Methods for transferring charge in an image sensor

Information

  • Patent Grant
  • 10943935
  • Patent Number
    10,943,935
  • Date Filed
    Monday, August 21, 2017
    7 years ago
  • Date Issued
    Tuesday, March 9, 2021
    3 years ago
Abstract
Apparatuses and methods for charge transfer in image sensors are disclosed. One example of an image sensor pixel may include a first charge storage node and a second charge storage node. A transfer circuit may be coupled between the first and second charge storage nodes, and the transfer circuit may have a first region proximate the first charge storage node and configured to have a first potential. The transfer circuit may also have a second region proximate the second charge storage node configured to have a second, higher potential. An input node may be configured to control the first and second potentials based on a transfer signal provided to the input node.
Description
TECHNICAL FIELD

The present invention relates generally to image sensors, and, more specifically, to charge transfer in image sensors.


BACKGROUND

In image sensors, charge frequently needs to be transferred between a plurality of different nodes. For example, in a global shutter complementary metal oxide semiconductor (CMOS) image sensor, charge accumulated in a photodiode from incident photons may need to be transferred from the photodiode to a storage node, and then, subsequently, to a floating diffusion node for global shutter read out.


In order to accomplish the charge transfer from one node to another node, the nodes are frequently designed such that during operation, the node to which the charge is to be transferred (i.e., the destination node) has a greater electric potential than the node from which the charge is to be transferred (i.e., the source node). A transistor may be coupled between the two nodes, with the transistor controlling the electric potential of a region between the nodes such that a barrier can be created and removed responsive to a transfer signal provided to the transistor's input gate. When the barrier between two nodes is removed, the charge typically flows to the node with the higher potential until that node is “full,” and any remaining charge may spill back into the other node. Thus, in order to fully transfer charge from one node to another, the destination node may need to have a potential that is greater than the potential of the source node by an amount equal to or exceeding the amount of charge to be transferred. In other words, the destination node may need to have sufficient well capacity to hold the charge from the source node without sharing the charge back with the source node when the barrier between the nodes is removed. In order to achieve full charge transfer between a plurality of nodes, the electric potential is thus increased for successive nodes, with the increase in electric potential between each successive node generally equaling or exceeding the full well capacity for the pixel.


Increasing the potential for each successive node, however, typically requires higher power supply voltages to be provided to the image sensor. The higher power supply voltage may result in higher power consumption, may require specialized processes to manufacture, and/or may require mitigation of electrostatic discharge issues. Alternatively, rather than using higher power supply voltages to obtain the higher potentials for each successive node, the conversion gain between nodes may be reduced. Reducing the conversion gain, however, may result in more noise and less sensitivity in operation of the image sensor.


Some recent improvements in image sensor pixel design include additional nodes in image sensor pixels—for example, an image sensor formed by having two or more silicon chips stacked together. The interconnections between the silicon chips may require additional contacts and storage nodes for charge to be transferred between the silicon chips. The additional nodes exacerbate the need to increase the potential of subsequent storage nodes.


SUMMARY

One example of the present disclosure may take the form of an image sensor pixel. The image sensor pixel may include a first charge storage node and a second charge storage node. A transfer circuit may be coupled between the first and second charge storage nodes, with the transfer circuit having a first region proximate the first charge storage node and configured to have a first potential. The transfer circuit may also have a second region proximate the second charge storage node configured to have a second, higher potential. An input node may be configured to control the first and second potentials based on a transfer signal provided to the input node.


Another example of the present disclosure may take the form of an integrated circuit with a first node configured to store charge and a second node coupled to the first node and configured to receive charge from the first node. The integrated circuit may also include a transfer circuit coupling the first node to the second node. The transfer circuit may include a storage region with a first variable potential configured to be controlled by a transfer signal and a barrier with a second variable potential is also configured to be controlled by the transfer signal.


Another example of the present disclosure may take the form of a method of transferring charge from a first node with a first electric potential to a second node with a second electric potential in an image sensor pixel. The method may include increasing, responsive to a transfer signal, a third electric potential of a barrier proximate the first node such that the third electric potential is greater than the first electric potential. The method may further include increasing, responsive to the transfer signal, a fourth electric potential of a storage region coupled between the barrier and the second node such that the fourth electric potential is greater than the third electric potential. The method may also include decreasing, responsive to the transfer signal, the fourth electric potential of the storage region such that the fourth electric potential is less than the second electric potential.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a front perspective view of an electronic device including one or more cameras.



FIG. 1B is a rear perspective view of the electronic device of FIG. 1A.



FIG. 2 is a simplified block diagram of the electronic device of FIG. 1A.



FIG. 3 is a simplified schematic cross-section view of the electronic device of FIG. 1A taken along line 3-3 in FIG. 1A.



FIG. 4A is a simplified diagram of an image sensor architecture for a camera of the electronic device.



FIG. 4B is an enlarged view of a pixel architecture of FIG. 4A illustrating a single pixel.



FIG. 5 is a simplified schematic view of a pixel cell.



FIG. 6A is a simplified schematic cross-section view of one embodiment of a portion of an image sensor pixel.



FIG. 6B is a simplified potential profile of the image sensor pixel portion shown in FIG. 6A.



FIG. 6C is a simplified potential profile of the image sensor pixel portion shown in FIG. 6A.



FIGS. 7A through 7G are simplified potential profiles of the image sensor pixel portion shown in FIG. 6A, illustrating its operation.



FIG. 8 is a timing diagram illustrating the operation of the image sensor pixel portion shown in FIG. 6A.



FIG. 9 is a simplified potential profile of another image sensor pixel.



FIG. 10 is a simplified potential profile of another image sensor pixel.





SPECIFICATION
Overview

In some embodiments disclosed herein, apparatuses and methods for transferring charge from one node of an image sensor pixel to another node of the image sensor pixel are disclosed. Typically, charge transfer between nodes in image sensors is effectuated using nodes with different potentials separated by transfer gates. For charge to move from one node to another, the potential of the destination node needs to be greater than the potential of the source node. The transfer gate may be turned on, which causes the charge to “fall” to the node with a higher potential, much like water poured from a pitcher falls to a glass as a result of gravity acting on the water. For image sensors where charge needs to be serially transferred along more than 2 nodes, this operation can be challenging due to the need to continue increasing the potential for each subsequent node/region.


Therefore, in this disclosure, one transfer gate between two nodes is modified to create a mechanism to transfer charge from one node to another without needing a greatly increased potential in the destination node. One example where this may be particularly useful is for charge transfer among a plurality of nodes in a stacked-die image sensor, although the disclosure is not limited to this example. The modified transfer gate includes two differently doped regions—with the region closest to the destination node having a potential that is greater than the potential of the region closest the origination node, thus forming a variable barrier and a mini-storage region, both under the transfer gate. A virtual barrier is also formed between the transfer gate and the destination node. The potentials of the variable barrier and the mini-storage region are controlled in part by the voltage applied to the transfer gate. As the voltage applied to the transfer gate increases, the potentials of the barrier and the mini-storage region also increase so that some of the charge from the source node flows into the mini-storage region. Then, the voltage applied to the transfer gate is decreased so that the charge in the mini-storage region flows into the destination node. Several iterations may be required as the mini-well may only transfer a portion of the total charge in each cycle.


Turning now to the figures, an image sensor and an illustrative electronic device for incorporating the image sensor will be discussed in more detail. FIG. 1A is a front elevation view of an electronic device 100 including one or more image sensors. FIG. 1B is a rear elevation view of the electronic device 100. The electronic device 100 may include any or all of a first camera 102, a second camera 104, an enclosure 106, a display 110, and an input/output button 108. The electronic device 100 may be substantially any type of electronic or computing device, such as, but not limited to, a computer, a laptop, a tablet, a smart phone, a digital camera, a printer, a scanner, a copier, or the like. The electronic device 100 may also include one or more internal components (not shown) typical of a computing or electronic device, such as, but not limited to, one or more processors, memory components, network interfaces, and so on. Examples of such internal components will be discussed with respect to FIG. 2.


As shown in FIG. 1, the enclosure 106 may form an outer surface and protective case for the internal components of the electronic device 100 and may at least partially surround the display 110. The enclosure 106 may be formed of one or more components operably connected together, such as a front piece and a back piece, or may be formed of a single piece operably connected to the display 110.


The input member 108 (which may be a switch, button, capacitive sensor, or other input mechanism) allows a user to interact with the electronic device 100. For example, the input member 108 may be a button or switch to alter the volume, return to a home screen, and the like. The electronic device 100 may include one or more input members 108 and/or output members, and each member may have a single input or output function or multiple input/output functions.


The display 110 may be operably connected to the electronic device 100 or may be communicatively coupled thereto. The display 110 may provide a visual output for the electronic device 100 and/or may function to receive user inputs to the electronic device 100. For example, the display 110 may be a multi-touch capacitive sensing screen that may detect one or more user inputs.


The electronic device 100 may also include a number of internal components. FIG. 2 is a simplified block diagram of the electronic device 100. The electronic device 100 may also include one or more processors 114, a storage or memory component 116, an input/output interface 118, a power source 120, and one or more sensors 122, each will be discussed in turn below.


The processor 114 may control operation of the electronic device 100. The processor 114 may be in communication, either directly or indirectly, with substantially all of the components of the electronic device 100. For example, one or more system buses 124 or other communication mechanisms may provide communication between the processor 114, the cameras 102, 104, the display 110, the input member 108, the sensors 122, and so on. The processor 114 may be any electronic device cable of processing, receiving, and/or transmitting instructions. For example, the processor 114 may be a microprocessor or a microcomputer. As described herein, the term “processor” is meant to encompass a single processor or processing unit, multiple processors, or multiple processing units, or other suitably configured computing element(s).


The memory 116 may store electronic data that may be utilized by the electronic device 100. For example, the memory 116 may store electrical data or content e.g., audio files, video files, document files, and so on, corresponding to various applications. The memory 116 may be, for example, non-volatile storage, a magnetic storage medium, optical storage medium, magneto-optical storage medium, read only memory, random access memory, erasable programmable memory, or flash memory.


The input/output interface 118 may receive data from a user or one or more other electronic devices. Additionally, the input/output interface 118 may facilitate transmission of data to a user or to other electronic devices. For example, in embodiments where the electronic device 100 is a phone, the input/output interface 118 may be used to receive data from a network, or may be used to send and transmit electronic signals via a wireless or wired connection (Internet, WiFi, Bluetooth, and Ethernet being a few examples). In some embodiments, the input/output interface 118 may support multiple network or communication mechanisms. For example, the network/communication interface 118 may pair with another device over a Bluetooth network to transfer signals to the other device, while simultaneously receiving data from a WiFi or other network.


The power source 120 may be substantially any device capable of providing energy to the electronic device 100. For example, the power source 120 may be a battery, a connection cable that may be configured to connect the electronic device 100 to another power source such as a wall outlet, or the like.


The sensors 122 may include substantially any type of sensor. For example, the electronic device 100 may include one or more audio sensors (e.g., microphones), light sensors (e.g., ambient light sensors), gyroscopes, accelerometers, or the like. The sensors 122 may be used to provide data to the processor 114, which may be used to enhance or vary functions of the electronic device 100.


With reference again to FIGS. 1A and 1B, the electronic device 100 may also include one or more cameras 102, 104 and optionally a flash 112 or light source for the cameras 102, 104. FIG. 3 is a simplified cross-section view of the first camera 102, taken along line 3-3 in FIG. 1A. Although FIG. 3 illustrates the first camera 102, it should be noted that the second camera 104 may be substantially similar to the first camera 102. In some embodiments, one camera may include a global shutter configured image sensor and one camera may include a rolling shutter configured image sensor. In other examples, one camera may have an image sensor with a higher resolution than the other. Likewise, it should be appreciated that the structure shown in FIG. 3 is but one possible structure for either of the first and second cameras.


With reference to FIG. 3, the cameras 102, 104 may include a lens 126 in optical communication with an image sensor 130. The lens 126 may be operably connected to the enclosure 106 and positioned above the image sensor 130. The lens 126 may direct or transmit light 128 within its field of view onto a photodiode (discussed in more detail below) of the image sensor 130. The image sensor 130 may convert light 128 into electrical signals that may represent the light from the captured scene. In other words, the image sensor 130 captures the light 128 optically transmitted via the lens 126 into electrical signals.


Image Sensor Architecture

An illustrative architecture for the image sensor 130 will now be discussed in more detail. FIG. 4A is a simplified schematic of one possible architecture for the image sensor 130. FIG. 4B is an enlarged view of a pixel of the pixel architecture of FIG. 4A. FIG. 5 is a simplified schematic view of the pixels 136 of FIG. 4A. With reference to FIGS. 4A-5, the electronic device 100 may include an image processing component having a pixel architecture defining one or more pixels 136 and/or groups of pixel cells 138 (e.g., groups of pixels 136 grouped together to form a Bayer pixel or other set of pixels). The pixel architecture 134 may be in communication with a column select 140 through one or more column output lines 146 and a row select 144 through one or more row select lines 148.


The row select 144 and/or the column select 140 may be in communication with an image processor 142. The image processor 142 may process data from the pixels 136 and provide that data to the processor 114 and/or other components of the electronic device 100. It should be noted that in some embodiments, the image processor 142 may be incorporated into the processor 114 or separate therefrom. The row select 144 may selectively activate a particular pixel 136 or group of pixels, such as all of the pixels 136 on a certain row. The column select 140 may selectively receive the data output from select pixels 136 or groups of pixels 136 (e.g., all of the pixels with a particular column).


With reference to the simplified schematic of one embodiment of a pixel 136 illustrated in FIG. 5, each pixel 136 may include a photodiode 154. The photodiode 154 may be in optical communication with the lens 126 to receive light transmitted therethrough. The photodiode 154 may absorb light and convert the absorbed light into an electrical signal. The photodiode 154 may be an electron-based photodiode or a hole-based photodiode. Additionally, it should be noted that the term “photodiode,” as used herein, is meant to encompass substantially any type of photon or light detecting component, such as a photogate or other photo-sensitive region.


The photodiode 154 may be coupled to a first storage node SN1172 through a first transfer gate TX1170. The first storage node 172 may in turn be coupled to a second storage node SN2176 through a second transfer gate TX2174. The second storage node 176 may be coupled to a third storage node, such as a floating diffusion node FD 180 through a third transfer gate TX3178. The storage nodes 172, 176, 180 may store charge from the photodiode 154, and may in some examples be electrically and/or optically shielded so as to prevent any stray charge and/or light form corrupting the contents of the storage nodes 172, 176, 180. The floating diffusion node 180 is provided as the gate input to a source follower gate SF 160. A row select gate 162 and the source follower gate 160 may be coupled to a reference voltage source (Vdd) node 166. The row select gate 162 may further be coupled to a row select line (e.g., 148 in FIG. 4B) for the pixel 136. The control circuitry for the pixel 136 may additionally or alternatively include one or more other gates. For example, an anti-blooming gate 173 may be coupled to the first storage node 172.


In some embodiments, the photodiode 154 and the gates 170, 173, 174, 178, 156, 160, 162 of the pixel 136 may all be positioned on a single semiconductor chip or die, whereas in other embodiments, some components of the pixel 136 may be on one semiconductor chip with other components on a second chip. For example, the photodiode 154 may be on a first semiconductor chip, with the transfer gate 170 being a vertical transfer gate coupled between the first and second semiconductor chips. The first storage node 172 may be a stack contact on the second semiconductor chip to which the vertical transfer gate 170 is coupled. In these embodiments, the second storage node 176 may be a global shutter storage node, which enables global shutter readout of the pixels 136 on the image sensor. In general, the components of the pixel 136 may be spread across one or a plurality of chips. Several examples of image sensor architecture that may be used in connection with the present disclosure are described for example in co-pending application Ser. No. 13/756,459 entitled “Vertically Stacked Image Sensor” filed on Jan. 31, 2013, the entirety of which is hereby incorporated by reference for all purposes


In operation, when one of the cameras 102, 104 is actuated to capture an image, the anti-blooming gate 173 and the transfer gate 170 are turned on in order to deplete charge from the photodiode 154 and/or the storage node 172. In some embodiments, the cameras 102, 104 may not include a shutter over the lens 126, and so the image sensor 130 may be constantly exposed to light. In these embodiments, the photodiode 154 may need to be reset or depleted (e.g., via the anti-blooming gate 173) before a desired image is to be captured.


Once the photodiode 154 has been depleted, the transfer gate 170 may be turned off, thereby isolating the photodiode 154. The photodiode 154 may then begin collecting light transmitted to the image sensor 130 from the lens 126 and integrating charge derived therefrom. As the photodiode 154 receives light, it starts to collect charge generated by incident photons. The charge remains in the photodiode 154 because the transfer gate 170 connecting the photodiode 154 to the first storage node 172 is turned off. While the photodiode 154 integrates charge, the anti-blooming gate 173 may remain on in order to reset the storage node 172 and/or in order to prevent blooming from the photodiode 154.


Once integration is nearly complete, the anti-blooming gate 173 may be turned off so as to isolate the first storage node 172 (as the second transfer gate 174 is also turned off). The first transfer gate 170 may then be pulsed to a high voltage to transfer accumulated charge from the photodiode 154 to the first storage node 172. The second storage node 176 may also be reset by turning on the third transfer gate 178 and the reset gate 156 to deplete the second storage node 176.


After the charge has been transferred to the first storage node 172 and the second storage node 176 has been reset, the charge from the first storage node 172 may be transferred to the second storage node 176 through the second transfer gate 174. The charge may be transferred to the second storage node 176 through the second transfer gate 174 by several short pulses of the transfer signal TX2 provided to the second transfer gate, as described in more detail below. The charge from the photodiode 154 may be held at the second storage node 176 until the pixel 136 is ready to be read out. In the global shutter operation, each row within the pixel architecture 134 may be reset and exposed (i.e., integrate charge generated by light transmitted through the lens 126) at substantially the same time.


Once the charge has been transferred to the second storage node 176 and is ready to be read out, the reset gate 156 may be turned on to reset the floating diffusion node 180. The third transfer gate 178 may then be turned on and the charge from the second storage node 176 may be transmitted to the floating diffusion node 180. Once the charge is transferred to the floating diffusion node 180, the row select gate 162 may be activated, and the SF gate 160 amplifies the charge in the floating diffusion node 180 and provides a signal indicative thereof through the row select gate 162.


Charge Transfer Circuit


FIG. 6A illustrates one embodiment of a charge transfer circuit 182 that may be used in the pixel 136, and FIGS. 6B and 6C illustrate simplified electric potential diagrams for the charge transfer circuit 182 when different transfer signals are provided to the charge transfer circuit 182. Although the charge transfer circuit 182 is illustrated in FIG. 6A and described herein as an example of how the second transfer gate 174 may be implemented, it will be understood that the charge transfer circuit 182 may alternatively or additionally be used to transfer charge between any two nodes. For example, the charge transfer circuit 182 illustrated in FIG. 6A may be used as the first transfer gate 170, the second transfer gate 174, and/or the third transfer gate 178, or in any other region of the image sensor 130 where charge needs to be transferred between two nodes. In some examples, multiple charge transfer circuits 182 may be used for a plurality of nodes in series to transfer charge therebetween, whereas in other embodiments, a single charge transfer circuit 182 may be used between a single pair of nodes.


Referring to FIG. 6A, the charge transfer circuit 182 may be coupled between first and second charge storage nodes 172, 176. In one embodiment, the two charge storage nodes 172, 176 may be n-doped regions in a p-type substrate or a p-well of a semiconductor chip. Of course, in other embodiments, different types of doping or substrate may be used.


The two charge storage nodes 172, 176 may have similar or different potentials. As illustrated in FIGS. 6B and 6C, the electric potential of the second storage node 176 may be slightly greater than the electric potential of the first charge storage node 172, though it may not be so much greater than the electric potential of the first charge storage node 172 that it would be able to store charge transferred from the first charge storage node 172 through a conventional transistor without sharing the charge with the first charge storage node 172. In other embodiments, however, the electric potential of the second storage node 176 may be the same as the electric potential of the first storage node 172 (see FIG. 9), or in some embodiments, the electric potential of the second charge storage node 176 may be less than the electric potential of the first charge storage node 172 (see FIG. 10).


The charge transfer circuit 182 is partitioned into two parts, a first region 184 and a second region 186. The first region 184 may be configured to have a first variable potential, and may be referred to as a variable barrier. The second region 186 may be configured to have a second variable potential, and may be referred to as a storage region. The variable potentials of both the first and second regions 184, 186 may be controlled by a transfer signal provided to the charge transfer circuit 182, for example, a transfer signal TX2 that is provided to the input node 174 or transfer gate 174 of the charge transfer circuit 182.


As illustrated in FIG. 6A, the second region 186 may be laterally offset from the first region 184, with the first region 184 being proximate one charge storage node 172, and the second region 186 being proximate the other charge storage node 176. The first and second regions 184, 186 may thus not overlap in depth beneath the transfer gate 174 in some embodiments. In other embodiments, however (not shown), the first and second regions 184, 186 may be offset from each other in depth in a silicon die, in which case each region 184, 186 may or may not extend across the entire width underneath the transfer gate 174.


Still referring to FIG. 6A, in the example where the charge transfer circuit 182 is formed in a p-well with the nodes 172, 176 being n-doped, the first region 184 may not be doped other than the p-well doping. This may cause the first region 184 to have a relatively low potential during operation of the pixel 136; hence the first region 184 may be referred to as a barrier. The second region 186, however, may be lightly n-doped, such that the second region 186 has a higher potential than the first region 184 during operation. Because the second region 186 has a higher potential than the first region, and because the second region 186 is positioned between the first region 184 and a virtual barrier 188 described in more detail below, the second region 186 may form a storage region capable of holding charge. The capacity of the second region 186 to store charge, however, may be less than the capacity of either of the nodes 172, 176 in some embodiments, and thus, as described in more detail below, the second region 186 may need to be used a plurality of times to transfer charge between the nodes 172, 176. In other words, the junction between the first and second regions 184, 186 may form a p-n junction, thus providing the capacity to store charge in the second region 186. In other embodiments, of course, other capacitive structures may be used to store charge in the second region 186.


As mentioned above, the charge transfer circuit 182 also includes an input node 174, which may be for example a transistor gate. As illustrated in FIG. 6A, the input node 174 may be a polysilicon-oxide gate structure. In other examples, the input node 174 may be a metal-oxide gate structure, or any other type of input node. Referring to the example shown in FIG. 6A, the input node 174, together with the first and second regions 184, 186, may act as a modified field-effect transistor (FET). In other examples, other types of transistors or transfer circuits may be used, such as a bipolar junction transistor. Also, referring to FIG. 6A, a single input node 174 may be used in the charge transfer circuit 182, with the input node 174 partitioned into two portions because of the different characteristics of the first and second regions 184, 186. For example, the input node 174 illustrated in FIG. 6A is a modified FET gate with two regions underneath due to the different doping profiles of the first and second regions 184, 186 of the charge transfer circuit 182. That single gate 174 may be used to change the electric potential of both the first and second regions 184, 186 responsive to a single transfer signal TX2. In this example, a relative difference between the variable electric potential of the first and second regions 184, 186 may be constant across a plurality of different transfer signal TX2 voltages. In other examples, however, a plurality of different input nodes may be used—for example, one gate may be used to control the electric potential of the first region 184, with a separate gate used to control the electric potential of the second region 186. In either event, the input node 174 (or input nodes) controls the variable potentials of the first and second regions 184, 186.


Still with reference to FIG. 6A, and as mentioned above, a virtual barrier 188 may be formed as part of the charge transfer circuit 182. The virtual barrier 188 may be formed by extending the doping of the second region 186 beyond the transfer gate 174 and underneath a pinning layer 190. In other words, the virtual barrier 188 and the second, storage region 186 may together form a commonly doped region of the charge transfer circuit 182, with the storage region 186 formed where the transfer gate 174 is positioned over the commonly doped region and the virtual barrier 188 formed where a pinned layer is positioned over the commonly doped region. In addition to facilitating the use of the second region 186 as a storage region as described above, the virtual barrier 188 may in some examples help prevent charge that is transferred to node 176 from returning to the source node 172 from which it came because the electric potential of the virtual barrier 188 is less than the electric potential of the destination node 176. This may allow the full capacity of the node 176 to be used (e.g., not just the capacity of the node 176 above the potential of the source node 172). In effect, the virtual barrier 188, together with the charge transfer circuit 182, may allow charge to be transferred to the node 176 irrespective of the potential of the node 172.


Referring now to FIGS. 6B and 6C in particular, simplified electric potential diagrams are shown for the charge transfer circuit 182. FIG. 6B illustrates the electric potential diagram for the charge transfer circuit 182 when a low voltage is provided to the input node 174, and FIG. 6C illustrates the electric potential for the charge transfer circuit 182 when a high voltage is provided to the input node 174. In both FIGS. 6B and 6C, the electric potential of the first and second charge storage nodes 172, 176, and the electric potential of the virtual barrier 188 may be fixed and may not change responsive to different transfer signals provided to the input node 174. However, the electric potentials of the first and second regions 184, 186 do change responsive to different transfer signals provided to the input node. When a low voltage is provided to the input node 174, as in FIG. 6B, the storage region 186 may have an electric potential that is slightly less than the electric potential of the virtual barrier 188 (which in turn is less than the electric potential of the second or destination node 176). The low voltage provided to the input node 174 also causes the electric potential of the first region 184 to decrease such that it is less than the electric potential of the first or source node 172. As mentioned above, because of the different doping profiles of the first and second regions 184, 186 of the charge transfer circuit 182, the electric potential of the second/storage region 186 is greater than the electric potential of the first/barrier region 184.


When a higher voltage is provided to the input node 174, as in FIG. 6C, the storage region 186 may have an electric potential that is greater than the electric potential of the virtual barrier 188, and which is also greater than the electric potential of the first region 184, thus forming a mini-well that can store a portion of charge. The low voltage provided to the input node 174 also causes the electric potential of the first region 184 to be increased above the electric potential of the first charge storage node 172 so that charge can flow into the storage region 186, as described in more detail below.


Although FIGS. 6B and 6C have illustrated one example of electric potential profiles, it will be understood that the profiles may or may not be to scale, and that the precise electric potential of any given region in an image sensor 130 will depend on the physical characteristics of that region as well as voltages or other signals that bias or deplete those regions.


Referring now to the series of illustrations in FIGS. 7A through 7G together with the timing diagram in FIG. 8 and the schematic of FIG. 5, the operation of one embodiment of the charge transfer circuit 182 will now be described for a pixel 136, wherein the charge transfer circuit of FIG. 6A is implemented as the second transfer gate 174 between the first and second storage nodes 172, 176.


As described above, to begin, the anti-blooming gate 173 and the first transfer gate 170 may be turned on in order to deplete charge from the photodiode 154 and/or the storage node 172, as illustrated at times t1 and t2, respectively. Once the charge from the photodiode 154 has been depleted, the first transfer gate 170 may be turned off at time t3, thereby isolating the photodiode. The photodiode 154 may then begin collecting light transmitted to the image sensor 130 from the lens 126 and integrating charge derived therefrom during its integration time 820t. While the photodiode 154 integrates charge, the anti-blooming gate 173 may remain on in order to reset the storage node 172 and/or in order to prevent blooming from the photodiode 154.


Once integration is nearly complete, the anti-blooming gate 173 may be turned off at time t4 so as to isolate the first storage node 172. The first transfer gate 170 may then be pulsed to a high voltage between times t5 and t6 to transfer accumulated charge from the photodiode 154 to the first storage node 172, as illustrated in the potential profile in FIG. 7A. Also, at time t5, the third transfer gate 178 and the reset gate 156 may be turned on to reset the second storage node 176, after which the third transfer gate 178 and the reset gate 156 may again be turned off to isolate the second storage node 176.


After the charge has been transferred to the first storage node 172 and the second storage node 176 has been reset and isolated, the charge from the first storage node 172 may be transferred to the second storage node 176 through the second transfer gate 174 by a series of pulses of the second transfer signal TX2 provided to the second transfer gate 174. At time t6, the potentials of the first and second regions 184, 186 may be increased responsive to the positive voltage TX2 provided to the input node 174, and, with reference to FIG. 7B, the increase in potential may cause charge from the first storage node 172 to be transferred (e.g., may “fall”) to the storage region 186 because the electric potential of the first and second regions is increased to be greater than the electric potential of the first storage node 172. When the voltage of the second transfer signal TX2 is decreased at time t7, with reference to FIGS. 7C and 7D, the potentials of the first and second regions 184, 186 begin to decrease (FIG. 7C illustrates the potentials of the first and second regions 184, 186 when the voltage of the second transfer signal TX2 is half decreased, and FIG. 7D illustrates the potentials of the first and second regions 184, 186 when the voltage of the second transfer signal TX2 is completely decreased). In general, the electric potentials of the first and second regions 184, 186 may increase and/or decrease at substantially the same time in some embodiments, and may increase and/or decrease responsive to a common transfer signal provided to a single input node 174 of the charge transfer circuit 182, or may increase and/or decrease responsive to a plurality of transfer signals provided to the charge transfer circuit 182.


When the potentials of the first and second regions 184, 186 decrease—particularly when the potential of the second region 186 decreases below the potential of the virtual barrier 188 and/or the potential of the second node 176, as illustrated in FIG. 7D—the charge stored in the second region 186 is transferred over the virtual barrier 188 and into the second charge storage node 176. Once the charge is transferred into the second charge storage node 176, the virtual barrier 188 may prevent charge from returning to the second storage region 186 and/or to the first node 172.



FIGS. 7E through 7G are similar to FIGS. 7B through 7D, except that some charge has already been transferred to the second node 176 in FIG. 7E. As described above, the capacity of the second region 186 to store charge may be limited such that multiple iterations of pulsing the transfer signal to the input node 174 may be required in some embodiments in order to fully transfer charge from the first node 172 to the second node 176. Therefore, the operations of increasing and decreasing the potentials of the first and second regions 184, 186 to attract charge into the second region 186, and to then dump the charge into the second node 176, may be repeated for a plurality of pulses. This pulsing of the transfer signal may be referred to as pumping, and, is somewhat similar to sending a bucket down into a well and then bringing it back up to draw up water out of the well.


Still referring to FIG. 8, following transfer of the charge to the second charge storage node 176, the reset gate 156 may be turned on at time t8 to reset the floating diffusion node 180. The third transfer gate 178 may then be turned on at time t9 and the charge from the second storage node 176 may be transferred to the floating diffusion node 180. Once the charge is stored in the floating diffusion node 180, the row select gate 162 may be activated, and the SF gate 160 amplifies the charge in the floating diffusion node 180 and provides a signal indicative thereof through the row select gate 162.


In this manner, the embodiments of the charge transfer circuit 182 described herein do not require the electric potential of the second charge transfer node 176 to be drastically greater than the electric potential of the first charge transfer node 172, and indeed, it may even be less than the electric potential of the first charge transfer node 172. Also, by using embodiments of the charge transfer circuit 182 described herein, the entire capacity of the second or destination charge storage node 176 can be used, rather than only the capacity beyond the potential of the first or source charge storage node 172.


Conclusion

The foregoing description has broad application. For example, while examples disclosed herein may focus on particular architectures of image sensors (e.g., photodiode, global shutter, CMOS sensors, etc.), it should be appreciated that the concepts disclosed herein may equally apply to substantially any other type of image sensor with or without appropriate modifications as would be appreciated by one skilled in the art of image sensors. Moreover, although certain examples have been described with reference to particular dopants (e.g., nodes 172 and 176 in FIG. 6A are doped with n-type dopant in a p-well or on a p-substrate), it will be understood that other dopants are also within the scope of this disclosure and the appended claims. For example, referring back to FIG. 6A, the nodes 172, 176 may be doped with p-type dopant in an n-type substrate.


Furthermore, the various embodiments described herein may find application in many different implementations. Accordingly, the discussion of any embodiment is meant only to be exemplary and is not intended to suggest that the scope of the disclosure, including the claims, is limited to these examples.

Claims
  • 1. A method of transferring charge from a first storage node to a second storage node in an integrated circuit (IC), the method comprising: turning off an initial transfer gate to electrically isolate a photodiode from the first storage node;accumulating a photon-generated charge in the photodiode during an integration time;applying, at a transfer gate, a first potential to a first region of the IC and to a second region of the IC, wherein: the first region of the IC is between the first storage node and the second region of the IC, the first region and the second region being positioned adjacent to the transfer gate;the first region is configured to maintain a first variable potential less than a second variable potential of the second region;a virtual barrier region of the IC is between the second region and the second storage node, and is configured to have a virtual barrier potential less than a potential of the second storage node; andthe first potential causes the first variable potential to be less than a fixed potential of the first storage node;accumulating a quantity of charge in the first storage node by turning on the initial transfer gate and transferring at least a portion of the photon-generated charge from the photodiode to the first storage node;electrically isolating the first storage node from the photodiode by turning off the initial transfer gate;applying, at the transfer gate, a second potential to the first region and to the second region so that: the first variable potential is greater than the fixed potential of the first storage node; anda portion of the accumulated quantity of charge in the first storage node is transferred into the second region; andapplying, at the transfer gate, a third potential to the first region and to the second region so that the second variable potential is less than the virtual barrier potential and the portion of the accumulated quantity of charge is transferred from the second region into the second storage node.
  • 2. The method of claim 1, further comprising initially depleting the first storage node of an initial charge.
  • 3. The method of claim 1, wherein the portion of the accumulated quantity of charge is a first portion of the accumulated quantity of charge, the method further comprising applying the first, second, and third potentials so that a second portion of the accumulated quantity of charge is transferred from the first storage node into the second storage node.
  • 4. The method of claim 3, further comprising iteratively applying the first, second, and third potentials until a final portion of the accumulated quantity of charge has been transferred to the second storage node.
  • 5. The method of claim 1, further comprising iteratively applying the first, second, and third potentials for a fixed time period.
  • 6. The method of claim 1, wherein the fixed potential of the first storage node is greater than the potential of the second storage node.
  • 7. The method of claim 1, further comprising, before accumulating the photon-generated charge in the photodiode, depleting a first initial charge in the photodiode and a second initial charge in the first storage node.
  • 8. The method of claim 1, further comprising repeatedly applying the first, second, and third potentials at the transfer gate to cause subsequent portions of the accumulated quantity of charge in the first storage node to be transferred to the second storage node.
  • 9. The method of claim 8, wherein the first, second, and third potentials are applied until the accumulated quantity of charge in the first storage node is substantially completely transferred to the second storage node.
  • 10. The method of claim 8, further comprising: transferring the portions of the accumulated charge that were transferred into the second storage node to a third storage node.
  • 11. The method of claim 10, wherein transferring the portions of the accumulated charge that were transferred into the second storage node to the third storage node includes applying a transfer signal to a third transfer gate, separate from the transfer gate and the initial transfer gate, to isolate the second storage node from the third storage node.
  • 12. The method of claim 10, further comprising generating an output signal based on the portion of the accumulated charge that was transferred into the second storage node and was transferred to the third storage node.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Nonprovisional patent application Ser. No. 13/787,094, filed Mar. 6, 2013, the disclosures of which are hereby incorporated herein by reference in their entirety.

US Referenced Citations (287)
Number Name Date Kind
4686572 Takatsu Aug 1987 A
4686648 Fossum Aug 1987 A
5105264 Erhardt et al. Apr 1992 A
5329313 Keith Jul 1994 A
5396893 Oberg et al. Mar 1995 A
5471515 Fossum et al. Nov 1995 A
5541402 Ackland Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5781312 Noda Jul 1998 A
5841126 Fossum et al. Nov 1998 A
5880459 Pryor et al. Mar 1999 A
5949483 Fossum et al. Sep 1999 A
6008486 Stam et al. Dec 1999 A
6040568 Caulfield et al. Mar 2000 A
6233013 Hosier et al. May 2001 B1
6348929 Acharya et al. Feb 2002 B1
6448550 Nishimura Sep 2002 B1
6528833 Lee et al. Mar 2003 B2
6541751 Bidermann Apr 2003 B1
6670904 Yakovlev Dec 2003 B1
6713796 Fox Mar 2004 B1
6714239 Guidash Mar 2004 B2
6798453 Kaifu Sep 2004 B1
6816676 Bianchi et al. Nov 2004 B2
6905470 Lee et al. Jun 2005 B2
6931269 Terry Aug 2005 B2
6956605 Hashimoto Oct 2005 B1
6982759 Goto Jan 2006 B2
7075049 Rhodes et al. Jul 2006 B2
7084914 Van Blerkom Aug 2006 B2
7091466 Bock Aug 2006 B2
7119322 Hong Oct 2006 B2
7133073 Neter Nov 2006 B1
7259413 Rhodes Aug 2007 B2
7262401 Hopper et al. Aug 2007 B2
7271835 Iizuka Sep 2007 B2
7282028 Kim et al. Oct 2007 B2
7319218 Krymski Jan 2008 B2
7332786 Altice Feb 2008 B2
7390687 Boettiger Jun 2008 B2
7415096 Sherman Aug 2008 B2
7437013 Anderson Oct 2008 B2
7443421 Stavely et al. Oct 2008 B2
7446812 Ando et al. Nov 2008 B2
7471315 Silsby et al. Dec 2008 B2
7502054 Kalapathy Mar 2009 B2
7525168 Hsieh Apr 2009 B2
7554067 Zarnoski et al. Jun 2009 B2
7555158 Park et al. Jun 2009 B2
7589316 Dunki-Jacobs Sep 2009 B2
7622699 Sakakibara et al. Nov 2009 B2
7626626 Panicacci Dec 2009 B2
7636109 Nakajima et al. Dec 2009 B2
7667400 Goushcha Feb 2010 B1
7671435 Ahn Mar 2010 B2
7714292 Agarwal et al. May 2010 B2
7728351 Shim Jun 2010 B2
7733402 Egawa et al. Jun 2010 B2
7742090 Street Jun 2010 B2
7764312 Ono et al. Jul 2010 B2
7773138 Lahav et al. Aug 2010 B2
7786543 Hsieh Aug 2010 B2
7796171 Gardner Sep 2010 B2
7817198 Kang et al. Oct 2010 B2
7838956 McCarten et al. Nov 2010 B2
7873236 Li et al. Jan 2011 B2
7880785 Gallagher Feb 2011 B2
7884402 Ki Feb 2011 B2
7906826 Martin et al. Mar 2011 B2
7952121 Arimoto May 2011 B2
7952635 Lauxtermann May 2011 B2
7982789 Watanabe et al. Jul 2011 B2
8026966 Altice Sep 2011 B2
8032206 Farazi et al. Oct 2011 B1
8089036 Manabe et al. Jan 2012 B2
8089524 Urisaka Jan 2012 B2
8094232 Kusaka Jan 2012 B2
8116540 Dean Feb 2012 B2
8140143 Picard et al. Mar 2012 B2
8153947 Barbier et al. Apr 2012 B2
8159570 Negishi Apr 2012 B2
8159588 Boemler Apr 2012 B2
8164669 Compton et al. Apr 2012 B2
8174595 Honda et al. May 2012 B2
8184188 Yaghmai May 2012 B2
8194148 Doida Jun 2012 B2
8194165 Border et al. Jun 2012 B2
8222586 Lee Jul 2012 B2
8227844 Adkisson Jul 2012 B2
8233071 Takeda Jul 2012 B2
8259228 Wei et al. Sep 2012 B2
8310577 Neter Nov 2012 B1
8324553 Lee Dec 2012 B2
8330839 Compton et al. Dec 2012 B2
8338856 Tai et al. Dec 2012 B2
8340407 Kalman Dec 2012 B2
8350940 Smith et al. Jan 2013 B2
8355117 Niclass Jan 2013 B2
8388346 Rantala et al. Mar 2013 B2
8400546 Itano et al. Mar 2013 B2
8456540 Egawa Jun 2013 B2
8456559 Yamashita Jun 2013 B2
8462247 Kim Jun 2013 B2
8508637 Han et al. Aug 2013 B2
8514308 Itonaga et al. Aug 2013 B2
8520913 Dean Aug 2013 B2
8546737 Tian et al. Oct 2013 B2
8547388 Cheng Oct 2013 B2
8575531 Hynecek et al. Nov 2013 B2
8581992 Hamada Nov 2013 B2
8594170 Mombers et al. Nov 2013 B2
8619163 Ogua Dec 2013 B2
8619170 Mabuchi Dec 2013 B2
8629484 Ohri et al. Jan 2014 B2
8634002 Kita Jan 2014 B2
8637875 Finkelstein et al. Jan 2014 B2
8648947 Sato et al. Feb 2014 B2
8653434 Johnson et al. Feb 2014 B2
8723975 Solhusvik May 2014 B2
8724096 Gosch et al. May 2014 B2
8730345 Watanabe May 2014 B2
8754983 Sutton Jun 2014 B2
8755854 Addison et al. Jun 2014 B2
8759736 Yoo Jun 2014 B2
8760413 Peterson et al. Jun 2014 B2
8767104 Makino et al. Jul 2014 B2
8803990 Smith Aug 2014 B2
8810703 Mabuchi Aug 2014 B2
8817154 Manabe et al. Aug 2014 B2
8879686 Okada et al. Nov 2014 B2
8902330 Theuwissen Dec 2014 B2
8902341 Machida Dec 2014 B2
8908073 Minagawa Dec 2014 B2
8923994 Laikari et al. Dec 2014 B2
8934030 Kim et al. Jan 2015 B2
8936552 Kateraas et al. Jan 2015 B2
8946610 Iwabuchi et al. Feb 2015 B2
8982237 Chen Mar 2015 B2
9001251 Smith et al. Apr 2015 B2
9006641 Drader Apr 2015 B2
9041837 Li May 2015 B2
9017748 Theuwissen Jun 2015 B2
9054009 Oike et al. Jun 2015 B2
9058081 Baxter Jun 2015 B2
9066017 Geiss Jun 2015 B2
9066660 Watson et al. Jun 2015 B2
9088727 Trumbo Jul 2015 B2
9094623 Kawaguchi Jul 2015 B2
9099604 Roy Aug 2015 B2
9100597 Hu Aug 2015 B2
9106859 Kizuna et al. Aug 2015 B2
9131171 Aoki et al. Sep 2015 B2
9151829 Campbell Oct 2015 B2
9154750 Pang Oct 2015 B2
9160949 Zhang et al. Oct 2015 B2
9164144 Dolinsky Oct 2015 B2
9178100 Webster et al. Nov 2015 B2
9209320 Webster Dec 2015 B1
9225948 Hasegawa Dec 2015 B2
9232150 Kleekajai et al. Jan 2016 B2
9232161 Suh Jan 2016 B2
9235267 Burrough et al. Jan 2016 B2
9270906 Peng et al. Feb 2016 B2
9276031 Wan Mar 2016 B2
9277144 Kleekajai et al. Mar 2016 B2
9287304 Park et al. Mar 2016 B2
9288380 Nomura Mar 2016 B2
9288404 Papiashvili Mar 2016 B2
9293500 Sharma et al. Mar 2016 B2
9312401 Webster Apr 2016 B2
9313434 Dutton et al. Apr 2016 B2
9319611 Fan Apr 2016 B2
9331116 Webster May 2016 B2
9344649 Bock May 2016 B2
9380245 Guidash Jun 2016 B1
9392237 Toyoda Jul 2016 B2
9417326 Niclass et al. Aug 2016 B2
9438258 Yoo Sep 2016 B1
9445018 Fettig et al. Sep 2016 B2
9448110 Wong Sep 2016 B2
9451887 Watson et al. Sep 2016 B2
9467553 Heo et al. Oct 2016 B2
9473706 Malone et al. Oct 2016 B2
9478030 Lecky Oct 2016 B1
9479688 Ishii Oct 2016 B2
9490285 Itonaga Nov 2016 B2
9497397 Kleekajai et al. Nov 2016 B1
9503616 Taniguchi et al. Nov 2016 B2
9516244 Borowski Dec 2016 B2
9521337 Shen Dec 2016 B1
9538067 Hamada Jan 2017 B2
9538106 McMahon et al. Jan 2017 B2
9549099 Fan Jan 2017 B2
9560339 Borowski Jan 2017 B2
9584743 Lin et al. Feb 2017 B1
9584744 Lenchenkov et al. Feb 2017 B2
9596420 Fan et al. Mar 2017 B2
9596423 Molgaard Mar 2017 B1
9609250 Lee et al. Mar 2017 B2
9639063 Dutton et al. May 2017 B2
9661210 Haneda May 2017 B2
9661308 Wang et al. May 2017 B1
9666618 Meynants May 2017 B2
9686485 Agranov et al. Jun 2017 B2
9700240 Letchner et al. Jul 2017 B2
9749556 Fettig et al. Aug 2017 B2
9754994 Koo et al. Sep 2017 B2
9774318 Song Sep 2017 B2
9781368 Song Oct 2017 B2
9819890 Wang et al. Nov 2017 B2
9831283 Shepard et al. Nov 2017 B2
9888198 Mauritzson et al. Feb 2018 B2
9894304 Smith Feb 2018 B1
9912883 Agranov et al. Mar 2018 B1
9936151 Wang et al. Apr 2018 B2
9952323 Deane Apr 2018 B2
10104318 Smith et al. Oct 2018 B2
10136090 Vogelsang et al. Nov 2018 B2
10153310 Zhang et al. Dec 2018 B2
10212378 Negishi Feb 2019 B2
10249660 Guidash Apr 2019 B2
10285626 Kestelli et al. May 2019 B1
10306167 Shimasaki May 2019 B2
10431608 Ebihara Oct 2019 B2
10447950 Wang Oct 2019 B2
20020020863 Lee Feb 2002 A1
20030036685 Goodman et al. Feb 2003 A1
20040207836 Chhibber et al. Oct 2004 A1
20050026332 Fratti et al. Feb 2005 A1
20060060897 Kuwazawa Mar 2006 A1
20060274161 Ing et al. Dec 2006 A1
20070023801 Hynecek Feb 2007 A1
20070263099 Motta et al. Nov 2007 A1
20080177162 Bae et al. Jul 2008 A1
20080315198 Jung Dec 2008 A1
20090096901 Bae et al. Apr 2009 A1
20090101914 Hirotsu et al. Apr 2009 A1
20090146234 Luo et al. Jun 2009 A1
20090201400 Zhang et al. Aug 2009 A1
20090219266 Lim et al. Sep 2009 A1
20100110018 Faubert et al. May 2010 A1
20100134631 Voth Jun 2010 A1
20110080500 Wang et al. Apr 2011 A1
20110156197 Tivarus et al. Jun 2011 A1
20110164162 Kato Jul 2011 A1
20110193824 Modarres et al. Aug 2011 A1
20120092541 Tuulos et al. Apr 2012 A1
20120098964 Oggier et al. Apr 2012 A1
20120127088 Pance et al. May 2012 A1
20120162632 Dutton Jun 2012 A1
20120273654 Hynecek Nov 2012 A1
20130147981 Wu Jun 2013 A1
20140049683 Guenter Feb 2014 A1
20140071321 Seyama Mar 2014 A1
20140132528 Catton May 2014 A1
20140231630 Rae et al. Aug 2014 A1
20150062391 Murata Mar 2015 A1
20150277559 Vescovi et al. Oct 2015 A1
20150312479 McMahon et al. Oct 2015 A1
20160050379 Jiang et al. Feb 2016 A1
20160099371 Webster Apr 2016 A1
20160205311 Mandelli et al. Jul 2016 A1
20160218236 Dhulla et al. Jul 2016 A1
20160219232 Murata Jul 2016 A1
20160274237 Stutz Sep 2016 A1
20160307325 Wang et al. Oct 2016 A1
20160344920 Iwahara Nov 2016 A1
20160356890 Fried et al. Dec 2016 A1
20160365380 Wan Dec 2016 A1
20170047363 Choi et al. Feb 2017 A1
20170052065 Sharma et al. Feb 2017 A1
20170082746 Kubota et al. Mar 2017 A1
20170084133 Cardinali et al. Mar 2017 A1
20170142325 Shimokawa et al. May 2017 A1
20170170229 Oh et al. Jun 2017 A1
20170223292 Ikeda Aug 2017 A1
20170272675 Kobayashi Sep 2017 A1
20170364736 Ollila Dec 2017 A1
20180090526 Mandai et al. Mar 2018 A1
20180090536 Mandai et al. Mar 2018 A1
20180109742 Agranov et al. Apr 2018 A1
20180209846 Mandai et al. Jul 2018 A1
20180213205 Oh Jul 2018 A1
20190018119 Laifenfeld et al. Jan 2019 A1
20190027674 Zhang et al. Jan 2019 A1
20200029035 Agranov et al. Jan 2020 A1
20200029043 McMahon Jan 2020 A1
Foreign Referenced Citations (95)
Number Date Country
1630350 Jun 2005 CN
1774032 May 2006 CN
1833429 Sep 2006 CN
1842138 Oct 2006 CN
1947414 Apr 2007 CN
101189885 May 2008 CN
101221965 Jul 2008 CN
101233763 Jul 2008 CN
101472059 Jul 2009 CN
101567977 Oct 2009 CN
101622859 Jan 2010 CN
101739955 Jun 2010 CN
101754029 Jun 2010 CN
101803925 Aug 2010 CN
102036020 Apr 2011 CN
102067584 May 2011 CN
102208423 Oct 2011 CN
102451160 May 2012 CN
102668542 Sep 2012 CN
102820309 Dec 2012 CN
102821255 Dec 2012 CN
103024297 Apr 2013 CN
103051843 Apr 2013 CN
103329513 Sep 2013 CN
103546702 Jan 2014 CN
104041009 Sep 2014 CN
104052919 Sep 2014 CN
204761615 Nov 2015 CN
205211754 May 2016 CN
102010060527 Apr 2012 DE
1763228 Mar 2007 EP
2023611 Feb 2009 EP
2107610 Oct 2009 EP
2230690 Sep 2010 EP
2512126 Oct 2012 EP
2787531 Oct 2014 EP
S61123287 Jun 1986 JP
2007504670 Aug 1987 JP
2000059697 Feb 2000 JP
2001211455 Aug 2001 JP
2001358994 Dec 2001 JP
2004111590 Apr 2004 JP
2005318504 Nov 2005 JP
2006287361 Oct 2006 JP
2007516654 Jun 2007 JP
2008507908 Mar 2008 JP
2008271280 Nov 2008 JP
2008543061 Nov 2008 JP
2009021809 Jan 2009 JP
2009159186 Jul 2009 JP
2009212909 Sep 2009 JP
2009296465 Dec 2009 JP
2010080604 Apr 2010 JP
2010114834 May 2010 JP
2011040926 Feb 2011 JP
201149697 Mar 2011 JP
2011091775 May 2011 JP
11-216970 Oct 2011 JP
11-217315 Oct 2011 JP
2011097646 Dec 2011 JP
2012010306 Jan 2012 JP
2012019516 Jan 2012 JP
2012513160 Jun 2012 JP
2013005397 Jan 2013 JP
2013051523 Mar 2013 JP
2013070240 Apr 2013 JP
2013529035 Jul 2013 JP
2014081254 May 2014 JP
2016145776 Aug 2016 JP
20030034424 May 2003 KR
20030061157 Jul 2003 KR
20050103732 Nov 2005 KR
20080069851 Jul 2008 KR
20100008239 Jan 2010 KR
20100065084 Jun 2010 KR
20130074459 Jul 2013 KR
200520551 Jun 2005 TW
200803481 Jan 2008 TW
201110689 Mar 2011 TW
201301881 Jan 2013 TW
WO 05041304 May 2005 WO
WO 06014641 Feb 2006 WO
WO 06130443 Dec 2006 WO
WO 07049900 May 2007 WO
WO 10120945 Oct 2010 WO
WO 12011095 Jan 2012 WO
WO 12032353 Mar 2012 WO
WO 12053363 Apr 2012 WO
WO 12088338 Jun 2012 WO
WO 12122572 Sep 2012 WO
WO 12138687 Oct 2012 WO
WO 13008425 Jan 2013 WO
WO 13179018 Dec 2013 WO
WO 13179020 Dec 2013 WO
WO 17112416 Jun 2017 WO
Non-Patent Literature Citations (30)
Entry
Jahromi et al., “A Single Chip Laser Radar Receiver with a 9×9 SPAD Detector Array and a 10-channel TDC,” 2013 Proceedings of the ESSCIRC, IEEE, Sep. 14, 2015, pp. 364-367.
U.S. Appl. No. 15/879,365, filed Jan. 24, 2018, Mandai et al.
U.S. Appl. No. 15/879,350, filed Jan. 24, 2018, Mandai et al.
U.S. Appl. No. 15/880,285, filed Jan. 25, 2018, Laifenfeld et al.
U.S. Appl. No. 16/226,491, filed Dec. 19, 2018, McMahon.
Shen et al., “Stresses, Curvatures, and Shape Changes Arising from Patterned Lines on Silicon Wafers,” Journal of Applied Physics, vol. 80, No. 3, Aug. 1996, pp. 1388-1398.
U.S. Appl. No. 15/699,806, filed Sep. 8, 2017, Li et al.
U.S. Appl. No. 15/713,477, filed Sep. 22, 2017, Mandai et al.
U.S. Appl. No. 15/713,520, filed Sep. 22, 2017, Mandai et al.
U.S. Appl. No. 16/460,883, filed Jul. 2, 2019, Agranov et al.
Charbon, et al., SPAD-Based Sensors, TOF Range-Imaging Cameras, F. Remondino and D. Stoppa (eds.), 2013, Springer-Verlag Berlin Heidelberg, pp. 11-38.
Cox, “Getting histograms with varying bin widths,” http://www.stata.com/support/faqs/graphics/histograms-with-varying-bin-widths/, Nov. 13, 2017, 5 pages.
Gallivanoni, et al., “Progress n Quenching Circuits for Single Photon Avalanche Diodes,” IEEE Transactions on Nuclear Science, vol. 57, No. 6, Dec. 2010, pp. 3815-3826.
Leslar, et al., “Comprehensive Utilization of Temporal and Spatial Domain Outlier Detection Methods for Mobile Terrestrial LiDAR Data,” Remote Sensing, 2011, vol. 3, pp. 1724-1742.
Mota, et al., “A flexible multi-channel high-resolution Time-to-Digital Converter ASIC,” Nuclear Science Symposium Conference Record IEEE, 2000, Engineering School of Geneva, Microelectronics Lab, Geneva, Switzerland, 8 pages.
Niclass, et al., “Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes,” IEEE Journal of Solid-State Circuits, vol. 40, No. 9, Sep. 2005, pp. 1847-1854.
Shin, et al., “Photon-Efficient Computational 3D and Reflectivity Imaging with Single-Photon Detectors,” IEEE International Conference on Image Processing, Paris, France, Oct. 2014, 11 pages.
Tisa, et al., “Variable-Load Quenching Circuit for single-photon avalanche diodes,” Optics Express, vol. 16, No. 3, Feb. 4, 2008, pp. 2232-2244.
Ullrich, et al., “Linear LIDAR versus Geiger-mode LIDAR: Impact on data properties and data quality,” Laser Radar Technology and Applications XXI, edited by Monte D. Turner, Gary W. Kamerman, Proc. of SPIE, vol. 9832, 983204, 2016, 17 pages.
Aoki, et al., “Rolling-Shutter Distortion-Free 3D Stacked Image Sensor with −160db Parasitic Light Sensitivity In-Pixel Storage Node,” ISSCC 2013, Session 27, Image Sensors, 27.3 27.3 A, Feb. 20, 2013, retrieved on Apr. 11, 2014 from URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6487824.
Elgendi, “On the Analysis of Fingertip Photoplethysmogram Signals,” Current Cardiology Reviews, 2012, vol. 8, pp. 14-25.
Feng, et al., “On the Stoney Formula for a Thin Film/Substrate System with Nonuniform Substrate Thickness,” Journal of Applied Mechanics, Transactions of the ASME, vol. 74, Nov. 2007, pp. 1276-1281.
Fu, et al., “Heart Rate Extraction from Photoplethysmogram Waveform Using Wavelet Multui-resolution Analysis,” Journal of Medical and Biological Engineering, 2008, vol. 28, No. 4, pp. 229-232.
Han, et al., “Artifacts in wearable photoplethysmographs during daily life motions and their reduction with least mean square based active noise cancellation method,” Computers in Biology and Medicine, 2012, vol. 42, pp. 387-393.
Lopez-Silva, et al., “Heuristic Algorithm for Photoplethysmographic Heart Rate Tracking During Maximal Exercise Test,” Journal of Medical and Biological Engineering, 2011, vol. 12, No. 3, pp. 181-188.
Santos, et al., “Accelerometer-assisted PPG Measurement During Physical Exercise Using the LAVIMO Sensor System,” Acta Polytechnica, 2012, vol. 52, No. 5, pp. 80-85.
Sarkar, et al., “Fingertip Pulse Wave (PPG signal) Analysis and Heart Rate Detection,” International Journal of Emerging Technology and Advanced Engineering, 2012, vol. 2, No. 9, pp. 404-407.
Schwarzer, et al., On the determination of film stress from substrate bending: STONEY'S formula and its limits, Jan. 2006, 19 pages.
Yan, et al., “Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution,” Journal of NeuroEngineering and Rehabilitation, 2005, vol. 2, No. 3, pp. 1-9.
Yousefi, et al., “Adaptive Cancellation of Motion Artifact in Wearable Biosensors,” 34th Annual International Conference of the IEEE EMBS, San Diego, California, Aug./Sep. 2012, pp. 2004-2008.
Related Publications (1)
Number Date Country
20170373106 A1 Dec 2017 US
Continuations (1)
Number Date Country
Parent 13787094 Mar 2013 US
Child 15682255 US