METHODS FOR TREATING BRAIN TUMORS

Information

  • Patent Application
  • 20120157402
  • Publication Number
    20120157402
  • Date Filed
    May 27, 2010
    14 years ago
  • Date Published
    June 21, 2012
    12 years ago
Abstract
Methods for treating brain tumors involving the administration of a compound that selectively inhibits pathological production of human VEGF are described. The compound can be administered as a single agent therapy or in combination with one or more additional therapies to a human in need of such treatment.
Description
1. INTRODUCTION

Methods for treating brain tumors involving the administration of a compound that selectively inhibits pathological production of human vascular endothelial growth factor (VEGF) are described. The compound can be administered as a single-agent therapy or in combination with one or more additional therapies to a human in need of such treatment.


2. BACKGROUND

2.1 Brain Tumors


A brain tumor is an abnormal growth of cells within the central nervous system or meninges, which can be cancerous or non-cancerous (benign). Brain tumors typically are categorized as primary or secondary. Primary brain tumors originate in the brain; whereas secondary brain tumors are the result of cancer cells originating at primary sites outside the brain that have metastasized (i.e., spread) to the brain. Secondary, or metastatic, brain tumors occur in about 10-30% of adult cancers and about one-fourth of all cancers that metastasize (see, e.g., the website at www.healthscout.com/ency/1/000769.html).


Primary brain tumors represent about 2% of all cancers and about 25% of pediatric cancers, with an estimated 43,800 new cases of benign and malignant brain tumors diagnosed annually in the United States (see Buckner et al., Central Nervous Tumors, Mayo Clin. Proc. 82(10); 1271-1286 (2007); and Chamberlain et al., Practical Guidelines for the treatment of malignant gliomas, West. J. Med. 168: 114-120 (1998)). Approximately half of these tumors are benign (see Buckner et al.). The mortality rate from malignant primary brain tumors is very high: such tumors are the leading cause of death from solid tumors in children and the third leading cause of death from cancer in adolescents and adults aged 15 to 34 years (see Buckner et al.). Brain tumors represent a cancer that is one of the most devastating and difficult to treat. For example, median survival for glioblastoma multiforme (GBM) averages only 1 year (see Fomchenko et al., Mouse models of brain tumors and their applications in preclinical trials, Clin. Cancer res. 12(18):5288-5297 (2006)).


Primary brain tumors are commonly located in the posterior cranial fossa in children and in the anterior two-thirds of the cerebral hemispheres in adults, although they can affect any part of the brain. Primary brain tumors comprise a diverse range of pathobiological groups; however, they may be broadly classified as gliomas or non-gliomas (see Buckner et al.). Gliomas include astrocytomas (such as GBM), oligodendrogliomas (or mixtures of oligodendroglioma and astrocytoma elements) and ependymomas (see Buckner et al.). Non-gliomas include typically benign tumors, such as meningiomas and pituitary adenomas, as well as malignant tumors, such as primitive neuroectodermal tumors (medullblastomas), primary central nervous system (CNS) lymphomas, and CNS germ cell tumors (see Buckner et al.). Meningiomas are the most common benign brain tumor, and astrocytomas, including GBM, are the most common malignant brain tumors (see Buckner et al.).


GBM is characterized by rapid tumor progression and a low survival rate even with treatment. The causes of GBM are currently unknown. GBM is more commonly found in males. Certain risk factors are related to age and ethnicity, including being over 50 years of age, or being of Caucasian, Latino or Asian descent. Other risk factors include having a low-grade astrocytoma (brain tumor), which occasionally develops into a higher-grade tumor, or having one of the following genetic disorders: neurofibromatosis, tuberous sclerosis, Von Hippel-Lindau disease, Li-Fraumeni syndrome and Turcot syndrome.


Although common symptoms of GBM include seizure, nausea and vomiting, headache, and hemiparesis, the single most prevalent symptom is a progressive memory, personality, or neurological loss due to temporal and frontal lobe involvement. The symptoms depend highly on the location of the tumor, more so than on its pathological properties. The tumor can start producing symptoms quickly, but occasionally is asymptomatic until it reaches a very large size.


GBM tumors are characterized by the presence of small areas of necrotizing tissue surrounded by anaplastic cells (pseudopalisading necrosis). This characteristic, as well as the presence of hyperplastic blood vessels, differentiates the tumor from Grade 3 astrocytomas, which do not have these features. Although GBM can be formed from lower-grade astrocytomas, post-mortem autopsies have revealed that most GBM tumors are not caused by previous lesions in the brain.


Unlike oligodendrogliomas, GBM can form in either the gray matter or the white matter of the brain, but most GBM arises from the deep white matter and quickly infiltrates the brain, often becoming very large before producing symptoms. The tumor may extend to the meningeal or ventricular wall, causing increased protein content in cerebrospinal fluid (CSF) (>100 mg/dL), as well as an occasional pleocytosis of 10 to 100 cells, mostly lymphocytes. Malignant cells carried in the CSF may spread to the spinal cord or cause meningeal gliomatosis. However, metastasis of GBM beyond the central nervous system is extremely rare. About 50% of GBM tumors have been found to occupy more than one lobe of a hemisphere or are bilateral (butterfly-like). GBM tumors of this type usually arise from the cerebrum and may exhibit the classic infiltrate across the corpus callosum, producing a butterfly (bilateral) glioma.


GBM tumors may take on a variety of appearances, depending on the amount of hemorrhage, necrosis, or its age. A computed tomography (CT) scan will usually show a nonhomogeneous mass with a hypodense center and a variable ring of enhancement surrounded by edema. Mass effect from the tumor and edema may compress the ventricles and cause hydrocephalus. Definitive diagnosis of a suspected GBM on CT or magnetic resonance imaging (MRI) requires a stereotactic biopsy or a craniotomy with tumor resection. Because the tumor grade is based upon the most malignant portion of the tumor, biopsy or subtotal tumor resection can result in undergrading of the lesion.


GBM and other tumors of the brain are particularly difficult to treat because the blood-brain barrier (BBB) prevents access of drugs to the tumor site. Moreover, the BBB in GBM is abnormal. It is alternately intact or disrupted depending on whether the blood vessels feeding the tumor are part of the tumor neovasculature or are co-opted vessels (see Anderson et al., 2008, “New molecular targets in angiogenic vessels of glioblastoma tumours,” Expert Rev Mol Med 10:e23). Thus, it is difficult to target the entire tumor with a drug at any one time.


2.2 Current Treatments/Management


Brain tumors are usually diagnosed by imaging using non-invasive, high-resolution imaging techniques such as CT and MRI, to be confirmed by histological examination of tumor tissue samples.


Standard methods of treatment of brain tumors include surgery of the tumor mass, radiation therapy, chemotherapy and use of ancillary therapeutic agents, such as corticosteroids, anticonvulsant drugs, and anticoagulant drugs. Most commonly, treatment of brain tumors encompasses initial surgery followed by radiation therapy and/or chemotherapy. Complete surgical resection of the tumor is not possible in the majority of patients with brain tumors because the tumor is often located in vital regions of brain (see Chamberlain et al., Practical Guidelines for the treatment of malignant gliomas, West. J. Med. 168: 114-120 (1998)). For example, complete resection is accomplished in only 10-15% of patients with malignant gliomas (see Chamberlain et al.). Radiation therapy, including whole-brain and involved-field radiation, has been shown to prolong survival for most brain tumor patients (see Chamberlain et al.; and Buckner et al., Central Nervous Tumors, Mayo Clin. Proc. 82(10); 1271-1286 (2007). Chemotherapy, e.g., therapy with temozolomide, has been shown to provide only modest benefit for many patients with brain tumors (see Buckner et al.). The use of high-dose chemotherapy and local administration of chemotherapy into the brain tumor have generally been disappointing (see Buckner et al.). However, chemotherapy can have an adjuvant effect in combination with other therapies (see Chamberlain et al.). Use of corticosteroids, anticonvulsant drugs, and anticoagulant drugs helps to control certain symptoms of brain tumors, but the long-term use of these agents can result in substantial toxic effects (see Buckner et al.).


Despite advances in cancer therapy, multiple problems still exist with respect to treating brain tumors, some because of extensive infiltration of tumor cells, their invasion into normal brain parenchyma or other sites, their resistance to standard radiation and chemotherapy, and because curative doses generally cannot be delivered without excessive toxicity to normal portions of the brain (see Fomchenko et al., Mouse models of brain tumors and their applications in preclinical trials, Clin. Cancer res. 12(18):5288-5297 (2006); and Zalutsky, Current status of therapy of solid tumors: brain tumor therapy, J. Nucl. Med. 46(1): 151S-156S (2005)).


In particular, despite current multimodality therapy, which has integrated surgery, radiation therapy, and chemotherapy, the outcome of newly diagnosed patients remains dismal and with no established therapy available for patients with recurrent GBM.


The median survival time from the time of diagnosis of GBM without any treatment is only 3 months. Increasing age (>60 years of age) carries a worse prognostic risk. One in twenty of GBM patients survive for more than three years, and approximately one in 5,000 GBM patients survives for more than one decade (see Krex et al., 2007, “Long-term survival with glioblastoma multiforme,” Brain 130: 2596-2606). Survival of more than three years has been associated with a younger age at diagnosis, a good initial Karnofsky Performance Score (KPS), and MGMT methylation (see Krex et al., 2007). A DNA test can be conducted on GBM tumors to determine whether or not the promoter of the MGMT gene is methylated. Patients with a methylated MGMT promoter have been associated with significantly greater long-term survival than patients with an unmethylated MGMT promoter (see Martinez et al., 2007, “Frequent hypermethylation of the DNA repair gene MGMT in long-term survivors of glioblastoma multiforme,” Journal of Neuro-Oncology 83: 91-93). This DNA characteristic is intrinsic to the patient and currently cannot be altered externally.


Longer term survival of GBM patients has been associated with those patients who receive multimodality therapy that includes surgery, radiotherapy, and chemotherapy (see Krex et al., 2007). However, long-term disease-free survival is unlikely, and the tumor will often reappear, usually within 2 cm of the original site, and 10% of former tumors may develop new lesions at distant sites.


Palliative therapies commonly in use for cancer treatment, such as surgery and radiotherapy, are more problematic for brain tumors than for other types of tumors because of the brain's susceptibility to damage and its limited ability to heal itself. While surgery and radiotherapy are used in the treatment of GBM, GBM is currently commonly treated by a regimen of chemotherapeutics in combination with anti-edema drugs and anticonvulsants to counteract the seizures commonly experienced by GBM patients. Clinical studies using chemotherapeutic agents alone or in combination for treatment of malignant glioma or GBM have demonstrated some success.


Secondary central nervous system or meningeal tumors metastatic from other sites are commonly treated with the same types of therapies (e.g., chemotherapy, irradiation, anticonvulsants, steroids, and other therapies) used for the treatment of primary brain tumors. Chemotherapeutic agents used for patients with secondary brain tumors are prescribed in accordance with expected activity for the primary tumor type.


Despite attempted interventions, brain tumors remain serious, rapidly progressive, disabling, and life-threatening conditions with few adequate treatment options. Development of a therapy that can safely address a component of the pathogenesis of brain tumors would address a high unmet medical need.


3. SUMMARY

Methods for treating brain tumors are described involving the administration of compounds having the formulas set forth herein (“Compound”) to a human subject in need of such treatment. Preferably, the Compound used in the therapeutic method demonstrates one or more of the following activities as determined in cell culture and/or animal model systems, such as those described herein: (a) selective inhibition of the pathological production of human vascular endothelial growth factor (VEGF); (b) inhibition of tumor angiogenesis, tumor-related inflammation, tumor-related edema, and/or tumor growth; and/or (c) prolongation of the G1/S phase of cell cycle.


The Compound can be administered as a single agent therapy to a human in need of such treatment. Alternatively, the Compound can be administered in combination with one or more additional therapies to a human in need of such treatment. Such therapies may include the use of anti-cancer agents (e.g., cytotoxic agents, anti-angiogenesis agents, tyrosine kinase inhibitors, or other enzyme inhibitors).


Despite differences in the genetic basis for the various types of brain tumors, the therapies described herein should be effective because they are aimed at interfering with basic mechanisms required for manifestation of each disease—i.e., uncontrolled growth of tumors or inflammation or edema associated with tumors. While not bound by any theory, the therapies described are based, in part, on the pharmacodynamic activities of the Compounds as measured in cell culture and in animal models; in particular, these include: (a) selective inhibition of the pathological production of human VEGF; (b) inhibition of tumor angiogenesis, tumor-related inflammation, tumor-related edema, and/or tumor growth; and/or (c) prolongation of the G1/S phase of the cell cycle of tumor cells.


These pharmacologic activities contribute to limiting solid tumor growth or tumor-related inflammation or edema in several ways. For example, inhibition of pathological production of human VEGF by the tumor will inhibit tumor angiogenesis, thereby limiting vascularization and further growth of solid tumors. An additional benefit is achieved for tumors that respond to VEGF as a growth factor—in such cases, the Compound can limit proliferation of such tumor cells independent of their angiogenic status, that is angiogenesis and vascularization need not be present for the Compound to limit proliferation of the tumor cells. Because the process of tumorigenesis can result in inflammation and edema, a Compound may limit such inflammation or edema. Finally, the prolongation of cell cycle may contribute to the induction of apoptotic death of the tumor cells, and/or allow for increased efficacy when the Compound is used in combination with a therapy or therapies (e.g., drug therapy or radiation) that interfere with nucleic acid synthesis during the cell cycle (e.g., the G1/S phase).


Thus, in specific embodiments, the methods for treating brain tumors can result in inhibition or reduction of the pathological production of human VEGF (including intratumoral VEGF production), thus reducing human VEGF concentrations in biological specimens of an afflicted subject; inhibition of tumor angiogenesis, tumor-related inflammation or edema, and/or tumor growth in the subject; stabilization or reduction of tumor volume or tumor burden in the subject; stabilization or reduction of peritumoral inflammation or edema in the subject; reduction of the concentrations of angiogenic or inflammatory mediators in biological specimens (e.g., plasma, serum, cerebral spinal fluid, urine, or any other biofluids); and/or a delayed or prolonged G1/S phase of the cell cycle (i.e., the period between the late resting or pre-DNA synthesis phase, and the early DNA synthesis phase) in tumor cells of the subject.


Existing antiangiogenic therapies that have been developed for other diseases (e.g., certain cancers, retinopathies including macular degeneration and the like) are directed at neutralizing VEGF activity (e.g., using anti-VEGF antibodies), or inhibiting downstream effects of VEGF signaling (e.g., using tyrosine kinase inhibitors to block the signaling activity of the VEGF receptor). As a result, these existing antiangiogenic therapies neutralize or inhibit physiological or homeostatic VEGF, as well as pathologically produced human VEGF, activity resulting in side effects that, while tolerated for the treatment of life-threatening cancers or to prevent or slow the development of blindness, may not be acceptable for the treatment of brain tumors. Since the Compounds used in the therapeutic methods described herein selectively inhibit pathologic production of human VEGF (e.g., by the tumor), and do not disturb the production of human VEGF under physiological conditions, side effects that are unacceptable for the treatment of brain tumors should be reduced


The efficacy of the therapeutic intervention is supported by the data presented herein, demonstrating that: the Compounds inhibit the pathological production of human VEGF (see Section 9.1 et. seq., infra); the Compounds inhibit tumor angiogenesis and tumor growth (see Section 9.2 et. seq., infra); the Compounds delay cell cycle by prolonging the G1/S phase (see Section 9.3 et. seq., infra); the Compounds can be administered safely to human subjects (see Section 10.2 et. seq., infra; and the Compounds inhibit the growth of xenograft human GBM tumors in animal model systems (see Section 12 et. seq., infra).


3.1 Definitions

As used herein the term “brain tumor” refers to an abnormal growth of cells intracranially, i.e., within the brain or inside the skull, which can be benign (non-cancerous) or malignant (cancerous), including abnormal growth in the brain itself (of neurons, glial cells, astrocytes, oligodendrocytes, ependymal cells, lymphatic tissue, blood vessels, cranial nerves (myelin-producing Schwann cells)); abnormal growth in the brain envelopes (meninges), skull, pituitary and pineal gland, and metastatic tumors in the brain from cancers primarily located in other organs. Brain tumors may be primary brain tumors (i.e., tumors originating in the brain) and non-primary brain tumors (i.e., intracranial tumors arising from brain meninges and tumor metastases to the brain from other types of cancers). Primary brain tumors include gliomas or non-gliomas. Specific examples of gliomas include astrocytomas, oligodendrogliomas (or mixtures of oligodendroglioma and astrocytoma elements) and ependymomas. Specific examples of non-gliomas typically include benign tumors, such as meningiomas and pituitary adenomas, as well as malignant tumors, such as primitive neuroectodermal tumors (medullblastomas), primary CNS lymphomas, and CNS germ cell tumors. Brain tumors may be assigned a grade based on the appearance of the brain tumor cells and how quickly the tumor is likely to grow and spread. Such observations are made using known methods, including microscopic observation of brain tumor cells. Typically, grade I refers to benign tumors (e.g., an acoustic neuroma or an menigioma), grade II refers to low-grade tumors (e.g., a low-grade oligodendroglioma), grade III refers to intermediate-grade tumors (e.g., an anaplastic oligodendroglioma), and grade IV refers to the most malignant and aggressive brain tumors (e.g., GBM).


In some embodiments, a brain tumor is a benign brain tumor. In other embodiments, a brain tumor is a malignant brain tumor. In certain embodiments, a brain tumor is an astrocytoma, an oligodendroglioma, a mixture of oligodendroglioma and astrocytoma elements, an ependymoma, a meningioma, a pituitary adenoma, a primitive neuroectodermal tumor, a medullblastoma, a primary CNS lymphoma, or a CNS germ cell tumor. In specific embodiments, a brain tumor is an acoustic neuroma, an anaplastic astrocytoma, a GBM, or a meningioma. In other specific embodiments, a brain tumor is a brain stem glioma, a craniopharyngioma, an ependyoma, a juvenile pilocytic astrocytoma, a medulloblastoma, an optic nerve glioma, primitive neuroectodermal tumor, or a rhabdoid tumor. In certain embodiments, a brain tumor is a pediatric brain tumor.


As used herein, the term “effective amount” in the context of administering a Compound to a subject refers to the amount of a Compound that results in a beneficial or therapeutic effect. In specific embodiments, an “effective amount” of a Compound refers to an amount of a Compound which is sufficient to achieve at least one, two, three, four or more of the following effects: (i) the reduction or amelioration of the severity of a brain tumor and/or one or more symptoms associated therewith; (ii) the reduction in the duration of one or more symptoms associated with a brain tumor; (iii) the prevention in the recurrence of a brain tumor or one or more symptoms associated with a brain tumor; (iv) the regression of a brain tumor and/or one or more symptoms associated therewith; (v) the reduction in hospitalization of a subject; (vi) the reduction in hospitalization length; (vii) the increase in the survival of a subject; (viii) the inhibition of the progression of a brain tumor and/or one or more symptoms associated therewith; (ix) the enhancement or improvement the therapeutic effect of another therapy; (x) a reduction or elimination in the cancer cell population; (xi) a reduction in the growth of a tumor or neoplasm; (xii) a decrease in tumor size (e.g., volume or diameter); (xiii) a reduction in the formation of a newly formed tumor; (xiv) eradication, removal, or control of primary, regional and/or metastatic cancer; (xv) ease in removal of tumors by reducing vascularization prior to surgery; (xvi) a decrease in the number or size of metastases; (xvii) a reduction in mortality; (xviii) an increase in the brain tumor-free survival rate of patients; (xix) an increase in relapse free survival; (xx) an increase in the number of patients in remission; (xxi) a decrease in hospitalization rate; (xxii) the size of the tumor is maintained and does not increase or increases by less of the tumor after administration of a standard therapy as measured by conventional methods available to one of skill in the art, such as MRI, dynamic contrast-enhanced MRI (DCE-MRI), X-ray, CT scan, or a positron emission tomography (PET) scan; (xxiii) the prevention of the development or onset of one or more symptoms associated with a brain tumor; (xxiv) an increase in the length of remission in patients; (xxv) the reduction in the number of symptoms associated with a brain tumor; (xxvi) an increase in symptom-free survival of brain tumor patients; (xxvii) inhibition or reduction in pathological production of VEGF; (xxviii) stabilization or reduction of peritumoral inflammation or edema in a subject; (xxix) reduction of the concentration of VEGF or other angiogenic or inflammatory mediators (e.g., cytokines or interleukins) in biological specimens (e.g., plasma, serum, cerebral spinal fluid, urine, or any other biofluids); (xxx) reduction of the concentration of P1GF, VEGF-C, VEGF-D, VEGF-R, IL-6, and/or IL-8 in biological specimens (e.g., plasma, serum, cerebral spinal fluid, urine, or any other biofluids); (xxxi) inhibition or decrease in tumor metabolism or perfusion; (xxxii) inhibition or decrease in angiogenesis or vascularization; and/or (xxxiii) improvement in quality of life as assessed by methods well known in the art, e.g., a questionnaire. In specific embodiments, an “effective amount” of a Compound refers to an amount of a Compound specified herein, e.g., in section 5.4 below.


As used herein, the term “elderly human” refers to a human 65 years or older.


As used herein, the term “human adult” refers to a human that is 18 years or older.


As used herein, the term “human child” refers to a human that is 1 year to 18 years old.


As used herein, the term “human infant” refers to a newborn to 1 year old year human.


As used herein, the term “human toddler” refers to a human that is 1 year to 3 years old.


As used herein, the terms “therapies” and “therapy” can refer to any protocol(s), method(s), compositions, formulations, and/or agent(s) that can be used in the prevention, treatment, management, or amelioration of a condition or disorder or symptom thereof (e.g., a brain tumor or a symptom or condition associated therewith). In certain embodiments, the terms “therapies” and “therapy” refer to drug therapy, adjuvant therapy, surgery, radiation therapy, biological therapy, supportive therapy, and/or other therapies useful in treatment, management, prevention, or amelioration of a condition or disorder or a symptom thereof (e.g., a brain tumor or a symptom or condition associated therewith). In certain embodiments, the term “therapy” refers to a therapy other than a Compound or pharmaceutical composition thereof. In specific embodiments, an “additional therapy” and “additional therapies” refer to a therapy other than a treatment using a Compound or pharmaceutical composition. In a specific embodiment, the therapy includes use of a Compound as an adjuvant therapy; for example, using a Compound in conjunction with a drug therapy, surgery, radiation therapy, biological therapy, supportive therapy, and/or other therapies useful in treatment, management, prevention, or amelioration of a condition or disorder or a symptom thereof (e.g., a brain tumor or a symptom or condition associated therewith).


As used herein, the term “subject” and “patient” are used interchangeably to refer to an individual. In a specific embodiment, the individual is a human. See Section 5.3 infra for more information concerning patients treated for brain tumors in accordance with the methods provided herein.


Concentrations, amounts, cell counts, percentages and other numerical values may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited.


As used herein, the term “pharmaceutically acceptable salt(s)” refers to a salt prepared from a pharmaceutically acceptable non-toxic acid or base including an inorganic acid and base and an organic acid and base. Suitable pharmaceutically acceptable base addition salts of the Compounds provided herein include, but are not limited to metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from lysine, N,N′-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine. Suitable non-toxic acids include, but are not limited to, inorganic and organic acids such as acetic, alginic, anthranilic, benzenesulfonic, benzoic, camphorsulfonic, citric, ethenesulfonic, formic, fumaric, furoic, galacturonic, gluconic, glucuronic, glutamic, glycolic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phenylacetic, phosphoric, propionic, salicylic, stearic, succinic, sulfanilic, sulfuric, tartaric acid, and p-toluenesulfonic acid. Specific non-toxic acids include hydrochloric, hydrobromic, phosphoric, sulfuric, and methanesulfonic acids. Examples of specific salts thus include hydrochloride and mesylate salts. Others are well-known in the art, see for example, Remington's Pharmaceutical Sciences, 18th eds., Mack Publishing, Easton Pa. (1990) or Remington: The Science and Practice of Pharmacy, 19th eds., Mack Publishing, Easton Pa. (1995).


As used herein, the term “alkyl” generally refers to saturated hydrocarbyl radicals of straight or branched configuration including, but not limited to methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, octyl, n-octyl, and the like. In some embodiments, alkyl substituents can be C1 to C8, C1 to C6, or C1 to C4 alkyl. Alkyl may be optionally substituted where allowed by available valences, for example, with one or more halogen or alkoxy substituents. For instance, halogen substituted alkyl may be selected from haloalkyl, dihaloalkyl, trihaloalkyl and the like.


As used herein, the term “cycloalkyl” generally refers to a saturated or partially unsaturated non-aromatic carbocyclic ring. Representative examples of cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentadienyl, cyclohexyl, cyclohexenyl, 1,3-cyclohexadienyl, 1,4-cyclohexadienyl, cycloheptyl, 1,3-cycloheptadienyl, 1,3,5-cycloheptatrienyl, cyclooctyl, cyclooctadienyl, indanyl and the like. Cycloalkyl may be optionally substituted where allowed by available valences. In certain embodiments, cycloalkyl is selected from C3-C20cycloalkyl, C3-C14cycloalkyl, C5-C8cycloalkyl, C3-C8cycloalkyl and the like.


As used herein, the term “alkenyl” generally refers to linear or branched alkyl radicals having one or more carbon-carbon double bonds, such as C2 to C8 and C2 to C6 alkenyl, including 3-propenyl and the like, and may be optionally substituted where allowed by available valences.


As used herein, the term “alkynyl” generally refers to linear or branched alkyl radicals having one or more carbon-carbon triple bonds, such as C2 to C8 and C2 to C6 alkynyl, including hex-3-yne and the like and may be optionally substituted where allowed by available valences.


As used herein, the term “aryl” refers to a monocarbocyclic, bicarbocyclic or polycarbocyclic aromatic ring structure. Included in the scope of aryl are aromatic rings having from six to twenty carbon atoms. Aryl ring structures include compounds having one or more ring structures, such as mono-, bi-, or tricyclic compounds. Examples of aryl include phenyl, tolyl, anthracenyl, fluorenyl, indenyl, azulenyl, phenanthrenyl (i.e., phenanthrene), napthyl (i.e., napthalene) and the like. In certain embodiments, aryl may be optionally substituted where allowed by available valences. In one embodiment, aryl is an optionally substituted phenyl or naphthyl.


As used herein, the term “heteroaryl” refers to monocyclic, bicyclic or polycyclic aromatic ring structures in which one or more atoms in the ring, is an element other than carbon (heteroatom). Heteroatoms are typically O, S or N atoms. Included within the scope of heteroaryl, and independently selectable, are O, N, and S heteroaryl ring structures. The ring structure may include compounds having one or more ring structures, such as mono-, bi-, or tricyclic compounds. In some embodiments, heteroaryl may be selected from ring structures that contain one or more heteroatoms, two or more heteroatoms, three or more heteroatoms, or four or more heteroatoms. In one embodiment, the heteroaryl is a 5 to 10 membered or 5 to 12 membered heteroaryl. Heteroaryl ring structures may be selected from those that contain five or more atoms, six or more atoms, or eight or more atoms. Examples of heteroaryl ring structures include, but are not limited to: acridinyl, benzimidazolyl, benzoxazolyl, benzofuranyl, benzothiazolyl, benzothienyl, 1,3-diazinyl, 1,2-diazinyl, 1,2-diazolyl, 1,4-diazanaphthalenyl, furanyl, furazanyl, imidazolyl, indazolyl, indolyl, isoxazolyl, isoquinolinyl, isothiazolyl, isoindolyl, oxadiazolyl, oxazolyl, purinyl, pyridazinyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyl, thiazole-2(3H) imine, 1,3,4,-thiadiazole-2(3H)-imine-yl, thiazolyl, thiophenyl, 1,3,5-triazinyl, 1,2,4-triazinyl, 1,2,3-triazinyl, tetrazolyl and the like. In certain embodiments, heteroaryl may be optionally substituted where allowed by available valences.


As used herein, the term “heteroaryl” refers to monocyclic, bicyclic or polycyclic aromatic ring structures in which one or more atoms in the ring, is an element other than carbon (heteroatom). Heteroatoms are typically O, S or N atoms. Included within the scope of heteroaryl, and independently selectable, are O, N, and S heteroaryl ring structures. The ring structure may include compounds having one or more ring structures, such as mono-, bi-, or tricyclic compounds. In some embodiments, heteroaryl may be selected from ring structures that contain one or more heteroatoms, two or more heteroatoms, three or more heteroatoms, or four or more heteroatoms. In one embodiment, the heteroaryl is a 5 to 10 membered or 5 to 12 membered heteroaryl. Heteroaryl ring structures may be selected from those that contain five or more atoms, six or more atoms, or eight or more atoms. Examples of heteroaryl ring structures include, but are not limited to: acridinyl, benzimidazolyl, benzoxazolyl, benzofuranyl, benzothiazolyl, benzothienyl, 1,3-diazinyl, 1,2-diazinyl, 1,2-diazolyl, 1,4-diazanaphthalenyl, furanyl, furazanyl, imidazolyl, indazolyl, indolyl, isoxazolyl, isoquinolinyl, isothiazolyl, isoindolyl, oxadiazolyl, oxazolyl, purinyl, pyridazinyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyrrolyl, quinazolinyl, quinolinyl, quinoxalinyl, thiazole-2(3H) imine, 1,3,4,-thiadiazole-2(3H)-imine-yl, thiazolyl, thiophenyl, 1,3,5-triazinyl, 1,2,4-triazinyl, 1,2,3-triazinyl, tetrazolyl and the like. In certain embodiments, heteroaryl may be optionally substituted where allowed by available valences.


As used herein, the term “alkoxy” generally refers to a structure of the formula: —O—R. In certain embodiments, R may be an optionally substituted straight or branched alkyl, such as a C1 to C5 alkyl.


As used herein, the term “alkylthio” generally refers to a structure of the formula: —S—R. In certain embodiments, R may be an optionally substituted straight or branched alkyl, such as a C1 to C5 alkyl.


As used herein, the term “amino” generally refers to a structure of the formula: —NRR′. In certain embodiments, R and R′ independently may be H or an optionally substituted straight or branched alkyl, such as a C1 to C5 alkyl. In one embodiment, “thiazoleamino” refers to an amino, wherein at least one of R or R′ is a 2-thiazolyl, 3-thiazolyl or 4-thiazolyl. In one embodiment, “alkylamino” refers to an amino, wherein at least one of R or R′ is an optionally substituted straight or branched C1 to C5 alkyl.


As used herein, the term “acetamino” generally refers to a structure of the formula: —NR(C(═O)CH3), wherein R may be H or an optionally substituted straight or branched alkyl, such as a C1 to C5 alkyl.


As used herein, the term “acetamide” generally refers to a structure of the formula: C(═O)NH2.


As used herein, the term “sulfonyl” generally refers to a structure of the formula: —SO2R, wherein R can be H or an optional substituent including, but not limited to straight or branched C1 to C6 alkyl, aryl, heteroaryl, cycloalkyl, or heterocycle. In one embodiment, “alkylsulfonyl” refers to a structure of the formula: —SO2R, wherein R is an optionally substituted straight or branched C1 to C6 alkyl.


As used herein, the term “oxo” generally refers to a structure of the formula: (═O).


As used herein, the term “phenyloxy” generally refers to a structure of the formula: —O-phenyl, wherein phenyl can be optionally substituted.


For the purposes of this disclosure, the terms “halogen” or “halo” refer to substituents independently selected from fluorine, chlorine, bromine, and iodine.


As used herein, the terms “Compound” or “Compound provided herein” generally refer to a compound described in Section 5.1 or Example 6. In one embodiment, the terms refer to a compound of Formula I, II, III or IV. In another embodiment, the terms refer to a compound of Formula Ia, IIa, IIa or IVa. In a specific embodiment, the terms refer to a compound depicted in Table 1. In one embodiment, the terms refer to a Compound disclosed in WO2005/089764, e.g., Compounds in the table on pages 26-98; WO2006/113703, e.g., Compounds in the table on pages 29-102; WO2008/127715, e.g., Compounds in the table on pages 52-126; WO2008/127714, e.g., Compounds in the table on pages 48-123; and U.S. Provisional Patent Application 61/181,653, entitled: METHODS FOR TREATING CANCER AND NON-NEOPLASTIC CONDITIONS, filed May 27, 2009, all of which are herewith incorporated by reference in their entirety. In one embodiment, the terms refer to a particular enantiomer, such as an R or S enantiomer of a “Compound” or “Compound provided herein”. In one embodiment, the terms refer to an R or S enantiomer of a compound of Formula I, II, III or IV. In another embodiment, the terms refer to an R or S enantiomer of a compound of Formula Ia, IIa, IIIa or IVa. In a specific embodiment, the terms refer to an R or S enantiomer of a compound depicted in Table 1. The “Compound” or “Compound provided herein” may comprise one or more asymmetric carbon atoms, i.e. n asymmetric carbon atoms, having either R or S configuration as determined by a person skilled in the art. It is understood that the terms “Compound” or “Compound provided herein” encompass all possible stereoisomers that may be generated based on all asymmetric carbon atoms. For example, if a Compound has two (n=2) assymetric carbon atoms, the terms “Compound” or “Compound provided herein” encompass all four, i.e. 2n=22=4, stereoisomers (R,S; R,R; S,S; S; R). The “Compound” or “Compound provided herein” may be a substantially pure (e.g., about 90%, about 95%, about 98%, about 99%, or about 99.9% pure) single stereoisomer or a mixture of two or more stereoisomers.


As used herein, the terms “self-microemulsifying drug delivery system” (SMEDDS) or “self-emulsifying drug delivery system” (SEDDS) mean a composition that contains an active agent herein defined in intimate admixture with pharmaceutically acceptable excipients such that the system is capable of dissolving the active agent to the desired concentration and producing colloidal structures by spontaneously forming a microemulsion when diluted with an aqueous medium, for example water, or in gastric juices. The colloidal structures can be solid or liquid particles including droplets and nanoparticles. In a SEDDS or SMEDDS system the type of microemulsion produced will be either clear or turbid depending on drug loading and the type of surfactant used.


As used herein, “microemulsion” means a slightly opaque, opalescent, non-opaque or substantially non-opaque colloidal dispersion (i.e. “clear”) that is formed spontaneously or substantially spontaneously when its components are brought into contact with an aqueous medium. A microemulsion is thermodynamically stable and typically contains dispersed droplets of a mean diameter less than about 200 nm (2000 Å). Generally microemulsions comprise droplets or liquid nanoparticles that have a mean diameter of less than about 150 nm (1500 Å); typically less than 100 nm, generally greater than 10 nm, wherein the dispersion may be thermodynamically stable over a time period of up to about 24 hours.


As used herein, the terms “pathologic,” “pathological” or “pathologically-induced,” in the context of the production of VEGF described herein, refer to the stress-induced expression of VEGF protein. In one embodiment, oncongenic transformation-induced expression of VEGF protein by tumor cells or other cells in the tumor environment is encompassed by the terms. In another embodiment, hypoxia-induced expression of VEGF protein in a chronic or traumatic inflammatory condition is encompassed by the terms. In another embodiment, in response to environmental stimuli, cells that disregulate or overproduce VEGF protein is also encompassed by the terms. As applicable, expression of VEGF protein supports inflammation, angiogenesis and tumor growth. The inhibition or reduction in pathological production of VEGF protein by a Compound can be assessed in cell culture and/or animal models as described herein.


As used herein, the term “about” means a range around a given value wherein the resulting value is substantially the same as the expressly recited value. In one embodiment, “about” means within 25% of a given value or range. For example, the phrase “about 70% by weight” comprises at least all values from 52% to 88% by weight. In another embodiment, the term “about” means within 10% of a given value or range. For example, the phrase “about 70% by weight” comprises at least all values from 63% to 77% by weight. In another embodiment, the term “about” means within 7% of a given value or range. For example, the phrase “about 70% by weight” comprises at least all values from 65% to 75% by weight.





4. DESCRIPTION OF FIGURES


FIG. 1. ELISA Evaluation of Inhibition of Soluble VEGF121/165 Production by Compound #10 during Hypoxia or Normoxia in HeLa Cells. The results shown are from assays performed in triplicate. The acronyms have the following definitions: ELISA=enzyme-linked immunosorbent assay; SE=standard error; and, VEGF=vascular endothelial growth factor.



FIG. 2. ELISA Evaluation of Inhibition of Soluble VEGF121/165 Production by Compound #10 during Hypoxia or Normoxia in Keratinocytes. The results shown are from assays performed in duplicate. The acronyms have the following definitions: ELISA=enzyme-linked immunosorbent assay; SE=standard error; and, VEGF=vascular endothelial growth factor.



FIG. 3. In Cell Western Evaluation of Inhibition of Matrix Associated VEGF189/206 Production in HT1080 Cells. The results shown are from assays performed in duplicate. The acronyms have the following definitions: SE=standard error; and, VEGF=vascular endothelial growth factor.



FIG. 4. Western Blot Evaluation of Inhibition of Matrix Associated VEGF189/206 Production in HT1080 Cells.



FIG. 5. Reduction of Intratumoral VEGF by Compound #10 in Nude Mice Bearing HT1080 Xenografts. The symbol “*” represents a p value of p<0.05, signifying that the differences in treated mice were significantly different from tumor size in vehicle-treated mice (ANOVA, followed by individual comparisons to vehicle). The acronyms have the following definitions: ANOVA=analysis of variance; BID=2 times per day; QD=1 time per day; SE=standard error; and, VEGF=vascular endothelial growth factor.



FIG. 6. Reduction of Tumor Induced Plasma VEGF by Compound #10 in Nude Mice Bearing HT1080 Xenografts. The symbol “*” represents a p value of p<0.05, signifying that the differences in treated mice were significantly different from tumor size in vehicle-treated mice (ANOVA, followed by individual comparisons to vehicle). The acronyms have the following definitions: ANOVA=analysis of variance; BID=2 times per day; QD=1 time per day; SE=standard error; and, VEGF=vascular endothelial growth factor.



FIG. 7A-B. Inhibition of Tumor Angiogenesis by Compound #10 in Nude Mice Bearing HT1080 Xenografts. FIG. 7A. The effect of vehicle on an immunostain using an anti-murine CD31 antibody specific for endothelial cells. FIG. 7B. The effect of Compound #10 on an immunostain using an anti-murine CD31 antibody specific for endothelial cells.



FIG. 8. Inhibition of Tumor Growth by Compound #10 in Nude Mice Bearing HT1080 Xenografts. The symbol “*” represents a p value of p<0.05, signifying that the differences in treated mice were significantly different from tumor size in vehicle-treated mice (ANOVA, followed by individual comparisons to vehicle). The acronyms have the following definitions: ANOVA=analysis of variance; BID=2 times per day; QD=1 time per day; and, SE=standard error.



FIG. 9. Time Course of Inhibition of Tumor Growth by Compound #10, Bevacizumab, and Doxorubicin in Nude Mice Bearing HT1080 Xenografts. The symbol “*” represents a p value of p<0.05, signifying that the differences in treated mice were significantly different from tumor size in vehicle-treated mice (ANOVA, followed by individual comparisons to vehicle). The acronyms have the following definitions: ANOVA=analysis of variance; IP=intraperitoneal; QD=1 time per day; and, SE=standard error.



FIG. 10A-B. Time Course of Inhibition of Tumor Induced Plasma VEGF Concentrations by Compound #10, Bevacizumab, and Doxorubicin in Nude Mice Bearing HT1080 Xenografts. FIG. 10A. The effect on absolute values of plasma human VEGF concentrations. FIG. 10A. The effect on values of plasma human VEGF concentrations expressed as a ratio relative to tumor volume. The symbol “*” represents a p value of p<0.05, signifying that the differences in treated mice were significantly different from tumor size in vehicle-treated mice (ANOVA, followed by individual comparisons to vehicle). The acronyms have the following definitions: IP=intraperitoneal; QD=once per day; SE=standard error; and, VEGF=vascular endothelial growth factor.



FIG. 11A-B. Inhibition of Tumor Growth by Compound #10 at 5 Weeks in Nude Mice Bearing Orthotopically Implanted SKNEP or SY5Y Xenograft. FIG. 11A. The effect on weight of an SY5Y tumor for mice treated with vehicle and Compound #10. FIG. 11B. The effect on weight of an SKNEP tumor for mice treated with vehicle and Compound #10. The symbol “*” represents a p value of p<0.05, signifying that the differences in treated mice were significantly different from tumor size in vehicle-treated mice (Student's t-test). The acronyms have the following definitions: SE=standard error.



FIG. 12A-G. Cell Cycle Effects in HT1080 Cells by Compound #10 Concentration. Histograms depicting relative DNA content in HT1080 cells under normoxic conditions after treatment with varying concentrations of Compound #10 compared to vehicle. FIG. 12A. Histogram showing the effect of treatment with vehicle. FIG. 12B-G. Histograms showing the effect of treatment with Compound #10 at 0.3 nm, 1 nm, 3 nm, 10 nm, 30 nm and 100 nm, respectively. The acronyms have the following definitions: G1=gap 1 phase (resting or pre-DNA synthesis phase—2 chromosomes present); G2=gap 2 phase (gap between DNA synthesis and mitosis—4 chromosomes present); S=synthesis phase (DNA synthesis ongoing); and, PI=propidium iodide.



FIG. 13A-F. Cell Cycle Effects in HT1080 Cells by Time from Discontinuation of Compound #10. Histograms depicting relative DNA content in HT1080 cells under normoxic conditions after discontinuation of treatment with Compound #10 compared to vehicle. FIG. 13A. Histogram showing the effect of treatment with vehicle. FIGS. 13B-F. Histograms showing the effect of discontinuation of treatment with Compound #10 at 0 hours, 2 hours, 5 hours, 8 hours and 26 hours, respectively. The acronyms have the following definitions: G1=gap 1 phase (resting or pre-DNA synthesis phase—2 chromosomes present); G2=gap 2 phase (gap between DNA synthesis and mitosis—4 chromosomes present); S=synthesis phase (DNA synthesis ongoing); and, PI=propidium iodide.



FIG. 14. BrdU Labeling of Cells from HT1080 Xenografts Grown in Nude Mice. The effect of treatment with Compound #10 compared to vehicle and a positive and negative control, doxorubicin and bevcizumab, respectively. The tumors with adequate BrdU staining (>3%) were included in analyses. The symbol “*” represents a p value of p<0.05, signifying that the differences in treated mice were significantly different from tumor size in vehicle-treated mice (ANOVA, followed by Dunnett's test relative to vehicle). The acronyms have the following definitions: ANOVA=analysis of variance; BrdU=bromodeoxyuridine; and, SE=standard error.



FIG. 15. Plasma Concentrations of Compound #10 by Dose Level after Stage 1 of a Study in Healthy Volunteers. The acronyms have the following definitions: BID=2 times per day; and, SD=standard deviation.



FIG. 16. Plasma Concentrations of Compound #10 by Dose Level after Stage 2 of a Study in Healthy Volunteers. The acronyms have the following definitions: TID=3 times per day; and, SD=standard deviation.



FIG. 17A-B. FIG. 17A: Absolute Physiologic VEGF A Plasma and Serum Concentrations: Stage 1 of Multiple dose Study; FIG. 17B: Change from Baseline in Physiologically-Induced VEGF-A Plasma and Serum VEGF Concentrations: Stage 1 of Multiple-dose Study. The acronyms have the following definitions: VEGF=vascular endothelial growth factor; and, SEM=standard error of the mean.



FIG. 18A-B. FIG. 18A: Absolute VEGF-A Plasma and Serum Concentrations: Stage 2 of Multiple-dose Study; FIG. 18B: Change from Baseline in VEGF-A Plasma and Serum VEGF Concentrations: Stage 2 of Multiple-dose Study. The acronyms have the following definitions: VEGF=vascular endothelial growth factor; and, SEM=standard error of the mean.



FIG. 19. Change in Total Tumor Volume Induced by Compound #10 in Nude Mice Bearing MDA-MB-468 Xenografts. The symbol “*” represents a p value of p<0.01, signifying that the differences in treated mice were significantly different from tumor size in vehicle-treated mice (Student's t-test). The acronyms have the following definitions: SE=standard error.



FIG. 20. Change in Necrotic Tumor Volume Induced by Compound #10 in Nude Mice Bearing MDA-MB-468 Xenografts. The symbol “*” represents a p value of p<0.01, signifying that the differences in treated mice were significantly different from tumor size in vehicle-treated mice (Student's t-test). The acronyms have the following definitions: SE=standard error.



FIG. 21. Change in Non-Necrotic Tumor Volume Induced by Compound #10 in Nude Mice Bearing MDA-MB-468 Xenografts. The symbol “*” represents a p value of p<0.01, signifying that the differences in treated mice were significantly different from tumor size in vehicle-treated mice (Student's t-test). The acronyms have the following definitions: SE=standard error.



FIG. 22. Change in fBV Induced by Compound #10 in Non Necrotic Tissue in Nude Mice Bearing MDA-MB-468 Xenografts. The symbol “**” represents a p value of p<0.01, signifying that the differences in treated mice were significantly different from tumor size in vehicle-treated mice (Student's t-test). The acronyms have the following definitions: fBV=fractional blood volume; and, SE=standard error.



FIG. 23. Change in Ktrans Induced by Compound #10 in Non Necrotic Tissue in Nude Mice Bearing MDA-MB-468 Xenografts. The symbol “*” represents a p value of p<0.01, signifying that the differences in treated mice were significantly different from tumor size in vehicle-treated mice (Student's t-test). The acronyms have the following definitions: Ktrans=volume transfer coefficient; and, SE=standard error.



FIG. 24A-B. Cell Cycle Delay After Overnight Exposure to Compound 1205. Histograms depicting relative DNA content in HT1080 cells under normoxic conditions after treatment with Compound 1205 compared to vehicle. FIG. 24A. Histogram showing the effect of treatment with Compound 1205 at 10 nm. FIG. 24B. Histogram showing the effect of treatment with vehicle.



FIG. 25. Dose Response of Compound 1205 and Compound #10: Inhibition of the Production of Hypoxia-Induced VEGF in HeLa Cells.



FIG. 26. Inhibition of HT1080 Tumor Growth by Compound #10, 1205 and 1330. The symbol “++” represents a p value of p=0.051, signifying the difference in tumor size in Compound #10 treated mice from tumor size in vehicle-treated mice (Student's t-test) on Day 11. The symbol “**” represents a p value of p<0.05, signifying that the differences in tumor size in Compound 1205 (S,S diastereoisomer) treated mice were significantly different from tumor size in vehicle-treated mice and that the differences in tumor size in Compound 1205 (S,S diastereoisomer) treated mice were significantly different from tumor size in Compound 1330 (R,S diastereoisomer)-treated mice (ANOVA, multiple comparisons).



FIG. 27A-B. Effect of Compound 1205 on Intra-Tumor Human VEGF Levels. FIG. 27A. Effect of treatment with vehicle and Compound 1205 on intra-tumor VEGF levels for Study #21 (target tumor size: 1200 mm3) and Study #23 (target tumor size: 1500 mm3). FIG. 27B. Intra-tumor VEGF levels normalized to tumor size.



FIG. 28. Effect of Compound 1205 on Levels of Homeostatic Plasma Human VEGF for Study #21 and Study #23.



FIG. 29A-F. Treatment of BrdU labeled HT1080 cells with increasing doses of Compound #10. FIG. 29A. The effect of DMSO control on percentage of cells residing in S-phase. FIGS. 29B-F. The effect of increasing concentration of Compound #10 at 1 nm, 3 nm, 10 nm, 30 nm and 100 nm, respectively, on percentage of cells residing in S-phase.



FIG. 30A-B. FIG. 30A. The percentage of cells incorporating BrdU. FIG. 30B. The relative level of BrdU at each Compound #10 concentration.



FIG. 31A-B-C. BrdU Histogram and Quantification: FIG. 31(A). Histograms of DNA content demonstrating that the cell cycle distribution for HT1080 spheroids treated for 24 hours is not affected by exposure to Compound #10; FIG. 31(A)(i). Data.001 shows the control results; FIG. 31(A)(ii). Data.002 shows the results of exposure at 5 nm Compound #10; and, FIG. 31(A)(iii). Data.003 shows the results of exposure at 50 nm Compound #10. FIG. 31(B). BrdU quantification indicating the fraction of cells actively synthesizing DNA; FIG. 31(B)(i). The effect of the DMSO control; FIG. 31(B)(ii). Represents the Data.001 results; and, FIG. 31(B)(iii). Represents the Data.003 results. FIG. 31(C) A graphical representation of the percentage of cells that incorporated BrdU (i.e., the cells in S-phase) after treatment with Compound #10 at various concentrations.



FIG. 32A-B-C. BrdU Histogram and Quantification: FIG. 32(A). Histograms of DNA content demonstrating that the cell cycle distribution for HT1080 spheroids treated for 48 hours is not affected by exposure to Compound #10; FIG. 32(A)(i). Data.004 shows the control results; FIG. 32(A)(ii). Data.005 shows the results of exposure at 10 nm Compound #10; and, FIG. 32(A)(iii). Data.006 shows the results of exposure at 50 nm Compound #10. FIG. 32(B). BrdU quantification indicating the fraction of cells actively synthesizing DNA; FIG. 32(B)(i). Represents the Data.004 results; FIG. 32(B)(ii). Represents the Data.005 results; and, FIG. 32(B)(iii). Represents the Data.006 results. FIG. 32(C) A graphical representation of the percentage of cells that incorporated BrdU (i.e., the cells in S-phase) after treatment with Compound #10 at various concentrations.



FIG. 33. The effect of Compound #10 on Anchorage Independent Colony Formation.



FIG. 34. The effect on survival using Compound #10 alone or in combination with AVASTIN® (brand of bevacizumab) for D245MG-mediated lethality in an orthotopic model. The effect of Compound #10 has been to induce a significant improvement in survival.



FIG. 35. The effect of Compound #10 at three dose levels on growth of subcutaneous U87 tumor cells in vivo.



FIG. 36. The effect on survival using Compound #10 alone or in combination with TEMODAR® (brand of temozolomide) for D245MG-PR mediated lethality in a procarbazine-resistant orthotopic model. Treatment with Compound #10 alone and in combination with TEMODAR® (brand of temozolomide) extends survival in a procarbazine-resistant orthotopic model.



FIG. 37. The effect on survival using Compound #10 alone or in combination with TEMODAR® (brand of temozolomide) for D245MG-mediated lethality in an orthotopic model. Treatment with Compound #10 alone and in combination with TEMODAR® (brand of temozolomide) extends survival in an orthotopic model.



FIG. 38. The effect on survival using Compound #10 for U251-mediated lethality in an orthotopic model. The study in U251 human glioblastoma cells provided a p value of p=0.791 comparing vehicle-treated mice to those treated with Compound #10.



FIG. 39. The effect on survival using Compound #10 for SF295-mediated lethality in an orthotopic model. The study in SF-295 human glioblastoma cells provided a p value of p=0.01 comparing vehicle-treated mice to those treated with Compound #10.



FIG. 40A-B. A. The dose dependent effect of using Compound #10 on in vivo intra-tumor VEGF levels in hU87 cells in an orthotopic nude mouse model, where the symbol “*” represents a p value of p<0.05, signifying that the differences in VEGF levels in treated mice were significantly different from VEGF levels in vehicle-treated mice (ANOVA, multiple comparisons vs vehicle). B. The effect of using Compound #10 on FGF-2 levels in hU87 cells in an orthotopic nude mouse model, where the differences between treated mice and vehicle-treated mice gave a p value of p=0.53 (ANOVA, multiple comparisons vs vehicle).





5. DETAILED DESCRIPTION

Presented herein are methods for treating brain tumors. In one aspect, the methods for treating brain tumors involve the administration of a Compound, as a single agent therapy, to a patient in need thereof. In a specific embodiment, presented herein is a method for treating a brain tumor, comprising administering to a patient in need thereof an effective amount of a Compound, as a single agent. In another embodiment, presented herein is a method for treating a brain tumor, comprising administering to a patient in need thereof a pharmaceutical composition comprising a Compound, as the single active ingredient, and a pharmaceutically acceptable carrier, excipient or vehicle.


In another aspect, the methods for treating brain tumors involve the administration of a Compound in combination with another therapy (e.g., one or more additional therapies that do not comprise a Compound, or that comprise a different Compound) to a patient in need thereof. Such methods may involve administering a Compound prior to, concurrent with, or subsequent to administration of the additional therapy. In certain embodiments, such methods have an additive or synergistic effect. In a specific embodiment, presented herein is a method for treating a brain tumor, comprising administering to a patient in need thereof an effective amount of a Compound and an effective amount of another therapy.


In certain embodiments, the concentration of VEGF or other angiogenic or inflammatory mediators in biological specimens (e.g., plasma, serum, cerebral spinal fluid, urine, or any other biofluids) of a patient is monitored before, during and/or after a course of treatment involving the administration of a Compound or a pharmaceutical composition thereof to the patient. In certain embodiments, the tumoral blood flow or metabolism, or peritumoral edema in a patient is monitored before, during and/or after a course of treatment involving the administration of a Compound or a pharmaceutical composition. The dosage, frequency and/or length of administration of a Compound or a pharmaceutical composition thereof to a patient may also be modified as a result of the concentration of VEGF or other angiogenic or inflammatory mediators, or tumoral blood flow or metabolism, or peritumoral inflammation or edema as assessed by imaging techniques. Alternatively, changes in one or more of these monitoring parameters (e.g., concentration of VEGF or other angiogenic or inflammatory mediators, or tumoral blood flow or metabolism, or peritumoral inflammation or edema) might indicate that the course of treatment involving the administration of the Compound or pharmaceutical composition thereof is effective in treating a brain tumor.


In a specific embodiment, presented herein is a method for treating a brain tumor, comprising: (a) administering to a patient in need thereof one or more doses of a Compound or a pharmaceutical composition thereof; and (b) monitoring the concentration of VEGF or other angiogenic, or inflammatory mediators (e.g., detected in biological specimens such as plasma, serum, cerebral spinal fluid, urine, or other biofluids), or monitoring tumoral blood flow or metabolism, or peritumoral edema before and/or after step (a). In specific embodiments, step (b) comprises monitoring the concentration of one or more inflammatory mediators including, but are not limited to, cytokines and interleukins such as IL-6 and IL-8. In particular embodiments, step (b) comprises monitoring the concentration of VEGF, VEGFR, P1GF, VEGF-C, and/or VEGF-D. In certain embodiments, the monitoring step (b) is carried out before and/or after a certain number of doses (e.g., 1, 2, 4, 6, 8, 10, 12, 14, 15, or 20 doses, or more doses; or 2 to 4, 2 to 8, 2 to 20 or 2 to 30 doses) or a certain time period (e.g., 1, 2, 3, 4, 5, 6, or 7 days; or 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 45, 48, or 50 weeks), of administering the Compound. In certain embodiments, one or more of these monitoring parameters are detected prior to administration of the Compound or pharmaceutical composition thereof. In specific embodiments, a decrease in the concentration of VEGF or other angiogenic or inflammatory mediators or a change in tumoral blood flow or metabolism, or peritumoral edema following administration of the Compound or pharmaceutical composition thereof indicates that the course of treatment is effective for treating a brain tumor. In some embodiments, a change in the concentration of VEGF or other angiogenic or inflammatory mediators or a change in tumoral blood flow or metabolism, or peritumoral edema following administration of the Compound or pharmaceutical composition thereof may indicate that the dosage, frequency and/or length of administration of the Compound or a pharmaceutical composition thereof may be adjusted (e.g., increased, reduced or maintained).


The concentration of VEGF or other angiogenic or inflammatory mediators or a change in tumoral blood flow or metabolism, or peritumoral inflammation or edema of a patient may be detected in the plasma, serum, cerebrospinal fluid (CSF), urine or exosomes of a patient by any technique known to one of skill in the art. In certain embodiments, the method for detecting the concentration of VEGF or other angiogenic or inflammatory mediators in a patient involves obtaining a tissue or fluid sample from the patient and detecting the concentration of VEGF or the other angiogenic or inflammatory mediators in the biological sample (e.g., from plasma serum sample, cerebral spinal fluid, urine, or other biofluids) that has been subjected to certain types of treatment (e.g., centrifugation) and detection by use of immunological techniques, such as ELISA. In a specific embodiment, the ELISA described herein, e.g., in the working examples in Section 9 et seq., may be used to detect the concentration of VEGF or other angiogenic or inflammatory mediators, in a biological sample (e.g., from plasma serum, cerebral spinal fluid, urine, or any other biofluids) that has been subjected to certain types of treatment (e.g., centrifugation). Other techniques known in the art that may be used to detect the concentration of VEGF or other angiogenic or inflammatory mediators, in a biological sample, include multiplex or proteomic assays. In a specific embodiment, a CT scan, an MRI scan, or a PET scan may be used to detect the tumor blood flow or metabolism, or peritumoral edema or inflammation.


In specific embodiments, the methods for treating brain tumors provided herein alleviate or manage one, two or more symptoms associated with brain tumors. Alleviating or managing one, two or more symptoms of a brain tumor may be used as a clinical endpoint for efficacy of a Compound for treating a brain tumor. In some embodiments, the methods for treating brain tumors provided herein reduce the duration and/or severity of one or more symptoms associated with brain tumors. In some embodiments, the methods for treating brain tumors provided herein inhibit the onset, progression and/or recurrence of one or more symptoms associated with brain tumors. In some embodiments, the methods for treating brain tumors provided herein reduce the number of symptoms associated with brain tumors.


Symptoms associated with brain tumors include, but are not limited to: headaches, weakness, clumsiness, difficulty walking, seizures, altered mental status (e.g., changes in concentration, memory, attention, or alertness), nausea, vomiting, abnormalities in vision, dilation of the pupil on the side of the lesion (anisocoria), papilledema (prominent optic disc at the funduscopic examination), difficulty with speech, gradual changes with intellectual or emotional capacity, cognitive impairment, behavioral impairment, hemiparesis, hypesthesia, aphasia, ataxia, visual field impairment, facial paralysis, double vision and tremors.


In certain embodiments, the methods for treating brain tumors provided herein inhibit or reduce pathological production of human VEGF. In specific embodiments, the methods for treating brain tumors provided herein selectively inhibit pathological production of human VEGF (e.g., by the tumor), but do not disturb the physiological activity of human VEGF. Preferably, the methods for treating brain tumors provided herein do not significantly inhibit or reduce physiological or homeostatic production of human VEGF. For example, blood pressure, protein levels in urine, and bleeding are maintained within normal ranges in treated subjects. In a specific embodiment, the treatment does not result in adverse events as defined in Cancer Therapy Evaluation Program, Common Terminology Criteria for Adverse Events, Version 3.0, DCTD, NCI, NIH, DHHS, Mar. 31, 2003 (see the website at ctep.cancer.gov), public. date Aug. 9, 2006, which is incorporated by reference herein in its entirety. In other embodiments, the methods for treating brain tumors provided herein do not result in adverse events of grade 2 or greater as defined in the Cancer Therapy Evaluation Program, Common Terminology Criteria for Adverse Events, Version 3.0, supra.


In specific embodiments, the methods for treating brain tumors provided herein inhibit or reduce pathological angiogenesis and/or tumor growth. In certain embodiments, the methods for treating brain tumors provided herein prolong or delay the G1/S or late G1/S phase of cell cycle (i.e., the period between the late resting or pre-DNA synthesis phase, and the early DNA synthesis phase).


In particular embodiments, the methods for treating brain tumors provided herein inhibit, reduce, diminish, arrest, or stabilize a brain tumor or a symptom thereof. In other embodiments, the methods for treating brain tumors provided herein inhibit, reduce, diminish, arrest, or stabilize the blood flow, metabolism, peritumoral inflammation or peritumoral edema in a tumor associated with a brain tumor or a symptom thereof. In some embodiments, the methods for treating brain tumors provided herein reduce, ameliorate, or alleviate the severity of a brain tumor and/or a symptom thereof. In particular embodiments, the methods for treating brain tumors provided herein cause the regression of a brain tumor, tumor blood flow, tumor metabolism, or peritumoral edema, and/or a symptom associated with a brain tumor. In other embodiments, the methods for treating brain tumors provided herein reduce hospitalization (e.g., the frequency or duration of hospitalization) of a subject diagnosed with a brain tumor. In some embodiments, the methods for treating brain tumors provided herein reduce hospitalization length of a subject diagnosed with a brain tumor. In certain embodiments, the methods for treating brain tumors provided herein increase the survival of a subject diagnosed with a brain tumor. In some embodiments, the methods for treating brain tumors provided herein increase the survival of a subject diagnosed with a brain tumor by about 3 months, about 4 months, about 5 months, about 6 months, about 7 months, about 8 months, about 9 months, about 10 months, about 11 months, about 12 months, about 1.5 years, or about 2 years. In particular embodiments, the methods for treating brain tumors provided herein inhibit or reduce the progression of one or more tumors or a symptom associated therewith.


In specific embodiments, the methods for treating brain tumors provided herein enhance or improve the therapeutic effect of another therapy (e.g., an anti-cancer agent, radiation, drug therapy such as chemotherapy, or surgery). In certain embodiments, the methods for treating brain tumors involve the use of a Compound as an adjuvant therapy. In certain embodiments, the methods for treating brain tumors provided herein improve the ease in removal of tumors (e.g., enhance resectability of the tumors) by reducing vascularization prior to surgery. In particular embodiments, the methods for treating brain tumors provided herein reduce vascularization after surgery, for example, reduce vascularization of the remaining tumor mass not removed by surgery. In some embodiments, the methods for treating brain tumors provided herein prevent recurrence, e.g., recurrence of vascularization and/or tumor growth.


In specific embodiments, the methods for treating brain tumors provided herein improve the quality of life of a subject diagnosed with a brain tumor. An improvement in the quality of life of a subject may be determined using a questionnaire (e.g., brain cancer module questionnaire or European Organization for Research and Treatment of Cancer Quality of Life Questionnaire 30) such as provided in Section 11 et seq. In certain embodiments, the methods for treating brain tumors provided herein improve performance status using, e.g., the Karnofsky scale. In some embodiments, the methods for treating brain tumors provided herein reduce the number and/or frequency of seizures and/or headaches. In certain embodiments, the methods for treating brain tumors provided herein improve one or more of the following: the concentration, memory, attention, alertness, vision, speech, intellectual capacity, emotional capacity, and ability to walk of a subject. In some embodiments, the methods for treating brain tumors provided herein reduce nausea and/or vomiting.


In some embodiments, the methods for treating brain tumors provided herein reduce the growth of a tumor or neoplasm associated with a brain tumor. In other embodiments, the methods for treating brain tumors provided herein decrease the size of a brain tumor. In certain embodiments, the methods for treating brain tumors provided herein reduce the formation of a brain tumor. In certain embodiments, the methods for treating brain tumors provided herein eradicate, remove, or control primary, regional and/or metastatic brain tumors. In other embodiments, the methods for treating brain tumors provided herein decrease the number or size of metastases associated with a brain tumor. In particular embodiments, the methods for treating brain tumors provided herein reduce the mortality of subjects diagnosed with a brain tumor. In other embodiments, the methods for treating brain tumors provided herein increase the tumor-free survival rate of patients diagnosed with a brain tumor. In some embodiments, the methods for treating brain tumors provided herein increase relapse-free survival. In certain embodiments, the methods for treating brain tumors provided herein increase the number of patients in remission or decrease the hospitalization rate. In other embodiments, the methods for treating brain tumors provided herein maintain the size of a brain tumor so that it does not increase, or so that it increases by less than the increase of a tumor after administration of a standard therapy as measured by methods available to one of skill in the art, such as X-ray, CT Scan, MRI or PET Scan. In other embodiments, the methods for treating brain tumors provided herein prevent the development or onset of a brain tumor, or a symptom associated therewith. In other embodiments, the methods for treating brain tumors provided herein increase the length of remission in patients. In particular embodiments, the methods for treating brain tumors provided herein increase symptom-free survival of brain tumor patients. In some embodiments, the methods for treating brain tumors provided herein do not cure a brain tumor in patients, but prevent the progression or worsening of the disease. In specific embodiments, the methods for treating brain tumors achieve one or more of the clinical endpoints set forth in the working examples in Section 11 et seq., infra.


In particular embodiments, the methods for treating brain tumors achieve one or more of the following: (i) inhibition or reduction in pathological production of VEGF; (ii) stabilization or reduction of peritumoral inflammation or edema in a subject; (iii) reduction of the concentration of VEGF or other angiogenic or inflammatory mediators (e.g., cytokines or interleukins) in biological specimens (e.g., plasma, serum, cerebral spinal fluid, urine, or any other biofluids); (iv) reduction of the concentration of P1GF, VEGF-C, VEGF-D, VEGFR, IL-6, and/or IL-8 in biological specimens (e.g., plasma, serum, cerebral spinal fluid, urine, or any other biofluids); (v) inhibition or decrease in tumor metabolism or perfusion; (vi) inhibition or decrease in angiogenesis or vascularization; and/or (vii) improvement in quality of life as assessed by methods well known in the art, e.g., a questionnaire.


In certain aspects, the methods for treating brain tumors provided herein reduce the tumor size (e.g., volume or diameter) in a subject as determined by methods well known in the art, e.g., MRI. Three dimensional volumetric measurement performed by MRI has been shown to be sensitive and consistent in assessing tumor size (see, e.g., Harris et al., 2008, “Three-dimensional volumetrics for tracking vestibular schwannoma growth in neurofibromatosis type II,” Neurosurgery 62(6): 1314-9), and thus may be employed to assess tumor shrinkage in the methods provided herein. In specific embodiments, the methods for treating brain tumors provided herein reduce the tumor volume or tumor size (e.g., diameter) in a subject by at least about 20% as assessed by methods well known in the art, e.g., MRI. In certain embodiments, the methods for treating brain tumors provided herein reduce the tumor size (e.g., volume or diameter) in a subject by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 80%, 85%, 90%, 95%, or 100%, relative to the tumor size prior to administration of a Compound, as assessed by methods well known in the art, e.g., MRI. In particular embodiments, the methods for treating brain tumors provided herein reduce the tumor size (e.g., volume or diameter) in a subject by at least an amount in a range of from about 10% to about 100%, as assessed by methods well known in the art, e.g., MRI. In particular embodiments, the methods for treating brain tumors provided herein reduce the tumor size (e.g., volume or diameter) in a subject by an amount in a range of from about 5% to 10%, 10% to 20%, 10% to 30%, 15% to 40%, 15% to 50%, 20% to 30%, 20% to 40%, 20% to 50%, 30% to 60%, 30% to 70%, 30% to 80%, 30% to 90%, 30% to 95%, 30% to 99%, 40% to 100%, or any range in between, relative to the tumor size prior to administration of a Compound, as assessed by methods well known in the art, e.g., MRI.


In particular aspects, the methods for treating brain tumors provided herein inhibit or decrease tumor perfusion in a subject as assessed by methods well known in the art, e.g., DCE-MRI. Standard protocols for DCE-MRI have been described (see., e.g., Morgan et al., J. Clin. Oncol., Nov. 1, 2003, 21(21):3955-64; Leach et al., Br. J. Cancer, May 9, 2005, 92(9):1599-610; Liu et al., J. Clin. Oncol., August 2005, 23(24): 5464-73; and Thomas et al., J. Clin. Oncol., Jun. 20, 2005, 23(18):4162-71) and can be applied in the methods provided herein. In specific embodiments, the methods for treating brain tumors provided herein inhibit or decrease tumor perfusion in a subject by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 80%, 85%, 90%, 95%, or 100%, relative to tumor perfusion prior to administration of a Compound, as assessed by methods well known in the art, e.g., DCE-MRI.


In particular aspects, the methods for treating brain tumors provided herein inhibit or decrease tumor metabolism in a subject as assessed by methods well known in the art, e.g., PET scanning Standard protocols for PET scanning have been described and can be applied in the methods provided herein. In specific embodiments, the methods for treating brain tumors provided herein inhibit or decrease tumor metabolism in a subject by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 80%, 85%, 90%, 95%, or 100%, relative to tumor metabolism prior to administration of a Compound, as assessed by methods well known in the art, e.g., PET scanning. In particular embodiments, the methods for treating brain tumors provided herein inhibit or decrease tumor metabolism in a subject in the range of about 10% to 100%, or any range in between, relative to tumor metabolism prior to administration of a Compound, as assessed by methods well known in the art, e.g., PET scanning


In specific aspects, the methods for treating brain tumors provided herein decrease the concentration of VEGF or other angiogenic or inflammatory mediators (e.g., cytokines or interleukins, such as IL-6) in, e.g., the plasma, serum, CSF, urine or exosomes, of a subject as assessed by methods well known in the art, e.g., ELISA. In specific embodiments, the methods for treating brain tumors provided herein decrease the concentration of VEGF or other angiogenic or inflammatory mediators (e.g., cytokines or interleukins, such as IL-6) in a subject by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 80%, 85%, 90%, 95%, or 100%, relative to the respective concentration prior to administration of a Compound, as assessed by methods well known in the art, e.g., ELISA. In particular embodiments, the methods for treating brain tumors provided herein decrease the concentration of VEGF or other angiogenic or inflammatory mediators (e.g., cytokines or interleukins, such as IL-6) in, e.g., the plasma, serum, CSF, urine or exosomes, of a subject in the range of about 5% to 10%, 10% to 20%, 10% to 20%, 10% to 30%, 15% to 40%, 15% to 50%, 20% to 30%, 20% to 40%, 20% to 50%, 30% to 60%, 30% to 70%, 30% to 80%, 30% to 90%, 30% to 99%, 30% to 100%, or any range in between, relative to the respective concentration prior to administration of a Compound, as assessed by methods well known in the art, e.g., ELISA.


In specific aspects, the methods for treating brain tumors provided herein decrease the concentrations of placental growth factor (P1GF), VEGF-C, VEGF-D, IL-6, IL-8, VEGFR-1, and/or VEGFR-2 in, e.g., the plasma, serum, CSF, urine or exosomes, of a subject as assessed by methods well known in the art, e.g., ELISA. In specific embodiments, the methods for treating brain tumors provided herein decrease the concentrations of P1GF, VEGF-C, VEGF-D, IL-6, IL-8, VEGFR1, and/or VEGFR2 in, e.g., the plasma, serum, CSF, urine or exosomes, of a subject by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 80%, 85%, 90%, 95%, or 100%, relative to the respective concentration prior to administration of a Compound, as assessed by methods well known in the art, e.g., ELISA. In particular embodiments, the methods for treating brain tumors provided herein decrease the concentrations of P1GF, VEGF-C, VEGF-D, IL-6, IL-8, VEGFR1, and/or VEGFR2 in, e.g., the plasma, serum, CSF, urine or exosomes, of a subject in the range of about 5% to 10%, 10% to 20%, 10% to 30%, 15% to 40%, 15% to 50%, 20% to 30%, 20% to 40%, 20% to 50%, 30% to 60%, 30% to 70%, 30% to 80%, 30% to 90%, 30% to 99%, 30% to 100%, or any range in between, relative to the respective concentration observed prior to administration of a Compound, as assessed by methods well known in the art, e.g., ELISA.


In specific embodiments, the methods for treating brain tumors provided herein inhibit or decrease pathological production of VEGF by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 80%, 85%, 90%, 95%, or 100%, relative to the pathological production of VEGF observed prior to administration of a Compound, as assessed by methods well known in the art, e.g., ELISA. In particular embodiments, the methods for treating brain tumors provided herein inhibit or decrease pathological production of VEGF in the range of about 5% to 10%, 10% to 20%, 10% to 30%, 15% to 40%, 15% to 50%, 20% to 30%, 20% to 40%, 20% to 50%, 30% to 60%, 30% to 70%, 30% to 80%, 30% to 90%, 30% to 99%, 30% to 100%, or any range in between, relative to the pathological production of VEGF observed prior to administration of a Compound, as assessed by methods well known in the art, e.g., ELISA.


In specific embodiments, the methods for treating brain tumors provided herein inhibit or reduce angiogenesis or vascularization, by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 80%, 85%, 90%, 95%, or 100%, relative to angiogenesis or vascularization observed prior to administration of a Compound, as assessed by methods well known in the art, e.g., CT scan, MRI scan, or PET scan. In particular embodiments, the methods for treating brain tumors provided herein inhibit or reduce angiogenesis, in the range of about 5% to 10%, 10% to 20%, 10% to 20%, 10% to 30%, 15% to 40%, 15% to 50%, 20% to 30%, 20% to 40%, 20% to 50%, 30% to 60%, 30% to 70%, 30% to 80%, 30% to 90%, 30% to 99%, 30% to 100%, or any range in between, relative to angiogenesis or vascularization observed prior to administration of a Compound, as assessed by methods well known in the art, e.g., CT scan, MRI scan, or PET scan.


In specific embodiments, the methods for treating brain tumors provided herein inhibit or reduce inflammation, by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 80%, 85%, 90%, 95%, or 100%, or any percentage in between, relative to inflammation observed prior to administration of a Compound, as assessed by methods well known in the art, e.g., CT scan, MRI scan, or PET scan. In particular embodiments, the methods for treating brain tumors provided herein inhibit or reduce inflammation, in the range of about 5% to 15%, 10% to 20%, 10% to 30%, 15% to 40%, 15% to 50%, 20% to 30%, 20% to 40%, 20% to 50%, 30% to 60%, 30% to 70%, 30% to 80%, 30% to 90%, 30% to 99%, 30% to 100%, or any range in between, relative to inflammation observed prior to administration of a Compound, as assessed by methods well known in the art, e.g., CT scan, MRI scan, or PET scan.


In specific embodiments, the methods for treating brain tumors provided herein inhibit or reduce edema, by at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 80%, 85%, 90%, 95%, or 100%, or any percentage in between, relative to edema observed prior to administration of a Compound, as assessed by methods well known in the art, e.g., CT scan, MRI scan, or PET scan. In particular embodiments, the methods for treating brain tumors provided herein inhibit or reduce edema, in the range of about 5% to 15%, 10% to 20%, 10% to 30%, 15% to 40%, 15% to 50%, 20% to 30%, 20% to 40%, 20% to 50%, 30% to 60%, 30% to 70%, 30% to 80%, 30% to 90%, 30% to 99%, 30% to 100%, or any range in between, relative to edema observed prior to administration of a Compound, as assessed by methods well known in the art, e.g., CT scan, MRI scan, or PET scan.


In specific embodiments, the methods for treating brain tumors provided herein minimize the severity and/or frequency of one or more side effects observed with current anti-angiogenesis therapies. In certain embodiments, the methods for treating brain tumors provided herein do not cause one or more side effects observed with current anti-angiogenesis therapies. Such side effects include, but are not limited to, bleeding, arterial and venous thrombosis, hypertension, delayed wound healing, proteinuria, nasal septal perforation, reversible posterior leukoencephalopathy syndrome in association with hypertension, light-headedness, ataxia, headache, hoarseness, nausea, vomiting, diarrhea, rash, subungual hemorrhage, myelosuppression, fatigue, hypothyroidism, QT interval prolongation, and heart failure.


5.1 Compounds


In one embodiment, provided herein are Compounds having Formula (I):




embedded image


or a pharmaceutically acceptable salt, racemate or stereoisomer thereof, wherein,

  • X is hydrogen; C1 to C6 alkyl optionally substituted with one or more halogen substituents; hydroxyl; halogen; or C1 to C5 alkoxy optionally substituted with aryl;
  • A is CH or N;
  • B is CH or N, with the proviso that at least one of A or B is N, and that when A is N, B is CH;
  • R1 is hydroxyl; C1 to C8 alkyl optionally substituted with alkylthio, 5 to 10 membered heteroaryl, or aryl optionally substituted with one or more independently selected Ro substituents; C2 to C8 alkyenyl; C2 to C8 alkynyl; 3 to 12 membered heterocycle optionally substituted with one or more substituents independently selected from halogen, oxo, amino, alkylamino, acetamino, thio, or alkylthio; 5 to 12 membered heteroaryl optionally substituted with one or more substituents independently selected from halogen, oxo, amino, alkylamino, acetamino, thio, or alkylthio; or aryl, optionally substituted with one or more independently selected Ro substituents;
  • Ro is a halogen; cyano; nitro; sulfonyl optionally substituted with C1 to C6 alkyl or 3 to 10 membered heterocycle; amino optionally substituted with C1 to C6 alkyl, —C(O)—Rb, —C(O)O—Rb, sulfonyl, alkylsulfonyl, 3 to 10 membered heterocycle optionally substituted with —C(O)O—R—; —C(O)—NH—Rb; 5 to 6 membered heterocycle; 5 to 6 membered heteroaryl; C1 to C6 alkyl optionally substituted with one or more substituents independently selected from hydroxyl, halogen, amino, or 3 to 12 membered heterocycle wherein amino and 3 to 12 membered heterocycle are optionally substituted with one or more C1 to C4 alkyl substituents optionally substituted with one or more substituents independently selected from C1 to C4 alkoxy, amino, alkylamino, or 5 to 10 membered heterocycle; —C(O)—Ra; or —ORa;
  • Ra is hydrogen; C2 to C8 alkylene; —C(O)—Ra; —C(O)O—Rb; —C(O)—NH—Rb; C3-C14cycloalkyl; aryl; heteroaryl; heterocyclyl; C1 to C8 alkyl optionally substituted with one or more substituents independently selected from hydroxyl, halogen, C1 to C4 alkoxy, amino, alkylamino, acetamide, —C(O)—Rb, —C(O)O—Rb, aryl, 3 to 12 membered heterocycle, or 5 to 12 membered heteroaryl, further wherein the alkylamino is optionally substituted with hydroxyl, C1 to C4 alkoxy, or 5 to 12 membered heteroaryl optionally substituted with C1 to C4 alkyl, further wherein the acetamide is optionally substituted with C1 to C4 alkoxy, sulfonyl, or alkylsulfonyl, further wherein the 3 to 12 membered heterocycle is optionally substituted with C1 to C4 alkyl optionally substituted with hydroxyl, —C(O)—Rn, —C(O)O—Rn, or oxo, further wherein the amino is optionally substituted with C1 to C4 alkoxycarbonyl, imidazole, isothiazole, pyrazole, pyridine, pyrazine, pyrimidine, pyrrole, thiazole or sulfonyl substituted with C1 to C6 alkyl, wherein pyridine and thiazole are each optionally substituted with C1 to C4 alkyl;
  • Rb is hydroxyl; amino; alkylamino optionally substituted with hydroxyl, amino, alkylamino, C1 to C4 alkoxy, 3 to 12 membered heterocycle optionally substituted with one or more independently selected C1 to C6 alkyl, oxo, —C(O)O—Rn, or 5 to 12 membered heteroaryl optionally substituted with C1 to C4 alkyl; C1 to C4 alkoxy; C2 to C8 alkenyl; C2 to C8 alkynyl; aryl, wherein the aryl is optionally substituted with one or more substituents independently selected from halogen or C1 to C4 alkoxy; 5 to 12 membered heteroaryl; 3 to 12 membered heterocycle optionally substituted with one or more substituents independently selected from acetamide, —C(O)O—Rn, 5 to 6 membered heterocycle, or C1 to C6 alkyl optionally substituted with hydroxyl, C1 to C4 alkoxy, amino, or alkylamino; or C1 to C8 alkyl optionally substituted with one or more substituents independently selected from C1 to C4 alkoxy, aryl, amino, or 3 to 12 membered heterocycle, wherein the amino and 3 to 12 membered heterocycle are optionally substituted with one or more substituents independently selected from C1 to C6 alkyl, oxo, or —C(O)O—Rn;
  • R2 is hydrogen; hydroxyl; 5 to 10 membered heteroaryl; C1 to C8 alkyl optionally substituted with hydroxyl, C1 to C4 alkoxy, 3 to 10 membered heterocycle, 5 to 10 membered heteroaryl, or aryl; —C(O)—Rc; —C(O)O—Rd; —C(O)—N(RdRd); —C(S)—N(RdRd); —C(S)—O—Re; —S(O2)—Re; —C(NRO—S—Re; or —C(S)—S—Rf;
  • Re is hydrogen; amino optionally substituted with one or more substituents independently selected from C1 to C6 alkyl or aryl; aryl optionally substituted with one or more substituents independently selected from halogen, haloalkyl, hydroxyl, C1 to C4 alkoxy, or C1 to C6 alkyl; —C(O)—Rn; 5 to 6 membered heterocycle optionally substituted with —C(O)—Rn; 5 to 6 membered heteroaryl; thiazoleamino; C1 to C8 alkyl optionally substituted with one or more substituents independently selected from halogen, C1 to C4 alkoxy, phenyloxy, aryl, —C(O)—Rn, —O—C(O)—Rn, hydroxyl, or amino optionally substituted with —C(O)O—Rn;
  • Rd is independently hydrogen; C2 to C8 alkenyl; C2 to C8 alkynyl; aryl optionally substituted with one or more substituents independently selected from halogen, nitro, C1 to C6 alkyl, —C(O)O—Re, or —ORe; or C1 to C8 alkyl optionally substituted with one or more substituents independently selected from halogen, C1 to C4 alkyl, C1 to C4 alkoxy, phenyloxy, aryl, 5 to 6 membered heteroaryl, —C(O)—Rn, —C(O)O—Rn, or hydroxyl, wherein the aryl is optionally substituted with one or more substituents independently selected from halogen or haloalkyl;
  • Re is hydrogen; C1 to C6 alkyl optionally substituted with one or more substituents independently selected from halogen or alkoxy; or aryl optionally substituted with one or more substituents independently selected from halogen or alkoxy;
  • Rf is C1 to C6 alkyl optionally substituted with one or more substituents independently selected from halogen, hydroxyl, C1 to C4 alkoxy, cyano, aryl, or —C(O)—Rn, wherein the alkoxy is optionally substituted with one or more C1 to C4 alkoxy substituents and the aryl is optionally substituted with one or more substituents independently selected from halogen, hydroxyl, C1 to C4 alkoxy, cyano, or C1 to C6 alkyl;
  • Rn is hydroxyl, C1 to C4 alkoxy, amino, or C1 to C6 alkyl;
  • R3 is hydrogen or —C(O)—Rg; and
  • Rg is hydroxyl; amino optionally substituted with cycloalkyl or 5 to 10 membered heteroaryl; or


5 to 10 membered heterocycle, wherein the 5 to 10 membered heterocycle is optionally substituted with —C(O)—Rn.


In one embodiment, the compound of Formula (I) is other than:

  • (R)-1-(benzo[c/][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole,
  • 1-(benzo[d][1,3]dioxol-5-yl)-N-benzyl-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-benzyl-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • 1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-benzyl-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxamide,
  • N-benzyl-1-phenyl-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxamide,
  • N,1-diphenyl-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxamide,
  • N-(naphthalen-1-yl)-1-phenyl-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxamide,
  • 1-(benzo[d][1,3]dioxol-5-yl)-N-cyclohexyl-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxamide,
  • 1-(benzo[d][1,3]dioxol-5-yl)-N-phenyl-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxamide,
  • 1-(3-chloro-4-methoxyphenyl)-N-phenyl-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N—((R)-1-phenylethyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N—((S)-1-phenylethyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-benzoyl-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxamide,
  • (R)—N-(1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-2-carbonothioyl)benzamide,
  • benzyl 1-(benzo[c/][1,3]dioxol-5-yl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxylate,
  • (R)-benzyl 1-(benzo[d][1,3]dioxol-5-yl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxylate,
  • methyl 1-phenyl-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carboxylate,
  • methyl 5-oxo-5-(1-phenyl-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)pentanoate,
  • 5-(1-(3-chloro-4-methoxyphenyl)-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)-5-oxopentanoic acid,
  • 5-(1-(benzo[c/][1,3]dioxol-5-yl)-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)-5-oxopentanoic acid,
  • 3-(2-aminophenyl)-1-(1-(benzo[c/][1,3]dioxol-5-yl)-3,4-dihydro-1H-pyrido[3,4-b]indol-2(9H)-yl)propan-1-one,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-(2-chlorobenzyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-(2,4-dichlorobenzyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-(2-fluorobenzyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N—((S)-1-phenylethyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-4-((1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-2-carbothioamido)methyl)benzoic acid,
  • (R)-methyl 4-((1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-2-carbothioamido)methyl)benzoate,
  • (R)-3-((1-(benzo[c/][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-2-carbothioamido)methyl)benzoic acid,
  • (R)-methyl 3-((1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-2-carbothioamido)methyl)benzoate,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-(4-chloro-3-(trifluoromethyl)phenyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-(2-(trifluoromethyl)phenyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-(3-fluorobenzyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-(4-chlorobenzyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-(3,4-dichlorobenzyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-(4-fluorobenzyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-(3,4-dimethylbenzyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-(3-chlorobenzyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (R)-1-(benzo[d][1,3]dioxol-5-yl)-N-(naphthalen-1-ylmethyl)-3,4-dihydro-1H-pyrido[3,4-b]indole-2(9H)-carbothioamide,
  • (3,4-difluorophenyl)-(1-phenyl-1,3,4,9-tetrahydro-β-carbolin-2-yl)-methanone,
  • 6-methoxy-1,2,3,4-tetrahydronorharmane, 1,2,3,4-tetrahydronorharman-3-carboxylic acid,
  • 6-methoxy-1,2,3,4-tetrahydronorharman-1-carboxylic acid,
  • 1-(4-methoxyphenyl)-1,2,3,4-tetrahydronorharman-3-carboxylic acid,
  • 1-methyl-1,2,3,4-tetrahydronorharman-3-carboxylic acid,
  • 1-methyl-1,2,3,4-tetrahydronorharman-1,3-dicarboxylic acid,
  • 1-(diethylmethyl)-1,2,3,4-tetrahydronorharman-3-carboxylic acid,
  • (6-bromo-1,2,3,4-tetrahydronorharman-1-yl)-3-propionic acid,
  • 1-isobutyl-1,2,3,4-tetrahydronorharman-3-carboxylic acid,
  • 1-phenyl-1,2,3,4-tetrahydronorharman-3-carboxylic acid,
  • 1-propyl-1,2,3,4-tetrahydronorharman-3-carboxylic acid,
  • 1-methyl-1-methoxycarbonyl-6-benzyloxy-1,2,3,4-tetrahydronorharmane,
  • 1-methyl-1-methoxycarbonyl-6-methoxy-1,2,3,4-tetrahydronorharmane,
  • 1-methyl-1-methoxycarbonyl-6-hydroxy-1,2,3,4-tetrahydronorharmane,
  • 1-methyl-1-methoxycarbonyl-6-chloro-1,2,3,4-tetrahydronorharmane,
  • 1-methyl-1-methoxycarbonyl-6-bromo-1,2,3,4-tetrahydronorharmane,
  • 1-methyl-2-N-acetyl-6-methoxy-1,2,3,4-tetrahydro-β-carboline,
  • 2-N-acetyl-1,2,3,4-tetrahydro-β-carboline,
  • 1-methyl-2-N-acetyl-6-methoxy-1,2,3,4-tetrahydro-β-carboline,
  • 4-chlorobenzyl (1S,3R)-1-(2,4-dichlorophenyl)-1,2,3,4-tetrahydro-β-carboline-3-carboxamide,
  • (3R)-1-(1-benzylindol-3-yl)-2-tert-butoxycarbonyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid,
  • (3R)-1-(1-butylindol-3-yl)-2-tert-butoxycarbonyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid,
  • (1S,3R)-1-(indol-3-yl)-2-tert-butoxycarbonyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid,
  • (1S,3R)-1-(1-methylindol-3-yl)-2-tert-butoxycarbonyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid,
  • benzothiazol-2-yl (1S,3R)-1-cyclohexyl-2-tert-butoxycarbonyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid,
  • benzothiazol-2-yl (1S,3R)-1-cyclohexyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid,
  • 1-(4-chlorophenyl)-1,2,3,4-tetrahydro-β-carboline,
  • 1-(4-bromophenyl)-1,2,3,4-tetrahydro-β-carboline,
  • 1-(4-nitrophenyl)-1,2,3,4-tetrahydro-β-carboline,
  • 1-(4-dimethylaminophenyl)-1,2,3,4-tetrahydro-β-carboline,
  • 1-(4-diethylaminophenyl)-1,2,3,4-tetrahydro-β-carboline,
  • 1-(2,4-dimethoxyphenyl)-1,2,3,4-tetrahydro-β-carboline,
  • 1-(3,4-dimethoxyphenyl)-1,2,3,4-tetrahydro-β-carboline,
  • 1-(2,5-dimethoxyphenyl)-1,2,3,4-tetrahydro-β-carboline,
  • 1-(3,5-dimethoxyphenyl)-1,2,3,4-tetrahydro-β-carboline,
  • 1-(3,4,5-trimethoxyphenyl)-1,2,3,4-tetrahydro-β-carboline,
  • 1-(4-nitrobenzo[c/][1,3]dioxol-5-yl)-1,2,3,4-tetrahydro-β-carboline,
  • 1-(2-fluorenyl)-1,2,3,4-tetrahydro-β-carboline,
  • 1-(9-ethyl-9H-carbazo 1-3-yl)-1,2,3,4-tetrahydro-β-carboline,
  • 6-chloro-1-(4-methylphenyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • methyl 6-chloro-1-(4-methylphenyl)-1,3,4,9-tetrahydro-2H-β-carboline-2-carboxylate,
  • 6-chloro-1-(4-methylphenyl)-2-(3-phenylpropanoyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • phenylmethyl 6-chloro-1-(4-methylphenyl)-1,3,4,9-tetrahydro-2H-β-carboline-2-carboxylate,
  • 6-fluoro-1-(4-methylphenyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • methyl 6-fluoro-1-(4-methylphenyl)-1,3,4,9-tetrahydro-2H-β-carboline-2-carboxylate,
  • 6-fluoro-1-(4-methylphenyl)-2-(3-phenylpropanoyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • phenylmethyl 6-fluoro-1-(4-methylphenyl)-1,3,4,9-tetrahydro-2H-β-carboline-2-carboxylate,
  • 6-bromo-1-(4-methylphenyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • methyl 6-bromo-1-(4-methylphenyl)-1,3,4,9-tetrahydro-2H-β-carboline-2-carboxylate,
  • 6-bromo-1-(4-methylphenyl)-2-(3-phenylpropanoyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • phenylmethyl 6-bromo-1-(4-methylphenyl)-1,3,4,9-tetrahydro-2H-β-carboline-2-carboxylate,
  • (1R)-6-chloro-1-(4-methylphenyl)-2-(3-phenylpropanoyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • (1S)-6-chloro-1-(4-methylphenyl)-2-(3-phenylpropanoyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • 1-(4-methylphenyl)-2-(methylsulfonyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • 2-acetyl-1-(4-methylphenyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • 1-(4-methylphenyl)-2-(3-phenylpropanoyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • 6-(methyloxy)-1-(4-methylphenyl)-2-(3-phenylpropanoyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • 6-methyl-1-(4-methylphenyl)-2-(3-phenylpropanoyl)-2,3,4,9-tetrahydro-1H-β-carboline,
  • (1R/1S)-1-(2,3-dihydro-1-benzofuran-5-yl)-2,3,4,9-tetrahydro-1H-β-carboline, or
  • 1-(1,3-benzodioxol-5-yl)-2-(2-pyrimidinyl)-2,3,4,9-tetrahydro-1H-β-carboline.


As will be evident to one of skill in the art, Compounds provided herein comprise at least one stereocenter, and may exist as a racemic mixture or as an enantiomerically pure composition. In one embodiment, a Compound provided herein is the (S) isomer, in an enantiomerically pure composition. In certain embodiments, the enantiomeric excess (e.e.) is about 90%, about 95%, about 99% or about 99.9% or greater.


In another embodiment, provided herein are Compounds having Formula (II):




embedded image


or a pharmaceutically acceptable salt, racemate or stereoisomer thereof, wherein,

  • X is hydrogen; C1 to C6 alkyl optionally substituted with one or more halogen substituents; hydroxyl; halogen; or C1 to C5 alkoxy optionally substituted with phenyl;
  • Ro is halogen; cyano; nitro; sulfonyl substituted with C1 to C6 alkyl or morpholinyl; amino optionally substituted with C1 to C6 alkyl, C(O)Rb, —C(O)O—Rb, alkylsulfonyl, morpholinyl or tetrahydropyranyl; C1 to C6 alkyl optionally substituted with one or more substituents independently selected from hydroxyl, halogen or amino; C(O)—Rn; or —ORa;


Ra is hydrogen; C2 to C8 alkenyl; —C(O)—Rn; —C(O)O—Rb; —C(O)—NH—Rb; C1 to C8 alkyl optionally substituted with one or more substituents independently selected from hydroxyl, halogen, C1 to C4 alkoxy, C1 to C4 alkoxy C1 to C4 alkoxy, amino, alkylamino, dialkylamino, acetamide, —C(O)—Rb, —C(O)O—Rb, aryl, morpholinyl, thiomorpholinyl, pyrrolidinyl, piperidinyl, piperazinyl, 1,3-dioxolan-2-one, oxiranyl, tetrahydrofuranyl, tetrahydropyranyl, 1,2,3-triazole, 1,2,4-triazole, furan, imidazole, isoxazole, isothiazole, oxazole, pyrazole, thiazole, thiophene or tetrazole;

    • wherein amino is optionally substituted with C1 to C4 alkoxycarbonyl, imidazole, isothiazole, pyrazole, pyridine, pyrazine, pyrimidine, pyrrole, thiazole or sulfonyl substituted with C1 to C6 alkyl, wherein pyridine and thiazole are each optionally substituted with C1 to C4 alkyl;
    • wherein alkylamino and dialkylamino are each optionally substituted on alkyl with hydroxyl, C1 to C4 alkoxy, imidazole, pyrazole, pyrrole or tetrazole; and,
    • wherein morpholinyl, thiomorpholinyl, pyrrolidinyl, piperidinyl, piperazinyl and oxiranyl are each optionally substituted with —C(O)—Rn, —C(O)O—Rn or C1 to C4 alkyl,
    • wherein C1 to C4 alkyl is optionally substituted with hydroxyl;
  • Rb is hydroxyl; amino; alkylamino, optionally substituted on alkyl with hydroxyl, amino, alkylamino or C1 to C4 alkoxy; C1 to C4 alkoxy; C2 to C8 alkenyl; C2 to C8 alkynyl; aryl optionally substituted with one or more substituents independently selected from halogen and C1 to C4 alkoxy; furan; or C1 to C8 alkyl optionally substituted with one or more substituents independently selected from C1 to C4 alkoxy, aryl, amino, morpholinyl, piperidinyl or piperazinyl;
  • Rd is aryl optionally substituted with one or more substituents independently selected from halogen, nitro, C1 to C6 alkyl, —C(O)O—Re, and —ORe;
  • Re is hydrogen; C1 to C6 alkyl optionally substituted with one or more substituents independently selected from halogen and alkoxy; or phenyl, wherein phenyl is optionally substituted with one or more substituents independently selected from halogen and alkoxy; and
  • Rn is hydroxyl, C1 to C4 alkoxy, amino or C1 to C6 alkyl.


In another embodiment, provided herein are Compounds having Formula (II):




embedded image


or a pharmaceutically acceptable salt, racemate or stereoisomer thereof, wherein,

  • X is halogen;
  • Ro is halogen, substituted or unsubstituted C1 to C8 alkyl or ORa;
  • Ra is H, C1 to C8 alkyl optionally substituted with one or more substituents independently selected from hydroxyl and halogen; and
  • Rd is phenyl optionally substituted with one or more alkoxy or halogen substituents.


In one embodiment, X is chloro or bromo.


In one embodiment, Rd is chloro or bromo.


In one embodiment, Ro is ORa.


In one embodiment, Ra is methyl, ethyl, propyl, isopropyl, butyl, or pentyl, each optionally substituted with one or more hydroxyl substituents.


In another embodiment, provided herein are Compounds having Formula (II):




embedded image


or a pharmaceutically acceptable salt, racemate or stereoisomer thereof, wherein,

  • X is halogen;
  • Ra is halogen, substituted or unsubstituted C1 to C8 alkyl or ORa;
  • Ra is H, or C1 to C8 alkyl optionally substituted with one or more substituents independently selected from hydroxyl and halogen; and
  • Rd is phenyl optionally substituted with one or more halogen substituents.


In another embodiment, provided herein are Compounds having Formula (III):




embedded image


or a pharmaceutically acceptable salt, racemate or stereoisomer thereof, wherein,

  • X is halogen;
  • Ra is H, C1 to C8 alkyl optionally substituted with one or more substituents independently selected from hydroxyl and halogen; and
  • Rd is phenyl substituted with one or more halogen substituents.


In another embodiment, provided herein are Compounds having Formula (IV):




embedded image


or a pharmaceutically acceptable salt, racemate or stereoisomer thereof, wherein,

  • X is halogen;
  • Ra is H, C1 to C8 alkyl optionally substituted with one or more substituents independently selected from hydroxyl and halogen; and
  • Rd is phenyl substituted with one or more halogen substituents.


In another embodiment, provided herein are Compounds having Formula (IV):




embedded image


or a pharmaceutically acceptable salt, racemate or stereoisomer thereof, wherein,

  • X is halogen;
  • Ra is H, C1 to C8 alkyl optionally substituted with one or more substituents independently selected from hydroxyl and halogen; and
  • Rd is phenyl substituted on a para position with a halogen substituent.


In another embodiment, the Compounds set forth above having a formula selected from Formula (Ia), Formula (IIa), Formula (IIIa) and Formula (IVa):




embedded image


Illustrative examples of Compounds or a pharmaceutically acceptable salt, racemate or stereoisomer thereof provided herein include:










TABLE 1









embedded image


10







embedded image


#10







embedded image


17







embedded image


60







embedded image


76







embedded image


121







embedded image


192







embedded image


331







embedded image


332







embedded image


341







embedded image


344







embedded image


346







embedded image


347







embedded image


348







embedded image


350







embedded image


351







embedded image


353







embedded image


354







embedded image


355







embedded image


359







embedded image


360







embedded image


366







embedded image


388







embedded image


391







embedded image


395







embedded image


397







embedded image


398







embedded image


400







embedded image


401







embedded image


403







embedded image


405







embedded image


409







embedded image


410







embedded image


413







embedded image


415







embedded image


417







embedded image


418







embedded image


421







embedded image


422







embedded image


426







embedded image


427







embedded image


428







embedded image


429







embedded image


432







embedded image


433







embedded image


436







embedded image


437







embedded image


440







embedded image


444







embedded image


446







embedded image


448







embedded image


450







embedded image


452







embedded image


454







embedded image


455







embedded image


460







embedded image


462







embedded image


463







embedded image


465







embedded image


467







embedded image


468







embedded image


470







embedded image


471







embedded image


479







embedded image


482







embedded image


489







embedded image


491







embedded image


493







embedded image


500







embedded image


501







embedded image


502







embedded image


519







embedded image


544







embedded image


570







embedded image


571







embedded image


572







embedded image


575







embedded image


576







embedded image


577







embedded image


578







embedded image


579







embedded image


580







embedded image


581







embedded image


587







embedded image


588







embedded image


589







embedded image


590







embedded image


591







embedded image


592







embedded image


593







embedded image


594







embedded image


614







embedded image


616







embedded image


617







embedded image


626







embedded image


627







embedded image


628







embedded image


629







embedded image


630







embedded image


631







embedded image


632







embedded image


635







embedded image


637







embedded image


638







embedded image


660







embedded image


670







embedded image


673







embedded image


674







embedded image


675







embedded image


677







embedded image


678







embedded image


680







embedded image


681







embedded image


698







embedded image


699







embedded image


700







embedded image


701







embedded image


702







embedded image


703







embedded image


704







embedded image


705







embedded image


706







embedded image


710







embedded image


712







embedded image


713







embedded image


719







embedded image


723







embedded image


735







embedded image


736







embedded image


737







embedded image


738







embedded image


739







embedded image


740







embedded image


741







embedded image


742







embedded image


743







embedded image


772







embedded image


773







embedded image


774







embedded image


775







embedded image


776







embedded image


777







embedded image


778







embedded image


779







embedded image


780







embedded image


781







embedded image


782







embedded image


783







embedded image


784







embedded image


785







embedded image


786







embedded image


787







embedded image


788







embedded image


789







embedded image


790







embedded image


791







embedded image


833







embedded image


834







embedded image


835







embedded image


836







embedded image


837







embedded image


838







embedded image


839







embedded image


840







embedded image


841







embedded image


842







embedded image


843







embedded image


845







embedded image


846







embedded image


847







embedded image


848







embedded image


849







embedded image


850







embedded image


867







embedded image


882







embedded image


888







embedded image


889







embedded image


891







embedded image


892







embedded image


894







embedded image


900







embedded image


903







embedded image


904







embedded image


908







embedded image


911







embedded image


913







embedded image


915







embedded image


916







embedded image


917







embedded image


918







embedded image


920







embedded image


921







embedded image


922







embedded image


923







embedded image


925







embedded image


926







embedded image


932







embedded image


933







embedded image


934







embedded image


936







embedded image


938







embedded image


941







embedded image


942







embedded image


944







embedded image


946







embedded image


951







embedded image


952







embedded image


953







embedded image


958







embedded image


960







embedded image


961







embedded image


963







embedded image


964







embedded image


966







embedded image


967







embedded image


970







embedded image


973







embedded image


974







embedded image


976







embedded image


977







embedded image


981







embedded image


984







embedded image


988







embedded image


989







embedded image


990







embedded image


991







embedded image


992







embedded image


993







embedded image


994







embedded image


995







embedded image


996







embedded image


999







embedded image


1001







embedded image


1005







embedded image


1008







embedded image


1009







embedded image


1011







embedded image


1016







embedded image


1017







embedded image


1021







embedded image


1022







embedded image


1023







embedded image


1024







embedded image


1025







embedded image


1026







embedded image


1027







embedded image


1028







embedded image


1029







embedded image


1030







embedded image


1031







embedded image


1050







embedded image


1051







embedded image


1052







embedded image


1053







embedded image


1054







embedded image


1055







embedded image


1058







embedded image


1062







embedded image


1063







embedded image


1064







embedded image


1066







embedded image


1067







embedded image


1068







embedded image


1069







embedded image


1070







embedded image


1071







embedded image


1075







embedded image


1076







embedded image


1077







embedded image


1078







embedded image


1086







embedded image


1087







embedded image


1088







embedded image


1089







embedded image


1090







embedded image


1091







embedded image


1092







embedded image


1093







embedded image


1094







embedded image


1095







embedded image


1096







embedded image


1097







embedded image


1098







embedded image


1099







embedded image


1108







embedded image


1110







embedded image


1111







embedded image


1113







embedded image


1115







embedded image


1117







embedded image


1119







embedded image


1121







embedded image


1123







embedded image


1125







embedded image


1126







embedded image


1127







embedded image


1128







embedded image


1129







embedded image


1130







embedded image


1131







embedded image


1132







embedded image


1133







embedded image


1134







embedded image


1043







embedded image


1144







embedded image


1145







embedded image


1150







embedded image


1151







embedded image


1152







embedded image


1155







embedded image


1159







embedded image


1160







embedded image


1161







embedded image


1162







embedded image


1168







embedded image


1169







embedded image


1170







embedded image


1171







embedded image


1172







embedded image


1178







embedded image


1179







embedded image


1180







embedded image


1181







embedded image


1182







embedded image


1183







embedded image


1184







embedded image


1194







embedded image


1195







embedded image


1196







embedded image


1197







embedded image


1199







embedded image


1203







embedded image


1205







embedded image


1207







embedded image


1209







embedded image


1213







embedded image


1216







embedded image


1223







embedded image


1224







embedded image


1225







embedded image


1227







embedded image


1228







embedded image


1229







embedded image


1230







embedded image


1231







embedded image


1234







embedded image


1235







embedded image


1250







embedded image


1255







embedded image


1257







embedded image


1258







embedded image


1259







embedded image


1260







embedded image


1263







embedded image


1265







embedded image


1266







embedded image


1267







embedded image


1269







embedded image


1276







embedded image


1277







embedded image


1278







embedded image


1279







embedded image


1280







embedded image


1281







embedded image


1282







embedded image


1288







embedded image


1289







embedded image


1290







embedded image


1291







embedded image


1292







embedded image


1293







embedded image










embedded image


1299







embedded image


1300







embedded image


1301







embedded image


1302







embedded image


1328







embedded image


1329







embedded image


1330







embedded image


1331







embedded image


1332







embedded image


1333







embedded image


1335







embedded image


1336







embedded image


1337







embedded image


1343







embedded image


1344







embedded image


1348







embedded image


1349







embedded image


1352







embedded image


1353







embedded image


1357







embedded image


1358







embedded image


1361







embedded image


1362







embedded image


1364







embedded image


1391







embedded image


1392







embedded image


1393







embedded image


1394







embedded image


1413







embedded image


1414







embedded image


1415







embedded image


1416







embedded image


1417







embedded image


1418







embedded image


1419







embedded image


1420







embedded image


1421







embedded image


1422







embedded image


1440







embedded image


1441







embedded image


1442







embedded image


1476







embedded image


1520







embedded image


1537







embedded image


1538







embedded image


1539







embedded image


1546







embedded image


1547







embedded image


1548







embedded image


1549







embedded image


1551







embedded image


1552







embedded image


1553







embedded image


1554







embedded image


1555







embedded image


1557







embedded image


1558







embedded image


1559







embedded image


1560







embedded image


1561







embedded image


1562







embedded image


1563







embedded image


1564







embedded image


1565







embedded image


1566







embedded image


1567







embedded image


1568







embedded image


1569







embedded image


1570







embedded image


1571







embedded image


1572







embedded image


1577







embedded image


1578







embedded image


1580







embedded image


1581







embedded image


1604







embedded image


1605







embedded image


1607







embedded image


1611







embedded image


1612







embedded image


1613







embedded image


1614







embedded image


1625







embedded image


1626







embedded image


1627







embedded image


1628







embedded image


1629







embedded image


1635







embedded image


1636







embedded image


1637







embedded image


1638







embedded image


1639







embedded image


1640







embedded image


1641







embedded image


1642







embedded image


1643







embedded image


1644







embedded image


1645







embedded image


1646







embedded image


1647







embedded image


1648







embedded image


1652







embedded image


1658







embedded image


1659







embedded image


1660







embedded image


1661







embedded image


1663







embedded image


1664







embedded image


1666







embedded image


1667







embedded image


1668







embedded image


1669







embedded image


1671







embedded image


1672







embedded image


1673







embedded image


1674







embedded image


1675







embedded image


1676







embedded image


1677







embedded image


1681







embedded image


1682







embedded image


1693







embedded image


1694







embedded image


1695







embedded image


1698







embedded image


1701







embedded image


1702







embedded image


1703







embedded image


1704







embedded image


1725







embedded image


1726







embedded image


1727







embedded image


1728







embedded image


1729







embedded image


1730







embedded image


1731







embedded image


1732







embedded image


1733







embedded image


1734







embedded image


1735







embedded image


1736







embedded image


1737







embedded image


1738







embedded image


1739









In a further embodiment, additional examples of the Compounds provided herein are disclosed in International Patent Application Publication No. WO2005/089764 (“764 publication”) on pages 26 to 98, and in copending U.S. Provisional Patent Application 61/181,653, entitled: METHODS FOR TREATING CANCER AND NON-NEOPLASTIC CONDITIONS, filed May 27, 2009, each of which are incorporated by reference herein in their entirety. Methods for preparing certain Compounds provided herein and the Compounds disclosed on pages 26 to 98 of the '764 publication are provided on pages 99 to 105 and 112 to 142 of the '764 publication and are incorporated by reference herein in their entirety and for all purposes. Methods for preparing certain Compounds provided herein and the Compounds disclosed in copending U.S. Provisional Patent Application 61/181,652, entitled: PROCESSES FOR THE PREPARATION OF SUBSTITUTED TETRAHYDRO BETA-CARBOLINES, filed May 27, 2009, are provided therein and are incorporated by reference herein in their entirety and for all purposes.


5.2 Pharmaceutical Properties and Formulations


5.2.1 Activity


Without being bound by any theory, Compounds described herein inhibit the translation of pathologically expressed human VEGF mRNA and, thus, inhibit the pathologic production of human VEGF protein. In particular, the Compounds act specifically through a mechanism dependent on the 5′ untranslated region (UTR) of the human VEGF mRNA to inhibit the pathologic production of human VEGF protein. The activity of the Compounds tested is post-transcriptional since quantitative real-time polymerase chain reaction (PCR) assessments of mRNA have shown that the Compounds do not alter the levels of human VEGF mRNA. Analyses of the effects of the Compounds tested on ribosome association with VEGF transcripts indicate that the Compounds do not impede initiation of VEGF translation or promote dissociation of ribosomes from human VEGF mRNA.


5.2.1.1 Inhibition of pathological VEGF production


Compounds are described that reduce or inhibit pathologic production of human VEGF (also known as VEGF-A and vascular permeability factor (VPF)). Exemplary Compounds have been shown to reduce or inhibit tumor production of VEGF as measured in cell culture and/or preclinical tumor models. Furthermore, the Compounds tested do not affect homeostatic, physiologically produced plasma VEGF levels in healthy humans.


By way of background, the human VEGF-A gene encodes a number of different products (isoforms) due to alternative splicing. The VEGF-A isoforms include VEGF121, VEGF165, VEGF189 and VEGF206 having 121, 165, 189 and 206 amino acids, respectively. VEGF165 and VEGF121 isoforms are soluble, whereas VEGF189 and VEGF206 isoforms are sequestered within the extracellular matrix. The activity of the Compounds tested was assessed by measuring the concentrations of soluble VEGF and/or extracellular matrix bound-VEGF in cell culture systems. In preclinical tumor models, the activity of the Compounds tested was assessed by measuring the concentrations of soluble VEGF. The data indicate that the Compounds tested inhibit the production of soluble as well as matrix associated forms of tumor derived VEGF.


In particular, a Compound provided herein has been shown to selectively inhibit stress (e.g., hypoxia) induced production of soluble human VEGF isoforms in cell culture without affecting soluble human VEGF production under normoxic conditions (see Sections 9.1.1.1 and 9.1.1.2). Thus, the Compound was shown to preferentially inhibit pathological production of soluble human VEGF isoforms resulting from hypoxia while sparing homeostatic production of soluble isoforms in unperturbed cells. Accordingly, in specific embodiments, a Compound selectively inhibits or reduces the pathological production of a soluble human VEGF isoform over inhibiting or reducing physiological production of a soluble human VEGF isoform.


A Compound provided herein has also shown to selectively inhibit pathological production of VEGF in tumor cells that constitutively overproduce VEGF even under normoxic conditions. See Section 9.1.1.3. In these studies, to better assess the Compound's activity, the inhibition of the pathological production of matrix-bound human VEGF was measured. Thus, in one embodiment, a Compound selectively inhibits or reduces the pathological production of a matrix-bound human VEGF isoform over inhibiting or reducing physiological production of a matrix-bound human VEGF isoform.


The ability of a Compound provided herein to inhibit pathologic production of human VEGF in cell culture has been demonstrated for multiple human tumor cells from a variety of different tissues. See Table 4 (Section 9.1.1.4).


Exemplary Compounds inhibited intratumoral and pathologic plasma human VEGF production in animal models with pre-established human tumors. See Sections 9.1.2.1 to 9.1.2.3. In addition to reducing pathological induced human VEGF concentrations and edema, inflammation, pathological angiogenesis and tumor growth, a Compound provided herein has been shown to selectively reduce intratumoral levels of human growth factors and cytokines, such as IL-6, IL-8, osteopontin, MCP-1 and VEGF family members including human VEGF-C, VEGF-D and placental growth factor (P1GF). See Sections 9.1.2.1. In particular, the Compound shows a dose-dependent reduction in the concentration of intratumoral and pathologic plasma soluble human VEGF isoforms (see Section 9.1.2.2, in particular FIG. 5 and FIG. 6). Accordingly, in specific embodiments, a Compound provided herein, selectively inhibits or reduces the pathological production of one or more human VEGF family members. See Section 9.1.2.1.


5.2.1.2 Inhibition of Pathological Angiogenesis and Tumor Growth


Compounds are described that reduce or inhibit edema, inflammation, pathological angiogenesis and tumor growth. A Compound provided herein has been shown to have a profound effect on the architecture of the tumor vasculature in animal models with pre-established human tumors. The Compound reduced the total volume and diameter of blood vessels formed compared to vehicle treated subjects. See Section 9.2.1. The Compound also showed inhibition of tumor growth in the same model. A dose-response effect of the Compound that correlated with decreases in tumor and pathologic plasma VEGF concentrations was observed when tumor size was assessed. See Section 9.2.2. Thus, in one embodiment, the concentration of soluble pathologically produced VEGF in human plasma may be used to assess and monitor the pharmacodynamic effect of a Compound provided herein. In a specific embodiment, the concentration of either VEGF121, VEGF165, or both in human plasma may be used to assess and monitor the pharmacodynamic effect of a Compound provided herein.


In concert with a decrease in pathological tumor induced production of VEGF, a Compound provided herein demonstrated tumor regression or delay of tumor growth in various xenograft models, including models of breast cancer, neuroblastoma, and prostate cancer. See Section 9.2.5. Compounds that inhibit tumor growth in multiple preclinical models are more likely to have clinical efficacy. See Johnson et al., Br. J. Cancer 2001, 84(10):1424-31. Further, a Compound provided herein has shown activity in an orthotopic SY5Y neuroblastoma and SKNEP ewing sarcoma tumor model. In orthotopic tumor models, human tumor cells are implanted into the mouse in an organ that corresponds to the location of the human cells from which a tumor would arise. Such models may provide a better predictor of clinical efficacy than injection of tumors into the flanks of nude mice. See Hoffman, Invest. New Drugs 1999, 17(4):343-59. See Section 9.2.5.6.


An in vivo study in rats administered a 14C-radiolabeled Compound provided herein has been shown that the Compound penetrates all tissues investigated after oral administration. See Section 9.2.6 and Table 23. In one embodiment, a Compound provided herein is able to penetrate cells, tissues or organs that are surrounded by an endothelial cell barrier. In a specific embodiment, a Compound penetrates endothelial cell barriers, such as, but not limited to, the blood-brain barrier, the blood-eye barrier, the blood-testes barrier, blood-uterus barrier, or the blood-ovary barrier. The cells, tissues or organs surrounded by an endothelial cell barrier are, for example, cerebellum, cerebrum, ovary, testis, or the eye. The ability of a Compound to traverse such endothelial barriers makes it suited for the treatment of cancers, such as brain cancers, including but not limited to glioblastoma or neurofibromatosis.


5.2.1.3 Prolongation of early G1/early S-Phase cell cycle delay


Provided herein are Compounds that provoke a delay or prolongation of the cell cycle.


In addition to its effects on pathological VEGF production, a Compound provided herein induces a late G1/early S-Phase cell cycle delay, i.e., between the late resting or pre-DNA synthesis phase, and the early in DNA synthesis phase in those tumor cell lines in which pathologic VEGF expression is decreased by the Compound. Further characterization indicates that this effect is concentration dependent, occurring at low nanomolar EC50 values similar to those associated with reducing pathological VEGF production. See Section 9.3.1.1. The effect seen is reversible upon cessation of exposure to a Compound. See Section 9.3.1.2. The cell cycle delay and inhibition of pathological VEGF protein production occur in concert, linking these phenotypes in inflammation, pathological angiogenesis and tumor growth. Inhibition of pathological VEGF production in the same tumor cells used herein with small interfering RNA (siRNA) does not induce a delay or prolongation of the cell cycle (data not shown). Conversely, the use of mimosine, a DNA synthesis inhibitor that halts cell cycle progression at the G1/S interface, does not delay or prolong the cell cycle or reduce VEGF production (data not shown). A Compound provided herein has demonstrated in an in vivo HT1080 xenograft model that the Compound delays cycling through the S-phase; an effect that is distinct from that of bevacizumab, which has no effect on tumor cell cycling. Thus, these experiments indicate that the effects of a Compound on the tumor cell cycle occur in parallel with its actions on pathological VEGF production in tumors.


5.2.2 Formulations


5.2.2.1 General Formulation Methods


The Compounds provided herein can be administered to a patient orally or parenterally in the conventional form of preparations, such as capsules, microcapsules, tablets, granules, powder, troches, pills, suppositories, injections, suspensions and syrups. Suitable formulations can be prepared by methods commonly employed using conventional, organic or inorganic additives, such as an excipient selected from fillers or diluents, binders, disintegrants, lubricants, flavoring agents, preservatives, stabilizers, suspending agents, dispersing agents, surfactants, antioxidants or solubilizers.


Excipients that may be selected are known to those skilled in the art and include, but are not limited to fillers or diluents (e.g., sucrose, starch, mannitol, sorbitol, lactose, glucose, cellulose, talc, calcium phosphate or calcium carbonate and the like), a binder (e.g., cellulose, carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, hydroxypropylmethylcellulose, polypropylpyrrolidone, polyvinylpyrrolidone, gelatin, gum arabic, polyethyleneglycol or starch and the like), a disintegrant (e.g., sodium starch glycolate, croscarmellose sodium and the like), a lubricant (e.g., magnesium stearate, light anhydrous silicic acid, talc or sodium lauryl sulfate and the like), a flavoring agent (e.g., citric acid, or menthol and the like), a preservative (e.g., sodium benzoate, sodium bisulfite, methylparaben or propylparaben and the like), a stabilizer (e.g., citric acid, sodium citrate or acetic acid and the like), a suspending agent (e.g., methylcellulose, polyvinyl pyrrolidone or aluminum stearate and the like), a dispersing agent (e.g., hydroxypropylmethylcellulose and the like), surfactants (e.g., sodium lauryl sulfate, polaxamer, polysorbates and the like), antioxidants (e.g., ethylene diamine tetraacetic acid (EDTA), butylated hydroxyl toluene (BHT) and the like) and solubilizers (e.g., polyethylene glycols, SOLUTOL®, GELUCIRE® and the like). The effective amount of the Compound provided herein in the pharmaceutical composition may be at a level that will exercise the desired effect. Effective amounts contemplated are further discussed in Section 5.4.


The dose of a Compound provided herein to be administered to a patient is rather widely variable and can be subject to the judgment of a health-care practitioner. In general, a Compound provided herein can be administered one to four times a day. The dosage may be properly varied depending on the age, body weight and medical condition of the patient and the type of administration. In one embodiment, one dose is given per day. In any given case, the amount of the Compound provided herein administered will depend on such factors as the solubility of the active component, the formulation used and the route of administration.


A Compound provided herein can be administered orally, with or without food or liquid.


The Compound provided herein can also be administered intradermally, intramuscularly, intraperitoneally, percutaneously, intravenously, subcutaneously, intranasally, epidurally, sublingually, intracerebrally, intravaginally, transdermally, rectally, mucosally, by inhalation, or topically to the ears, nose, eyes, or skin. The mode of administration is left to the discretion of the health-care practitioner, and can depend in-part upon the site of the medical condition.


In one embodiment, the Compound provided herein is administered orally using a capsule dosage form composition, wherein the capsule contains the Compound provided herein without an additional carrier, excipient or vehicle.


In another embodiment, provided herein are compositions comprising an effective amount of a Compound provided herein and a pharmaceutically acceptable carrier or vehicle, wherein a pharmaceutically acceptable carrier or vehicle can comprise one or more excipients, or a mixture thereof. In one embodiment, the composition is a pharmaceutical composition.


Compositions can be formulated to contain a daily dose, or a convenient fraction of a daily dose, in a dosage unit. In general, the composition is prepared according to known methods in pharmaceutical chemistry. Capsules can be prepared by mixing a Compound provided herein with one or more suitable carriers or excipients and filling the proper amount of the mixture in capsules.


5.2.2.2 Lipid-Based Formulation Methods


One embodiment, provided herein is a SEDDS or SMEDDS system comprising a Compound provided herein (e.g., an effective amount of a composition provided herein), and a carrier medium comprising a lipophilic component, a surfactant, and optionally a hydrophilic component. In certain embodiments, the present disclosure provides a SEDDS or SMEDDS system comprising a Compound provided herein, and a carrier medium comprising one or more surfactants and optionally one or more additives.


In certain embodiments, the SEDDS or SMEDDS system is suitable for oral administration.


One embodiment, provided herein is a SEDDS or SMEDDS system comprising a representative Compound provided herein and a carrier medium that comprises a lipophilic component, a surfactant, optionally a hydrophilic component and optionally an additive.


In one embodiment, the SEDDS or SMEDDS system forms an o/w (oil-in-water) microemulsion when diluted with water.


In one embodiment, of a SEDDS or SMEDDS system provided herein is a microemulsion comprising a Compound provided herein. In certain embodiments, the microemulsion is an o/w (oil-in-water) microemulsion. In one embodiment, the microemulsion comprises a Compound provided herein, a lipophilic component, a surfactant, water, and optionally a hydrophilic component and optionally an additive. In one embodiment, the microemulsion comprises a Compound provided herein, a lipophilic component, a surfactant, and water. In one embodiment, the microemulsion comprises a Compound provided herein, a surfactant, water, and optionally an additive.


The colloidal structures of the microemulsion form spontaneously or substantially spontaneously when the components of the SEDDS or SMEDDS system are brought into contact with an aqueous medium, e.g., by simple shaking by hand for a short period of time, for example for about 10 seconds. The SEDDS or SMEDDS system provided herein is thermodynamically stable, e.g., for at least 15 minutes or up to 4 hours, even to 24 hours. Typically, the system contains dispersed structures, i.e., droplets or liquid nanoparticles of a mean diameter less than about 200 nm (2,000 Å), e.g., less than about 150 nm (1,500 Å), typically less than about 100 nm (1,000 Å), generally greater than about 10 nm (100 Å) as measured by standard light scattering techniques, e.g., using a MALVERN ZETASIZER 300™ particle characterizing machine. Solid drug particles of mean diameter greater than 200 nm may also be present. The proportion of particles present may be temperature dependent.


In accordance with the present disclosure, Compounds provided herein may be present in an amount of up to about 20% by weight of the SEDDS or SMEDDS system provided herein, e.g., from about 0.05% by weight. In one embodiment, the Compound provided herein is present in an amount of from about 0.05 to about 15% by weight of the composition, or in an amount of from about 0.1 to about 5% by weight of the SEDDS or SMEDDS system.


In some embodiments, the SEDDS or SMEDDS system provided herein further comprises a carrier medium having a lipophilic component and a surfactant. In other embodiments, the carrier medium also comprises a lipophilic component, a hydrophilic component and a surfactant. In further embodiments, the carrier medium may comprise a surfactant. In some embodiments, the carrier medium also comprises a surfactant and an additive. In certain embodiments, the Compound provided herein can reside in the lipophilic component or phase.


In some embodiments, the SEDDS or SMEDDS system, the carrier medium, and the microemulsion comprise one or more lipophilic substances. In certain embodiments, the SEDDS or SMEDDS system, the carrier medium, and the microemulsion comprise one or more hydrophilic substances. In other embodiments, the SEDDS or SMEDDS system, the carrier medium, and the microemulsion comprise one or more surfactants. In further embodiments, the SEDDS or SMEDDS system, the carrier medium, and the microemulsion comprise one or more additives.


The compositions provided herein can include a variety of additives including antioxidants, antimicrobial agents, enzyme inhibitors, stabilizers, preservatives, flavors, sweeteners and further components known to those skilled in the art.


A. Lipophilic Components


Lipophilic components include, but are not limited to:


A1) Medium Chain Fatty Acid Triglyceride


These include, but are not limited to, triglycerides of saturated fatty acid having 6 to 12, e.g. 8 to 10, carbon atoms. In one embodiment, the medium chain fatty acid triglycerides include, but are not limited to, those known and commercially available under the trade names ACOMED®, LABRAFAC®, MYRITOL®, CAPTEX®, NEOBEE®M 5 F, MIGLYOL® 810, MIGLYOL®812, MIGLYOL®818, MAZOL®, SEFSOL® 860, SEFSOL®870. In one embodiment, the lipophilic component is LABRAFAC®. In one embodiment, the lipophilic component is LABRAFAC®CC. In another embodiment, the lipophilic component is LABRAFAC®WL 1349.


A2) Propylene Glycol Mono Fatty Acid Esters


The fatty acid constituent may include, but is not limited to, both saturated and unsaturated fatty acids having a chain length of from e.g. C8-C12. In one embodiment, the fatty acid is propylene glycol mono ester of caprylic and lauric acid as commercially available, e.g. under the trade names SEFSOL® 218, CAPRYOL®90 or LAUROGLYCOL®90, from e.g. Nikko Chemicals Co., Ltd. or Gattefossé or Capmul PG-8 from Abitec Corporation.


A3) Propylene Glycol Mono- and Di-Fatty Acid Esters


These include, but are not limited to, Laroglycol FCC and Capryol PGMC.


A4) Propylene Glycol Diesters


These include, but are not limited to, propylene glycol di-fatty acid esters such as propylene glycol dicaprylate (which is commercially available under the trade name MIGLYOL® 840 from e.g. sasol; Fiedler, H. P. “Lexikon der Hilfsstoffe für Pharmazie, Kosmetik and angrenzende Gebiete”, Edition Cantor, D-7960 Aulendorf, 4th revised and expanded edition (1996), volume 2, page 1008) or Captex 200 from Abitec Corporation.


A5) Propylene Glycol Monoacetate and Propylene Glycol


A6) Transesterified Ethoxylated Vegetable Oils


Transesterified ethoxylated vegetable oils are known and are commercially available under the trade name LABRAFIL® (H. Fiedler, loc. cit vol 2, page 880). Examples are LABRAFIL® M 2125 CS (obtained from corn oil and having an acid value of less than about 2, a saponification value of 155 to 175, an HLB value of 3 to 4, and an iodine value of 90 to 110), and LABRAFIL® M 1944 CS (obtained from kernel oil and having an acid value of about 2, a saponification value of 145 to 175 and an iodine value of 60 to 90). LABRAFIL® M 2130 CS (which is a transesterification product of a C12-C18 glyceride and polyethylene glycol and which has a melting point of about 35 to about 40° C., an acid value of less than about 2, a saponification value of 185 to 200 and an iodine value of less than about 3) may also be used. LABRAFIL® lipophilic components can be obtained, for example, from Gattefossé (Paramus, N.J., USA).


In one embodiment, the alkylene polyol ethers or esters include products obtainable by transesterification of glycerides, e.g. triglycerides, with poly-(C2-C4 alkylene) glycols, e.g. poly-ethylene glycols and, optionally, glycerol. Such transesterification products are generally obtained by alcoholysis of glycerides, e.g. triglycerides, in the presence of a poly-(C2-C4 alkylene) glycol, e.g. polyethylene glycol and, optionally, glycerol (i.e. to effect transesterification from the glyceride to the poly-alkylene glycol/glycerol component, i.e. via poly-alkylene glycolysis/glycerolysis). In general such reaction is effected by reacting the indicated components (glyceride, polyalkylene glycol and, optionally, glycerol) at elevated temperature under an inert atmosphere with continuous agitation.


In one embodiment, the glycerides are fatty acid triglycerides, e.g. (C10-C22 fatty acid) triglycerides, including natural and hydrogenated oils, in particular vegetable oils. In one embodiment, vegetable oils include, for example, olive, almond, peanut, coconut, palm, soybean and wheat germ oils and, in particular, natural or hydrogenated oils rich in (C12-C18 fatty acid) ester residues. In one embodiment, polyalkylene glycol materials are polyethylene glycols, in particular polyethylene glycols having a molecular weight of from ca. 500 to ca. 4,000, e.g. from ca. 1,000 to ca. 2,000.


In one embodiment, alkylene polyol ethers or esters include, but are not limited to, mixtures of C3-C5 alkylene triol esters, e.g. mono-, di- and tri-esters in variable relative amount, and poly (C2-C4 alkylene) glycol mono- and di-esters, together with minor amounts of free C3-C5 alkylene triol and free poly-(C2-C5 alkylene) glycol. As hereinabove set forth, in one embodiment, the alkylene triol moiety is glyceryl; in another embodiment, the polyalkylene glycol moieties include, but are not limited to, polyethylene glycol, in certain embodiments, having a molecular weight of from ca. 500 to ca. 4,000; and in another embodiment, the fatty acid moieties will be C10-C22 fatty acid ester residues, in certain embodiments, saturated C10-C22 fatty acid ester residues.


In one embodiment, the alkylene polyol ethers or esters include transesterification products of a natural or hydrogenated vegetable oil and a polyethylene glycol and, optionally, glycerol; or compositions comprising or consisting of glyceryl mono-, di- and tri-C10-C22 fatty acid esters and polyethylene glycol mono- and di-C10-C22 fatty esters (optionally together with, e.g. minor amounts of free glycerol and free polyethylene glycol).


In one embodiment, the alkylene polyol ethers or esters include, but are not limited, those commercially available under the trade name GELUCIRE® from e.g. Gattefossé´é, in particular the products:


a) GELUCIRE® 33/01, which has an m.p.=ca. 33-37° C., and a saponification value of about 230-255;


b) GELUCIRE® 39/01, m.p.=ca. 37.5-41.5° C., saponification value of about 225-245; and


c) GELUCIRE® 43/01, m.p.=ca. 42-46° C., saponification value of about 220-240.


Products (a) to (c) above all have an acid value of maximum of 3. The SEDDS or SMEDDS system provided herein may include mixtures of such ethers or esters.


B. Surfactants


The SEDDS or SMEDDS system provided herein can contain one or more surfactants to reduce the emulsion's interfacial tension thereby providing thermodynamic stability. Surfactants may be complex mixtures containing side products or unreacted starting products involved in the preparation thereof, e.g. surfactants made by polyoxyethylation may contain another side product, e.g. polyethylene glycol.


In one embodiment, surfactants include, but are not limited to:


B1) Polyoxyethylene Mono Esters of a Saturated C10 to C22 Polymer


These include, but are not limited to, C11 substituted e.g. hydroxy fatty acid; e.g. 12 hydroxy stearic acid PEG ester, e.g. of PEG about e.g. 600-900, e.g. 660 Daltons MW, e.g. SOLUTOL®HS15 from BASF (Ludwigshafen, Germany). SOLUTOL®HS15, according to the BASF technical information (July 2003), comprises polyglycol mono- and di-esters of 12-hydroxystearic acid (=lipophilic part) and about 30% of free polyethylene glycol (=hydrophilic part). A small part of the 12-hydroxy group can be etherified with polyethylene glycol. SOLUTOL® HS15 has a hydrogenation value of 90 to 110, a saponification value of 53 to 63, an acid number of maximum 1, an iodine value of maximum 2, and a maximum water content of about 0.5% by weight. In one embodiment, the surfactant is SOLUTOL® HS 15.


B2) Alkylene Polyol Ethers or Esters


In one embodiment, the alkylene polyol ethers or esters as described above for use in the pharmaceutical compositions provided herein include those commercially available under the trade name GELUCIRE® from e.g. Gattefossé´é (Paramus, N.J., USA), in particular the products:


a) GELUCIRE® 44/14, m.p.=ca. 42.5-47.5° C., saponification value of about 79-93;


b) GELUCIRE® 50/13, m.p.=ca. 46-51° C., saponification value of about 67-81;


Products (a) to (b) above both have an acid value of maximum of 2.


In one embodiment, the alkylene polyol ethers or esters have an iodine value of maximum 2. The SEDDS or SMEDDS system provided herein may further include mixtures of such ethers or esters.


GELUCIRE® products are inert semi-solid waxy materials with amphiphilic character. They are identified by their melting point and their HLB value. Most GELUCIRE® grades are saturated polyglycolised glycerides obtainable by polyglycolysis of natural hydrogenated vegetable oils with polyethylene glycols. They are composed of a mixture of mono-, di- and tri-glycerides and mono- and di-fatty acid esters of polyethylene glycol. In one embodiment, the C10 glyceride is GELUCIRE® 44/14 which has a nominal melting point of 44° C. and an HLB of 14. GELUCIRE® 44/14 exhibits the following additional characterizing data: acid value of max. 2, iodine value of max. 2, saponification value of 79-93, hydroxyl value of 36-56, peroxide value of max. 6, alkaline impurities max. 80, water content max. 0.50, free glycerol content max. 3, monoglycerides content 3.0-8.0. (H. Fiedler, loc. cit., vol 1, page 676; manufacturer information).


In one embodiment, the surfactant is present in a range of from about 5 to about 99.9% by weight, or in a range of from about 30% to about 99.9% of the SEDDS or SMEDDS system provided herein.


In one embodiment, the surfactant comprises about 30% to about 70%, or about 40% to about 60% by weight of the carrier medium of the SEDDS or SMEDDS system provided herein.


In one embodiment, the SEDDS or SMEDDS system provided herein include additives e.g. antioxidants, flavors, sweeteners and other components known to those skilled in the art.


In one embodiment, the antioxidants include ascorbyl palmitate, butylated hydroxy anisole (BHA), 2,6-di-tert-butyl-4-methyl phenol (BHT) and tocopherols. In a further embodiment, the antioxidant is BHT.


In one embodiment, these additives may comprise about 0.005% to about 5% or about 0.01% to about 0.1% by weight of the total weight of the SEDDS or SMEDDS system. Antioxidants, or stabilizers typically provide up to about 0.005 to about 1% by weight based on the total weight of the composition. Sweetening or flavoring agents typically provide up to about 2.5% or 5% by weight based on the total weight of the composition.


The aforementioned additives can also include components that act as surfactants to solidify a liquid micro-emulsion pre-concentrate. These include solid polyethylene glycols (PEGs) and GELUCIRE® products, in one embodiment, the GELUCIRE® products include those such as GELUCIRE® 44/14 or GELUCIRE® 50/13.


When the SEDDS or SMEDDS system provided herein is combined with water or an aqueous solvent medium to obtain an emulsion, for example a microemulsion, the emulsion or microemulsion may be administered orally, for example in the form of a drinkable solution. The drinkable solution may comprise water or any other palatable aqueous system, such as fruit juice, milk and the like. In one embodiment, the relative proportion of the lipophilic component(s), the surfactant(s) and the hydrophilic component(s) lie within the “Microemulsion” region on a standard three way plot graph. The compositions will therefore be capable, on addition to an aqueous medium, of providing microemulsions, for example having a mean particle size of <200 nm.


In one embodiment, the carrier medium comprises about 30 to 70% by weight of one or more lipophilic components, wherein the one or more lipophilic components are a medium chain fatty acid triglyceride (A1), or a transesterified ethoxylated vegetable oil (A6). In a further embodiment, the medium chain fatty acid triglyceride (A1) is LABRAFAC® (Gattefossé, Paramus, N.J., USA). In another embodiment, the transesterified ethoxylated vegetable oil (A6) is LABRAFIL® (Gattefossé, Paramus, N.J., USA).


In one embodiment, the carrier medium comprises about 30 to 70% by weight of one or more surfactants, wherein the one or more surfactants are a polyoxyethylene mono ester (C5), an alkylene polyol ether or ester (C10), or a transesterified, polyoxyethylated caprylic-capric acid glyceride (C13). In a further embodiment, the polyoxyethylene mono ester (C5) is SOLUTOL® HS15 (BASF, Ludwigshafen, Germany). In another embodiment, the alkylene polyol ether or ester (C10) is GELUCIRE®44/14 (Gattefossé, Paramus, N.J., USA). In yet another embodiment, the transesterified, polyoxyethylated caprylic-capric acid glyceride (C13) is LABRASOL® (Gattefossé´é, Paramus, N.J., USA).


In one embodiment, the carrier medium comprises about 70% by weight LABRASOL®, about 18.3% by weight LABRAFAC® and about 11.7% by weight LABRAFIL®.


In one embodiment, the carrier medium comprises a range of about 65.1% to about 74.9% by weight LABRASOL®, a range of about 17.0% to about 19.6% by weight LABRAFAC® and a range of about 10.9% to about 12.5% by weight LABRAFIL®.


In one embodiment, the carrier medium comprises about 35% by weight LABRASOL®, about 35% by weight LABRAFAC® and about 30% by weight SOLUTOL® HS15.


In one embodiment, the carrier medium comprises a range of about 33.6% to about 37.4% by weight LABRASOL®, a range of about 33.6% to about 37.4% by weight LABRAFAC® and a range of about 27.9% to about 32.1% by weight SOLUTOL® HS15.


In one embodiment, the carrier medium comprises about 35% by weight LABRAFIL®, about 35% by weight LABRAFAC®, and about 30% by weight SOLUTOL®HS15.


In one embodiment, the carrier medium comprises a range of about 33.6% to about 37.4% by weight LABRAFIL®, a range of about 33.6% to about 37.4% by weight LABRAFAC®, and a range of about 27.9% to about 32.1% by weight SOLUTOL® HS15.


In one embodiment, the carrier medium comprises about 35% by weight GELUCIRE®44/14, about 35% by weight LABRAFAC®, and about 30% by weight SOLUTOL®HS15.


In one embodiment, the carrier medium comprises a range of about 33.6% to about 37.4% by weight GELUCIRE®44/14, a range of about 33.6% to about 37.4% by weight LABRAFAC®, and a range of about 27.9% to about 32.1% by weight SOLUTOL® HS15.


In one embodiment, provided herein is a SEDDS or SMEDDS system comprising a Compound provided herein, and a carrier medium comprising one or more surfactants. In one embodiment, the SEDDS or SMEDDS system additionally comprises an additive.


In one embodiment, the SEDDS or SMEDDS system comprises about 0.01% to about 5% by weight of a Compound provided herein.


In one embodiment, the dispersible pharmaceutical composition comprises about 95% to 99.09% by weight of one or more surfactants, wherein the one or more surfactants are selected from a group comprising an alkylene polyol ether or ester (C10), and a polyoxyethylene mono ester (C5). In a further embodiment, the alkylene polyol ether or ester (C10) is GELUCIRE®44/14 (Gattefossé, Paramus, N.J., USA). In yet another embodiment, the polyoxyethylene mono ester (C5) is SOLUTOL® HS15 (BASF, Ludwigshafen, Germany).


In one embodiment, the dispersible pharmaceutical composition comprises about 0.01% to about 0.1% by weight of an additive selected from a group comprising an antioxidant and a preservative. In a further embodiment, the additive is 2,6-di-tert-butyl-4-methylphenol (BHT).


In one embodiment, the SEDDS or SMEDDS system comprises about 0.28% by weight of a Compound provided herein, about 49.87° A by weight of GELUCIRE® 44/14, about 49.84% by weight of SOLUTOL® HS15 and about 0.01% by weight of BHT.


In one embodiment, the SEDDS or SMEDDS system comprises a range of about 0.26% to about 0.30% by weight of a Compound provided herein, a range of about 46.4% to about 53.4% by weight of GELUCIRE®44/14, a range of about 46.4% to about 53.3% by weight of SOLUTOL® HS15 and a range of about 0.009% to about 0.011% by weight of BHT.


In one embodiment, the SEDDS or SMEDDS system comprises about 1.43% by weight of a Compound provided herein, about 49.87° A by weight of GELUCIRE® 44/14, about 48.69% by weight of SOLUTOL® HS15 and about 0.01% by weight of BHT.


In one embodiment, the SEDDS or SMEDDS system comprises a range of about 1.33% to about 1.53% by weight of a Compound provided herein, a range of about 46.4% to about 53.4% by weight of GELUCIRE®44/14, a range of about 45.3% to about 52.1% by weight of SOLUTOL® HS15 and a range of about 0.009% to about 0.011% by weight of BHT.


In one embodiment, the SEDDS or SMEDDS system comprises about 2.67% by weight of a Compound provided herein, about 49.87° A by weight of GELUCIRE® 44/14, about 47.45% by weight of SOLUTOL® HS15 and about 0.01% by weight of BHT.


In one embodiment, the SEDDS or SMEDDS system comprises a range of about 2.48% to about 2.86% by weight of a Compound provided herein, a range of about 46.4% to about 53.4% by weight of GELUCIRE®44/14, a range of about 44.1% to about 50.8% by weight of SOLUTOL® HS15 and a range of about 0.009% to about 0.011% by weight of BHT.


In one embodiment, when the SEDDS or SMEDDS system provided herein is used to fill capsules for use in oral administration. The capsule may have a soft or hard capsule shell, for example, the capsule may be made of gelatine.


One group of SEDDS or SMEDDS systems provided herein may, on addition to water, provide aqueous microemulsions having an average particle size of about <200 nm (2,000 Å), about <150 nm (1,500 Å), or about <100 nm (1,000 Å).


In one embodiment, the SEDDS or SMEDDS systems provided herein exhibit advantageous properties when administered orally; for example in terms of consistency and high level of bioavailability obtained in standard bioavailability trials.


Pharmacokinetic parameters, for example, drug substance absorption and measured for example as blood levels, also can become more predictable and problems in administration with erratic absorption may be eliminated or reduced. Additionally pharmaceutical compositions provided herein are effective with biosurfactants or tenside materials, for example bile salts, being present in the gastro-intestinal tract. That is, pharmaceutical compositions provided herein are fully dispersible in aqueous systems comprising such natural tensides and thus capable of providing emulsion or microemulsion systems and/or particulate systems in situ which are stable. The function of pharmaceutical compositions provided herein upon oral administration remain substantially independent of and/or unimpaired by the relative presence or absence of bile salts at any particular time or for any given individual. Compositions provided herein may also reduce variability in inter- and intra-patient dose response.


In one embodiment, provided herein is a SEDDS or SMEDDS system comprising a Compound provided herein, and a carrier medium comprising one or more lipophilic components and one or more surfactants


5.3 Patient Populations


In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human who has or is diagnosed with a brain tumor. In other embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human predisposed or susceptible to a brain tumor. In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human at risk of developing a brain tumor. In specific embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is human that meets one, two or more, or all of the criteria for subjects in the working examples in Section 11 et seq.


In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human who has or is diagnosed with a benign brain tumor. In other embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human who has or is diagnosed with a malignant brain tumor. In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human who has or is diagnosed with a grade I, grade II, grade III or grade IV brain tumor.


In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human who has or is diagnosed with an astrocytoma, an oligodendroglioma, a mixture of oligodendroglioma and an astrocytoma elements, an ependymoma, a meningioma, a pituitary adenoma, a primitive neuroectodermal tumor, a medullblastoma, a primary central nervous system (CNS) lymphoma, or a CNS germ cell tumor. In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human who has or is diagnosed with an acoustic neuroma, an anaplastic astrocytoma, a GBM, or a meningioma. In other embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human who has or is diagnosed with a brain stem glioma, a craniopharyngioma, an ependyoma, a juvenile pilocytic astrocytoma, a medulloblastoma, an optic nerve glioma, primitive neuroectodermal tumor, or a rhabdoid tumor. In specific embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human who has or is diagnosed with a GBM.


In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human who has a tumor in the central nervous system or meninges that has metastasized from a primary site outside the brain.


In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human who has or is diagnosed with a recurrent brain tumor. In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human who has or is diagnosed with a recurrent GBM. In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human in remission from a brain tumor.


In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein has a genetic predisposition for a brain tumor. In other embodiments, a subject treated for a brain tumor in accordance with the methods provided herein developed a brain tumor spontaneously through gene mutation.


In one embodiment, a subject treated for a brain tumor in accordance with the methods provided herein is a human infant. In one embodiment, a subject treated for a brain tumor in accordance with the methods provided herein is an elderly human. In another embodiment, a subject treated for a brain tumor in accordance with the methods provided herein is a human adult. In another embodiment, a subject treated for a brain tumor in accordance with the methods provided herein is a human child. In another embodiment, a subject treated for a brain tumor in accordance with the methods provided herein is a human toddler. In a specific embodiment, a subject treated for a brain tumor in accordance with the methods provided herein is a human that is 18 years old or is older than 18 years old. In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human male. In other embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human female. In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a female human that is not pregnant or is not breastfeeding. In other embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human that is pregnant or will become pregnant, or is breastfeeding.


In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human that is about 1 month to about 12 months old, about 1 year to about 10 years old, about 10 to 20 years old, about 12 to 18 years old, about 20 to 30 years old, about 30 to 40 years old, about 40 to 50 years old, about 50 to 60 years old, about 60 to 70 years old, about 70 to 80 years old, about 80 to 90 years old, about 90 to 100 years old, or any age in between.


In one embodiment, a subject treated for a brain tumor in accordance with methods provided herein meets one or more of the following criteria to be eligible for the treatment: (i) a subject is 18 years old or is older than 18 years old; (ii) a subject has Karnofsky performance score of 60 or more than 60; (iii) a subject has life expectancy of 3 months or more than 3 months; (iv) a subject has a history of primary therapy for GBM with surgery, radiation therapy, and/or drug therapy; (v) a subject had no prior exposure to another anti-angiogenic therapy (e.g., bevacizumab, sunitinib, sorafenib, thalidomide); (vi) a subject has evidence of contrast-enhancing GBM recurrence or progression on MRI or CT scanning; (vii) a subject discontinued all other therapies (including radiotherapy or drug therapy) for the treatment of GBM for 4 weeks or more than 4 weeks before initiation of the treatment; (viii) a subject had an interval of 2 weeks or more than 2 weeks from corticosteroid dose stabilization prior to obtaining the baseline MRI scan; (ix) all acute toxic effects (excluding alopecia or neurotoxicity) of any prior antitumor therapy of a subject were resolved to CTCAE Version 3.0 Grade less than or equal to 1 before initiation of the treatment; (x) a subject manifests willingness, if not postmenopausal or surgically sterile, to abstain from sexual intercourse or employ an effective barrier method of contraception during the treatment administration and follow-up periods; (xi) a subject manifests willingness and ability to comply with scheduled visits, treatment administration plan, imaging studies and contrast dye administration, laboratory tests, and other testing procedures; and/or (xii) in the judgment of the investigator, participation of a subject in the treatment offers acceptable benefit:risk when considering current GBM disease status, medical condition, and the potential benefits and risks of alternative treatments for GBM.


In particular embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human that is in an immunocompromised state or immunosuppressed state. In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human receiving or recovering from immunosuppressive therapy. In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human who is, will or has undergone surgery, drug therapy (such as chemotherpay) and/or radiation therapy.


In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is administered a Compound or a pharmaceutical composition thereof, or a combination therapy before any adverse effects or intolerance to therapies other than the Compound develops. In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a refractory patient. In a certain embodiment, a refractory patient is a patient with a tumor that is refractory to a standard therapy (e.g., surgery, radiation, and/or drug therapy). In certain embodiments, a patient with a brain tumor is refractory to a therapy when the cancer has not significantly been eradicated and/or the symptoms have not been significantly alleviated. The determination of whether a patient is refractory can be made either in vivo or in vitro by any method known in the art for assaying the effectiveness of a treatment of a brain tumor, using art-accepted meanings of “refractory” in such a context. In various embodiments, a patient with a brain tumor is refractory when the brain tumor has not decreased or has increased. In various embodiments, a patient with a brain tumor is refractory when the brain tumor metastasizes and/or spreads to another organ. In some embodiments, a patient is in remission. In certain embodiments, a patient is experiencing recurrence of one or more tumors associated with a brain tumor.


In specific embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is suffering from a condition, e.g., stroke or cardiovascular condition that may require VEGF therapy, wherein the administration of anti-angiogenic therapies other than a Compound may be contraindicated. For example, in certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein has suffered from a stroke or is suffering from a cardiovascular condition. In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human experiencing circulatory problems. In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human with diabetic polyneuropathy or diabetic neuropathy. In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human receiving VEGF protein or VEGF gene therapy. In other embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is not a human receiving VEGF protein or VEGF gene therapy.


In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human that has proven refractory to therapies other than treatment with a Compound, but is no longer on these therapies. In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human already receiving one or more conventional anti-cancer therapies, such as surgery, drug therapy, such as chemotherapy, or radiation. Among these patients are refractory patients, patients who are too young for conventional therapies, and patients with recurring tumors despite treatment with existing therapies.


In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human susceptible to adverse reactions to conventional therapies. In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human that has not received a therapy, e.g., drug therapy, surgery, or radiation therapy, prior to the administration of a Compound or a pharmaceutical composition thereof. In other embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human that has received a therapy prior to administration of a Compound. In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is a human that has experienced adverse side effects to the prior therapy or the prior therapy was discontinued due to unacceptable levels of toxicity to the human.


In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein has had no prior exposure to another anti-angiogenic therapy (e.g., an anti-VEGF monoclonal antibody, an anti-VEGFR monoclonal antibody, a tyrosine kinase inhibitor, or other angiogenesis pathway modulator). In particular embodiments, a subject treated for a brain tumor in accordance with the methods provided herein has not experienced one or more of the following within 2 or 3 months of receiving a Compound: myocardial infarction, unstable angina, coronary/peripheral artery bypass graft, congestive heart failure (New York Heart Association Class III or IV), cerebrovascular accident, transient ischemic attack, other arterial thromboembolic event and/or pulmonary embolism. In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein does not have known coagulopathy or bleeding diathesis. In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein has not experienced central nervous system, pulmonary, gastrointestinal, or urinary bleeding within 1, 2, 3, 4 or 5 weeks of administration of a Compound. In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein does not have a resting systolic blood pressure>180 mmHg or diastolic blood pressure>110 mmHg.


In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is not, has not and/or will not receive a drug that is primarily metabolized by CYP2D6. In particular embodiments, a subject treated for a brain tumor in accordance with the methods provided herein has not and will not received a drug that is primarily metabolized by CYP2D6 1, 2, 3 or 4 weeks before receiving a Compound or a pharmaceutical composition thereof and 1, 2, 3 or 4 weeks after receiving the Compound or pharmaceutical composition. Examples of such drugs include, without limitation, some antidepressants (e.g., tricyclic antidepressants and selective serotonin uptake inhibitors), some antipsychotics, some beta-adrenergic receptor blockers, and certain anti-arrhythmics. In specific embodiments, a subject treated for a brain tumor in accordance with the methods provided herein is not, has not and/or will not receive tamoxifen. In particular embodiments, a subject treated for a brain tumor in accordance with the methods provided herein has not and will not received tamoxifen 1, 2, 3 or 4 weeks before receiving a Compound or a pharmaceutical composition thereof and 1, 2, 3 or 4 weeks after receiving the Compound or pharmaceutical composition. In specific embodiments, a subject treated for a brain tumor in accordance with the methods provided herein has received tamoxifen, e.g., for 1, 2, 3 or 4 weeks before receiving a Compound or a pharmaceutical composition thereof.


In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein has not undergone or will not undergo surgery 1, 2, 3 or 4 weeks before receiving a Compound or a pharmaceutical composition thereof and 1, 2, 3 or 4 weeks after receiving the Compound or pharmaceutical composition. In some embodiments, a subject treated for a brain tumor in accordance with the methods provided herein does not have high blood pressure (hypertension) or proteinuria. In other embodiments, a subject treated for a brain tumor in accordance with the methods provided herein has high blood pressure (hypertension) or proteinuria. In certain embodiments, a subject treated for a brain tumor in accordance with the methods provided herein has not had and/or is not at risk of having a stroke. In other embodiments, a subject treated for a brain tumor in accordance with the methods provided herein has had and/or is at risk of having a stroke.


5.4 Dosage and Administration


In accordance with the methods for treating brain tumors provided herein, a Compound or a pharmaceutical composition thereof can be administered to a subject in need thereof by a variety of routes in amounts which result in a beneficial or therapeutic effect. A Compound or pharmaceutical composition thereof may be orally administered to a subject in need thereof in accordance with the methods for treating brain tumors provided herein. The oral administration of a Compound or a pharmaceutical composition thereof may facilitate subjects in need of such treatment complying with a regimen for taking the Compound or pharmaceutical composition. Thus, in a specific embodiment, a compound or pharmaceutical composition thereof is administered orally to a subject in thereof.


Other routes of administration include, but are not limited to, intravenous, intrathecal, intradermal, intramuscular, subcutaneous, intranasal, inhalation, transdermal, topical, transmucosal, intracranial, intratumoral, epidural and intra-synovial. In one embodiment, a Compound or a pharmaceutical composition thereof is administered systemically (e.g., parenterally) to a subject in need thereof. In another embodiment, a Compound or a pharmaceutical composition thereof is administered locally (e.g., intratumorally) to a subject in need thereof. In one embodiment, a Compound or a pharmaceutical composition thereof is administered intrathecally or via a route that permits the Compound to cross the blood-brain barrier (e.g., orally).


Evaluation has indicated that Compound #10 penetrates the blood-brain barrier. Table 41 provides brain tissue plasma concentration ratios determined by whole-body autoradiography at specified times after a single oral administration of 14C-Compound #10 to rats (50 mg/kg).









TABLE 41







Blood-Brain Barrier Penetration













6 Hours
12 Hours
24 Hours
48 Hours
72 Hours

















Tissue
M
F
M
F
M
F
M
F
M
F




















Cerebellum
1.55
1.23
1.85
2.85
1.74
1.59
1.21
1.17
NA
2.04


Cerebrum
1.52
1.22
1.75
2.79
1.89
1.57
1.35
1.68
NA
1.56


Medulla
1.60
1.42
1.98
3.82
1.83
1.69
1.20
2.01
NA
1.88


Olfactory
1.42
1.38
1.35
2.45
1.23
1.13
0.967
NA
NA
3.33


lobe


Pituitary
4.06
4.27
3.22
5.48
2.72
2.33
0.890
3.68
NA
1.58


gland


Spinal cord
1.14
0.898
1.24
1.92
1.75
1.60
1.43
1.60
1.84
2.75









In accordance with the methods for treating brain tumors provided herein that involve administration of a Compound in combination with one or more additional therapies, the Compound and one or more additional therapies may be administered by the same route or a different route of administration.


The dosage and frequency of administration of a Compound or a pharmaceutical composition thereof is administered to a subject in need thereof in accordance with the methods for treating brain tumors provided herein will be efficacious while minimizing any side effects. The exact dosage and frequency of administration of a Compound or a pharmaceutical composition thereof can be determined by a practitioner, in light of factors related to the subject that requires treatment. Factors which may be taken into account include the severity of the disease state, general health of the subject, age, weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. The dosage and frequency of administration of a Compound or a pharmaceutical composition thereof may be adjusted over time to provide sufficient levels of the Compound or to maintain the desired effect.


In certain embodiments, a Compound or a pharmaceutical composition thereof is administered to a subject in accordance with the methods for treating a brain tumor presented herein once a day, twice a day, three times a day, or four times a day. In some embodiments, a Compound or a pharmaceutical composition thereof is administered to a subject in accordance with the methods for treating a brain tumor presented herein once, twice, three times, or four times every other day (i.e., on alternative days); once, twice, three times, or four times every two days; once, twice, three times, or four times every three days; once, twice, three times, or four times every four days; once, twice, three times, or four times every 5 days; once, twice, three times, or four times a week; once, twice, three times, or four times every two weeks; once, twice, three times, or four times every three weeks; once, twice, three times, or four times every four weeks; once, twice, three times, or four times every 5 weeks; once, twice, three times, or four times every 6 weeks; once, twice, three times, or four times every 7 weeks; or once, twice, three times, or four times every 8 weeks. In particular embodiments, a Compound or a pharmaceutical composition thereof is administered to a subject in accordance with the methods for treating a brain tumor presented herein in cycles, wherein the Compound or a pharmaceutical composition is administered for a period of time, followed by a period of rest (i.e., the Compound or pharmaceutical composition is not administered for a period of time). In specific embodiments, a method for treating a brain tumor presented herein involves the administration of a Compound or a pharmaceutical composition thereof in cycles, e.g., 1 week cycles, 2 week cycles, 3 week cycles, 4 week cycles, 5 week cycles, 6 week cycles, 8 week cycles, 9 week cycles, 10 week cycles, 11 week cycles, or 12 week cycles. In such cycles, the Compound or a pharmaceutical composition thereof may be administered once, twice, three times, or four times daily. In particular embodiments, a method for treating a brain tumor presented herein involves the administration of a Compound or a pharmaceutical composition thereof twice daily in 4 week cycles.


In certain embodiments, a Compound or a pharmaceutical composition thereof is administered to a subject in need thereof in accordance with the methods for treating brain tumors provided herein at a dosage and a frequency of administration that achieves one or more of the following: (i) decreases the production and/or concentration of VEGF (e.g., pathological VEGF) or other angiogenic or inflammatory mediators, or changes tumor blood flow or metabolism, or peritumoral inflammation or edema in a subject with a brain tumor or an animal model with a pre-established human tumor (e.g., a brain tumor); (ii) reduces or ameliorates the severity of a brain tumor and/or a symptom associated therewith in a subject with a brain tumor; (iii) reduces the number of symptoms and/or the duration of a symptom(s) associated with a brain tumor in a subject with a brain tumor; (iv) prevents the onset, progression or recurrence of a symptom associated with a brain tumor in a subject with a brain tumor; and/or (v) enhances or improves the therapeutic effect of another therapy in a subject with a brain tumor or an animal model with a pre-established human tumor (e.g., a brain tumor).


In certain embodiments, a Compound or a pharmaceutical composition thereof is administered to a subject in need thereof in accordance with the methods for treating brain tumors provided herein at a dosage and a frequency of administration that results in one or more of the following: (i) regression of a brain tumor and/or inhibition of the progression of a brain tumor in a subject with a brain tumor or an animal model with a pre-established human tumor (e.g., a brain tumor); (ii) reduction in the growth of a brain tumor and/or decrease in the size (e.g., volume or diameter) of a brain tumor in a subject with a brain tumor or an animal model with a pre-established human tumor (e.g., a brain tumor); (iii) the size of a brain tumor is maintained and/or the tumor does not increase or increases by less than the increase of a similar tumor after administration of a standard therapy as measured by conventional methods available to one of skill in the art, such as X-ray, CT Scan, MRI, DCE-MRI, or PET Scan; (iv) reduction in the formation of a brain tumor in a subject with a brain tumor or an animal model with a pre-established human tumor (e.g., a brain tumor); (v) eradication, removal, or control of primary, regional and/or metastatic tumors associated with a brain tumor in a subject with a brain tumor or an animal model with a pre-established human tumor (e.g., a brain tumor); (vi) a decrease in the number or size of metastases associated with a brain tumor in a subject with a brain tumor or an animal model with a pre-established human tumor (e.g., a brain tumor); and/or (vii) reduction in the growth of a pre-established tumor (e.g., a brain tumor) or neoplasm and/or decrease in the tumor size (e.g., volume or diameter) of a pre-established tumor (e.g., brain tumor) in a subject with a brain tumor or an animal model with a pre-established human tumor (e.g., brain tumor).


In certain embodiments, a Compound or a pharmaceutical composition thereof is administered to a subject in need thereof in accordance with the methods for treating brain tumors provided herein at a dosage and a frequency of administration that achieve one or more of the following: (i) inhibition or reduction in pathological production of VEGF; (ii) stabilization or reduction of peritumoral inflammation or edema in a subject; (iii) reduction of the concentration of VEGF or other angiogenic or inflammatory mediators (e.g., cytokines or interleukins) in biological specimens (e.g., plasma, serum, cerebral spinal fluid, urine, or any other biofluids); (iv) reduction of the concentration of P1GF, VEGF-C, VEGF-D, VEGFR1, VEGFR2, IL-6, and/or IL-8 in biological specimens (e.g., plasma, serum, cerebral spinal fluid, urine, or any other biofluids); (v) inhibition or decrease in tumor metabolism or perfusion; (vi) inhibition or decrease in angiogenesis or vascularization; and/or (vii) improvement in quality of life as assessed by methods well known in the art, e.g., a questionnaire.


In one aspect, a method for treating brain tumors presented herein involves the administration of a unit dosage of a Compound or a pharmaceutical composition thereof. The unit dosage may be administered as often as determined effective (e.g., once, twice or three times per day, every other day, once or twice per week, biweekly or monthly). In certain embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of a Compound or a pharmaceutical composition thereof that ranges from about 0.1 milligram (mg) to about 1000 mg, from about 1 mg to about 1000 mg, from about 5 mg to about 1000 mg, from about 10 mg to about 500 mg, from about 100 mg to about 500 mg, from about 150 mg to about 500 mg, from about 150 mg to about 1000 mg, from about 250 mg to about 1000 mg, from about 300 mg to about 1000 mg, or from about 500 mg to about 1000 mg, or any range in between. In some embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of a Compound or a pharmaceutical composition thereof of about 15 mg, 16, mg, 17 mg, 18 mg, 19 mg, 20 mg, 21, mg, 22 mg, 23 mg, 24 mg, 25 mg, 26 mg, 27 mg, 28 mg, 29 mg, 30 mg or 40 mg. In certain embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of a Compound or a pharmaceutical composition thereof of about 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 125 mg, 130 mg, 140 mg, 150 mg, 175 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, or 900 mg. In some embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of a Compound or a pharmaceutical composition thereof of at least about 0.1 mg, 1 mg, 5 mg, 10 mg, 20 mg, 30 mg, 40 mg, 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 125 mg, 130 mg, 140 mg, 150 mg, 175 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg or more. In certain embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of a Compound or a pharmaceutical composition thereof of less than about 35 mg, less than about 40 mg, less than about 45 mg, less than about 50 mg, less than about 60 mg, less than about 70 mg, or less than about 80 mg.


In specific embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of a Compound or a pharmaceutical composition thereof of about 40 mg to about 500 mg, about 40 mg to about 200 mg, about 40 mg to about 150 mg, about 75 mg to about 500 mg, about 75 mg to about 450 mg, about 75 mg to about 400 mg, about 75 mg to about 350 mg, about 75 mg to about 300 mg, about 75 mg to about 250 mg, about 75 mg to about 200 mg, about 100 mg to about 200 mg, or any range in between. In other specific embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of a Compound or a pharmaceutical composition thereof of about 35 mg, 40 mg, 50 mg, 60 mg, 75 mg, 100 mg, 125 mg, 150 mg, 175 mg, 200 mg, 225 mg, 250 mg or 300 mg. In some embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of a Compound or a pharmaceutical composition thereof of about 350 mg, 400 mg, 500 mg, 600 mg, 700 mg, 800 mg, 900 mg, or 1000 mg. In some embodiments, a unit dose of a Compound or a pharmaceutical composition thereof is administered to a subject once per day, twice per day, three times per day; once, twice or three times every other day (i.e., on alternate days); once, twice or three times every two days; once, twice or three times every three days; once, twice, or three times every four days; once, twice or three times every five days; once, twice or three times once a week, biweekly or monthly.


In certain embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of a Compound or a pharmaceutical composition thereof that ranges from about 40 mg to about 500 mg per day. In some embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of a Compound or a pharmaceutical composition thereof that ranges from about 80 mg to about 500 mg per day, about 100 mg to about 500 mg per day, about 80 mg to about 400 mg per day, about 80 mg to about 300 mg per day, about 80 mg to about 200 mg per day, about 200 mg to about 300 mg per day, about 200 mg to about 400 mg per day, or any range in between. In a specific embodiment, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a Compound or a pharmaceutical composition at the dosage, frequency of administration and route of administration set forth in the working examples infra in Section 11 et seq.


In a specific embodiment, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of about 40 mg of a Compound or a pharmaceutical composition thereof twice per day. In another specific embodiment, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of about 60 mg of a Compound or a pharmaceutical composition thereof twice per day. In another specific embodiment, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of about 80 mg of a Compound or a pharmaceutical composition thereof twice per day. In another specific embodiment, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a unit dose of about 100 mg of a Compound or a pharmaceutical composition thereof twice per day.


In some embodiments, a method for treating brain tumors presented herein involves the administration of a dosage of a Compound or a pharmaceutical composition thereof that is expressed as mg/m2. The mg/m2 for a Compound may be determined, for example, by multiplying a conversion factor for an animal by an animal dose in mg/kg to obtain the dose in mg/m2 for human dose equivalent. For regulatory submissions the FDA may recommend the following conversion factors: Mouse=3, Hamster=4.1, Rat=6, Guinea Pig=7.7. (based on Freireich et al., Cancer Chemother. Rep. 50(4):219-244 (1966)). The height and weight of a human may be used to calculate a human body surface area applying Boyd's Formula of Body Surface Area. In specific embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of an amount of a Compound or a pharmaceutical composition thereof in the range of from about 0.1 mg/m2 to about 1000 mg/m2, or any range in between.


Other non-limiting exemplary doses of a Compound that may be used in the methods for treating brain tumors provided herein include mg or microgram (μm) amounts per kilogram (kg) of subject or sample weight per day such as from about 0.001 mg per kg to about 1500 mg per kg per day, from about 0.001 mg per kg to about 1400 mg per kg per day, from about 0.001 mg per kg to about 1300 mg per kg per day, from about 0.001 mg per kg to about 1200 mg per kg per day, from about 0.001 mg per kg to about 1100 mg per kg per day, from about 0.001 mg per kg to about 1000 mg per kg per day, 0.001 mg per kg to about 500 mg per kg per day, from about 0.01 mg per kg to about 1500 mg per kg per day, from about 0.01 mg per kg to about 1000 mg per kg per day, from about 0.1 mg per kg to about 1500 mg per kg per day, from about 0.1 mg per kg to about 1000 mg per kg per day, from about 0.1 mg per kg to about 500 mg per kg per day, from about 0.1 mg per kg to about 100 mg per kg per day, or from about 1 mg per kg to about 100 mg per kg per day. In specific embodiments, oral doses for use in the methods provided herein are from about 0.01 mg to about 300 mg per kg body weight per day, from about 0.1 mg to about 75 mg per kg body weight per day, or from about 0.5 mg to 5 mg per kg body weight per day. In certain embodiments, oral doses for use in the methods provided herein involves the oral administration to a subject in need thereof of a dose of a Compound or a pharmaceutical composition thereof that ranges from about 80 mg to about 800 mg per kg per day, from about 100 mg to about 800 mg per kg per day, from about 80 mg to about 600 mg per kg per day, from about 80 mg to about 400 mg per kg per day, from about 80 mg to about 200 mg per kg per day, from about 200 mg to about 300 mg per kg per day, from about 200 mg to about 400 mg per kg per day, from about 200 mg to about 800 mg per kg per day, or any range in between. In certain embodiments, doses of a Compound that may be used in the methods provided herein include doses of about 0.1 mg/kg/day, 0.2 mg/kg/day, 0.3 mg/kg/day, 0.4 mg/kg/day, 0.5 mg/kg/day, 0.6 mg/kg/day, 0.7 mg/kg/day, 0.8 mg/kg/day, 0.9 mg/kg/day, 1 mg/kg/day, 1.5 mg/kg/day, 2 mg/kg/day, 2.5 mg/kg/day, 2.75 mg/kg/day, 3 mg/kg/day, 4 mg/kg/day, 5 mg/kg/day, 6 mg/kg/day, 6.5 mg/kg/day, 6.75 mg/kg/day, 7 mg/kg/day, 7.5 mg/kg/day, 8 mg/kg/day, 8.5 mg/kg/day, 9 mg/kg/day, 10 mg/kg/day, 11 mg/kg/day, 12 mg/kg/day, 13 mg/kg/day, 14 mg/kg/day or 15 mg/kg/day. In accordance with these embodiments, the dosage may be administered one, two or three times per day, every other day, or once or twice per week and the dosage may be administered orally.


In specific aspects, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a Compound or a pharmaceutical composition thereof at a dosage that achieves a target plasma concentration of the Compound in a subject with a brain tumor or an animal model with a pre-established human tumor (e.g., a brain tumor). In a particular embodiment, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a Compound or a pharmaceutical composition thereof at a dosage that achieves a plasma concentration of the Compound ranging from approximately 0.001 μg/mL to approximately 100 mg/mL, approximately 0.01 μg/mL to approximately 100 mg/mL, approximately 0.01 μg/mL to approximately 10 mg/mL, approximately 0.1 μg/mL to approximately 10 mg/mL, approximately 0.1 μg/mL to approximately 500 μg/mL, approximately 0.1 μg/mL to approximately 500 μg/mL, approximately 0.1 μg/mL to approximately 100 μg/mL, or approximately 0.5 μg/mL to approximately 10 μg/mL in a subject with a brain tumor or an animal model with a pre-established human tumor (e.g., brain tumor). To achieve such plasma concentrations, a Compound or a pharmaceutical composition thereof may be administered at doses that vary from 0.001 μg to 100,000 mg, depending upon the route of administration. In certain embodiments, subsequent doses of a Compound may be adjusted accordingly based on the plasma concentrations of the Compound achieved with initial doses of the Compound or pharmaceutical composition thereof administered to the subject.


In specific aspects, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a Compound or a pharmaceutical composition thereof at a dosage that achieves a target plasma concentration of VEGF, P1GF, VEGF-C, VEGF-D, IL-6, IL-8, VEGFR1 and/or VEGFR2 in a subject with a brain tumor or an animal model with a pre-established human tumor (e.g., a brain tumor). In a particular embodiment, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a Compound or a pharmaceutical composition thereof at a dosage that achieves a plasma concentration of VEGF, P1GF, VEGF-C, VEGF-D, IL-6, IL-8, VEGFR1 or VEGFR2 ranging from approximately 0.1 pg/mL to approximately 100 mg/mL, approximately 0.1 pg/mL to approximately 1 mg/mL, approximately 0.1 pg/mL to approximately 500 μg/mL, approximately 0.1 pg/mL to approximately 500 μg/mL, approximately 0.1 pg/mL to approximately 100 μg/mL, or approximately 4 pg/mL to approximately 10 μg/mL in a subject with a brain tumor or an animal model with a pre-established human tumor (e.g., a brain tumor). To achieve such plasma concentrations, a Compound or a pharmaceutical composition thereof may be administered at doses that vary from 0.1 pg to 100,000 mg, depending upon the route of administration. In certain embodiments, subsequent doses of a Compound or a pharmaceutical composition thereof may be adjusted accordingly based on the plasma concentrations of VEGF, P1GF, VEGF-C, VEGF-D, IL-6, IL-8, VEGFR1 or VEGFR2 achieved with initial doses of the Compound or pharmaceutical composition thereof administered to the subject.


In specific aspects, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a Compound or a pharmaceutical composition thereof at a dosage and/or a frequency of administration that achieves an imaging outcome indicating inhibition, stability, and/or reduction in a monitoring parameter such as tumor size, tumor perfusion, tumor metabolism, or peritumoral inflammation or edema, as assessed, e.g., by MRI scan, DCE-MRI scan, PET scan, and/or CT scan. To achieve such imaging outcome, a Compound or a pharmaceutical composition thereof may be administered at doses that vary from 0.1 pg to 100,000 mg, depending upon the route and/or frequency of administration. In certain embodiments, subsequent doses of a Compound or a pharmaceutical composition thereof may be adjusted accordingly based on the imaging outcome achieved with initial doses of the Compound or pharmaceutical composition thereof administered to the subject, as assessed, e.g., by MRI scan, DCE-MRI scan, PET scan, and/or CT scan.


In particular embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of a Compound or a pharmaceutical composition thereof at a dosage that achieves the desired tissue to plasma concentration ratios of the Compound as determined, e.g., by any imaging techniques known in the art such as whole-body autoradiography, in a subject with a brain tumor or an animal model (such as an animal model with a pre-established human tumor, e.g., a brain tumor). Table 23 lists exemplary tissue to plasma concentration ratios of a Compound as determined, e.g., by any imaging techniques known in the art such as whole-body autoradiography.


In some embodiments, a method for treating brain tumors presented herein involves the administration to a subject in need thereof of one or more doses of an effective amount of a Compound or a pharmaceutical composition, wherein the effective amount may or may not be the same for each dose. In particular embodiments, a first dose of a Compound or pharmaceutical composition thereof is administered to a subject in need thereof for a first period of time, and subsequently, a second dose of a Compound is administered to the subject for a second period of time. The first dose may be more than the second dose, or the first dose may be less than the second dose. A third dose of a Compound also may be administered to a subject in need thereof for a third period of time.


In some embodiments, the dosage amounts described herein refer to total amounts administered; that is, if more than one Compound is administered, then, in some embodiments, the dosages correspond to the total amount administered. In a specific embodiment, oral compositions contain about 5% to about 95% of a Compound by weight.


The length of time that a subject in need thereof is administered a Compound or a pharmaceutical composition in accordance with the methods for treating brain tumors presented herein will be the time period that is determined to be efficacious. In certain embodiments, a method for treating brain tumors presented herein involves the administration of a Compound or a pharmaceutical composition thereof for a period of time until the severity and/or number of symptoms associated with a brain tumor decrease. In some embodiments, a method for treating brain tumors presented herein involves the administration of a Compound or a pharmaceutical composition thereof for up to 48 weeks. In other embodiments, a method for treating brain tumors presented herein involves the administration of a Compound or a pharmaceutical composition thereof for up to about 4 weeks, 8 weeks, 12 weeks, 16 weeks, 20 weeks, 24 weeks, 26 weeks (0.5 year), 52 weeks (1 year), 78 weeks (1.5 years), 104 weeks (2 years), or 130 weeks (2.5 years) or more. In certain embodiments, a method for treating brain tumors presented herein involves the administration of a Compound or a pharmaceutical composition thereof for an indefinite period of time. In some embodiments, a method for treating brain tumors presented herein involves the administration of a Compound or a pharmaceutical composition thereof for a period of time followed by a period of rest (i.e., a period wherein the Compound is not administered) before the administration of the Compound or pharmaceutical composition thereof is resumed. In specific embodiments, the period of time of administration of a Compound or pharmaceutical composition thereof may be dictated by one or more monitoring parameters, e.g., concentration of VEGF or other angiogenic or inflammatory mediators (e.g., cytokines or interleukins such as IL-6 or IL-8); tumor size, blood flow, or metabolism; peritumoral inflammation or edema. In particular embodiments, the period of time of administration of a Compound or pharmaceutical composition thereof may be adjusted based on one or more monitoring parameters, e.g., concentration of VEGF or other angiogenic or inflammatory mediators (e.g., cytokines or interleukins such as IL-6 or IL-8); tumor size, blood flow, or metabolism; peritumoral inflammation or edema.


In certain embodiments, in accordance with the methods for treating brain tumors presented herein, a Compound or a pharmaceutical composition thereof is administered to a subject in need thereof prior to, concurrently with, or after a meal (e.g., breakfast, lunch, or dinner). In specific embodiments, in accordance with the methods for treating brain tumors presented herein, a Compound or a pharmaceutical composition thereof is administered to a subject in need thereof in the morning (e.g., between 5 am and 12 pm). In certain embodiments, in accordance with the methods for treating brain tumors presented herein, a Compound or a pharmaceutical composition thereof is administered to a subject in need thereof at noon (i.e., 12 pm). In particular embodiments, in accordance with the methods for treating brain tumors presented herein, a Compound or a pharmaceutical composition thereof is administered to a subject in need thereof in the afternoon (e.g., between 12 pm and 5 pm), evening (e.g., between 5 pm and bedtime), and/or before bedtime.


In specific embodiments, a dose of a Compound or a pharmaceutical composition thereof is administered to a subject once per day, twice per day, three times per day; once, twice or three times every other day (i.e., on alternate days); once, twice or three times every two days; once, twice or three times every three days; once, twice or three times every four days; once, twice or three times every five days; once, twice, or three times once a week, biweekly or monthly.


5.5 Combination Therapy


Presented herein are combination therapies for the treatment of brain tumors which involve the administration of a Compound in combination with one or more additional therapies to a subject in need thereof. In a specific embodiment, presented herein are combination therapies for the treatment of brain tumors which involve the administration of an effective amount of a Compound in combination with an effective amount of another therapy to a subject in need thereof. For example, the use of a Compound as an adjuvant to a drug therapy such as chemotherapy, surgery, radiation therapy, biological therapy, supportive therapy, and/or other therapies is specifically contemplated.


As used herein, the term “in combination,” refers, in the context of the administration of a Compound, to the administration of a Compound prior to, concurrently with, or subsequent to the administration of one or more additional therapies (e.g., drug therapy such as chemotherapy, radiation therapy or surgery) for use in treating brain tumors. The use of the term “in combination” does not restrict the order in which one or more Compounds and one or more additional therapies are administered to a subject. In specific embodiments, the interval of time between the administration of a Compound and the administration of one or more additional therapies may be about 1-5 minutes, 1-30 minutes, 30 minutes to 60 minutes, 1 hour, 1-2 hours, 2-6 hours, 2-12 hours, 12-24 hours, 1-2 days, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 7 weeks, 8 weeks, 9 weeks, 10 weeks, 15 weeks, 20 weeks, 26 weeks, 52 weeks, 11-15 weeks, 15-20 weeks, 20-30 weeks, 30-40 weeks, 40-50 weeks, 1 month, 2 months, 3 months, 4 months 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 12 months, 1 year, 2 years, or any period of time in between. In certain embodiments, a Compound and one or more additional therapies are administered less than 1 day, 1 week, 2 weeks, 3 weeks, 4 weeks, one month, 2 months, 3 months, 6 months, 1 year, 2 years, or 5 years apart.


In some embodiments, the combination therapies provided herein involve administering a Compound daily, and administering one or more additional therapies once a week, once every 2 weeks, once every 3 weeks, once every 4 weeks, once every month, once every 2 months (e.g., approximately 8 weeks), once every 3 months (e.g., approximately 12 weeks), or once every 4 months (e.g., approximately 16 weeks). In certain embodiments, a Compound and one or more additional therapies are cyclically administered to a subject. Cycling therapy involves the administration of the Compound for a period of time, followed by the administration of one or more additional therapies for a period of time, and repeating this sequential administration. In certain embodiments, cycling therapy may also include a period of rest where the Compound or the additional therapy is not administered for a period of time (e.g., 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 10 weeks, 20 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 12 months, 2 years, or 3 years). In an embodiment, the number of cycles administered is from 1 to 12 cycles, from 2 to 10 cycles, or from 2 to 8 cycles.


In some embodiments, the methods for treating brain tumors provided herein comprise administering a Compound as a single agent for a period of time prior to administering the Compound in combination with an additional therapy. In certain embodiments, the methods for treating brain tumors provided herein comprise administering an additional therapy alone for a period of time prior to administering a Compound in combination with the additional therapy.


In some embodiments, the administration of a Compound and one or more additional therapies in accordance with the methods presented herein have an additive effect relative the administration of the Compound or said one or more additional therapies alone. In some embodiments, the administration of a Compound and one or more additional therapies in accordance with the methods presented herein have a synergistic effect relative to the administration of the Compound or said one or more additional therapies alone.


As used herein, the term “synergistic,” refers to the effect of the administration of a Compound in combination with one or more additional therapies (e.g., agents), which combination is more effective than the additive effects of any two or more single therapies (e.g., agents). In a specific embodiment, a synergistic effect of a combination therapy permits the use of lower dosages (e.g., sub-optimal doses) of a Compound or an additional therapy and/or less frequent administration of a Compound or an additional therapy to a subject. In certain embodiments, the ability to utilize lower dosages of a Compound or of an additional therapy and/or to administer a Compound or said additional therapy less frequently reduces the toxicity associated with the administration of a Compound or of said additional therapy, respectively, to a subject without reducing the efficacy of a Compound or of said additional therapy, respectively, in the treatment of brain tumors. In some embodiments, a synergistic effect results in improved efficacy of a Compound and each of said additional therapies in treating brain tumors. In some embodiments, a synergistic effect of a combination of a Compound and one or more additional therapies avoids or reduces adverse or unwanted side effects associated with the use of any single therapy.


The combination of a Compound and one or more additional therapies can be administered to a subject in the same pharmaceutical composition. Alternatively, a Compound and one or more additional therapies can be administered concurrently to a subject in separate pharmaceutical compositions. A Compound and one or more additional therapies can be administered sequentially to a subject in separate pharmaceutical compositions. A Compound and one or more additional therapies may also be administered to a subject by the same or different routes of administration.


The combination therapies provided herein involve administrating to a subject to in need thereof a Compound in combination with conventional, or known, therapies for cancer, in particular brain tumors. Current therapies for brain tumors, include surgery, radiation or drug therapy such as chemotherapy. Thus, in specific embodiments, the combination therapies provided herein involve administering to a subject in need thereof radiation and/or drug therapy (such as chemotherapy), or surgery to remove part or most of a brain tumor or metastasis thereof. In one embodiment, the combination therapies provided herein involve administering to a subject in need thereof a GLIADEL® Wafer, a biodegradable wafer implanted at the tumor site that delivers a drug therapy directly to the tumor site. Other therapies for brain tumors or a condition associated therewith are aimed at controlling or relieving symptoms, e.g., headaches, seizures, edema, proteinuria, nausea and/or vomiting. Accordingly, in some embodiments, the combination therapies provided herein involve administrating to a subject in need thereof a pain reliever, a medication for seizures, corticosteroids, anticonvulsant drugs, anticoagulant drugs, anti-emetic or a 5HT3 blocker (e.g., ondansetron hydrochloride (branded/marketed as Zofran®), granisetron hydrochloride (branded/marketed as KYTRIL®), lorazepam (branded/marketed as ATIVAN®), or dexamethasone (branded/marketed as DECADRON®)), acetylcholine esterase inhibitors (ACE inhibitors, such as lisinopril (branded/marketed as ZESTRIL®), and Angiotensin II Receptor Blockers (ARB) such as LOSARTAN®, or other therapy aimed at alleviating or controlling symptoms associated with a brain tumor or a condition associated therewith.


In specific embodiments, one or more of the following agents may be administered to a subject in combination with a Compound to treat a brain tumor: temozolomide, cisplatin, carmustine, irinotecan, all-trans retinoic acid, azacitidine, azathioprine, bleomycin, carboplatin, capecitabine, chlorambucil, cyclophosphamide, cytarabine, daunorubicin, docetaxel, doxifluridine, doxorubicin, epirubicin, epothilone, etoposide, fluorouracil, gemcitabine, hydroxyurea, idarubicin, imatinib, mechlorethamine, mercaptopurine, methotrexate, mitoxantrone, oxaliplatin, paclitaxel, pemetrexed, teniposide, tioguanine, valrubicin, vinblastine, vincristine, vindesine, or vinorelbine.


Specific examples of monoclonal antibodies that may be administered to a subject in combination with a Compound to treat a brain tumor include: alemtuzumab (branded/marketed as CAMPATH®), bevacizumab (branded/marketed as AVASTIN®), cetuximab (branded/marketed as ERBITUX®), gemtuzumab ozogamicin (branded/marketed as MYLOTARG®), ibritumomab tiuxetan (branded/marketed as ZEVALIN®), panitumumab (branded/marketed as VECTIBIX®), rituximab (branded/marketed as RITUXAN®, MABTHERA®), and trastuzumab (branded/marketed as HERCEPTIN®).


Specific examples of anti-cancer agents that may be used in combination with a Compound include: a hormonal agent (e.g., aromatase inhibitor, selective estrogen receptor modulator (SERM), and estrogen receptor antagonist), a chemotherapeutic agent (e.g., microtubule dissembly blocker, antimetabolite, topisomerase inhibitor, and DNA crosslinker or damaging agent), anti-angiogenic agent (e.g., VEGF antagonist, receptor antagonist, integrin antagonist, vascular targeting agent (VTA)/vascular disrupting agent (VDA)), dendritic cell therapy, immune therapy, radiation therapy, and conventional surgery.


Non-limiting examples of hormonal agents that may be used in combination with a Compound include aromatase inhibitors, SERMs, and estrogen receptor antagonists. Hormonal agents that are aromatase inhibitors may be steroidal or nonsteroidal. Non-limiting examples of nonsteroidal hormonal agents include letrozole, anastrozole, aminoglutethimide, fadrozole, and vorozole. Non-limiting examples of steroidal hormonal agents include aromasin (exemestane), formestane, and testolactone. Non-limiting examples of hormonal agents that are SERMs include tamoxifen (branded/marketed as NOLVADEX®), afimoxifene, arzoxifene, bazedoxifene, clomifene, femarelle, lasofoxifene, ormeloxifene, raloxifene, and toremifene. Non-limiting examples of hormonal agents that are estrogen receptor antagonists include fulvestrant. Other hormonal agents include but are not limited to abiraterone and lonaprisan.


Non-limiting examples of chemotherapeutic agents that may be used in combination with a Compound include microtubule disassembly blocker, antimetabolite, topisomerase inhibitor, and DNA crosslinker or damaging agent. Chemotherapeutic agents that are microtubule dissemby blockers include, but are not limited to, taxenes (e.g., paclitaxel (branded/marketed as TAXOL®), docetaxel, abraxane, larotaxel, ortataxel, and tesetaxel); epothilones (e.g., ixabepilone); and vinca alkaloids (e.g., vinorelbine, vinblastine, vindesine, and vincristine (branded/marketed as ONCOVIN®)).


Chemotherapeutic agents that are antimetabolites include, but are not limited to, folate antimetabolites (e.g., methotrexate, aminopterin, pemetrexed, raltitrexed); purine antimetabolites (e.g., cladribine, clofarabine, fludarabine, mercaptopurine, pentostatin, thioguanine); pyrimidine antimetabolites (e.g., 5-fluorouracil, capcitabine, gemcitabine (branded/marketed as GEMZAR®), cytarabine, decitabine, floxuridine, tegafur); and deoxyribonucleotide antimetabolites (e.g., hydroxyurea).


Chemotherapeutic agents that are topoisomerase inhibitors include, but are not limited to, class I (camptotheca) topoisomerase inhibitors (e.g., topotecan (branded/marketed as HYCAMTIN®), irinotecan (branded/marketed as CAMPTOSAR®), rubitecan, and belotecan); class II (podophyllum) topoisomerase inhibitors (e.g., etoposide or VP-16, and teniposide); anthracyclines (e.g., doxorubicin, epirubicin, Doxil, aclarubicin, amrubicin, daunorubicin, idarubicin, pirarubicin, valrubicin, and zorubicin); banoxantrone (AQ4N), RTA 744, and anthracenediones (e.g., mitoxantrone, and pixantrone).


Chemotherapeutic agents that are DNA crosslinkers (or DNA damaging agents) include, but are not limited to, alkylating agents (e.g., cyclophosphamide, mechlorethamine, ifosfamide (branded/marketed as IFEX®), trofosfamide, chlorambucil, melphalan, prednimustine, bendamustine, uramustine, estramustine, carmustine (branded/marketed as BiCNU®), lomustine, semustine, fotemustine, nimustine, ranimustine, streptozocin, busulfan, mannosulfan, treosulfan, carboquone, N,N′N′-triethylenethiophosphoramide, triaziquone, triethylenemelamine); alkylating-like agents (e.g., carboplatin (branded/marketed as PARAPLATIN®), cisplatin, oxaliplatin, nedaplatin, triplatin tetranitrate, satraplatin, picoplatin); nonclassical DNA crosslinkers (e.g., procarbazine, dacarbazine, temozolomide (branded/marketed as TEMODAR®), altretamine, mitobronitol); and intercalating agents (e.g., actinomycin, bleomycin, mitomycin, and plicamycin).


Non-limiting examples of anti-angiogenic agents that may be used in combination with a Compound include VEGF antagonists, receptor antagonists, integrin antagonists (e.g., vitaxin, cilengitide, and S247), and VTAs/VDAs (e.g., fosbretabulin). VEGF antagonists include, but are not to, anti-VEGF antibodies (e.g., bevacizumab (branded/marketed as AVASTIN®) and ranibizumab (branded/marketed as LUCENTIS®)), VEGF traps (e.g., aflibercept), VEGF antisense or siRNA or miRNA, and aptamers (e.g., pegaptanib (branded/marketed as MACUGEN®)). Anti-angiogenic agents that are receptor antagonists include, but are not limited to, antibodies (e.g., ramucirumab) and kinase inhibitors (e.g., sunitinib, sorafenib, cediranib, panzopanib, vandetanib, axitinib, and AG-013958) such as tyrosine kinase inhibitors. Other non-limiting examples of anti-angiogenic agents include ATN-224, anecortave acetate (branded/marketed as RETAANE®), microtubule depolymerization inhibitor such as combretastatin A4 prodrug, and recombinant protein or protein fragment such as collagen 18 (endostatin).


Non-limiting examples of other therapies that may be administered to a subject in combination with a Compound include:

    • (1) a statin such as lovostatin (e.g., branded/marketed as MEVACOR®);
    • (2) an mTOR inhibitor such as sirolimus which is also known as Rapamycin (e.g., branded/marketed as RAPAMUNE®), temsirolimus (e.g., branded/marketed as TORISEL®), evorolimus (e.g., branded/marketed as AFINITOR®), and deforolimus;
    • (3) a farnesyltransferase inhibitor agent such as tipifarnib (e.g., branded/marketed as ZARNESTRA®);
    • (4) an antifibrotic agent such as pirfenidone;
    • (5) a pegylated interferon such as PEG-interferon alpha-2b;
    • (6) a CNS stimulant such as methylphenidate (branded/marketed as RITALIN®);
    • (7) a HER-2 antagonist such as anti-HER-2 antibody (e.g., trastuzumab) or kinase inhibitor (e.g., lapatinib);
    • (8) an IGF-1 antagonist such as an anti-IGF-1 antibody (e.g., AVE1642 and IMC-A11) or an IGF-1 kinase inhibitor;
    • (9) EGFR/HER-1 antagonist such as an anti-EGFR antibody (e.g., cetuximab, panitumamab) or EGFR kinase inhibitor (e.g., erlotinib (e.g., branded/marketed as TARCEVA®), gefitinib);
    • (10) SRC antagonist such as bosutinib;
    • (11) cyclin dependent kinase (CDK) inhibitor such as seliciclib;
    • (12) Janus kinase 2 inhibitor such as lestaurtinib;
    • (13) proteasome inhibitor such as bortezomib;
    • (14) phosphodiesterase inhibitor such as anagrelide;
    • (15) inosine monophosphate dehydrogenase inhibitor such as tiazofurine;
    • (16) lipoxygenase inhibitor such as masoprocol;
    • (17) endothelin antagonist;
    • (18) retinoid receptor antagonist such as tretinoin or alitretinoin;
    • (19) immune modulator such as lenalidomide, pomalidomide, or thalidomide (e.g., branded/marketed as THALIDOMID®);
    • (20) kinase (e.g., tyrosine kinase) inhibitor such as imatinib (e.g., branded/marketed as GLEEVEC.®), dasatinib, erlotinib, nilotinib, gefitinib, sorafenib, sunitinib (e.g., branded/marketed as SUTENT®), lapatinib, AEE788, or TG100801;
    • (21) non-steroidal anti-inflammatory agent such as celecoxib (branded/marketed as CELEBREX®);
    • (22) human granulocyte colony-stimulating factor (G-CSF) such as filgrastim (branded/marketed as NEUPOGEN®);
    • (23) folinic acid or leucovorin calcium;
    • (24) integrin antagonist such as an integrin α5β1-antagonist (e.g., JSM6427);
    • (25) nuclear factor kappa beta (NF-κB) antagonist such as OT-551, which is also an anti-oxidant;
    • (26) hedgehog inhibitor such as CUR61414, cyclopamine, GDC-0449, or anti-hedgehog antibody;
    • (27) histone deacetylase (HDAC) inhibitor such as SAHA (also known as vorinostat (branded/marketed as ZOLINZA®)), PCI-24781, SB939, CHR-3996, CRA-024781, ITF2357, JNJ-26481585, or PCI-24781;
    • (28) retinoid such as isotretinoin (e.g., branded/marketed as ACCUTANE®);
    • (29) hepatocyte growth factor/scatter factor (HGF/SF) antagonist such as HGF/SF monoclonal antibody (e.g., AMG 102);
    • (30) synthetic chemical such as antineoplaston;
    • (31) anti-diabetic such as rosiglitazone maleate (e.g., branded/marketed as AVANDIA®);
    • (32) antimalarial and amebicidal drug such as chloroquine (e.g., branded/marketed as ARALEN®);
    • (33) synthetic bradykinin such as RMP-7;
    • (34) platelet-derived growth factor receptor inhibitor such as SU-101;
    • (35) receptor tyrosine kinase inhibitorsof Flk-1/KDR/VEGFR2, FGFR1 and PDGFR beta such as SU5416 and SU6668;
    • (36) anti-inflammatory agent such as sulfasalazine (e.g., branded/marketed as AZULFIDINE®); and
    • (37) TGF-beta antisense therapy.


Non-limiting examples of other therapies that may be administered to a subject in combination with a Compound include: a synthetic nonapeptide analog of naturally occurring gonadotropin releasing hormone such as leuprolide acetate (branded/marketed as LUPRON®); a nonsteroidal, anti-androgen such as flutamide (branded/marketed as EULEXIN®) or nilutamide (branded/marketed as NILANDRON®); a non-steroidal androgen receptor inhibitor such as bicalutamide (branded/marketed as CASODEX®); steroid hormone such as progesterone; anti-fungal agent such as Ketoconazole (branded/marketed as NIZORAL®); glucocorticoid such as prednisone; estramustine phosphate sodium (branded/marketed as EMCYT®); and bisphosphonate such as pamidronate, alendronate, and risedronate.


Other specific examples of therapies that may be used in combination with a Compound include, but are not limited to, antibodies that specifically bind to a tumor specific antigen or tumor associated antigen, e.g., anti-EGFR/HER-1 antibodies.


Additional specific examples of therapies that may be used in combination with a Compound include, but are not limited to, agents associated with cancer immunotherapy, e.g., cytokines, interleukins, and cancer vaccines.


Specific examples of agents alleviating side-effects associated with brain tumors, that can be used as therapies in combination with a Compound, include, but are not limited to: antiemetics, e.g., Ondansetron hydrochloride (branded/marketed as ZOFRAN®), Granisetron hydrochloride (branded/marketed as KYTRIL®), Lorazepam (branded/marketed as ATIVAN®) and Dexamethasone (branded/marketed as DECADRON®).


In certain embodiments, combination therapies provided herein for treating brain tumors comprise administering a Compound in combination with one or more agents used to treat and/or manage one or more of the following conditions: bleeding, arterial and venous thrombosis, hypertension, delayed wound healing, asymptomatic proteinuria, nasal septal perforation, reversible posterior leukoencephalopathy syndrome in association with hypertension, light-headedness, ataxia, headache, hoarseness, nausea, vomiting, diarrhea, rash, subungual hemorrhage, myelosuppression, fatigue, hypothyroidism, QT interval prolongation, and heart failure.


In certain embodiments, combination therapies provided herein for treating brain tumors comprise administering a Compound in combination with one or more current anti-angiogenesis agents and one or more agents used to treat and/or manage a side effect observed with one or more of the current anti-angiogenesis agents, such as, bleeding, arterial and venous thrombosis, hypertension, delayed wound healing, asymptomatic proteinuria, nasal septal perforation, reversible posterior leukoencephalopathy syndrome in association with hypertension, light-headedness, ataxia, headache, hoarseness, nausea, vomiting, diarrhea, rash, subungual hemorrhage, myelosuppression, fatigue, hypothyroidism, QT interval prolongation, or heart failure.


In certain embodiments, a Compound is not used in combination with a drug that is primarily metabolized by CYP2D6 (such as an antidepressant (e.g., a tricyclic antidepressant, a selective serotonin reuptake inhibitor, and the like), an antipsychotic, a beta-adrenergic receptor blocker, or certain types of anti-arrhythmics) to treat a brain tumor.


6. EXAMPLE
Preparation of Compounds Provided Herein

The following examples are presented by way of illustration not limitation.


Methods for preparing certain Compounds provided herein and the Compounds disclosed on pages 26 to 98 of the '764 publication are provided on pages 112 to 142 of the '764 publication and are incorporated by reference herein on pages 99 to 105 and in their entireties and for all purposes. Methods for preparing certain Compounds provided herein and the Compounds disclosed in copending U.S. Provisional Patent Application 61/181,652, entitled: PROCESSES FOR THE PREPARATION OF SUBSTITUTED TETRAHYDRO BETA-CARBOLINES, filed May 27, 2009, are provided therein and are incorporated by reference herein in their entirety and for all purposes.


7. EXAMPLE
Formulation of Compound #10

The following example illustrates how Compound #10 may be formulated for oral administration.


For clinical use, Compound #10 has been formulated using cGMPs. Compound #10 is intended for oral administration and is provided in size 00 color coded, hard gelatin capsules. As shown in Table 2, each capsule contains 2 mg (white), 10 mg (gray), or 20 mg (orange) of the Compound formulated by w/w % (weight/weight %) in a SEDDS or SMEDDS system. The formulated product in the capsules appears as an opaque, off white soft solid at room temperature. If warmed, the encapsulated system begins to soften at temperatures of 38 to 40° C. and eventually becomes a clear, yellow liquid at >44° C.









TABLE 2







Composition of Compound #10 Capsules











2 mg Capsule
10 mg Capsule
20 mg Capsule


Component
(w/w %)
(w/w %)
(w/w %)





Compound #10
 0.28
 1.43
 2.67



[0.26-0.30]
[1.33-1.53]
[2.48-2.86]


GELUCIRE ® 44/14
49.87
49.87
49.87



[46.4-53.4]
[46.4-53.4]
[46.4-53.4]


SOLUTOL ®HS15
49.84
48.69
47.45



[46.4-53.3]
[45.3-52.1]
[44.1-50.8]


BHT
 0.01
 0.01
 0.01



[0.009-0.011]
[0.009-0.011]
[0.009-0.011]


Total Weight (100%) (mg)
700  
700  
750  









8. EXAMPLE
Assay to Evaluate Effect on Hypoxia-Inducible Endogenous VEGF Expression

The ability of the Compounds to modulate hypoxia-inducible endogenous VEGF expression may be analyzed as follows. VEGF protein levels may be monitored by an ELISA assay (R&D Systems). Briefly, HeLa cells may be cultured for 24-48 hours under hypoxic conditions (1% O2, 5% CO2, balanced with nitrogen) in the presence or absence of a Compound. The conditioned media may then be assayed by ELISA, and the concentration of VEGF calculated from the standard ELISA curve of each assay.


A dose-response analysis may be performed using the ELISA assay and conditions described above. The conditions for the dose-response ELISA are analogous to those described above. A series of, e.g., seven different concentrations may be analyzed. In parallel, a dose-response cytotoxicity assay may be performed using Cell Titer Glo (Promega) under the same conditions as the ELISA to ensure that the inhibition of VEGF expression was not due to the cytotoxicity. Dose-response curves may be plotted using percentage inhibition versus concentration of the Compound, and EC50 and CC50 values may be generated for each Compound with the maximal inhibition set as 100% and the minimal inhibition as 0%. In one embodiment, Compounds will have an EC50 of less than 50, less than 10, less than 2, less than 0.5, or less than 0.01.


The EC50 for a series of Compounds is provided in Table 3.












TABLE 3






LC/MS
LC/MS Retention



Compound
[M + H]
Time (min)
ELISA EC50 μM


















 10
467.15
4.48
*****


 # 10
467.15
4.51
*****


 17
447.14
4.44
*****


 60
433.17
4.27
****


 76
449.26
4.3
****


 121
403.32
4.27
****


 142
462.15
4.11
***


 160
450.15
3.95
***


 186
462.19
3.81
**


 192
495.28
4.89
**


 331
 ~0.010
2.94
*


# 332 
 ~0.010
4
*


 341
447.26
4.25
***


 344
459.31
4.91
****


 346
587
4.04
****


 347
451.16
3.93
*****


 348
479.28
4.13
*****


 350
462.17
3.66
*****


 351
471.17
3.93
****


 353
497.16
3.94
*****


 354
525.2
4.19
*****


 355
511.21
3.81
*****


 359
511.25
3.64
***


 360
516
3.82
****


 366
553.3
4.42
*


 372
486.9
4.96
*


 388
495.4
3.94
*****


 391
562.55
3.63
*****


 395
481.32
3.51
*****


 397
535.3
4.29
*****


 398
481.3
4.23
*****


 400
493.3
4.43
*****


 401
451.3
3.99
*****


 403
479.3
4.23
*****


 405
551.17
4.58
*****


 409
477.4
4.18
*****


 410
451.3
3.99
*****


 413
459.3
4.16
*****


 415
637.64
2.82
*****


 417
562.47
4.15
*****


 418
511.3
4.13
*****


 421
553.30
4.05
*****


 422
359.29
4.17
*****


 426
535.27
4.29
*****


 427
554.3
4.45
*****


 428
563.55
4.64
*****


 429
564.42
2.77
*****


 432
489.4
4.14
*****


 433
578.44
2.82
*****


 436
477.4
3.93
*****


 437
543.4
3.92
*****


 440
536.43
3.95
*****


 444
455.28
3.73
****


 446
383.3
4.10
****


 448
501.27
3.65
****


 450
587
4.04
****


 452
439.3
3.56
****


 454
579.3
2.75
****


 455
583
3.84
****


 460
509.30
4.16
****


 462
580.56
2.85
****


 463
495.44
4.13
****


 465
507.4
3.98
****


 467
524.2
4.02
****


 468
582.2
2.81
****


 470
554.3
3.90
****


 471
620.18
3.85
****


 479
538.3
2.76
***


 482
522.3
3.95
***


 489
538.3
4.15
***


 491
537.31
2.64
***


 493
504.3
2.68
***


 500
506.29
3.85
***


 501
534.3
2.68
***


 502
518.3
2.76
***


 519
527.2
3.88
**


 530
466.28
3.21
**


 536
482.29
3.29
**


 540
428.28
3.43
**


 543
466.34
3.29
**


 544
723.58
3.92
*****


 545
466.31
3.28
**


 554
482.32
3.41
**


 570
549.22
4.59
*****


 571
497.13
3.50
**


 572
525.29
4.14
*****


 575
437.33
3.16
**


 576
575.43
3.71
***


 577
453.28
3.34
***


 578
610.45
3.94
***


 579
481.32
3.51
*****


 580
495.29
3.64
*****


 581
465.43
3.64
*


 583
512.26
3.39
***


 584
466.37
3.34
***


 587
467.29
3.66
***


 588
455.26
3.69
***


 589
471.3
3.83
***


 590
495.31
3.64
****


 591
541.35
3.73
*****


 592
523.42
3.58
*****


 593
541.38
3.69
****


 594
505.38
3.83
***


 614
463
3.88
**


 616
540
4.17
**


 617
621.57
4.13
****


 626
493.6
3.48
****


 627
511.6
3.53
*****


 628
527.4
3.62
***


 629
527.5
3.72
*****


 630
573.5
3.75
*****


 631
507.6
3.65
*****


 632
538.6
3.53
****


 635
523.6
3.47
****


 637
621.62
2.77
*****


 638
580.56
2.80
*****


 660
543.7
4.92
*****


 670
521.6
4.02
*****


 673
539.6
4.02
****


 674
555.6
4.13
****


 675
555.6
4.22
****


 677
535.6
4.15
****


 678
551.6
3.98
***


 680
599.5
4.27
*****


 681
566.6
4.02
****


 698
578.5
2.43
****


 699
568.5
2.35
****


 700
566.6
2.45
****


 701
596.6
2.47
****


 702
594.6
2.43
****


 703
592.6
2.48
****


 704
607.6
2.20
***


 705
575.5
2.47
****


 706
576.5
3.58
*****


 710
495.45
4.42
*****


 712
513.50
4.42
*****


 713
529.46
4.62
****


 719
527.5
4.47
*****


 723
555.4
4.09
*****




(non polar)



 735
552.5
2.98
*****


 736
562.5
3.15
*****


 737
580.6
3.17
****


 738
578.5
3.02
*****


 739
576.6
3.17
*****


 740
591.6
2.75
***


 741
616.5
2.62
***


 742
559.5
3.13
*****


 743
560.5
3.83
*****


 772
580.5
3.03
*****


 773
590.6
3.12
*****


 774
578.5
3.12
****


 775
608.6
3.05
*****


 776
606.5
3.05
*****


 777
604.6
3.12
*****


 778
619.6
2.77
*****


 779
644.5
2.63
***


 780
587.5
3.10
*****


 781
588.5
4.05
*****


 782
596.5
3.10
*****


 783
606.5
3.18
*****


 784
594.5
3.27
*****


 785
624.5
3.22
*****


 786
622.5
3.12
*****


 787
620.5
3.20
*****


 788
635.6
2.85
****


 789
660.5
2.68
***


 790
603.5
3.22
*****


 791
604.5
4.25
*****


 833
532.4
3.50
***


 834
532.4
3.42
****


 835
531.4
2.57
***


 836
531.4
3.67
****


# 837 
563.4
2.93
*****


# 838 
577.4
2.82
*****


 839
548.3
3.63
****


 840
548.3
3.58
****


# 841 
579.3
3.08
*****


# 842 
593.3
2.95
*****


# 843 
573.4
2.75
*****


 845
648.48
4.45
***


 846
526.45
2.57
***


 847
568.37
3.40
****


 848
585.30
3.57
*****


 849
604.37
3.52
****


 850
540.39
2.60
***


 851
495.06
4.37
*****


 853
549.09
4.38
*****


 854
523.17
4.73
*****


 855
455.19
4.15
****


 857
505.16
4.30
*****


 860
467.2
4.13
*****


 861
451.12
4.10
****


 862
471.17
4.32
*****


 863
514.55
4.38
*****


 867
577.43
2.85
****


 882
542.51
3.87
*****


 888
558.54
3.70
*****


 889
545.55
2.93
*****


 891
528.49
3.69
*****


 892
546.50
3.75
*****


 894
580.47
2.72
*****


 900
541.55
3.00
*****


 903
621.39
2.72
*****


 904
596.54
2.85
*****


 908
582.43
2.79
*****


 911
527.54
2.88
*****


 913
626.6
2.88
*****


 915
509.56
4.63
*****


 916
626.40
2.82
*****


 917
561.46
2.95
*****


 918
642.56
2.85
*****


 920
557.57
2.87
*****


 921
527.39
4.52
*****


 922
561.53
2.85
*****


 923
612.51
2.92
*****


 925
596.54
2.88
*****


 926
5.62
3.85
*****


 932
548.49
3.17
*****


 933
596.37
2.79
*****


 934
561.53
2.95
*****


 936
582.6
2.83
*****


 938
582.53
2.85
*****


 941
562.55
3.63
*****


 942
623.35
2.73
****


 944
525.56
4.36
****


 946
566.53
2.77
****


 951
544.53
3.27
****


 952
530.53
3.12
****


 953
552.46
2.90
****


 958
542.36
3.84
****


 960
639.57
2.70
****


 961
593.52
2.64
****


 963
593.61
2.72
****


 964
598.55
2.83
****


 966
564.45
3.32
****


 967
491.57
4.00
****


 970
609.54
2.72
****


 973
578.47
3.80
****


 974
528.34
3.79
***


 976
564.46
3.23
***


 977
568.53
2.85
***


 981
560.51
3.12
***


 984
5.06.19
3.97
**


 988
605.62
2.52
*****


 989
564.61
2.55
*****


 990
610.62
2.67
*****


 991
580.58
2.60
***


 992
566.61
2.60
***


 993
577.61
2.45
*****


 994
545.54
2.57
*****


 995
546.57
3.53
*****


 996
578.46
3.71
*****


 999
493.3
4.43
*****


1001
575.5
2.98
****


1005
560.3
4.55
**


1008
548.2
4.79
***


1009
468.1
3.90
***


1011
560.2
5.54
***


1016
560.51
4.23
*


1017
544.39
4.08
*****


1021
621.2
4.35
***


1022
607.2
5.05
***


1023
586.1
5.93
****


1024
591.2
5.01
***


1025
633.2
4.29
***


1026
619.2
4.24
****


1027
M − 1: 574.1
5.03
***


1028
603.2
4.23
***


1029
660.2
3.87
*


1030
576.2
5.29
****


1031
558.0
4.69
*****


1050
505.33
3.85
*****


1051
523.4
3.88
*****


1052
539.3
3.97
****


1053
537.5
4.00
*****


1054
583.4
4.07
*****


1055
535.4
3.82
****


1058
507.0
5.88
*****


1062
477.1
5.53
*****


1063
560.1
5.47
****


1064
607.1
4.84
****


1066
562.55
3.63
*****


1067
562.1
5.33
****


1068
562.1
5.70
*****


1069
562.27
3.9
*****


1070
596.24
2.40
*****


1071
598.21
2.48
*****


1075
546.3
4.55
****


1076
559.3
4.08
***


1077
528.1
5.51
****


1078
528.1
4.74
****


1086
577.9
3.73
****


1087
591.9
3.78
****


1088
605.9
3.87
****


1089
577.9
3.75
**


1090
591.9
3.80
**


1091
605.9
3.85
**


1092
595.9
2.45
****


1093
610.0
2.47
****


1094
624.0
2.48
****


1095
596.0
2.47
**


1096
610.0
2.47
**


1097
624.0
2.50
***


1098
594.57
2.47
****


1099
564.52
2.45
****


1108
589.4
3.97
****


1110
M − 1: 493.1
5.48
*****


1111
509.1
4.84
*****


1113
577.4
34.06
**


1115
564.3
4.61
****


1117
580.3
4.79
****


1119
610.3
4.85
***


1121
566.3
4.74
*


1123
545.2
4.65
***


1125
546.1
5.84
**


1126
530.8
4.3
**


1127
562.24
4.20
***


1128
530.8
4.32
*****


1129
562.26
4.13
*****


1130
576.3
4.668
****


1131
606.0
4.646
****


1132
590.5
4.826
****


1134
558.1
3.68
*****


1143
510
4.300
****


1144
558.5
4.711
***


1145
558.5
5.05
****


1150
558.5
4.664
****


1151
588.5
4.616
***


1152
572.5
4.891
****


1155
546.3
5.54
***


1159
493
4.22
*****


1160
453
3.73
*****


1161
492
3.65
*****


1162
579.17
4.28
*****


1168
547.27
4.18
*****


1169
565.24
4.17
*****


1170
561.28
4.37
*****


1171
577.28
4.13
*****


1172
539.20
3.58
*****


1178
507.19
3.37
*****


1179
525.25
3.38
*****


1180
521.23
3.52
*****


1181
537.20
3.35
*****


1182
542.27
3.70
*****


1183
556.26
2.45
*****


1184
600.38
2.43
*****


1194
572.5
5.237
*****


1195
469.5
5.192
****


1196
465
5.373
****


1197
481
5.156
****


1199
485
5.407
****


1203
581.24
4.40
*****


1205
539.29
3.58
*****


1207
581.24
4.35
*****


1209
539.26
3.67
*****


1213
510
3.45
***


1216
506
3.37
****


1223
527.2
3.52
*****


1224
527.0
3.53
*****


1225
597.9
4.69
****


1227
565.2
4.18
*****


1228
567.2
4.37
*****


1229
595.39
4.47
*****


1230
555.24
3.73
*****


1231
528
3.48
****


1234
594.00
5.135
*****


1235
578.0
4.785
****


1250
511.07
3.93
*****


1255
614.35
2.35
***


1257
554.26
2.42
****


1258
600.14
2.43
*****


1259
527.2
3.50
****


1260
565.2
4.18
*****


1263
583.00
3.85
*****


1265
469.0
5.478
****


1266
465.0
5.667
*****


1267
481.0
5.426
****


1269
485.0
5.723
*****


1276
M + 23: 604.2
4.47
*****


1277
M + 23: 646.2
4.83
*****


1278
M + 23: 634.2
4.60
*****


1279
610.2
5.28
*****


1280
628.2
5.22
****


1281
M + 23: 614.1
4.65
*****


1282
592.0
5.90
*****


1288
608.2
4.51
****


1289
M + 23: 594.2
4.80
*****


1290
M + 23: 594.2
5.18
*****


1291
M + 23: 594.2
4.88
****


1292
M − 1: 519.2
5.53
*****


1293
M − 1: 523.2
5.34
*****


1297
535.31
3.67
****


1299
M − 1: 505.2
5.28
*****


1300
M − 1: 535.2
4.55
*****


1301
M + 23: 614.2
5.96
****


1302
590.2
5.37
***


1328
553.4
3.65
*****


1329
569.3
3.83
*****


1330
539.28
3.60
*


1331
581.25
4.50
*


1332
451.27
3.75
*


1333
499.40
3.90
*


1335
M − 1: 573.0
4.82
****


1336
M − 1: 519.1
5.76
****


1337
M − 1: 549.2
4.33
****


1343
555.1
3.53
*****


1344
571.0
3.70
*****


1348
569.1
3.60
*****


1349
585.0
3.77
*****


1352
583.1
3.72
*****


1353
599.0
3.88
*****


1357
597.2
3.77
*****


1358
613.2
3.93
*****


1361
M − 1: 535.2
5.42
****


1362
622.57
2.53
*****


1364
605.3
4.41
***


1391
563.4
2.93
*****


1392
577.4
2.82
*****


1393
579.4
3.08
*****


1394
593.3
2.95
*****


1413
546.4
3.23
*****


1414
560.4
2.83
*****


1415
564.4
3.65
*****


1416
589.5
3.40
***


1417
562.4
3.42
*****


1418
576.41
2.95
****


1419
577.4
4.05
****


1420
580.3
3.83
*****


1421
587.4
3.88
*****


1422
605.4
3.55
****


1440
558.9
3.65
*****


1441
571.5
3.75
****


1442
574.9
3.85
*****


1476
580.56
2.43
***


1520
492
3.87
*****


1537
594.23
2.40
*****


1538
495.2
3.95
*****


1539
495.08
3.95
***


1546
492
3.85
***


1547
534,536
3.93
*****


1548
474
3.75
****


1549
488
3.77
****


1551
573
3.83
*****


1552
555
4.68
*****


1553
569
4.88
*****


1554
608
2.40
*


1555
624
3.80
*****


1557
M − 1: 614.2
4.52
**


1558
M + 23: 604.2
4.57
****


1559
596.1
4.88
****


1560
M + 23: 616.2
4.82
****


1561
631.1
4.15
****


1562
M − 1: 596.0
4.98
****



(cal: 597.1)




1563
M − 1: 610.0
5.25
****


1564
M + 23: 650.2
4.83
*****


1565
M − 1: 616.1
4.83
****


1566
M − 1: 630.1
4.85
***


1567
M + 23: 652.1
4.93
***


1568
593.2
2.43
****


1569
615
4.52
*****


1570
531
3.90
*****


1571
531
4.00
*****


1572
580
4.53
*****


1577
521
3.93
*****


1578
537
4.12
*****


1580
684
4.32
*****


1581
700
4.60
*****


1604
521
3.95
*****


1605
537
4.13
*****


1607
684
4.30
*****


1611
595.2
24.453
*****


1612
491.365
5.676
*****


1613
519.5
5.932
*****


1614
505.5
5.775
*****


1625
M + 23: 618.2
4.61
*****


1626
M + 23: 632.2
4.76
*****


1627
M + 23: 667.2
3.96
*****


1628
M + 23: 667.1
4.03
*****


1629
M + 23: 667.1
4.92
*****


1635
M + 23: 620.1
4.73
*****


1636
M + 23: 634.1
4.92
*****


1637
M + 23: 664.1
5.03
*****


1638
M + 23: 654.1
5.03
*****


1639
M + 23: 666.1
5.10
*****


1640
M + 23: 612.2
4.93
*****


1641
M + 23: 647.2
5.13
*****


1642
M + 23: 600.1
4.92
*****


1643
M + 23: 614.2
5.12
*****


1644
M + 23: 628.2
5.35
*****


1645
M + 23: 644.2
4.91
*****


1646
M + 23: 634.2
4.88
*****


1647
M + 23: 646.2
4.99
*****


1648
571
3.80
*****


1652
700
4.53
*****


1658
559
4.25
*****


1659
545
4.12
*****


1660
635
2.80
*****


1661
650
2.47
*****


1663
580.0
4.59
*****


1664
579.9
4.84
*****


1666
M + 23: 648.1
5.44
*****


1667
M + 23: 640.1
4.55
*****


1668
M + 23: 620.1
5.45
****


1669
492.1
13.380
*****


1671
623.3
3.85
*****


1672
593.34
3.70
*****


1673
605.18
3.82
*****


1674
696
3.33
**


1675
864
3.88
***


1676
710
3.33
*


1677
878
3.90
***


1681
614
4.42
*****


1682
649
2.33
*****


1693
693
2.53
*****


1694
550
2.40
*****


1695
615
3.13
**


1698
567.19
4.02
*****


1701
509
3.87
*****


1702
628
3.80
*****


1703
624
2.35
**


1704
610
2.40
****





# (S) Isomer prepared and tested.


Wherein:


1 star, >1 uM (1000 nM)


2 stars, 0.2 to 1 uM (200 nM to 1000 nM)


3 stars, 0.04 uM to 0.2 uM (40 nM to 200 nM)


4 stars, 0.008 uM to 0.04 uM (8 nM to 40 nM)


5 stars, <0.008 uM (<8 nM)






LC/MS for certain Compounds was performed on either a Waters 2795 or 2690 model separations module coupled with a Waters Micromass ZQ mass spectrometer using a Waters Xterra MS C18 4.6×50 mm reverse phase column (detection at 254 nM). The methods employed a gradient of acetonitrile (ACN) in water at 2 mL/min at ambient temperature as shown in Table 3a. The mobile phase was buffered with a 0.1 N formic acid.


The standard 6 minute method maintains a constant 85/5/10 ratio of water/ACN/1% aqueous formic acid from 0 minutes to 0.5 minutes. The method runs a linear gradient from 85/5/10 at 0.5 minutes to 0/90/10 at 3.5 minutes. The method holds at 0/90/10 until 4.5 minutes then immediately drops back down to 85/5/10 and holds there until 6 minutes.


The non-polar 6 minute method maintains a constant 60/30/10 ratio of water/ACN/1% aqueous formic acid from 0 minutes to 0.5 minutes. The method runs a linear gradient from 60/30/10 at 0.5 minutes to 0/90/10 at 3.5 minutes. The method holds at 0/90/10 until 4.5 minutes then immediately drops back down to 60/30/10 and holds there until 6 minutes.


The polar 6 minute method maintains a constant 90/0/10 ratio of water/ACN/1% aqueous formic acid from 0 minutes to 0.5 minutes. The method runs a linear gradient from 90/0/10 at 0.5 minutes to 20/70/10 at 3.5 minutes. The method holds at 20/70/10 until 4.5 minutes then immediately drops back down to 90/0/10 and holds there until 6 minutes.













TABLE 3a








% 1% Aq.



Time
% Acetonitrile
% Water
Formic Acid
Gradient



















Standard






0.00
5
85
10



0.50
5
85
10
hold


3.50
90
0
10
linear






hold


4.50
5
85
10
instant


6.00
5
85
10
hold


Non-Polar






0.00
30
60
10



0.50
30
60
10
hold


3.50
90
0
10
linear






hold


4.50
30
60
10
instant


6.00
30
60
10
hold


Polar






0.00
0
90
10



0.50
0
90
10
hold


3.50
70
20
10
linear






hold


4.50
0
90
10
instant


6.00
0
90
10
hold









LC/MS for Compounds 1611 and 1669 was performed using a C18-BDS 5 (250×4.6 mm) column with a 0.7 mL/min flow rate. The following solvent gradient was employed using 0.1% TFA/water as solvent A and acetonitrile as solvent B: 20% B for 0-20 minutes, 70% B for 20-30 minutes, 100% B for 30-40 minutes, 20% B for 40-50 minutes.


9. EXAMPLE
Compound Pharmacodynamics

The examples that follow demonstrate that the Compounds tested can inhibit the pathological production of human VEGF, and suppress edema, inflammation, pathological angiogenesis and tumor growth tumor growth. Compounds tested have been shown to inhibit the pathological production of human VEGF by multiple human tumor cells and/or human tumors in animal models with pre-established human tumors.


9.1 Inhibition of Pathological Production of VEGF


9.1.1 Cell Based Assays


9.1.1.1 Compound #10 and Compound 1205 Inhibit pathological VEGF Production in Transformed Cells Grown under Hypoxic Conditions


This example demonstrates the selective inhibition of Compound #10 and Compound 1205 on pathological VEGF production in transformed HeLa cells grown under stressed conditions while sparing VEGF production in HeLa cells grown under non-stressed conditions.


Experimental Design. HeLa (human cervical carcinoma) cell cultures were established under normoxic conditions (21% oxygen). HeLa cells increase VEGF production 4 to 5-fold in response to hypoxia. In one experimental design, vehicle (0.5% DMSO) alone, or a range of concentrations of Compound #10 was added to the HeLa cell cultures and the cells were incubated for 48 hours under either hypoxic (1% oxygen) or normoxic conditions. In another experimental design, vehicle (0.5% DMSO) alone, or a range of concentrations of Compound #10, Compound 1205, or Compound 1330 was added to the culture medium and the cells were incubated for 48 hours. At the completion of treatment, the conditioned media were collected and the VEGF protein levels were assayed in an enzyme-linked immunosorbent assay (ELISA) with primary antibodies that recognize the soluble VEGF121 and VEGF165 isoforms (R & D Systems, Minneapolis, Minn., USA). To ensure that decreases in VEGF concentration were not due to cytotoxicity, cultures were assayed using a standard assay (CELLTITER-GLO® Luminescent Cell Viability Assay; Promega, Madison, Wis., USA) that measures total cellular adenosine triphosphate (ATP) concentrations as an indicator of cell viability.


Results. FIG. 1 shows the concentrations of VEGF in conditioned media across the Compound #10 dose range tested. In the absence of Compound #10, media from hypoxic cells had substantial concentrations of VEGF (mean 1379 pg/mL). Compound #10 treatment induced dose dependent reductions in VEGF concentrations in the media, resulting in a maximal 87% decrease in VEGF concentration (to a mean of 175 pg/mL). By contrast, media from normoxic cells had relatively low concentrations of VEGF (mean 257 pg/mL) in the absence of Compound #10, and showed only a 39% decrease in VEGF concentrations (to a mean of 157 pg/mL) in the presence of Compound #10. No cytotoxicity was observed at any concentration tested. The data indicate that under stress conditions (with hypoxia), VEGF production was more sensitive to Compound #10 inhibition than under non-stress conditions (with normoxia). This data indicates that Compound #10 selectively inhibits or reduces pathological tumor-related production of soluble VEGF isoforms while sparing physiological VEGF production of the same isoforms. The (R)-enantiomer of Compound #10 showed lower activity (data not shown).



FIG. 25 shows the concentrations of VEGF in conditioned media across the dose range tested for Compound #10, Compound 1205 and Compound 1330. The data indicate that Compound #10 and Compound 1205 inhibit stress-induced VEGF production.


9.1.1.2 Compound #10 Inhibits pathological VEGF Production in Nontransformed Cells Grown under Hypoxic Conditions


This example demonstrates the inhibition of Compound #10 is selective for the pathological production of soluble VEGF isoforms in nontransformed keratinocytes grown under stressed conditions and does not affect the production of soluble VEGF isoforms in nontransformed keratinocytes grown under non-stressed conditions.


Experimental Design. Nontransformed normal human keratinocyte cell cultures were established under normoxic conditions (21% oxygen). Vehicle (0.5% DMSO) alone, or a range of concentrations of Compound #10 was added to the cultures and the cells were incubated for 72 hours under either under hypoxic (1% oxygen) or normoxic conditions. At the completion of treatment, cells were assessed for viability with an ATP assay and conditioned media were evaluated for VEGF protein levels by ELISA (as described in Section 9.1.1.1).


Results. FIG. 2 shows the concentrations of VEGF in conditioned media across the Compound #10 dose range tested. In the absence of Compound #10, media from hypoxic keratinocytes had substantial concentrations of VEGF (mean 1413 pg/mL). Compound #10 treatment induced dose dependent reductions in VEGF concentrations in the media, resulting in a maximal 57% decrease in VEGF concentration (to a mean of 606 pg/mL). By contrast, media from normoxic cells had relatively low concentrations of VEGF (mean 242 pg/mL) in the absence of Compound #10 and showed only a 21% decrease in VEGF concentrations (to a mean of 192 pg/mL) in the presence of Compound #10. No toxicity was observed at any concentration tested.


This data indicates that Compound #10 selectively inhibits or reduces pathological production of soluble VEGF isoforms in nontransformed keratinocytes grown under stressed hypoxic conditions while sparing physiological VEGF production of the same isoforms in unperturbed cells.


9.1.1.3 Compound #10 Inhibits Matrix-Bound Tumor VEGF Production


This example demonstrates that Compound #10 inhibits the pathological production of matrix bound/cell associated VEGF189 and VEGF206 isoforms resulting from oncogenic transformation.


Experimental Design. HT1080 (human fibrosacoma) cell cultures were established under normoxic conditions (21% oxygen). HT1080 cells constitutively overproduce VEGF even under normoxic conditions. Vehicle (0.5% DMSO) alone or a range of concentrations of Compound #10 was added to the cultures, and the cells were incubated for 48 hours under normoxic conditions. At the completion of treatment, the cells were washed and harvested. Cells were incubated with a primary antibody that recognizes the VEGF189 and VEGF206 isoforms. Infrared-dye labeled antibodies were applied secondarily, and the amounts of VEGF189 and VEGF206 were determined using the IN-CELL WESTERN® assay and ODYSSEY® infrared imaging system (Li-Cor, Lincoln, Nebr., USA); results are expressed as percentage inhibition relative to vehicle treated controls. Conventional Western blotting using the same primary antibody was also performed to confirm the presence of the matrix associated isoforms; for these experiments actin was used as a loading control. Actin is a ubiquitous housekeeping protein that is not known to be post transcriptionally regulated.


Results. As shown in FIG. 3, Compound #10 induced a potent concentration-dependent inhibition of VEGF189 and VEGF206 isoforms. These results demonstrate that Compound #10 inhibits the production of matrix-associated as well as soluble forms of tumor-derived VEGF. As shown in FIG. 4, immunoblotting documented the presence of 2 bands at the expected location for VEGF189 and VEGF206, and confirmed a concentration-dependent Compound #10 effect in reducing the amounts of these isoforms. The activity of the (R) enantiomer was relatively lower.


This data shows that Compound #10 inhibits pathological production of the matrix bound/cell associated VEGF isoforms resulting from oncogene transformation.


9.1.1.4 Compound #10 Inhibits Soluble VEGF Production in Multiple Human Tumor Cell Lines


This example demonstrates that Compound #10 inhibits soluble VEGF production in multiple human tumor cell lines.


Study Design. The activity of Compound #10 in suppressing VEGF production in a number of other human tumor cell lines has been assessed. These evaluations focused on cell lines that produce sufficient soluble VEGF (>200 pg/mL in conditioned media, either constitutively or under hypoxic stress) to allow assessment of Compound #10 activity by ELISA. In these experiments, cultures were established under normoxic conditions (21% oxygen). Cultures were then incubated for 48 hours with vehicle (0.5% DMSO) alone or with Compound #10 over a range of concentrations from 0.1 nM to 10 μM. Cells requiring induction of VEGF production were incubated under hypoxic conditions (1% oxygen). At the completion of treatment, the conditioned media were collected and assayed by ELISA (as described in Section 9.1.1.1) for soluble VEGF121 and VEGF165 isoforms; results were calculated as percentage inhibition relative to vehicle treated controls. EC50 values were calculated from the dose concentration response curves.


Results. Compound #10 potently inhibited the production of soluble VEGF in 18 of the human tumor cell lines tested to date. The EC50 values for cell lines showing VEGF inhibition are generally in the low nanomolar range, as presented in Table 4. Compound #10 did not show activity in several cell lines in which there was insufficient basal or inducible production of soluble VEGF. Other human cell lines that produce sufficient soluble VEGF in vitro or in vivo may be used, with appropriate adaptations, by those skilled in the art to measure inhibition of pathologically produced soluble human VEGF.









TABLE 4







Inhibition of Soluble VEGF Production by Compound #10


in Human Cell Lines—EC50 Values by Cell Line.













VEGF Inhibition



Tumor Type
Cell Line
EC50 (nM)















Breast
MDA-MB-231a
5




MDA-MB-468a
5



Cervical
HeLaa
2



Colorectal
HCT-116
10



Epidermoid
A431
10



Fibrosarcoma
HT1080
10



Gastric
SNU-1
0.1




AGS
0.1




Kato IIIa
10



Lung
NCI H460
10




A549
50




Calu-6a
7



Melanoma
A375a
50



Neuroblastoma
SY5Ya
5



Ovarian
SKOV3a
10



Pancreas
Capan-1a
5



Prostate
LNCaPa
15



Renal cell
HEK293
10








aCell lines requiring incubation under hypoxic conditions (1% oxygen) to induce VEGF production.




Abbreviations: EC50 = effective concentration achieving 50% of peak activity;



VEGF = vascular endothelial growth factor






9.1.2 Animal Model Systems


9.1.2.1 Compound #10 Selectively Inhibits Pathological VEGF Production Relative to Other Human Angiogenic Factors


This example demonstrates that Compound #10 selectively inhibits pathological VEGF production relative to other human angiogenic factors.


Experimental Design. In a series of experiments evaluating the effects of Compound #10 on intratumoral VEGF and tumor growth, intratumoral levels of VEGF-C, P1GF (Placental Growth Factor), FGF-2 (Fibroblast growth factor 2), survivin, PDGF (Platelet derived growth factor), and endostatin were also measured to assess the selectivity of Compound #10. VEGF-C and P1GF were analyzed to determine the in vivo effects of Compound #10 on other members of the VEGF family of angiogenic factors. All of these factors can be produced at tumor sites, and all may support tumor growth and metastases. See Yoon et al., Circ Res. 2003, 93(2):87 90; Ferrara et al., Nat. Rev. Drug Discov. 2004, 3(5):391 400; Luttun et al., Biochim. Biophys. Acta 2004,1654(1):79 94; Saharinen et al., Trends Immunol. 2004, 25(7):387 95. There is also evidence that VEGF-A may stimulate production of P1GF by a post transcriptional mechanism. See Yao et al., FEBS Lett. 2005, 579(5):1227 34. VEGF-B was not assessed. The angiogenic growth factor FGF-2 was analyzed because it promotes tumor survival (see Bikfalvi et al., Angiogenesis 1998, 1(2):155 73), and has a 5′-UTR IRES. See Vagner at al., Mol. Cell. Biol. 1995, 15(1):35 44; Hellen et al., Genes Dev. 2001, 15(13):1593 612. The survivin protein was similarly evaluated because the survivin mRNA has an IRES. PDGF was assessed because this protein has angiogenic activity and its mRNA contains an IRES. See Sella et al., Mol. Cell. Biol. 1999, 19(8):5429 40; Hellen et al., supra. Endostatin was included because antiangiogenic treatment in vivo has shown that compensatory decreases in endogenous angiogenic inhibitors such as endostatin, thrombospondin, and angiostatin, results in a more pro angiogenic environment. See Sim, Angiogenesis, 1998, 2(1):37-48.


In all of these experiments, HT1080 cells (5×106 cells/mouse) were implanted subcutaneously in male athymic nude mice. When tumors had become established, mice were divided into groups (10 mice/group). Treatments comprised Compound #10 (either alone or as the racemic mixture) or the corresponding vehicle alone, administered by oral gavage BID (“bis in die”; twice a day) on Monday through Friday and QD (“quaque die”; daily) on Saturday and Sunday over periods of 7 to 21 days (Table 5). Tumor size was measured by calipers at the beginning and end of treatment. At the completion of Compound administration, the mice were sacrificed, and excised tumors were assayed by ELISA for intratumoral VEGF or other angiogenic factors using methods analogous to those described in Section 9.1.1.1.


Results. As summarized in the studies shown in Table 5, Compound #10 universally inhibited the production of intratumoral VEGF A and tumor size. Compound #10 also reduced intratumoral P1GF in the experiments where this factor was measured; the results show a variable effect on VEGF-C. Compound #10 did not have statistically significant effects on levels of the other proteins tested, except for FGF 2 levels (as shown in Study 5). In Study 5, treatment was initiated when the tumors were quite large (˜600 mm3). The study was continued for 15-days, and the tumors had become quite bulky by the time intratumoral protein levels were analyzed. However, Compound #10 still decreased intratumoral VEGF levels by 78%, although FGF-2 levels were noted to be significantly elevated at the time of study termination. In Studies 2 and 3, endostatin levels were depressed by 22 to 30%, although these changes were not statistically significant. Collectively, these data indicate that Compound #10 is selective for suppression of VEGF family proteins.









TABLE 5







Table 5. Study Design and Efficacy Information for Assessments of Selectivity


for VEGF Inhibition by Compound #10 in Nude Mice Bearing HT1080 Xenografts.









Study Number














Parameter
1
2
3
4
5
6
7

















Animal number per group
10
10
10
10
10
 7
10


Compound #10 dose (mg/kg)a
 1
 5
 5
 5
5/50b
 5
10















Administration
Route
Oral
Oral
Oral
Oral
Oral
Oral
Oral



Schedule
BIDc
BIDc
BIDc
BIDc
BIDc
QDd
QDd














Vehicle
DMSO/PEG
DMSO/PEG
DMSO/PEG
DMSO/PEG
DMSO/PEG
L21e
L21e


Compound #10 Treatment duration (days)
28
 7
10
 9
15
21
42


Vehicle-treatment duration (days)
14
 7
10
 9
10
21
10


Initial mean tumor size (mm3)
85
390 
285 
610 
610 
180 
160 


Final mean Compound #10-treated tumor size (mm3)
450 
595 
735 
953 
1922 
750 
1770 







Mean % difference relative to vehicle-treated animalsf in:














Tumor size

−58*g

−32*
−40*
−44*

−34*h

−51*

−63*h



Human VEGF-A (%)
−57*
−81*
−95*
−85*
−78*
−95*
−42 


Human VEGF-C (%)i
ND
−19 
−26 
ND
ND
−38*
+10 


Human PlGF (%)i
ND
−67*
−59*
ND
ND
−73 
−65*


FGF-2
+3
+3
+5
+15 
+31*
ND
ND


Survivin
+7
ND
ND
−9
ND
ND
ND


PDGF
+12 
ND
−30 
+23 
+20 
ND
ND


Endostatin
ND
−30 
−22 
ND
ND
ND
ND





*p < 0.05 (Student's t-test relative to vehicle)



aSome animals received racemic mixture; the dose is expressed as amount of Compound #10 in the mixture.




bMice were treated with 5 mg/kg for the first 9 days and with 50 mg/kg for the last 6 days.




cTreatments were administered by oral gavage BID on Monday through Friday and QD on Saturday and Sunday for the number of days shown. All morning doses were given before 0830 hours. Evening doses were administered after 1630 hours (i.e., ≧8 hours after the morning dose).




dTreatments were administered by oral gavage QD in the morning before 0830 hours on Monday through Friday for the number of days shown.




eVehicle was 35% Labrasol, 35% Labrafac and 30% Solutol).




fCalculated as [1 − (treated/control)] × 100%




gDifference in tumor size is shown for Day 14, the day the vehicle-treated mice were taken off study.




hDifference in tumor size is shown for Day 10, the day the vehicle-treated mice were taken off study.




iSix mice per group in Compound #10-treated and vehicle-treated groups were analyzed



Abbreviations: BID = 2 times per day; QD = 1 time per day; DMSO = dimethyl sulfoxide; PEG-300 = polyethylene glycol (molecular weight 300); FGF-2 = basic fibroblast growth factor-2; PDGF = platelet-derived growth factor; PlGF = placental growth factor; VEGF = vascular endothelial growth factor; ND = not done






9.1.2.2 Compound #10 Dose-Dependently Reduces Tumor and Pathologically Produced Plasma Human VEGF Concentrations


This example demonstrates that Compound #10 dose-dependently reduces intratumoral and pathologically produced plasma human VEGF concentrations in vivo.


Experimental Study Design. HT1080 cells (5×106 cells/mouse) were implanted subcutaneously in male athymic nude mice. When tumors had become established (i.e., the mean tumor size had reached 180±75 mm3), mice were divided into 6 groups and treatment was assigned as shown in Table 6.









TABLE 6







Study Design for Dose Response Assessment


in Nude Mice Bearing HT1080 Xenografts.









Dose













Number of
Dose
Administrationa
Dose
Concen-













Test
Animals
(mg/

Sched-
Volume
tration














Compound
M
F
kg)
Route
ule
(mL/kg)
(mg/mL)

















Vehicleb
10
0
0
Oral
BID
4
0


Compound #10
10
0
0.3
Oral
BID
4
0.075


Compound #10
10
0
1
Oral
BID
4
0.25


Compound #10
10
0
3
Oral
QD
4
0.75


Compound #10
10
0
3
Oral
BID
4
0.75


Compound #10
10
0
10
Oral
QD
4
2.5






aTreatments were administered by oral gavage 7-days per week (except the 10-mg-QD regimen, which was administered daily on Monday through Friday) for a total of 18 days. All morning doses were given before 0830 hours. For BID schedules, evening doses were administered after 1630 hours (i.e., ≧8 hours after the morning dose).




bVehicle was L21 (35% Labrasol, 35% Labrafac, and 30% Solutol).



Abbreviations: BID = 2 times per day; QD = 1 time per day






Tumor size was measured using calipers at periodic intervals during the study (data shown in Section 9.2.2). Retro-orbital blood collection was performed to assess Compound #10 trough plasma concentrations after the first dose (just prior to the second dose) on Day 1, Day 4, and Day 9, and at study termination. The study was ended after 18 days, when the vehicle treated tumors reached a mean volume of ˜1755 mm3. Retro-orbital terminal bleeding was performed at ˜8 to 16 hours (depending upon the schedule of Compound administration) after the last dose to assess pathologic plasma human VEGF concentrations and trough Compound #10 plasma concentrations. Mice were sacrificed, and excised tumors were homogenized in buffer containing protease inhibitors. Both terminal intratumoral and pathologic plasma human VEGF levels were measured using an ELISA that recognizes human VEGF121 and VEGF165 (as described in Section 9.1.1.1). Intratumoral VEGF levels were normalized to the total tumor protein concentration, while pathologic plasma human VEGF levels were expressed in pg/mL of plasma. Plasma Compound #10 concentrations were evaluated by high performance liquid chromatography and with tandem mass spectroscopy (HPLC-MS/MS).


Results. As shown in FIG. 5 and FIG. 6, Compound #10 significantly suppressed pathologic human VEGF levels in tumors and in plasma in all Compound #10 dose groups. At the suboptimal Compound #10 dose of 0.3 mg/kg BID, partial reductions in both tumor and pathologic plasma human VEGF concentrations were observed, while human VEGF reductions were essentially maximal at all Compound #10 dose levels of >1 mg/kg BID. The correlation between pathologic plasma and tumor human VEGF levels in this animal model supports the potential utility of assessing pathologic plasma human VEGF levels to serve as a mechanism-specific, pharmacodynamic marker of Compound activity in the clinic.


The data shows that Compound #10 dose-dependently reduces intratumoral and pathologically produced plasma human VEGF concentrations in vivo.


9.1.2.3 Compound 1205 Reduces Tumor and Pathologically produced Plasma Human VEGF Concentrations


This example demonstrates that Compound 1205 reduces intratumoral and pathologically produced plasma human VEGF concentrations in vivo.


Experimental Design. HT1080 cells (5×106 cells/mice) were implanted subcutaneously into male athymic nude mice. Treatment with vehicle alone or Compound 1205 was initiated when the median tumor volume was approximately 311±88 mm3. Table 7 and Table 9 (study design #21 and #23) provide the study design for assessing tumor and plasma pathologic VEGF concentrations—each group in each study included eight (8) mice. When the tumors in vehicle-treated mice had reached the target size of ˜1200 mm3 for study #21 and ˜1500 mm3 for study #23, all mice in the study were sacrificed, and excised tumors were homogenized in buffer containing protease inhibitors. Both intra-tumor and pathologic plasma human VEGF levels were measured using an ELISA that recognizes human VEGF121 and VEGF165. Intra-tumor VEGF levels were normalized to the total tumor protein concentration and pathologic plasma VEGF levels were expressed in pg/mL. Because smaller tumors produce less VEGF per mg of tumor protein, intra-tumor VEGF levels were normalized to tumor size. Table 9 provides the study design for assessing tumor and pathologic plasma VEGF.


Results. Treatment with Compound 1205 at 0.5 or 3 mg/kg for 14-days significantly reduced the levels of pathologic human VEGF measured in excised tumors (FIG. 27) and in plasma (FIG. 28) compared to levels measured in tumors and plasma from mice treated with vehicle. At the dose of 0.5 or 3 mg/kg QD, Compound 1205 inhibits both tumor and pathologic plasma human VEGF levels by more than 95%. Even with the reduction in tumor size in the treated groups, the volume normalized intra-tumor human VEGF levels were significantly reduced (FIG. 27; Table 7).









TABLE 7







Inhibition of Intra-Tumor and Pathologic Plasma Human VEGF by


Compound 1205










Study #21
Study #23












Ve-
Compound
Ve-
Compound



hicle
1205
hicle
1205















1) Dose (mg/kg)
 0
0.5
 3
 0
 1


2) Regimen
QD
QD
QD
QD
QD


3) Test-Compound duration
14
14 
14
14
14


(days)







4) Mean difference in
NA
95%**
98%**
NA
95**


human tumor VEGF







(%) at Day 14 (Compound







1205) or Day 18







(Compound #10)







5) Mean difference in human
NA
97%**
99% 
NA
100%**


plasma VEGF (%) on Day







14 (Compound 1205) or







on Day 18 (Compound #10)





**p < 0.05 (ANOVA vs. vehicle).






9.2 Inhibition of Pathological Angiogenesis and Tumor Growth


9.2.1 Compound #10 Inhibits Tumor Angiogenesis


This example demonstrates that Compound #10 reduces the total volume and diameter of tumor vessels.


Experimental Design. HT1080 cells (5×106 cells/mouse) were implanted subcutaneously in male athymic nude mice. At a mean tumor size of 285±45 mm3, mice were divided into 2 groups and treatment was administered as shown in Table 8.


At the end of treatment, the mice were sacrificed. Excised tumors were assayed by ELISA for VEGF content as described in Section 9.1.1.1, and were sectioned and immunostained with an anti murine CD31 antibody that is specific for endothelial cells.









TABLE 8







Study Design for Assessment of Intratumoral Microvessel


Density in Nude Mice Bearing HT1080 Xenografts.









Dose













Number of
Dose
Administrationa
Dose
Concen-













Test
Animals
(mg/

Sched-
Volume
tration














Compound
M
F
kg)
Route
ule
(mL/kg)
(mg/mL)

















Vehicleb
10
0
0 
Oral
BID
8
0


Racemic
10
0
5c
Oral
BID
8
0.625


mixturec






aTreatments were administered by oral gavage BID on Monday through Friday and QD on Saturday and Sunday Treatments were administered by oral gavage BID on Monday through Friday and QD on Saturday and Sunday for a total of 10 days. All morning doses were given before 0830 hours. Evening doses were administered after 1630 hours (i.e., ≧8 hours after the morning dose).




bVehicle was 5% DMSO and 95% PEG 300.




cRacemic material was used for this study at a dose of 10 mg/kg (1.25 mg/mL), resulting in a dose of the active Compound #10 enantiomer of 5 mg/kg (0.625 mg/mL).



Abbreviations: BID = 2 times per day; DMSO = dimethyl sulfoxide; PEG 300 = polyethylene glycol (molecular weight 300); QD = 1 time per day






Results. Treatment with Compound #10 resulted in a mean 95% inhibition of tumor VEGF concentration. As shown in FIG. 7, this activity resulted in a profound effect on the architecture of the vasculature. Although the vessel count was unchanged, the total volume of tumor vessels and the diameters of vessels were visibly reduced. These findings are consistent with results from reports describing the effects of antiangiogenic therapies on larger tumors that have an existing vasculature. See Yuan et al., Proc. Natl. Acad. Sci. USA. 1996; 93(25):14765-70.


9.2.2 Compound #10 Inhibits Tumor Growth In Vivo


This example demonstrates that Compound #10 inhibits tumor growth in nude mice bearing HT1080 xenografts.


Experimental Design. The experimental design was reported in Section 9.1.2.2.


Results. The dose response effect of Compound #10 that correlated with decreases in tumor and pathologic human VEGF concentrations (see FIG. 5 and FIG. 6; Section 9.1.2.2) was also observed when assessing tumor size by treatment group over time. As depicted in FIG. 8, maximum antitumor activity was again observed at Compound #10 dose levels of ≧1 mg/kg BID. The dose of 1 mg/kg BID was associated with mean trough plasma concentrations of 0.13 μg/mL (0.28 μg/mL) at 16 hours after the first day of dosing (n=3), and with steady state mean trough plasma concentrations of 0.82 μg/mL (1.76 μM) at 16 hours after the last dose on Day 18 (n=4). These data provide an indication of trough plasma concentrations that could be targeted when assessing the pharmacokinetics (PK) of a Compound in humans. In observing the animals, there was no overt toxicity associated with Compound #10 treatment. This data shows that Compound #10 inhibits tumor growth in nude mice bearing HT1080 xenografts.


9.2.3 Compound 1205 inhibits tumor growth in vivo


This example demonstrates that Compound 1205 inhibits tumor growth in nude mice bearing HT1080 xenografts.


Experimental Design. HT1080 cells (5×106 cells/mouse) were implanted subcutaneously in male athymic nude mice. When tumors had become established (i.e., the mean tumor size had reached 311±88 mm3), mice were divided into 5 groups and treatment was administered as shown in Table 9 and 10. Compound 1330 is a relatively inactive (R,S) diastereomer of Compound 1205, which has (S,S) configuration. For comparison, Compound #10 was included in this study.









TABLE 9







Study Design for HT1080 Xenograft Studies Assessing


In Vivo Efficacy of Compound 1205 and Compound #10.















# of


Dose
Dose





Animals
Dose

Volume
Conc.


Test Compound
Male
(mg/kg)
Regimen
(mL/kg)
(mg/mL)
Study #
Study Termination

















Vehicle†
8
0
QD
8
0
21
All mice were taken off study


Compound 1205
8
0.5
QD
8
0.0625
21
when tumors in vehicle


Compound 1205
8
3
QD
8
0.375
21
reached 1200 mm3


Vehicle†
8
0
QD
8
0
22
(A) Vehicle-treated mice were


Compound 1205
8
0.5
QD
8
0.0625
22
taken off study when the


Compound 1205
8
3
QD
8
0.375
22
average tumor size of the









group wais 1500 mm3. (B)









Each treated mouse was taken









off study when its tumor was









1500 mm3


Vehicle†
8
0
QD
8
0
23
All mice were taken off study


Compound 1205
8
1
QD
8
0.125
23
when tumors in vehicle









reached 1500 mm3


Vehicle†
8
0
QD
8
0
 24a
A) Vehicle- and Compound


Compound 1205
8
10
QD
8
1.25
 24a
1330-treated mice were take


Compound
8
10
QD
8
1.25
 24a
off study when the average


1330Φ






tumor size of the group wais









1500 mm3. (B) Each treated









mouse was taken off study









when its tumor was 1500 mm3


Vehicle†
8
0
QD
8
0
 24b
(A) Vehicle-treated mice were


Compound 1205
8
0.3
QD
8
0.0375
 24b
taken off study when the









average tumor size of the









group wais 1500 mm3. (B)









Each treated mouse was taken









off study when its tumor was









1500 mm3





†Vehicle was 0.5% HPMC/1% Tween-80


‡Vehicle was L21 (35% Labrasol, 35% Labrafac, and 30% Solutol).


ΦInactive (R, S) diastereomer of Compound 1205


Abbreviations: BID = twice per day, QD = once per day






Results. The results of the studies described in Table 10 and are shown in FIG. 26 for study #24a The data indicate that Compound 1205 (S,S diastereoisomer) inhibits tumor growth in an animal model with a pre-established human tumor. As shown in FIG. 26, treatment with Compound 1205 (S,S), but not with the (R,S) diastereomer Compound 1330, significantly delayed growth of HT1080 tumor cells in vivo. The growth of the tumors in mice treated with Compound 1330 overlapped with the growth of tumors in mice treated with 0.5% HPMC vehicle. This suggests that the relatively inactive (R, S) diastereomer (Compound 1330) does not appreciably isomerize to active Compound 1205 in vivo. Compound 1205 is active at doses as low as 0.3 mg/kg.









TABLE 10







Effect of Compound 1205 and Compound #10 on Growth of HT1080 Tumor Cells In Vivo.










Compound 1205
Compound #10















Study #A
24b
22
21
23
22
21
24a
24a










Study Information















Dose (mg/kg)
0.3
   0.5
   0.5
 1
 3
 3
10
10


Regimen
QD
QD
QD
QD
QD
QD
QD
QD


Dose (mg/kg/week)
2.1
   3.5
   3.5
 7
21
21
70
70


Study design
Xeno
Xeno
PD
PD
Xeno
PD
Xeno
Xeno


Number of days that test
16C 
  28C
 14
14
 32C
14
 30C
 27C


compound was administered


Initial mean tumor size (mm3)
204   
 170
167
157 
170 
167 
311 
311 


Day that vehicle-treated mice
15  
 11
 14
14
11
14
11
11


were taken off study


Mean tumor size in vehicle-
1790   
1390
1210 
1500 
1390 
1210 
1500 
1500 


treated mice when taken off


study


Final mean terminal tumor
1540   
1750
580
710 
1840 
379 
1400 
1460 


size in treatment group (mm3)







Results















Mean difference in tumor
28% 
  62%**
   61%**
59%**
75%**
80%**
76%**
59%**


growth rate at the Day that the


vehicle-treated tumors taken off


study (%)B


Difference vs. vehicle in
0.7
 11
NA
NA
 14**
NA
 14**
  8**


median number of days to reach


1000 mm3 (Days)






ASee Table 9 for additional study information.




B% Difference in the rat of growth in compound-treated vs. vehicle-treated



**P < 0.05 (ANOVA vs. vehicle)



CAverage time on study.



NA not applicable. The time to progression could not be calculated for PD (pharmacodynamic) studies.


Xeno Xenograft






9.2.4 Time-Course Effects of Compound #10 on Tumor Size and Pathologically Produced Plasma Human VEGF Concentrations


This example demonstrates that Compound #10 has a rapid onset for reducing xenograft tumor size and pathologically produced plasma human VEGF concentration.


Experimental Design. HT1080 cells (5×106 cells/mouse) were implanted subcutaneously in male athymic nude mice. When tumors had become established (i.e., the mean tumor size had reached 585±150 mm3), mice were divided into 4 treatment groups, as shown in Table 11.









TABLE 11







Study Design for Time Course Assessment


in Nude Mice Bearing HT1080 Xenografts











Number of

Dose













Animals
Dose
Administrationa
Dose
Concen-














Per Time Pointa
(mg/

Sched-
Volume
tration














Test Compound
M
F
kg)
Route
ule
(mL/kg)
(mg/mL)

















Vehicleb
5
0
0
Oral
QD
4
0


Compound #10
5
0
10
Oral
QD
4
2.50


Doxorubicin
5
0
6
IP
Single bolus
8
0.75


Bevacizumab
5
0
5
IP
Single bolus
8
0.625






aTreatments were initiated on Day 0 with 20 mice per group. On each day, 5 mice were sacrificed per group for analysis. Mice were treated with Compound #10 daily. Mice were treated with doxorubicin or bevacizumab on Day 0 only.




bVehicle was L21 (35% Labrasol, 35% Labrafac, and 30% Solutol).



Abbreviations: IP = intraperitoneal; QD = 1 time per day






Tumor size was measured by calipers immediately pre-treatment and at the time of sacrifice on Day 1, 2, or 3 (5 mice per group per day). At sacrifice, the plasma was collected for assay of pathologic human VEGF concentration using an ELISA that recognizes human VEGF121 and VEGF165 (as described in Section 9.1.1.1).


Results. FIG. 9 shows the relative change in tumor size with time. In this short term study, the untreated tumors grew rapidly. Tumors from the vehicle treated mice had grown by 22% on Day 1, 42% on Day 2, and 79% on Day 3 (p<0.05 for each day, paired Student's t-test versus Day 0). All 3 treatments significantly reduced the rate of tumor growth by more than 50% over this 3 day period.



FIG. 10 displays an evaluation of pathologic plasma human VEGF concentrations. In Panel A, absolute values are expressed. In Panel B, values are expressed as a ratio relative to tumor volume because larger tumors tend to produce more VEGF. As shown in Panel A, pathologic plasma human VEGF concentrations from vehicle treated mice rose from Day 0 to Day 3. As indicated in Panel B, increases in pathologic plasma human VEGF in control mice were seen even when adjusting for the increase in tumor size that occurred over this time period. By contrast, pathologic plasma human VEGF levels from mice treated with Compound #10, doxorubicin, or bevacizumab were numerically lower than in control animals by Day 1. Pathologic plasma human VEGF concentrations continued to decline under the influence of Compound #10, consistent with an effect indicating the inhibition of VEGF production, while absolute and relative values in other treatment groups began to increase on Days 2 and 3. Thus, by Day 3 of treatment, Compound #10 was demonstrated to be as active as bevacizumab and more effective than doxorubicin in reducing tumor derived plasma VEGF levels. In addition, these data suggest that Compound #10 regulates tumor VEGF independent of tumor size.


9.2.5 Compound #10 Shows Antitumor Activity in Several Human Tumor Xenograft Models


This example demonstrates that Compound #10 shows antitumor activity in several clinically relevant human tumor xenograft models.


Investigators at the National Cancer Institute (NCI) have shown that compounds that inhibit tumor growth in multiple nonclinical models are more likely to have clinical efficacy. See Johnson et al., Br. J. Cancer 2001, 84(10):1424 31. In each of these studies, human tumor cells were implanted and treatment was initiated some days later, only after tumors had developed a vasculature (i.e., when tumors were >100 mm3). This method of waiting to begin treatment until after tumors are established is considered a more stringent and clinically relevant assessment of efficacy compared to beginning treatment immediately after tumor implantation. See Teicher, ed. Totowa, Tumor models in cancer research. Humana Press, 2002: 593-616.


9.2.5.1 Compound #10 Shows Inhibition of Tumor Growth in an T47D Estrogen-Sensitive Breast Cancer Xenograft Model


This example demonstrates that Compound #10 shows antitumor activity in an T47D estrogen-sensitive breast cancer xenograft model.


Experimental Design. Estrogen pellets (0.72 mg/pellet) were implanted 30 days prior to cell implantation and again 60 days later. T47D estrogen-sensitive breast cancer cells (5×106 cells/mouse mixed 1:1 with MATRIGEL™) were implanted subcutaneously in female athymic nude mice. After 31 days, when the tumors had become established (i.e., the mean tumor size had reached 180±33 mm3), mice were divided into 3 treatment groups, and treatment was administered as shown in Table 12. Tamoxifen was included as a positive control.









TABLE 12







Study Design for Assessment of Tumor Growth Inhibition in


Nude Mice Bearing Estrogen Sensitive T47D Xenografts.









Dose













Number of
Dose
Administrationa
Dose
Concen-













Test
Animals
(mg/

Sched-
Volume
tration














Compound
M
F
kg)
Route
ule
(mL/kg)
(mg/mL)

















Vehicleb
0
10
0
Oral
QD
4
0


Compound
0
10
10
Oral
QD
4
2.5


#10


Tamoxifen
0
10
10
Oral
QD
4
2.5






aTreatments were administered by oral gavage QD.




bVehicle was L21 (35% Labrasol, 35% Labrafac, and 30% Solutol).



Abbreviations: QD = 1 time per day






Tumor size was measured by calipers at periodic intervals. After 74 days of treatment, the mice were sacrificed. The tumors were not analyzed for intratumoral VEGF levels because of their small size at sacrifice.


Results. Results by treatment regimen are shown in Table 13. In this breast cancer xenograft model, Compound #10 resulted in a transient reduction and persistent delay in tumor growth relative to controls. Compound #10 appeared as active as tamoxifen in suppressing growth of this estrogen-sensitive cell line. In observing the animals, there was no evidence of toxicity associated with Compound #10 treatment.









TABLE 13







Efficacy Information for Assessment of Tumor Growth Inhibition


in Nude Mice Bearing Estrogen Sensitive T47D Xenografts.










Mean %
Mean %



Inhibition of
Inhibition of














Number of


Dose per
Intratumoral VEGF
Tumor Size


Test
Animals
Dose

Week
vs Vehicle at
vs Vehicle at














Compound
M
F
(mg/kg)
Schedule
(mg/kg)
Sacrifice
Day 74a

















Vehicleb
0
10
0
QD
0
ND
NA


Compound
0
10
10
QD
70
ND
40


#10


Tamoxifen
0
10
10
QD
70
ND
50






aDay 74 was the day on which mice were sacrificed.




bVehicle was L21 (35% Labrasol, 35% Labrafac, and 30% Solutol).



Abbreviations: NA = Not applicable; ND = not determined; QD = 1 time per day; VEGF = vascular endothelial growth factor






9.2.5.2 Compound #10 Shows Inhibition of Tumor Growth in an MDA-MB 468 Estrogen Insensitive Breast Cancer Xenograft Model


This example demonstrates that Compound #10 shows antitumor activity in an MDA-MB-468 estrogen-insensitive breast cancer xenograft model.


MDA-MB-468 estrogen-insensitive breast cancer cells (5×106 cells/mouse mixed 1:1 with MATRIGEL™) were implanted subcutaneously in female athymic nude mice. After 6 days, tumors had become established (i.e., the mean tumor size had reached 185±26 mm3), mice were divided into 2 treatment groups, and treatment was administered as shown in Table 14.









TABLE 14







Study Design for Assessment of Tumor Growth Inhibition in Nude


Mice Bearing Estrogen-Insensitive MDA-MB-468 Xenografts.









Dose













Number of
Dose
Administrationa
Dose
Concen-













Test
Animals
(mg/

Sched-
Volume
tration














Compound
M
F
kg)
Route
ule
(mL/kg)
(mg/mL)

















Vehicleb
0
10
0
Oral
QD
4
0


Compound
0
10
10
Oral
QD
4
2.5


#10






aTreatments were administered QD continuously by oral gavage for at least 30 days.




bVehicle was L21 (35% Labrasol, 35% Labrafac, and 30% Solutol).



Abbreviations: QD = 1 time per day






Tumor size was measured by calipers at periodic intervals. When the individual tumor size in a mouse exceeded 1500 mm3, that mouse was sacrificed and both tumor and plasma were assayed for pathologic VEGF concentration as described in Section 9.1.1.1.


Results. Results by treatment regimen are shown in Table 15. Compound #10 at 10 mg/kg significantly reduced intratumoral and plasma pathologic VEGF concentrations on the day on which the animals were sacrificed (range, Day 33 to 53) relative to controls (range, Day 9 to 15). In addition, Compound #10 reduced tumor size and prolonged the time to tumor progression (i.e., the time to reach >1000 mm3). In observing the animals, there was no evidence of toxicity associated with Compound #10 treatment.









TABLE 15







Efficacy Information for Assessment of Tumor Growth Inhibition in Nude


Mice Bearing Estrogen Insensitive MDA-MB-468 Breast Cancer Xenografts.















Mean %

Median




Mean %
Inhibition of
Mean %
Time to



Dose
Inhibition of
Plasma
Inhibition
Tumor















Number of
Dose
per
Intratumoral VEGF
pathologic VEGF
of Tumor Size
Size ≧1000


Test
Animals
(mg/kg)
Week
vs Vehicle at
vs Vehicle at
vs Vehicle at
mm3















Compound
M
F
Schedulea
(mg/kg)
Sacrifice
Sacrifice
Day 12b
(days)


















Vehiclec
0
10
 0/QD
0



12


Compound
0
10
10/QD
70
61*
75*
65*
25


#10





*p < 0.05 (Student's t test relative to vehicle)



aTreatments were administered QD continuously by oral gavage for at least 30 days.




bVehicle treated animal tumors reached ≧1500 mm3 between Day 9 and 15 and all vehicle treated animals were sacrificed by Day 15.




cVehicle was L21 (35% Labrasol, 35% Labrafac, and 30% Solutol).



Abbreviations: M = Male; F = Female; QD = 1 time per day; VEGF = vascular endothelial growth factor; M = Male; F = Female






9.2.5.3 Compound #10 Shows Reduction in Tumor Perfusion as Assessed by Dynamic Contrast-Enhanced Magnetic Resonance Imaging


This example shows that Compound #10 reduces tumor perfusion as assessed by dynamic contrast-enhanced magnetic resonance imaging.


Experimental Design. Dynamic contrast-enhanced magnetic resonance imaging can be used preclinically and clinically to evaluate the anatomy of soft tissues, including the identification and accurate measurement of tumor volumes. In addition, evaluation of the intratumoral pharmacokinetics of contrast agents containing gadolinium can be used to measure vascular permeability characteristics. Coupling gadopentetate dimeglumine gadolinium to a small molecule like bovine serum albumin can reveal information about the necrotic (non-perfused) and non-necrotic (perfused) tumor volumes, and the percentage of vascular blood volume relative to the perfused tumor volume (known as the fractional blood volume [fBV]). Use of a macromolecular tracer, gadopentetate dimeglumine, can reveal information regarding the volume transfer coefficient (Ktrans), a variable that represents a combination of vascular permeability, vascular surface area, and blood flow.


MDA MB 468 breast cancer cells (5×106 cells/mouse mixed 1:1 with MATRIGEL™) were implanted subcutaneously in female athymic nude mice. After 13 days, when the tumors had become established (i.e., the mean tumor size reached ˜400 mm3), mice were divided into 2 treatment groups, and treatment was administered as shown in Table 16.









TABLE 16







Study Design for Assessment of Tumor Perfusion


in Nude Mice Bearing MDA MB 468 Xenografts









Dose













Number of
Dose
Administrationa
Dose
Concen-













Test
Animals
(mg/

Sched-
Volume
tration














Compound
M
F
kg)
Route
ule
(mL/kg)
(mg/mL)

















Vehiclea
0
8
0
Oral
QD
4
0


Compound #10
0
8
10
Oral
QD
4
2.0






aVehicle was L21 (35% Labrasol, 35% Labrafac, and 30% Solutol).



Abbreviations: QD = 1 time per day






Before each DCE-MRI scan, mice were injected intravenously with gadolinium-containing contrast dyes (bovine serum albumin-gadopentetate dimeglumine conjugate at ˜0.03 mmol/kg followed by gadopentetate dimeglumine at ˜0.2 mmol/kg). Baseline DCE-MRI measurements were taken on Day −1, test Compounds were administered on Day 0 through Day 5, and additional DCE-MRI measurements were taken on Days 1, 3, and 5. Image analyses were conducted with customized software. Total tumor volumes were measured by semi-automatically segmenting a region of interest around an anatomical image of the tumor. Tumor volumes of necrotic and non-necrotic tissues were measured by applying the same semi-automated segmentation process to a contrast dyed image. fBV and Ktrans were computed using a standard Kety PK model.


Results. As shown in FIG. 19, vehicle-treated animals had an increase in mean tumor volume from Day −1 to Day 5. By contrast, Compound #10 treated animals had little mean change. Differences in total tumor volumes in vehicle treated versus treated mice were apparent by Day 1 and were statistically significant by Day 3, confirming that Compound #10 begins to impede tumor growth rapidly after treatment initiation.


As shown in FIG. 20, vehicle-treated animals had a small mean change in necrotic (non perfused) tumor volume from Day −1 to Day 5. Consistent with an antivascular effect, Compound #10 rapidly increased the mean necrotic tumor volume, resulting in differences in necrotic tumor volumes between vehicle treated and treated groups that were statistically significant by Day 1.


Conversely, as shown in FIG. 21, most of the mean tumor volume increase depicted in FIG. 19 in vehicle-treated animals was due to growth of non-necrotic tumor tissue. By contrast, mean non-necrotic tumor volume in Compound #10-treated animals decreased from Day −1 to Day 5. Differences in non necrotic tumor volumes between vehicle-treated and treated groups were statistically significant by Day 1.


Tissue regions identified as necrotic have no measurable vascular permeability, limiting analysis of fBV to non-necrotic tumor regions (primarily in the tumor rim). As shown in FIG. 22, mean tumor fBV in vehicle-treated animals increased steadily from Day 1 to Day 5. Initially, mean tumor fBV also increased in Compound #10 treated mice but then declined after Day 3, resulting in a statistically significant difference relative to the vehicle-treated values on Day 5. These data indicate that Compound #10 inhibits tumor angiogenesis, increases tumor necrosis, decreases viable tumor, and decreases tumor microvessel density.


As for fBV, analysis of Ktrans was necessarily confined to non-necrotic tissue. As shown in FIG. 23, mean Ktrans increased in vehicle treated mice between Day −1 and Day 5, while the mean Ktrans decreased in Compound #10 treated mice over this same period. The relative changes in Ktrans in vehicle-treated compared to treated animals were statistically significant by Day 1. The data are consistent with Compound #10 inhibition of vascular permeability in the non-necrotic tumor rim.


9.2.5.4 Compound #10 Shows Inhibition of Tumor Growth in an SY5Y Neuroblastoma Xenograft Model


This example demonstrates that Compound #10 shows antitumor activity in an SY5Y neuroblastoma xenograft model.


Experimental Design. SY5Y cells are derived from a human neuroblastoma, a childhood tumor arising in neural crest cells. SY5Y cells (1×107 cells/mouse) were implanted subcutaneously in male athymic nude mice. After 7-days, tumors had become established (i.e., the mean tumor size had reached 387±10 mm3), mice were divided into 2 groups, and treatment was administered as shown in Table 17.









TABLE 17







Study Design for Assessment of Tumor Growth Inhibition


in Nude Mice Bearing SY5Y Xenografts









Dose













Number of
Dose
Administrationa
Dose
Concen-













Test
Animals
(mg/

Sched-
Volume
tration














Compound
M
F
kg)
Route
ule
(mL/kg)
(mg/mL)

















Vehicleb
6
0
0
Oral
QD
4
0


Compound #10
6
0
10
Oral
QD
4
2.5






aTreatments were administered by oral gavage 5 days per week (Monday through Friday) for up to 50 days.




bVehicle was L22 (35% Labrafil, 35% Labrafac, and 30% Solutol).



Abbreviation: QD = 1 time per day






Tumor size was measured by calipers at periodic intervals. When the average tumor size in a group exceeded 2000 mm3, the mice in the group were sacrificed and excised tumors were assayed for intratumoral VEGF concentration as described in Section 9.1.1.1. Animals in which tumors did not reach 2000 mm3 were sacrificed at Day 50.


Results. Results by treatment regimen are shown in Table 18. Compound #10 treatment was associated with a significant reduction in mean intratumoral VEGF concentration and essentially eliminated any increase in mean tumor size through 15-days of dosing, substantially prolonging the mean time until tumor progression (tumor size >1000 mm3). In contrast, tumors in many control animals exceeded 2000 mm3 by Day 17 and these animals had to be sacrificed. In view of the dramatic effect of Compound #10 treatment, Compound #10 treatment was stopped on Day 15 to determine whether these effects might be sustained after treatment withdrawal. Tumors from mice treated with Compound #10 continued to be smaller than tumors from vehicle treated mice, even after 28-days without treatment (data not shown). At Day 43, treatment with vehicle or Compound #10 was reinitiated for a further 6 days. There were not enough vehicle mice remaining in the study to assess if Compound #10 would be more effective than vehicle in terms of tumor growth inhibition after treatment reinitiation. However, as summarized in Table 18, even after the cessation of treatment for 28-days and then continued Compound #10 treatment for 6 days, intratumoral levels of VEGF were almost completely suppressed in the treated tumors. In observing the animals, there was no evidence of toxicity associated with Compound #10 treatment.









TABLE 18







Efficacy Information for Assessment of Tumor Growth Inhibition in Nude Mice Bearing SY5Y Xenografts.











Mean %
Mean %
Median



Inhibition of
Inhibition of
Time to Tumor















Number of


Dose per
Intratumoral VEGF
Tumor Size
Size ≧1000


Test
Animals


Week
vs Vehicle at
vs Vehicle at
mm3















Compound
M
F
Dose (mg/kg)
Schedulea
(mg/kg)
Sacrifice
Day 17b
(days)


















Vehiclec
6
0
0
QD
0
0
0
12


Compound
6
0
50
QD
250
96*
73*
35


#10





*p < 0.05 (Student's t-test relative to vehicle)



aTreatments were administered by oral gavage 5 days per week (Monday through Friday) for up to 50 days.




bDay 17 was day on which vehicle treated animal tumors had reached ≧2000 mm3 and the mice were sacrificed.




cVehicle was L22 (35% Labrafil, 35% Labrafac, and 30% Solutol).



Abbreviations: QD = 1 time per day; VEGF = vascular endothelial growth factor; M = Male; F = Female






9.2.5.5 Compound #10 Shows Inhibition of Tumor Growth in an LNCaP Prostate Cancer Xenograft Model


This example demonstrates that Compound #10 shows antitumor activity in an LNCaP prostate cancer xenograft model.


Experimental Design. The LNCaP cell line is derived from a lymph node metastasis. LNCaP cells (1×106 cells/mouse mixed 1:1 with MATRIGEL™) were implanted subcutaneously in male athymic nude mice. After 43 days, tumors had become established (i.e., the mean tumor size had reached 260±35 mm3), mice were divided into 2 treatment groups, and treatment was administered as shown in Table 19.









TABLE 19







Study Design for Assessment of Tumor Growth Inhibition in


Nude Mice Bearing Androgen-Sensitive LNCaP Xenografts.









Dose













Number of
Dose
Administrationa
Dose
Concen-













Test
Animals
(mg/

Sched-
Volume
tration














Compound
M
F
kg)
Route
ule
(mL/kg)
(mg/mL)

















Vehicleb
10
0
0
Oral
M-W-F
4
0


Compound #10
10
0
10
Oral
M-W-F
4
2.5






aTreatments were administered M-W-F by oral gavage for at least 35 days.




bVehicle was L21 (35% Labrasol, 35% Labrafac, and 30% Solutol).



Abbreviations: M-W-F = Monday-Wednesday-Friday






Tumor size was measured by calipers at periodic intervals during the study. When the mean tumor size in a mouse exceeded 1500 mm3, mice in that group were sacrificed and both tumor and plasma were assayed for pathologic VEGF concentration as described in Section 9.1.1.1.


Results. Results by treatment regimen are shown in Table 20. Relative to controls, Compound #10 at 10 mg/kg M-W-F reduced intratumoral VEGF concentrations adjusted for tumor size on the day on which the animals were sacrificed. In addition, Compound #10 prolonged the time to tumor progression (i.e., the time to reach ≧1000 mm3). In observing the animals, there was no evidence of toxicity associated with Compound #10 treatment.









TABLE 20







Efficacy Information for Assessment of Tumor Growth Inhibition in Nude


Mice Bearing Androgen-Insensitive LNCaP Prostate Cancer Xenografts.











Mean %
Mean %
Median



Inhibition of
Inhibition of
Time to Tumor















Number of


Dose per
Intratumoral VEGF
Tumor Size
Size ≧1000


Test
Animals
Dose

Week
vs Vehicle at
vs Vehicle at
mm3















Compound
M
F
(mg/kg)
Schedulea
(mg/kg)
Sacrifice
Day 35b
(days)


















Vehiclec
10
0
0
M-W-F
0


27


Compound #10
10
0
10
M-W-F
30
51d
36
38






aTreatments were administered M-W-F by oral gavage for at least 35 days.




bVehicle treated animal tumors reached ≧1500 mm3 by ~Day 30 and all vehicle-treated animals were sacrificed by Day 35.




cVehicle was L21 (35% Labrasol, 35% Labrafac, and 30% Solutol).




dAdjusted for tumor size



Abbreviations: M-W-F = Monday-Wednesday-Friday; VEGF = vascular endothelial growth factor






9.2.5.6 Compound #10 Shows Inhibition of Tumor Growth in Orthotopic SY5Y Neuroblastoma and SKNEP Ewing Sarcoma Tumor Models


This example demonstrates that Compound #10 shows antitumor activity in orthotopic SY5Y neuroblastoma and SKNEP Ewing sarcoma tumor models.


Experimental Design. In orthotopic tumor models, human tumor cells are implanted into the mouse in an organ that corresponds to the location from which the tumors arise. Such models may provide a better predictor of clinical efficacy than injection of tumors into the flanks of nude mice. See Hoffman, Invest. New Drugs 1999, 17(4):343-59. SY5Y neuroblastoma or SKNEP Ewing sarcoma tumor cells (1×106 cells/mouse) were implanted into the kidney capsule of female athymic nude mice according to published methods. See Huang et al., Proc. Natl. Acad. Sci. USA 2003, 100(13):7785-90. One week after implantation of each type of tumor, mice were divided into 2 groups and were administered a test Compound as shown in Table 21.









TABLE 21







Study Design for Assessment of Tumor Growth Inhibition in


Nude Mice Bearing SKNEP or SY5Y Orthotopic Xenografts.









Dose













Number of
Dose
Administrationa
Dose
Concen-














Tumor
Test
Animals
(mg/

Sched-
Volume
tration















Type
Compound
M
F
kg)
Route
ule
(mL/kg)
(mg/mL)


















SY5Y
Vehicleb
0
15
0
Oral
QD
4
0



Compound
0
15
30
Oral
QD
4
7.5



#10


SKNEP
Vehicleb
0
15
0
Oral
QD
4
0



Compound
0
15
30
Oral
QD
4
7.5



#10






aTreatments were administered by oral gavage 5 days per week (Monday through Friday) for up to 5 weeks.




bVehicle was L3 (70% Labrasol, 18.3% Labrafac, and 11.7% Labrafil).



Abbreviation: QD = 1 time per day






After 5 weeks of treatment, the mice were sacrificed, and the weights of the tumors were assessed.


Results. As shown in FIG. 11, tumors from vehicle treated mice weighed about 3 to 4 grams at 5 weeks. By contrast, treatment with Compound #10, when evaluated at the same time point, completely prevented growth of both the SKNEP and the SY5Y tumors. In observing the animals, there was no evidence of toxicity associated with Compound #10 treatment.


9.2.6 Compound #10 Penetrates Disease Relevant Tissues


This example demonstrates that Compound #10 penetrates disease relevant tissues.


Experimental Design. The distribution of 14C-Compound #10 were evaluated following a single oral gavage administration of 50 mg/kg (˜10 μCi/animal) of 14C-labeled Compound #10 to rats in a GLP study. For the quantitative whole-body autoradiography (QWBA) analysis, 1 animal/sex/timepoint was sacrificed at 6, 12, 24, 48, and 72 hours postdose as shown in Table 22.









TABLE 22







Study Design for 14C-Compound #10 Single Dose Tissue Distribution Assessment in Rats













Number of
Compound
Dose
Dose
Number of
Dosing
Timepoints


Animals
#10 Dose a
Volume
Concentration
Animals per
Day
Relative to Dose














M
F
(mg/kg)
(mL/kg)
(mg/mL)
Timepoint
Sampled
(hours)





5
5
50
1.25
40
1 b
Day 1
6, 12, 24, 48, 72






a
14C-Compound #10 was administered as a single-dose by oral gavage in L23 vehicle (35% Gelucire, 35% Labrafac, and 30% Solutol).




b For 1 animal per sex at each timepoint, a blood sample was collected at the time of sacrifice for assessments of concentrations 14C-Compound #10 in blood, plasma, and tissues, and for calculation of tissue:plasma concentration ratios at the specified times postdose.



Abbreviations: F = female; M = male






For the QWBA, the carcasses were prepared by immediately freezing them, embedding them in chilled carboxymethylcellulose, and freezing them into blocks. Appropriate cryomicrotome sections of the blocks at 40 μm thickness were collected on adhesive tape. Mounted sections were tightly wrapped and exposed on phosphorimaging screens along with plastic embedded autoradiographic standards. Exposed screens were scanned and the autoradiographic standard image data were sampled to create a calibrated standard curve. Specified tissues, organs, and fluids were analyzed. Tissue concentrations were interpolated from each standard curve as nanocuries per gram and then converted to μg equivalents/gram on the basis of the Compound #10 specific activity.


Results. All animals appeared healthy and exhibited no overt signs of toxicity throughout the study. In this study, absorbed radioactivity was rapidly distributed into the whole body with the Tmax in blood and plasma occurring at 4 hours postdose in both sexes. Excluding the gastrointestinal tract, Cmax values in most tissues occurred at 6 to 12 hours postdose, with the highest values occurring in lipomatous tissues such as adrenal gland, brown fat, and liver. By 72 hours postdose, discernable residual radioactivity remained concentrated in fatty tissues in both sexes.


As shown in Table 23, the tissue:plasma concentration ratios were greater than 1 in most tissues. At 72 hours postdose, the highest tissue:plasma concentration ratios were in fat with values ranging from 37.1 to 63.9 in both sexes. All other tissues had ratios less than 10 with the exception of female bone marrow, Harderian gland, ovary, and skin, which had values of 18.8, 12.0, 28.1, and 11.4, respectively. There were no remarkable gender related differences in absorption, distribution, and elimination of radioactivity.









TABLE 23







Tissue:Plasma Concentration Ratios Determined by Whole-Body Autoradiography at Specified


Times after a Single Oral Administration of 14C-Compound #10 to Rats (50 mg/kg)













6 Hours
12 Hours
24 Hours
48 Hours
72 Hours

















Tissue
M
F
M
F
M
F
M
F
M
F




















Adrenal gland
18.5
16.2
10.8
16.7
8.96
8.93
5.89
6.59
6.02
7.16


Blood
0.569
0.577
0.601
1.00
NA
 0.613
NA
NA
NA
1.80


Bone
NA
0.362
NA
0.497
NA
NA
NA
NA
NA
NA


Bone marrow
2.71
4.85
4.01
13.0
3.48
4.63
2.91
7.05
NA
18.8 


Cecum
4.18
7.44
4.80
5.70
2.56
2.10
2.39
3.49
NA
3.66


Cecum
98.7
40.5
21.9
40.3
4.91
7.20
4.98
2.74
5.01
3.04


contents


Cerebellum
1.55
1.23
1.85
2.85
1.74
1.59
1.21
1.17
NA
2.04


Cerebrum
1.52
1.22
1.75
2.79
1.89
1.57
1.35
1.68
NA
1.56


Diaphragm
5.48
4.35
4.98
6.58
2.89
3.06
2.04
3.09
1.75
3.50


Epididymis
0.862
NA
1.22
NA
2.13
NA
3.09
NA
3.09
NA


Esophageal
NA
0.231
NA
NA
NA
NA
NA
NA
NA
2.21


contents


Esophagus
1.83
1.25
1.89
3.64
1.53
1.59
NA
2.76
NA
1.93


Exorbital
3.46
3.45
5.56
8.15
4.72
3.85
3.44
3.90
3.91
3.51


lacrimal gland


Eye
0.279
0.275
0.291
0.606
NA
NA
 0.847
NA
NA
1.72


Fat
13.3
4.05
20.7
9.61
27.8 
38.2 
47.7 
58.4 
62.1 
60.8 


(abdominal)


Fat (brown)
15.5
14.2
25.4
46.1
34.4 
34.0 
37.0 
58.4 
37.1 
63.9 


Fat
4.66
5.11
15.4
12.9
22.9 
31.7 
35.6 
50.0 
52.2 
56.6 


(subcutaneous)


Gastric
5.47
5.92
6.58
6.82
3.35
3.66
2.86
4.18
2.97
4.50


mucosa


Harderian
3.06
2.53
5.02
7.61
8.92
7.80
10.5 
14.7 
9.54
12.0 


gland


Intra-orbital
3.12
3.33
5.47
6.21
4.46
4.11
3.67
6.13
NA
8.76


lacrimal gland


Kidney
5.98
4.50
4.44
5.82
3.20
2.72
2.36
3.23
2.04
4.09


Large
26.2
138
61.7
256
21.9 
20.8 
12.1 
5.44
5.80
7.51


intestinal


contents


Large
2.65
2.43
3.06
5.94
1.81
2.10
1.58
1.69
NA
3.02


intestine


Liver
7.77
8.49
5.65
8.82
4.83
4.79
4.23
6.01
4.52
5.74


Lung
2.52
2.00
1.80
2.69
1.54
1.43
1.38
1.64
NA
2.46


Medulla
1.60
1.42
1.98
3.82
1.83
1.69
1.20
2.01
NA
1.88


Muscle
2.65
2.11
2.81
3.55
1.70
1.82
1.47
1.73
NA
2.54


Myocardium
5.31
5.89
3.90
7.03
2.82
2.88
2.43
3.95
1.97
4.15


Nasal
1.19
1.14
1.40
2.12
1.55
1.25
1.52
2.06
NA
2.58


turbinates


Olfactory lobe
1.42
1.38
1.35
2.45
1.23
1.13
 0.967
NA
NA
3.33


Ovary
NA
7.48
NA
17.6
NA
12.1 
NA
11.3 
NA
28.1 


Pancreas
6.95
6.25
6.28
9.58
4.54
4.79
3.25
5.08
3.21
4.96


Pituitary
4.06
4.27
3.22
5.48
2.72
2.33
 0.890
3.68
NA
1.58


gland


Preputial
4.15
3.45
6.94
12.3
11.3 
7.93
20.2 
NA
NA
NA


gland


Prostate
2.62
NA
2.61
NA
2.35
NA
1.09
NA
1.78
NA


Renal cortex
6.83
5.65
4.53
6.48
3.27
2.96
2.64
3.49
2.44
4.40


Renal medulla
5.35
3.70
4.21
5.06
3.04
2.53
1.75
2.84
1.68
3.60


Salivary gland
5.69
4.75
4.80
7.18
3.38
3.53
2.45
3.57
1.90
3.74


Seminal
0.780
NA
0.646
NA
 0.691
NA
NA
NA
NA
NA


vesicle


Skin
1.66
1.46
3.33
5.21
3.98
4.19
4.49
5.73
8.06
11.4 


Small
7.35
7.81
15.2
15.1
1.67
3.35
3.68
2.80
1.69
3.34


intestinal


contents


Small
8.46
5.01
3.02
5.09
2.93
2.45
1.21
2.62
1.80
3.36


intestine


Spinal cord
1.14
0.898
1.24
1.92
1.75
1.60
1.43
1.60
1.84
2.75


Spleen
2.73
2.84
2.37
3.91
1.80
1.89
1.50
1.88
NA
2.84


Stomach
4.34
3.62
3.72
5.12
2.86
1.76
1.72
2.93
2.44
4.19


Stomach
6.51
3.36
1.10
1.01
NA
NA
NA
NA
NA
NA


contents


Testis
0.642
NA
1.17
NA
1.88
NA
2.13
NA
1.90
NA


Thymus
2.11
1.98
2.50
3.94
1.98
1.84
1.58
1.65
NA
3.34


Thyroid
3.18
3.77
2.57
3.61
2.76
1.38
1.14
1.87
NA
3.05


Urinary
1.63
1.45
0.786
1.89
1.56
1.02
1.23
1.38
NA
1.92


bladder


Urine
0.239
1.66
0.299
0.761
NA
NA
NA
NA
NA
NA


Uterus
NA
1.86
NA
4.97
NA
3.51
NA
3.51
NA
7.66





Abbreviations: F = female; M = male; NA = not applicable






This example demonstrates that Compound #10 penetrates disease relevant tissues.


9.3 Cell Cycle Delay


9.3.1 Cell Based Assays


9.3.1.1 Compound #10 and Compound 1205 Provoke a Late G1/Early S-Phase Cell Cycle Delay


This example demonstrates that a Compound induces a cell cycle delay at the G1/S-phase border.


Experimental Design. During in vitro evaluations of Compound #10 and Compound 1205 effects on VEGF expression, an examination of the effect on tumor cell cycling was performed. HT1080 cells were incubated under normoxic conditions (21% oxygen) for 18 hours with vehicle (0.5% DMSO) alone, or with a range of concentrations of Compound #10 from 0.3 nM to 100 nM, or 10 nM of Compound 1205. Compounds shown in Table 24 were incubated under normoxic conditions for 18 hours with vehicle or Compound #10 at a single dose of 100 nM. After treatment, cells were trypsinized, and stained with propidium iodide (PI) dye to measure DNA content of individual cells by flow cytometry. Output comprised histograms showing relative DNA content in 10,000 cells.


Results. As shown in FIG. 12 and FIG. 24, Compound #10 and Compound 1205 induced a redistribution of the cycling characteristics of the cell population. An apparent dose response was observed for Compound #10. Starting at a concentration of 1 nM for Compound #10, an accumulation of cells in S phase can be observed. With higher concentrations of Compound #10, there is a progressive shift, such that a substantial proportion of the cells show a cell cycle delay at the G1/S phase border. Concentrations of Compound #10 achieving these effects are consistent with those demonstrating inhibition of VEGF production (FIG. 1).


For additional Compounds shown in Table 24, the test results are expressed as the percentage of cells in the S-phase compared to a DMSO control (17.3% cells in S-Phase). While compounds which cause greater than 20% of the cells to accumulate in S-phase at 100 nM are considered active, a larger percentage of cells may be accumulated in S-phase at lower doses depending on the Compound, as shown in FIG. 12 for example.










TABLE 24






%



Cells



In S-


Compound
Phase
















DMSO (Control)
17.3







embedded image


15.3







embedded image


26.1







embedded image


26.4







embedded image


25.7







embedded image


20.0







embedded image


16.5







embedded image


16.8







embedded image


16.4







embedded image


17.2







embedded image


16.8







embedded image


16.4







embedded image


17.9







embedded image


20.6







embedded image


17









9.3.1.2 The Effect of Compound #10 on the Cell Cycle is Reversible


This example demonstrates that the effect of Compound #10 on cell cycle delay is reversible.


Experimental Design. HT1080 cells were incubated under normoxic conditions (21% oxygen) for 14 hours with Compound #10 (100 nM) or with vehicle (0.5% DMSO) alone. Compound #10 was then washed out of the cultures and cells were harvested and analyzed by PI staining and flow cytometry (as described in Section 9.3.1.1) at 0, 2, 5, 8, and 26 hours after discontinuation of treatment.


Results. As shown in FIG. 13, treatment with Compound #10 caused the expected increase in the proportion of cells in late G1/S phase of the cell cycle (Time 0). At 2 hours after Compound #10 removal, a shift was beginning to occur; however, a large percentage of the cells remained delayed in G1/S. By 5 to 8 hours, cells were clearly redistributing. By 26 hours after Compound #10 washout, the cells had resumed normal cycling.


9.3.1.3 Compound #10 Cell Cycle Delay is Coincident with the Inhibition of VEGF Production


This example demonstrates that Compound #10 cell cycle delay is coincident with the inhibition of VEGF production.


Experimental Design. Several VEGF secreting cell lines were assayed for cell cycle effects. Actively proliferating cells were incubated for 18 hours under normoxic conditions (21% oxygen) with vehicle (0.5% DMSO) alone or with Compound #10 at concentrations of 10 nM or 100 nM. At the completion of treatment, cells were harvested and cellular DNA content was analyzed via PI staining and flow cytometry (as described in Section 9.3.1.1).


Results. In the same cell lines, treatment was undertaken for 48 hours with a range of concentrations of Compound #10 from 0.1 nM to 30 μM or with vehicle (0.5% DMSO) alone. The conditioned media were collected and assayed by ELISA for soluble VEGF121 and VEGF165 isoforms (as described in Section 9.1.1.1); results were calculated as percentage inhibition relative to vehicle treated controls. EC50 values were calculated from the concentration response curves.


As shown in Table 25, Compound #10 cell cycle delay was coincident with the inhibition of VEGF production in all of the tested tumor types.









TABLE 25







Correlation of VEGF Inhibition and Cell


Cycle Delay in Human Tumor Cell Lines














VEGF
Cell Cycle Delay





Inhibition
at VEGF



Tumor Type
Cell Line
EC50 (nM)
Inhibition EC50
















Cervical
HeLa
2
Yes



Fibrosarcoma
HT1080
10
Yes



Colorectal
HCT116
10
Yes



Renal cell
HEK293
10
Yes



Lung
NCI H460
10
Yes



Glioblastoma
U-87MG
>30,000
No



Pancreas
ASPC-1
>30,000
No




PL-45
>30,000
No




HPAF-2
>30,000
No




PC-3
>30,000
No







Abbreviations: EC50 = effective concentration achieving 50% of peak activity; VEGF = vascular endothelial growth factor






9.3.1.4 The Kinetics of S-Phase Transit Employing BrdU Incorporation Into DNA


This example demonstrates the rate and number of cells transiting the S-phase of the cell cycle.


Experimental Design. HT 1080 cells are exposed to BrdU (bromodeoxyuridine, a synthetic nucleoside that is an analogue of thymidine and is incorporated into DNA during the S phase of cell division) (FITC BrdU Flow Kit, BD Pharmingen catalog #552598). Cells are grown and treated as described in Section 9.3.1.3 above with the exception that one hour prior to harvesting by trypsinization, BrdU (final concentration 1 μM) is added to each culture for 1 hour. Cells actively replicating DNA during this brief time incorporate the BrdU into the DNA, which can then be quantitated. BrdU content is quantitated with using the FITC BrdU Flow Kit as instructed by the manufacturer. The process includes fixation (paraformaldehyde) and DNA staining with 7-AAD (7-amino-actinomycin D) followed by incubation with a fluoro-tagged anti-BrdU antibody that specifically recognizes BrdU incorporated into DNA. Dual channel FACS analysis permits assessment of both the DNA content of individual cells and the rate of transit across the S-phase, which is assessed based upon BrdU incorporation over the one hour treatment period.


Results. FIG. 29 indicates that an 18-hour treatment with increasing doses of Compound #10 causes a net increase in the percentage of cells residing in S-phase; however, individual cells incorporated less BrdU during the one-hour treatment period compared to DMSO control cells. The percentage of cells incorporating BrdU and the relative level of BrdU at each Compound #10 concentration is shown in FIG. 30. These results suggest that Compound #10 slows the transit of cells through the S-phase of the cell cycle.


9.3.1.5 The Effect of Compound #10 on the 3-Dimensional Growth of HT 1080 Cells


This example demonstrates the effect of a Compound provided herein on the 3-dimensional growth of HT1080 cells.


Experimental Design. HT1080 cells grown as a monolayer were trypsinized and seeded onto a 0.75% agar noble base to prevent the cells from attaching to the bottom of the tissue culture plate and to allow/promote the cells to self-adhere and grow as 3-dimensional spheroids. After 4 days the spheroids were established and the liquid growth medium was replaced with medium containing either 0.5% DMSO vehicle, or 10 nM or 50 nM of Compound #10 with 0.5% DMSO vehicle. The cells were incubated for 22 and 45 hours at 37° C., in the presence of a 10% CO2 atmosphere. Spheroids were visually checked daily for morphological changes and a medium was replenished two times per week. At 22 and 45 hours after exposure to Compound #10, BrdU was added to a subset of the wells designated for FACS analysis and then returned to the incubator for 3 hours to permit cells synthesizing DNA (i.e. cells in S-phase) to incorporate the BrdU into the nascent strands of DNA. These pulse labeled spheroids were then harvested, washed and trypsinized (triple action solution, Gibco), pelleted and prepared for FACS analysis with a FITC BrdU Flow Kit, (BD Pharmingen). Cells were fixed and permeabilized with paraformadehyde and DNA stained with 7-AAD followed by incubation with an antibody which specifically recognizes BrDV incorporated into DNA. As described in Section 9.3.1.4. Cells were analyzed and sorted by 7-AAD signal (DNA content) to determine cell cycle phase, and BrdU content (percent actively synthesizing DNA).


Results. HT1080 spheroids prepared as above were treated with a Compound provided herein for 24 (FIG. 31) or 48 hours (FIG. 32). FIG. 31 and FIG. 32 show: (A) a histogram of DNA content demonstrating that the cell cycle distribution is not affected by exposure to the Compound provided herein; (B) BrdU quantification indicating the fraction of cells actively synthesizing DNA; and (C) a graphical representation of the percentage of cells that incorporated BrdU (i.e., the cells in S-phase), indicating that the percentage is not significantly altered by compound #10 treatment.


Spheroids, prepared as above, were treated with either vehicle alone (0.5% DMSO v/v final) added to the media or a Compounds provided herein (10 nM or 50 nM final concentration) in media to which vehicle has been added. The cells were photographed on day 5 of treatment to assess any gross morphological differences caused by exposure to Compound #10. Spheroids from all treatment groups looked indistinguishable from one another (data not shown). In addition, spheroids maintained in the presence of Compound #10 provided herein for three weeks also display no obvious morphological changes (data not shown).


9.3.1.6 Effect of Compound #10 on HT1080 Cell Viability and Mobility


This example demonstrates that Compound #10 inhibits or reduces the ability of cells to migrate out of spheroids of HT1080 cells.


Experimental Design. To assess the viability and motility of HT 1080 cells exposed to Compound #10, spheroids of HT1080 cells were prepared as in Section 9.3.1.5. The cells were cultured in media with vehicle only (0.5% DMSO) or in the presence of 50 nM Compound #10 present in media with vehicle added. After three weeks of treatment, treated spheroids were re-plated into wells without an agar base, thus allowing cells to migrate out onto the coated surface and grow as a two-dimensional (2-D) monolayer in the presence or absence of Compound #10 at 50 nM. Pictures were then taken 48 hours to assess the migration and proliferation of the cells across the well's surface.


Results. Cells from vehicle treated spheroids plated out in the absence of Compound #10 migrate to cover the entire surface of the tissue culture plate within the 48 hours. Spheroids grown for 3 weeks in the presence of Compound #10 and re-plated in the absence of the compound also migrate out of the spheroid to cover the surface of the tissue culture plate within 48 hours. This indicates that a three-week exposure to Compound #10 does not reduce either the proliferative or the migratory capacity of HT1080 cells.


Cells from control spheroids grown in the absence of Compound #10 and subsequently re-plated in the presence of 50 nM of Compound #10 are blocked in their ability to migrate out of the spheroid, and do not cover the surface of the tissue culture plate. Similarly, cells grown as spheroids in tissue culture media containing 50 nM of Compound #10 herein and re-plated in the presence of Compound #10 migrate much less than other groups. The data suggests that, even after three weeks of growth in three dimensions (3-D), the cell cycle delay and migratory inhibition of Compound #10 herein are still intact once the cells move into 2-D culture. The data further suggests that Compound #10 can act to inhibit the metastasis of cells from tumors.


9.3.1.7 Effect of Compound #10 on Anchorage-Independent Colony Formation in HT1080 Cells


This example demonstrates that Compound #10 may reduce formation of colonies from HT1080 cells treated with Compound #10.


Experimental Design. HT1080 cells growing in monolayer were trypsinized, counted and suspended in a 0.35% agar noble/1× complete DMEM solution at 37° C. at a concentration of 2,500 cells/mL. One ml of this solution was layered over a semisolid base consisting of 0.5 mL of 0.75% agar noble/1× complete DMEM in a six well tissue culture plate. The top layer was permitted to solidify at room temperature, whereupon 1.5 mL of liquid medium (complete DMEM) containing 0.5% DMSO and 0, 5, 20 or 100 nM of Compound #10 was added to achieve a final concentration of 0, 2.5, 10 or 50 nM of Compound #10. Tissue culture plates were then returned to the incubator and colonies were allowed to form. The top medium layer was replaced periodically (every 3-4 days) with complete DMEM containing either 0.5% DMSO or Compound #10 (0, 2.5, 10 or 50 nm) and 0.5% DMSO. On day 18 the vehicle-treated wells had colonies of sufficient size to count (>50 cells/colony). At this time, for increased visualization, 1.5 mL of a 2× working volume of (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole) (MTT, Invitrogen, Cat #C35007) was added and the plates were returned to the incubator for 2 hours until colonies were stained by conversion of the MTT to purple formazan crystals. Colonies were then visually counted under a dissecting microscope.


Results. FIG. 33 is a graphical representation of the average for each treatment group, which consists of two or three wells per group. There was a modest trend toward a reduced number of colonies formed from cells treated with 10 and 50 nM of Compound #10, but the results do not reach statistical significance (P=0.29 and 0.07, respectively).


9.3.2 Animal Model Systems


9.3.2.1 Compound #10 Induces S-phase Cell Delay in Dividing Tumor Cells In Vivo.


This example demonstrates that Compound #10 induces a S-phase cell delay in dividing tumor cells in vivo.


Experimental Design. HT1080 cells (5×106 cells/mouse) were implanted subcutaneously in male athymic nude mice. When tumors had become established (i.e., the mean tumor size had reached 585±150 mm3), mice were divided into 4 treatment groups, as shown in Table 26. Positive and negative controls for effects on tumor cell cycling included doxorubicin and bevacizumab, respectively.


After 1, 2, or 3 days of treatment with Compound #10, mice were injected with BrdU, a synthetic nucleoside that is an analogue of thymidine and is incorporated into DNA during the S phase of cell division. The mice were sacrificed 3 hours later, and the tumors collected. A single cell suspension was prepared from the tumor cells. The cells were permeabilized and an antibody to BrdU was used to stain cells that had entered S phase during the labeling period. The proportion of cells actively synthesizing DNA was determined by cell sorting.









TABLE 26







Study Design for Cell Cycle Effect Assessment


in Nude Mice Bearing HT1080 Xenografts











Number of

Dose













Animals
Dose
Administrationa
Dose
Concen-













Test
Per Time Pointa
(mg/

Sched-
Volume
tration














Compound
M
F
kg)
Route
ule
(mL/kg)
(mg/mL)

















Vehicleb
5
0
0
Oral
QD
4
0


Compound #10
5
0
10
Oral
QD
4
2.50


Doxorubicin
5
0
6
IP
Single
8
0.75







bolus


Bevacizumab
5
0
5
IP
Single
8
0.625







bolus






aTreatments were initiated on Day 0 with 20 mice per group. On each day, 5 mice were sacrificed per group for analysis. Mice were treated with Compound #10 daily. Mice were treated with doxorubicin or bevacizumab on Day 0 only.




bVehicle was L21 (35% Labrasol, 35% Labrafac, and 30% Solutol).



Abbreviations: IP = intraperitoneal; QD = 1 time per day






As shown in FIG. 14, approximately 7 to 12% of the tumor cells from vehicle-treated mice were in S phase as indicated by the amount of BrdU incorporation. As the size of the tumors from vehicle treated mice increased with each succeeding treatment day, the percentage of cells showing BrdU incorporation decreased. On each treatment day, tumor cells from mice treated with Compound #10 demonstrated increased BrdU staining, consistent with a higher fraction of cells delayed in S phase. By contrast, treatment with doxorubicin decreased the percentage of tumor cells staining with BrdU, consistent with the arrest in the G1 phase of the cell cycle that is expected with this type of DNA-damaging agent. As also expected, bevacizumab had no effect on the proportion of cells in S phase.


When taken together with reductions in tumor derived plasma VEGF in these same animals (Section 9.2.3), these results are consistent with the previous in vitro results for Compound #10, suggesting that Compound #10 selectively induces a S phase cell delay in rapidly dividing tumor cells.


10. EXAMPLE
Clinical and Pre-Clinical Studies Compound #10

10.1 Pre-clinical Studies


In vitro and in vivo safety pharmacology studies with Compound #10 demonstrate a favorable safety profile. Based on the safety pharmacology studies and results of electrocardiograms (ECGs) and blood pressures collected during 7- and 28-day toxicity studies in dogs, Compound #10 is unlikely to cause serious adverse effects on the central nervous, cardiovascular, and respiratory systems.


A functional observation battery in Sprague Dawley rats dosed daily for 7-days by oral gavage at dose levels of 40, 120, and 400 mg/kg revealed no adverse behavioral or neurological effects at any dose level.


Compound #10 was considered negative for meaningful inhibition of human-ether-a-go-go-related gene (hERG) current in a higher throughput hERG assay. In a cardiovascular safety pharmacology study in awake telemeterized male beagle dogs, single oral doses of 30, 60, and 120 mg/kg of Compound #10 induced no meaningful changes in cardiovascular or electrocardiographic (including QT interval) parameters. In addition, ECG analysis and blood pressure assessments were performed as part of 2 GLP toxicity and toxicokinetic studies of Compound #10 in beagle dogs, one with 7-days of dosing and one with 28-days of dosing followed by a 15-day recovery period. In these studies, oral dosing with Compound #10 at dose levels through 120 mg/kg/day for 7-days and through 60 mg/kg/day for 28-days did not have any toxicological effects on ECG or blood pressure results in dogs. At the end of dosing in the 28-day toxicity study in dogs, males in the 60 mg/kg/day group had a slightly higher (7%) mean uncorrected QT value which also was statistically significant in comparison to controls. However, QTc (QT interval corrected for heart rate) values in males in the 60 mg/kg/day group were comparable to controls.


In a respiratory safety pharmacology study in awake telemeterized male beagle dogs, single oral doses of 30, 60, and 120 mg/kg of Compound #10 induced no dose dependent or biologically significant changes in respiratory rate, core body temperature, arterial blood gases, arterial pH, or arterial bicarbonate.


10.1.1 Pharmacokinetics and Compound Metabolism in Animals


The absorption of Compound #10 was evaluated in nude mice, C57BL/6 mice, Sprague Dawley rats, and beagle dogs dosed by the oral route. The pharmacokinetic evaluations in mice were adjuncts to the primary pharmacodynamic xenograft studies. The evaluations in rats included toxicokinetic assessments in single-dose, 7-day, and 28-day toxicology studies as well as a mass-balance study after a single oral dose of 14C-Compound #10. The evaluations in dogs included toxicokinetic assessments in 7-day and 28-day toxicology studies. In the studies performed, rodents were dosed once daily with Compound #10 formulated in vehicle and administered via oral gavage. Dogs were dosed BID at ˜12-hour intervals between doses with Compound #10 formulated in vehicle and loaded into gelatin capsules that were administered orally.


The results of the PK studies demonstrate that Compound #10 is orally bioavailable in mice, rats, and dogs. Compound #10 pharmacokinetic parameters have been evaluated in mice at the 1-mg/kg dose level that, when given BID, was associated with maximal antitumor activity in the HT1080 human tumor xenograft model. At Day 1, Compound #10 plasma trough concentration of ˜0.10 to 0.15 μg/mL at 24 hours was established as the minimal mean target plasma concentration to be achieved in pharmacokinetic studies.


In all mice, rats, and dogs, the relationship between Compound #10 dose and plasma exposure describes a “bell-shaped curve,” i.e., plasma exposures initially rise with dose but then decrease despite further increases in dose. These bell-shaped dose-exposure relationships are consistent with absorption saturation and/or possible precipitation of the Compound within the gastrointestinal tract at the highest dose levels. The dose exposure curves were used in the dose selection for the rat and dog toxicology studies and in the interpretation of the No-Observed-Adverse-Effect Levels (NOAELs) from these studies. In both rat and dog toxicology species, Cmax and AUC values at the NOAELs exceed those expected in subjects to be enrolled to the proposed Phase 1b clinical study in patients with advanced breast cancer.


In vitro plasma protein binding for 14C-radiolabeled Compound #10 was determined from plasma samples obtained from mice, rats, dogs, monkeys, and humans. 14C-radiolabeled Compound #10 was highly bound to proteins in the plasma in vitro, with an overall mean of >99.5% for all species. Protein binding was independent of concentration over the range of 0.05 to 50 μg/mL of 14C-radiolabeled Compound #10. Given the similarities in protein binding across species, these data suggest that cross-species exposure comparisons do not need to be adjusted to take protein binding into account.


When evaluated in human hepatic microsomes or in assays using human recombinant cytochrome P450 (CYP) isoenzymes, Compound #10 inhibits the activity of the CYP2D6 isoenzyme. No meaningful inhibition of CYP3A4, CYP1A2, CYP2C9, or CYPC19 was observed. These data suggest the possibility that Compound #10 may slow or alter the clearance of drugs that are primarily metabolized by CYP2D6. It is possible that in certain clinical trial subjects, such agents may need to be adjusted for dosing or replaced by alternative agents that are not metabolized by CYP2D6, particularly when such agents may have a low therapeutic index.


10.1.2 Toxicology


A comprehensive toxicology program has been completed for Compound #10, consisting of a single-dose oral study in rats, 7-day oral studies in rats and dogs, and 28-day oral studies in rats and dogs each with a 2-week recovery period. A battery of genotoxicity studies was also performed. For the toxicology studies conducted in vivo, the study design consisted of a vehicle control group and 3 dose levels of Compound #10. The L23 vehicle was used. In rats, the vehicle or Compound #10 formulated in vehicle was administered by oral gavage. In dogs, the vehicle alone or Compound #10 formulated in vehicle was loaded into gelatin capsules for oral administration of 2 equal doses ˜12 hours apart (BID). All studies in the toxicology program were conducted according to GLP regulations.


In rats given single oral gavage doses of Compound #10 at doses of 100, 200, or 400 mg/kg, no notable clinical or clinical pathological toxicities were observed at any dose level. Because maximal exposure occurred at 100 mg/kg, this dose is considered the NOAEL for 1 day of dosing.


In the subsequent 7-day study, rats administered oral gavage Compound #10 doses of 40, 120, and 400 mg/kg/day. Maximal exposures occurred at a dose of 120 mg/kg/day. At this dose, notable changes included increases in mean prothrombin time (PT) and mean activated partial thromboplastin time (aPTT) in males but not in females. Elevations of about ˜2.5-fold to about 3-fold in mean cholesterol levels and about 1.3-fold in mean glucose levels were also noted in males and females receiving Compound #10. Based on the collective toxicity and toxicokinetic findings, the NOAEL for 7-days of Compound #10 administration for male rats is 40 mg/kg/day and for female rats is 120 mg/kg/day.


In the 28-day study (with a 14-day recovery period), rats received oral gavage Compound #10 doses of 12, 40, and 120 mg/kg/day. Exposures were maximal at 120 mg/kg/day. Consistent with the 7-day study, the 28-day study showed reversible increases in mean PT and aPTT at Compound #10 doses of 40 and 120 mg/kg/day in males but not in females. Other chemistry changes included about 2- to about 3-fold elevations in mean cholesterol levels in all Compound #10 dose groups, and minimally increased glucose and alkaline phosphatase values in females and minimally increased chloride and minimally decreased potassium values in males dosed with Compound #10 at 40 and 120 mg/kg/day. Increased adrenal weights were observed at all dose levels; these changes correlated with adrenal cortical hypertrophy that was observed in males and females. The findings indicate an NOAEL for 28-days of Compound #10 administration in rats of 12 mg/kg/day.


In dogs given Compound #10 at doses of 10, 30, or 60 mg/kg/dose BID (20, 60, and 120 mg/kg/day) orally in L23 gelatin capsules for 7 consecutive days, exposures were maximal at 30 mg/kg/dose BID. Animals receiving Compound #10 had an increased incidence and frequency of soft stools in both males and females but no other notable treatment-related effects. Considering exposure values, the NOAEL for 7-days is considered to be 30 mg/kg/dose BID (60 mg/kg/day).


In the 28-day study (with a 15-day recovery period), dogs were administered Compound #10 doses of 5, 15, and 30 mg/kg/dose BID (10, 30, or 60 mg/kg/day) in gelatin capsules. Maximal exposures occurred at 30 mg/kg/dose BID (60 mg/kg/day). Compound #10 was clinically well tolerated in male and female dogs at the low- and mid-dose levels but at the high dose, adverse clinical findings, and decreased food consumption resulting in decreased body weights were observed. The target organ of toxicity was the small intestine. Microscopic findings of erosion, necrosis and/or ulceration of the mucosa, submucosal inflammation, epithelial hyperplasia of the mucosa of the crypts, and/or congestion of the Peyer's patches in the small intestine were seen in several dogs at the high dose. The findings in the small intestine did not reverse at the end of the 15-day recovery period. Based on the findings, the NOAEL for 28-days of Compound #10 administration in dogs is considered to be 15 mg/kg/dose BID (30 mg/kg/day).


Genotoxicity was assessed in a battery of in vitro and in vivo studies that included a bacterial reverse mutation study, a chromosome aberration study in Chinese hamster ovary (CHO) cells, and a micronucleus study in rats by the oral route. The in vitro studies were performed in the presence and absence of an exogenous metabolic activation system. There was no evidence of genotoxic effects with Compound #10 in these studies.


10.2 Clinical Studies:


Compound #10 has been evaluated in a Phase 1, escalating multiple-dose, safety, tolerability and PK study in healthy adult volunteers.


The study was performed under the oversight of the French health authorities. The study was not performed under an IND. The primary objective of the study was to determine a dose range and regimen for Compound #10 that safely achieves and maintains pharmacologically active target plasma concentrations (as determined from xenograft studies) and would be appropriate for use in subsequent Phase 1 or Phase 2 studies in patients with cancer. The secondary objective was to evaluate the safety profile of multiple doses of Compound #10 administered 2 times per day (BID) (Stage 1) or 3 times per day (TID) (Stage 2) in oral capsules, to characterize the multiple dose PK profile of Compound #10, and to assess the effect of Compound #10 on plasma and serum physiological VEGF concentrations.


Methods. The trial was a Phase 1, randomized, escalating multiple dose, single center study conducted in 2 stages. Stage 1 comprised a double blind, placebo controlled dose escalation with Compound #10 given BID. Stage 2 comprised a double blind, placebo controlled escalation of Compound #10 given TID. The number of subjects planned and enrolled for Stage 1: 24 subjects as 3 cohorts of 8 subjects, with each cohort comprising 4 males (3 Compound #10, 1 placebo) and 4 females (3 Compound #10, 1 placebo). The number of subjects planned and enrolled for Stage 2: 1 cohort of 8 subjects comprising 4 males (3 Compound #10, 1 placebo) and 4 females (3 Compound #10, 1 placebo).


Diagnosis and Main Criteria for Inclusion:


Subjects were required to be healthy males or females, 18 to 65 years old, weighing 41 to 90 kg. Female subjects were required to be surgically sterile or post menopausal (as documented by an absence of menses for >1 year before screening).


Test and Reference Products


In Stage 1, Compound #10 was provided in gelatin capsules for oral administration. Capsules contained 2 mg or 20 mg of active substance. Cohorts of subjects assigned to active treatment received progressively higher Compound #10 doses of 0.3, 0.6, and 1.2 mg/kg BID (0.6, 1.2, and 2.4 mg/kg/day).


In Stage 2, Compound #10 was provided in gelatin capsules for oral administration. Capsules contained 20 mg or 25 mg of active substance. The cohort of subjects assigned to active treatment received a Compound #10 dose of 1.6 mg/kg TID (4.8 mg/kg/day).


Placebo gelatin capsules for oral administration were used as the reference product in both Stage 1 and Stage 2 of the study.


Duration of Treatment


Stage 1: Compound #10 or placebo was administered orally BID for 7 days (Day 1 through Day 7). Stage 2: Compound #10 or placebo was administered orally TID for 7 days (Day 1 through Day 7).


Criteria for Evaluation


Maximum tolerated dose; Safety as characterized by type, frequency, severity, timing, and relationship to study treatment of any adverse events, laboratory abnormalities, or electrocardiogram (ECG) abnormalities; PK profile of Compound #10 as described by plasma concentration time curves and by derived PK parameters; Plasma and serum VEGF concentrations.


Statistical Methods

The results were summarized by study stage, treatment, and dose.


Pharmacokinetics: Compound #10 concentrations and PK parameters were presented descriptively. Noncompartmental methods were used to compute Tmax, Cmax, and AUC. Dose proportionality and sex effect were evaluated using ANOVA on log transformed PK parameters using dose, sex, and dose by sex as fixed factors.


Plasma VEGF Concentrations: Plasma and serum VEGF concentrations and concentration changes from baseline were presented descriptively.


Results. As planned, 32 subjects were included in the study. In Stage 1, 8 subjects were enrolled to each of the 3 dose groups (3 males and 3 females receiving Compound #10 and 1 male and 1 female receiving placebo) resulting in enrollment of 24 subjects (12 males and 12 females). In Stage 2, 8 subjects (3 males and 3 females receiving Compound #10 and 1 male and 1 female receiving placebo) completed their participation in the study. No subject discontinued prematurely and all subjects completed the study. Subject characteristics for Stage 1 and Stage 2 are described in Table 27 below. Demographic characteristics in Stage 1 were generally similar between the Compound #10 and placebo groups. Characteristics in Stage 2 were generally similar to those in Stage 1.









TABLE 27







Subject Characteristics: Stage 1 and Stage 2 of Multiple-dose Study










Stage 1
Stage 2












Com-

Com-




pound #10
Placebo
pound #10
Placebo


Characteristic
N = 18
N = 6
N = 6
N = 2





Gender, n






Male:Female
9:9
3:3
3:3
1:1


Median age, years [range]






Males
34 [25-62]
32 [21-38]
38 [33-46]
31 [NA]


Females
57 [44-64]
56 [53-62]
56 [54-65]
58 [NA]


Mean body weight, kg






[range]






Males
73 [67-90]
88 [80-90]
66 [52-70]
78 [NA]


Females
62 [46-72]
55 [52-77]
66 [51-67]
70 [NA]


Race, n (%)






Caucasian
14 (78)
3 (50)
5 (83)
2 (100)


African/West Indian
 2 (11)
2 (33)




Other
 2 (11)
1 (17)
1 (17)






Abbreviations: BID = 2 times per day, TID = 3 times per day






Pharmacokinetics


Mean plasma concentration time profiles for Compound #10 are shown in FIG. 15 for Stage 1 and FIG. 16 or Stage 2. Compound #10 appeared in plasma after a—30 minute lag time. On Day 1, mean maximum concentration (Cmax) values after the second dose were almost double those of the first dose, while by Day 7, the mean Cmax values of the first and second daily doses appeared similar; this pattern suggests accumulation of Compound #10 concentrations over time rather than diurnal variation in exposures. At all dose levels, the target trough plasma concentration of ˜0.1 to 0.15 μg/mL established as maximally active in the HT1080 animal tumor model was achieved.


PK parameters for Compound #10 in plasma are shown in Table 28 below. The mean Tmax was in the range of ˜3 hours. During Stage 1 and Stage 2, increases in mean values for Cmax and area under the concentration time curve over 24 hours (AUC0-24) were generally dose proportional. When comparing Day 1 to Day 7, there was an increase in the mean Cmax and AUC0-24 over time at all dose levels, indicating accumulation (˜2-fold) when Compound #10 was dosed continuously. A 2-compartment model could be readily fit to all of the individual subject data throughout the 7 day course of treatment.









TABLE 28







Mean (SD) Compound #10 Pharmacokinetic Parameters:


Stage 1 and Stage 2 Multiple dose Study









Stage 2










Stage 1
Compound #10



Compound #10 Dose mg/kg BID
Dose mg/kg TID












0.3 N = 6
0.6 N = 6
1.2 N = 6
1.6 N = 6















Parameter, units
Day 1
Day 7
Day 1
Day 7
Day 1
Day 7
Day 1
Day 7


















Tmax (after PM dose),
3.16
3.33
3.17
3.33
3.00
3.33
2.50
2.33


hours
(0.41)
(0.52)
(0.41)
(0.52)
(0.00)
(0.52)
(1.05)
(1.37)


Cmax (after PM dose),
0.48
0.59
0.97
1.16
1.97
2.47
2.36
4.65


μg/mL
(0.15)
(0.18)
(0.24)
(0.27)
(0.29)
(0.57)
(0.46)
(1.86)


C24 h, μg/mL
0.094
0.21
0.26
0.54
0.41
0.85
1.33
2.37



(0.036)
(0.09)
(0.095)
(0.21)
(0.17)
(0.32)
(0.40)
(0.62)


AUC0-24, μg · hr/mL
4.31
8.44
10.1
18.6
18.0
32.9
37.2
78.6



(1.20)
(2.84)
(2.60)
(4.85)
(3.97)
(9.43)
(5.90)
(19.4)


Dose-normalized Cmax,
0.79
0.99
0.81
0.97
0.82
1.03
0.51
0.98


μg/mL/mg/kg
(0.24)
(0.29)
(0.20)
(0.22)
(0.12)
(0.24)
(0.10)
(0.38)


Dose-normalized
7.2
14.1
8.4
15.5
7.5
13.7
7.7
16.4


AUC0-24,
(2.0)
(4.7)
(2.2)
(4.1)
(1.6)
(3.9)
(1.2)
(4.0)


μg · hr/mL/mg/kg





Values represent male and female subjects combined.


Abbreviations: AUC = area under the concentration-time curve, C24 = concentration at 24 hours after first daily dose, Cmax = maximum concentration, Tmax = time of maximum concentration; BID = 2 times per day, TID = 3 times per day






Gender related differences were analyzed by ANOVA. In this study, no significant differences in Cmax or AUC0-24 values were observed between males and females.


Circulating VEGF Concentrations


Plasma and serum VEGF A concentrations were assayed in all subjects. Mean absolute values and changes from baseline in plasma and serum VEGF A concentrations are plotted in FIG. 17A and FIG. 17B for Stage 1 and in FIG. 18A and FIG. 18B for Stage 2. When considering both stages of the study, no clear dose dependent effects of Compound #10 on physiological concentrations of circulating VEGF A were noted.


Results: In this Phase 1 dose study of Compound #10 in healthy volunteer males and females, administration of Compound #10 for 7 consecutive days at doses of 0.3, 0.6, and 1.2 mg/kg BID (0.6, 1.2, and 2.4 mg/kg/day) and at 1.6 mg/kg TID (4.8 mg/kg/day) was well tolerated. Treatment emergent adverse events and laboratory abnormalities were generally Grade 1. The incidence or severity of these findings was not clearly greater in the Compound #10 group than in the placebo group and no dose dependency was apparent. Frequent ECG evaluations revealed no concerning rhythm, waveform, or interval changes. In particular, no meaningful QTc prolongation was observed. No serious adverse events or premature discontinuations due to adverse events occurred. Interventions for adverse events were minimal. None of the safety findings were deemed clinically significant by the investigator. No MTD was established and no dose limiting toxicities were observed through the highest dose level tested (1.6 mg/kg TID).


PK data indicated that Compound #10 is orally bioavailable. The mean Tmax was in the range of ˜3 hours. Increases in Cmax and AUC were generally proportional with dose. There was ˜2 fold accumulation when Compound #10 was dosed continuously. In this study, no significant differences in Cmax or AUC0-24 values were observed between males and females. Target trough plasma concentrations of >100 to 150 ng/mL derived from preclinical human tumor xenograft models were achieved and maintained at all dose levels in the current study.


No significant alterations in plasma or serum physiological VEGF-A concentrations were observed at any of the Compound #10 doses tested in this multiple dose study. The finding that Compound #10 did not affect physiological plasma or serum VEGF levels in healthy volunteers appears consistent with in vitro results suggesting that Compound #10 does not perturb physiological VEGF production, but acts selectively to inhibit pathological VEGF production (induced by hypoxia or tumor transformation). Lack of changes in circulating VEGF concentrations may correlate with the lack of Compound #10 toxicities (e.g., hypertension, bleeding, proteinuria) in this trial. Such toxicities have been classically associated with currently used drugs that inhibit VEGF signaling at endothelial cells.


Collectively, the safety and PK findings of this study in healthy volunteers indicate that the dosing regimens tested in this study can readily attain target trough plasma concentrations known to be active in nonclinical models of human disease and that oral BID administration of Compound #10 may offer safety and ease of use advantages over existing clinical methods of inhibiting VEGF signaling.


11. EXAMPLE
Clinical Protocols

11.1 Protocol for Treating Adult Patients


Subjects with GBM may receive continuous daily treatment with a Compound administered at 100 mg per dose, 2 times per day (BID) until tumor progression. In a specific embodiment, the Compound is Compound #10 or Compound #1205. Progression-free survival or anti-tumor activity are indicators of the efficacy of a Compound in treating GBM.


Clinical Objectives


Efficacy of a Compound for treating GBM may be assessed by determining the 6 month progression-free survival (PFS-6) rate in patients with recurrent GBM. Efficacy of a Compound for treating GBM may also be assessed by: (i) overall response rate (ORR), progression-free survival (PFS), and overall survival (OS) in patients; (ii) evaluating the effects of a Compound on tumor blood flow, or peritumoral inflammation or edema; (iii) determining the effects of a Compound on concentrations of circulating angiogenic factors;


(iv) characterizing health-related quality of life (HRQL) in patients; (v) determining performance status in patients; (vi) describing the safety profile of a Compound; evaluating compliance with a Compound; and (vii) determining a Compound plasma exposure over time.


Clinical Endpoints


A primary clinical endpoint for efficacy of a Compound for treating GBM is a PFS-6 (6 month progression-free survival) rate. Other clinical endpoints for efficacy of a Compound for treating GBM may include:

  • 1. Antitumor activity as documented by the best on-study tumor response using the Macdonald criteria (Macdonald et al., 1990, “Response criteria for phase II studies of supratentorial malignant glioma,” J Clin Oncol. 8: 1277-80) (expressed as the proportion of subjects with that response), by Kaplan-Meier analysis of time to tumor response, PFS and OS changes in tumor size, and by changes in tumor size.
  • 2. Changes in tumor size as assessed using DCE-MRI volume transfer coefficient (Ktrans), area under the tumor uptake curve over the first 90 seconds post injection, normalized by the area under the plasma uptake curve over the same period (AUCBN90) in a target tumor lesion.
  • 3. Antiangiogenic or anti-inflammatory activity as documented by changes in the blood concentrations of VEGF, VEGF-C, VEGF-D, P1GF, VEGFR1, VEGFR2, IL-6, and IL-8.
  • 4. Changes in angiogenic markers present in glioma-derived circulating exosomes.
  • 5. Changes in HRQL as documented the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire C30 (EORTC QLQ-C30, Version 3) (Table 29; Fayers et al., 2001, EORTC QLQ-C30 scoring manual, 3d ed. Brussels: EORTC Publications) and the Brain Cancer Module (BCM20) (Table 30; Osoba et al, 1996, “The development and psychometric validation of a brain cancer quality-of-life questionnaire for use in combination with general cancer-specific questionnaires,” Qual Life Res 5: 139-50).
  • 6. Changes in performance status as documented using the Karnofsky scale (Table 31; Karnofsky and Burchenal, 1949, “The clinical evaluation of chemotherapeutic agents in cancer.” In: MacLeod C M, ed. Evaluation of chemotherapeutic agents. Columbia Univ. Press: 196).
  • 7. Overall safety profile of a Compound characterized in terms of the type, frequency, severity, timing, and relationship to the therapy of any adverse events or abnormalities of physical findings, laboratory tests, or electrocardiograms (ECGs); treatment discontinuations due to adverse events; or serious adverse events.
  • 8. Treatment compliance as assessed by quantification of used and unused Compound.
  • 9. Trough and peak (4 hour samples) of a Compound plasma concentrations as assessed by a validated bioanalytical method.
  • 10. Peritumoral inflammation or edema which may be assessed by CT scan, MRI scan, or PET scan.









TABLE 29







European Organization for Research and Treatment of Cancer


Quality of Life Questionnaire C30 (EORTC QLQ-C30)








During the past week:










Number
Item
Scoresa















1
Do you have any trouble doing strenuous activities, like carrying a heavy
□ 1
□ 2
□ 3
□ 4



shopping bag or a suitcase?


2
Do you have any trouble taking a long walk?
□ 1
□ 2
□ 3
□ 4


3
Do you have any trouble taking a short walk outside of the house?
□ 1
□ 2
□ 3
□ 4


4
Do you need to stay in bed or a chair during the day?
□ 1
□ 2
□ 3
□ 4


5
Do you need help with eating, dressing, washing yourself or using the
□ 1
□ 2
□ 3
□ 4



toilet?


6
Were you limited in doing either your work or other daily activities?
□ 1
□ 2
□ 3
□ 4


7
Were you limited in pursuing your hobbies or other leisure time
□ 1
□ 2
□ 3
□ 4



activities?


8
Were you short of breath?
□ 1
□ 2
□ 3
□ 4


9
Have you had pain?
□ 1
□ 2
□ 3
□ 4


10
Did you need to rest?
□ 1
□ 2
□ 3
□ 4


11
Have you had trouble sleeping?
□ 1
□ 2
□ 3
□ 4


12
Have you felt weak?
□ 1
□ 2
□ 3
□ 4


13
Have you lacked appetite?
□ 1
□ 2
□ 3
□ 4


14
Have you felt nauseated?
□ 1
□ 2
□ 3
□ 4


15
Have you vomited?
□ 1
□ 2
□ 3
□ 4


16
Have you been constipated?
□ 1
□ 2
□ 3
□ 4


17
Have you had diarrhea?
□ 1
□ 2
□ 3
□ 4


18
Were you tired?
□ 1
□ 2
□ 3
□ 4


19
Did pain interfere with your daily activities?
□ 1
□ 2
□ 3
□ 4


20
Have you had difficulty in concentrating on things, like reading a
□ 1
□ 2
□ 3
□ 4



newspaper or watching television?


21
Did you feel tense?
□ 1
□ 2
□ 3
□ 4


22
Did you worry?
□ 1
□ 2
□ 3
□ 4


23
Did you feel irritable?
□ 1
□ 2
□ 3
□ 4


24
Did you feel depressed?
□ 1
□ 2
□ 3
□ 4


25
Have you had difficulty remembering things?
□ 1
□ 2
□ 3
□ 4


26
Has your physical condition or medical treatment interfered with your
□ 1
□ 2
□ 3
□ 4



family life?


27
Has your physical condition or medical treatment interfered with your
□ 1
□ 2
□ 3
□ 4




social activities?



28
Has your physical condition or medical treatment caused you financial
□ 1
□ 2
□ 3
□ 4



difficulties?









For the following questions please check the number between 1 and 7 that best applies to youb















29
How would you rate your overall health during the past week?











1
2
3
4
5
6
7


30
How would you rate your overall quality of life during the past week?











1
2
3
4
5
6
7






a1 = not at all, 2 = a little, 3 = quite a bit, 4 = very much.




b1 = very poor, 7 = excellent.














TABLE 30







Brain Cancer Module (BCM20) Questionnaire








During the past week:










Number
Item
Scoresa















1
Did you feel uncertain about the future?
□ 1
□ 2
□ 3
□ 4


2
Did you feel you had setbacks in your condition?
□ 1
□ 2
□ 3
□ 4


3
Were you concerned about disruption of family life?
□ 1
□ 2
□ 3
□ 4


4
Did you have headaches?
□ 1
□ 2
□ 3
□ 4


5
Did your outlook on the future worsen?
□ 1
□ 2
□ 3
□ 4


6
Did you have double vision?
□ 1
□ 2
□ 3
□ 4


7
Was your vision blurred?
□ 1
□ 2
□ 3
□ 4


8
Did you have difficulty reading because of your vision?
□ 1
□ 2
□ 3
□ 4


9
Did you have seizures?
□ 1
□ 2
□ 3
□ 4


10
Did you have weakness on one side of your body?
□ 1
□ 2
□ 3
□ 4


11
Did you have trouble finding the right words to express
□ 1
□ 2
□ 3
□ 4



yourself?


12
Did you have difficulty speaking?
□ 1
□ 2
□ 3
□ 4


13
Did you have trouble communicating your thoughts?
□ 1
□ 2
□ 3
□ 4


14
Did you feel drowsy during the daytime?
□ 1
□ 2
□ 3
□ 4


15
Did you have trouble with your coordination?
□ 1
□ 2
□ 3
□ 4


16
Did your hair loss bother you?
□ 1
□ 2
□ 3
□ 4


17
Did itching of your skin bother your?
□ 1
□ 2
□ 3
□ 4


18
Did you have weakness of both legs?
□ 1
□ 2
□ 3
□ 4


19
Did you feel unsteady on your feet?
□ 1
□ 2
□ 3
□ 4


20
Did you have trouble controlling your bladder?
□ 1
□ 2
□ 3
□ 4






a1 = not at all, 2 = a little, 3 = quite a bit, 4 = very much.














TABLE 31







Karnofsky Performance Status









General Description
Score
Specific Description












Able to carry on normal activity and to
100
Normal no complaints; no evidence of disease.


work; no special care needed.
90
Able to carry on normal activity; minor signs or




symptoms of disease.



80
Normal activity with effort; some signs or




symptoms of disease.


Unable to work; able to live at home and
70
Cares for self; unable to carry on normal


care for most personal needs; varying

activity or to do active work.


amount of assistance needed.
60
Requires occasional assistance, but is able to




care for most of personal needs.



50
Requires considerable assistance and frequent




medical care.


Unable to care for self; requires
40
Disabled; requires special care and assistance.


equivalent of institutional or hospital
30
Severely disabled; hospital admission is


care; disease may be progressing rapidly.

indicated although death not imminent.



20
Very sick; hospital admission necessary; active




supportive treatment necessary.



10
Moribund; fatal processes progressing rapidly.



0
Dead









Evaluation of Clinical Endpoints


Antitumor activity: Assessment of changes in tumor size using contrast-enhanced MRI may be used to determine the disease course in patients with GBM. Previously used radiographic response and progression criteria (see, e.g., Macdonald et al., 1990, J. Clin. Oncol. 8(7): 1277-1280) can be used to evaluate the ability of a Compound to induce tumor shrinkage and extend tumor control. PFS-6, which incorporates both tumor shrinkage and delay of tumor growth, has been used in recent practice in the evaluation of therapies for GBM (Brandes et al., 2006, Br. J. Cancer 95(9): 1155-1160; Poulsen et al., 2009; Acta Oncol. 48(1): 52-58; Stupp, 2005, N. Engl. J. Med. 352(10): 987-996; Vredenburgh et al, 2007, Clin. Cancer Res. 13(4): 1253-1259), and thus, may be used as a primary endpoint to assess the efficacy of a Compound.


Tumor Perfusion. Assessing tumor blood flow offers an additional parameter of Compound action that can confirm the downstream consequences of decreasing tumor VEGF. Measurement of blood flow in target lesions provides direct evidence of a Compound's ability to inhibit a tumor that can be correlated with plasma VEGF changes. Assessment of tumor perfusion using DCE-MRI may be used to evaluate the efficacy of a Compound using standard protocols (see, e.g., Wong et al., 2008, J. Natl. Compr. Canc. Netw. 6(5): 515-522).


Antiangiogenic Activity. Assessing circulating angiogenic proteins and exosome-encapsulated angiogenic mRNA and protein may provide a relevant and convenient mechanism-specific marker of a Compound activity. Appropriate methods for the measurement of circulating VEGF concentrations have been determined (see, e.g., Jelkmann et al., 2001, Clin. Chem. 47(4):617-23), and such methods may be used to evaluate the effects of a Compound. For example, clinically validated ELISA kits (e.g., from R&D Systems, Minneapolis, Minn.) may be used to measure circulating concentrations of, e.g., VEGF, VEGF-C, P1GF, VEGFR, IL-6, IL-8, and inflammatory mediators such as IL-6 and IL-8. CT scan and MRI scan may also be used to assess peritumoral inflammation or edema. Exosomes may be isolated from serum samples by ultracentrifugation and protein and mRNA may be extracted from the exosomes using established methods (see, e.g., Skog et al., 2008, Nat. Cell. Biol. 10(12):1470-76). Exosome-associated proteins may be assessed using a human angiogenesis antibody array (Panomics, Fremont, Calif.) and exosome-associated mRNA may be assessed using quantitative real-time polymerase chain reaction (PCR).


Health-Related Quality of Life. HRQL questionnaires are widely instituted in GBM studies to predict treatment outcome, to characterize the symptomatic effects of therapeutic tumor control, and to assess patient perceptions of therapeutic ratio (Mauer et al, 2007, Br. J. Cancer 97(3):302-7). The EORTC QLQ-C30 Version 3 (EORTC 2009, available at website groups.eortc.be/qol/downloads/modules/specimen20q1q_c30.pdf) and/or BCM20 (Osoba et al., 1996, Qual. Life Res. 5(1): 139-150) may be used as HRQL instruments. EORTC QLQ-C30 Version 3 is a core HRQL measure for patients with cancer designed to be supplemented with disease-specific questionnaires. BCM20 was developed and validated specifically for patients with brain cancer to assess visual disorders, motor dysfunction, communication deficits, various disease symptoms (e.g., headaches and seizures), treatment toxicities, and perceptions of future uncertainty.


Safety. Adverse medical events that may be encountered in patients receiving a Compound may be monitored. For consistency of interpretation, adverse events may be coded using the standard Medical Dictionary for Regulatory Activities (MedDRA), and the severity of these events may be graded using the well-defined Common Terminology Criteria for Adverse Events (CTCAE) Version 3.0. Standard definitions for seriousness may be applied.


Subject Selection

The following eligibility criteria may be used to select subjects for whom treatment with a Compound is considered appropriate.


Subjects should meet the following conditions to be eligible for the treatment protocol:

    • 1. Age≧18 years.
    • 2. Karnofsky performance score≧60 (see Table 31 above).
    • 3. Life expectancy≧3 months.
    • 4. Histologically confirmed diagnosis of GBM.
    • 5. History of primary therapy for GBM with surgery, radiation therapy, and/or drug therapy such as chemotherapy.
    • 6. No prior exposure to another anti-angiogenic therapy (e.g., bevacizumab, sunitinib, sorafenib, thalidomide).
    • 7. Evidence of contrast-enhancing GBM recurrence or progression on MRI or computerized tomography (CT) scanning
    • 8. Discontinuation of all other therapies (including radiotherapy or drug therapy) for the treatment of GBM≧4 weeks before initiation of study treatment.
    • 9. An interval of ≧2 weeks from corticosteroid dose stabilization prior to obtaining the baseline MRI scan for this protocol.
    • 10. All acute toxic effects (excluding alopecia or neurotoxicity) of any prior antitumor therapy resolved to CTCAE Version 3.0 Grade less than or equal to 1 before initiation of study treatment.
    • 11. Willingness, if not postmenopausal or surgically sterile, to abstain from sexual intercourse or employ an effective barrier method of contraception during the study treatment and follow-up periods.
    • 12. Willingness and ability to comply with scheduled visits, treatment plan, imaging studies and contrast dye administration, laboratory tests, other study procedures, and study restrictions.
    • 13. In the judgment of the investigator, use of the Compound offers acceptable benefit:risk when considering current GBM disease status, medical condition, and the potential benefits and risks of alternative treatments for GBM.


Compound Administration


A Compound may be orally administered each day on a BID schedule at approximately the same times each day. Ideally doses should be taken at ˜12-hour intervals (e.g., at ˜7:00 ÅM and at ˜7:00 PM). If convenient for the subject, the Compound may be taken during or within ˜30 minutes after a meal; however, administration with food is not required. Subjects may continue receiving repeated 4-week cycles of a Compound indefinitely or until termination. Compound administration may be terminated because of, e.g., tumor progression or other progression of GBM, or a dose-limiting toxicity.


The dosage administered to a subject may be reduced to 80 mg/dose BID, 60 mg/dose BID, or 40 mg/dose if a dose-limiting toxicity (DLT) occurs. The dosage may be successively reduced if a DLT occurs. In other words, if a DLT occurs at 100 mg/dose BID, then the dosage may first be reduced to 80 mg/dose BID, and if a DLT occurs again then the dosage may be reduced to 60 mg/dose BID. A DLT may be defined as the occurrence of any of the following:

    • 1. Grade≧2: a Compound-related vomiting despite maximal oral antiemetic therapy, or a requirement for intravenous antiemetics to control a Compound-related nausea and vomiting.
    • 2. Grade≧2: proteinuria.
    • 3. Other Grade≧3: a Compound-related toxicity.


Procedures


β-Human Chorionic Gonadotropin. Women of childbearing potential may have serum beta human chorionic gonadotropin (β-HCG) testing prior to initial administration of a Compound and after taking their final dose of a Compound.


HRQL. Subjects may undergo HRQL assessments on Day 1 of each 4 week cycle and after taking their final dose of a Compound. The subject may be administered both the EORTC QLQ-C30 (Table 29) and BCM20 (Table 30) before any other procedures are performed so that those procedures do not unduly influence the subject's response to the HRQL questionnaires.


Vital Signs. Vital signs (pulse and blood pressure) may be monitored prior to the initial a Compound dose and at other times as clinically indicated (e.g., approximately 4 hours after the initial dose on Day 1 of each cycle and after a subject takes their final dose of a Compound).


Height, Body Weight, and Performance Status. Height (in cm) can be measured prior to the initial administration of a Compound. Body weight and Karnofsky performance status may also be assessed prior to the initial administration of a Compound and at other times (e.g., on Day 1 of each 4 week cycle and following the administration of the final dose of a Compound).


Physical Examination. A physical examination including neurological performance is usually conducted prior to administration of a Compound and at other times (e.g., on Day 1 of each 4 week cycle and following the administration of the final dose of a Compound). Physical examinations may be conducted if clinically indicated.


Hematology Laboratory Assessment. Hematology laboratory assessments may include white blood cell count with differential, hemoglobin, hematocrit, other red cell parameters, and platelet count. These parameters may be monitored prior to administration of a Compound and at other times (e.g., on Day 1 of each 4 week cycle and following the administration of the final dose of a Compound).


Biochemistry Laboratory Assessment. Biochemistry laboratory assessments may include sodium, potassium, chloride, bicarbonate, blood urea nitrogen, creatinine, calcium, phosphorus, uric acid, glucose, total protein, albumin, globulin, albumin:globulin ratio, bilirubin (direct and indirect), aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transferase, alkaline phosphatase, lactate dehydrogenase, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein. These parameters may be monitored prior to administration of a Compound and at other times (e.g., on Day 1 of each 4 week cycle and following the administration of the final dose of a Compound). Whenever possible, samples for biochemistry parameter analysis are taken after an overnight fast.


Coagulation Laboratory Assessment. Coagulation laboratory assessments may include PT and aPTT. These parameters may be monitored prior to administration of a Compound and at other times (e.g., on Day 1 of each 4 week cycle and following the administration of the final dose of a Compound).


Urinalysis. Urinalyses may include dipstick analysis for pH, specific gravity, glucose, ketones, blood, protein, urobilinogen, and bilirubin. These parameters may be monitored prior to administration of a Compound and at other times (e.g., on Day 1 of each 4 week cycle and following the administration of the final dose of a Compound).


Lead Electrocardiogram. A 12-lead ECG may be obtained prior to administration of a Compound and at other times (e.g., on Day 1 of each 4 week cycle and following the administration of the final dose of a Compound).


Blood for a Compound Plasma Concentrations. Blood samples for a Compound plasma concentration assessment can be collected immediately pre-dose and at various time points during the treatment protocol (e.g., ˜4 hours after administration of the AM dose on Day 1 of each 4 week cycle).


If a heparinized venous catheter placed for sample collection in order to avoid repeated needle sticks, at least 2 mL of blood may be removed and discarded prior to each sample collection in order to avoid heparin contamination of the sample. Blood samples should be taken at, or within +5 minutes of, the scheduled time. The timing of the blood draw is in relation to the a Compound dosing time and not the time of the preceding meal.


Each sample may comprise 3 mL of venous blood drawn into a VACUTAINER® tube with K2 ethylenediaminetetraacetic acid (EDTA) as the anticoagulant. Immediately after collection, the tube may be gently inverted 8 to 10 times to mix the anticoagulant with the blood sample. The tube may be stored upright on ice until centrifugation; centrifugation and sample processing may be performed within 1 hour of sample collection. The plasma fraction may be separated by placing the collection tube into a refrigerated centrifuge (4 to 8° C.) in a horizontal rotor (with a swing-out head) for a minimum of 15 minutes at 1500 to 1800 relative centrifugal force (RCF). The plasma fraction may be withdrawn by pipette and divided into 2 polypropylene freezing tubes (with each tube receiving approximately equal aliquots). After processing, samples may be placed into a freezer at approximately −70° C.


Analyses of Compound plasma concentrations may be performed using a validated LC-MS/MS method. Plasma samples collected for Compound analysis may be preserved for future metabolite analysis, as appropriate.


Blood for Circulating VEGF, VEGFR, and Cytokines. Two blood samples (1 for plasma and 1 for serum) may be obtained for assessment of circulating VEGF, VEGFR, and cytokine levels prior to administration of the initial dose and at other times during the treatment protocol (e.g., on Day 1 of each cycle and following administration of the final dose of a Compound).


Each sample for plasma collection may comprise 4 mL of venous blood drawn into a VACUTAINER® tube with K2EDTA as the anticoagulant. Immediately after collection, the tube may be gently inverted 8 to 10 times to mix the anticoagulant with the blood sample. The tube may be stored upright at room temperature until centrifugation; centrifugation and sample processing may be performed within 30 minutes of sample collection. The plasma fraction may be separated by placing the collection tube into a room-temperature (18 to 25° C.) horizontal rotor (with a swing-out head) for 15 minutes at 1000 to 2500 RCF. Immediately following the completion of centrifugation, the plasma fraction may be withdrawn by pipette and divided into 2 polypropylene freezing tubes (with each tube receiving approximately equal aliquots).


Each sample for serum collection may comprise 5 mL of venous blood drawn into a VACUTAINER® SST™ Tube. After collection, the tube may be stored upright at room temperature for 30 minutes to allow the sample to clot prior to centrifugation. The serum fraction may be separated by placing the collection tube into a room-temperature (18 to 25° C.), horizontal rotor (with a swing-out head) for 15 minutes at 1000 to 2500 RCF. Immediately following the completion of centrifugation, the serum fraction may be withdrawn by pipette and divided into 2 polypropylene freezing tubes (with each tube receiving approximately equal aliquots).


After processing, samples may be placed into a freezer at approximately −70° C. Repeated freeze-thaw cycles should be avoided. An ELISA-based multiplex system may be used to measure plasma VEGF and cytokine levels in this study.


Blood for Glioblastoma Microvesicles. Blood samples are obtained for assessment of serum pro-angiogenic proteins and mRNAs associated with the exosomes released by GBM cells prior to the AM dose Day 1 of each cycle, and at the End-of-Study visit.


Each sample for serum collection comprises 4 mL of venous blood drawn into a VACUTAINER® SST™ Tube. After collection, the tube is stored upright at room temperature for 30 minutes to allow the sample to clot prior to centrifugation. The serum fraction is separated by placing the collection tube into a room-temperature (18 to 25° C.), horizontal rotor (with a swing-out head) for 15 minutes at 1000 to 2500 RCF. Immediately following the completion of centrifugation, the serum fraction is withdrawn by pipette and divided into 2 polypropylene freezing tubes (with each tube receiving approximately equal aliquots).


After processing, samples are placed into a freezer at approximately −70° C. Repeated freeze-thaw cycles are avoided.


A human angiogenesis antibody array (e.g., a Human Angiogenesis Antibody Array available from Panomics (now Affymetrix, Inc.)) may be used to assess the protein levels in the exosomes according to the manufacturer's recommendations. The data may be analyzed with ImageJ software (National Institutes of Health). An Agilent whole human genome microarray (4×44K, two-color array) may be used to assess the mRNA profiles in the microvesicles. The data may be analyzed using the GeneSifter software (e.g., VizX Labs' GeneSifter® microarray data analysis software).


Tumor Perfusion Study with DCE-MRI. Subjects may undergo DCE-MRI for the target lesion of interest prior to administration of a Compound and at other times during the treatment protocol (e.g., between Day 21 and Day 28 of the second 4 week cycle of administration of a Compound).


Tumor Size Assessments. Subjects may undergo tumor size measurements prior to administration of the initial dose and at other times during the treatment protocol (e.g., between Day 21 and Day 28 of every 2 cycles and at the end of the treatment protocol). The determination of antitumor efficacy may be based on objective tumor assessments made according to cross-sectional area measurement (Macdonald et al., 1990) and treatment decisions by the physician may be based on these assessments.


The MRI examinations may be performed using a standard head coil with 1.5-T scanners. The standard imaging acquisition protocol includes conventional pre- and post-gadolinium contrast, spin-echo, T1-weighted, 3-mm thin (contiguous, no gap), axial and coronal series covering the entire brain. If there is a contraindication to the use of MRI, a contrast-enhanced CT scan may be used to assess tumor size.


The same method of assessment and the same technique (e.g., scanner, subject position, dose of contrast, injection/scan interval) should be used to characterize each identified and reported lesion at baseline and during follow-up.


If corticosteroids are used to control GBM-associated edema, the corticosteroid type and dose should be stabilized for ≧2 weeks prior to the baseline tumor size assessment. If corticosteroid treatment is introduced, discontinued, or altered, the subsequent scan may be postponed for ˜2 weeks from the time of the change in corticosteroid administration if such a postponement is judged to be appropriate by the physician.


At baseline, tumor lesions may be categorized by the investigator as measurable or non-measurable.

    • Measurable: Lesions that can be accurately measured cross-sectionally.
    • Non-Measurable: Previously irradiated lesions, and lesions that cannot be measured cross-sectionally due to the presence of any potential artifacts or due to ill-defined tumor margins.


All measurable lesions should be identified as target lesions, and measured and recorded at baseline and at the stipulated intervals during treatment. The cross-sectional area (the largest cross-sectional diameter multiplied by the largest diameter perpendicular to it) should be recorded for each target lesion. The sum of the cross-sectional areas for all target lesions should be calculated and recorded as the baseline sum longest diameter to be used as reference to further characterize the objective tumor response of the measurable dimension of the disease during treatment. All measurements are recorded in centimeters squared.


All non-target lesions should be recorded at baseline. Measurements are not required and these lesions should be followed as “present” or “absent.” Definitions of Tumor Response


Target Lesions

    • 1. Complete response (CR) may be defined as the disappearance of all enhancing target lesions.
    • 2. Partial response (PR) may be defined as a ≧50% decrease in the sum of the cross-sectional areas of the enhancing target lesions, taking as a reference the baseline sum of the cross-sectional areas.
    • 3. Progressive disease (PD) may be defined as a ≧25% increase in the cross-sectional areas of the enhancing target lesions taking as a reference the smallest sum of the cross-sectional areas recorded since the treatment started, or the appearance of ≧1 new lesion.
    • 4. SD may be defined as neither sufficient shrinkage to qualify for PR nor sufficient increase to qualify for PD, taking as a reference the cross-sectional areas since the treatment started.


Non-Target Lesions

    • 1. CR may be defined as the disappearance of all non-target lesions.
    • 2. Non-complete response (Non-CR)/non-progressive disease (Non-PD) may be defined as a persistence of ≧1 non-target lesions.
    • 3. PD may be defined as unequivocal progression of any existing non-target lesions, or the appearance of ≧1 new lesion.


Confirmation of Tumor Response. To be assigned a status of CR or PR, changes in tumor measurements in subjects with responding tumors may be confirmed by repeat studies that are performed ≧4 weeks after the criteria for response are first met. In the case of SD, follow-up measurements should have met the SD criteria at least once after administration of a Compound at a minimum interval of 8 weeks.


When both target and non-target lesions are present, individual assessments may be recorded separately. The overall assessment of response may involve all parameters as depicted in Table 32 below.









TABLE 32







Overall Response Criteria













Non-






Target
Target
New
Steroid
Neurological
Overall


Lesionsa
Lesionsb
Lesionsc
Treatment
Performance
Response





CR
CR
No
None
Stable or
CR






improved


CR
Non-CR/
No
Stable or
Stable or
PR



Non-PD

reduced
improved


PR
Non-PD
No
Stable or
Stable or
PR





reduced
improved


SD
Non-PD
No
Stable or
Stable or
SD





reduced
improved


PD
Any
Yes
Stable or
Worse
PD



response
or No
increased


Any
PD
Yes
Stable or
Worse
PD


response

or No
increased


Any
Any
Yes
Stable or
Worse
PD


response
response

increased






aMeasurable lesions only




bMay include measurable lesions not followed as target lesions or non-measurable lesions




cMeasurable or non-measurable lesions



Abbreviations: CR = complete response, PD = progressive disease, PR = partial response, SD = stable disease






The best overall response is the best response recorded from the start of the treatment until disease progression/recurrence (taking as reference for tumor progression the smallest measurements recorded since the treatment started). The subject's best response assignment depends on the achievement of both measurement and confirmation criteria.


11.2 Protocol for Treating Pediatric Patients


Pediatric subjects with refractory or recurrent central nervous system (CNS) tumors may receive continuous daily treatment with a Compound administered 2 times per day (BID) or 3 times per day (TID). In one embodiment, the Compound is Compound #10 or Compound #1205. Embodiments include a total dose to be administered to each patient based on milligrams of Compound per kilogram of actual patient body weight. Four consecutive weeks will constitute 1 course and subsequent courses will immediately follow, with no break in administration. The dose escalation is designed to achieve dose levels comparable to those being used in trials in adults.


Clinical Objectives

    • 1. To estimate the maximum tolerated dose (MTD) and recommended Phase II dose of the Compound for children with recurrent or progressive CNS tumors.
    • 2. To evaluate and characterize the adverse events associated with administration of the Compound in children with recurrent or progressive CNS tumors.
    • 3. To evaluate the PK of the Compound in children with recurrent or progressive brain tumors.
    • 4. To evaluate the anti-tumor activity of the Compound within the confines of a Phase I study.
    • 5. To evaluate changes in angiogenic and inflammatory markers in the blood and investigate the relationships between these changes and other outcome measures.
    • 6. To obtain preliminary evidence of biologic activity of the Compound by using MR diffusion to assess tumor cellularity.


Route/Frequency of Administration


The Compound will be encapsulated and given orally BID or TID every day continuously. Courses of therapy will be 28 days in length. The number of capsules to be administered to each patient will be based on milligrams of Compound per kilogram of actual patient body weight as recorded prior to the start of each course of therapy.


Safety and pharmacology studies and Phase I studies in adult healthy volunteers and patients with cancer have indicated that the Compound administered in capsule form is generally well tolerated by adults at doses through 120 mg/dose 3 times daily (TID) (approximately equivalent to 1.8 mg/kg/dose TID). Preliminary metabolism studies have shown that the Compound is metabolized by cytochrome P450 isoenzyme 2C19 but not 3A4, and is unlikely to be affected by enzyme-inducing anticonvulsants.


The planned starting doses are based on the established safety and PK profiles from previous nonclinical experience and from prior Phase I studies of healthy adult volunteers and other Phase I studies in adult patients with cancer. Dosing levels offer the potential to achieve target plasma trough concentrations associated with the Compound anti-tumor activity in pre-clinical xenograft models. Body-weight-based dosing using capsule strengths of 10 mg and 20 mg will be used to accommodate the variations in body size in pediatric patients. Four dose levels will be evaluated to reach dosing levels that are projected to achieve plasma exposures similar to those observed in adult patients.









TABLE 42







Dose Escalation Schedule










Dose Level
Dose







0
0.6 mg/kg/dose BID



1 (Starting Dose)
1.2 mg/kg/dose BID



2
1.2 mg/kg/dose TID



3
1.5 mg/kg/dose TID



4
2.0 mg/kg/dose TID










The Compound will be administered orally BID or TID in capsule form continuously in 28-day courses with no interruptions between courses. Patients may continue to receive Compound capsules for up to 12 courses if the patient does not experience disease progression or unacceptable toxicity.


The Dose Escalation Table 42 also provides the actual dose range in mg/kg that would be delivered based on the number of capsules administered. Because of the substantial safety margins at the prescribed dose levels tested to date, the fact that some patients will receive a dose slightly higher than the actual planned dose is not expected to be a safety concern. Dose escalation to progressively higher dose levels will be performed in successive cohorts of 2 to 6 patients using the “Rolling-6” design. In the absence of excessive toxicity, dose escalation will be continued to the highest planned dose level (through 2.0 mg/kg/dose TID). A Dose Level 0 (0.6 mg/kg/dose BID) is provided in case a patient assigned to Dose Level 1 (1.2 mg/kg/dose BID) requires dose reduction and to accommodate de-escalation in the event that dose level 1 is found to be too toxic. No intra-patient dose escalation will be permitted. Only those DLTs that are observed during the dose-finding period of therapy will be used to guide dose escalation. Dose escalation will be governed by the statistical design described in the clinical protocol.


The daily mg/kg dose levels associated with the dosing strategy detailed are illustrated in Table 43 below. The variations between the targeted doses and the actual doses are within acceptable ranges.


Pediatric Subjects

VEGF elaboration by epiphyseal growth plates induces the endochondral bone formation required for longitudinal bone growth Inhibition of VEGF signaling with monoclonal antibodies in animals reversibly impairs this process. Because the Compound appears relatively selective for inhibition of pathological VEGF expression relative to physiological VEGF expression, it may not cause such a development effect. In studies through 28 days duration in rats and dogs, no Compound-related effects on bone were observed.


Clinical safety data for use of the Compound are available from healthy adult volunteer subjects and patients with cancer≧18 years of age. While the safety of the Compound in a pediatric population has not yet been established, it does not appear that there is a specific contraindication to the evaluation of the Compound in children with cancer.


Subject Selection

Both boys and girls of all races and ethnic groups are eligible for this study.


The following eligibility criteria may be used to select subjects for whom treatment with the Compound is considered appropriate.


Subjects should meet the following conditions to be eligible for the treatment protocol:

    • Age: Patients must be ≧3 years and ≦21 years of age on the date of registration and must be able to swallow capsules.
    • Body Weight: Patients must have a body weight of 15 kg and ≦100 kg.
    • Tumor: Patients must have a histologically confirmed diagnosis of a primary CNS malignancy that is recurrent, progressive, or refractory to standard therapy and for which there is no known curative therapy. All tumors must have histological verification at either the time of diagnosis or recurrence except patients with intrinsic brain stem tumors and optic pathway gliomas. These patients must have radiographic evidence of progression.
    • Neurological Status: Patients with neurological deficits should have deficits that are stable for a minimum of 1 week prior to registration.
    • Performance Status: Karnofsky Performance Scale (for patients≧16 years of age, see Table 45 below) or Lansky Performance Score (for patients≦16 years of age, see Table 45 below) of ≧50 assessed within 2 weeks prior to registration.









TABLE 45







Performance Status








MODIFIED LANSKY SCORE
(Score as 0-100)












A. Normal Range
100 = 
Fully active



90 =
Minor restrictions in physically strenuous play



80 =
Restricted in strenuous play, tires more easily, otherwise




active


B. Mild to moderate restriction
70 =
Both greater restrictions of and less time spent in active




play



60 =
Ambulatory up to 50% of time, limited active play with




assistance or supervision



50 =
Considerable assistance required for any active play; full




able to engage in quiet play


C. Moderate to severe restriction
40 =
Able to initiate quiet activities



30 =
Needs considerable assistance for quiet activity



20 =
Limited to very passive activity initiated by others eg TV)



10 =
Completely disabled, not even passive play



 0 =
Unresponsive, coma


KARNOFSKY SCALE
100 = 
Normal; no complaints



90 =
Able to carry on normal activities; minor signs or symptoms




of disease



80 =
Normal activity with effort



70 =
Cares for self. Unable to carry on normal activity or to do




active work



60 =
Requires occasional assistance but able to care for most of




his/her needs



50 =
Requires considerable assistance and frequent medical care



40 =
Disabled; requires special care and assistance



30 =
Severely disabled; hospitalization indicated though death




not imminent



20 =
Very sick. Hospitalization necessary. Active support




treatment necessary.



10 =
Moribund



 0 =
Dead









Baseline Adverse Events: Patients must have recovered from the acute toxic effects of all prior therapy (excluding alopecia or neurotoxicity) before entering this study. For those baseline adverse events attributable to prior therapy, recovery is defined as a toxicity grade≦2, according to the Common Terminology Criteria for Adverse Events (CTCAE) version 4.0, unless otherwise specified in the Inclusion and Exclusion Criteria.


Myelosuppressive Chemotherapy: Patients must have received their last dose of known myelosuppressive anticancer chemotherapy at least three (3) weeks prior to registration or at least six (6) weeks if nitrosourea.


Biologic Agent: Patients must have an interval of >14 days between last dose of any investigational or biologic agent and registration. For agents that have known adverse events occurring beyond 7 days after administration, this period must be extended beyond the time during which adverse events are known to occur. For biologic agents that have a prolonged half-life, at least three half-lives must have elapsed prior to registration.


Monoclonal Antibody Treatment: Patients must have completed an interval comprising ≧3 half-life periods between the last dose of monoclonal antibody and registration.


Radiation (XRT): Patients must have an interval of ≧2 weeks between local palliative XRT and registration or an interval of ≧6 weeks between prior total-body irradiation, craniospinal XRT, or XRT involving irradiation of ≧50% of the pelvis and registration.


Bone Marrow Transplantation: Patients must have an interval of ≧90 days between allogenic bone marrow transplantation and registration No active graft-versus-host disease may be present at the time of registration


Corticosteroids: If receiving dexamethasone or other corticosteroids, the subject must be on a stable or decreasing dose for ≧7 days prior to registration


Colony-Stimulating Factors: Off all colony forming growth factor(s) for at leastl week prior to registration (e.g. filgrastim, sargramostim, erythropoietin) and at least 14 days for long-acting formulations (peg-filgrastim, neulasta).


Organ Function: Documented within 14 days of study registration and within 7 days of the start of Compound administration.


Bone Marrow: Absolute neutrophil count≧1,000/ul (unsupported), Platelets≧100,000/μl (unsupported), Hemoglobin≧8 g/dL (may be supported).


Renal: Urine protein/creatinine ratio<1.0, or creatinine clearance or radioisotope glomerular filtration rate (GFR)≧70 ml/min/1.73 m2 or a serum creatinine based on age as shown in Table 46:









TABLE 46







Age-Based Maximum Serum Creatinine











Maximum Serum



Age (years)
Creatinine (mg/dL)














≦5
0.8



>5 to ≦10
1



>10 to ≦15
1.2



>15
1.5










Hepatic: (a) Serum total bilirubin≦1.5× institutional upper limit of normal (ULN) for age; (b) Serum glutamic pyruvic transaminase (SGPT)/alanine aminotransferase (ALT)≦2.5× institutional ULN for age; and, (c) Serum glutamic oxaloacetic transaminase (SGOT)/aspartate aminotransferase (AST)≦2.5× institutional ULN for age


Nutrition: Albumin≧2.5 g/dL


Coagulation: Prothrombin time (PT) and activated partial thromboplastin time (aPTT)≦1.2× institutional ULN


Compound Administration


The Compound will be supplied as 10-mg and 20-mg capsules. Patients will receive encapsulated Compound orally either BID or TID. Four consecutive weeks will constitute 1 course and subsequent courses will immediately follow, with no interruption in the administration. Dosing will be based on patient body weight at the beginning of each course of therapy and will remain consistent during the course.


At each Compound dose administration, the number of capsules corresponding to the appropriate daily dose of the Compound is to be swallowed whole with a glass of tap water (150 to 200 mL). Patients should be instructed not to bite or chew the capsules. In case of breakage of the capsules in the oral cavity, an additional glass of water should be taken immediately. On Day 1 and on Day 28 of the first course, a dose of the Compound will be administered in the clinic with dosing appropriately timed relative to blood sampling for Compound PK. For all subsequent courses, patients will be given an adequate supply of capsules to take at home for the duration of each single course (28 days) of treatment.


Ideally, when given BID, Compound doses should be taken at ˜12-hour intervals (eg, at ˜7:00 ÅM and at ˜7:00 PM) and, when given TID, Compound doses should be taken at ˜8-hour intervals (eg, at ˜6:30 ÅM, at ˜2:30 PM, and at 10:30 PM). If convenient for the patient, the Compound may be taken during or within ˜30 minutes after a meal; however, administration with food is not required. While it is realized that variations in dosing schedule may occur in the outpatient setting, the prescribed regimen (dosing intervals) should be followed as closely as possible, especially in the clinic.


Patients will be provided with a Medication Diary according to dose level (BID dosing or TID dosing), instructed in the use of the Medication Diary to record compliance with administration of the Compound, and asked to bring the diary with them to each visit. The diary will be collected at the completion of each course.


In the absence of unacceptable toxicity or disease progression, treatment may continue for up to 12 courses (approximately one year). All patients will conclude Compound administration at no later than the completion of approximately one 1 year (12 courses) of treatment. At the end of 12 courses, the patient should complete all end-of-treatment assessments.


Dose-Limiting Toxicities (DLT) will be graded according to the NCI Common Terminology Criteria for Adverse Events (CTCAE) version 4.0 and is defined as the occurrence of any of the following Compound-related events: (a) Serum ALT or AST elevation Grade≧3; ( ) Serum total bilirubin Grade≧3; (b) Any other Grade≧3 toxicity except lymphopenia. (Lymphopenia of any grade is not considered a DLT); (c) Any Compound related adverse event during the dose-finding period that requires a dose reduction or permanent cessation of Compound therapy; (d) Any Compound related adverse event that requires treatment interruption for >10 doses or 5 days at dose level 0, 1, 2, 3 or 15 doses or 5 days at dose level 4.


If a patient experiences a Compound-related DLT during the dose finding period or some other unacceptable toxicity in later courses, Compound administration can be held, as necessary, until the adverse event resolves or stabilizes to on study parameters. Thereafter, the dose of the Compound for the remainder of the treatment during that course should be reduced by 1 dose level. In addition, the dose in the subsequent courses of therapy should be given at the reduced dose level. An additional decrement in dose may be made to the prior dose level (eg, from Dose Level 2 to Dose Level 1 to Dose Level 0) for patients experiencing Compound-related DLT at the next higher dose level; however patients can have no greater than 2 dose reductions.


In general, after a dose is reduced for Compound-related toxicity, it should not be re-escalated, even if there is minimal or no toxicity with the reduced dose. However, if further evaluation reveals that the adverse event that led to the dose reduction was not Compound-related, the dose may be re-escalated to the original dose level in steps equivalent to the dose reduction(s).


Dose Interruptions and Modifications


Patients on a BID treatment schedule who inadvertently have a delay in administration of a dose of the Compound of <6 hours should take the planned dose as soon as possible after the intended time of administration. For patients who inadvertently have a delay in Compound administration of hours, the dose should not be taken. Compound dosing may continue but the missed dose should not be made up and the planned timing of subsequent Compound dosing should not be altered.


Patients on a TID treatment schedule who inadvertently have a delay in administration of a dose of the Compound of ≦1 hour, the planned dose should be taken with no changes to the subsequent dose schedule. For patients who have a delay of >1 hour but ≦4 hours, the planned dose should be taken; however, all future doses for that day should be shifted later by a corresponding amount. It is recommended that patients take the last dose of study medication no later than 12:00 midnight on any study treatment day. For example if the 07:00 ÅM dose is taken at 10:00 ÅM, the next dose should be taken at 5:00 PM, and the last dose should be taken at 12:00 midnight. For patients who have a delay in administration of the Compound of >4 hours, the dose should not be taken. Compound dosing may continue but the missed dose should not be made up and the planned timing of subsequent Compound dosing should not be altered.


Dose Reductions


If necessary, the patient should be instructed to return to the clinic to receive capsules of the appropriate strength(s) for the reduced dose level. Doses during missed days of treatment should not be made up (eg, if a patient experiences an adverse event on Day 7 of the treatment course and the event lasts for 3 days, the reduced dose should be administered only for a further 18 days so that the total treatment course duration remains 28 days). However, if there are necessary deviations in scheduling clinic returns (eg, due to inclement weather, etc), the 4-week (28-day) treatment period may be extended for an additional 2 days to ensure that subjects are still receiving continuous Compound treatment in the current cycle when observations required prior to the beginning of the next cycle are performed.


Plasma Pharmacokinetic and Pharmacodynamic Studies


Standard PK studies will be performed in all consenting patients on Course 1, Day 1 and Course 1, Day 28. Blood for determination of Compound plasma concentrations will be collected immediately pre-dose; at 1, 2, 3, 4, 5, 6, and 8 (±1) hours after the AM dose on Day 1; and again immediately pre-dose and at 1, 2, 3, 4, 5, 6, and 8 (±1) hours after the AM dose on Day 28 (±2 days) of Course 1. To accommodate necessary flexibility in scheduling late in the day on Days 1 and 28, the 8-hour sample may be obtained as early as 7 hours post-dose.


For the PK analysis, each sample will comprise 2 mL of venous blood drawn into a Vacutainer® tube with K2-EDTA as the anticoagulant. Immediately after collection, the tube should be gently inverted 8 to 10 times to mix the anticoagulant with the blood sample. The tube should be stored upright on wet ice until centrifugation; centrifugation and sample processing should be performed within 1 hour of sample collection. The plasma fraction should be separated by placing the collection tube into a refrigerated centrifuge (4 to 8° C.) in a horizontal rotor (with a swing-out head) for a minimum of 15 minutes at 1500 RCF. The plasma fraction will be withdrawn by pipette and divided into 2 polypropylene freezing tubes (with each tube receiving approximately equal aliquots). All sample collection and freezing tubes will be clearly labeled in a fashion that identifies the PBTC accession number, protocol number, study cycle, and the nominal time of sampling. Labels will be fixed to freezing tubes in a manner that will prevent the label from becoming detached after freezing. After processing, samples should be placed into a freezer at approximately −70° C.


For the PD analysis, clinically validated ELISA kits will be used to measure PD plasma VEGF and cytokine levels in this study.


Neuroimaging Studies: MRI of the brain will be obtained within 2 weeks prior to study registration and every 8 weeks. Spinal MR after gadolinium will be obtained at baseline and every 8 weeks as needed. A contrast-enhanced MRI with echoplanar diffusion will be performed within 2 weeks prior to study registration, at the end of Course 2, and at the end of 12 courses. Image analysis of the standard MR with diffusion will be conducted based on the FLAIR, T2, post gadolinium and ADC images. Volumetric analysis will be done via the Vitrea workstation, from the axial FLAIR and Tl-weighted post-contrast brain images.


The standard MR parameters include: (a) Axial T1-weighted spin echo (SE) whole head, TR/TE=(500-700)/minimum full, receiver bandwidth (RB)=±16 kHz, FOV=18-24 cm, slice thickness/gap=4/0 (mm), NEX=2, no phase wrap option, matrix=256×192 (frequency×phase), frequency direction=A/P); (b) Axial T2-weighted fast spin echo (FSE), TR/ETE=(4000-6000)/80-100, ETL=10-16, RB=±16 kHz, FOV=18-24 cm, slice thickness/gap=4/0 interleaved, NEX=2, matrix=256×192, flow compensation option, frequency direction A/P; (c) Axial FLAIR, TR/TI/ETE=10,000/2200/162, ETL=16, RB=±32 kHz, FOV=8-24 cm, slice thickness/gap=4/0 mm, NEX=1, flow comp, frequency direction A/P; and, (d) Axial T1-weighted spin echo (SE) post contrast whole brain, TR/TE=500-700/minimum full, receiver bandwidth=±16 kHz, FOV=18-24 cm, slice thickness/gap=4/0 (interleaved acquisitions), NEX=2, frequency direction=A/P, matrix=256×192. Diffusion imaging will be done using single-shot echoplanar spin echo, TR/TE=2000/80, matrix=128×128, b-factor=5/1000 s/mm2, sensitized in x, y and z directions, receiver bandwidth=±64 kHz, frequency direction ═R/L, slice thickness/gap=5/0 whole brain. A region of interest will be placed on the ADC map in the solid part of the tumor based on FLAIR and T1 postgadolinium images and will be divided by an MR region of interest from the frontal white matter and the ratio recorded.


Evaluation Criteria: Patients who receive at least 1 dose of the study regimen and who are removed from treatment for DLT occurring at any time during the 1st course (dose-finding period) are evaluable for the purpose of estimating the MTD. Patients who receive additional anticancer therapy or receive supportive care that would confound the interpretation of any observed toxicity or side effect will not be considered evaluable for the purpose of estimating the MTD. Patients who receive less than 85% of the therapy as prescribed during the dose-finding period (that is they miss an equivalent of more than 4 days of treatment during Course-1) for reasons other than toxicity will be considered inevaluable for estimating the MTD and will be replaced. Patients who complete all therapy during the dose-finding period but who fail to comply with all the specified clinical and laboratory monitoring requirements for the 1st course may be considered inevaluable for estimating the MTD and may be replaced.


Tumor Response Criteria; At baseline, tumor lesions will be categorized by the investigator as measurable or non-measurable, where a tumor that is measurable refers to lesions that can be accurately measured cross-sectionally and a tumor that is non-measurable refers to lesions that cannot be measured cross-sectionally due to the presence of any potential artifacts or due to ill-defined tumor margins. All measurable lesions should be identified as target lesions, and measured and recorded at baseline and at the stipulated intervals during treatment.


Tumor response criteria are defined as follows:

    • 1. Complete Response (CR): Complete disappearance on MRI of all enhancing tumor and mass effect, on a stable or decreasing dose of corticosteroids (or receiving only adrenal replacement doses), accompanied by a stable or improving neurologic examination, and maintained for ≧8 weeks. CSF must be negative for tumor cells if it was positive at baseline.
    • 2. Partial Response (PR): A≧50% reduction in tumor size by bi-dimensional measurement, as compared with baseline, on a stable or decreasing dose of corticosteroids, accompanied by a stable or improving neurologic examination, and maintained for ≧8 weeks
    • 3. Stable Disease (SD): Neurologic examination is at least stable, maintenance corticosteroid dose is not increased, and MRI imaging meets neither the criteria for CR or PR nor the criteria for progressive disease (PD). SD status must be maintained for a clinically appropriate interval (≧12 weeks) to be reported as clinical benefit.
    • 4. Progressive Disease (PD): Progressive neurologic abnormalities or worsening neurologic status not explained by causes unrelated to tumor progression (eg, anticonvulsant or corticosteroid toxicity, electrolyte disturbances, sepsis, hyperglycemia), OR a >25% increase in the bi-dimensional measurement, taking as a reference the smallest disease measurement recorded since the start of Compound administration, OR the appearance of a new lesion, OR increasing doses of corticosteroids required to maintain stable neurological status or imaging.


The standard criterion for disease progression is a 25% increase in tumor size. However, because the Compound is a cytostatic agent, it is possible that there may be a lag time between the initiation of therapy and any antitumor effect. If a patient is removed from treatment as soon as the tumor increases in size by 25%, Compound administration may have been terminated prematurely. It is possible that if these patients were to continue receiving Compound, their disease might eventually regress. Thus, patients may remain on therapy until the tumor has increased at least 50% in size from baseline as long as they remain clinically stable.


Determination of Overall Response: The overall assessment of response for brain tumors will involve all parameters as depicted in Table 47 below.









TABLE 47







Response Criteria for Brain Tumors













Non-






Target
Target
New
Steroid
Neurological
Overall


Lesionsa
Lesionsb
Lesionsc
Treatment
Performance
Response





CR
CR
No
Stable or
Stable or
CR





reduced
improved


PR
Non-PD
No
Stable or
Stable or
PR





reduced
improved


SD
Non-PD
No
Stable or
Stable or
SD





reduced
improved


PD
Any
Yes
Stable or
Worse
PD



response
or No
increased


Any
PD
Yes
Stable or
Worse
PD


response

or No
increased


Any
Any
Yes
Stable or
Worse
PD


response
response

increased






aMeasurable lesions only




bMay include measurable lesions not followed as target lesions or non-measurable lesions




cMeasurable or non-measurable lesions



Abbreviations: CR = complete response, PD = progressive disease, PR = partial response, SD = stable disease






Statistical Considerations: All subjects who receive at least 1 dose of Compound will be included in the analyses of compliance and safety. For PK, pharmacodynamic, and tumor response parameters, evaluable populations of subjects will comprise all subjects who have sufficient baseline and on-study measurements to provide interpretable results for the evaluation of interest.


Dose Escalation/De-escalation: The “Rolling-6” Phase I design will be used to estimate the MTD, where dose escalations are planned in cohorts of 2-6 patients. No intra-patient escalation will be allowed.


The Rolling-6 design was based on the observation that most pediatric Phase I trials in oncology have not produced excessive toxicities (Skolnik J M, Barrett J S, Jayaraman B, Patel D, Adamson P C. Shortening the timeline of pediatric phase I trials: the rolling six design. J Clin Oncol. Jan. 10 2008; 26(2):190-5; Lee D P, Skolnik J M, Adamson P C. Pediatric Phase I Trials in Oncology: An Analysis of Study Conduct Efficiency. Journal of Clinical Oncology 2005; 23: 8431-8441). A possible explanation for this could be that the pediatric trials were often preceded by their adult counterparts and the knowledge gained in the latter was utilized towards ensuring safety in the former. The Rolling-6 design aims to shorten the duration of pediatric Phase I trials by minimizing the time the trial would be closed to accrual for toxicity monitoring. This is achieved by enrolling from 2 to 6 patients at a dose level without requiring that the DLT status of the patients already assigned to the same dose level be known; hence reducing the number of patients who would have to be turned away due to unavailability of open slots. The simulations indicate that this approach decreases the duration of a Phase I trial compared to the traditional method. (Skolnik, et al. 2008). Simulations studying a variety of dose-toxicity relationships have also confirmed this finding. In addition, simulations have shown that the toxicity associated with the Rolling-6 design is not any higher than the toxicity associated with the traditional (3+3) method.


The Rolling-6 design allows for concurrent accrual of 2 to 6 patients to a dose level. Decisions regarding the dose level at which to enroll a patient are based on the number of patients currently enrolled and evaluable, the number of patients experiencing DLTs, and the number of patients still at risk of developing a DLT at the time of new patient entry. For the initial dose level 1, which corresponds to 1.2 mg/kg, de-escalation to dose level 0, corresponding to 0.6 mg/kg, is possible in the event that dose level 1 is found to be toxic.


The dose escalation/de-escalation rules listed in Table 48 below are modified from the published Rolling-6 method (Skolnik, et al. 2008). The rules enumerate all possible enrollment scenarios other than the inevaluability of patients and describe the associated escalation/de-escalation rules that will be applied during dose-finding:









TABLE 48







Dose Escalation/De-Escalation Rules for the Rolling-6 Design










# Patients
Decision when Next Patient is Enrolleda












# Patients
# Patients
# Patients
with Toxicity
Below the Highest
At the Highest Dose


Enrolled
with DLTs
w/o DLT
Data Pending
Dose Level
Level





2
0, 1
Any
Any
Stay
N/A


2
2
0
0
De-escalate
N/A


3
0
0, 1, 2
3, 2, 1
Stay
N/A


3
0
3
0
Escalate
N/A


3
1
0, 1, 2
2, 1, 0
Stay
N/A


3
≧2
Any
Any
De-escalate
N/A


4
0
0, 1, 2, 3
4, 3, 2, 1
Stay
Stay


4
0
4
0
Escalate
Stay


4
1
0, 1, 2, 3
3, 2, 1, 0
Stay
Stay


4
≧2
Any
Any
De-escalate
De-escalate


5
0
0, 1, 2, 3, 4
5, 4, 3, 2, 1
Stay
Stay


5
0
5
0
Escalate
Stay


5
1
0, 1, 2, 3, 4
4, 3, 2, 1, 0
Stay
Stay


5
≧2
Any
Any
De-escalate
De-escalate


6
0
0, 1, 2, 3, 4
6, 5, 4, 3, 2
Suspend
Suspend


6
0
5, 6
1, 0
Escalate
MTD not determined


6
1
0, 1, 2, 3, 4
5, 4, 3, 2, 1
Suspend
Suspend


6
1
5
0
Escalate
MTD not determined


6
≧2
Any
Any
De-escalate
De-escalate






aStay = enroll any additional patients at the current dose level; de-escalate = enroll any additional patients at the next lower dose level; escalate = enroll any additional patients at the next higher dose level; suspend = cease enrollment at the current dose level



Abbreviations: DLT = dose-limiting toxicity, MTD = maximum tolerated dose, N/A = not applicable.






As indicated in Table 48, dose escalation occurs if 0 out of 3 or at most 1 out of 6 evaluable patients experience DLT while being treated at a dose level; otherwise if 2 out of 6 evaluable patients experience DLTs at a dose level, that dose level will be declared too toxic and thus above the MTD. Once a dose level is determined to be too toxic, there will be no escalation to higher dose levels. Based on the escalation/de-escalation rules outlined above, if Dose Level 0 proves to be too toxic, then patient accrual will be closed and the merits of amending or closing permanently will be reconsidered. On the other hand, if the maximum dose level proposed for the study is deemed to be safe, then the MTD will be considered to be beyond the highest dose level and consideration may be given to investigate higher dose levels.


The MTD is empirically defined as the highest dose level at which 6 patients have been treated with at most 1 patient experiencing a DLT and the next higher dose level has been determined to be too toxic. Once the MTD has been estimated or the recommended Phase II dose has been determined, 6 additional patients will be treated at that dose level to better describe the toxicity profile of the Compound. If the lowest dose level studied is too toxic or the highest dose level studied is considered safe, the MTD will not have been considered estimated. Using this dose escalation scheme, the probability of escalating to the next dose level, based on the true rate of DLT at the current dose, is given in Table 49 for three different annual accrual rates representing slow, average and fast accrual:









TABLE 49







Adverse Event Probability during Dose Escalation










Patient




Accrual per
True DLT Probability at a Given Dose















Year
10%
20%
30%
40%
50%
60%


















Probability of
10
.902
.686
.443
.262
.146
.066


Escalating*
18
.892
.679
.446
.249
.132
.054



36
.889
.661
.415
.233
.112
.043





*Probability of escalating is derived from a simulation study






Thus, if 18 patients are accrued annually and the true underlying proportion of toxic events is 30% at the current dose, there is a 45% chance of escalating to the next dose.


If all the dose levels are investigated with acceptable toxicity, consideration will be given to investigating higher dose levels. If higher doses are not to be studied and 6 patients have been treated safely at the highest dose level, then the highest dose level may be recommended for further study in Phase II trials. Once the MTD is identified, the total number of patients treated at the MTD may be increased to 12 to further define the toxicity profile. These additional patients will not be considered in the MTD estimation.


The targeted/planned enrollment by sex, race, and ethnicity is provided in Table 50.









TABLE 50







Targeted/Planned Enrollment









Sex/Gender











Females
Males
Total











Ethnic Category










Hispanic or Latino
2
2 =
4


Not Hispanic or Latino
12
14 = 
26


Total of all subjects
14
16 = 
30







Racial Category










American Indian or Alaskan Native
0
0 =
0


Asian
0
1 =
1


Black or African American
2
2 =
4


Native Hawaiian or other Pacific Islander
0
0 =
0


White
12
13 = 
25


Total of all subjects
14
16 = 
30









12. EXAMPLE
Treatment in Disease Model

This example describes the antitumor activity of Compound #10 in animal models for GBM.


12.1 Effect of Compound #10 on D245MG GBM-Mediated Lethality in an Orthotopic Model


The anti-tumor activity of Compound #10 was assessed in an orthotopic nude mouse model. Human D245MG cells (a cell line derived from a human GBM) were implanted intracranially (IC) into 20 six-week-old male athymic NCr-nu/nu mice. The day of tumor implantation was designated as Day 0. Animals were randomly assigned to one of 4 treatment groups (10 mice per treatment group). Mice in Group 1 were administered 10 mg/kg Compound #10 in vehicle L21 (35% Labrasol®, 35% Labrafac® CC, and 30% Solutol® HS 15) orally once per day. Mice in Group 2 were administered vehicle L21 orally once per day. Mice in Group 3 were administered AVASTIN® (brand of bevacizumab). Mice in Group 4 were administered 10 mg/kg of Compound #10 orally once per day and AVASTIN® (brand of bevacizumab). The day of administration of the agent was Day 1. Animals were checked daily and mortality was recorded (see Table 33). As shown in FIG. 34, Compound #10 induces a significant (p<0.02) improvement in survival. The median time for survival of Compound #10-treated mice was 48.5 days, an increase of 13 days compared with 35.5 days for control mice (a 34% increase in survival).









TABLE 33







Effect of Compound #10 and Avastin in D245MG-


Mediated Lethality in an Orthotopic Model












Vehicle
Avastin
Compound #10
Combo


Days
(Group 2)
(Group 3)
(Group 1)
(Group 4)














0
100% 
100% 
100% 
100% 


14
100% 
100% 
100% 
90%


23
100% 
100% 
100% 
80%


26
90%
100% 
100% 
80%


29
90%
100% 
90%
80%


33
80%
100% 
90%
70%


34
60%
100% 
90%
70%


35
50%
100% 
90%
70%


36
30%
100% 
90%
70%


41
10%
100% 
90%
70%


42
10%
100% 
80%
70%


44
10%
100% 
70%
70%


47
10%
90%
50%
70%


48
10%
90%
40%
70%


49
10%
90%
30%
70%


50
 0%
70%
20%
70%


51
 0%
70%
10%
70%


54
 0%
50%
10%
70%


55
 0%
50%
 0%
70%


56
 0%
40%
 0%
70%


57
 0%
30%
 0%
70%


61
 0%
30%
 0%
60%


62
 0%
30%
 0%
40%


63
 0%
20%
 0%
 0%


64
 0%
 0%
 0%
 0%









12.2 Effect of Compound #10 on U251-Mediated Lethality in an Orthotopic Model


In this example, the antitumor efficacy, defined as preventing or delaying tumor-induced lethality, of Compound #10, when administered by oral gavage at a dosage of 20 mg/kg/dose in L21 vehicle to male athymic NCr-nu/nu mice implanted IC with U251 human glioblastoma cells was evaluated.


Materials and Methods


Animal Care. Six-week-old male, athymic NCr-nu/nu mice were purchased for both experiments together from Harlan Sprague Dawley, Inc. (Pratville, Ala.) and acclimated in the laboratories for one week prior to experimentation. The animals were housed in microisolator cages, up to five per cage in a 12-hour light/dark cycle. The animals received filtered Birmingham municipal water and sterilizable rodent diet (Harlan-Teklad TD8656) ad libitum. Cages were changed twice weekly. The animals were observed daily and clinical signs were noted. All experimental procedures were approved by the Institutional Animal Care and Use Committee of Southern Research. Animal laboratories of Southern Research are AAALAC accredited.


Tumor Model. U251 human glioblastoma cells were originally obtained from the Development Therapeutics Program Tumor Repository, NCI (lot no. 0503006). Those cells were expended in cell culture and frozen for future use. A vial of frozen cells was thawed and cultured in RPMI 1640 medium supplemented with 2 mM of L-glutamine, 90% and fetal bovine serum, 10% until the necessary number of cells for inoculation of mice was obtained. Cells were harvested for inoculation after four passages. Cells were harvested using TrypLE™ Express, washed, and resuspended in complete media. The cell count and viability were determined with a Beckman Coulter VI CELL XR cell counter and viability analyzer. The cell suspension was recentrifuged, and the cell pellet was resuspended in culture medium at a cell density of 3.33×107 cells/mL. On the day of cell harvest, cells were confluent and cell viability was 99.3%.


Each animal was implanted IC with 1×106 cells in a medium volume of 0.03 mL using a 25-gauge needle. Mice were anesthetized with Ketamine/Rompun cocktail prior to IC implantation of tumor cells. The day of tumor cell implantation was designated as Day 0. Animals were randomly assigned to treatment groups on Day 1.


Treatment Formulation. Compound #10 at a concentration of 4 mg/mL in vehicle L21 (35% Labrasol/35% Labrafac/30% Solutol HS15) and vehicle L21 alone were supplied ready-to-use and were stored at room temperature protected from light. On Day 2 the solution turned cloudy and by Day 4 the solution separated. The solution was warmed in a 37° C. water bath and separation disappeared. Starting on Day 4 the solubility was checked daily prior to dosing and starting on Day 6 the dosing solutions were warmed in a 37° C. water bath for 5 min. daily before dosing.


Treatment. The study consisted of two groups of ten mice each. All treatments were initiated on Day 1. Compound #10 and the vehicle were administered by oral gavage (PO) once daily for eleven consecutive daily injections (Q1D×11, Days 1-11). Compound #10 was tested at a dosage of 20 mg/kg/dose (Group 2). The control group (Group 1) was treated with vehicle L21. Compound #10 and its vehicle were administered in a volume of 0.1 mL/20 g body weight.


Mortality and Body Weights. Animals were checked daily and mortality was recorded. The animals were weighed twice weekly starting with the first day of treatment, Day 1. Group mean body weights on each day of data collection are presented in Table 34.









TABLE 34





Mortality and Mean Body Weight Data



















Mean Animal Weight (g)



Treatment
on Day Indicated















GROUP
Compound
Dosage (mg/kg)
RT
Sschedule
1
5
8
12





1
Control (Vehicle
0
PO
Q1D × 11 (1)
25.8
22.7
19.9
16.5



alone)


2
Compound #10
20
PO
Q1D × 11 (1)
24.9
22.1
19.6
15.7












Median











12-day
Surv.




Surviv.
Time
%











GROUP
Day of Death
Total
Days
ILS























1
10
10
11
11
11
12
12
12
12
12
0/10
11.5








E


2
5
6
11
11
12
12
12
12
12
12
0/10
12.0
+4





E
E



E
E
E





Note:


All animals used in calculations of median survival time and percent increase in lifespan (% ILS).


E = euthanized, animal moribund.






Study Duration. The study was terminated on Day 12 after tumor cell implantation. Any moribund animal was euthanized prior to study termination. All dead and moribund animals were necropsied to rule out gavage trauma.


Parameters Evaluated. Number of 12-day survivors, median survival time, and increase in lifespan based on median survival time and expressed as a percentage (% ILS) were calculated. Results are summarized in Table 34.


Statistical Analysis. The date of the individual animal's euthanasia was used as the endpoint in a stratified Kaplan-Meier estimation followed by the Mantel-Haenszel log-rank test in order to statistically compare the tumor growth data between groups.


Results: As shown in FIG. 38, animals in the vehicle-treated control group (Group 1) had a median survival time of 11.5 days. All ten animals either died or were euthanized due to being moribund between Days 10 and 12. The maximum loss in mean body weight of 36% (9.3 g) was observed on Day 12.


Oral administration of Compound #10 at a dosage of 20 mg/kg/dose on a Q1D×11 schedule (Group 2) resulted in death or an animal being euthanized due to being moribund on Days 5-12. It could not be determined if two early deaths (on Day 5 and 6) were treatment-related (animal found dead on Day 5 could not be necropsied to rule out gavage trauma due to the condition of the carcass; animal found dead on Day 6 did not reveal gavage-related trauma at necropsy). Animals in this group experienced a maximum mean body weight loss of 37% (9.2 g), which was observed on Day 12. Administration of Compound #10 resulted in a median survival time of 12.0 days, which corresponded to increase in lifespan of 4%. Increases in survival afforded by the treatment with Compound #10 when the date of the individual animal's euthanasia was compared to that of those in the control group gave a p value equal to 0.791 (p=0.791).


12.3 Effect of Compound #10 on SF295-Mediated Lethality in an Orthotopic Model


In this example, antitumor efficacy is defined as preventing or delaying tumor-induced lethality when Compound #10 was administered by oral gavage at a dosage of 20 mg/kg/dose in L21 vehicle to male athymic NCr-nu/nu mice implanted IC with SF-295 human glioblastoma cells was evaluated.


Materials and Methods


Animal care. Animals were cared for as described in Section 12.2 above. Tumor Model. SF-295 glioblastoma cells were originally obtained from the Development Therapeutics Program Tumor Repository, NCI and solid tumors were established in athymic mice after subcutaneous implantation and were maintained by serial subcutaneous passage of solid tumor fragments in athymic mice. Tumors in the 6th generation were collected and a single cell suspension was prepared. Each animal was implanted IC with 1×105 SF-295 glioblastoma cells using a 25-gauge needle. Mice were anesthetized with Ketamine/Rompun cocktail prior to IC implantation of tumor cells. The day of tumor cell implantation was designated as Day 0. Animals were randomly assigned to treatment groups on Day 1.


Treatment Formulation. Compound #10 was formulated as described in Section 12.2 above.


Treatment. The experiment consisted of two groups of ten mice each. All treatments were initiated on Day 1. Compound #10 and the vehicle were administered PO once daily for twenty-six consecutive daily injections (Q1D×26, Days 1-26). Compound #10 was tested at a dosage of 20 mg/kg/dose (Group 2). The control group (Group 1) was treated with vehicle L21. Compound #10 and its vehicle were administered in a volume of 0.1 mL/20 g body weight.


Mortality and Body Weights. Animals were checked daily and mortality was recorded. The animals were weighed twice weekly starting with the first day of treatment, Day 1. Group mean body weights on each day of data collection are presented in Table 35.









TABLE 35





Mortality and Mean Body Weight Data


















Treatment












Do-sage

Mean Animal Weight (g) on Day Indicated



















GROUP
Compound
(mg/kg)
RT
Schedule
1
5
8
12
15
19
22
26





1
Contr.
0
PO
Q1D × 26 (1)
28.2
29.1
29.2
29.3
26.8
21.1
20.2


2
Compound #10
20
PO
Q1D × 26 (1)
27.1
28.5
29.2
29.4
28.0
24.5
21.7
18.6












Median











26-Day
Surv
%













GROUP
Day of Death
Survival Total
Time (days)
ILS





















1
14
16
18
20
20
0/10
20.0





E
E
E




21
21
21
21
22




*

E
E
E



2
 5
16
18
23
24
0/10
24.0
+20






E




24
25
25
25
26






E
E
E







Note:



All animals used in calculations of median survival time and percent increase in lifespan (% ILS).



E = euthanized, animal moribund.



* Gavage trauma observed at necropsy, animal excluded from the calculation of median survival time.






Study Duration. The study was terminated on Day 26 after tumor cell implantation. Any moribund animal was euthanized prior to study termination. All dead and moribund animals were necropsied to rule out gavage trauma.


Parameters Evaluated. Number of 26-day survivors, median survival time, and increase in lifespan based on median survival time and expressed as a percentage (% ILS) were calculated. Results are summarized in Table 35.


Statistical Analysis. The date of the individual animal's euthanasia was used as the endpoint in a stratified Kaplan-Meier estimation followed by the Mantel-Haenszel log-rank test in order to statistically compare the tumor growth data between groups.


Results: As shown in FIG. 39, animals in the vehicle-treated control group (Group 1) had a median survival time of 22 days. All ten animals died or were euthanized due to being moribund between Days 14 and 22. One animal (found dead on Day 21) revealed a gavage-related trauma at necropsy, and; thus, was excluded from the calculation of the median survival time. The maximum loss in mean body weight of 25% (7.1 g) was observed on Day 19.


Oral administration of Compound #10 at a dosage of 20 mg/kg/dose on a Q1D×26 schedule (Group 2) resulted in death or an animal being euthanized due to being moribund of all ten animals on Days 5-26. It could not be determined if early death (on Day 5) was treatment-related (animal could not be necropsied to rule out gavage trauma due to the condition of the carcass). Animals in this group experienced a maximum mean body weight loss of 20% (5.4 g), which was observed on Day 22. Administration of Compound #10 (20 mg/kg QD) resulted in a median survival time of 26 days, which corresponded to increase in lifespan of 17%. Increases in survival afforded by the treatment with Compound #10 was found to be statistically significant when individual animals' days of death were compared to that in the control group (p value 0.01).


12.4 Effect of Compound #10 as Monotherapy and in Combination with Temozolomide in a D245MG-PR Lethality Model of GBM


This example provides a protocol for evaluating the effect of Compound #10 as monotherapy and in combination with temozolomide (TMZ) in a lethality model of GBM.


Forty (40) female Balb/C nu/nu mice at least 6 weeks of age but not more than 12 weeks at study initiation, weighing at study initiation 18-28 g, were implanted intracranially. D245MG-PR cells (procarbazine-resistant cells derived from an adult human GBM tumor) in a medium using a 25-gauge needle. Mice were anesthetized with Ketamine/Rompun cocktail prior to IC implantation. The day of tumor cell implantation was designated as Day 0. Animals were randomly assigned to treatment groups (10 mice per treatment group).


Mice in Group 1 were administered L21 vehicle alone orally once per day beginning on Day 3. Mice in Group 2 were administered 10 mg/kg of Compound #10 orally once per day beginning on Day 3. Mice in Group 3 were administered 250 mg/kg TMZ intraperitoneally (IP) beginning on Day 5. Mice in Group 4 were administered 10 mg/kg of Compound #10 orally once per day and 250 mg/kg on TMZ IP beginning on Days 3 and 5, respectively. The dosing solution volumes are shown in Table 36. The Group Designations are shown in Table 37.









TABLE 36







Dosing Solution Volumes
















Estimated
Estimated
Dosing
Volume to Be



Dose
Route,
Volume
Body
Solution
Administered


Cmpds.
(mg/kg)
Regimen
(mL/kg)
Weight (kg)
(mg/mL)
(mL)
















Compound #10
10
PO, QD
~4
0.025
2.5
0.1a


TMZ
88
IP, Day 5
10
0.025
8.8
~0.25b






aMice were dosed at 0.1 mL/mouse, dosing solution concentration was adjusted as necessary based upon the most recently obtained body weight so that 0.1 mL delivers the target dose




bMice were dosed at 10 mL/kg



Abbreviation: Cmpds. = compounds, PO = oral dosing, TMZ = temozolomide













TABLE 37







Group Designation










Compound #10 Dosing (Oral)












Dose (mg/kg)
Temozolomide Dosing (IP)












Regimen
Dose (mg/kg) and
Mice per












Group
Treatment
Weekday
Treatment
Regimen
Group















1
Vehicle (L21)
0, QD


10


2
Compound #10
10, QD


10


3


TMZ
88 mg/kg, Day 5
10


4
Compound #10
10, QD
TMZ
88 mg/kg, Day 5
10





Abbreviations: QD = once-per-day dosing; PO = oral dosing; L21 = 35% Labrasol ®, 35% Labrafac ® CC, and 30% Solutol ® HS 15; TMZ = temozolomide






Each animal was observed at the time of dosing for mortality and signs of pain or distress; findings of overt toxicity were recorded as they were observed. Body weights were measured the day that dosing was initiated and once a week thereafter. Observations were made on animals that died or were sacrificed at an unscheduled interval. Animals were sacrificed if moribund.


The study results are described in FIG. 36. Over the study period, the median survival time for the control treatment group was 70 days, the Compound #10 (Cpd #10) treatment group was 65 days, the TEMODAR® (brand of temozolomide) (TMZ) treatment group was 86 days, and the Cpd #10 combined with TMZ treatment group was 108 days. The p value for the combination treatment group compared to vehicle was p<0.05.


12.5 Effect of Compound #10 as Monotherapy and in Combination with Temozolomide in a D245MG Lethality Model of GBM


This example provides a protocol for evaluating the effect of Compound #10 as monotherapy and in combination with temozolomide (TMZ) in a lethality model of GBM.


Forty (40) female Balb/C nu/nu mice at least 6 weeks of age but not more than 12 weeks at study initiation, weighing at study initiation 18-28 g, were implanted intracranially with D245MG cells (cells derived from a human GBM tumor) in a medium using a 25-gauge needle. Mice were anesthetized with Ketamine/Rompun cocktail prior to IC implantation. The day of tumor cell implantation was designated as Day 0. Animals were randomly assigned to treatment groups (10 mice per treatment group).


Mice in Group 1 were administered L21 vehicle alone orally once per day beginning on Day 3. Mice in Group 2 were administered 10 mg/kg of Compound #10 orally once per day beginning on Day 3. Mice in Group 3 were administered 250 mg/kg TMZ intraperitoneally (IP) beginning on Day 5. Mice in Group 4 were administered 10 mg/kg of Compound #10 orally once per day and 250 mg/kg on TMZ IP beginning on Days 3 and 5, respectively. The Dosing Solution volumes are shown in Table 38. The Group Designations are shown in Table 39.









TABLE 38







Dosing Solution Volumes
















Estimated
Estimated
Dosing
Volume to Be



Dose
Route,
Volume
Body
Solution
Administered


Cmpds.
(mg/kg)
Regimen
(mL/kg)
Weight (kg)
(mg/mL)
(mL)
















Compound #10
10
PO, QD
~4
0.025
2.5
0.1a


TMZ
250
IP, Day 5
10
0.025
25
~0.25b






aMice were dosed at 0.1 mL/mouse, dosing solution concentration was adjusted as necessary based upon the most recently obtained body weight so that 0.1 mL delivers the target dose




bMice were dosed at 10 mL/kg



Abbreviation: Cmpds. = compounds, PO = oral dosing, TMZ = temozolomide













TABLE 39







Group Designation










Compound #10 Dosing (Oral)












Dose (mg/kg)
Temozolomide Dosing (IP)












Regimen
Dose (mg/kg) and
Mice per












Group
Treatment
Weekday
Treatment
Regimen
Group





1
Vehicle (L21)
0, QD


10


2
Compound #10
10, QD


10


3


TMZ
250 mg/kg, Day 5
10


4
Compound #10
10, QD
TMZ
250 mg/kg, Day 5
10





Abbreviations: QD = once-per-day dosing; PO = oral dosing; L21 = 35% Labrasol ®, 35% Labrafac ® CC, and 30% Solutol ® HS 15; TMZ = temozolomide






Each animal was observed at the time of dosing for mortality and signs of pain or distress; findings of overt toxicity were recorded as they were observed. Body weights were measured the day that dosing was initiated and once a week thereafter. Observations were made on animals that died or were sacrificed at an unscheduled interval. Animals were sacrificed if moribund.


The study results are described in FIG. 37. Over the study period, the median survival time for the control treatment group was 48 days and the Compound #10 (Cpd #10) treatment group was 52 days. The treatment groups provided the following p values (according to the Student's t-test): the Compound #10 treatment group compared to vehicle had a p value of <0.05; the temozolomide treatment group compared to vehicle had a p value of <0.001; the temozolomide treatment group compared to the Compound #10 treatment group had a p value of <0.001; and, the combination treatment group compared to the Compound #10 treatment group had a p value of <0.001.


12.6 Effect of Compound #10 on Growth of Subcutaneous U87 Tumor Cells In Vivo


The anti-tumor activity of Compound #10 was assessed in an orthotopic nude mouse model. Human U87 cells (a cell line derived from a human glioblastoma) in a medium were implanted subcutaneously into 20 six-week-old male athymic NCr-nu/nu mice. The day of tumor implantation was designated as Day 0. Animals were randomly assigned to one of 4 treatment groups (10 mice per treatment group). Mice in Group 1 were administered vehicle L21 (35% Labrasol®, 35% Labrafac® CC, and 30% Solutol® HS 15) orally once per day. Mice in Group 2 were administered 3 mg/kg Compound #10 in vehicle L21 alone orally once per day. Mice in Group 3 were administered 10 mg/kg Compound #10. Mice in Group 4 were administered 30 mg/kg of Compound #10 orally once per day. The day of administration of the agent was Day 1. As shown in FIG. 35, at 30 mg/kg of Compound #10 an approximately 42% inhibition in mean tumor volume was detected compared to vehicle alone (p>0.05).


12.7 Effect of Compound #10 on GBM Cell Lines In Vivo


The selective and dose-dependent inhibition of intra-tumoral VEGF production Compound #10 was also assessed in Human U87 cells in an orthotopic nude mouse model. Animals were randomly assigned to one of 4 treatment groups (10 mice per treatment group). Mice in Group 1 were administered vehicle L21 orally once per day. Mice in Group 2 were administered 3 mg/kg Compound #10 in vehicle orally once per day. Mice in Group 3 were administered 10 mg/kg Compound #10 in vehicle orally once per day. Mice in Group 4 were administered 30 mg/kg of Compound #10 in vehicle orally once per day. FIG. 40A shows that Compound #10 inhibits production of intra-tumoral VEGF compared to vehicle alone in a dose dependent manner (p=<0.05, according to ANOVA). At a dose level of 10 mg/kg of Compound #10 inhibition was approximately 55% and at 30 mg/kg inhibition was approximately 62%. Further, FIG. 40B shows that Compound #10 selectively inhibits production of intra-tumoral VEGF by having no effect on the production of FGF-2 protein levels compared to vehicle alone (p=<0.53).


One of ordinary skill in the art may determine the effect of Compound #10 in other GBM cell lines using available procedures. The results for use of Compound #10 in a sampling of GBM cell lines with various endpoints are shown in Table 40.









TABLE 40







GBM Cell Lines











Cells
Endpoint
Effect







U87
Cytotoxicity
No cytotoxicity



U118
VEGF
No inhibition



CCF-STTG1
VEGF
No inhibition



LN-229
VEGF
No VEGF production by cells










The invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.


All references cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.

Claims
  • 1. A method for treating a brain tumor, comprising administering to a human in need thereof an effective amount of a compound having Formula (I):
  • 2. The method of claim 1, wherein the brain tumor is a malignant primary brain tumor, a malignant non-primary brain tumor, a benign primary brain tumor or a benign non-primary brain tumor.
  • 3. The method of claim 2, wherein the primary brain tumor is a glioma or non-glioma, wherein the glioma is selected from an astrocytoma, an oligodendroglioma, a mixture of oligodendroglioma and astrocytoma elements or an ependymoma, and wherein the non-glioma is selected from a non-malignant meningioma or pituitary adenoma or a malignant primitive neuroectodermal tumor, medullblastoma, primary Central Nervous System (CNS) lymphoma or CNS germ cell tumor.
  • 4. The method of claim 2, wherein the brain tumor is an acoustic neuroma, an anaplastic astrocytoma, glioblastoma multiforme, a meningioma, a brain stem glioma, a craniopharyngioma, an ependyoma, a juvenile pilocytic astrocytoma, a medulloblastoma, an optic nerve glioma, a primitive neuroectodermal tumor or a rhabdoid tumor.
  • 5. The method of claim 4, wherein the brain tumor is glioblastoma multiforme.
  • 6. The method of claim 1, wherein the brain tumor is in a human adult.
  • 7. The method of claim 1, wherein the brain tumor is in a human child.
  • 8. The method of claim 1, wherein the effective amount of the compound is administered based on body weight.
  • 9. The method of claim 1, wherein the effective amount is in a range of from about 0.001 mg per kg per day to about 1500 mg per kg per day.
  • 10. The method of claim 1, wherein the compound is administered during or within about 30 minutes after a meal.
  • 11. The method of claim 1, wherein the effective amount of the compound is administered two times per day at a time interval of from about 12 hours to about 18 hours between doses.
  • 12. The method of claim 11, wherein the effective amount of the compound is administered two times per day at a time interval of about 12 hours between doses.
  • 13. The method of claim 1, wherein the effective amount of the compound is administered three times per day at a time interval of from about 8 hours to about 12 hours between doses.
  • 14. The method of claim 13, wherein the effective amount of the compound is administered three times per day at a time interval of about 8 hours between doses.
  • 15. The method of claim 1, wherein the compound has the Formula (II):
  • 16. The method of claim 1, wherein the compound has the Formula (II):
  • 17. The method of claim 1, wherein the compound has the Formula (II):
  • 18. The method of claim 1, wherein the compound has the Formula (III):
  • 19. The method of claim 1, wherein the compound has the Formula (IV):
  • 20. The method of claim 1, wherein the compound has the Formula (IV):
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Patent Application 61/181,654, filed May 27, 2009, incorporated herein by reference in its entirety and for all purposes.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US10/36300 5/27/2010 WO 00 3/9/2012
Provisional Applications (1)
Number Date Country
61181654 May 2009 US