Wu, Lihteh, MD., Neovascularization, Choroidal; eMedicine Journal, Apr. 27, 2001, vol. 2, No. 4. (http://www.emedicine.com/oph/topic534.htm).* |
Reichel E. MD et al, “Indocyanine Green Dye-Enhanced Diode Laser Photocoagulation of Poorly Defined Subfoveal Choroidal Neovascularization”, Ophthalmic Surgery 25, 195-201. (1994).* |
Mendelsohn et al. “Amelioration of Experimental Lipid Keratopathy by Photochemically Induced Thrombosis of Feeder Vessels,” Archives of Ophthalmology, vol. 105, No. 7; p. 983-988; Jul. 1987. |
Nirankari, Verinder S. “Lawer Photocoagulation for Corneal Stromal Vascularization,” Transactions of the American Ophthalmological Society Annual Meeting, CA, Toronto, vol. 90; p. 595-669; 1992. |
Shiraga et al. “Feeder Vessel Photocoagulation of Subfoveal Choroidal Neovascularization Secondary to Age-Related Macular Degeneration,” Ophthalmology, US, J. B. Lippincott Co., Philadelphia, PA, vol. 105, No. 4; p. 662-669; Apr. 4, 1998. |
International Search Report (Jul. 31, 2001). |
Mendelson et al., “Amelioration of Experimental Lipid Keratopathy by Photochemically Induced Thrombosis of Feeder Vessels,” Arch Ophthalmol, vol. 105, Jul. 1987 (pp. 983-988). |
Tsilimbaris et al., “Photothrombosis Using Two Different Phthalocyanine Administration Routes: Continuous I.V. Infusion v. Bolus I.V. Injection,” Photochem. Photobiol., 62(3), 1995, (pp. 435-441). |
Spinelli et al., “Endoscopic Treatment of Gastrolintestinal Tumors: Indications and Results of Laser Photocoagulation and Photodynamic Therapy,” Seminars in Surgical Oncology, 11 (4), 1995, (pp. 307-318) (Abstract only). |
Von Kerczek et al., “The Effects of Indocyanine Green Dye-Enhanced Photocoagulation on the Blood Flow in the Choriocapillaris and the Choroidal Neovascularization,” Advances in Heat and Mass Transfer in Biotechnology, 2000, (pp. 1-3). (Abstract only). |
Flower et al., “Clinical Infrared Absorption Angiography of the Choroid,” American Journal of Ophthalmology, vol. 73, No. 3, pp. 458-459 (1972). |
Flower et al., “A Clinical Technique and Apparatus for Simultaneous Angiography of the Separate Retinal and Choroidal Circulations,” Investigative Ophthalmology, vol. 12(4), pp. 248-261 (1973). |
Hochheimer et al., “Angiography of the Cervix,” Johns Hopkins Medical Journal, vol. 135, pp. 375-382, (1974). |
Flower, “High Speed Human Choroidal Angiography Using Indocyanine Green Dye and a Continuous Light Source,” International Symposium on Fluorescein Angiography, Documenta Ophthmologica Proceedings Series, vol. 9, pp. 59-64 (1976). |
Flower et al., “Indocyanine Green Dye Fluorescence and Infrared Absorption Choroidal Angiography Performed Simultaneously with Fluorescein Angiography,” Johns Hopkins Medical Journal, vol. 138, No. 2, pp. 33-42 (1976). |
Orth et al., “Potential Clinical Applications of Indocyanine Green Choroidal Angiography,” The Eye, Ear, Nose and Throat Monthly, vol. 55, Jan., pp. 15-28 (1976). |
Patz et al., “Clinical Applications of Indocyanine Green Angiography,” International Symposium on Fluorescein Angiography, Documenta Ophthmologica, vol. 9, pp. 245-251 (1976). |
Flower, “Choroidal Fluorescent Dye Filling Patterns a Comparison of High Speed Indocyanine Green and Fluorescein Angiograms,” International Ophthalmology, vol. 2(3), pp. 143-150 (1980). |
Hyvarinen et al., “Indocyanine Green Fluorescence Angiography,” ACTA Ophthalmologica, vol. 58, pp. 528-538 (1980). |
Bischoff et al., “Ten Years Experience with Choroidal Angiography Using Indocyanine Green Dye-A New Routine Examination or an Epilogue,” Doc Ophthalmology, vol. 60(3), pp. 235-291 (1985). |
Murphy et al., “Effects of Retinal Photocoagulation on the Choroidal Circulation,” Investigative Ophthalmology & Visual Science, vol. 32(4), p. 785 (1991) Meeting Abstract. |
Murphy et al., “Indocyanine Green Angiographic Studies of Accult Choroidal Neovascularization,” Investigative Ophthalmology & Visual Science, vol. 34(4), p. 1134 (1993) Meeting Abstract. |
Flower, “Binding and Extravasation of Indocyanine Green Dye,” Retina, vol. 14, No. 13, pp. 283-284 (1994). |
Lim et al., “Indocyanine Green Angiography,” International Ophthalmology Clinics, vol. 35(4), pp. 59-70 (1995). |
Hiner et al., “A Previously Undescribed Indocyanine Green Angiographic Filling Pattern,” Investigative Ophthalmology & Visual Science, vol. 36, No. 4, p. S243 (1995) Meeting Abstract. |
Flower et al., “Disparity Between Fundus Camera and Scanning Laser Ophthalmoscope Indocyanine Green Imaging of Retinal Pigment Epithelium Detachments,” Retina, vol. 18(3), pp. 260-268 (1998). |
Staurenghi et al., “Laser Treatment of Feeder Vessels in Subfoveal Choroidal Neovascular Membranes,” Ophthalmology, vol. 105, No. 12, pp. 2297-2305 (1998). |
Flower et al., “Expanded Hypothesis on the Mechanism of Photodynamic Therapy Action on Choroidal Neovascularization,” Retina, vol. 19, No.5 pp. 365-369 (1999). |
Flower, “Experimental Studies of Indocyanine Green Dye-Enhanced Photocoagulation of Choroidal Neovascularization Feeder Vessels,” American Journal of Ophthalmology vol. 129, No. 4, pp. 501-512 (2000). |
“Photosensitizer,” Ophthamalmic Surgery and Lasers, vol. 28, No. 5, p 410 (1997). |
Desmettre et al., “Diode Laser-Induced Thermal Damage Evaluation on the Retina with a Liposome Dye System,” Lasers in Surgery and Medicine, vol. 24, pp. 61-68 (1999). |
Flower et al., “Evolution of Indocyanine Green Dye Choroidal Angiography,” Optical Engineering, vol. 34, No. 3, pp. 727-736 (1995). |
Flower et al., “Pulsatile Flow in the Choroidal Circulation: A Preliminary Investigation,” EYE, vol. 4, pp. 310-318 (1990). |
Flower et al., “Variability in Choriocapillaris Blood Flow Distribution,” Investigative Ophthalmology & Visual Science, vol. 36, No. 7, pp. 1247-1258 (1995). |
Flower, “Choroidal Angiography Today and Tomorrow,” Retina, vol. 12, No. 3, pp. 189-190 (1992). |
Flower, “Extraction of Choriocapillaris Hemodynamic Data from ICG Fluorescence Angiograms,” Investigative Ophthalmology & Visual Science, vol. 34, No. 9, pp. 2720-2729 (1993). |
Flower, “Injection Technique for Indocyanine Green and Sodium Fluorescein Dye Angiography of the Eye,” Investigative Ophthalmology, vol. 12, No. 12, pp. 881-895 (1973). |
Gathje et al., “Stability Studies on Indocyanine Green Dye,” Journal of Applied Physiology, vol. 29, No. 2, pp. 181-185 (1970). |
Holzer et al., “Photostability and Thermal Stability of Indocyanine Green,” J. Photochem. Photobiol. B: Biol., vol. 47, pp. 155-164 (1998). |
Klein et al., “An Image Processing Approach to Characterizing Choroidal Blood Flow,” Investigative Ophthalmology & Visual Science, vol. 31, No. 4, pp. 629-637 (1990). |
Miki et al., “Computer Assisted Image Analysis Using the Subtraction Method in Indocyanine Green Angiography,” European Journal of Ophthalmology, vol. 6, No. 1, pp. 30-38 (1996). |
DuBosar, “Population at Risk: Age-Related Macular Degeneration,” Ocular Surgery News, 10 Pages, (May 15, 1998). |
Chen et al., “Photothermal Effects on Murine Mammary Tumors Using Indocyanine Green and an 808-nm Diode Laser: an in vivo Efficacy Study,” Cancer Lett., vol. 98, No. 2, pp. 169-173 (1996). |
Alcon Pharmaceuticals Ltd. “Pharmacyclics Inc,” The Business and Medicine Report, p. 63 (Jan. 1998). |
Shiraga et al., “Feeder Vessel Photocoagulation of Subfoveal Choroidal Neovascularization Secondary to Age-Related Macular Degeneration,” Ophthalmology, vol. 105, No. 4, pp. 662-669 (1998). |