheter Ablation of Paroxysmal Atrial Fibrillation. Journal of Cardiovascular Electrophysiology. vol. 12, No. 8. Aug. 2001. pp. 887-892.
Zanchetti, A. et al., Neural Control of the Kidney—Are There Reno-Renal Reflexes?, Clin. and Exper. Hyper. Theory and Practice, A6 (1&2), 1984, Marcel Dekker, Inc. 1984, pp. 275-286.
Zanchetti, A. et al., Practice Guidelines for Primary Care Physicians: 2003 ESH/ESC Hypertension Guidelines, Journal of Hypertension, vol. 21, No. 10, 2003, pp. 1779-1786.
Zanchetti, A.S., Neural regulation of renin release: Experimental evidence and clinical implications in arterial hypertension, Circulation, 1977, 56(5) 691-698.
Zimmermann, Ulrich, Electrical Breakdown, Electropermeabilization and Electrofusion, Rev. Physiol. Biochem. Pharmacol., vol. 105, Springer-Verlag 1986, pp. 175-256.
Zoccali, C. et al., Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation. 2002;105:1354-9.
Zucker, Irving H. et al., The origin of sympathetic outflow in heart failure: the roles of angiotensin II and nitric oxide, Progress in Biophysics & Molecular Biology, vol. 84, 2004, Elsevier Ltd. 2003, pp. 217-232.
Zundert, Jan Van, M.D. FIPP and Alex Cahana, M.D. DAAPM, Pulsed Radiofrequency in Chronic Pain Management: Looking for the Best Use of Electrical Current, Pain Practice 2005, vol. 5, Issue 2, 2005 World Institute of Pain, pp. 74-76.
Miller, Reed, “Finding a Future for Renal Denervation With Better Controlled Trials.” Pharma & Medtech Business Intelligence, Article # 01141006003, Oct. 6, 2014, 4 pages.
Papademetriou, Vasilios, “Renal Denervation and Symplicity HTN-3: “Dubium Sapientiae Initium” (Doubt Is the Beginning of Wisdom)”, Circulation Research, 2014; 115: 211-214.
Papademetriou, Vasilios et al., “Renal Nerve Ablation for Resistant Hypertension: How Did We Get Here, Present Status, and Future Directions.” Circulation. 2014; 129: 1440-1450.
Papademetriou, Vasilios et al., “Catheter-Based Renal Denervation for Resistant Hypertension: 12-Month Results of the EnligHTN I First-in-Human Study Using a Multielectrode Ablation System.” Hypertension. 2014; 64: 565-572.
Doumas, Michael et al., “Renal Nerve Ablation for Resistant Hypertension: The Dust Has Not Yet Settled.” The Journal of Clinical Hypertension. 2014; vol. 16, No. 6, 2 pages.
Messerli, Franz H. et al. “Renal Denervation for Resistant Hypertension: Dead or Alive?” Healio: Cardiology today's Intervention, May/Jun. 2014, 2 pages.
Gonschior, P., Comparison of Local Intravascular Drug-Delivery Catheter Systems, Am. Heart J., Dec. 1995, 130:6, 1174-81.
European Search Report for Application No. 10159584.1, dated Jun. 10, 2013, 9 pages.
Pieper et al., “Design and Implementation of a New Computerized System for Intraoperative Cardiac Mapping.” Journal of Applied Physiology, 1991, vol. 71, No. 4, pp. 1529-1539.
Remo, Benjamin F. et al., “Safety and Efficacy of Renal Denervation as a Novel Treatment of Ventricular Tachycardia Storm in Patients with Cardiomyopathy.” Heart Rhythm, 2014, 11(4), 541-6.
U.S. Appl. No. 60/852,787, filed Oct. 18, 2006, 112 pages.
Dodge, et al., “Lumen Diameter of Normal Human Coronary Arteries Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation”, Circulation, 1992, vol. 86 (1), pp. 232-246.
Opposition to European Patent No. 2465470, Granted Oct. 28, 2015, Date of Opposition Jul. 27, 2016, 34 pp.
U.S. Appl. No. 11/363,867, filed Feb. 27, 2006, 70 pp.
Ureter, https://en.wikipedia.org/wiki/Ureter, Jun. 2016, 6 pgs.
Related Publications (1)
Number Date Country
20150005676 A1 Jan 2015 US
Provisional Applications (6)
Number Date Country
60816999 Jun 2006 US
60370190 Apr 2002 US
60415575 Oct 2002 US
60442970 Jan 2003 US
60616254 Oct 2004 US
60624793 Nov 2004 US
Continuations (4)
Number Date Country
Parent 13765487 Feb 2013 US
Child 14298121 US
Parent 12700524 Feb 2010 US
Child 13765487 US
Parent 11840142 Aug 2007 US
Child 12700524 US
Parent 11504117 Aug 2006 US
Child 11840142 US
Continuation in Parts (3)
Number Date Country
Parent 10408665 Apr 2003 US
Child 11504117 US
Parent 11189563 Jul 2005 US
Child 10408665 US
Parent 11129765 May 2005 US
Child 11189563 US