Methods for treating chemically relaxed hair

Information

  • Patent Grant
  • 11433011
  • Patent Number
    11,433,011
  • Date Filed
    Wednesday, May 24, 2017
    7 years ago
  • Date Issued
    Tuesday, September 6, 2022
    2 years ago
Abstract
The instant disclosure relates to methods for treating chemically relaxed hair. The methods include applying a neutralizing composition to the chemically relaxed hair, the neutralizing composition comprising: at least 0.5 wt. % of at least one carboxylic acid, one or more C2-C6 monoalkanolamines, and water. The neutralizing composition is allowed to remain on the hair for a period of time. The hair is also treated with a neutralizing conditioner, which is a different than the neutralizing composition. The neutralizing conditioner includes: at least 0.5 wt. % of at least one carboxylic acid, one or more C2-C6 monoalkanolamines, one or more cationic surfactants, and water. The neutralizing conditioner is allowed to remain on the hair for a period of time. After treatment with a neutralizing composition and a neutralizing conditioner, the hair may be further treated with a shampoo, a conditioner, a conditioning shampoo, etc., dried, and/or styled.
Description
FIELD OF THE DISCLOSURE

The instant disclosure relates to methods for treating chemically relaxed hair. The methods strengthen the hair, minimize or compensate for damage to the hair, and improve the sensorial properties of the hair by imparting smoothness, softness, suppleness, etc.


BACKGROUND

Many chemical treatments are available for changing the appearance of hair. For example, chemical treatments for permanently straightening or curling the hair are common. Also, hair may be lightened or bleached and oxidative dyes can be used to change the color of the hair. Chemical treatments are popular because their effects are long-lasting and can be drastic. Nonetheless, the biggest drawback to chemical treatments is the strain and damage caused to hair. This is because chemical treatments permanently change the chemical and physical structure of the hair. Chemical treatments can remove moisture from the surface of the hair cuticles resulting in the hair becoming brittle, dry, and more vulnerable to breakage.


Individuals seeking to change the shape of hair often turn to chemical procedures that use chemical relaxer compositions. Chemical relaxer compositions are often used on curly hair. The chemical relaxer compositions make hair easier to straighten by chemically “relaxing” the natural curls. The active agent is often a strong alkali, although some formulations are based on ammonium thioglycolate instead. Hair relaxer compositions are applied to hair at a salon by a professional or in the home by the individual consumer.


Hair fiber is a keratinous material, which is comprised of proteins (polypeptides). Many of the polypeptides in hair fibers are bonded together by disulfide bonds (—S—S—). A disulfide bond may be formed from the reaction of the two sulfhydryl groups (—SH), one on each of two cysteine residues, which results in the formation of a cystine residue. While there may be other types of bonds between the polypeptides in hair fibers, such as ionic salt bonds, the permanent curling and shape of the hair is essentially dependent on the disulfide bonds of cystine residues.


Chemical relaxing processes alter the aforementioned disulfide bonds between polypeptides in hair fibers to form lanthionine [S(CH2CHNH2COOH)2]. Thus, the term “lanthionizing” is often used when referring to the relaxing or straightening of keratin fibers by hydroxide ions. Hair fibers may be relaxed or straightened by disrupting the disulfide bonds of the hair fibers with an alkaline agent or with a reducing agent. The chemical disruption of disulfide bonds with an alkaline agent is generally combined with mechanical straightening of the hair, such as combing, and straightening generally occurs due to changes in the relative positions of opposing polypeptide chains within the hair fiber. This reaction is generally terminated by rinsing and/or application of a neutralizing composition.


The reaction with the alkaline agent is normally initiated by hydroxide ions. Hair relaxing processes proceed via the release of the hydroxide ions, which penetrate the hair fiber and transform cystine residues to lanthionine residues. Chemical relaxer compositions often contain varying proportions of strong water-soluble bases, such as sodium hydroxide (NaOH), or include slightly-soluble metal hydroxides, such as calcium hydroxide (Ca(OH)2), which can be converted in situ to soluble bases, such as guanidine hydroxide. Sodium hydroxide is extremely effective in straightening hair fibers but often causes a decrease in the strength of the hair fibers. Chemical relaxer composition often damage the hair to an extent and cause the hair to lose some of its desirable cosmetic properties such as shine, strength, smoothness, etc. Thus, mechanisms to reduce or prevent damage to hair and for improving the cosmetic properties of hair treated with chemical relaxer compositions are desired.


SUMMARY OF THE DISCLOSURE

The instant disclosure relates to methods for treating chemically relaxed. The methods dramatically improve the quality and durability of the chemically relaxed hair. Damage during the chemical relaxing process is repaired, minimized, and/or compensated for with various compositions used in the methods that restructure, strengthen, and/or protect the keratin fibers of the hair. Hair treated according to the methods is not only strengthened but the hair's cosmetic properties (e.g., softness, smoothness, and discipline) are considerably improved. Furthermore, consumers find the natural look and feel of hair treated according to the methods to be very appealing.


The methods typically include:


applying a neutralizing composition to hair within 24 hours from rinsing a chemical relaxer composition from the hair, the neutralizing composition comprising:

    • at least 0.5 wt. % of at least one carboxylic acid selected from the group consisting of maleic acid, oxalic acid, malonic acid, malic acid, glutaric acid, citraconic acid, citric acid, glycolic acid, succinic acid, adipic acid, tartaric acid, fumaric acid, sebacic acid, benzoic acid, glyoxylic acid monohydrate, a salt thereof, and a mixture thereof, in particular, maleic acid, malonic acid, a salt thereof, or a mixture thereof;
    • one or more C2-C6 monoalkanolamines, in particular, monoethanolamine; and
    • water;


allowing the neutralizing composition to remain on the hair for a period of time (e.g., about 10 seconds to about 30 minutes, about 5 minute to about 15 minutes, or about 8 to about 12 minutes);


after allowing the neutralizing composition to remain on the hair for a period of time, without rinsing the neutralizing composition from the hair, applying a neutralizing conditioner, the neutralizing conditioner comprising:

    • at least 0.5 wt. % of at least one carboxylic acid selected from the group consisting of maleic acid, oxalic acid, malonic acid, malic acid, glutaric acid, citraconic acid, citric acid, glycolic acid, succinic acid, adipic acid, tartaric acid, fumaric acid, sebacic acid, benzoic acid, glyoxylic acid monohydrate, and a mixture thereof, in particular, maleic acid, malonic acid, a salt thereof, or a mixture thereof;
    • one or more C2-C6 monoalkanolamines, in particular, monoethanolamine;
    • one or more cationic surfactants; and
    • water;


allowing the neutralizing conditioner to remain on the hair for a period of time (e.g., about 10 seconds to about 30 minutes, about 5 minute to about 15 minutes, or about 8 to about 12 minutes); and


after allowing the neutralizing conditioner to remain on the hair for a period of time, rinsing the neutralizing conditioner and the neutralizing composition from the hair.


After rinsing the neutralizing conditioner and the neutralizing composition from the hair, the hair may further shampooed with a shampoo and/or conditioned with a conditioner. Also, the hair may be subsequently dried and styled, for example, the hair may be dried with a blow dryer and/or styled with a hot iron.


The neutralizing composition and the neutralizing conditioner are not identical compositions although they may both include identical carboxylic acid(s) and/or identical C2-C6 monoalkanolamines. The neutralizing conditioner typically differs from the neutralizing composition by including components that provide conditioning properties to the hair, for example, cationic surfactants, cationic polymers, water-soluble solvents, fatty compounds, etc. The neutralizing composition provides initial neutralization of the pH of the chemically relaxed hair, i.e., the neutralizing composition reduces the alkaline pH of chemically relaxed hair (pH of about 8-10) to an acidic pH of less than 7. Although the neutralizing conditioner continues to neutralize the pH of the hair (i.e., continues to reduce the pH of the hair), it additionally provides conditioning, strengthening, and other desirable properties to the hair.


The ratio of the total amount of the at least one carboxylic acid, a salt thereof, or mixture thereof in the neutralizing composition to the total amount of the one or more C2-C6 monoalkanolamines in the neutralizing composition is about 1:1 to about 5:1, about 1:1 to about 4:1, or about 1:1 to about 3:1. Likewise, the ratio of the total amount of the at least one carboxylic acid, a salt thereof, or mixture thereof in the neutralizing composition to the total amount of the one or more C2-C6 monoalkanolamines in the neutralizing composition is about 1:1 to about 5:1, about 1:1 to about 4:1, or about 1:1 to about 3:1.


The total amount of the one or more carboxylic acids in the neutralizing composition and/or the neutralizing conditioner may vary but is typically at least 0.5 to about 10 wt. %, about 1 to about 8 wt. %, or about 1 to about 6 wt. %, based on the total weight of the neutralizing composition. The total amount of the one or more C2-C6 monoalkanolamines in the neutralizing composition may vary but is typically about 0.1 to about 10 wt. %, about 0.1 to about 8 wt. %, or about 0.5 to about 6 wt. %, based on the total weight of the neutralizing composition.


The total amount of the one or more carboxylic acids in the neutralizing conditioner and/or the neutralizing conditioner may vary but is typically at least 0.5 to about 10 wt. %, about 1 to about 8 wt. %, or about 1 to about 6 wt. %, based on the total weight of the neutralizing conditioner. The total amount of the one or more C2-C6 monoalkanolamines in the neutralizing conditioner may vary but is typically about 0.1 to about 10 wt. %, about 0.1 to about 8 wt. %, or about 0.5 to about 6 wt. %, based on the total weight of the neutralizing conditioner.


The various composition used in the disclosed methods may be included in kits. For example, a kit may include a neutralizing composition and a neutralizing conditioner, wherein each composition is separately contained. In some cases, the kit may additionally include a chemical reducing composition. In some cases, the kits may also include a shampooing and/or cleansing composition (e.g., a shampoo, a conditioner (different than the neutralizing conditioner), a conditioning shampoo (all-in-one shampoo/conditioner), etc.). Instructions, mixing components, brushes, gloves, measuring tools, etc., may also be included in the kits.


As mentioned previously, the methods of the disclosure dramatically improve the quality and durability of the chemically relaxed hair. Accordingly, the disclosure relates to methods for repairing, minimizing, and/or compensating for damage to chemically relaxed hair. Moreover, the methods relate to restructuring, strengthening, and/or rejuvenating the keratin fibers of hair. In particular, the methods improve the Young's modulus of the hair and/or improve the break stress of the hair. Therefore, in some instances, the methods relates to increasing a mean Young's modulus of hair and/or increasing the break stress of hair, for example, by at least 5%, 10%, 15%, or more, relative to chemically relaxed hair to which a neutralizing composition and a neutralizing conditioner of the instant disclosure is not applied (i.e., relative to chemically relaxed hair not treated according to the disclosed methods).





BRIEF DESCRIPTION OF THE DRAWINGS

Implementations of the present technology will now be described, by way of example only, with reference to the attached figures, wherein:



FIG. 1 is a typical stress-strain curve for dry hair with arrows identifying which part of the curve relates to the Young's modulus, the plateau load, the break force, and the break extension;



FIG. 2(a) is a graph showing the Young's modulus (the elastic modulus) of hair treated with only a sodium hydroxide based chemical relaxer composition (A1), hair treated according to a commercially available method (A2), and hair treated according to the instant disclosure (A3);



FIG. 2(b) is a graph showing the Young's modulus (the elastic modulus) of hair treated with only a guanidine based chemical relaxer composition (B1), hair treated according to a commercially available method (B2), and hair treated according to the instant disclosure (b3);



FIG. 3(a) is a graph showing the break stress of hair treated with only a chemical relaxer composition (A1), hair treated according to a commercially available method (A2), and hair treated according to the instant disclosure (A3); and



FIG. 3(b) is a graph showing the Young's modulus (the elastic modulus) of hair treated with only a guanidine based chemical relaxer composition (B1), hair treated according to a commercially available method (B2), and hair treated according to the instant disclosure (B3).





It should be understood that the various aspects are not limited to the arrangements and instrumentality shown in the drawings.


DETAILED DESCRIPTION OF THE DISCLOSURE

The methods of the instant disclosure involve treating chemically relaxed hair with a sequence of unique hair-treatment compositions that neutralize, strengthen, and improve the cosmetic properties of the hair. For example, after a chemical relaxer composition is rinsed from the hair, the hair is treated with a neutralizing composition for a period of time followed by a treatment with a neutralizing conditioner for a period of time. After rinsing the neutralizing composition and the neutralizing conditioner from the hair, the hair may be subjected to a regular shampooing and optional conditioning routine, dried, and styled.


More specifically, the methods include:

    • applying a neutralizing composition to hair within about 24, 6, or 1 hour(s) from rinsing a chemical relaxer composition from the hair, the neutralizing composition comprising:
    • at least 0.5 wt. % of at least one carboxylic acid selected from the group consisting of maleic acid, oxalic acid, malonic acid, malic acid, glutaric acid, citraconic acid, citric acid, glycolic acid, succinic acid, adipic acid, tartaric acid, fumaric acid, sebacic acid, benzoic acid, glyoxylic acid monohydrate, a salt thereof, and a mixture thereof, in particular, maleic acid, malonic acid, a salt thereof, and a mixture thereof;
    • one or more C2-C6 monoalkanolamines, in particular, monoethanolamine; and
    • water;
    • allowing the neutralizing composition to remain on the hair for a period of time (e.g., about 10 seconds to about 30 minutes, about 5 minute to about 15 minutes, or about 8 to about 12 minutes);
    • after allowing the neutralizing composition to remain on the hair for a period of time, without rinsing the neutralizing composition from the hair, applying a neutralizing conditioner (the neutralizing conditioner being a different composition than the neutralizing composition), the neutralizing conditioner comprising:
    • at least 0.5 wt. % of at least one carboxylic acid selected from the group consisting of maleic acid, oxalic acid, malonic acid, malic acid, glutaric acid, citraconic acid, citric acid, glycolic acid, succinic acid, adipic acid, tartaric acid, fumaric acid, sebacic acid, benzoic acid, glyoxylic acid monohydrate, and a mixture thereof, in particular, maleic acid, malonic acid, a salt thereof, or a mixture thereof;
    • one or more C2-C6 monoalkanolamines, in particular, monoethanolamine;
    • one or more cationic surfactants; and
    • water;
    • allowing the neutralizing conditioner to remain on the hair for a period of time (e.g., about 10 seconds to about 30 minutes, about 5 minute to about 15 minutes, or about 8 to about 12 minutes); and
    • after allowing the neutralizing conditioner to remain on the hair for a period of time, rinsing the neutralizing conditioner and the neutralizing composition from the hair.


After rinsing the neutralizing conditioner and the neutralizing composition from the hair, the hair may further shampooed with a shampoo and/or conditioned with a conditioner. Also, the hair may be subsequently dried and styled, for example, the hair may be dried with a blow dryer and/or styled with a hot iron.


The neutralizing composition and the neutralizing conditioner are not identical compositions although they may both include identical carboxylic acid(s) and/or identical C2-C6 monoalkanolamines. The neutralizing conditioner typically differs from the neutralizing composition by including components that provide conditioning properties to the hair, for example, cationic surfactants, cationic polymers, water-soluble solvents, fatty compounds, etc. The neutralizing composition provides initial neutralization of the pH of the chemically relaxed hair, i.e., the neutralizing composition reduces the alkaline pH of chemically relaxed hair (pH of about 8-10) to an acidic pH of less than 7. Although the neutralizing conditioner continues to neutralize the pH of the hair (i.e., continues to reduce the pH of the hair), it additionally provides conditioning, strengthening, and other desirable properties to the hair.


The neutralizing composition may be provided as a concentrated composition that is diluted prior to application to the hair. A concentrated neutralizing composition may be diluted, for example, with water prior to application to the hair. In some instances, the concentrated neutralizing composition is diluted with water in a ratio of about 1:1 to about 1:10 (concentrated neutralizing composition:water). The dilution ratio may also be about 1:2 to about 1:8, about 1:3 to about 1:7, about 1:4 to about 1:6, or about 1:6 (i.e., one part concentrated neutralizing composition combined with six parts of water). A non-limiting example of a concentrated neutralizing composition includes:

    • i. about 1 to about 30 wt. %, about 2 to about 25 wt. %, or about 5 to about 20 wt. % of at least one carboxylic acid selected from the group consisting of maleic acid, oxalic acid, malonic acid, malic acid, glutaric acid, citraconic acid, citric acid, glycolic acid, succinic acid, adipic acid, tartaric acid, fumaric acid, sebacic acid, benzoic acid, glyoxylic acid monohydrate, a salt thereof, and a mixture thereof, in particular, maleic acid, malonic acid, a salt thereof, and a mixture thereof, in particular, maleic acid, malonic acid, a salt thereof, and a mixture thereof;
    • ii. about 1 to about 20 wt. %, about 1 to about 15 wt. %, or about 2 to about 10 wt. % of one or more C2-C6 monoalkanolamines, in particular, monoethanolamine; and
    • iii. about 50 to about 95 wt. %, about 60 to about 90, or about 70 to about 90 wt. % of water.


The neutralizing composition may include additional components, for example, water-soluble solvents, thickening agents, preservatives, perfumes, etc. Nonetheless, additional components are not required and may be excluded. Non-limiting examples of additional components that may be included in the hair-treatment compositions are provided later, under headings such as, “Water-Soluble Solvents,” “Thickening Agents,” etc.


The neutralizing composition is often provided in the form of a liquid, but may be in the form of a gel, a foam, a lotion, a cream, a mousse, an emulsion, etc. A concentrated neutralizing composition in the form of a liquid, for example, can be diluted with water and applied to the hair with a spray bottle.


The ratio of the total amount of the at least one carboxylic acid, a salt thereof, or mixture thereof in the neutralizing composition to the total amount of the one or more C2-C6 monoalkanolamines in the neutralizing composition is about 1:1 to about 5:1, about 1:1 to about 4:1, or about 1:1 to about 3:1. The ratio applies regardless of whether the neutralizing composition is concentrated or diluted (ready-to-use), as dilution does not influence the ratio of the carboxylic acid, a salt thereof, or mixture thereof to the one or more C2-C6 monoalkanolamines.


The total amount of the one or more carboxylic acids in the neutralizing composition when applied to the hair (after being diluted or when provided as a ready-to-use composition) may vary but is typically at least 0.5 to about 10 wt. %, about 1 to about 8 wt. %, or about 1 to about 6 wt. %, based on the total weight of the neutralizing composition. In some cases, the total amount of the one or more carboxylic acids in the neutralizing composition is at least 0.5 to about 10 wt. %, at least 0.5 to about 8 wt. %, at least 0.5 to about 6 wt. %, at least 0.5 to about 4 wt. %, about 0.5 to about 2 wt. %, about 1 to about 10 wt. %, about 1 to about 8 wt. %, about 1 to about 6 wt. %, about 1 to about 4 wt. %, or about 1 to about 2 wt. %.


The total amount of the one or more C2-C6 monoalkanolamines in the neutralizing composition when applied to the hair (after being diluted or when provided as a ready-to-use composition) may vary but is typically about 0.1 to about 10 wt. %, about 0.1 to about 8 wt. %, or about 0.5 to about 6 wt. %, based on the total weight of the neutralizing composition. In some cases, the total amount of the one or more C2-C6 monoalkanolamines is about 0.1 to about 10 wt. %, about 0.1 to about 8 wt. %, about 0.1 to about 6 wt. %, about 0.1 to about 4 wt. %, about 0.1 to about 2 wt. %, about 0.1 to about 1 wt. %, about 0.3 to about 10 wt. %, about 0.3 to about 8 wt. %, about 0.3 to about 6 wt. %, about 0.3 to about 4 wt. %, about 0.3 to about 2 wt. %, about 0.3 to about 1 wt. %, about 0.5 to about 10 wt. %, about 0.5 to about 8 wt. %, about 0.5 to about 6 wt. %, about 0.5 to about 4 wt. %, about 0.5 to about 2 wt. %, or about 0.5 to about 1 wt. %.


The total amount of water in the neutralizing composition when applied to the hair (after being diluted or when provided as a ready-to-use composition) may vary but is typically about 50 to about 99 wt. %, about 60 to about 98 wt. %, or about 70 to about 98 wt. %, based on the total weight of the neutralizing composition. In some cases, the total amount of water may be about 50 to 99 wt. %, about 60 to about 99 wt. %, about 70 to about 99 wt. %, about 80 to about 99 wt. %, about 85 to about 99 wt. %, about 60 to about 98 wt. %, about 70 to about 98 wt. %, about 80 to about 98 wt. %, about 85 to about 98 wt. %, or about 80 to about 97 wt. %.


The neutralizing conditioners used in the methods typically include:

    • i. at least 0.5 wt. % of at least one carboxylic acid selected from the group consisting of maleic acid, oxalic acid, malonic acid, malic acid, glutaric acid, citraconic acid, citric acid, glycolic acid, succinic acid, adipic acid, tartaric acid, fumaric acid, sebacic acid, benzoic acid, glyoxylic acid monohydrate, and a mixture thereof, in particular, maleic acid, malonic acid, a salt thereof, or a mixture thereof;
    • ii. one or more C2-C6 monoalkanolamines, in particular, monoethanolamine;
    • iii. one or more cationic surfactants; and
    • iv. water.


The neutralizing condition may include additional components such as, for example, fatty compounds, water-soluble solvents, cationic polymers, thickening agents, pH adjusters, preservatives, perfumes, etc. The neutralizing conditioner may be provided in the form of a liquid, a gel, a foam, a lotion, a cream, a mousse, an emulsion, etc.


The ratio of the total amount of the at least one carboxylic acid, a salt thereof, or mixture thereof in the neutralizing conditioner to the total amount of the one or more C2-C6 monoalkanolamines in the neutralizing conditioner is about 1:1 to about 5:1, about 1:1 to about 4:1, or about 1:1 to about 3:1.


The total amount of the one or more carboxylic acids in the neutralizing conditioner may vary but is typically at least 0.5 to about 10 wt. %, about 1 to about 8 wt. %, or about 1 to about 6 wt. %, based on the total weight of the neutralizing conditioner. In some cases, the total amount of the one or more carboxylic acids in the neutralizing conditioner is at least 0.5 to about 10 wt. %, at least 0.5 to about 8 wt. %, at least 0.5 to about 6 wt. %, at least 0.5 to about 4 wt. %, about 0.5 to about 2 wt. %, about 1 to about 10 wt. %, about 1 to about 8 wt. %, about 1 to about 6 wt. %, about 1 to about 4 wt. %, or about 1 to about 2 wt. %.


The total amount of the one or more C2-C6 monoalkanolamines in the neutralizing conditioner may vary but is typically about 0.1 to about 10 wt. %, about 0.1 to about 8 wt. %, or about 0.5 to about 6 wt. %, based on the total weight of the neutralizing conditioner. In some cases, the total amount of the one or more C2-C6 monoalkanolamines is about 0.1 to about 10 wt. %, about 0.1 to about 8 wt. %, about 0.1 to about 6 wt. %, about 0.1 to about 4 wt. %, about 0.1 to about 2 wt. %, about 0.1 to about 1 wt. %, about 0.3 to about 10 wt. %, about 0.3 to about 8 wt. %, about 0.3 to about 6 wt. %, about 0.3 to about 4 wt. %, about 0.3 to about 2 wt. %, about 0.3 to about 1 wt. %, about 0.5 to about 10 wt. %, about 0.5 to about 8 wt. %, about 0.5 to about 6 wt. %, about 0.5 to about 4 wt. %, about 0.5 to about 2 wt. %, or about 0.5 to about 1 wt. %.


Many cationic surfactants are well-known and may be used in the neutralizing conditioner. Non-limiting examples of cationic surfactants include cetrimonium chloride, cetrimonium methosulfate, stearimonium chloride, behentrimonium chloride, behentrimonium methosulfate, behenamidopropyltrimonium methosulfate, stearamidopropyltrimonium chloride, arachidtrimonium chloride, distearyldimonium chloride, dicetyldimonium chloride, tricetylmonium chloride, oleamidopropyl dimethylamine, linoleamidopropyl dimethylamine, isostearamidopropyl dimethylamine, stearamidopropyl dimethylamine, oleyl hydroxyethyl imidazoline, stearamidopropyldimethylamine, behenamidopropyldimethylamine, behenamidopropyldiethylamine, behenamidoethyldiethyl-amine, behenamidoethyldimethylamine, arachidamidopropyldimethylamine, arachidamido-propyidiethylamine, arachidamidoethyidiethylamine, arachidamidoethyidimethylamine, myristamidopropyl PG-dimonium chloride phosphate, brassicyl isoleucinate esylate, and a mixture thereof. In some cases, the neutralizing conditioner includes at least cetrimonium chloride, behentrimonium methosulfate, stearamidopropyl dimethylamine, quaternium-91, and a mixture thereof.


A more exhaustive list of cationic surfactants that may be included in the hair-treatment compositions is provided later, under the heading “Cationic Surfactants.”


The total amount of the one or more cationic surfactants may vary but is typically about 0.1 to about 20 wt. %, about 0.5 to about 15 wt. %, or about 1 to about 10 wt. %, based on the total amount of the conditioning composition. In some cases, the total amount of the one or more cationic surfactants may be about 0.1 to about 8 wt. %, about 0.1 to about 6 wt. %, about 0.1 to about 5 wt. %, about 0.5 to about 10 wt. %, about 0.5 to about 8 wt. %, about 0.5 to about 6 wt. %, or about 0.5 to about 5 wt. %.


The total amount of water in the neutralizing conditioner may vary but is typically about 50 to about 95 wt. %, about 60 to about 92 wt. %, or about 70 to about 90 wt. %, based on the total weight of the neutralizing conditioner. In some cases, the total amount of water may be about 50 to about 95 wt. %, about 55 to about 95 wt. %, about 60 to about 95 wt. %, about 65 to about 95 wt. %, about 70 to about 95 wt. %, about 75 to about 95 wt. %, about 80 to about 95 wt. %, about 60 to about 92 wt. %, about 70 to about 92 wt. %, about 80 to about 92 wt. %, about 60 to about 90 wt. %, about 70 to about 90 wt. %, or about 80 to about 90 wt. %.


The neutralizing conditioner may include one or more fatty compounds. Non-limiting examples of fatty compounds include oils, mineral oil, fatty alcohols, fatty acids, alkyl ethers of fatty alcohols, fatty acid esters of fatty alcohols, fatty acid esters of alkyl ethers of fatty alcohols, fatty acid esters of alkoxylated fatty alcohols, fatty acid esters of alkyl ethers of alkoxylated fatty alcohols, hydroxy-substituted fatty acids, and a mixture thereof. In some cases, the conditioning composition includes at least mineral oil, cetearyl alcohol, or a mixture thereof. A more exhaustive list of fatty compounds that may be included in the neutralizing conditioner is provided later, under the heading “Fatty Compounds.”


The total amount of the one or more fatty compounds may be about 0.1 to about 40 wt. %, based on the total weight of the neutralizing conditioner. In some cases, the total amount of the one or more fatty compounds may be about 0.1 to about 30 wt. %, about 0.1 to about 20 wt. %, about 0.1 to about 20 wt. %, about 0.1 to about 10 wt. %, about 1 wt. % to about 40 wt. %, about 1 wt. % to about 30 wt. %, about 1 wt. % to about 20 wt. %, or about 1 wt. % to about 10 wt. %.


Water-soluble solvents may be included in the neutralizing conditioner. The term “water-soluble solvent” is interchangeable with the term “water-miscible solvent” and means a compound that is liquid at 25° C. and at atmospheric pressure (760 mmHg), and it has a solubility of at least 50% in water under these conditions. In some cases, the water soluble solvents has a solubility of at least 60%, 70%, 80%, or 90%. Non-limiting examples of water-soluble solvents include, for example, glycerin, C1-4 alcohols, organic solvents, fatty alcohols, fatty ethers, fatty esters, polyols, glycols, vegetable oils, mineral oils, liposomes, laminar lipid materials, or any a mixture thereof. As examples of organic solvents, non-limiting mentions can be made of monoalcohols and polyols such as ethyl alcohol, isopropyl alcohol, propyl alcohol, benzyl alcohol, and phenylethyl alcohol, or glycols or glycol ethers such as, for example, monomethyl, monoethyl and monobutyl ethers of ethylene glycol, propylene glycol or ethers thereof such as, for example, monomethyl ether of propylene glycol, butylene glycol, hexylene glycol, dipropylene glycol as well as alkyl ethers of diethylene glycol, for example monoethyl ether or monobutyl ether of diethylene glycol. Other suitable examples of organic solvents are ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, propane diol, and glycerin. The organic solvents can be volatile or non-volatile compounds.


Further non-limiting examples of water-soluble solvents which may be used include alkanediols (polyhydric alcohols) such as glycerin, 1,2,6-hexanetriol, trimethylolpropane, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, dipropylene glycol, 2-butene-1,4-diol, 2-ethyl-1,3-hexanediol, 2-methyl-2,4-pentanediol, (caprylyl glycol), 1,2-hexanediol, 1,2-pentanediol, and 4-methyl-1,2-pentanediol; alkyl alcohols having 1 to 4 carbon atoms such as ethanol, methanol, butanol, propanol, and isopropanol; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, ethylene glycol mono-iso-propyl ether, diethylene glycol mono-iso-propyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-t-butyl ether, diethylene glycol mono-t-butyl ether, 1-methyl-1-methoxybutanol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-t-butyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-iso-propyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, and dipropylene glycol mono-iso-propyl ether; 2-pyrrolidone, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, formamide, acetamide, dimethyl sulfoxide, sorbit, sorbitan, acetine, diacetine, triacetine, sulfolane, and a mixture thereof.


In some cases, the water-soluble solvent may be selected from the group consisting of one or more glycols, C1-4 alcohols, glycerin, and a mixture thereof. In some cases, the water-soluble solvent is selected from the group consisting of hexylene glycol, proplene glycol, caprylyl glycol, glycerin, isopropyl alcohol, and a mixture thereof.


Polyhydric alcohols are useful. Examples of polyhydric alcohols include glycerin, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, 3-methyl-1,3-butanediol, 1,5-pentanediol, tetraethylene glycol, 1,6-hexanediol, 2-methyl-2,4-pentanediol, polyethylene glycol, 1,2,4-butanetriol, 1,2,6-hexanetriol, and a mixture thereof. Polyol compounds may also be used. Non-limiting examples include the aliphatic diols, such as 2-ethyl-2-methyl-1,3-propanediol, 3,3-dimethyl-1,2-butanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2,4-dimethyl-2,4-pentanediol, 2,5-dimethyl-2,5-hexanediol, 5-hexene-1,2-diol, and 2-ethyl-1,3-hexanediol, and a mixture thereof.


A more exhaustive list of water-soluble solvents that may be included in the neutralizing conditioner is provided later, under the heading “Water-Soluble Solvents.”


The total amount of the one or more water-soluble solvents in the neutralizing conditioner may vary, but in some cases are about 0.1 to about 50 wt. %, about 0.5 to about 30 wt. %, or about 1 to about 15 wt. %, based on the total weight of the neutralizing conditioner. The total amount of the one or more water-soluble solvents may be about 0.1 to about 40 wt. %, about 0.1 to about 30 wt. %, about 0.1 to about 20 wt. %, about 0.1 to about 20 wt. %, about 0.1 to about 10 wt. %, about 0.1 to about 5 wt. %, about 1 to about 50 wt. %, about 1 to about 40 wt. %, about 1 to about 30 wt. %, about 1 to about 20 wt. %, about 1 to about 10 wt. %, or about 1 to about 5 wt. %.


One or more thickening agents may also be included in the neutralizing conditioner. Non-limiting examples of thickening agents include carboxylic acid/carboxylate copolymers, hydrophobically-modified cross-linked copolymers of carboxylic acid and alkyl carboxylate vinyl polymers, cross linked acrylic acid polymers (carbomer), methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxylpropyl cellulose, hydroxypropyl methyl cellulose, nitro cellulose, sodium cellulose sulfate, sodium carboxymethyl cellulose, crystalline cellulose, cellulose powder, polyvinylpyrrolidone, polyvinyl alcohol, guar gum, hydroxypropyl guar gum, xanthan gum, arabic gum, tragacanth gum, carob gum, karaya gum, carrageenan, pectin, agar, starch, algae colloids, starch-based polymers, methylhydroxypropyl starch, alginic acid-based polymers, propylene glycol esters, sodium polyacrylate, polyethylacrylate, polyacrylamide, polyethyleneimine, bentonite, aluminum magnesium silicate, laponite, hectonite, anhydrous silicic acid, and a mixture thereof. In some cases, the one or more thickening agents are selected from the group consisting of cross linked acrylic acid polymers (carbomer), methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, hydroxylpropyl cellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol, guar gum, hydroxypropyl guar gum, xanthan gum, arabic gum, carrageenan, starch-based polymers, and a mixture thereof. In some cases, the neutralizing conditioner includes at least hydroxylpropyl cellulose.


A more exhaustive list of thickening agents that may be included in the neutralizing conditioner is provided later, under the heading “Thickening Agents.”


The total amount of the one or more thickening agents can vary but is typically about 0.01 to about 10 wt. %, 0.05 to about 5 wt. %, or about 0.1 to about 4 wt. %, based on the total weight of the neutralizing conditioner. The total amount of the one or more thickening agents may be about 0.01 to about 8 wt. %, about 0.01 to about 6 wt. %, about 0.01 to about 5 wt. %, about 0.1 to about 10 wt. %, about 0.1 to about 8 wt. %, about 0.1 to about 6 wt. %, about 0.1 to about 5 wt. %, about 0.5 to about 10 wt. %, about 0.5 to about 8 wt. %, about 0.5 to about 6 wt. %, or about 0.5 to about 5 wt. %.


In some cases, the neutralizing conditioner may include one or more cationic polymers. Non-limiting examples of cationic polymers include poly(methacryloyloxyethyl trimethylammonium chloride), polyquaternium-37, quaternized cellulose derivatives, polyquaternium-4, polyquaternium-10, polyquaternium-11, cationic alkyl polyglycosides, cationized honey, cationic guar derivatives, polymeric dimethyl diallyl ammonium salts and copolymers thereof with esters and amides of acrylic acid and methacrylic acid, copolymers of vinyl pyrrolidone with quaternized derivatives of dialkylaminoalkyl acrylate and methacrylate, vinyl pyrrolidone-vinyl imidazolium methochloride copolymers, quaternized polyvinyl alcohol, polyquaternium-2, polyquaternium-7, polyquaternium-17, polyquaternium-18, polyquaternium-24, polyquaternium-27, polyquaternium-72, and a mixture thereof. In some cases, the one or more cationic polymers are polyquaterniums, for example, polyquaternium-11, polyquaternium-37, or a mixture thereof.


A more exhaustive list of cationic polymers that may be included in the neutralizing conditioner is provided later, under the heading “Cationic Polymers.”


The total amount of the one or more cationic polymers may vary but it typically about 0.01 to about 10 wt. %, based on the total weight of the neutralizing conditioner. The total amount of the one or more cationic polymers may be about 0.01 to about 8 wt. %, about 0.01 to about 5 wt. %, about 0.01 to about 3 wt. %, about 0.1 to about 10 wt. %, about 0.1 to about 8 wt. %, about 0.1 to about 5 wt. %, or about 0.1 to about 3 wt. %.


According to an embodiment of the instant disclosure, methods for treating hair include:

    • i. applying a chemical relaxer composition to the hair and relaxing the hair, for example, a chemical relaxer composition comprising:
      • a. one or more caustic agents such as sodium hydroxide:
      • b. one or more fatty compounds, one or more surfactants,
      • c. one or more water-soluble solvents, and/or
      • d. one or more cationic polymers;
        • and allowing the chemical relaxer composition to remain on the hair for a period of time sufficient to chemically relax the hair (e.g., from about 5 to about 30 min., about 5 to about 25 min., or about 10 to about 20 min.);
    • ii. rinsing the chemical relaxer composition from the hair, typically with water;
    • iii. applying a neutralizing composition to the hair within about 30, about 15, or about 5 minutes from rinsing the chemical relaxer composition from the hair, the neutralizing composition comprising:
      • a. at least 0.5 to about 8 wt. %, about 1 to about 6 wt. %, or about 1 to about 5 wt. % of maleic acid and/or a salt thereof, based on the total weight of the neutralizing composition;
      • b. about 0.2 to about 5 wt. %, about 0.2 to about 4 wt. %, or about 0.5 to about 3 wt. % of monoethanolamine, based on the total weight of the neutralizing composition; and
      • c. about 75 to about 99 wt. %, about 85 to about 98 wt. %, or about 90 to about 98 wt. % of water;
        • wherein the ratio of maleic acid and/or a salt thereof to monoethanolamide in the neutralizing composition is about 1:1 to about 5:1, about 1:1 to about 1:4, or about 1:1 to about 3:1 (maleic acid:monethanolamine);
    • iv. allowing the neutralizing composition to remain on the hair for a period of time, for example, about 8 to about 15 min., about 8 to about 12 min., or about 10 min;
    • v. after the neutralizing composition has remained on the hair for the period of time, without rinsing the neutralizing composition from the hair, applying a neutralizing conditioner to the hair, the neutralizing conditioner comprising:
      • a. at least 0.5 to about 8 wt. %, about 1 to about 6 wt. %, or about 1 to about 5 wt. % of maleic acid, based on the total weight of the neutralizing conditioner;
      • b. about 0.2 to about 5 wt. %, about 0.2 to about 4 wt. %, or about 0.5 to about 3 wt. % of monoethanolamine, based on the total weight of the neutralizing conditioner;
      • c. about 0.1 to about 10 wt. %, about 0.5 to about 5 wt. %, or about 1 to about 5 wt. % of one or more cationic surfactants, based on the total weight of the neutralizing conditioner;
      • d. about 0.5 to about 20 wt. %, about 1 to about 15 wt. %, or about 1 to about 10 wt. % of one or more fatty compounds;
      • e. about 0.5 to about 20 wt. %, about 1 to about 15 wt. %, or about 1 to about 10 wt. % of one or more water-soluble solvents, based on the total weight of the neutralizing conditioner; and
      • f. about 50 to about 90 wt. %, about 70 to about 90 wt. %, or about 80 to about 90 wt. % of water, based on the total weight of the neutralizing conditioner;
        • wherein the ratio of maleic acid to monoethanolamide in the neutralizing conditioner is about 1:1 to about 5:1, about 1:1 to about 1:4, or about 1:1 to about 3:1 (maleic acid:monethanolamine);
    • vi. allowing the neutralizing conditioner to remain on the hair for a period of time, for example, about 8 to about 15 min., about 8 to about 12 min., or about 10 min;
    • vii. rinsing the neutralizing conditioner and the neutralizing composition from the hair;
    • viii. applying a shampoo to the hair after rinsing the neutralizing conditioner and the neutralizing composition from the hair; and
    • ix rinsing the shampoo from the hair.


After rinsing the neutralizing conditioner and the neutralizing composition from the hair, the hair may further shampooed with a shampoo and/or conditioned with a conditioner. Also, the hair may be subsequently dried and styled, for example, the hair may be dried with a blow dryer and/or styled with a hot iron. In another embodiment, the methods according to the disclosure include:

    • A. applying a chemical relaxer composition to the hair and relaxing the hair, for example, a chemical relaxer composition comprising:
      • a. one or more caustic agents such as sodium hydroxide:
      • b. one or more fatty compounds, one or more surfactants,
      • c. one or more water-soluble solvents, and/or
      • d. one or more cationic polymers;
        • and allowing the chemical relaxer composition to remain on the hair for a period of time sufficient to chemically relax the hair (e.g., from about 5 to about 30 min., about 5 to about 25 min., or about 10 to about 20 min.);
    • B. rinsing the chemical relaxer composition from the hair;
    • C. applying a neutralizing composition to the hair within 15 minutes from rinsing the chemical relaxer composition from the hair, the neutralizing composition comprising:
      • a. at least 0.5 to about 8 wt. % of maleic acid and/or a salt thereof, based on the total weight of the neutralizing composition;
      • b. about 0.2 to about 5 wt. % of monoethanolamine, based on the total weight of the neutralizing composition; and
      • c. about 85 to about 98 wt. % of water;
        • wherein the ratio of maleic acid and/or a salt thereof to monoethanolamide in the neutralizing composition is about 1:1 to about 3:1;
    • D. allowing the neutralizing composition to remain on the hair for about 10 minutes;
    • E. after the neutralizing composition has remained on the hair for about 10 minutes, without rinsing the neutralizing composition from the hair, applying a neutralizing conditioner to the hair, the neutralizing conditioner comprising:
      • a. about 1 to about 5 wt. % of maleic acid and/or a salt thereof, based on the total weight of the neutralizing conditioner;
      • b. about 0.2 to about 3 wt. % of monoethanolamine, based on the total weight of the neutralizing conditioner;
      • c. about 0.5 to about 5 wt. % of one or more cationic surfactants, based on the total weight of the neutralizing conditioner;
      • d. about 0.5 to about 20 wt. % of one or more fatty compounds;
      • e. about 0.5 to about 20 wt. % of one or more water-soluble solvents, based on the total weight of the neutralizing conditioner; and
      • f. about 60 to about 90 wt. % water, based on the total weight of the neutralizing conditioner;
        • wherein the ratio of maleic acid to monoethanolamide in the neutralizing conditioner is about 1:1 to about 3:1;
    • F. allowing the neutralizing conditioner to remain on the hair for about 10 minutes;
    • G. rinsing the neutralizing conditioner and the neutralizing composition from the hair;
    • H. applying a shampoo to the hair within 15 minutes from rinsing the neutralizing conditioner and the neutralizing composition from the hair; and
    • I. rinsing the shampoo from the hair.


After rinsing the neutralizing conditioner and the neutralizing composition from the hair, the hair may further shampooed with a shampoo and/or conditioned with a conditioner. Also, the hair may be subsequently dried and styled, for example, the hair may be dried with a blow dryer and/or styled with a hot iron.


The compositions used in the methods of the disclosure may be incorporated into kits. For example, the kits may include at least one neutralizing composition and at least one neutralizing conditioner, which are separately contained. The neutralizing composition may be a concentrated neutralizing conditioner, which is diluted prior to application to the hair. A concentrated neutralizing composition may diluted with water in a ratio of about 1:1 to about 1:10 (concentrated neutralizing composition:water). The dilution ratio may also be about 1:2 to about 1:8, about 1:3 to about 1:7, about 1:4 to about 1:6, or about 1:6 (e.g., one part concentrated neutralizing composition combined with six parts of water). The kits may also include a chemical relaxing composition. In some cases, the kits may also include a shampooing and/or cleansing composition (e.g., a shampoo, a conditioner (different than the neutralizing conditioner), a conditioning shampoo (all-in-one shampoo/conditioner), etc.). Instructions, mixing components, brushes, gloves, measuring tools, etc., may also be included in the kits. In one embodiment, kits according to the instant disclosure include at least: a concentrated neutralizing composition and neutralizing shampoo, which are separately contained. Also, included are mixing instructions and/or application instructions (e.g., instructions regarding how to dilute the concentrated neutralizing composition and/or instructions regarding how to use the compositions of the kits for treating hair).


The compositions of the instant disclosure may be packaged in a variety of different containers. Non-limiting examples of useful packaging include tubes, jars, caps, unit dose packages, bottles, etc., including squeezable tubes and bottles.


The methods of the disclosure dramatically improve the quality and durability of the chemically relaxed hair. Accordingly, the disclosure relates to methods for repairing, minimizing, and/or compensating for damage to chemically relaxed hair. Moreover, the disclosure relates to methods for restructuring, strengthening, and/or rejuvenating the keratin fibers of hair. Along these lines, as shown the by testing described herein, the disclosure relates to methods for improving the Young's modulus of hair and to methods for improving the break stress of the hair. Therefore, in some instances, the methods relate to increasing the mean Young's modulus of chemically relaxed hair by at least 5%, 10%, 15%, 20%, 25%, or more, relative to chemically relaxed hair not treated according to the described methods (e.g., relative to hair treated in the same manner as hair treated according to the disclosed methods but without treatment with a neutralizing composition and a neutralizing conditioner). In some cases, the Young's modulus is increased by about 5 to about 30%, about 10 to about 30%, about 15 to about 30%, about 5 to about 25%, about 10 to about 25%, or about 15 to about 25%, relative to chemically relaxed hair not treated according to the described methods.


Likewise, in some instances, the methods relate to increasing the mean break stress of chemically relaxed hair by at least 5%, 10%, 12%, or 15%, or more, relative to chemically relaxed hair not treated according to the described methods (e.g., relative to hair treated in the same manner as hair treated according to the disclosed methods but without treatment with a neutralizing composition and a neutralizing conditioner). In some cases, the break stress is increased by about 5 to about 20%, about 10 to about 20%, or about 10 to about 15% relative to chemically relaxed hair not treated according to the described methods.


More exhaustive but non-limiting lists of components useful in the chemical relaxer compositions, the neutralizing compositions, and the neutralizing conditioners of the instant disclosure are provided below.


Cationic Surfactants


The term “cationic surfactant” means a surfactant that is positively charged when it is contained in the composition according to the disclosure. This surfactant may bear one or more positive permanent charges or may contain one or more functions that are cationizable in the composition according to the disclosure.


Non-limiting examples of cationic surfactants include behenalkonium chloride, benzethonium chloride, cetylpyridinium chloride, behentrimonium chloride, lauralkonium chloride, cetalkonium chloride, cetrimonium bromide, cetrimonium chloride, cethylamine hydrofluoride, chlorallylmethenamine chloride (Quaternium-15), distearyldimonium chloride (Quaternium-5), dodecyl dimethyl ethylbenzyl ammonium chloride (Quaternium-14), Quaternium-22, Quaternium-26, Quaternium-18 hectorite, dimethylaminoethylchloride hydrochloride, cysteine hydrochloride, diethanolammonium POE (10) oletyl ether phosphate, diethanolammonium POE (3)oleyl ether phosphate, tallow alkonium chloride, dimethyl dioctadecylammoniumbentonite, stearalkonium chloride, domiphen bromide, denatonium benzoate, myristalkonium chloride, laurtrimonium chloride, ethylenediamine dihydrochloride, guanidine hydrochloride, pyridoxine HCl, iofetamine hydrochloride, meglumine hydrochloride, methylbenzethonium chloride, myrtrimonium bromide, oleyltrimonium chloride, polyquaternium-1, procainehydrochloride, stearalkonium bentonite, stearalkoniumhectonite, stearyl trihydroxyethyl propylenediamine dihydrofluoride, tallowtrimonium chloride, and hexadecyltrimethyl ammonium bromide.


The cationic surfactant(s) may be chosen from optionally polyoxyalkylenated, primary, secondary or tertiary fatty amines, or salts thereof, and quaternary ammonium salts, and a mixture thereof.


The fatty amines generally comprise at least one C8-C30 hydrocarbon-based chain.


Examples of quaternary ammonium salts that may especially be mentioned include: those corresponding to the general formula (III) below:




embedded image


in which the groups R8 to R11, which may be identical or different, represent a linear or branched, saturated or unsaturated aliphatic group comprising from 1 to 30 carbon atoms, or an aromatic group such as aryl or alkylaryl, at least one of the groups R8 to R11 denoting a group comprising from 8 to 30 carbon atoms and preferably from 12 to 24 carbon atoms. The aliphatic groups may comprise heteroatoms especially such as oxygen, nitrogen, sulfur and halogens. The aliphatic groups are chosen, for example, from C1-C30 alkyl, C2-C30 alkenyl, C1-C30 alkoxy, polyoxy(C2-C6)alkylene, C1-C30 alkylamide, (C12-C22)alkylamido(C2-C6)alkyl, (C12-C22)alkyl acetate and C1-C30 hydroxyalkyl groups; X is an anion chosen from the group of halides, phosphates, acetates, lactates, (C1-C4)alkyl sulfates, and (C1-C4)alkyl- or (C1-C4)alkylarylsulfonates.


Among the quaternary ammonium salts of formula (III), those that are preferred are, on the one hand, tetraalkylammonium salts, for instance dialkyldimethylammonium or alkyltrimethylammonium salts in which the alkyl group contains approximately from 12 to 22 carbon atoms, in particular behenyltrimethylammonium, distearyldimethylammonium, cetyltrimethylammonium or benzyldimethylstearylammonium salts, or, on the other hand, oleocetyldimethylhydroxyethylammonium salts, palmitylamidopropyltrimethylammonium salts, stearamidopropyltrimethylammonium salts and stearamidopropyldimethylcetearylammonium salts.


In some cases it is useful to use salts such as the chloride salts of the following compounds:


A. a quaternary ammonium salt of imidazoline, such as, for example, those of formula (IV) below:




embedded image


in which R12 represents an alkenyl or alkyl group comprising from 8 to 30 carbon atoms, derived for example from tallow fatty acids, R13 represents a hydrogen atom, a C1-C4 alkyl group or an alkyl or alkenyl group comprising from 8 to 30 carbon atoms, R14 represents a C1-C4 alkyl group, R15 represents a hydrogen atom or a C1-C4 alkyl group, X is an anion chosen from the group of halides, phosphates, acetates, lactates, alkyl sulfates, alkyl- or alkylaryl-sulfonates in which the alkyl and aryl groups preferably comprise, respectively, from 1 to 20 carbon atoms and from 6 to 30 carbon atoms. R12 and R13 preferably denote a mixture of alkenyl or alkyl groups containing from 12 to 21 carbon atoms, derived for example from tallow fatty acids, R14 preferably denotes a methyl group, and R15 preferably denotes a hydrogen atom. Such a product is sold, for example, under the name REWOQUAT W 75 by the company Evonik;


B. a quaternary diammonium or triammonium salt, in particular of formula (V):




embedded image


in which R16 denotes an alkyl radical comprising approximately from 16 to 30 carbon atoms, which is optionally hydroxylated and/or interrupted with one or more oxygen atoms, R17 is chosen from hydrogen or an alkyl radical comprising from 1 to 4 carbon atoms or a group (R16a)(R17a)(R18a)N—(CH2)3, R16a, R17a, R18a, R18, R19, R20 and R21, which may be identical or different, being chosen from hydrogen and an alkyl radical comprising from 1 to 4 carbon atoms, and X is an anion chosen from the group of halides, acetates, phosphates, nitrates and methyl sulfates. Such compounds are, for example, FINQUAT CT-P, sold by the company Innospec (Quaternium 89), and FINQUAT CT, sold by the company Innospec (Quaternium 75),


C. a quaternary ammonium salt containing at least one ester function, such as those of formula (VI) below:




embedded image


in which:


R22 is chosen from C1-C6 alkyl groups and C1-C6 hydroxyalkyl or dihydroxyalkyl groups;


R23 is chosen from:




embedded image



which is a linear or branched, saturated or unsaturated C1-C22 hydrocarbon-based group, and a hydrogen atom,


R25 is chosen from:




embedded image



which is a linear or branched, saturated or unsaturated C1-C6 hydrocarbon-based group, and a hydrogen atom,


R24, R26 and R28, which may be identical or different, are chosen from linear or branched, saturated or unsaturated C7-C21 hydrocarbon-based groups;


r, s and t, which may be identical or different, are integers ranging from 2 to 6;


y is an integer ranging from 1 to 10;


x and z, which may be identical or different, are integers ranging from 0 to 10;


X is a simple or complex, organic or mineral anion;


with the proviso that the sum x+y+z is from 1 to 15, that when x is 0 then Rndenotes R27, and that when z is 0 then R25 denotes R29.


The alkyl groups R22 may be linear or branched, and more particularly linear. In some cases, R22 denotes a methyl, ethyl, hydroxyethyl or dihydroxypropyl group, and more particularly a methyl or ethyl group. Advantageously, the sum x+y+z is from 1 to 10.


When R23 is a hydrocarbon-based group R27, it may be long and contain from 12 to 22 carbon atoms, or may be short and contain from 1 to 3 carbon atoms. When R25 is an R29 hydrocarbon-based group, it preferably contains 1 to 3 carbon atoms. Advantageously, R24, R26 and R28, which may be identical or different, are chosen from linear or branched, saturated or unsaturated C11-C21 hydrocarbon-based groups, and more particularly from linear or branched, saturated or unsaturated C11-C21 alkyl and alkenyl groups.


In some cases, x and z, which may be identical or different, have values of 0 or 1. Likewise, in some cases y is equal to 1. In some cases, r, s and t, which may be identical or different, are equal to 2 or 3, and even more particularly are equal to 2.


The anion X is may be a halide (chloride, bromide or iodide) or an alkyl sulfate, more particularly methyl sulfate. However, use may be made of methanesulfonate, phosphate, nitrate, tosylate, an anion derived from an organic acid, such as acetate or lactate, or any other anion compatible with the ammonium containing an ester function.


The anion X is even more particularly chloride or methyl sulfate.


Use is made more particularly, in the composition according to the invention, of the ammonium salts of formula (VI) in which:


R22 denotes a methyl or ethyl group,


x and y are equal to 1;


z is equal to 0 or 1;


r, s and t are equal to 2;


R23 is chosen from:




embedded image



methyl, ethyl or C14-C22 hydrocarbon-based groups, and a hydrogen atom;


R25 is chosen from:




embedded image



and a hydrogen atom;


R24, R26 and R28, which may be identical or different, are chosen from linear or branched, saturated or unsaturated C13-C17 hydrocarbon-based groups, and preferably from linear or branched, saturated or unsaturated C13-C17 alkyl and alkenyl groups. The hydrocarbon-based groups are advantageously linear.


Mention may be made, for example, of the compounds of formula (VI) such as the diacyloxyethyldimethylammonium, diacylo xyethylhydroxyethylmethylammonium, monoacyloxyethyldihydroxyethylmethylammonium, triacyloxyethylmethylammonium and monoacyloxyethylhydroxyethyldimethylammonium salts (chloride or methyl sulfate in particular), and a mixture thereof. The acyl groups preferably contain 14 to 18 carbon atoms and are obtained more particularly from a plant oil, such as palm oil or sunflower oil. When the compound contains several acyl groups, these groups may be identical or different.


These products are obtained, for example, by direct esterification of triethanolamine, triisopropanolamine, an alkyldiethanolamine or an alkyldiisopropanolamine, which are optionally oxyalkylenated, with C10-C30 fatty acids or with mixtures of C10-C30 fatty acids of plant or animal origin, or by transesterification of the methyl esters thereof. This esterification is followed by quaternization using an alkylating agent such as an alkyl (preferably methyl or ethyl) halide, a dialkyl (preferably methyl or ethyl) sulfate, methyl methanesulfonate, methyl para-toluenesulfonate, glycol chlorohydrin or glycerol chlorohydrin. Such compounds are, for example, sold under the names DEHYQUART by the company BASF, STEPANQUAT by the company Stepan, NOXAMIUM by the company Ceca or REWOQUAT WE 18 by the company Evonik.


Water-Soluble Solvents


The term “water-soluble solvent” is interchangeable with the term “water-miscible solvent” and means a compound that is liquid at 25° C. and at atmospheric pressure (760 mmHg), and it has a solubility of at least 50% in water under these conditions. The hair-treatment compositions of the instant disclosure may include one or more water-soluble solvents.


Water-soluble solvents include, for example, glycerin, C1-4 alcohols, organic solvents, fatty alcohols, fatty ethers, fatty esters, polyols, glycols, vegetable oils, mineral oils, liposomes, laminar lipid materials, or any a mixture thereof. As examples of organic solvents, non-limiting mentions can be made of monoalcohols and polyols such as ethyl alcohol, isopropyl alcohol, propyl alcohol, benzyl alcohol, and phenylethyl alcohol, or glycols or glycol ethers such as, for example, monomethyl, monoethyl and monobutyl ethers of ethylene glycol, propylene glycol or ethers thereof such as, for example, monomethyl ether of propylene glycol, butylene glycol, hexylene glycol, dipropylene glycol as well as alkyl ethers of diethylene glycol, for example monoethyl ether or monobutyl ether of diethylene glycol. Other suitable examples of organic solvents are ethylene glycol, propylene glycol, butylene glycol, hexylene glycol, propane diol, and glycerin. The organic solvents can be volatile or non-volatile compounds.


Further non-limiting examples of water-soluble solvents which may be used include alkanediols (polyhydric alcohols) such as glycerin, 1,2,6-hexanetriol, trimethylolpropane, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, dipropylene glycol, 2-butene-1,4-diol, 2-ethyl-1,3-hexanediol, 2-methyl-2,4-pentanediol, (caprylyl glycol), 1,2-hexanediol, 1,2-pentanediol, and 4-methyl-1,2-pentanediol; alkyl alcohols having 1 to 4 carbon atoms such as ethanol, methanol, butanol, propanol, and isopropanol; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, ethylene glycol mono-iso-propyl ether, diethylene glycol mono-iso-propyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-t-butyl ether, diethylene glycol mono-t-butyl ether, 1-methyl-1-methoxybutanol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-t-butyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-iso-propyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, and dipropylene glycol mono-iso-propyl ether; 2-pyrrolidone, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, formamide, acetamide, dimethyl sulfoxide, sorbit, sorbitan, acetine, diacetine, triacetine, sulfolane, and a mixture thereof.


In some cases, the water-soluble solvent may be selected from the group consisting of one or more glycols, C1-4 alcohols, glycerin, and a mixture thereof. In some cases, the water-soluble solvent is selected from the group consisting of hexylene glycol, proplene glycol, caprylyl glycol, glycerin, isopropyl alcohol, and a mixture thereof.


Polyhydric alcohols are useful. Examples of polyhydric alcohols include glycerin, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-butanediol, 2,3-butanediol, 1,4-butanediol, 3-methyl-1,3-butanediol, 1,5-pentanediol, tetraethylene glycol, 1,6-hexanediol, 2-methyl-2,4-pentanediol, polyethylene glycol, 1,2,4-butanetriol, 1,2,6-hexanetriol, and a mixture thereof.


Polyol compounds may also be used. Non-limiting examples include the aliphatic diols, such as 2-ethyl-2-methyl-1,3-propanediol, 3,3-dimethyl-1,2-butanediol, 2,2-diethyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2,4-dimethyl-2,4-pentanediol, 2,5-dimethyl-2,5-hexanediol, 5-hexene-1,2-diol, and 2-ethyl-1,3-hexanediol, and a mixture thereof.


Fatty Compounds


Non-limiting examples of fatty compounds include oils, mineral oil, fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives (such as alkoxylated fatty acids or polyethylene glycol esters of fatty acids or propylene glycol esters of fatty acids or butylene glycol esters of fatty acids or esters of neopentyl glycol and fatty acids or polyglycerol/glycerol esters of fatty acids or glycol diesters or diesters of ethylene glycol and fatty acids or esters of fatty acids and fatty alcohols, esters of short chain alcohols and fatty acids), esters of fatty alcohols, hydroxy-substituted fatty acids, waxes, triglyceride compounds, lanolin, and a mixture thereof. For instance, one or more fatty compounds may be selected from the group consisting of glycol distearate, PEG-55 propylene glycol oleate, cetearyl alcohol, soybean oil, cetyl esters, isononanoate isopropyl myristate, cetearyl alcohol, orbigynya oleifera seed oil, propylene glycol dicaprylate/dicaprate, mineral oil, and a mixture thereof.


Non-limiting examples of the fatty alcohols, fatty acids, fatty alcohol derivatives, and fatty acid derivatives are found in International Cosmetic Ingredient Dictionary, Sixteenth Edition, 2016, which is incorporated by reference herein in its entirety.


Fatty alcohols useful herein include those having from about 10 to about 30 carbon atoms, from about 12 to about 22 carbon atoms, and from about 16 to about 22 carbon atoms. These fatty alcohols can be straight or branched chain alcohols and can be saturated or unsaturated. Nonlimiting examples of fatty alcohols include decyl alcohol, undecyl alcohol, dodecyl, myristyl, cetyl alcohol, stearyl alcohol, isostearyl alcohol, isocetyl alcohol, behenyl alcohol, linalool, oleyl alcohol, cholesterol, cis4-t-butylcyclohexanol, myricyl alcohol and a mixture thereof. In some cases, the fatty alcohols are those selected from the group consisting of cetyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, and a mixture thereof.


Fatty acids useful herein include those having from about 10 to about 30 carbon atoms, from about 12 to about 22 carbon atoms, and from about 16 to about 22 carbon atoms. These fatty acids can be straight or branched chain acids and can be saturated or unsaturated. Also included are diacids, triacids, and other multiple acids which meet the carbon number requirement herein. Also included herein are salts of these fatty acids. Nonlimiting examples of fatty acids include lauric acid, palmitic acid, stearic acid, behenic acid, arichidonic acid, oleic acid, isostearic acid, sebacic acid, and a mixture thereof. In some cases, the fatty acids are selected from the group consisting of palmitic acid, stearic acid, and a mixture thereof.


Fatty alcohol derivatives include alkyl ethers of fatty alcohols, alkoxylated fatty alcohols, alkyl ethers of alkoxylated fatty alcohols, esters of fatty alcohols and a mixture thereof. Nonlimiting examples of fatty alcohol derivatives include materials such as methyl stearyl ether; 2-ethylhexyl dodecyl ether; stearyl acetate; cetyl propionate; the ceteth series of compounds such as ceteth-1 through ceteth-45, which are ethylene glycol ethers of cetyl alcochol, wherein the numeric designation indicates the number of ethylene glycol moieties present; the steareth series of compounds such as steareth-1 through 10, which are ethylene glycol ethers of steareth alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; ceteareth 1 through ceteareth-10, which are the ethylene glycol ethers of ceteareth alcohol, i.e. a mixture of fatty alcohols containing predominantly cetyl and stearyl alcohol, wherein the numeric designation indicates the number of ethylene glycol moieties present; C1-C30 alkyl ethers of the ceteth, steareth, and ceteareth compounds just described; polyoxyethylene ethers of branched alcohols such as octyldodecyl alcohol, dodecylpentadecyl alcohol, hexyldecyl alcohol, and isostearyl alcohol; polyoxyethylene ethers of behenyl alcohol; PPG ethers such as PPG-9-steareth-3, PPG-11 stearyl ether, PPG8-ceteth-1, and PPG-10 cetyl ether; and a mixture thereof.


Non-limiting olyglycerol esters of fatty acids include those of the following formula:




embedded image


wherein the average value of n is about 3 and R1, R2 and R3 each may independently be a fatty acid moiety or hydrogen, provided that at least one of R1, R2, and R3 is a fatty acid moiety. For instance, R1, R2 and R3 may be saturated or unsaturated, straight or branched, and have a length of C1-C40, C1-C30, C1-C25, or C1-C20, C1-C6, or C1-C10. For example, glyceryl monomyristate, glyceryl monopalmitate, glyceryl monostearate, glyceryl isostearate, glyceryl monooleate, glyceryl ester of mono(olive oil fatty acid), glyceryl dioleate and glyceryl distearate. Additionally, non-limiting examples of nonionic polyglycerol esters of fatty acids include polyglyceryl-4 caprylate/caprate, polyglyceryl-10 caprylate/caprate, polyglyceryl-4 caprate, polyglyceryl-10 caprate, polyglyceryl-4 laurate, polyglyceryl-5 laurate, polyglyceryl-6 laurate, polyglyceryl-10 laurate, polyglyceryl-10 cocoate, polyglyceryl-10 myristate, polyglyceryl-10 oleate, polyglyceryl-10 stearate, and a mixture thereof.


The fatty acid derivatives are defined herein to include fatty acid esters of the fatty alcohols as defined above, fatty acid esters of the fatty alcohol derivatives as defined above when such fatty alcohol derivatives have an esterifiable hydroxyl group, fatty acid esters of alcohols other than the fatty alcohols and the fatty alcohol derivatives described above, hydroxy-substituted fatty acids, and a mixture thereof. Nonlimiting examples of fatty acid derivatives include ricinoleic acid, glycerol monostearate, 12-hydroxy stearic acid, ethyl stearate, cetyl stearate, cetyl palmitate, polyoxyethylene cetyl ether stearate, polyoxyethylene stearyl ether stearate, polyoxyethylene lauryl ether stearate, ethyleneglycol monostearate, polyoxyethylene monostearate, polyoxyethylene distearate, propyleneglycol monostearate, propyleneglycol distearate, trimethylolpropane distearate, sorbitan stearate, polyglyceryl stearate, dimethyl sebacate, PEG-15 cocoate, PPG-15 stearate, glyceryl monostearate, glyceryl distearate, glyceryl tristearate, PEG-8 laurate, PPG-2 isostearate, PPG-9 laurate, and a mixture thereof. Preferred for use herein are glycerol monostearate, 12-hydroxy stearic acid, and a mixture thereof.


In some cases, the one or more fatty compounds may be one or more high melting point fatty compounds. A high melting point fatty compound is a fatty compound having a melting point of 25° C. Even higher melting point fatty compounds may also be used, for example, fatty compounds having a melting point of 40° C. or higher, 45° C. or higher, 50° C. or higher. The high melting point fatty compound may be selected from the group consisting of fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, and mixtures thereof. Nonlimiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary, Fifteenth Edition, 2014, which is incorporated herein by reference in its entirety. The fatty alcohols useful herein are those having from about 14 to about 30 carbon atoms, preferably from about 16 to about 22 carbon atoms. These fatty alcohols are saturated and can be straight or branched chain alcohols. Non-limiting examples of high melting point fatty compounds include fatty alcohols such as, for example, cetyl alcohol (having a melting point of about 56° C.), stearyl alcohol (having a melting point of about 58-59° C.), behenyl alcohol (having a melting point of about 71° C.), and mixtures thereof. These compounds are known to have the above melting point. However, they often have lower melting points when supplied, since such supplied products are often mixtures of fatty alcohols having alkyl chain length distribution in which the main alkyl chain is cetyl, stearyl or behenyl group. In the present application, more preferred fatty alcohols are cetyl alcohol, stearyl alcohol and mixtures thereof.


Thickening Agents


Thickening agents (also referred to as thickeners or viscosity modifying agents) are well known. Classes of such agents include, but are not limited to, semisynthetic polymers, such as semisynthetic cellulose derivatives, synthetic polymers, such as carbomers, poloxamers, and acrylates/beheneth-25 methacrylate copolymer, acrylates copolymer, polyethyleneimines (e.g., PEI-10), naturally occurring polymers, such as acacia, tragacanth, alginates (e.g., sodium alginate), carrageenan, vegetable gums, such as xanthan gum, petroleum jelly, waxes, particulate associate colloids, such as bentonite, colloidal silicon dioxide, and microcrystalline cellulose, surfactants, such as PPG-2 hydroxyethyl coco/isostearamide, emulsifiers, such as disteareth-75 IPDI, and salts, such as sodium chloride, starches, such as hydroxypropyl starch phosphate, potato starch (modified or unmodified), celluloses such as hydroxyethylcellulose, guars such as hydroxypropyl guar, and a mixture thereof.


In some cases, the thickening agents may include one or more associative thickening polymers such as anionic associative polymers, amphoteric associative polymers, cationic associative polymers, nonionic associative polymers, and a mixture thereof. A non-limiting example of an amphoteric associative polymer is acrylates/beheneth-25methacrylate copolymer, sold under the tradename NOVETHIX L-10 (Lubrizol). Non-limiting examples of anionic associative polymers include INCI name: acrylates copolymer, sold under the tradename CARBOPOL Aqua SF-1 (Lubrizol), INCI name: acrylates crosspolymer-4, sold under the tradename CARBOPOL Aqua SF-2 (Lubrizol), and a mixture thereof. The associative thickening polymers, for instance, the acrylates copolymer and/or the acrylates crosspolymer-4, may be neutralized in water or an aqueous solution with a neutralizing agent before the polymer is added into a hair-treatment composition.


Cationic Polymers


Non-limiting examples of cationic polymers include poly(methacryloyloxyethyl trimethylammonium chloride), polyquaternium-37, quaternized cellulose derivatives, polyquaternium-4, polyquaternium-10, cationic alkyl polyglycosides, cationized honey, cationic guar derivatives, polymeric dimethyl diallyl ammonium salts and copolymers thereof with esters and amides of acrylic acid and methacrylic acid, copolymers of vinyl pyrrolidone with quaternized derivatives of dialkylaminoalkyl acrylate and methacrylate, vinyl pyrrolidone-vinyl imidazolium methochloride copolymers, quaternized polyvinyl alcohol, polyquaternium-2, polyquaternium-7, polyquaternium-17, polyquaternium-18, polyquaternium-24, polyquaternium-27, and a mixture thereof. In some instances, the one or more cationic polymers may be selected from the group consisting of polyquaternium-4, polyquaternium-10, cationic guar derivatives, and a mixture thereof.


The cationic polymers can be a monoalkyl quaternary amine, such as stearyltrimonium chloride, soyatrimonium chloride or coco-ethyldimonium ethosulfate. Other suitable cationic polymers include, but are not limited to, behentrimonium chloride, dialkyl quaternary amines, such as dicetyldimonium chloride, dicocodimethyl ammonium chloride or distearyldimethyl ammonium chloride; and polyquaternium compounds, such as Polyquaternium-6, Polyquaternium-22 or Polyquaternium-5.


For example, cationic polymers may be chosen from polyquaterium-10 (also called quaternized polyhydroxyethyl cellulose), cetrimonium chloride (also called cetyl trimethyl ammonium chloride, CTAC), behentrimonium chloride (also known as docosyl trimethyl ammonium chloride), behentrimonium methosulfate, steartrimonium chloride, stearalkonium chloride, dicetyldimonium chloride, hydroxypropyltrimonium chloride, cocotrimonium methosulfate, olealkonium chloride, steartrimonium chloride, babassuamidopropalkonium chloride, brassicamidopropyl dimethylamine, Quaternium-91, Salcare/PQ-37, Quaternium-22, Quaternium-87, Polyquaternium-4, Polyquaternium-6, Polyquaternium-11, Polyquaternium-44, Polyquaternium-67, amodimethicone, lauryl betaine, Polyacrylate-1 Crosspolymer, steardimonium hydroxypropyl hydrolyzed wheat protein, behenamidopropyl PG-dimonium chloride, lauryldimonium hydroxypropyl hydrolyzed soy protein, aminopropyl dimethicone, Quaterium-8, and dilinoleamidopropyl dimethylamine dimethicone PEG-7 phosphate.


In some instances, the cationic polymers are cationic conditioning polymers. Examples of cationic conditioning polymers that can be used include, without limitation, cationic cellulose, cationic proteins, and cationic polymers. The cationic polymers can have a vinyl group backbone of amino and/or quaternary ammonium monomers. Cationic amino and quaternary ammonium monomers include, without limitation, dialkylamino alkylmethacrylate, monoalkylaminoalkyl acrylate, monoalkylaminoalkyl methacrylate, trialkyl methacryoloxyalkyl ammonium salt, trialkyl acryloxyalkyl ammonium salts, diallyl quaternary ammonium salts, vinyl compounds substituted with dialkyl aminoalkyl acrylate, and vinyl quaternary ammonium monomers having cyclic cationic nitrogen containing rings such as pyridinium, imidazolium, or quaternized pyrrolidine. Other examples of cationic conditioning polymers that can be used include, without limitation, hydroxypropyltrimonium honey, cocodimonium silk amino acids, cocodimonium hydroxypropyl hydrolyzed wheat or silk protein, polyquaternium-5, polyquaternium-11, polyquaternium-2, polyquaternium-4, polyquaternium-6, polyquaternium-7, polyquaternium-14, polyquaternium-16, polyquaternium-22, polyquaternium-10, and guar hydroxypropyltrimonium chloride.


In some cases quaternized polymeric cationic polymers are particularly useful. Particularly preferred are quaternary nitrogen polymers prepared by the polymerization of a dialkyldiallylammonium salt or copolymer thereof in which the alkyl group contains 1 to about 18 carbon atoms, and more preferably where the alkyl group is methyl or ethyl. Details concerning the preparation of these polymers can be found in U.S. Pat. Nos. 3,288,770, 3,412,019 and 4,772,462, incorporated herein by reference. For example, cationic homopolymers and copolymers of polydiallyldimethylammonium chloride are available in aqueous compositions sold under the trademark MERQUAT by the Calgon Corporation, subsidiary of Merck & Co., Pittsburgh, Pa. The homopolymer, which is named Polyquaternium-6 is sold under the trademark MERQUAT-100, and is described as having a weight average molecular weight of approximately 100,000. A copolymer reaction product of dimethyldiallylammonium chloride with acrylamide monomers is named Polyquaternium-7 is described as having a weight average molecular weight of approximately 500,000 and is sold under the trademark MERQUAT-550. Another copolymer reaction product of dimethyldiallylammonium chloride with acrylic acids having a weight average molecular weight from about 50,000 to about 10,000,000 has the name Polyquaternium-22 and is sold under the trademark MERQUAT-280. Polyquaternium-6 is particularly preferred.


Other polymeric conditioners include cationic copolymers of methylvinylimidazolium chloride and vinyl pyrrolidone, sold commercially by BASF Aktiengesellschaft, West Germany under the trademark LUVIQUAT at three comonomer ratios, namely at ratios of 95/5, 50/50 and 30/70 methylvinylimidazolium chloride to polyvinylpyrrolidone. These copolymers at all three comonomer ratios have the name Polyquaternium 16. Polymeric conditioners also include cationic cellulosic polymers of hydroxyethyl cellulose reacted with epichlorohydrin and quaternized with trimethylamine, sold under the trademark POLYMER JR in various viscosity grades and molecular sizes by Union Carbide Corporation, Danbury, Conn. These series of polymers are named Polyquaternium 10. Also useful are quaternized copolymers of hydroxyethylcellulose and dimethyldimethylammonium chloride, having the name Polyquaternium-4, sold in varying molecular weights under the trademark CELQUAT by National Starch and Chemical Corporation, Bridgewater, N.J.


Smaller molecule cationic non-polymeric conditioning agents can also be utilized herein. Exemplary small-molecule conditioning agents can include monofunctional or difunctional quaternary ammonium compounds, such as stearyldimethylbenzylammonium chloride, dimethyldi-(hydrogenated tallow)ammonium chloride, and the like. Non-polymeric conditioning agents can also include the quaternary ammonium salts of gluconamide derivatives, such as gamma-gluconamidopropyldimethyl-2-hydroxyethyl-ammonium chloride and minkamidopropyldimethyl-2-hydroxyethylammonium chloride identified respectively by the names Quaternium 22 and Quaternium 26. Details for the preparation of these materials are found in U.S. Pat. Nos. 3,766,267 and 4,012,398, respectively, and the materials are sold under the trademark CERAPHYL by Van Dyk & Co., Belleville, N.J. Also useful are bis-quaternary ammonium compounds which are dimers, such as 2-hydroxy propylene-bis-1,3-(dimethylstearyl ammonium chloride, designated the name, Hydroxypropyl Bisstearyldimonium chloride. The preparation of these and other bis-quat materials is described in U.S. Pat. No. 4,734,277, and such materials are sold under the trademark JORDAQUAT DIMER by Jordan Chemical Company, Folcroft, Pa.


Exemplary unquaternized polymers having tertiary amino nitrogen groups that become quaternized when protonated can include water-soluble proteinaceous quaternary ammonium compounds. Cocodimonium hydrolyzed animal protein, for example, is the name for a chemically-modified quaternary ammonium derivative of hydrolyzed collagen protein having from about 12 to about 18 carbons in at least one aliphatic alkyl group, a weight average molecular weight from about 2500 to about 12,000, and an isoionic point in a range from about 9.5 to about 11.5. This material and structurally related materials are sold under the trademarks CROQUAT and CROTEIN by Croda, Inc., New York, N.Y.


Implementation of the present disclosure is provided by way of the following examples. The examples serve to illustrate the technology without being limiting in nature.


Example 1
Concentrated Neutralizing Composition















INCI US Name
wt. %




















Active
MALEIC ACID
10.7



Active
MONOETHANOLAMINE
5.4



Water
WATER
83.9










Example 2
Neutralizing Conditioner















INCI US
wt. %


















Active
MALEIC ACID
1.9


Active
ETHANOLAMINE
0.6


Cationic
BEHENTRIMONIUM METHOSULFATE,
1.9


Surfactant(s)
CETRIMONIUM CHLORIDE,



CETRIMONIUM METHOSULFATE,



STEARAMIDOPROPYL



DIMETHYLAMINE,



AND/OR QUATERNIUM-91


Fatty
CETEARYL ALCOHOL AND/OR
4.3


Compound(s)
MINERAL OIL


Water-Soluble
GLYCERIN AND/OR PROPYLENE
3.5


Solvent
GLYCOL


Cationic
POLYQUATERNIUM-37
0.2


Polymer


Thickener
HYDROXYPROPYL CELLULOSE
0.5


pH Modifier(s)
OPTIONAL COMPONENT
0-2


Preservative(s)
OPTIONAL COMPONENT
0-2


Fragrance(s)
OPTIONAL COMPONENT
0-2


Water
WATER
Q.S.









Example 3
Testing

The mechanical properties of hair are a direct consequence of its composite structure. Accordingly, changes in mechanical properties reflect alterations in composite structure. A conventional approach for assessing mechanical properties of hair is generating a stress-strain curve by performing constant rate extension experiments. A variety of parameters can be extracted from such curves that provide information about different portions of the hair structure. A typical stress-strain curve for dry hair is provided in FIG. 1. An industry standard for generating stress-strain curves is the use of a Dia-Stron Mini Tensile Tester (MTT). Tensile testing extends fibers 100% until break at a rate of 40 mm/min. Data generated from this testing is used to assess properties of the hair structure.


Tensile testing was carried out to determine the influence of various treatments to hair, including treatments according to the methods of the instant disclosure. Testing was performed in the wet state after equilibration of hair fibers at 60% relative humidity. 50 individual fibers were prepared and tested per sample to ensure statistical rigor. Box and whisker plots were generated using Statistica™, while JMP™ analytical software was used for statistical calculations (student's t-test at 95% confidence level). All testing was performed on hair procured from International Hair Importers & Products (Glendale, N.Y.). The hair samples were mixed race hair tresses and were approximately 3 g in weight, 8″ in length, and 1″ wide.


Hair tresses were treated according to one of the following three protocols, A1, A2, and A3.

    • A1. A sodium hydroxide based chemical relaxer composition was applied to the hair swatches and allowed to process for 20 minutes. After processing for 20 minutes, the chemical relaxer composition was rinsed from the hair swatches. The hair swatches were then shampooed and evaluated.
    • A2. A sodium hydroxide based chemical relaxer composition was applied to hair swatches and allowed to process for 20 minutes. After processing for 20 minutes, the chemical relaxer composition was rinsed from the hair swatches. The hair swatches were then treated with Olaplex® Step No. 1 Bond Multiplier®, which was diluted with water (1 part of Olaplex® Step No. 1 Bond Multiplier® was combined with 6 parts water). The Olaplex® Step No. 1 Bond Multiplier® was allowed to process for 10 minutes. Without rinsing the Olaplex® Step No. 1 Bond Multiplier® from the hair, Olaplex® Bond Perfector® No. 2 was applied to the hair (Olaplex® Bond Perfector® No. 2 was layered on top of the Olaplex® Step No. 1 Bond Multiplier® that was already on the hair). Then, the Olaplex® Bond Perfector® No. 2 was allowed to remain on the hair for 10 minutes. After 10 minutes, the Olaplex® Bond Perfector® No. 2 and the underlying Olaplex® Step No. 1 Bond Multiplier® were rinsed from the hair. After rinsing, the hair swatches were shampooed and evaluated.
    • A3. A sodium hydroxide based chemical relaxer composition was applied to the hair swatches and allowed to process for 20 minutes. After processing for 20 minutes, the chemical relaxer composition was rinsed from the hair swatches. The hair swatches were then treated with the Neutralizing Composition of Example 1, which was diluted with water (1 part of Neutralizing Composition of Example 1 was combined with 6 parts water). The Neutralizing Composition of Example 1 was allowed to process for 10 minutes. Without rinsing the Neutralizing Composition of Example 1 from the hair, the Neutralizing Conditioner of Example 2 was applied to the hair (Neutralizing Conditioner of Example 2 was layered on top of the Neutralizing Composition of Example 1 that was already on the hair). Then, the Neutralizing Conditioner of Example 2 was allowed to remain on the hair for 10 minutes. After 10 minutes, the Neutralizing Conditioner of Example 2 and the underlying Neutralizing Composition of Example 1 were rinsed from the hair. After rinsing, the hair swatches were shampooed and evaluated.


Hair tresses were also treated according to one of the following three protocols, B1, B2, and B3, which are similar to A1, A2, and A3, except that a guanidine relaxer composition was used to relax the hair, and the hair was conditioned after shampooing, before evaluation.

    • B1. A guanidine based relaxer composition was applied to the hair swatches and allowed to process for 20 minutes. After processing for 20 minutes, the chemical relaxer composition was rinsed from the hair swatches. The hair swatches were then shampooed, conditioned, and evaluated.
    • B2. A guanidine based relaxer composition was applied to hair swatches and allowed to process for 20 minutes. After processing for 20 minutes, the chemical relaxer composition was rinsed from the hair swatches. The hair swatches were then treated with Olaplex® Step No. 1 Bond Multiplier®, which was diluted with water (1 part of Olaplex® Step No. 1 Bond Multiplier® was combined with 6 parts water). The Olaplex® Step No. 1 Bond Multiplier® was allowed to process for 10 minutes. Without rinsing the Olaplex® Step No. 1 Bond Multiplier® from the hair, Olaplex® Bond Perfector® No. 2 was applied to the hair (Olaplex® Bond Perfector® No. 2 was layered on top of the Olaplex® Step No. 1 Bond Multiplier® that was already on the hair). Then, the Olaplex® Bond Perfector® No. 2 was allowed to remain on the hair for 10 minutes. After 10 minutes, the Olaplex® Bond Perfector® No. 2 and the underlying Olaplex® Step No. 1 Bond Multiplier® were rinsed from the hair. After rinsing, the hair swatches were shampooed, conditioned, and evaluated.
    • B3. A guanidine based relaxer composition was applied to the hair swatches and allowed to process for 20 minutes. After processing for 20 minutes, the chemical relaxer composition was rinsed from the hair swatches. The hair swatches were then treated with the Neutralizing Composition of Example 1, which was diluted with water (1 part of Neutralizing Composition of Example 1 was combined with 6 parts water). The Neutralizing Composition of Example 1 was allowed to process for 10 minutes. Without rinsing the Neutralizing Composition of Example 1 from the hair, the Neutralizing Conditioner of Example 2 was applied to the hair (Neutralizing Conditioner of Example 2 was layered on top of the Neutralizing Composition of Example 1 that was already on the hair). Then, the Neutralizing Conditioner of Example 2 was allowed to remain on the hair for 10 minutes. After 10 minutes, the Neutralizing Conditioner of Example 2 and the underlying Neutralizing Composition of Example 1 were rinsed from the hair. After rinsing, the hair swatches were shampooed, conditioned, and evaluated.


The protocols outlined above are summarized in the table below.




















Sodium







Relaxer
Treatment 1
Treatment 2
Shampoo
Condition





A1
20 min.
Conditioner

1x




Rinse
3 min.




Rinse


A2
20 min.
Olaplex ® #1
Olaplex ® #2
1x




Rinse
(diluted in
10 minutes




water 1:6)
Rinse




10 min.




No Rinse


A3
20 min.
Neutralizing
Neutralizing
1x




Rinse
Composition
Conditioner




of Ex. 1
of Ex. 2




(diluted in
10 min.




water 1:6)
Rinse




10 min.




No Rinse
















Guanidine







Relaxer
Treatment 1
Treatment 2
Shampoo
Condition





B1
20 min.
Conditioner

1x
1x



Rinse
3 min.




Rinse


B2
20 min.
Olaplex ® #1
Olaplex ® #2
1x
1x



Rinse
(diluted in
10 minutes




water 1:6)
Rinse




10 min.




No Rinse


B3
20 min.
Neutralizing
Neutralizing
1x
1x



Rinse
Composition
Conditioner




of Ex. 1
of Ex. 2




(diluted in
10 min.




water 1:6)
Rinse




10 min.




No Rinse









Elastic Modulus Testing (Young's Modulus)

The slope of the initial portion of a stress-strain curve (see FIG. 1) is termed the Young's modulus. The Young's modulus represents a measure of the hair's spring-like structure (elasticity). The Young's modulus region of the curve is often termed the linear region (sometimes the elastic region). The mean Young's modulus for the hair swatches treated according to the above protocols was determined and the results are summarized in the table below and graphically presented in FIG. 2(a) and FIG. 2(b).























Std Err
Lower
Upper



N
Mean
Std Dev
Mean
95%
95%






















A1
47
754.3
171.4
25.0
703.4
804.6


A2
42
789.6
232.3
35.8
717.2
862.0


A3
45
953.4
170.2
25.4
902.3
1004.5


B1
47
789.2
215.7
31.5
752.9
852.6


B2
47
712.1
162.3
23.7
664.4
759.7


B3
50
757.9
203.2
28.7
700.1
815.6









The data was statistically analyzed according to the Tukey-Kramer method, a well-known, single-step multiple comparison statistical analysis to find means that are significantly (statistically) different from each other. The mean for A3 was significantly (statistically) higher than the mean of A1 and A2. The means for A1 and A2, however, were not significantly (statistically) different from one another. Similarly, the mean for B1 was higher than the mean for B2 and B3, although the differences between B1, B2, and B3 was not considered statistically different according the Tukey-Kramer method The results illustrate that hair treated according to the method of the instant disclosure exhibit higher Young's modulus mean values than hair treated according to the protocols of A1 and B1, and A2 and B2.


Break Stress Testing

The break stress represents the force/area needed to break the hair fiber. A higher break stress represents a stronger and stiffer hair fiber. The hair swatches treated according to protocals A1, A2, and A3 (above) were subjected to break stress testing. The results are summarized in the table below and graphically presented in FIG. 3(a) and FIG. 3(b).























Std Err
Lower
Upper



N
Mean
Std Dev
Mean
95%
95%






















A1
47
116.7
16.0
2.3
112.0
121.4


A2
42
119.6
21.0
3.2
113.1
126.2


A3
45
136.3
14.8
2.2
131.9
140.8


B1
47
109.3
20.5
3.0
103.3
115.3


B2
47
109.8
14.3
2.1
105.6
114.0


B3
50
118.9
18.2
2.6
113.7
124.0









The data was statistically analyzed according to the Tukey-Kramer method. The mean for A3 was significantly (statistically) higher than the mean of A1 and A2. The mean for A1 and A2, however, were not significantly (statistically) different from one another. Similarly, the mean for B1 was higher than the mean for B2 and B3, although the differences between B1, B2, and B3 were not shown to be statistically significant according the Tukey-Kramer method. The results illustrate that hair treated according to the method of the instant disclosure exhibit higher break stress mean values than hair treated according to the protocols of A1 and B1, and A2 and B2.


Differential Scanning Calorimetry (DCS)

DSC can be a tool for investigating the structural characteristics of hair fibers. Keratin undergoes detectable transformations at various temperatures. Changes in these transformation temperatures can be used to estimate how a particular hair-treatment may influence hair fibers. In the instant case, DSC was used to measure the denaturation temperature (Td) and denaturation enthalpy (ΔH) of hair fibers. Denaturation temperature (Td) has been used as a representation of the thermal stability of hair fibers, which is influenced, at least in part, by the cross-link density of the matrix (intermediate filament associated proteins, IFAP). Thermal stability (Td) and its relationship in determining the thermal stability of hair fibers is established in the literature.


The interpretation of denaturation enthalpy (ΔH) in the context of hair fibers is much more complex and does not necessarily follow the trend for denaturation temperature (Td). Denaturation enthalpy (ΔH) is thought to reflect the relative amount of crystalline/ordered proteins within a hair fiber, and therefore may be used to estimate structural integrity of the α-helical materials (intermediate filaments, IF).


Testing was carried out on hair swatches treated according to protocols described above (A1, A2, A3, B1, B2, and B3). Testing was also carried out using malonic acid in the hair-treatment composition instead of maleic acid, but malonic acid did not perform as well as maleic acid in the DSC testing. It was found that the denaturation temperature (Td) for hair treated according to the instant disclosure using maleic acid (according to protocol A3 and B3) was significantly higher than the denaturation temperature (Td) for hair treated according to according to A1 and A2, and B1 and B2. With respect to denaturation enthalpy (ΔH), the data show that the denaturation enthalpy (ΔH) for A2 was significantly higher than for both A1 and A3, but there was no significant difference in denaturation enthalpy (ΔH) between B1, B2, and B3.


The results from the DSC testing, in particular, the denaturation temperature (Td) data, suggest that hair treated according to the instant disclosure (A3 and B3) has greater thermal stability than hair treated according to A1 and A2, and B1 and B2.


The foregoing description illustrates and describes the disclosure. Additionally, the disclosure shows and describes only the preferred embodiments but, as mentioned above, it is to be understood that it is capable to use in various other combinations, modifications, and environments and is capable of changes or modifications within the scope of the invention concepts as expressed herein, commensurate with the above teachings and/or the skill or knowledge of the relevant art. The embodiments described herein above are further intended to explain best modes known by applicant and to enable others skilled in the art to utilize the disclosure in such, or other, embodiments and with the various modifications required by the particular applications or uses thereof. Accordingly, the description is not intended to limit the invention to the form disclosed herein. Also, it is intended to the appended claims be construed to include alternative embodiments.


As used herein, the terms “comprising,” “having,” and “including” (or “comprise,” “have,” and “include”) are used in their open, non-limiting sense.


The terms “a,” “an,” and “the” are understood to encompass the plural as well as the singular.


Thus, the term “a mixture thereof” also relates to “mixtures thereof.” Throughout the disclosure, the term “a mixture thereof” is used, following a list of elements as shown in the following example where letters A-F represent the elements: “one or more elements selected from the group consisting of A, B, C, D, E, F, and a mixture thereof.” The term, “a mixture thereof” does not require that the mixture include all of A, B, C, D, E, and F (although all of A, B, C, D, E, and F may be included). Rather, it indicates that a mixture of any two or more of A, B, C, D, E, and F can be included. In other words, it is equivalent to the phrase “one or more elements selected from the group consisting of A, B, C, D, E, F, and a mixture of any two or more of A, B, C, D, E, and F.”


Likewise, the term “a salt thereof” also relates to “salts thereof.” Thus, where the disclosure refers to “an element selected from the group consisting of A, B, C, D, E, F, a salt thereof, and a mixture thereof,” it indicates that that one or more of A, B, C, D, and F may be included, one or more of a salt of A, a salt of B, a salt of C, a salt of D, a salt of E, and a salt of F may be include, or a mixture of any two of A, B, C, D, E, F, a salt of A, a salt of B, a salt of C, a salt of D, a salt of E, and a salt of F may be included.


The salts referred to throughout the disclosure may include salts having a counter-ion such as an alkali metal, alkaline earth metal, or ammonium counterion. This list of counterions, however, is non-limiting.


The expression “one or more” means “at least one” and thus includes individual components as well as mixtures/combinations.


Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients and/or reaction conditions are to be understood as being modified in all instances by the term “about,” meaning within +/−5% of the indicated number.


Some of the various categories of components identified for the hair-treatment compositions may overlap. For example, overlap may exist between some thickening agents and some cationic polymers. In such cases where overlap may exist and the hair-treatment composition includes both components (or the hair-treatment composition includes more than two components that overlap), an overlapping compound does not represent more than one component. For example, a homopolymer of methyl quaternized dimethylaminoethyl methacrylate crosslinked by a crosslinking agent may be considered both a cationic polymer and a thickening agent. If a particular hair-treatment composition includes both a cationic polymer component and a thickening agent component, a single homopolymer of methyl quaternized dimethylaminoethyl methacrylate crosslinked by a crosslinking agent will serve as only the cationic polymer or only the thickening agent (the compound does not serve as both the cationic polymer and the thickening agent).


All percentages, parts and ratios herein are based upon the total weight of the compositions of the present invention, unless otherwise indicated.


“Keratinous substrates” as used herein, includes, but is not limited to keratin fibers such as hair and/or scalp on the human head.


“Conditioning” as used herein means imparting to one or more hair fibers at least one property chosen from combability, moisture-retentivity, luster, shine, and softness. The state of conditioning can be evaluated by any means known in the art, such as, for example, measuring, and comparing, the ease of combability of the treated hair and of the untreated hair in terms of combing work (gm-in), and consumer perception.


The term “treat” (and its grammatical variations) as used herein refers to the application of the compositions of the present disclosure onto the surface of keratinous substrates such as hair. The term “treat,” and its grammatical variations, relates to contacting hair with the hair-treatment compositions of the present disclosure.


The term “stable” as used herein means that the composition does not exhibit phase separation and/or crystallization for a period of time, for example, for at least 1 day (24 hours), one week, one month, or one year.


“Volatile”, as used herein, means having a flash point of less than about 100° C.


“Non-volatile”, as used herein, means having a flash point of greater than about 100° C.


All ranges and values disclosed herein are inclusive and combinable. For examples, any value or point described herein that falls within a range described herein can serve as a minimum or maximum value to derive a sub-range, etc. Furthermore, all ranges provided are meant to include every specific range within, and combination of sub-ranges between, the given ranges. Thus, a range from 1-5, includes specifically 1, 2, 3, 4 and 5, as well as sub ranges such as 2-5, 3-5, 2-3, 2-4, 1-4, etc.


The term “substantially free” or “essentially free” as used herein means that there is less than about 5% by weight of a specific material added to a composition, based on the total weight of the compositions. Nonetheless, the compositions may include less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.5 wt. %, less than about 0.1 wt. %, or none of the specified material.


The term “essentially anhydrous” or “substantially anhydrous” as used herein, for example, in the context of an “essentially anhydrous hair-treatment composition” or a “substantially anhydrous hair-treatment composition” means that the composition includes less than about 5% by weight of water. Nonetheless, the composition may include less than about 4 wt. %, less than about 3 wt. %, less than about 2 wt. %, less than about 1 wt. %, less than about 0.5 wt. %, less than about 0.1 wt. % of water, less than about 0.05 wt. % water, or less than 0.01 wt. % water.


All publications and patent applications cited in this specification are herein incorporated by reference, and for any and all purposes, as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. In the event of an inconsistency between the present disclosure and any publications or patent application incorporated herein by reference, the present disclosure controls.

Claims
  • 1. A method for treating chemically relaxed hair comprising: A. applying a neutralizing composition to hair within 24 hours after a lanthionizing chemical relaxer composition has been rinsed from the hair, the neutralizing composition comprising: a. at least 0.5 wt. % of at least one carboxylic acid selected from the group consisting of maleic acid, oxalic acid, malonic acid, malic acid, glutaric acid, citraconic acid, citric acid, glycolic acid, succinic acid, adipic acid, tartaric acid, fumaric acid, sebacic acid, benzoic acid, glyoxylic acid monohydrate, a salt thereof, and a mixture thereof;b. one or more C2-C6 monoalkanolamines; andc. water;B. allowing the neutralizing composition to remain on the hair for about 10 seconds to about 30 minutes;C. after allowing the neutralizing composition to remain on the hair for about 10 seconds to about 30 minutes, without rinsing the neutralizing composition from the hair, applying a neutralizing conditioner, the neutralizing conditioner comprising: i. at least 0.5 wt. % of at least one carboxylic acid selected from the group consisting of maleic acid, oxalic acid, malonic acid, malic acid, glutaric acid, citraconic acid, citric acid, glycolic acid, succinic acid, adipic acid, tartaric acid, fumaric acid, sebacic acid, benzoic acid, glyoxylic acid monohydrate, and a mixture thereof;ii. one or more C2-C6 monoalkanolamines;iii. one or more cationic surfactants; andiv. water;D. allowing the neutralizing conditioner to remain on the hair for about 5 minutes to about 30 minutes; andE. rinsing the neutralizing conditioner and the neutralizing composition from the hair.
  • 2. The method of claim 1, wherein the ratio of the total amount of the at least one carboxylic acid, a salt thereof, or mixture thereof in the neutralizing composition to the total amount of the one or more monoalkanolamines in the neutralizing composition is about 1:1 to about 5:1.
  • 3. The method of claim 1, wherein the neutralizing composition comprises at least 0.5 wt. % of maleic acid, malonic acid, a salt thereof, or a mixture thereof.
  • 4. The method of claim 1, wherein the neutralizing composition comprises at least 0.5 to about 8 wt. % of the at least one carboxylic acid, based on the total weight of the neutralizing composition.
  • 5. The method of claim 1, wherein the neutralizing conditioner comprises at least 0.5 wt. % of maleic acid, malonic acid, a salt thereof, or a mixture thereof.
  • 6. The method of claim 1, wherein the neutralizing conditioner comprises at least 0.5 to about 8 wt. % of the at least one carboxylic acid, based on the total weight of the neutralizing conditioner.
  • 7. The method of claim 1, wherein the neutralizing composition comprises monoethanolamine.
  • 8. The method of claim 1, wherein the neutralizing composition comprises about 0.2 to about 5 wt. % of the one or more C2-C6 monoalkanolamines, based on the total weight of the neutralizing composition.
  • 9. The method of claim 1, wherein the neutralizing conditioner comprises monoethanolamine.
  • 10. The method of claim 1, wherein the neutralizing conditioner comprises about 0.2 to about 5 wt. % of the one or more C2-C6 monoalkanolamines, based on the total weight of the neutralizing conditioner.
  • 11. The method of claim 1, wherein the neutralizing composition comprises about 85 to about 98 wt. % water.
  • 12. The method of claim 1, wherein the neutralizing conditioner comprises about 60 to about 90 wt. % water.
  • 13. The method of claim 1, wherein the neutralizing composition is allowed to remain on the hair for about 5 to 15 minutes before rinsing from the hair.
  • 14. The method of claim 1, wherein the neutralizing conditioner is allowed to remain on the hair for about 5 to 15 minutes before rinsing.
  • 15. The method of claim 1, wherein the one or more cationic surfactants are selected from the group consisting of cetrimonium chloride, cetrimonium methosulfate, stearimonium chloride, behentrimonium chloride, behentrimonium methosulfate, behenamidopropyltrimonium methosulfate, stearamidopropyltrimonium chloride, arachidtrimonium chloride, distearyldimonium chloride, dicetyldimonium chloride, tricetylmonium chloride, oleamidopropyl dimethylamine, linoleamidopropyl dimethylamine, stearamidopropyl dimethylamine, isostearamidopropyl dimethylamine, oleyl hydroxyethyl imidazoline, stearamidopropyldimethylamine, behenamidopropyldimethylamine, behenamidopropyldiethylamine, behenamidoethyldiethyl-amine, behenamidoethyldimethylamine, arachidamidopropyldimethylamine, arachidamido-propyidiethylamine, arachidamidoethyidiethylamine, arachidamidoethyidimethylamine, quaternium-91, and a mixture thereof.
  • 16. The method of claim 1 wherein the total amount of the one or more cationic surfactants in the neutralizing conditioner are about 0.1 to about 15 wt. %, based on the total weight of the neutralizing conditioner.
  • 17. The method of claim 1, wherein the neutralizing conditioner further comprises: v. one or more fatty compounds.
  • 18. The method of claim 17, wherein the one or more fatty compounds are selected from the group consisting of oils, waxes, butter, alkanes, fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, esters of fatty alcohols, hydroxy-substituted fatty acids, waxes, triglyceride compounds, lanolin, ceramide, and a mixture thereof.
  • 19. The method of claim 17, wherein the total amount of the one or more fatty compounds is about 1 to about 40 wt. %, based on the total weight of the neutralizing conditioner.
  • 20. The method of claim 1, wherein the neutralizing conditioner further comprises: vi. one or more water-soluble solvents.
  • 21. The method of claim 20, wherein the one or more water-soluble solvents are selected from the group consisting of polyhydric alcohols, glycol ethers, C1-4 alcohols, and a mixture thereof.
  • 22. The method of claim 20, wherein the total amount of water-soluble solvents in the neutralizing conditioner are about 1 to about 40 wt. %, based on the total weight of the neutralizing conditioner.
  • 23. The method of claim 1, wherein the method comprises increasing a mean Young's modulus of the hair by at least 10% relative to hair treated with only a chemical relaxer composition.
  • 24. The method of claim 1, wherein the method comprises increasing a mean break stress of the hair by at least 10% relative to hair treated with only a chemical relaxer composition.
US Referenced Citations (369)
Number Name Date Kind
2261002 Ritter Oct 1941 A
2271378 Searle Jan 1942 A
2273780 Dittmar Feb 1942 A
2375853 Kirby et al. May 1945 A
2388614 Kirby et al. Nov 1945 A
2454547 Bock et al. Nov 1948 A
2674580 Henkin Apr 1954 A
2850351 Moore et al. Sep 1958 A
2961347 Floyd Nov 1960 A
3142623 Zviak et al. Jul 1964 A
3193464 Edman et al. Jul 1965 A
3206462 McCarty Sep 1965 A
3227615 Korden Jan 1966 A
3288770 Butler Nov 1966 A
3412019 Hoover et al. Nov 1968 A
3472243 Wall et al. Oct 1969 A
3472840 Stone et al. Oct 1969 A
3589978 Kamal et al. Jun 1971 A
3632559 Matter et al. Jan 1972 A
3766267 Zak et al. Oct 1973 A
3840656 Kalopissis et al. Oct 1974 A
3874870 Green et al. Apr 1975 A
3917817 Vanlerberghe et al. Nov 1975 A
3929990 Green et al. Dec 1975 A
3966904 Green et al. Jun 1976 A
4001432 Green et al. Jan 1977 A
4003699 Rose et al. Jan 1977 A
4005193 Green et al. Jan 1977 A
4012398 Conner et al. Mar 1977 A
4013787 Vanlerberghe et al. Mar 1977 A
4025617 Green et al. May 1977 A
4025627 Green et al. May 1977 A
4025653 Green et al. May 1977 A
4026945 Green et al. May 1977 A
4027020 Green et al. May 1977 A
4031307 DeMartino et al. Jun 1977 A
4075136 Schaper Feb 1978 A
4131576 Iovine et al. Dec 1978 A
4166894 Schaper Sep 1979 A
4172887 Vanlerberghe et al. Oct 1979 A
RE30199 Rose et al. Jan 1980 E
4189468 Vanlerberghe et al. Feb 1980 A
4197865 Jacquet et al. Apr 1980 A
4217914 Jacquet et al. Aug 1980 A
4240450 Grollier et al. Dec 1980 A
4277581 Vanlerberghe et al. Jul 1981 A
4348202 Grollier et al. Sep 1982 A
4349532 Vanlerberghe et al. Sep 1982 A
4381919 Jacquet et al. May 1983 A
4412943 Hirota et al. Nov 1983 A
4422853 Jacquet et al. Dec 1983 A
4425132 Grollier et al. Jan 1984 A
4532950 Lang et al. Aug 1985 A
4579732 Grollier et al. Apr 1986 A
4591610 Grollier May 1986 A
4608250 Jacquet et al. Aug 1986 A
4734277 Login Mar 1988 A
4761273 Grollier et al. Aug 1988 A
4770873 Wolfram et al. Sep 1988 A
4772462 Boothe et al. Sep 1988 A
4777040 Grollier et al. Oct 1988 A
4793992 Mathews et al. Dec 1988 A
4793993 Siuta-Mangano et al. Dec 1988 A
4812307 Siuta-Mangano Mar 1989 A
4834971 Klenk et al. May 1989 A
4855130 Konrad et al. Aug 1989 A
4906460 Kim et al. Mar 1990 A
4948579 Jacquet et al. Aug 1990 A
4970066 Grollier et al. Nov 1990 A
5061289 Clausen et al. Oct 1991 A
5085860 Junino et al. Feb 1992 A
5091171 Yu et al. Feb 1992 A
5143518 Madrange et al. Sep 1992 A
5196189 Jacquet et al. Mar 1993 A
5221286 Singleton et al. Jun 1993 A
5293885 Darkwa et al. Mar 1994 A
5350572 Savaides et al. Sep 1994 A
5356438 Kim et al. Oct 1994 A
5380340 Neunhoeffer et al. Jan 1995 A
5534267 Neunhoeffer et al. Jul 1996 A
5565216 Cowsar et al. Oct 1996 A
5593662 Deckner et al. Jan 1997 A
5616150 Moeller et al. Apr 1997 A
5628991 Samain et al. May 1997 A
5635168 Burns et al. Jun 1997 A
5651960 Chan et al. Jul 1997 A
5656265 Bailey et al. Aug 1997 A
5663366 Neunhoeffer et al. Sep 1997 A
5688291 Said et al. Nov 1997 A
5708151 Möckli Jan 1998 A
5750099 Yoshihara et al. May 1998 A
5766576 Löwe et al. Jun 1998 A
5785962 Hinz et al. Jul 1998 A
5811085 Halloran Sep 1998 A
5833966 Samain Nov 1998 A
5853707 Wells et al. Dec 1998 A
5869068 De Lacharriere et al. Feb 1999 A
5951969 Golinski et al. Sep 1999 A
5972322 Rath et al. Oct 1999 A
5985803 Rizvi et al. Nov 1999 A
6013250 Cannell et al. Jan 2000 A
6015574 Cannell et al. Jan 2000 A
6036966 Youssefyeh Mar 2000 A
6090762 Clapperton et al. Jul 2000 A
6099592 Vidal et al. Aug 2000 A
6173717 Schonert et al. Jan 2001 B1
6231843 Hoelzel et al. May 2001 B1
6241971 Fox et al. Jun 2001 B1
6284003 Rose et al. Sep 2001 B1
6309426 Dias et al. Oct 2001 B1
6338741 Vidal et al. Jan 2002 B1
6348189 Tanabe et al. Feb 2002 B1
6348200 Nakajima et al. Feb 2002 B1
6358502 Tanabe et al. Mar 2002 B1
6398821 Dias et al. Jun 2002 B1
6458906 Torgerson et al. Oct 2002 B1
6488945 Sato Dec 2002 B2
6515050 Mitsuzuka et al. Feb 2003 B1
6537532 Torgerson et al. Mar 2003 B1
6562327 Nguyen May 2003 B1
6569412 Yamaguchi et al. May 2003 B2
6645258 Vidal et al. Nov 2003 B2
6645478 Rollat et al. Nov 2003 B2
6669933 Duffer et al. Dec 2003 B2
6706258 Gallagher et al. Mar 2004 B1
6730789 Birault et al. May 2004 B1
6767875 Snyder et al. Jul 2004 B1
6979439 Sakai et al. Dec 2005 B1
6984250 Legrand et al. Jan 2006 B1
7041142 Chan et al. May 2006 B2
7044986 Ogawa et al. May 2006 B2
7135167 Legrand et al. Nov 2006 B2
7147843 Yoshida et al. Dec 2006 B2
7151079 Fack et al. Dec 2006 B2
7204861 Marsh et al. Apr 2007 B2
7390479 Sockel et al. Jun 2008 B2
7427656 Decarolis et al. Sep 2008 B2
7495037 Moszner et al. Feb 2009 B2
7598213 Geary et al. Oct 2009 B2
7612141 Sakai et al. Nov 2009 B2
7815901 Mathonneau et al. Oct 2010 B2
7905926 DeGeorge et al. Mar 2011 B2
7915208 Roso et al. Mar 2011 B2
7931698 Simonet et al. Apr 2011 B2
7972388 Hamilton et al. Jul 2011 B2
7981405 Ueyama et al. Jul 2011 B2
8163861 Puerta et al. Apr 2012 B2
8241370 Legrand et al. Aug 2012 B2
8288329 Hata et al. Oct 2012 B2
8298519 Adams et al. Oct 2012 B2
8357356 Zaeska et al. Jan 2013 B2
8388701 Uellner et al. Mar 2013 B2
8513200 Dixon et al. Aug 2013 B2
8613913 Chang et al. Dec 2013 B2
8632758 Terada Jan 2014 B2
8642021 Brautigam et al. Feb 2014 B2
8642659 Springer et al. Feb 2014 B2
8921292 Fujita et al. Dec 2014 B2
9006162 Rizk Apr 2015 B1
9095518 Pressly et al. Aug 2015 B2
9144537 Pressly et al. Sep 2015 B1
9175114 Puerta et al. Nov 2015 B2
9180086 Cabourg et al. Nov 2015 B2
9283156 Savaides et al. Mar 2016 B2
9326926 Pressly et al. May 2016 B2
9402796 Briggs et al. Aug 2016 B2
9498419 Pressly et al. Nov 2016 B2
9597273 Pressly et al. Mar 2017 B2
9610241 Cabourg et al. Apr 2017 B2
9849071 Fack et al. Dec 2017 B2
9918923 Naiberk et al. Mar 2018 B1
9993406 Manneck et al. Jun 2018 B2
10004673 Elsen-Wahrer et al. Jun 2018 B1
10085931 Baghdadli et al. Oct 2018 B2
10219994 Lechner et al. Mar 2019 B2
10231915 Dreher et al. Mar 2019 B2
10561599 Patterson et al. Feb 2020 B2
10576307 Patterson et al. Mar 2020 B2
20010029637 Nakashimada et al. Oct 2001 A1
20010042276 Kawasoe et al. Nov 2001 A1
20010052354 Nishibe et al. Dec 2001 A1
20020029429 Dias et al. Mar 2002 A1
20020032933 Dias et al. Mar 2002 A1
20020050013 Vidal et al. May 2002 A1
20020053110 Dias et al. May 2002 A1
20020155081 Coope Oct 2002 A1
20020189034 Kitabata et al. Dec 2002 A1
20030019051 Vidal et al. Jan 2003 A9
20030049222 Akhter et al. Mar 2003 A1
20030072962 Matsuzaki et al. Apr 2003 A1
20030083380 Yu et al. May 2003 A1
20030152543 Legrand et al. Aug 2003 A1
20030215415 Mitsumatsu et al. Nov 2003 A1
20040034944 Legrand et al. Feb 2004 A1
20040034946 Legrand et al. Feb 2004 A1
20040067212 Tokuyama et al. Apr 2004 A1
20040086475 Boswell et al. May 2004 A1
20040088800 Cotteret May 2004 A1
20040156877 Tokuyama et al. Aug 2004 A1
20040181883 Legrand et al. Sep 2004 A1
20040202689 Subramanyan et al. Oct 2004 A1
20040216244 Cotteret et al. Nov 2004 A1
20040228580 Lee et al. Nov 2004 A1
20040241114 Gupta Dec 2004 A1
20040258652 Pascaly et al. Dec 2004 A1
20050015894 Cottard et al. Jan 2005 A1
20050036970 Sabbagh et al. Feb 2005 A1
20050087718 Okada Apr 2005 A1
20050095215 Popp May 2005 A1
20050176615 Kinoshita et al. Aug 2005 A1
20050186164 Akyuz Aug 2005 A1
20050191263 Ueyama et al. Sep 2005 A1
20050193501 Chan et al. Sep 2005 A1
20050201966 Ueyama et al. Sep 2005 A1
20060024257 Chang et al. Feb 2006 A1
20060062751 Sato et al. Mar 2006 A1
20060075580 Chan et al. Apr 2006 A1
20060093571 Glinski May 2006 A1
20060135397 Bissey-Beugras et al. Jun 2006 A1
20060166845 Terada Jul 2006 A1
20060182702 Lazzeri et al. Aug 2006 A1
20060198807 Morioka Sep 2006 A1
20060228316 Cannell et al. Oct 2006 A1
20060251673 Hwang et al. Nov 2006 A1
20060276369 Levecke et al. Dec 2006 A1
20070041921 Neill et al. Feb 2007 A1
20070067924 Beck et al. Mar 2007 A1
20070107142 Nguyen et al. May 2007 A1
20070116661 Mata May 2007 A1
20070160560 Laurent et al. Jul 2007 A1
20070161543 Yu et al. Jul 2007 A1
20070190008 Campain et al. Aug 2007 A1
20070261594 Vaskelis et al. Nov 2007 A1
20070264208 Mougin et al. Nov 2007 A1
20080025937 Cassier Jan 2008 A1
20080025939 Cassier et al. Jan 2008 A1
20080066773 Anderson et al. Mar 2008 A1
20080118458 Giesen et al. May 2008 A1
20080138309 Malle et al. Jun 2008 A1
20080141468 Cotteret Jun 2008 A1
20080187506 Carballada et al. Aug 2008 A1
20080226576 Benabdillah et al. Sep 2008 A1
20080233072 Bureiko et al. Sep 2008 A1
20080306025 Yu et al. Dec 2008 A1
20090022681 Carballada et al. Jan 2009 A1
20090041699 Molenda et al. Feb 2009 A1
20090041701 Taylor Feb 2009 A1
20090041713 Taylor Feb 2009 A1
20090053165 Brown et al. Feb 2009 A1
20090071493 Nguyen et al. Mar 2009 A1
20090074683 Nguyen et al. Mar 2009 A1
20090126756 Syed et al. May 2009 A1
20090208499 Yu et al. Aug 2009 A1
20090214628 de Rijk Aug 2009 A1
20090252697 Barbarat et al. Oct 2009 A1
20090274677 Isaacs et al. Nov 2009 A1
20100004391 Haddleton et al. Jan 2010 A1
20100015079 Schrader Jan 2010 A1
20100081716 Matsunaga et al. Apr 2010 A1
20100119468 Garcia Castro et al. May 2010 A1
20100154140 Simonet et al. Jun 2010 A1
20100158845 Ellington et al. Jun 2010 A1
20100158964 Cunningham et al. Jun 2010 A1
20100178267 Puerta et al. Jul 2010 A1
20100189795 Dreher Jul 2010 A1
20100202998 Ramos-Stanbury et al. Aug 2010 A1
20100247463 Yu et al. Sep 2010 A1
20100303748 Hercouet Dec 2010 A1
20110056508 Gross et al. Mar 2011 A1
20110061671 Neplaz et al. Mar 2011 A1
20110142778 Hloucha et al. Jun 2011 A1
20110150804 Nojiri et al. Jun 2011 A1
20110213033 Tokuyama et al. Sep 2011 A1
20110256084 Dixon et al. Oct 2011 A1
20110311463 Diamond et al. Dec 2011 A1
20120015894 Terada Jan 2012 A1
20120022037 Terada Jan 2012 A1
20120064137 Kawai Mar 2012 A1
20120114583 Giesen et al. May 2012 A1
20120118316 Uellner et al. May 2012 A1
20120121705 Paus et al. May 2012 A1
20120180807 Flohr Jul 2012 A1
20120230935 Kim et al. Sep 2012 A1
20120244082 Sulzbach et al. Sep 2012 A1
20120288459 Burg et al. Nov 2012 A1
20120329650 Lopez-Cervantes Dec 2012 A1
20130016246 Hatanaka et al. Jan 2013 A1
20130034515 Stone et al. Feb 2013 A1
20130102513 Terada Apr 2013 A1
20130118996 Kaplan May 2013 A1
20130149274 Nguyen et al. Jun 2013 A1
20130152959 Genain et al. Jun 2013 A1
20130156716 Yontz Jun 2013 A1
20130164240 Schrott Jun 2013 A1
20130172518 Huang et al. Jul 2013 A1
20130216491 Ogihara et al. Aug 2013 A1
20130233331 Khenniche et al. Sep 2013 A1
20130233332 Khenniche et al. Sep 2013 A1
20130251656 Khenniche et al. Sep 2013 A1
20130266529 Deconinck et al. Oct 2013 A1
20130280199 Albert Oct 2013 A1
20130309190 Dimotakis et al. Nov 2013 A1
20130315852 Streuli Nov 2013 A1
20140120047 Krueger May 2014 A1
20140158150 Schoepgens et al. Jun 2014 A1
20140170105 Chen et al. Jun 2014 A1
20140171354 Miralles et al. Jun 2014 A1
20140186283 Cabourg et al. Jul 2014 A1
20140196741 Cabourg et al. Jul 2014 A1
20140246041 Krueger Sep 2014 A1
20140256885 Puerta et al. Sep 2014 A1
20150004117 Tan et al. Jan 2015 A1
20150004119 Tan et al. Jan 2015 A1
20150034117 Pressly et al. Feb 2015 A1
20150034119 Pressly et al. Feb 2015 A1
20150037270 Pressly et al. Feb 2015 A1
20150037271 Pressly et al. Feb 2015 A1
20150053228 Bonauer et al. Feb 2015 A1
20150053230 Myatt Feb 2015 A1
20150090285 Worner et al. Apr 2015 A1
20150157544 Briggs et al. Jun 2015 A1
20150252302 Rieth et al. Sep 2015 A1
20150283041 Benn et al. Oct 2015 A1
20150290101 Pressly et al. Oct 2015 A1
20150297496 Kroon et al. Oct 2015 A1
20150313816 Daubresse Nov 2015 A1
20150328102 Pressly et al. Nov 2015 A1
20160058688 Anderheggen et al. Mar 2016 A1
20160081899 Pressly et al. Mar 2016 A1
20160166479 Chiou et al. Jun 2016 A1
20160175238 Shin et al. Jun 2016 A1
20160193129 Pressly et al. Jul 2016 A1
20160235649 Streuli Aug 2016 A1
20160263003 Pressly et al. Sep 2016 A1
20160310394 Pressly et al. Oct 2016 A1
20160331664 Anderheggen et al. Nov 2016 A1
20160348037 Findlay et al. Dec 2016 A1
20170007518 Everaert et al. Jan 2017 A1
20170112740 Schoepgens et al. Apr 2017 A1
20170112743 Schoepgens et al. Apr 2017 A1
20170113071 Schoepgens et al. Apr 2017 A1
20170119122 Rautenberg-Groth et al. May 2017 A1
20170128334 Schoepgens et al. May 2017 A1
20170128342 Schoepgens et al. May 2017 A1
20170143611 Hippe et al. May 2017 A1
20170151143 Scheunemann et al. Jun 2017 A1
20170151144 Scheunemann et al. Jun 2017 A1
20170151146 Scheunemann et al. Jun 2017 A1
20170151147 Scheunemann et al. Jun 2017 A1
20170151156 Scheunemann et al. Jun 2017 A1
20170157011 Punyani et al. Jun 2017 A1
20170165161 Manneck et al. Jun 2017 A1
20170202763 Manneck et al. Jul 2017 A1
20170246094 Dreher et al. Aug 2017 A1
20170252291 Lechner Sep 2017 A1
20170360658 Ferrari et al. Dec 2017 A1
20180055751 Gevgilili et al. Mar 2018 A1
20180116942 Mahadeshwar et al. May 2018 A1
20180140531 Singer et al. May 2018 A1
20180140532 Singer et al. May 2018 A1
20180280267 Rughani et al. Oct 2018 A1
20180280269 Rughani et al. Oct 2018 A1
20180280270 Rughani et al. Oct 2018 A1
20180280271 Fack et al. Oct 2018 A1
20180338901 Patterson et al. Nov 2018 A1
20180339175 Patterson et al. Nov 2018 A1
20190201309 Machover et al. Jul 2019 A1
20190254954 Jegou et al. Aug 2019 A1
20200129405 Mitchell et al. Apr 2020 A1
Foreign Referenced Citations (237)
Number Date Country
1383377 Dec 2002 CN
1423548 Jun 2003 CN
1424016 Jun 2003 CN
1454074 Nov 2003 CN
1678281 Oct 2005 CN
1717215 Jan 2006 CN
1778289 May 2006 CN
1798539 Jul 2006 CN
101282705 Oct 2008 CN
101495087 Jul 2009 CN
101686920 Mar 2010 CN
101843561 Sep 2010 CN
101966136 Feb 2011 CN
102056896 May 2011 CN
102166163 Aug 2011 CN
102231974 Nov 2011 CN
102281864 Dec 2011 CN
102361627 Feb 2012 CN
102397232 Apr 2012 CN
102451117 May 2012 CN
103356395 Oct 2013 CN
103998099 Aug 2014 CN
104066419 Sep 2014 CN
104159567 Nov 2014 CN
104519962 Apr 2015 CN
105267066 Jan 2016 CN
105902403 Aug 2016 CN
105902404 Aug 2016 CN
106265109 Jan 2017 CN
1220969 Jul 1966 DE
2225541 Dec 1973 DE
2359399 Jun 1975 DE
3843892 Jun 1990 DE
4133957 Apr 1993 DE
4300320 Jul 1994 DE
19543988 May 1997 DE
29722990 May 1999 DE
10051773 Apr 2002 DE
10051774 Apr 2002 DE
20208254 Aug 2002 DE
102004052480 May 2006 DE
10 2007 039745 Feb 2009 DE
202015104742 Oct 2015 DE
102014213317 Jan 2016 DE
102015223828 Sep 2016 DE
102015221460 May 2017 DE
102016200688 Jul 2017 DE
202017001430 Jul 2017 DE
0122324 Oct 1984 EP
0159628 Oct 1985 EP
0286261 Oct 1988 EP
0298684 Jan 1989 EP
0299764 Jan 1989 EP
0437114 Jul 1991 EP
0512879 Nov 1992 EP
0636358 Feb 1995 EP
0714954 Jun 1996 EP
0770375 May 1997 EP
0855178 Jul 1998 EP
0978272 Feb 2000 EP
1118319 Jul 2001 EP
1174112 Jan 2002 EP
1216023 Apr 2005 EP
1541117 Jun 2005 EP
1570832 Sep 2005 EP
1216022 Apr 2006 EP
1690524 Aug 2006 EP
1779896 May 2007 EP
1810657 Jul 2007 EP
2123250 Nov 2009 EP
2229933 Sep 2010 EP
2295029 Mar 2011 EP
2460511 Jun 2012 EP
2471504 Jul 2012 EP
2478892 Jul 2012 EP
1510197 Mar 2016 EP
1492597 Aug 1967 FR
1583363 Oct 1969 FR
2162025 Jul 1973 FR
2252840 Jun 1975 FR
2270846 Dec 1975 FR
2280361 Feb 1976 FR
2316271 Jan 1977 FR
2320330 Mar 1977 FR
2336434 Jul 1977 FR
2368508 May 1978 FR
2413907 Aug 1979 FR
2505348 Nov 1982 FR
2542997 Sep 1984 FR
2733749 Nov 1996 FR
2789895 Aug 2000 FR
2789896 Aug 2000 FR
2801308 May 2001 FR
2841129 Dec 2003 FR
2886136 Dec 2006 FR
2939030 Jun 2010 FR
2944441 Oct 2010 FR
2966352 Apr 2012 FR
2975899 Dec 2012 FR
2975900 Dec 2012 FR
713675 Aug 1954 GB
741307 Nov 1955 GB
773559 Apr 1957 GB
1026978 Apr 1966 GB
1125794 Aug 1968 GB
1153196 May 1969 GB
1260451 Jan 1972 GB
1546809 May 1979 GB
1584364 Feb 1981 GB
63154611 Jun 1988 JP
S63-255214 Oct 1988 JP
02-019576 Jan 1990 JP
H02-138110 May 1990 JP
05-163124 Jun 1993 JP
H07-069847 Mar 1995 JP
08-198732 Aug 1996 JP
H08-509478 Oct 1996 JP
2000-229821 Aug 2000 JP
2001-081013 Mar 2001 JP
2002-097115 Apr 2002 JP
2002-105493 Apr 2002 JP
2002-121121 Apr 2002 JP
2002-356408 Dec 2002 JP
2002-363048 Dec 2002 JP
2003-095876 Apr 2003 JP
2003-516335 May 2003 JP
2004-026976 Jan 2004 JP
2005-060398 Mar 2005 JP
2005-154348 Jun 2005 JP
2006-219493 Aug 2006 JP
2006-327994 Dec 2006 JP
2008-189686 Aug 2008 JP
2009-007283 Jan 2009 JP
2009-536619 Oct 2009 JP
2010-155823 Jul 2010 JP
2012-515218 Jul 2012 JP
2013-500328 Jan 2013 JP
2015086211 May 2015 JP
2016-003185 Jan 2016 JP
2017-095451 Jun 2017 JP
2018-514570 Jun 2018 JP
10-2001-0039848 Jul 2001 KR
2003-0003970 Jan 2003 KR
10-2004-0098688 Nov 2004 KR
10-2006-0059564 Jun 2006 KR
10-2012-0062511 Jun 2012 KR
10-2016-0064420 Jun 2016 KR
2144945 Jan 2000 RU
2229281 May 2004 RU
9300882 Jan 1993 WO
9308787 May 1993 WO
9408969 Apr 1994 WO
9408970 Apr 1994 WO
9501152 Jan 1995 WO
9501772 Jan 1995 WO
9515144 Jun 1995 WO
9615765 May 1996 WO
9724106 Jul 1997 WO
9856333 Dec 1998 WO
9911226 Mar 1999 WO
9966793 Dec 1999 WO
0135912 May 2001 WO
0147486 Jul 2001 WO
WO-0152005 Jul 2001 WO
0219976 Mar 2002 WO
0232383 Apr 2002 WO
0232386 Apr 2002 WO
02055034 Jul 2002 WO
2004002411 Jan 2004 WO
2004019858 Mar 2004 WO
2005058258 Jun 2005 WO
2006011771 Feb 2006 WO
2006134051 Dec 2006 WO
2007003307 Jan 2007 WO
2007038733 Apr 2007 WO
2009024936 Feb 2009 WO
2010015517 Feb 2010 WO
2010023559 Mar 2010 WO
2010049434 May 2010 WO
2011134785 Nov 2011 WO
2012033813 Mar 2012 WO
2012080321 Jun 2012 WO
2012084532 Jun 2012 WO
2012084876 Jun 2012 WO
2012164064 Dec 2012 WO
2013092080 Jun 2013 WO
2013136480 Sep 2013 WO
2014016407 Jan 2014 WO
2014072490 May 2014 WO
2014118212 Aug 2014 WO
2014125452 Aug 2014 WO
2014144076 Sep 2014 WO
2014167508 Oct 2014 WO
2014207097 Dec 2014 WO
2015017768 Feb 2015 WO
2015026994 Feb 2015 WO
2015033351 Mar 2015 WO
2015058942 Apr 2015 WO
2015069823 May 2015 WO
2015075064 May 2015 WO
2015118357 Aug 2015 WO
2015175986 Nov 2015 WO
2016005114 Jan 2016 WO
2016005144 Jan 2016 WO
2016058749 Apr 2016 WO
WO2016058749 Apr 2016 WO
WO-2016058749 Apr 2016 WO
2016069877 May 2016 WO
2016091492 Jun 2016 WO
2016098870 Jun 2016 WO
2016100885 Jun 2016 WO
2016102543 Jun 2016 WO
2016120642 Aug 2016 WO
2016161360 Oct 2016 WO
2016179017 Nov 2016 WO
2016198203 Dec 2016 WO
2016207840 Dec 2016 WO
2017041903 Mar 2017 WO
2017041905 Mar 2017 WO
2017041906 Mar 2017 WO
2017041907 Mar 2017 WO
2017041908 Mar 2017 WO
2017041909 Mar 2017 WO
2017041910 Mar 2017 WO
2017059646 Apr 2017 WO
2017085117 May 2017 WO
2017091796 Jun 2017 WO
2017091797 Jun 2017 WO
2017091800 Jun 2017 WO
2017102855 Jun 2017 WO
2017102936 Jun 2017 WO
WO-2017091794 Jun 2017 WO
2017116465 Jul 2017 WO
2017196299 Nov 2017 WO
2017207198 Dec 2017 WO
2018081399 May 2018 WO
2018085478 May 2018 WO
Non-Patent Literature Citations (212)
Entry
Olaplex with relaxers, OLAPLEX™, pp. 1-2, Apr. 11, 2017, https://olaplex.es/olaplex-with-relaxers/.
Relaxers, Resource Library, Olaplex Education, pp. 1-2, Apr. 11, 2017, https://help.olaplex.corn/detail/relaxers.
International Search Report and Written Opinion dated Jul. 24, 2018 for corresponding PCT Application No. PCT/US2018/034378.
Database GNPD—Mintel; “Step 3—Conditioner”, 2017; pp. 1-4; XP002783016, Feb. 2017.
Mintel: “Conditioner,” Unilever, XP055576893, Database accession No. 3014885, Mar. 2, 2015.
Olaplex Alleges Patent Infringement by L'oreal re Hairbond-Building Prior to Colouring, Focus on Pigments, vol. 2017, No. 3, Mar. 31, 2017, p. 7.
Final Office Action for copending U.S. Appl. No. 15/339,035, dated May 2, 2019.
International Preliminary Report on Patentability for counterpart Application No. PCT/US2017/058495, dated May 9, 2019.
Notice of Allowance for copending Application No. 15/778,803, dated Jun. 3, 2019.
Extended European Search Report for counterpart Application No. 16869327.3-1114, dated Jun. 4, 2019.
Mintel: “Detox 7 Day Cure Purifying Serum,” XP055593471, Jeanne Gatineau, Feb. 11, 2013.
Extended European Search Report for counterpart Application No. 16869330.7-1114, dated Jul. 5, 2019.
Extended European Search Report for counterpart Application No. 16869326.5-1114, dated Jun. 26, 2019.
Translation of Mexican Office Action for counterpart Application No. MX/a/2018/005829, dated Jun. 13, 2019.
Non-Final Office Action for copending U.S. Appl. No. 15/339,035, dated Aug. 20, 2019.
Mexican Office Action for counterpart Application No. MX/a/2017/013983, dated Jul. 2, 2019.
Notice of Allowance for copending U.S. Appl. No. 16/042,478, dated Sep. 25, 2019.
Non-Final Office Action for copending U.S. Appl. No. 15/778,807, dated Sep. 30, 2019.
Brazilian Office Action for counterpart Application No. BR112017023380-0, dated Oct. 10, 2019.
Brazilian Office Action for counterpart Application No. BR112018010381-0, dated Nov. 25, 2019.
Brazilian Office Action for counterpart Application No. BR112018010357-8, dated Nov. 25, 2019.
Mexican Office Action for counterpart Application No. MX/a/2018/005829, dated Oct. 5, 2019.
Brazilian Office Action for counterpart Application No. BR112018010344, dated Nov. 25, 2019.
Mexican Office Action for counterpart Application No. MXJa/201 7/013983, dated Dec. 16, 2019.
Japanese Office Action for counterpart Application No. 2018-526844, dated Dec. 23, 2019.
Japanese Office Action for counterpart Application No. 2018-526845, dated Dec. 23, 2019.
Japanese Office Action for counterpart Application No. 2018-546409, dated Dec. 23, 2019.
Brazilian Written Opinion for counterpart Application No. BR112018010341, dated Nov. 25, 2019.
Non-Final Office Action for counterpart Japanese Application No. 2018-546408, dated Jan. 6, 2020.
Mintel: “Tonic,” Dr. Kurt Wolff, Dr. Wolff Plantur 39, ID# 3133037, Apr. 2015.
Mintel: “Conditioner,” LG Household & Health Care, Beyond Professional, ID# 3240637, Jun. 2015.
Russian Office Action for counterpart Application No. 2018114758/04, dated Dec. 13, 2019.
Translated Notification of Reasons for Refusal for counterpart KR Application No. 10-2018-7017668, dated Jan. 21, 2020.
Translated Office Action for counterpart RU Application No. 2017134681/04(0060925), dated Dec. 30, 2019.
Non-Final Office Action for copending U.S. Appl. No. 15/778,805, dated Feb. 12, 2020.
Final Office Action for copending Application No. 15/778,807, dated Mar. 13, 2020.
Final Office Action for copending U.S. Appl. No. 15/339,035, dated Apr. 10, 2020.
Non-Final Office Action for copending U.S. Appl. No. 16/273,787, dated Apr. 9, 2020.
International Search Report and Written Opinion for counterpart Application No. PCT/US2017/059827, dated Jun. 28, 2018.
“LAMESOFT® PO 65 Datasheet,” Retrieved from the internet on Jun. 7, 2018, http://e-applications.basf-ag.de/data/basf-pcan/pds2/pds2-web.nsf.
Non-Final Office Action for copending U.S. Appl. No. 15/356,967, dated May 3, 2017.
Final Office Action for copending U.S. Appl. No. 15/356,967, dated Dec. 4, 2017.
Non-Final Office Action for copending U.S. Appl. No. 15/356,967, dated Aug. 24, 2018.
Final Office Action for copending U.S. Appl. No. 15/356,967, dated Apr. 11, 2019.
Non-Final Office Action for copending U.S. Appl. No. 15/356,967, dated Feb. 21, 2020.
International Search Report and Written Opinion for counterpart Application No. PCT/US2017/059817, dated Feb. 6, 2018.
Non-Final Office Action for copending U.S. Appl. No. 15/357,056, dated Apr. 16, 2020.
Non-Final Office Action for copending U.S. Appl. No. 15/942,042, dated Jan. 24, 2020.
ALS “Cocamidopropyl betaine,” printed 2020; http://www.caslab.com/Cocamidopropyl_betaine_CAS_61789-40-0.
International Search Report and Written Opinion for counterpart Application No. PCT/US2018/025466, dated Jul. 9, 2018.
International Search Report and Written Opinion for counterpart Application No. PCT/US2018/025448, dated Jul. 9, 2018.
International Preliminary Report on Patentability for counterpart Application No. PCT/US2018/025448, dated Oct. 1, 2019I.
International Search Report and Written Opinion for counterpart Application No. PCT/US2018/025431, dated Jun. 20, 2018.
International Preliminary Report on Patentability for counterpart Application No. PCT/US2018/025431, Oct. 1, 2019.
Zefirova, N.S. “Big Russian Encyclopedia,” Chemical Encyclopedia, 1995, vol. 4, pp. 183-185 (translated).
Third Party Submission for U.S. Appl. No. 16/712,326, filed Sep. 8, 2020 with attachments.
Mexican Office action for MX/a/2017/013983, dated Sep. 15, 2020.
Non-Final Office Action for copending U.S. Appl. No. 16/176,350, dated Sep. 30, 2020.
Non-Final Office Action for copending U.S. Appl. No. 15/778,807, dated Oct. 9, 2020.
International Preliminary Report on Patentability for counterpart Application No. PCT/US2018/025466, dated Oct. 1, 2019.
Japanese Notice of Reasons for Refusal for counterpart Application No. 2019-553190, dated Oct. 27, 2020.
Translation of Korean Notice of Last Preliminary Rejection for counterpart Application No. 10-2018-7017668, dated Oct. 21, 2020.
Non-Final Office Action for copending U.S. Appl. No. 15/942,042, dated Nov. 12, 2020.
Final Office Action for copending U.S. Appl. No. 15/356,967, dated Nov. 17, 2020.
Final Office Action for copending U.S. Appl. No. 15/357,056, dated Nov. 19, 2020.
International Search Report and Written Opinion for counterpart Application No. PCT/US2018/025418, dated Jun. 21, 2018.
International Preliminary Report on Patentability for counterpart Application No. PCT/US2018/025418, dated Oct. 1, 2019.
Notice of Allowance for copending U.S. Appl. No. 15/604,152, dated Oct. 2, 2019 (now U.S. Pat. No. 10,561,599).
Non-Final Office Action for copending U.S. Appl. No. 15/604,152, dated Jun. 13, 2019.
Notice of Allowability for copending U.S. Appl. No. 15/604,152, dated Dec. 10, 2019.
International Search Report and Written Opinion for counterpart Application No. PCT/US2018/034366, dated Jul. 25, 2018.
Anonymous: “Curly Hair Conditioner,” Mintel, GNPD, XP002782449, 2015, pp. 1-2.
Corrected Notice of Allowability for copending U.S. Appl. No. 15/604,189, dated Dec. 11, 2019 (now U.S. Pat. No. 10,576,307).
Notice of Allowance for copending U.S. Appl. No. 15/604,189, dated Oct. 22, 2019.
Non-Final Office Action for copending U.S. Appl. No. 15/604,189, dated Apr. 8, 2019.
International Search Report and Written Opinion for counterpart Application No. PCT/US2018/034371, dated Nov. 16, 2018.
Mintel: “Hydrating Hair Colour,” Garnier, Jan. 2017, pp. 1-6.
Mintel, “Masque Force Architecte Reconstructing Masque,” L'Oreal, Feb. 2012, pp. 1-6.
Final Office Action for copending U.S. Appl. No. 16/234,883, dated Mar. 11, 2020.
Non-Final Office Action for copending U.S. Appl. No. 16/234,883, dated Sep. 16, 2019.
International Search Report and Written Opinion for counterpart Application No. PCT/US2018/067814, dated Feb. 25, 2019.
Final Office Action for copending U.S. Appl. No. 16/176,350, dated Apr. 8, 2020.
Non-Final Office Action for copending U.S. Appl. No. 16/176,350, dated Nov. 14, 2019.
International Search Report and Written Opinion for counterpart Application No. PCT/US2019/059002, dated Feb. 4, 2020.
Korean Notification of Reasons for Refusal of counterpart Application No. KR10-2017-7034789, dated May 19, 2020.
Final Office Action for copending U.S. Appl. No. 15/942,042, dated Jun. 1, 2020.
Japanese Notice of Reasons for Refusal for Application No. 2017-557074, dated Jun. 1, 2020.
Non-Final Office Action for copending U.S. Appl. No. 15/942,085, dated Jun. 19, 2020.
Shiseido Super Mild Hair Care—Shampoo and Conditioner Refill Set. https://web.archive.org/web/20160326190615/http://www.truenu.com/TR/Shiseido-Super-Mild-Hair-Care-Shampoo-Conditioner-Refill-Set-Two-400ml-Refill-Pouches-Details.html. Published Mar. 26, 2016.
Non-Final Office Action for copending U.S. Appl. No. 15/941,916, dated Jun. 24, 2020.
Non-Final Office Action for copending U.S. Appl. No. 15/941,965, dated Jul. 15, 2020.
Third Party Observation for counterpart Application No. EP20160869330, dated Jun. 26, 2020.
Third Party Observation for counterpart Application No. EP20160869326, dated Jul. 2, 2020.
Third Party Observation for counterpart Application No. EP20160869327, dated Jul. 2, 2020.
Translated Japanese Office Action for counterpart Application No. 2018-526844, dated Aug. 3, 2020.
Translation of Chinese Office Action for counterpart Application No. 201680079110.9, dated Aug. 11, 2020.
Ruiming, Li, “Hairdressing Technology, China Railway Publishing House,” Jun. 30, 2015, pp. 112-113.
Translation of Mexican Office Action for counterpart Application No. MX/a/2018/005829, dated Jul. 13, 2020.
Non-Final Office Action for copending U.S. Appl. No. 16/234,883 dated Aug. 26, 2020.
Mascolo Group, label.m Anti-Frizz Mist, MINTEL GNPD, record ID5618119, published Apr. 2018, p. 1-5.
Federici Brands, Color WOW Dream Coat Supernatural Spray, MINTEL GNPD, record ID5637153, published Apr. 2018, p. 1-2.
Gamier, Gamier Fructis Sleek & Shine Moroccan Sleek Oil Treatment, MINTEL GNPD, record ID1876023, published Sep. 2012, p. 1-2.
Ouai, Leave-In Conditioner, MINTEL GNPD, record ID5781323, published Jun. 2018, p. 1-2.
Redken, Redken Pillow Proof Express Treatment Primer, MINTEL GNPD, record ID5117339, published Sep. 2017, p. 1-4.
Redken, Redken Pillow Proof Express Primer Time-Saving Blowdry Primer with Heat Protection, MINTEL GNPD, record ID6117357, published Nov. 2018, p. 1-2.
Redken, Redken Pillow Proof Time-Saving Blowdry Primer with Heat Protection, MINTEL GNPD, record ID4537755, published Jan. 2017, p. 1-3.
Copending U.S. Appl. No. 16/455,139, “Hair Treatment Compositions and Methods for Treating Hair,” filed Jun. 27, 2019.
Translation of Russian Office Action for counterpart Application No. 2017134681-04, dated Aug. 17, 2020.
Translation of Chinese Office Action for counterpart Application No. 201680079800.4, dated Aug. 24, 2020.
Search Report for Chinese Application No. 201680079800.4, dated Aug. 24, 2020.
Translation of Chinese Office Action for counterpart Application No. 201680079773.0, dated Aug. 21, 2020.
Search report for counterpart Chinese Application No. 201680079773.0, dated Aug. 21, 2020.
Translation of Japanese Office Action for counterpart Application No. 2018-546409, dated Sep. 7, 2020.
Translation of Chinese Office Action for counterpart Application No. 201680079774.5, dated Sep. 1, 2020.
Fridman, R.A., “Technology of Cosmetics,” publ. of “Food Industry,” 1964, pp. 3-6, 297-308, 411-428 and 441-466 (translation).
Copending U.S. Appl. No. 15/484,625, filed Apr. 11, 2017 (WO 2016/179017).
Copending U.S. Appl. No. 15/484,663, filed Apr. 11, 2017 (WO 2017/091794).
Copending U.S. Appl. No. 15/339,035, filed Oct. 31, 2016 (WO 2018/081399).
International Search Report and Written Opinion for counterpart Application No. PCT/US2016/030172, dated Sep. 19, 2016.
International Search Report and Written Opinion for counterpart Application No. PCT/US2016/063724, dated Feb. 2, 2017.
International Search Report and Written Opinion for counterpart Application No. PCT/US2016/063727, dated Feb. 3, 2017.
International Search Report and Written Opinion for counterpart Application No. PCT/US2016/063732, dated Feb. 3, 2017.
International Search Report and Written Opinion for counterpart Application No. PCT/US2016/063728, dated Feb. 1, 2017.
Mintel: “Abundant vol. Conditioner,” Alterna Professional Haircare, Database Record No. 2177147, Sep. 2013.
Mintel: “Hair Colourant,” Catzy Hair Colourant, Database Record ID 743114, Jul. 2007,4 pages.
Mintel: “Combing Cream,” Devintex Cosmeticos, Database Record No. 1595490, Jul. 2011.
Mintel: “Combing Cream,” Devintex Cosmeticos, Database Record No. 1595658, Jul. 2011.
Mintel: “Conditioner,” Devintex Cosmeticos, Database Record No. 1595545, Jul. 2011.
Mintel: “Conditioner,” Laperle Haircare, Database Record No. 3645337, Feb. 2016.
Mintel: “Conditioner,” Laperle Haircare, Database Record No. 3790215, Feb. 2016.
Winter “Conditioner,” Liqwd, Database Record No. 1172691, Sep. 2009.
Minter: “Conditioner,” TIGI, Database Record No. 1442418, Nov. 2010.
Minter: “Conditioner,” TIGI International, Database Record No. 1445427, Nov. 2010.
Mintel: “Conditioner,” TGI International, Database Record No. 3280151, Jul. 2015.
Mintel, “Masque for Beautiful Color,” Oribe Hair Care, Database Record No. 1522953, Mar. 2011.
Mintel: “Moisturizing Conditioner,” Frederic Fekkai, Datablase Record No. 1507159, Mar. 2011.
Mintel: “Post-Service Perfector,” Redken, Database Record No. 4326453, Nov. 2016.
Mintel: “Step 3-Conditioner,” L'OREAL, Database Record No. 4353779, Oct. 2016.
Mintel: “Step 3-Conditioner,” L'OREAL, Database Record No. 4609117, Feb. 2017.
International Preliminary Report on Patentability for counterpart Application No. PCT/US2016/30172, dated Jun. 19, 2017.
Petition for Post-Grant Review of U.S. Pat. No. 9,498,419, filed Jan. 31, 2017, with Exhibits.
Non-Final Office Action for copending U.S. Appl. No. 15/484,625, dated Jun. 21, 2017 (now U.S. Pat. No. 10,231,915).
Final Office Action for copending U.S. Appl. No. 15/484,625, dated Nov. 14, 2017 (now U.S. Pat. No. 10,231,915).
Non-Final Office Action for copending U.S. Appl. No. 15/484,663, dated Jun. 21, 2017 (now U.S. Pat. No. 10,058,494).
Final Office Action for copending U.S. Appl. No. 15/484,663, dated Nov. 28, 2017 (now U.S. Pat. No. 10,058,494).
Non-Final Office Action for copending U.S. Appl. No. 15/339,035, dated Jan. 10, 2018.
International Search Report for counterpart Application No. PCT/US2017/058495, dated Jan. 5, 2018.
Third Party Submission for U.S. Appl. No. 15/484,663, filed Feb. 28, 2018, with attachments.
Pressly, Eric et al., U.S. Appl. No. 61/994,709, filed May 16, 2014 and became publicly available on Nov. 19, 2015.
Estetica: the hairstyling professional magazine, (http:/lestetica.it/int/a/schwarzkopf-professional-launches-fibreplex), “Schwarzkopf Professional Launches Fibreplex®,” published Sep. 23, 2015 reporting that Fibreplex was launched during Sep. 2015.
Fibreplex® No. 1 Product Label.
Fibreplex® No. 1 Material Safety Data Sheet.
International Preliminary Report on Patentability for counterpart Application No. PCT/US2016/063727, dated Jun. 7, 2018.
International Preliminary Report on Patentability for counterpart Application No. PCT/US2016/063732, dated Jun. 7, 2018.
International Preliminary Report on Patentability for counterpart Application No. PCT/US2016/063728, dated Jun. 7, 2018.
Non-Final Office Action for copending U.S. Appl. No. 15/484,625, dated Jun. 20, 2018 (now U.S. Pat. No. 10,231,915).
International Preliminary Report on Patentability for counterpart Application No. PCT/US2016/063724, dated Jun. 7, 2018.
Non-Final Office Action for copending U.S. Appl. No. 15/339,035, dated Oct. 5, 2018.
Notice of Allowance for copending U.S. Appl. No. 15/484,625, dated Oct. 31, 2018.
Bayraktar, V.N., “Organic Acids Concentration in Wine Stocks After Saccharomyces cerevisiae Fermentation,” Biotechnologia Acta, vol. 6, No. 2, Jan. 1, 2013, pp. 97-106.
Supplementary European Search Report for counterpart Application No. EP16789846, dated Oct. 30, 2018.
Communication Pursuant to Rules 70(32) and 70a(2) EC for counterpart Application EP16789846, dated Jan. 23, 2019.
Written Opinion for counterpart Application EP16789846, dated Jan. 23, 2019.
Supplementary Extended Search Report and Written Opinion for counterpart European U.S. Appl. No. 16/869,324, dated Apr. 25, 2019.
Mintel: “Conditioner,” Unilever, XP-55576888, Database accession No. 1419415, Oct. 21, 2010.
Translation of Russian Office Action for counterpart Application No. 2018114758/04, dated Dec. 21, 2020.
Translation of Chinese Office Action for counterpart Application No. 201680039105.5, dated Feb. 4, 2021.
European Office Action for counterpart Application No. 16869330.7-1112, dated Feb. 4, 2021.
European Office Action for counterpart Application No. 16869324.0-1112, dated Feb. 18, 2021.
Translation of Chinese Office Action for counterpart Application No. 201680079800.4, dated Feb. 24, 2021.
Supplemental Search Report for Chinese counterpart Application No. 201680079800.4, dated Feb. 18, 2021.
Translation of Chinese Office Action for counterpart Application No. 201880021603.6, dated Mar. 2, 2021.
Translation of Japanese Office Action for counterpart Application No. 2018-546408, dated Dec. 7, 2020.
Japanese Notice of Reasons for Rejection for counterpart Application No. 2019-553559, dated Dec. 1, 2020.
Translation of Notice of Reasons for Rejection for counterpart Application No. 2019-564945, dated Dec. 1, 2020.
Final Office Action for copending U.S. Appl. No. 16/234,883, dated Dec. 24, 2020.
Translation of Third Party Observation for Application No. 2018-546408, dated Sep. 11, 2020.
European Office Action for counterpart Application No. 16869327.3-1112, dated Dec. 18, 2020.
Non-Final Office Action for copending U.S. Appl. No. 16/455,139, dated Jan. 26, 2021.
Final Office Action for copending U.S. Appl. No. 15/941,916, dated Mar. 10, 2021.
Final Office Action for copending U.S. Appl. No. 15/941,965, dated Apr. 5, 2021.
Partial Translation of Office Action for copending MX Application No. MX/a/2017/013983, dated Apr. 4, 2021.
Translation of Chinese Office Action for counterpart Application No. 201680079773, dated Apr. 14, 2021.
Translation of Japanese Office Action for counterpart Application No. 2017-557074, dated May 31, 2021.
Translation of Japanese Notice of Reasons for Refusal for counterpart Application No. 2019-553190, dated Jun. 12, 2021.
Non-Final Office Action for copending U.S. Appl. No. 16/234,883, dated Sep. 17, 2021.
Final Office Action for copending U.S. Appl. No. 15/942,085, dated Sep. 21, 2021.
Final Office Action for copending U.S. Appl. No. 15/942,042, dated May 12, 2021.
Non-Final Office Action for copending U.S. Appl. No. 15/942,085, dated Jun. 8, 2021.
Tetrasodium Etidronate, https://uk.lush.com/ingredients/tetrasodium-etidronate. Published Mar. 28, 2020.
Shoup, F.K., et al., “Amino Acid Composition of Wheat Varieties and Flours Varying Widely in Bread-Making Potentialities,” Journal of Food Science, vol. 31, Issue 1, published Jan. 1966, pp. 94-101.
“Oxy Cream,” Makki Cosmetics, https://www.makkicosmetics.com/makk/showProductjsp?productID=Oxy25030&brandID=Makki, published Jun. 30, 2016.
Non-Final Office Action for copending U.S. Appl. No. 15/339,035, dated Jun. 25, 2021.
Non-Final Office Action for copending U.S. Appl. No. 15/603,889, dated Jun. 25, 2021.
Final Office Action for copending Application No. 15/778,807, dated Jul. 21, 2021.
Non-Final Office Action for copending U.S. Appl. No. 15/356,967, dated Jul. 22, 2021.
Cepending U.S. Appl. No. 17/228,040, Titled: “Compositions for altering the Color of Hair,” Inventolrs: Kimberly Dreher et al., filed Apr. 12, 2021.
Cepending U.S. Appl. No. 17/403,327, Titled: “Hair Treatment Compositions, Methods, and Kits for Treating Hair,” Inventors: Barbara Mitchell et al., filed Aug. 16, 2021.
Final Office Action for copending U.S. Appl. No. 16/455,139, dated Aug. 11, 2021.
Chinese Office Action for counterpart Application No. 201880021603.6, dated Dec. 8, 2021.
Chinese Office Action for counterpart Application No. 201880034065.4, dated Dec. 22, 2021.
Translation of Chinese Office Action for counterpart Application No. 201680039105.5, dated Jan. 14, 2022.
Translation of Chinese Office Action for counterpart Application No. 201880034056.6, dated Dec. 28, 2021.
Final Office Action for copending U.S. Appl. No. 15/603,889, dated Jan. 6, 2022.
Third Party Submission for copending U.S. Appl. No. 17/379,405, filed May 10, 2022.
Non-Final Office Action for copending U.S. Appl. No. 15/942,042, dated May 23, 2022.
Third Party Submission and Concise Description of Relevance for copending U.S. Appl. No. 17/403,327, dated Jun. 27, 2022.
Third Party Submission for counterpart Application No. EP 20160869330, dated May 6, 2022.
U.S. Appl. No. 61/994,709 for “Hair Treatment Compositions and Methods,” Inventors: Eric D. Pressly and Craig J. Hawker, filed May 16, 2014.
Translation of Second Chinese Office Action for counterpart Application No. 201880034056.5, dated May 30, 2022.
Chinese Office Action for counterpart Application No. 201880084390.1, dated Jun. 30, 2022 (translation unavailable).
EP Office Action for counterpart Application No. 16789846.9-1109, dated Jul. 6, 2022.
Related Publications (1)
Number Date Country
20180338895 A1 Nov 2018 US