The present invention is directed to the prophylatic field treatment of photodamaged skin with topical ingenol mebutate. More specifically, the present invention concerns field-directed treatment of UV-damaged skin with topical ingenol mebutate for reducing the number of skin lesions that emerge from the UV-damaged skin over time. In addition, the present invention concerns field-directed treatment for removing photodamaged skin, mutated keratinocytes, cutaneous immunosuppressive environments and/or p53+ patches caused by UV with topical ingenol mebutate. By way of example, the present invention is directed to treating photodamaged skin with topical ingenol mebutate at about 0.05% concentration.
The present invention is also concerned with the treatment of SCC tumors with topical ingenol mebutate for reducing the number of SCC tumors. By example, the present invention is directed to treating and curing SCC xenografts with topical ingenol mebutate at about 0.25% concentration.
The present invention is further directed to a topical field-directed treatment for the removal of tattoos from skin with ingenol mebutate. By way of example, the present invention is directed to removing tattoos with topical ingenol mebutate at concentrations of up to about 0.25%.
According to the U.S. Department of Health and Human Services and the World Health Organization, ultraviolet (UV) radiation, from the sun and from tanning beds, is classified as a human carcinogen.
Scientists classify UV radiation generally into three types or bands, i.e., UVA, UVB and UVC. Even though the stratospheric ozone layer absorbs some of the harmful UV emitted from the sun, it does not screen all UV radiation. For example, while UVA, which is emitted at wavelength 320-400 nm, is not absorbed by the ozone layer, UVB, which is emitted at wavelength 290-320 nm, is mostly absorbed by the ozone layer, but some nevertheless does reach the Earth's surface. UVC, which is emitted at wavelength 100-290 nm, is generally believed to be completely absorbed by the ozone layer and atmosphere.
UVA and UVB radiation that reaches the Earth's surface contributes to the serious health effects listed above; it also contributes to environmental impacts. Levels of UVA radiation are more constant than UVB, reaching the Earth's surface without variations due to the time of day or year. UVA radiation is not filtered by glass.
The sun emits energy over a broad spectrum of wavelengths: visible light that you see, infrared radiation that you feel as heat, and UV radiation that you can't see or feel. UV radiation has a shorter wavelength and higher energy than visible light. It affects human health both positively and negatively. Short exposure to UVB radiation generates vitamin D, but can also lead to sunburn depending on an individual's skin type. As indicated above, while the stratospheric ozone layer shields life on Earth from most UV radiation, what does get through the ozone layer can cause numerous health problems, particularly for people who spend unprotected time outdoors or who are at greater risk to UV exposure. Such problems include skin cancer, cataracts, suppression of the immune system and premature aging of the skin.
Because the benefits of sunlight cannot be separated from its damaging effects, it is important to understand the risks of overexposure.
Sunlight causes photodamage to skin which in turn causes it to age faster than it should. Thus, skin age and a person's age may not necessarily be the same. Photodamaged or sun-damaged skin is something that few people escape in their lifetime. Photodamage results from exposure to sunlight or other sources of UV such as tanning beds, whether or not sun-tanning is involved. Approximately twenty five percent of lifetime UV exposure generally happens before people reach the age of twenty. UV-damaged or photodamaged skin manifests in numerous ways, such as advanced aging or wrinkling, thickening of the skin, i.e., the leathery, weather-beaten, elephant hide look (skin will generally thicken all over when people sun bake), uneven or pebbly skin, flabbiness, lifeless skin, pigmentation irregularities, small dilated blood vessels or red markings on or near the surface of the skin also known as telangiectasias, rough or scaly patches, e.g., actinic keratoses, freckles otherwise known as ephilides, liver spots, age spots, dark spots or skin tags known as lentigines, pre-skin cancers, and skin cancer, such as non-melanoma skin cancer (NMSC), e.g., superficial basal cell carcinoma (sBCC) and squamous cell carcinoma (SCC), and malignant melanoma.
Generally, these changes occur more frequently on areas that experience chronic exposure, such as the face, head, neck, chest, ears, arms, hands, backs and legs. Because the buttocks and upper inner arms are often unexposed, these areas of skin generally remain pristine evidencing the difference between chronologic aging and photoaging.
As the manifestations of photodamage intensify with age, it is paramount to seek medical advice and treatment, preferably early on, to mitigate and even possibly reverse some of the effects of photodamage to skin.
Non-melanoma skin cancers are the most common cancers worldwide, with the incidence increasing by 3-8% annually (Madan et al., 2010; Rogers et al., 2010). The direct cost of treating NMSC in the USA in 2004 was estimated to be $ 1.4 billion in U.S. dollars (The Lewin Group, 2005) with over 2 million patients treated in 2006 (Society, 2010). UV radiation, usually from sunlight, is the most important risk factor for skin cancer, but despite increased public awareness of the dangers of sun exposure, the incidence continues to rise (Madan et al., 2010; Rogers et al., 2010). The reasons for this increase likely include better detection of the disease, the aging population (Madan et al., 2010), and increasing UV radiation due to ozone depletion (Chang et al., 2010; Norval et al., 2007). Sunlight, and particularly UVB, is able to act both as a tumor initiator and a tumor promoter, with UVB able to damage DNA directly (Madan et al., 2010; Rass and Reichrath, 2008; Ziegler et al., 1994).
Mutations of the p53 tumor suppressor gene are particularly common in skin cancers, and are considered to be an important early event in skin cancer oncogenesis (Benjamin et al., 2008; de Gruijl and Rebel, 2008; Rebel et al., 2005). Chronic UV exposure results in the accumulation in the skin of histologically detectable “p53 patches”, which are clonal outgrowths of keratinocytes with elevated nuclear expression of mutated p53 (Berg et al., 1996; Rebel et al., 2005; Rebel et al., 2001). A small number of these mutant p53 patches may progress to actinic keratosis (Einspahr et al., 1999) and ultimately NMSC, with further mutations, UV-induced immunosuppression and/or human papilloma virus infection contributing to cancer formation (Byrne et al., 2008; Hart et al., 2001; Madan et al., 2010; Murphy, 2009; Rebel et al., 2005). Although a number of factors can influence the propensity of these mutated keratinocytes to develop into NMSC (Madan et al., 2010), these UV-mutated cells appear to be a pre-requisite for the development of most NMSC (Ananthaswamy et al., 1998; Benjamin et al., 2008; Rass and Reichrath, 2008). Consistent with this view is that treatments, such as sunscreen application, that reduce the number of p53 patches, also reduce the number of skin cancers that subsequently develop (Ananthaswamy et al., 2002; Conney et al., 2008).
The hairless, immunocompetent SKH1/hr mouse model has been reported in the literature as a model for UVB-induced photodamage, ultimately leading to the development of UVB-induced lesions including actinic keratosis (AK), squamous papillomas and squamous cell carcinoma (SCC) (Cozzi and Suhrbier, 2010). UVB wavelengths emitted by the sun are absorbed by the skin causing erythema, burns, immunosuppression, and DNA damage. The dual ability of UVB to cause malignant transformation of epidermal cells and immunosupression is thought to contribute to the development of cutaneous malignancies (Ch'ng et al., 2006). Chronic exposure of SKH1/hr mice to UVB leads to the development of “UV-signature” p53 mutations at hotspot codons (Benjamin et al., 2008; de Gruijl and Rebel, 2008). Clonal expansion of keratinocytes with p53 mutations leads to the formation of p53 mutant (p53+) patches/foci, which can be detected by immunohistochemistry (IHC) using an antibody that recognises the conformation of mutated p53 (Benjamin et al., 2008; de Gruijl and Rebel, 2008). Although some p53+ keratinocytes spontaneously regress in SKH1/hr mice (as they do in humans), others develop into pre-cancerous lesions resembling AKs and can progress to become SCCs (Rebel et al., 2001).
The outbred SKH1/hr model of UVB-induced p53+ mutations have been established at QIMR (Cozzi and Suhrbier, 2010). It has been shown that irradiating mice with 1.25 MED three times per week for 8 weeks leads to the formation of p53+ foci, which can be detected by IHC on epidermal sheets (Cozzi and Suhrbier, 2010). Quantitative analysis of p53+ patches over an area of 5 cm2 of epidermis showed about 300 p53+ patches (Cozzi and Suhrbier, 2010). Two weeks after cessation of UVB irradiation, the size and number of p53+ patches had reduced, but >150 p53+ patches per 5 cm2 remained (Cozzi and Suhrbier, 2010).
Patients with squamous cell carcinoma in situ (SCCIS) have a 3-5% risk of progression to invasive cancer. Treatment options include surgical excision, cryosurgery, curettage and cautery, and nonsurgical treatments, such as photodynamic therapy, lasers, 5-fluorouracil and imiquimod. See Moreno G, Chia A L, Lim A, Shumack S. Australas J Dermatol 2007; 48: 1-8.
The treatment option selected usually depends on lesion characteristics, such as size and site, or patient characteristics and preferences, such as age, medication, frailty, side effects, wound healing, cosmetic outcome and cost effectiveness. See Moreno G, Chia A L, Lim A, Shumack S. Australas J Dermatol 2007; 48: 1-8; Cox N H, Eedy D J, Morton C A; Therapy Guidelines and Audit Subcommittee, British Association of Dermatologists. Br J Dermatol 2007; 156: 11-21; and Kossard S, Rosen R H. J Am Acad Dermatol 1992; 27: 406-10.
Surgical options carry a significant risk of scarring, dehiscence, infection and hemorrhage.
SCCIS typically occurs on the lower legs of older women. See Kossard S, Rosen R H. J Am Acad Dermatol 1992; 27: 406-10. Underlying conditions such as lipodermatosclerosis and peripheral vascular disease in this group of patients make surgical options less attractive, with clinicians being wary of the risk of complications. Lack of skin mobility may limit excision of these lesions and poor wound healing is of concern. See Moreno G, Chia A L, Lim A, Shumack S. Australas J Dermatol 2007; 48: 1-8; Cox N H, Eedy D J, Morton C A; Therapy Guidelines and Audit Subcommittee, British Association of Dermatologists. Br J Dermatol 2007; 156: 11-21; and Ball S B, Dawber R P. Australas J Dermatol 1998; 39: 63-8.
Topical pharmacotherapy may therefore be advantageous in patients with lower limb lesions and in those wishing to avoid surgery. Current topical therapies require a long treatment duration and have poorly tolerated side effects.
Over the past couple of decades, tattoos have become part of mainstream culture. For example, it has been estimated that more than 10 million Americans have at least one tattoo, and that there are about 4,000 tattoo parlors now in business in the United States. In 2007, The Pew Research Centre reported that in the U.S., about 36% of 18-25 year olds and 40% of 26-40 year olds had at least one tattoo. In 2010 Harris Interactive estimated that 14% of Americans have at least one tattoo, with the incidence increasing to 32% in individuals under the age of 30.
Tattoos are made-up of small pigment particles deposited within the dermis layer of skin. The particles are frequently intracellular, but extracellular aggregates are also present. See Pfirrmann G, Karsai S, Roos S, Hammes S, Raulin C. Tattoo removal—state of the art. J Dtsch Dermatol Ges 2007 October; 5(10):889-97. According to the U.S. Food and Drug Administration, tattoo inks and pigments are listed as “color additives” for skin and are intended only for application to the top layer of the skin. Other than this designation by the FDA, tattoo inks and pigments remain largely unregulated.
In 2007 The Pew Research Centre reported that in the US 36% of 18-25 year olds and 40% of 26-40 year olds had at least one tattoo. See How Young People View Their Lives, Futures and Politics. A Portrait of “Generation Next”. The Pew Research Centre for the People and the Press 2007 Jan. 9 Available from: URL: http://people-press.org/report/300/a-portrait-of-generation-next. In 2010 Harris Interactive estimated that 14% of Americans have at least one tattoo, with the incidence increasing to 32% in individuals under the age of 30. See Regina a.Corso. Three in Ten Americans with a Tattoo Say Having One Makes Them Feel Sexier. Harris Interactive 2010 Feb. 12 Available from: URL: http://www.harrisinteractive.com/vault/Harris-Interactive-Poll-Research-Three-in-Ten-Americans-with-a-Tattoo-Sav-Havino-One-Makes-Them-Feel-Sexier-2008-02.pdf. Today, tattoos are generally applied with an electric tattoo machine equipped with needles that rapidly puncture the skin with an up and down motion between about 50 and 3,000 times per minute, somewhat like a sewing machine. With each puncture, the needle penetrates the top layer of the skin to a depth of about a millimeter to deposit a drop of insoluble ink or pigment to create the tattoo.
Notwithstanding the current popularity of tattoos in modern-day culture, it is estimated that as many as 50% of those with tattoos have some form of regret. See Suzanne L. Kilmer, Richard E. Fitzpatrick, Michael P. Goldman. Tattoo lasers. emedicine 2008 Jun. 25. Available from: URL: www.emedicine.com/derm/topic563.htm. As to why they have regrets, one in five (about 20%) say it's because they were too young when tattooed, while approximately 19 percent say it is because the tattoo is permanent and they are marked for life. About 18% regret their tattoos because they simply don't like them, while about 16% regret their tattoos because, over time, they fade. See The Harris Poll #15: Three in Ten Americans with a Tattoo Say Having One Makes Them Feel Sexier, Feb. 12, 2008. In a 2004 poll conducted by HI Europe and the U.S. parent-company Harris, it showed that 16% of Americans, 19% of Britons and 11% of Italians who were tattooed suffered regret. See Harris Interactive Europe poll: Americans and Britons Likelier Than Italians To Regret Decision to be Tattooed, Feb. 5, 2004.
Unfortunately, tattoos are meant to be permanent and, thus, removal can prove to be very difficult and painful. If, however, the tattoo ink or pigment is evenly injected at the same level by a skilled tattoo artist, i.e., about 1 mm within the top layer of skin, the tattoo may be somewhat easier to remove. Nonetheless, dermatologic surgeons usually warn that tattoo removal is painful and that complete tattoo removal may not be possible.
In the past, invasive techniques, such as surgical excision, dermabrasion (or sanding), salabrasion, cryosurgery and chemical peels (such as topical acids and silver nitrate), were used to remove tatoos. Those techniques are still presently used in certain circumstances to remove tattoos. However, pain and the high risk of scarring makes these methods unfavorable choices in most circumstances. See Burris K, Kim K. Tattoo removal. Clin Dermatol 2007 July; 25(4):388-92.
In the late 1980s, advances in procedures to remove tattoos were made. For example, medical lasers and infrared coagulation techniques were developed to remove tatoos, as alternatives to the invasive and scar-inducing procedures described above.
Medical lasers rely upon short pulses of intense beams of light that penetrate harmlessly through the top layers of the skin for absorption by the tattoo inks or pigments to significantly lighten or completely remove the tattoo, whether the tattoo was applied with colored or black inks. The laser light causes decomposition of the tattoo ink or pigment by thermal decomposition, or thermolysis, caused by heat. The absorbed laser light causes the tattoo ink or pigment to fragment into very small particles, which are then phagocytosed by macrophages and expelled via the lymphatic system. See Pfirrmann G, Karsai S, Roos S, Hammes S, Raulin C. Tattoo removal—state of the art. J Dtsch Dermatol Ges 2007 October; 5(10):889-97. This process generally takes a few weeks. Although scarring has been reduced using medical lasers, the removal of tattoos often requires numerous sessions, and sometimes the tattoo is not completely removed. See Pfirrmann G, Karsai S, Roos S, Hammes S, Raulin C. Tattoo removal—state of the art. J Dtsch Dermatol Ges 2007 October; 5(10):889-97.
Infrared coagulation (IRC), unlike medical lasers, uses infrared light to penetrate the skin layer to reach the tattoo. Unfortunately, infrared tattoo removal is known as the burn method for removing tattoos. Generally speaking, the tattoo ink or pigment is actually burned away for removal by the immune system. Thus, when the IRC method is selected to remove a tattoo, the treated area may blister, depending on the color of the ink. Notwithstanding this disadvantage associated with IRC tattoo removal, unlike laser removal, ink color is of no consequence. IRC will remove all tattoo ink or pigment colors, whereas laser removal may not.
Although the invasive techniques described above are still in use to remove tattoos, the medical laser and IRC procedures have become the gold standard for tattoo removal today; most likely due to the fact that they are non-invasive with fewer side effects.
The medical laser and IRC procedures are scheduled on an outpatient basis in a single or series of visits, which may or may not require topical or local anesthesia. Under either procedure, the actual treatments can take from about 10 minutes to about 30 minutes or longer, and the number of treatments for result is generally based upon the location, size, depth, and color of the tattoo, and the individual's ability to heal, the fragility of the individual, how the tattoo was applied, the type of ink or pigment used, and how long the tattoo has been in place. Following either procedure, a topical anti-bacterial pharmaceutical ointment and dressing are normally applied to the treated area to minimize infection. Treatments are generally spaced at least about 3 weeks apart to allow for the immune system to clear the fragmented tattoo ink or pigment. Results are typically not observed until at least about 5 weeks after treatment
Even though medical laser and IRC procedures are the gold standard today, they are not without drawback. Both techniques can be quite painful. The pain is often described as being splattered with hot oil, such as hot specks of bacon or other grease, on the skin or getting snapped by rubber bands. Following treatment and during the recovery period, the pain is associated with that of sunburn and the treated areas can swell, form scabs, form large bullas and turn reddish for weeks.
Side effects of the laser and infrared techniques include hyperpigmentation or hypopigmentation and textural changes to the skin. Hyperpigmentation is where dark spots can form, i.e., there is an abundance of color in the skin at the treatment site. Hypopigmentation, or a whitening of the skin, is where the treated area looses normal skin color. In addition, burns may result in scarring and a “paradoxical darkening” of the treated tattoo may occur, i.e., the treated tattoo becomes darker instead of lighter. This paradoxical darkening phenomenon typically occurs with flesh tone, pink, and cosmetic make-up tattoos. See, for example, S. Varma, et al.: Tattoo ink darkening of a yellow tattoo after Q-switched laser treatment. Clinical and Experimental Dermatology. 2002: Volume 27 Issue 6, pp. 461-463; and Holzer A, et al. Adverse Effects of Q-Switched Laser Treatment of Tattoos. Dermatologic Surgery 2007: Volume 34 Issue 1, pp. 118-122. Other possible side effects include infection, lack of complete pigment removal and a chance of permanent scarring.
Also, certain tattoo pigments, such as Yellow #7, can form toxic products when exposed to laser removal, which can concentrate in the kidneys and liver. Still further, when certain tattoos are removed by laser techniques, complications can arise depending upon the ink or pigmenting material applied during the tattooing process. For example, ignition of traumatically embedded firework debris by use of a lasor during tattoo removal has been observed. See Taylor Charles R.: Laser ignition of traumatically embedded firework debris, Lasers in Surgery and Medicine, 1998/22:157-158.
Studies in guinea pigs have shown imiquimod as an adjuvant to laser tattoo removal, although in this model scarring was also enhanced with imiquimod treatment. See Ramirez M, Magee N, Diven D, Colome-Grimmer M, Motamedi M, Oliveira G, et al. Topical imiquimod as an adjuvant to laser removal of mature tattoos in an animal model. Dermatol Surg 2007 March; 33(3):319-25. Recently, in humans adjuvant imiquomod treatment resulted in a slight improvement in efficacy of laser removal with an enhanced cosmetic outcome. See Elsaie M L, Nouri K, Vejjabhinanta V, Rivas M P, Villafradez-Diaz L M, Martins A, et al. Topical imiquimod in conjunction with Nd:YAG laser for tattoo removal. Lasers Med Sci 2009 November; 24(6):871-5. Although a mechanism for imiquimod has not been elucidated, one of the main hypothesis is that imiquimod enhances the removal of pigment by stimulating macrophages. See Ramirez M, Magee N, Diven D, Colome-Grimmer M, Motamedi M, Oliveira G, et al. Topical imiquimod as an adjuvant to laser removal of mature tattoos in an animal model. Dermatol Surg 2007 March; 33(3):319-25.
Ingenol mebutate, also known as ingenol-3-angelate or PEP005, is currently being developed as a new topical anti-neoplastic drug, which has been shown to be effective and well tolerated in the treatment of actinic keratoses and NMSC in U.S. Pat. No. 6,432,452. (Anderson et al., 2009; Siller et al., 2009; Siller et al., 2010). Preclinical studies have shown the mechanism of action involves the induction of primary necrosis in tumor cells, disruption of tumor vasculature, transient inflammation and recruitment of neutrophils, with treatment resulting in a favorable cosmetic outcome (Challacombe et al., 2006; Li et al., 2010; Ogbourne et al., 2007). Ingenol mebutate has also been suggested for treating photodamaged skin in WO2010/91472, which is incorporated herein by reference in its entirety.
Ingenol mebutate has the following chemical structure, molecular weight and reported properties:
Source/Host: Isolated from, e.g., Euphorbia peplus L
Appearance: White to off-white solid.
Solubility: Soluble in 100% ethanol, DMSO or dichloromethane.
Ingenol mebutate is reported as a specific protein kinase C (PKC) activator, a selective activator of PKC isoforms, like PKCθ in T cells, an antiproliferative and proapoptotic (necrotic) agent, an immunostimulant, an chemotherapeutic, and anticancer compound, and it is an efficacious agent against actinic keratosis. It is also reported that ingenol mebutate is an antileukemic compound.
In view of the above, there are needs for a safe and convenient but effective topical method for removing photodamaged skin, mutated keratinocytes, cutaneous immunosuppressive environments, and/or p53+ patches. Still further, there are needs for a safe and convenient but effective topical method to reduce the number of skin lesions that may evolve from photodamaged skin over time. Still further, there are needs for a safe and convenient but effective topical method to reduce or cure the number of SCC tumors. Still further, there is a need for a safe, convenient and effective noninvasive method to remove tattoos without the disadvantages of the current tattoo removal precodures.
The present invention overcomes the above-mentioned disadvantages and shortcomings of the current methods to treat photodamaged skin, to reduce the number of skin lesions that emerge from photodamaged skin over time, and to reduce or cure the nymber of SCC tumors that emerge, and to remove tattoos, through the discovery of new and improved topical methods.
Generally speaking, in one aspect of the present invention, it is directed to new and improved topical field-directed treatment of targeted UV-damaged skin with an effective amount of ingenol mebutate, regardless of the UV-type, e.g., UV-A, UV-B or UV-C, that has caused the skin damage. In another aspect of the invention, it is directed to a topical field-directed treatment of targeted skin lesions that have evolved from photodamaged skin with an effective amount of ingenol mebutate to reduce the number of skin lesions that evolve over time from photodamaged skin. In another aspect of the invention, it is directed to a topical field-directed treatment of targeted SCC tumors with an effective amount of ingenol mebutate to reduce or cure the SCC tumors. In yet another aspect of the present invention, it is directed to a topical field-directed treatment of targeted UV-damaged skin with an effective amount of ingenol mebutate, regardless of UV-type, e.g., UV-A, UV-B or UV-C, to prevent the formation of skin lesions from the photodamaged skin. The present invention is also directed to the topical use of ingenol mebutate in an effective amount to remove UVB-induced p53+ patches, to provide prophylactic utility for ingenol mebutate for removal of photodamaged or UV-damaged skin, and to prevent skin cancer development. The present invention is also directed to the topical use of ingenol mebutate in an effective amount to reverse epidermal thickening and mast cell accumulation caused by UV damage to the skin. It has been discovered that after topical ingenol mebutate treatment, epithelial thickness was similar to unirradiated skin and significantly less than that seen in UVB damaged skin In still another aspect of the present invention, it is directed to a topical field-directed treatment of targeted a tattoo with an effective amount of ingenol mebutate to remove the tattoo from the skin.
By way of example, the present invention is directed to the topical application of about 0.05% ingenol mebutate gel once daily for two consecutive days to targeted UV-damaged or photodamaged skin for removing photodamaged skin, mutated keratinocytes, cutaneous immunosuppressive environments, and/or p53+ patches and/or for reducing the number of skin lesions by up to about 70% or more that subsequently emerged from the photodamaged skin. The present invention also contemplates that topical application of 0.05% ingenol mebutate gel once daily for two consecutive days to targeted UV-damaged or photodamaged skin reduces the number of mutant p53 keratinocyte patches, mutated keratinocytes and/or cutaneous immunosuppressive environments formed by the UV-damaged or photodamaged skin. The field-directed treatment of the targeted UV-damaged or photodamaged skin, in accordance with the present invention, results in epidermal cell death, acute inflammation, recruitment of neutrophils, haemorrhage and eschar formation, all of which resolved over several weeks.
In one exemplary embodiment of the present invention, a hairless SKH-1/hr mouse model is used to demonstrate that field treatment of pre-cancerous chronically UVB-irradiated skin with ingenol mebutate significantly reduced the number of skin lesions that subsequently developed. In addition, the hairless SKH-1/hr mouse model is used to demonstrate that ingenol mebutate treatment also significantly removes and/or reduces the number of mutant p53 patches, mutated keratinocytes and/or cutaneous immunosuppressive environments present in the skin, and, thus, prevents cancer cell formation.
Thus, the present invention illustrates that ingenol mebutate is useful for field-directed treatment for the treatment of UV-damaged skin and the removal of sub-clinical precancerous cells from UV-damaged skin, particularly in patients at high risk of developing non-melanoma skin cancers. The present invention therefore provides a method of prophylactic treatment-prevention of UV-exposed skin, which does not yet exhibit clinical observable UV-related damage, and the treatment-prevention inhibits or reverses the damage to the skin caused by UV.
The present invention is also directed to the topical field treatment of targeted non-melanoma skin cancer lesions with ingenol mebutate to reduce or cure in particular squamos cell carcinoma tumors. More specifically, the present invention is directed to the topical application of up to about 0.25% ingenol mebutate gel to SCC tumors once daily for two days for reducing or curing the number of SCC tumors by about 80%. The field treatment of the SCC tumors in accordance with the present invention, induces hemorrhaging, necrosis, tumor specific antibodies and recruitment of neutrophils to treatment site. Thus, the present invention concerns ingenol mebutate field treatment as a treatment for curing SCC tumors.
The present invention is also directed to the topical field treatment of targeted tattoos with ingenol mebutate to remove the tattoos. More specifically, the present invention is directed to the topical application of about 0.25% ingenol mebutate gel, and more particularly at an ingenol mebutate concentration of from about 0.05% to about 0.25%, and more preferably at an ingenol mebutate concentration of about 0.05%, 0.1% or 0.25%, to a tattoo once daily for two days for removing the tattoo without the disadvantages associated with current tattoo removal procedures.
Thus, in one embodiment of the present invention, it provides for a topical method for treating UV-damaged skin evolving into subclinical actinic keratosis, actinic keratosis, and cancer cells by applying ingenol mebutate.
In another embodiment of the present invention, it provides for a topical method wherein the ingenol mebutate is applied in a concentration of about 0.01% up to about 0.025%.
In still another embodiment of the present invention, it provides for a topical method, wherein ingenol mebutate is administered in the form of a gel.
In yet another embodiment of the present invention, it provides for a topical method, wherein the subject has undergone prior or simultaneous treatment for actinic keratosis or skin cancer.
In still another embodiment of the present invention, it provides for a topical method as above, wherein the individual is treated as a field-directed treatment in areas surrounding the actinic keratosis or skin cancer, such as SCC tumors to treat UV-damaged skin.
In still another embodiment of the present invention, it provides for a topical method, wherein the patient has not been diagnosed with previous skin cancer or actinic keratosis.
In an embodiment of the invention, it provides for a kit of parts comprising a unit treatment for treating photodamaged skin or SCC tumors, or for removing tattoos.
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The description that follows more particularly exemplifies illustrative embodiments. In several places throughout the application, guidance is provided through lists of examples, which examples can be used in various combinations. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list.
The foregoing and other objects, advantages and features of the present invention, and the manner in which the same are accomplished, will become more readily apparent upon consideration of the following detailed description of the invention taken in conjunction with the accompanying figure and examples, which illustrate an embodiment, wherein:
By way of illustrating and providing a more complete appreciation of the present invention and many of the attendant advantages thereof, the following detailed description and examples are given concerning the novel methods.
In general, the present invention provides novel and improved topical field-directed treatment regimens to treat UV-damaged or photodamaged skin to reduce the number of skin lesions that emerged from the UV-damaged or photodamaged skin over time with a pharmaceutical composition containing an effective amount of ingenol mebutate. In accordance with this aspect of the invention, the present invention contemplates the use of topical ingenol mebutate to prophylatically treat UV-damaged skin to regenerate a new layer of epithelial skin that resembles unirradiated-damaged skin. Also, generally speaking, the present invention provides novel and improved field-directed treatment regimens to treat to cure or cure SCC tumors with a pharmaceutical composition containing an effective amount of ingenol mebutate.
More specifically, a novel field-directed treatment of the present invention concerns the topical application of an ingenol mebutate gel formulated with about 0.05% ingenol mebutate, by weight, once a day for two consecutive days to a UV-damaged or photodamaged skin area to treat the photo-damaged skin, to reduce the number of skin lesions that will emerge from the UV-damaged or photodamaged skin area over time, to remove the photodamaged or UV-damaged skin, and/or to prevent the development of cancer cells from the UV-damaged or photodamaged skin area over time. It has been surprisingly found that when this topical field-directed treatment is followed in accordance with the present invention, not only is a reduction of up to about 70% in the number of skin lesions is observed, but there is significant removal of p53+ keratinocytes and a reversal of the UVB-induced epidermal thickening and mast cell accumulation observed, as compared to when such UV-damaged or photodamaged skin area remains untreated. Thus, the present invention provides for the use of ingenol mebutate gel as a prophylatic and/or therapeutic for UV-damaged or photodamaged skin.
In one embodiment, the present invention uses the outbred SKH1/hr model of UV damage to assess the potential use of topical PEP005 as a field therapy for UV-induced photodamage. One to three days after cessation of UV irradiation, PEP005 is applied daily for two days, and 2 or 4 to 5 weeks (depending on PEP005 dose) after cessation of UV irradiation the number of p53+ patches was determined. In this embodiment, it is shown that topical PEP005 is suitable to treat individual UV-induced lesions by 2 consecutive daily applications of PEP005 over the UV-damaged skin prior to skin lesion formation to reduce the number of skin lesions that will emerge from the UV-damaged skin or to treat photodamaged skin.
Also in accordance with the present invention, a novel field-directed treatment of the present invention concerns the topical application of an ingenol mebutate gel formulated with about 0.025% ingenol mebutate, by weight, once a day for two consecutive days to an area of the skin diseased with SCC tumors to reduce or cure the number of SCC tumors in the skin treatment area. It has also been surprisingly found that when this topical field-directed treatment is followed in accordance with the present invention, a reduction or cure of up to about 80% in the number of SCC tumors is observed. Thus, the present invention also provides for the use of an 0.025% ingenol mebutate gel as a therapeutic for to treat SCC tumors.
In accordance with the present invention, the inenol mebutate may be in amorphous or crystalline form either as the free compound or as solvate (for example, of water, i.e. hydrates, or of common organic solvents such as alcohols) and it is intended that both forms are within the scope of the present invention. Methods of solvation are generally known within the art, for example recrystallisation from a given solvent.
Also in accordance with the present invention and used herein, the word “treating” or “treatment” refers to the regression, elimination, partial or full removal or detachment, clearance, reduction in size (e.g. surface area or volume), or otherwise desired decrease in size, number or growth rate of the lesion(s) or tumor(s). Thus, in one or more embodiments of the invention, the use of ingenol mebutate in treating UV-damaged skin or SCC tumors may advantageously promote or improve the rate, degree, extent or time taken for elimination, removal, clearance, reduction in size, or otherwise decrease in size, growth rate or number of skin lesions or SCC tumors on the patient.
While the treatment area to be treated may be of any size (surface area), for example, having a surface area greater than about 500 or even 1000 mm2, in certain embodiments of the invention, the treatment area to be treated advantageously has a surface area of about 250 mm2 or less. In further embodiments thereof the treatment area has a surface area of about 150 or 100 mm2 or less. In still further embodiments, the treatment area has a surface area of about 75 or 50, 25 or 10 mm2 or less.
In accordance with the present invention, the ingenol mebutate is administered to the subject in a therapeutically or treatment effective amount. Suitable effective amounts for administration (dosage) and dosing regimens can be determined by the attending physician and may depend on the particular anatomical site or nature, size or number of the lesion(s) being treated, as well as the general age, and health of the subject. Nonetheless, the present invention contemplates topical pharmaceutical gels formulated with 0.05% ingenol mebutate, by weight, for treating the UV-damaged or photodamaged skin and topical pharmaceutical gels formulated with 0.025% ingenol mebutate, by weight, for treating SCC tumors.
The ingenol mebutate may be administered in any suitable form, such as locally, e.g. by topical application to the UV-damaged skin, or to, and/or the area surrounding, the SCC tumor by injection into the tumor. In particular examples of the invention, the ingenol mebutate is administered by topical application to the UV-damaged skin or the SCC tumor.
The method of delivery of the ingenol mebutate may vary, but necessarily involves application of a topical formulation of the invention to and/or in proximity to an area of body surface affected with UV-damage or one or more SCC tumors. For example, a suitable formulation such as cream, aqueous gel, ointment, paste, plaster, or lotion may be spread on the UV-damaged skin or on, and/or around the base of, the SCC tumor or SCC tumors and optionally, gently rubbed in. A solution may be applied in the same ways, but more typically will be applied with a dropper, swab, or the like, and carefully applied to the UV-damaged skin or to and/or around the SCC tumors. Alternatively, the ingenol mebutate may be impregnated into or coated onto an occlusive dressing which is then placed over the affected area. Petrolatum may be spread on the skin surrounding the SCC tumors to protect it from possible irritation during treatment.
The dose regimen will depend on a number of factors that may readily be determined, such as the size of the UV-damaged skin area or SCC tumor(s) and/or number of SCC tumors and the responsiveness to the treatment, but will normally be one dose per day, with a course of treatment lasting from several days to several months, or until the desired result is effected or a significant diminution in the number of the skin lesions evolded from the UV-damaged skin and SCC tumors are achieved. In general, it is contemplated that the formulation will be applied once daily for two days. With a skin patch or occlusive dressing, the device is generally maintained in place on the body surface throughout a drug delivery period, typically in the range of from about 8 hours to about 72 hours, and replaced as necessary.
In a preferred embodiment of the invention the ingenol mebutate is administered, i.e. applied, topically at the site of the UV-damaged skin or the SCC tumor(s), for example, over the whole or partial surface area of the UV-damaged skin or SCC tumor(s). The ingenol mebutate may be topically applied in any suitable form including solutions, emulsions (oil-in-water, water-in-oil, aerosols or foams), ointments, pastes, lotions, powders, paints, gels, hydrogels, hydrocolloids and creams may be prepared so as to contain liposomes, micelles, and/or microspheres. Suitable carriers or additives include mineral oil, propylene glycol, polyoxyethylene, polyoxypropylene, emulsifying wax, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, cyclodextrin, isopropyl alcohol, ethanol, benzyl alcohol and water. Alternatively, the ingenol mebutate may be presented in the form of an active occlusive dressing, i.e. where the ingenol mebutate is impregnated or coated on a dressing such as bandages, gauzes, tapes, nets, adhesive plaster, films, membranes or patches.
The formulation of compositions and dressings contemplated herein is well known to those skilled in the art, see for example, Remington's Pharmaceutical Sciences, 18.sup.th Edition, Mack Publishing, 1990. Compositions may contain any suitable carriers, diluents or excipients. These include all conventional solvents, dispersion media, fillers, solid carriers, coatings, antifungal and antibacterial agents, viscosity enhancers, film formers, dermal penetration agents, surfactants, isotonic and absorption agents and the like. The carrier for compositions contemplated by the present invention must be pharmaceutically acceptable in the sense of being compatible with the other ingredients of the composition and not injurious to the subject.
Formulations of the invention may optionally contain a pharmaceutically acceptable viscosity enhancer and/or film former. A viscosity enhancer increases the viscosity of the formulation so as to inhibit its spread beyond the site of application. A film former, when it dries, forms a protective film over the site of application. The film inhibits removal of the active ingredient and keeps it in contact with the site being treated. Solutions that dry to form a film are sometimes referred to as paints.
Ointments, as is well known in the art of pharmaceutical formulation, are semisolid preparations that are typically based on petrolatum or other petroleum derivatives. The specific ointment base to be used, as will be appreciated by those skilled in the art, is one that will provide for optimum drug delivery, and, preferably, will provide for other desired characteristics as well, e.g., emolliency or the like. As with other carriers or vehicles, an ointment base should be inert, stable, nonirritating and nonsensitizing. Emulsifiable ointment bases, also known as absorbent ointment bases, contain little or no water and include, for example, hydroxystearin sulfate, anhydrous lanolin and hydrophilic petrolatum. Emulsion ointment bases are either water-in-oil (W/O) emulsions or oil-in-water (0/W) emulsions, and include, for example, cetyl alcohol, glyceryl monostearate, lanolin, and stearic acid. Preferred water-soluble ointment bases are prepared from polyethylene glycols of varying molecular weight.
Creams, are also well known in the art, are viscous liquids or semisolid emulsions, either oil-in-water or water-in-oil. Cream bases are water-washable, and contain an oil phase, an emulsifier, and an aqueous phase. The oil phase, also called the “internal” phase, is generally comprised of petrolatum and a fatty alcohol such as cetyl or stearyl alcohol. The aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant. The emulsifier in a cream formulation is generally a nonionic, anionic, cationic, or amphoteric surfactant.
As will be appreciated by those working in the field of pharmaceutical formulation, gels are semisolid, suspension-type systems. Single-phase gels contain gelling agents distributed substantially uniformly throughout the carrier liquid, which is typically aqueous, but also, preferably, contain an alcohol such as isopropyl alcohol, and, optionally, an oil.
Lotions, which are preferred for delivery of cosmetic agents, are preparations to be applied to the skin surface without friction, and are typically liquid or semiliquid preparations in which solid particles, including the ingenol mebutate, are present in a water or alcohol base. Lotions are usually suspensions of solids, and preferably, for the present purpose, comprise a liquid oily emulsion of the oil-in-water type. It is generally necessary that the insoluble matter in a lotion be finely divided. Lotions will typically contain suspending agents to produce better dispersions as well as compounds useful for localizing and holding the active agent in contact with the skin.
Pastes are semisolid dosage forms in which the active agent is suspended in a suitable base. Depending on the nature of the base, pastes are divided between fatty pastes or those made from single-phase aqueous gels. The base in a fatty paste is generally petrolatum or hydrophilic petrolatum or the like. The pastes made from single-phase aqueous gels generally incorporate carboxymethylcellulose or the like as a base.
In one embodiment of the invention, the ingenol compound is topically applied in the form of an isopropyl alcohol-based gel. One suitable formulation includes isopropyl alcohol, benzyl alcohol, a cellulose polymer, such as hydroxyethyl cellulose and buffer (e.g. citrate) at a pH<3. In another embodiment of the invention, the ingenol compound can be formulated for topical application in the form of a macrocetyl ether cream, for example containing cetomacrogel emulsifying wax, white soft paraffin and liquid paraffin.
Formulations may also be prepared with liposomes, micelles, and microspheres. Liposomes are microscopic vesicles having a lipid wall comprising a lipid bilayer, and can be used as drug delivery systems herein as well. Generally, liposome formulations are preferred for poorly soluble or insoluble pharmaceutical agents. Liposomal preparations for use in the invention include cationic (positively charged), anionic (negatively charged) and neutral preparations.
Micelles are known in the art to be comprised of surfactant molecules arranged so that their polar headgroups form an outer spherical shell, while the hydrophobic, hydrocarbon chains are oriented towards the center of the sphere, forming a core. Micelles form in an aqueous solution containing surfactant at a high enough concentration so that micelles naturally result. Micelle formulations can be used in conjunction with the present invention either by incorporation into the reservoir of a topical or transdermal delivery system, or into a formulation to be applied to the body surface.
Microspheres, similarly, may be incorporated into the present formulations and drug delivery systems. Like liposomes and micelles, microspheres essentially encapsulate a drug or drug-containing formulation. Microspheres are generally, although not necessarily, formed from synthetic or naturally occurring biocompatible polymers, but may also be comprised of charged lipids such as phospholipids. Preparation of microspheres is well known in the art and described in the pertinent texts and literature.
Examples of compositions of the present invention are described in U.S. Publication Nos. 2009/0292017 and 20100204318, which are incorporated herein by reference in their entireties. Also, the attachment hereto is also incorporated herein by reference in its entirety.
Examples of various embodiments of the present invention will now be further illustrated with reference to the following examples. Thus, the following examples are provided to illustrate the invention, but are not intended to be limiting thereof. Parts and percentages are by weight unless otherwise specified.
Outbred SKH1/hr mice were obtained from Charles River Laboratories (Wilmington, N.C., USA) and a breeding colony for outbred SKH1/hr mice was established at QIMR. Male SKH1 mice were used for this study. To prevent any fighting and injury (which promotes tumors), mice were kept two per cage, with mice separated by a physical barrier. All animal experiments were approved by the QIMR Animal Ethics Committee.
Outbred SKH1/hr mice were irradiated 3 times per week for 10-11 weeks under 6×TL-12/40 W fluorescent tubes (Phillips, Amsterdam, The Netherlands) mounted in parallel. The lamps emit 54% UVB (280-315 nm) and 46% UVA (315-400 nm) (Rebel et al., 2001). During the irradiation mice were segregated into individual boxes (11.5×20 cm) with a piece of 0.125 mm cellulose acetate placed over the box to prevent any UVC reaching the mice. The mice were 26 cm below the UV lamps. Under these conditions the mice received 1.25 times the minimal erythemal dose (MED) of UVB at each exposure, with the total UVB dose being 37.5 MED. One MED was defined as the minimal UVB dose, which caused erythema-oedema evident by visual examination. UVB irradiation was ceased for 2-7 days if any of the mice within a cohort showed signs of overt erythema, and was resumed once the overt erythema had resolved. Such cessation was usually only necessary after the initial 2-3 doses of UVB, as mice become resistant to UVB-induced erythema with repeated exposures.
One to three days after discontinuation of UVB irradiation, a ≈4 cm2 dorsal area was treated topically daily for 2 days with 40 μl of ingenol mebutate gel or placebo gel. The treatment area was demarcated by tattoo. An untreated group served as an additional control. Two doses of ingenol mebutate gel were tested: 0.01% and 0.05% (w/v) gel. Once the treated area had healed (two weeks for the 0.01% ingenol mebutate gel treatment and 4-5 weeks for the 0.05% ingenol mebutate gel treatment), the mice were sacrificed for analysis of mutant p53 patches. The treated skin areas were surgically excised and separation of the epidermis from the dermis was achieved by floating the skin, dermis side down, overnight at 4° C. in thermolysin (200 μg/ml, Sigma, St. Louis, Mo., USA) supplemented with CaCl2 (1 mM). The epidermis was fixed in 4% formalin for 10 min at room temperature, and was washed in phosphate buffered saline solution (PBS) before being placed in 70% (by volume in water) ethanol and stored at 4° C. Antigen retrieval was performed by placing the epidermal samples in boiling 10 mM citrate buffer (pH 6.0) for 5 min. Endogenous peroxidase activity was inhibited by incubating in 1.5% H2O2 in methanol for 20 min. The epidermal samples were blocked for 1 hour in a solution containing 10% normal rabbit serum, 0.2% bovine serum albumin (Sigma) and 0.1% saponin (Sigma) in PBS. The epidermal samples were incubated with a mutant-specific p53 antibody (clone PAB240, NeoMarkers, Fremont, Calif., USA) diluted 1:25 in 10% normal rabbit serum/0.2% BSA/0.1% saponin/PBS overnight at 4° C. Unbound primary antibody was removed by washing samples in PBS/0.5% Tween20. Signal amplification and recognition of the primary antibody was performed by incubating the samples with a biotinylated rabbit anti-mouse IgG1 secondary antibody (RbαM (IgG1)-Biotin (Zymed, Invitrogen, Carlsbad, Calif., USA) diluted 1:50 in PBS/0.2% BSA/0.1% saponin. The samples were washed in PBS to remove any unbound secondary antibody and incubated for 45 min at room temperature with the Streptavidin/HRP complex (DAKO, DakoCytomation, Glostrup, Denmark) diluted 1:200 in PBS. Following 3 washes in PBS, the signal was visualised with DAB (Sigma). The epidermal sheets were then mounted basal side up onto glass slides in Keizer's Glycerine (Merck, Darmstadt, Germany). A grid placed on top of each epidermal sheet preparation was used to score the number of mutant p53 patches in each square using a light microscope with a 10 or 20× objective. A patch was defined as an area of closely associated p53 staining nuclei ≧6 in number.
For histological studies samples were fixed in 10% formalin and processed for paraffin embedding at the indicated times after ingenol mebutate treatment. Paraffin sections were stained with haematoxylin and eosin (H&E), or toluidine blue using standard protocols.
One to three days after discontinuation of UVB irradiation, a ˜10 cm2 rectangular area located centrally on the dorsa and previously demarcated by a tattoo were treated topically, daily for 2 days with 100 μl of 0.05% ingenol mebutate gel or 100 μl of placebo gel. An untreated group served as an additional control. The mice were monitored weekly for the development of lesions both within and outside the treatment areas. Lesions arising on the tattooed lines were considered outside the treatment area. The number and size of lesions was monitored over time. All visible lesions were counted. Lesion <2 mm are mostly actinic keratoses, whereas lesions >3 mm are mostly squamous cell carcinomas (de Gruijl, 2008). The mice were euthanized at the end of the study or earlier in cases where total lesion area was excessive or other welfare issues required euthanasia.
Field Treatment of UVB-Damaged Skin with 0.05% Ingenol Mebutate Gel Reduced the Emergence of UV-B-Induced Skin Lesions
SKH1/hr mice were exposed to 1.25 MED UVB three times per week over 10-11 weeks for a total of 30 doses. One day after the final irradiation dose, the dorsa of the mice were tattooed with rectangles to demarcate the treatment areas. Mice were randomly assigned into 3 groups. The first group was treated topically, daily for 2 days with ˜100 μl of 0.05% ingenol mebutate gel within the tattooed areas (
The number of skin lesions outside the treatment areas was not significantly affected (
To analyse the effect of 0.05% ingenol mebutate gel treatment on tumor burden, Kaplan-Meier survival curves were generated by analyzing the total lesion area within the treatment area (
Growth Rates, Size Distribution and Histology of Lesions Emerging after Ingenol Mebutate were No Different from Those in Control Animals
To illustrate that ingenol mebutate treatment did not select for the emergence of more aggressive lesions, the growth kinetics of individual lesions within the treatment areas was examined for each group. The growth of each individual lesion was plotted with Week 0 assigned as the week prior to an individual lesion being identified (irrespective of the time of emergence of the lesion relative to the time of treatment). There was no significant difference in the lesion growth rates between control, placebo and ingenol mebutate gel-treated mice (
To determine whether the lesions that arose after ingenol mebutate gel treatment showed any changes in size profile, the size distribution of lesions within the treatment area 21 weeks post-treatment was analyzed. Although more lesions were present in control and placebo gel treated mice compared to ingenol mebutate treated mice, a similar lesion size distribution profile was present in all three groups (
Histological analysis of lesions from all three groups showed that lesions were of epidermal origin and resembled the classical picture described previously for lesions in this model (Kligman and Kligman, 1981). No differences in the histology were observed for lesions that emerged after ingenol mebutate treatment and those in the placebo or control groups (data not shown).
These data illustrate that treatment with ingenol mebutate gel did not result in, or select for, the emergence of more aggressive, or larger, or histologically distinct tumors.
Skin Appearance after Ingenol Mebutate Treatment of UVB-Damaged Skin
Treatment with about 0.05% ingenol mebutate gel caused reddening of the skin, visible within 1 hour of treatment, with erythema increasing with time (
At week 21 the mean skin area within the treatment area (demarcated by tattoo) had reduced by about 3-fold (
Skin Histology after Ingenol Mebutate Treatment of UVB-Damaged Skin
Histology of placebo-treated skin showed the expected epidermal thickening that arises after chronic UVB irradiation (Chaquour et al., 1995); compare normal skin (
Toluidine blue staining of skin from Naïve (
Field Treatment of UVB-Irradiated Skin with Ingenol Mebutate Reduced the Number of Mutant p53 Patches
Chronic UVB irradiation results in the accumulation of mutant p53 epidermal patches, which are believed to be prerequisite precursors of UVB-induced skin lesions
(Berg et al., 1996; Rebel et al., 2005; Rebel et al., 2001). To ascertain whether post-UVB ingenol mebutate field treatment affects p53 patch numbers, SKH1/hr mice were exposed to 1.25 MED three times a week for 11-12 weeks. Mice were then divided into three groups, one was treated on the dorsa with 0.05% ingenol mebutate gel, one was treated with placebo gel, with the third group left untreated (Control). After the healing process was complete in the ingenol mebutate treatment group, the mice from all the groups were euthanized and the epidermis within the treatment areas were analyzed for the presence of p53 patches using immunohistochemistry. An example of a typical mutant p53 patch at low and high magnification is shown in
Enumeration of the number of p53 patches showed that chronically irradiated skin in the absence of treatment had 89+10.8 (SE) p53 patches per cm2 (
In this Example 1, it shows that field treatment of chronic UVB irradiated skin with 0.05% ingenol mebutate gel results in a about 70% reduction in the number of skin lesions that emerged over time. Ingenol mebutate field treatment causes loss of the epidermis, which appears to be followed by rapid reepithelisation from hair follicles. The treatment also causes a significant reduction in the number of mutant p53 patches in the newly formed epidermis, suggesting removal of replication-competent mutant p53 expressing keratinocytes that give rise to these patches. These experiments highlight the use of ingenol mebutate as a field treatment for chronic UV-damaged or photodamaged skin to prevent the development of NMSC, and in particular SCC.
Ingenol mebutate field treatment may be particularly suitable for individuals, who have a history of UV exposure and are at high risk of developing further NMSC (Bailey et al., 2010; Jonason et al., 1996; Marcil and Stern, 2000). In humans, chronic UV exposure results in accumulation of a substantial burden of premalignant keratinocytes (detectable as p53 patches) from which NMSC are able to develop (Jonason et al., 1996). An individual's risk of developing NMSC depends on a number of environmental and genetic factors (Madan et al., 2010). However, meta-analysis shows that patients who develop one NMSC have an at least 10 fold higher probability of developing another NMSC within 3 years when compared with the general population (Marcil and Stern, 2000). Such patients currently have limited treatment options to reduce their NMSC risk (Bailey et al., 2010), and currently rely on continued monitoring for, and treatment of, newly emerging actinic keratoses and NMSC (Cohen, 2010). Areas of skin that develop actinic keratoses and/or NMSC might be targeted for ingenol mebutate field treatment as they likely identify areas of skin with high malignant potential.
Ingenol mebutate is currently being developed for the treatment of actinic keratosis (Anderson et al., 2009; Siller et al., 2009). In human phase IIa studies 0.05% ingenol mebutate gel applied daily for two days showed a favorable safety profile (Anderson et al., 2009; Siller et al., 2009), (Siller et al., 2010). Skin contractions, like those seen in the mice (
Recently chemical peels are also shown to reduce p53 patch numbers and lesion formation in chronic UVB-irradiated mice (Abdel-Daim et al., 2010). However, this involves 10 treatments (one treatment every 2 weeks), whereas a similar effect was achieved herein with only 2 ingenol mebutate treatments (once daily for two days). In addition, chemical peel treatments continued while lesions and tumors are developing (Abdel-Daim et al., 2010), a scenario unlikely to be countenanced in humans. The chemical peel strategy does however, result in reductions in lesions developing outside the treatment areas (Abdel-Daim et al., 2010), something that is not observed for ingenol mebutate field treatment (
Imiquimod is also used to reduce p53 expression in UV damaged skin in humans although the drug is applied 3 times a week for 4 weeks and the implications for the subsequent development of NMSC and actinic keratoses development is not reported (Smith et al., 2007). Oral retinoids are also reported as being effective in reducing NMSC in high risk patients. However, such treatment may need to be life long and retinoids have the potential to produce adverse effects (Hardin and Mydlarski, 2010; Marquez et al., 2010). It is shown herein that only two treatments over 2 days with ingenol mebutate are sufficient to reduce mutant p53 patch density and lesion formation.
The aims of this research were to determine the prophylactic activity of PEP005 in the field treatment of ultraviolet B radiation (UVB)-damaged skin, and the therapeutic activity of PEP005 in the treatment of UVB-induced skin lesions. The outbred SKH1/hr mouse model of UVB-induced p53 mutant (p53+) patches and lesions (previously established at QIMR) was used to address these aims. Topical field treatment with 0.05% PEP005 of SKH1 mice with Photo-damaged skin resulted in significantly fewer p53+ patches/cm2, reduction of the UV induced epidermal thickening, and a reduction in cutaneous mast cells. Field treatment of a ˜10 cm2 dorsal area of skin, which contained most of the UV damaged skin, with 0.05% PEP005 gel resulted in a ˜70% reduction in the number of UVB-induced skin lesions that emerged after UVB irradiation. These studies support the utility of PEP005 gel for prophylactic field treatment of UVB damaged skin. Topical spot therapy of established UVB-induced lesions with PEP005 gel (0.1-0.25%) resulted in no discernable cures. This model does not appear to be suitable for analyzing the therapeutic activity of PEP005.
We studied whether topical field treatment of photodamaged skin with low dose (0.01-0.05%, w/v) PEP005 gel leads to the removal of the UVB-damaged keratinocytes and whether such field treatment would also reduce the development of UVB-induced lesions. The hairless, immunocompetent SKH1/hr mouse model has been widely reported in the literature as a model for UVB-induced photodamage, ultimately leading to the development of UVB-induced lesions including actinic keratosis (AK), squamous papillomas and squamous cell carcinoma (SCC) (Cozzi and Suhrbier, 2010). UVB wavelengths emitted by the sun are absorbed by the skin causing erythema, burns, immunosuppression, and DNA damage. The dual ability of UVB to cause malignant transformation of epidermal cells and immunosuppression is thought to contribute to the development of cutaneous malignancies (Ch'ng et al., 2006). Chronic exposure of SKH1/hr mice to UVB leads to the development of “UV-signature” p53 mutations at hotspot codons (Benjamin et al., 2008; de Gruijl and Rebel, 2008). Clonal expansion of keratinocytes with p53 mutations leads to the formation of p53 mutant (p53+) patches/foci, which can be detected by immunohistochemistry (IHC) using an antibody that recognizes the conformation of mutated p53 (Benjamin et al., 2008; de Gruijl and Rebel, 2008). Although some p53+ keratinocytes spontaneously regress in SKH1/hr mice (as they do in humans), others develop into pre-cancerous lesions resembling AKs and can progress to become SCCs (Rebel et al., 2001).
We have established the outbred SKH1/hr model of UVB-induced p53+ mutations at QIMR (Cozzi and Suhrbier, 2010). We have shown that irradiating mice with 1.25 MED three times per week for 8 weeks leads to the formation of p53+ foci, which can be detected by IHC on epidermal sheets. Quantitative analysis of p53+ patches over an area of 5 cm2 of epidermis showed ˜300 p53+ patches (Cozzi and Suhrbier, 2010). Two weeks after cessation of UVB irradiation, the size and number of p53+ patches had reduced, but >150 p53+ patches per 5 cm2 remained (Cozzi and Suhrbier, 2010). The current study used the outbred SKH1/hr model of UVB damage to assess the potential use of topical PEP005 as a field therapy for UVB-induced photodamage. One to three days after cessation of UVB irradiation, PEP005 was applied daily for two days, and 2 or 4 to 5 weeks (depending on PEP005 dose) after cessation of UVB irradiation the number of p53+ patches was determined.
The current study also determined whether topical PEP005 could be used to treat individual UVB-induced lesions by 2 applications of PEP005 over the lesion.
The aims of this Example 2 are to determine the prophylactic and therapeutic potential of PEP005 for treating photodamaged skin and UVB-induced lesions.
For the prophylactic study the following sub-aims were addressed:
For the therapeutic study, the aim was to determine whether topical treatment with high dose PEP005 gel (0.1-0.25%) could cure UVB-induced lesions in the SKH1/hr model.
4.1 SKH1/hr model
The SKH1/hr mouse was selected as the model system because: (i) the model generates measurable UV-induced p53 mutations, (ii) some mutant p53 cells are known to progress to AK-like lesions and develop into SCCs, and (iii) this mouse strain is immunocompetent. A breeding program for outbred SKH1 mice has been established at QIMR. Male SKH1 mice were used for this study. To prevent any fighting (which promotes tumors), mice were kept two per cage, with mice separated by a physical bather. Routine animal husbandry was undertaken by the QIMR Bancroft Centre Animal Facility according their standard operating procedures (SOPs). Feed and water was available ad libitum from individual baskets and water bottles attached to the cages.
4.2 PEP005
PEP005 (ingenol 3-angelate, ingenol mebutate) and placebo gel used in this study were provided by Peplin Inc.
0.25% PEP005 gel
0.1% PEP005 gel
0.01% PEP005 gel
Placebo Gel
4.3 Prophylactic Studies
4.3.1 UVB Regimen
Outbred SKH1/hr mice were irradiated 3 times per week (Monday, Wednesday, and Friday) for 10-11 weeks under 6×TL-12/40 W fluorescent tubes (Phillips) mounted in parallel. During the irradiation mice were segregated into individual boxes (11.5×20 cm) with a piece of 0.125 mm cellulose acetate placed over the box to prevent any UVC reaching the mice. The mice were 26 cm below the UV lamps. Under these conditions the mice received 1.25 times the minimal erythemal dose (MED) of UVB at each exposure, with the total UVB dose being 37.5 MED. One MED was defined as the minimal UVB dose, which caused erythema-edema evident by visual examination. This MED dose had been previously established as suitable for these studies and reported in Cozzi & Suhrbier (2010). UVB-irradiation was ceased for 2-7 days if any of the mice within a cohort showed signs of overt erythema, and was resumed once the overt erythema had resolved. Such cessation was usually only necessary after the initial 2-3 doses of UVB, as mice become resistant to UVB-induced erythema with repeated exposures.
4.3.2 Immunohistochemical Examination of p53+ Patches in UVB-Damaged Skin Following PEP005 Gel Treatment
One to three days after discontinuation of UVB irradiation, an about 4 cm2 dorsal area was treated topically daily for 2 days with 40 μl of PEP005 gel or placebo gel. The square treatment area was demarcated by a tattoo. An untreated group served as an additional control. Two doses of PEP005 gel were tested: 0.01% and 0.05% (w/v) gel. Once the treated area had healed (two weeks for the 0.01% PEP005 gel treatment and 4-5 weeks for the 0.05% PEP005 gel treatment), the mice were sacrificed. The treated areas were excised and separation of the epidermis from the dermis was achieved by floating dorsal skin dermis side down overnight at 4° C. in thermolysin (200 μg/ml, Sigma P1512) supplemented with CaCl2 (1 mM). The epidermis was fixed in 4% formalin for 10 min at room temperature, and was washed in phosphate buffered saline solution (PBS) before being placed in 70% v/v ethanol and stored at 4° C. Antigen retrieval was performed by placing the epidermal samples in boiling 10 mM citrate buffer (pH 6.0) for 5 min. Endogenous peroxidase activity was inhibited by incubating in 1.5% H2O2 in methanol for 20 min. The epidermal samples were blocked for 1 h in a solution containing 10% normal rabbit serum (NRbS), 0.2% BSA (Faction V, Sigma, Cat No. A9647) and 0.1% saponin (Sigma, Cat No. 47036) in PBS. The epidermal samples were incubated with a mutant-specific p53 antibody (PAB240, Neomerkers, Cat No. MS-104-P) diluted 1:25 in 10% NRbS/0.2% BSA/0.1% saponin/PBS overnight at 4° C. Unbound primary antibody was removed by washing samples in PBS/0.5% Tween 20. Signal amplification and recognition of the primary antibody was performed by incubating the samples with a biotinylated rabbit anti-mouse IgG1 secondary antibody (RbαM (IgG1)-Biotin, Zymed, Cat No. 61-0140) diluted 1:50 in PBS/0.2% BSA/0.1% saponin. The samples were washed in PBS to remove any unbound secondary antibody and incubated for 45 min at room temperature with the Streptavidin/HRP complex (DAKO, Cat No. P0397) diluted 1:200 in PBS. Following 3 washes in PBS, the signal was visualized with DAB (Sigma Cat No. D5905) The epidermal sheets were then mounted basal side up onto glass slides in Keizer's Glycerin (Merk, Cat No. 1.09242.100). A grid placed on top of each epidermal sheet preparation was used to score the number of p53+ patches in each square using a light microscope with a 10 or 20× objective. A patch was defined as an area of closely associated p53 staining nuclei ≧6 in number.
4.3.3 Other Histological Studies on UVB-Damaged Skin Following PEP005 Gel Treatment
Three days after the last dose of UVB irradiation, an about 4 cm2 dorsal area was topically treated daily for 2 days with 40 μl of 0.05% PEP005 gel or placebo gel. The treatment area was demarcated by a tattoo. Mice were culled 6 h (6 h) and 24 h (Day 1) after the first dose of 0.05% PEP005 gel and 24 h after the second dose of 0.05% PEP005 gel or placebo gel (Day 2). The samples were fixed in 10% formalin and processed by QIMR histology for paraffin embedding. Paraffin sections were stained with haematoxylin and eosin (H&E), Leder stain or toludine blue by QIMR Histotechnology, in accordance with standard protocols.
4.3.4 Development of UVB-Induced Lesions Following 0.05% PEP005 Gel Treatment
One to three days after discontinuation of UVB irradiation, dorsal areas previously demarcated by a tattoo were treated topically daily for 2 days with 0.05% PEP005 gel or placebo gel. An untreated group served as an additional control. Treatment of two different skin areas was examined, (i) an about 4 cm2 area located centrally on the dorsa where the majority of the UVB-induced damaged skin is known to occur, and (ii) an about 10 cm2 rectangular area located centrally the dorsa, encompassing the majority of the UVB-damaged skin. Treatment volumes of PEP005 and placebo gels were adjusted according to the treatment area as follows: 40 μl of gel was applied to the about 4 cm2 square and 100 μl of gel was applied to the about 10 cm2 rectangle. The mice were monitored weekly for the development of lesions both within and outside the treatment area. Lesions arising on the tattooed lines were considered outside the treatment area. The number and size of lesions was monitored over time. At the termination of the study (or earlier in cases where total lesion area was excessive or other welfare issues required euthanasia), the mice were sacrificed and fixed whole in 4-10% paraformaldehyde. Treatment areas from control, placebo gel and PEP005 gel treated mice were excised and paraffin embedded. Standard histology staining was performed by QIMR Histotechnology.
4.4 Therapeutic Treatment of UVB-Induced Lesions with 0.01-0.25% PEP005 Gel
4.4.1 UVB Regimen
Same as 4.3.1 except that UVB-irradiation protocol was continued until visible lesions had formed.
4.4.2 Treatment of UVB-Induced Lesions
Once two or more mice had developed lesions visible by visual examination, the mice were paired and a lesion from each mouse was treated with either 0.1-0.25% (w/v) PEP005 gel placebo gel. The mice were monitored over time for growth of the treated lesions. Mice were euthanized when the total lesion area was deemed excessive on ethical grounds (usually >100 mm2) or the mice showed clear signs of ill health. Mice were also euthanized for animal welfare issues other than tumor burden where necessary.
4.5 Data Analysis
Statistical analysis was performed using Graphpad Prism version 5.03 (Graphpad Software, San Diego Calif. USA, www.graphpad.com) or SPSS for Windows (version 15.0, 2007; SPSS, Chicago, Ill.).
5.1 Field Treatment of UV-Damaged Skin with 0.01% PEP005 Gel Did not Reduce the Number of p53+ Patches
The aim of the study was to determine whether topical field treatment of UVB-damaged skin in SKH1/hr mice with 0.01% PEP005 gel led to a reduction in the number of p53+ patches. Mice were irradiated with UVB as described in Section 4.3.1. About 4 cm2 areas located at the centre of the UVB-damaged skin on the mice dorsa and demarcated by tattoos were treated daily for 2 days with 40 μl of 0.01% PEP005 gel or placebo gel. A control group remained untreated. Two weeks after treatment the mice were sacrificed and the epidermis within the treatment area was analyzed for the presence of p53+ patches as described in Section 4.3.2 above.
Treatment with 0.01% PEP005 gel induced slight erythema, with flaking and occasionally mild scabbing, which resolved within 2 weeks after treatment, leaving no evidence of scarring or apparent change in the treatment area. See
5.2 Field Treatment of UV-Damaged Skin with 0.05% PEP005 Gel LED to a Reduction in the Number of p53+ Patches
The aim of the study was to determine whether topical field treatment of UVB-damaged skin in SKH1/hr mice with 0.05% PEP005 gel led to a reduction in the number of p53+ patches. Mice were irradiated with UVB as described in Section 4.3.1. An about 4 cm2 area on the mice dorsa located at the centre of the UVB-damaged skin and demarcated by tattoo was treated daily for 2 days with 40 μl 1 of 0.05% PEP005 gel or placebo gel. A control group remained untreated. Once the treated area had healed (4-5 weeks after treatment), the mice were sacrificed and the epidermis within the treatment area was analyzed for the presence of p53+ patches as described in Section 4.3.2.
Escalating the treatment dose to 0.05% PEP005 gel caused more of a reaction on the skin. See
Treatment with 0.05% PEP005 gel resulted in a significant reduction (p=0.002) in the number of p53+ patches/cm2 formed within the treatment area. It was harder to separate the epidermis from the dermis in the 0.05% PEP005 gel treatment group and small areas of skin were sometimes lost. However, this was not significant enough to affect the analysis. These data show that topical treatment with 0.05% PEP005 gel removed p53+ patches in this model.
We observed that in the 0.05% PEP005 gel treatment group the tattoo marking was often removed, possibly at sites where the gel had spread over the tattoo. This suggested that PEP005 gel may find a utility as a tattoo removal agent. We further examined this potential new cosmetic indication for PEP005 gel in a small cohort of mice. A report for this study will be submitted as a separate extension to this contract.
5.3 Histological Changes Induced by Treating UVB-Damaged Skin with 0.05% PEP005 Gel
To identify the histological changes after 0.05% PEP005 gel treatment, skin was examined at different times after treatment; 6 h after the first dose was applied (6 h), 24 h after the first dose was applied (Day 1), and 24 h after the second dose was applied (Day 2). Placebo treated mice were treated with equivalent volumes of placebo gel and the skin examined 24 h after the second dose. See
Placebo-treated skin (
To assess whether neutrophils were recruited to the site after treatment with 0.05% PEP005 gel, sections were stained with Leder stain that detects the enzyme chloroacetate esterase present in granulocytes. Leder stain stains granulocytes red-pink. See
To determine whether mast cells were present, parallel sections were stained with toluidine blue, which stains mast cells pink-purple. In agreement with the literature (Ch'ng et al., 2006; Brand et al., 2002), UVB-irradiated skin contained abundant mast cells (
5.4. Field Treatment of an about 4 cm2 Area of UVB-Damaged Skin with 0.05% PEP005 Gel Did not Affect the Formation of UVB-Induced Epidermal Lesions
The results in Section 5.1 above suggest that treatment with 0.05% PEP005 gel leads to the reduction in photodamaged keratinocytes, with significantly fewer p53+ patches present after treatment. To determine whether the reduction of UVB-damaged keratinocytes would correlate with reduced formation of UVB-induced lesions, the same experimental design was used as described in Section 5.2. Briefly, SKH1/hr mice were irradiated with 30 doses of 1.25 MED of UVB over 10-11 weeks. The mice were then randomized into three groups and about 4 cm2 areas demarcated by a tattoo on the mice dorsa were treated daily for 2 days with 40 μl of 0.05% PEP005 gel or placebo gel. An untreated control group was also included. Following treatment the mice were monitored weekly for the development of lesions both within and outside the treatment area. Both the number and size of the lesions was recorded.
Treatment with 0.05% PEP005 gel led to a small decrease in the total number of UVB-induced lesions per mouse that emerged over time (
Twenty weeks after treatment with 0.05% PEP005 gel, the area within the tattoo had contracted by ˜3-fold compared to placebo gel and control mice. See
5.5 Field Treatment of an about 10 cm2 Area of UVB-Damaged Skin with 0.05% PEP005 Gel Reduced the Number of UVB-Induced Epidermal Lesions
SKH1/hr mice were exposed to 1.25 MED three times per week for a total of 30 doses. One day after the final irradiation dose, the mice were randomized into 3 groups and about 10 cm2 areas demarcated by tattoos on the dorsa were treated topically daily for 2 days with about 100 μl of 0.05% PEP005 gel or placebo gel. Control mice remained untreated. The mice were examined weekly for the development of UV-induced lesions. The number and size of the lesions located within and outside the treatment area were documented.
In addition to the tattooed treatment area, other lines parallel to the treatment rectangle were also tattooed on the mice to track skin movement following 0.05%
PEP005 gel treatment.
Analysis of lesion numbers in the dorsal area showed that 0.05% PEP005 gel treatment resulted in a significant about 70% reduction in the number of dorsal lesions that developed per mouse. See
To determine whether treatment of UVB-damaged skin with 0.05% PEP005 gel had an effect on lesion development outside the treatment area, the number of lesions outside the tattooed area was enumerated. Treatment with 0.05% PEP005 gel had no effect on the number of lesions that developed outside the treatment area (
The results described above illustrated that when the majority of photodamaged skin was treated with 0.05% PEP005 gel, a clearly apparent reduction in the number of skin lesions was observed, with both the total number of lesions per mouse significantly reduced (
5.6 Lesions Arising after PEP005 Gel Field Treatment Show No Difference in Growth Kinetics.
To determine whether there was any difference between the growth kinetics of lesions formed between treatment groups, we examined the growth rates of individual lesions that developed within the treatment areas. Week 0 was assigned as the week prior to an individual lesion being identified. Thus all the individual lesions' growth curves start at week 0, irrespective of the time of treatment. The growth curves in
5.7 Lesions Arising after PEP005 Gel Field Treatment Showed Similar Size Distribution to Placebo-Treated and Control Mice
To determine whether the lesions that arose after PEP005 gel treatment showed any changes in size profile, the size distribution of lesions within the treatment area 21 weeks post-treatment was analyzed. Bar graphs show the area (mm2) of individual lesions 21 weeks post treatment in control mice (
5.8 Histological Analysis of UVB-Induced Lesions and Skin Treated with 0.05% PEP005 Gel
H&E staining of representative control (
Low magnification images of 0.05% PEP005 gel treated skin from two mice with no visible lesions showed that the skin was also free of histologically observable lesions (
5.9 Skin Contraction Following Field Treatment with 0.05% PEP005 Gel
In the current study treatment of UVB-damaged skin with 0.05% PEP005 gel resulted in apparent chemoablation of the epithelial skin layer. A neutrophil-mediated response was apparent within 24 h of treatment (
5.10 Morphological Changes Induced by UVB-Damage and their Reversal After Field Treatment with 0.05% PEP005 Gel
Visual examination showed that by 21 weeks after 0.05% PEP005 gel treatment, the skin is healed with a favorable cosmetic outcome, in many cases devoid of UVB-induced lesions (
An apparent straightening of dermal collagen fibers following 0.05% PEP005 gel treatment was also evident by H&E staining (
5.11 Spot-Treatment of Established UV-Induced Lesions with 01-0.25% PEP005 Gel
The aim of this study was to determine if topical treatment with 0.1-0.25% PEP005 gel applied after a lesion had developed could cure UVB-induced lesions. Mice were irradiated 3 times per week until a lesion developed that was clearly visible. Mice with lesions were paired and one lesion from each mouse was treated with either 20 μA of PEP005 gel or placebo gel. The larger lesion within a pair was assigned to the PEP005 group. Four treatment regimens were tested and are summarized in Table 1. Group 1 consisted of mice bearing large (>15 mm2) tumors at time of treatment. These mice were treated with 20 μA of 0.1% PEP005 gel, daily for 2 days. Group 2 consisted of mice bearing smaller tumors (2.3-11.4 mm2) at time of treatment. These mice were also treated with 20 μA of 0.1% PEP005 gel, daily for 2 days. Group 3 consisted of mice bearing small tumors (1.6-8.1 mm2) at the time of treatment. These mice were treated 2 weeks after the last dose of UVB with 20 μA of 0.1% PEP005 gel, daily for 3 days. Group 4 consisted of mice with small tumors (4-9.6 mm2) at time of treatment. These mice were treated 3 weeks after UVB-irradiation had been ceased with 20 μA of 0.25% PEP005 gel, daily for 2 days. Lesions were monitored weekly. Mice were euthanized when the total tumor burden per mouse was considered excessive (usually >100 mm2) A number of mice developed testicular infections and were also euthanized.
No lesions appeared to be cured by PEP005 gel treatment in any of the treatment regimens (
These results suggest that topical PEP005 gel spot-therapy of UVB-induced lesion did not result in any discernable cures in this model. Partial responses appeared to be evident when small lesions (about <13 mm2) were treated, and the response was improved to about 50% when the total PEP005 gel dose was escalated to about >60 μg and there was a 2 weeks delay between the last UVB-irradiation and the first PEP005 gel treatment. The difficulty in identifying individual tumors when other tumors are emerging in and around the treated tumor made it difficult to obtain clear results, illustrating that this is not an ideal model for testing tumor treatment by PEP005 gel.
6.1 PEP005 Field Treatment
Treatment of UVB-damaged skin with 0.05% PEP005 gel resulted in a significant reduction in the number of epidermal UVB-induced p53+ patches (
Histological analysis of UVB damaged skin treated with 0.05% PEP005 gel showed loss
of the keratinocyte layer and cutaneous mast cells (
Field treatment with 0.05% PEP005 gel resulted in the treated skin shrinking, with about a 3 fold reduction in area (
(1) Treatment of the about 10 cm2 area represented treatment of the majority of the UVB damaged skin and may also have removed most of the immunosuppressive cells. The behavior of these cells is poorly understood, but they may be able to migrate and/or set up a locally dispersed immunosuppressive environments that promote lesion development (Gabrilovich and Nagaraj, 2009; Stumpfova et al., 2010). Removal of say 20-40% of these cells by treating an about 4 cm2 area may conceivably be insufficient to affect significantly the immunosuppressive environment, especially given that the area after treatment was reduced by about 3 fold and most of the skin neighboring the treatment area was also UVB damaged. When considering the about 10 cm2 area, much of the skin neighboring the treatment area had received less UVB. In this scenario the removal of the immunosuppressive cells may be equally as important for PEP005 gel field treatment as the removal of p53+ lesions;
(2) The small area that remains after treating an about 4 cm2 area may mean that a clear delineation between lesions arising from inside and outside the tattooed area may be difficult, with p53+ cells originating outside the treatment area potentially growing or migrating into the treatment area during the wound healing process after 0.05% PEP005 gel treatment. During wound healing keratinocytes have been shown to migrate (Nataraj an et al., 2006); and
(3) We have assumed that the reduction of p53 patches+ within the treatment area per cm2 was similar when about 4 cm2 or about 10 cm2 area was treated. This would appear likely, but was not demonstrated. Mounting evidence in the literature supports the notion that cutaneous tumors arise from stem cells within skin (Ambler and Maatta, 2009; Gerdes and Yuspa, 2005).
Two main groups of skin stem cells have been described in the literature: (a) stem cells interspersed throughout the basal layer, located in the interfollicular epidermis (IFE). These stem cells are located at the centre of so-called epidermal proliferation units (EPU); and (b) stem cells located within the hair follicle in a well-protected area called the “bulge”. Both populations of stem cells have been implicated as the cells that give rise to cutaneous lesions after UVB irradiation (de Gruijl and Rebel, 2008; Gerdes and Yuspa, 2005), although those arising from the hair follicle bulge appear to have an increased malignant potential (Morris et al., 2000). Recently, evidence has supported the notion that interfollicular p53+ patches arise from p53+ stem cells located in the EPU (de Gruijl and Rebel, 2008). The reduction in the number of p53+ patches following 0.05% PEP005 gel treatment may thus reflect the reduction of mutated EPU stem cells. In contrast, the UVB-damaged stem cells located within the hair follicle bulge may be less accessible to 0.05% PEP005 gel field treatment and may be less readily detected by the staining technique used herein. Conceivably, treatment of the about 10 cm2 area may remove more of the mutated cells, and in particular may remove more of the mutated cells in the hair follicle bulge.
This study suggests that prophylactic PEP005 field treatment is only effective in preventing skin cancer development when a sizable area (about 10 cm2) is treated but is less effective when a smaller area is treated (about 4 cm2). This may mean that either treating a relatively large area is important for prophylactic efficacy or that treating a large percentage of photodamaged skin in any particular area is important.
There was no difference in growth or size distribution of lesions after PEP005 gel or placebo gel treatment indicating that tumors emerging after 0.05% PEP005 gel treatment do not behave more aggressively.
6.2 PEP005 for Tattoo Removal
Treatment with 0.05% PEP005 gel appeared to lead to the removal of some of the tattooed lines suggesting that PEP005 gel may find utility in tattoo removal.
6.3 Spot Therapy of UVB-Induced Lesion
Spot-therapy of UVB-induced lesions within a severely photodamaged area with high-dose PEP005 gel (0.1-0.25%) did not lead to discernable cures of any of the lesions treated. However, partial responses following treatment with PEP005 gel did appear to occur. See Table 1. A major problem with this model is the difficulty in determining the effect of treatment of a single lesion when multiple lesions emerge within the same and/or surrounding areas. This model would thus appear largely unsuitable for evaluating the efficacy of topical PEP005 gel for tumor therapy.
Outbred SKH1/hr mice were irradiated 3 times per week (Monday, Wednesday, and Friday) for 10-11 weeks under 6×TL-12/40 W fluorescent tubes (Phillips) mounted in parallel. During the irradiation mice were segregated into individual boxes (11.5×20 cm) with a piece of 0.125 mm cellulose acetate placed over the box to prevent any UVC reaching the mice. The mice were 26 cm below the UV lamps. Under these conditions the mice received 1.25 times the minimal erythemal dose (MED) of UVB at each exposure, with the total UVB dose being 37.5 MED. One MED was defined as the minimal UVB dose, which caused erythema-oedema evident by visual examination. This MED dose had been previously established as suitable for these studies. UVB-irradiation was ceased for 2-7 days if any of the mice within a cohort showed signs of overt erythema, and was resumed once the overt erythema had resolved. Such cessation was usually only necessary after the initial 2-3 doses of UVB, as mice become resistant to UVB-induced erythema with repeated exposures.
1. Immunohistochemical Examination of p53+ Patches in UVB-Damaged Skin Following PEP005 Gel Treatment
One to three days after discontinuation of UVB irradiation, a about 4 cm2 dorsal area was treated topically daily for 2 days with 40 μl of PEP005 gel or placebo gel. The square treatment area was demarcated by a tattoo. An untreated group served as an additional control. Two doses of PEP005 gel were tested: 0.01% and 0.05% (w/v) gel. Once the treated area had healed (two weeks for the 0.01% PEP005 gel treatment and 4-5 weeks for the 0.05% PEP005 gel treatment), the mice were sacrificed. The treated areas were excised and separation of the epidermis from the dermis was achieved by floating dorsal skin dermis side down overnight at 4° C. in thermolysin (200 μg/ml, Sigma P1512) supplemented with CaCl2 (1 mM). The epidermis was fixed in 4% formalin for 10 min at room temperature, and was washed in phosphate buffered saline solution (PBS) before being placed in 70% v/v ethanol and stored at 4° C. Antigen retrieval was performed by placing the epidermal samples in boiling 10 mM citrate buffer (pH 6.0) for 5 min. Endogenous peroxidase activity was inhibited by incubating in 1.5% H2O2 in methanol for 20 min. The epidermal samples were blocked for 1 h in a solution containing 10% normal rabbit serum (NRbS), 0.2% BSA (Faction V, Sigma, Cat No. A9647) and 0.1% saponin (Sigma, Cat No. 47036) in PBS. The epidermal samples were incubated with a mutant-specific p53 antibody (PAB240, Neomerkers, Cat No. MS-104-P) diluted 1:25 in 10% NRbS/0.2% BSA/0.1% saponin/PBS overnight at 4° C. Unbound primary antibody was removed by washing samples in PBS/0.5% Tween20. Signal amplification and recognition of the primary antibody was performed by incubating the samples with a biotinylated rabbit anti-mouse IgG1 secondary antibody (RbαM (IgG1)-Biotin, Zymed, Cat No. 61-0140) diluted 1:50 in PBS/0.2% BSA/0.1% saponin. The samples were washed in PBS to remove any unbound secondary antibody and incubated for 45 min at room temperature with the Streptavidin/HRP complex (DAKO, Cat No. P0397) diluted 1:200 in PBS. Following 3 washes in PBS, the signal was visualised with DAB (Sigma Cat No. D5905) The epidermal sheets were then mounted basal side up onto glass slides in Keizer's Glycerine (Merk, Cat No. 1.09242.100). A grid placed on top of each epidermal sheet preparation was used to score the number of p53+ patches in each square using a light microscope with a 10 or 20× objective. A patch was defined as an area of closley associated p53 staining nuclei ≧6 in number.
1a. Other Histological Studies on UVB-Damaged Skin Following PEP005 Gel Treatment.
Three days after the last dose of UVB irradiation, a ˜4 cm2 dorsal area was topically treated daily for 2 days with 40 μl of 0.05% PEP005 gel or placebo gel. The treatment area was demarcated by a tattoo. Mice were culled 6 h (6 h) and 24 h (Day 1) after the first dose of 0.05% PEP005 gel and 24 h after the second dose of 0.05% PEP005 gel or placebo gel (Day 2). The samples were fixed in 10% formalin and processed by QIMR histology for paraffin embedding. Paraffin sections were stained with haematoxylin and eosin (H&E), Leder stain or toludine blue by QIMR Histotechnology, in accordance with standard protocols.
1b. Development of UVB-Induced Lesions Following 0.05% PEP005 Gel Treatment.
One to three days after discontinuation of UVB irradiation, dorsal areas previously demarcated by a tattoo were treated topically daily for 2 days with 0.05% PEP005 gel or placebo gel. An untreated group served as an additional control. Treatment of two different skin areas was examined, (i) a ˜4 cm2 area located centrally on the dorsa where the majority of the UVB-induced damaged skin is known to occur, and (ii) a ˜10 cm2 rectangular area located centrally on the dorsa, encompassing the majority of the UVB-damaged skin. Treatment volumes of PEP005 and placebo gels were adjusted according to the treatment area as follows: 40 μl of gel was applied to the ˜4 cm2 square and 100 μl of gel was applied to the ˜10 cm2 reactangle. The mice were monitored weekly for the development of lesions both within and outside the treatment area. Lesions arising on the tattooed lines were considered outside the treatment area. The number and size of skin lesions was monitored over time. At the termination of the study (or earlier in cases where total lesion area was excessive or other welfare issues required euthansia), the mice were sacrificed and fixed whole in 4-10% paraformaldehyde. Treatment areas from control, placebo gel and PEP005 gel treated mice were excised and paraffin embedded. Standard histolgy staining was performed by QIMR Histotechnology.
2. Therapeutic Treatment of U-V Damaged Skin with 0.01-0.05% PEP005 Gel
Chronic exposure of SKH1/hr mice to UV leads to the development of “UV-signature” p53 mutations at hotspot codons (Benjamin et al., 2008; de Gruijl and Rebel, 2008). Clonal expansion of keratinocytes with p53 mutations leads to the formation of p53 mutant (p53+) patches/foci, which can be detected by immunohistochemistry (IHC) using an antibody that recognises the conformation of mutated p53 (Benjamin et al., 2008; de Gruijl and Rebel, 2008). Although some p53+ keratinocytes spontaneously regress in SKH1/hr mice (as they do in humans), others develop into pre-cancerous lesions resembling AKs and can progress to become SCCs (Rebel et al., 2001). The histology suggests that the reduction in p53+ patches mediated by 0.05% PEP005 gel treatment is a result of direct chemoablation of keratinocytes. It also suggests that 0.05% PEP005 gel treatment results in (i) a neutrophilic infiltrate consistent with previous reports (Ogbourne et al., 2004), and (ii) a loss of cutaneous mast cells. Mast cells have been reported to contribute to a local immunosuppressive environment that supports the development of UVB-induced lesions (Ch'ng et al., 2006; Hart et al., 2000).
Same as section 1 except that UVB-irradiation protocol was continued until visible p53+ patches had formed.
The aim of the study was to determine whether topical field treatment of UV-damaged skin in SKH1/hr mice with 0.05% PEP005 gel led to a reduction in the number of p53+ patches. Mice were irradiated with UV as described in Section 4.3.1. A ˜4 cm2 area on the mice dorsa located at the centre of the UV-damaged skin and demarcated by tattoo was treated daily for 2 days with 40 μl of 0.05% PEP005 gel or placebo gel. A control group remained untreated. Once the treated area had healed (4-5 weeks after treatment), the mice were sacrificed and the epidermis within the treatment area was analysed for the presence of p53+ patches as described in section 1.
Escalating the treatment dose to 0.05% PEP005 gel caused more of a reaction on the skin (
Treatment with 0.05% PEP005 gel resulted in a significant reduction (p=0.002) in the number of p53+ patches/cm2 formed within the treatment area. It was harder to separate the epidermis from the dermis in the 0.05% PEP005 gel treatment group and small areas of skin were sometimes lost. However, this was not significant enough to affect the analysis. These data show that topical treatment with 0.05% PEP005 gel removed p53+ patches in this model.
This Example 4 is directed to the prophylactic activity of PEP005 in the field treatment of ultraviolet B radiation (UVB)-damaged skin, and the therapeutic activity of PEP005 in the treatment of UVB-induced skin lesions. The outbred SKH1/hr mouse model of UVB-induced p53 mutant (p53+) patches and lesions (previously established at QIMR) is used to address these aims. Topical field treatment with 0.05% PEP005 of SKH1 mice with photodamaged skin results in significantly fewer p53+ patches/cm2, reduction of the UV induced epidermal thickening, and a reduction in cutaneous mast cells. Field treatment of a about 10 cm2 dorsal area of skin, which contained most of the UV damaged skin, with 0.05% PEP005 gel results in an about 70% reduction in the number of UVB-induced skin lesions that emerged after UVB irradiation over time. These studies support the utility of PEP005 gel for prophylactic field treatment of UVB damaged skin. Topical spot therapy of established UVB-induced lesions with PEP005 gel (0.1-0.25%) results in no discernable cures.
Thus, this Example 4 is directed to determining the prophylactic and therapeutic potential of PEP005 for treating photodamaged skin and UVB-induced lesions.
For the prophylactic study the following are addressed:
1. To determine whether topical field therapy with 0.01% or 0.05% PEP005 gel would lead to the reduction in the number of UVB-induced p53+ patches.
2. To determine whether field treatment with PEP005 gel would result in a reduction in the number of UVB-induced lesions.
3. To examine the histological changes induced by field treatment with PEP005 gel and determine whether neutrophils are recruited to the treatment area.
For the therapeutic study, it is directed to determining whether topical treatment with high dose PEP005 gel (0.1-0.25%) could cure UVB-induced lesions in the SKH1/hr model.
1.1 SKH1/hr Model
The SKH1/hr mouse is selected as the model system because: (i) the model generates measurable UV-induced p53 mutations, (ii) some mutant p53 cells are known to progress to AK-like lesions and develop into SCCs, and (iii) this mouse strain is immunocompetent. A breeding program for outbred SKH1 mice has been established at QIMR. Male SKH1 mice are used for this study. To prevent any fighting (which promotes tumours), mice are kept two per cage, with mice separated by a physical barrier. Routine animal husbandry is undertaken by the QIMR Bancroft Centre Animal Facility according their standard operating procedures (SOPs). Feed and water is available ad libitum from individual baskets and water bottles attached to the cages.
1.2 PEP005
PEP005 and placebo gel used in this study were provided by Peplin Inc.
1.3 Prophylactic Studies
1.3.1 UVB Regimen
Outbred SKH1/hr mice are irradiated 3 times per week (Monday, Wednesday, and Friday) for 10-11 weeks under 6×TL-12/40 W fluorescent tubes (Phillips) mounted in parallel. During the irradiation mice are segregated into individual boxes (11.5×20 cm) with a piece of 0.125 mm cellulose acetate placed over the box to prevent any UVC reaching the mice. The mice are 26 cm below the UV lamps. Under these conditions the mice received 1.25 times the minimal erythemal dose (MED) of UVB at each exposure, with the total UVB dose being 37.5 MED. One MED is defined as the minimal UVB dose, which caused erythema-oedema evident by visual examination. This MED dose is previously established as suitable for these studies and reported in Cozzi & Suhrbier (2010). UVB-irradiation is ceased for 2-7 days if any of the mice within a cohort showed signs of overt erythema, and is resumed once the overt erythema had resolved. Such cessation is usually only necessary after the initial 2-3 doses of UVB, as mice become resistant to UVB-induced erythema with repeated exposures.
1.3.2 Immunohistochemical Examination of p53+ Patches in UVB-Damaged Skin Following PEP005 Gel Treatment
One to three days after discontinuation of UVB irradiation, a ˜4 cm2 dorsal area is treated topically daily for 2 days with 40 μl of PEP005 gel or placebo gel. The square treatment area was demarcated by a tattoo. An untreated group served as an additional control. Two doses of PEP005 gel are tested: 0.01% and 0.05% (w/v) gel. Once the treated area heals (two weeks for the 0.01% PEP005 gel treatment and 4-5 weeks for the 0.05% PEP005 gel treatment), the mice are sacrificed. The treated areas are excised and separation of the epidermis from the dermis is achieved by floating dorsal skin dermis side down overnight at 4° C. in thermolysin (200 μg/ml, Sigma P1512) supplemented with CaCl2 (1 mM). The epidermis is fixed in 4% formalin for 10 min at room temperature, and is washed in phosphate buffered saline solution (PBS) before being placed in 70% v/v ethanol and stored at 4° C. Antigen retrieval is performed by placing the epidermal samples in boiling 10 mM citrate buffer (pH 6.0) for 5 min Endogenous peroxidase activity is inhibited by incubating in 1.5% H2O2 in methanol for 20 min. The epidermal samples were blocked for 1 h in a solution containing 10% normal rabbit serum (NRbS), 0.2% BSA (Faction V, Sigma, Cat No. A9647) and 0.1% saponin (Sigma, Cat No. 47036) in PBS. The epidermal samples are incubated with a mutant-specific p53 antibody (PAB240, Neomerkers, Cat No. MS-104-P) diluted 1:25 in 10% NRbS/0.2% BSA/0.1% saponin/PBS overnight at 4° C. Unbound primary antibody is removed by washing samples in PBS/0.5% Tween20. Signal amplification and recognition of the primary antibody was performed by incubating the samples with a biotinylated rabbit anti-mouse IgG1 secondary antibody (RbαM (IgG1)-Biotin, Zymed, Cat No. 61-0140) diluted 1:50 in PBS/0.2% BSA/0.1% saponin. The samples are washed in PBS to remove any unbound secondary antibody and incubated for 45 min at room temperature with the Streptavidin/HRP complex (DAKO, Cat No. P0397) diluted 1:200 in PBS. Following 3 washes in PBS, the signal is visualised with DAB (Sigma Cat No. D5905) The epidermal sheets are then mounted basal side up onto glass slides in Keizer's Glycerine (Merk, Cat No. 1.09242.100). A grid placed on top of each epidermal sheet preparation is used to score the number of p53+ patches in each square using a light microscope with a 10 or 20× objective. A patch is defined as an area of closley associated p53 staining nuclei ≧6 in number.
1.3.3 Other Histological Studies on UVB-Damaged Skin Following PEP005 Gel Treatment.
Three days after the last dose of UVB irradiation, a ˜4 cm2 dorsal area is topically treated daily for 2 days with 40 μl of 0.05% PEP005 gel or placebo gel. The treatment area is demarcated by a tattoo. Mice are culled 6 h (6 h) and 24 h (Day 1) after the first dose of 0.05% PEP005 gel and 24 h after the second dose of 0.05% PEP005 gel or placebo gel (Day 2). The samples are fixed in 10% formalin and processed by QIMR histology for paraffin embedding. Paraffin sections are stained with haematoxylin and eosin (H&E), Leder stain or toludine blue by QIMR Histotechnology, in accordance with standard protocols.
1.3.4 Development of UVB-Induced Lesions Following 0.05% PEP005 Gel Treatment.
One to three days after discontinuation of UVB irradiation, dorsal areas previously demarcated by a tattoo are treated topically daily for 2 days with 0.05% PEP005 gel or placebo gel. An untreated group served as an additional control. Treatment of two different skin areas is examined, (i) a ˜4 cm2 area located centrally on the dorsa where the majority of the UVB-induced damaged skin is known to occur, and (ii) a ˜10 cm2 rectangular area located centrally on the dorsa, encompassing the majority of the UVB-damaged skin. Treatment volumes of PEP005 and placebo gels are adjusted according to the treatment area as follows: 40 μl of gel is applied to the ˜4 cm2 square and 100 μl of gel is applied to the ˜10 cm2 reactangle. The mice were monitored weekly for the development of lesions both within and outside the treatment area. Lesions arising on the tattooed lines are considered outside the treatment area. The number and size of lesions is monitored over time. At the termination of the study (or earlier in cases where total lesion area is excessive or other welfare issues required euthansia), the mice are sacrificed and fixed whole in 4-10% paraformaldehyde. Treatment areas from control, placebo gel and PEP005 gel treated mice are excised and paraffin embedded. Standard histolgy staining is performed by QIMR Histotechnology.
1.4 Therapeutic Treatment of UVB-Induced Lesions with 0.01-0.25% PEP005 Gel
1.4.1 UVB Regimen
1Same as 1.3.1 except that UVB-irradiation protocol was continued until visible lesions had formed.
1.4.2 Treatment of UVB-Induced Lesions
Once two or more mice develop lesions visible by visual examination, the mice are paired and a lesion from each mouse is treated with either 0.1-0.25% (w/v) PEP005 gel or placebo gel. The mice are monitored over time for growth of the treated lesions. Mice are euthanased when the total lesion area is deemed excessive on ethical grounds (usually >100 mm2) or the mice show clear signs of ill health. Mice are also euthanased for animal welfare issues other than tumour burden where necessary.
1.5 Data Analysis
Statistical analysis was performed using Graphpad Prism version 5.03 (Graphpad Software, San Diego Calif. USA, www.graphpad.com) or SPSS for Windows (version 15.0, 2007; SPSS, Chicago, Ill.).
2.1 Field Treatment of UV-Damaged Skin with 0.01% PEP005 Gel Did Not Reduce the Number of p53+ Patches
This Example 4 is to determine whether topical field treatment of UVB-damaged skin in SKH1/hr mice with 0.01% PEP005 gel leads to a reduction in the number of p53+ patches. Mice are irradiated with UVB as described in Section 4.3.1. ˜4 cm2 areas located at the centre of the UVBdamaged skin on the mice dorsa and demarcated by tattoos are treated daily for 2 days with 40 μl of 0.01% PEP005 gel or placebo gel. A control group remains untreated. Two weeks after treatment the mice are sacrificed and the epidermis within the treatment area is analysed for the presence of p53+ patches as described in Section 1.3.2.
Treatment with 0.01% PEP005 gel induces slight erythema, with flaking and occasionally mild scabbing, which resolves within 2 weeks after treatment, leaving no evidence of scarring or apparent change in the treatment area (
2.2 Field Treatment of UV-Damaged Skin with 0.05% PEP005 Gel LED to a Reduction in the Number of p53+ Patches
This Example 4 is to determine whether topical field treatment of UVB-damaged skin in SKH1/hr mice with 0.05% PEP005 gel led to a reduction in the number of p53+ patches. Mice are irradiated with UVB as described in Section 4.3.1. A ˜4 cm2 area on the mice dorsa located at the centre of the UVB-damaged skin and demarcated by tattoo is treated daily for 2 days with 40 μl of 0.05% PEP005 gel or placebo gel. A control group remained untreated. Once the treated area has healed (4-5 weeks after treatment), the mice are sacrificed and the epidermis within the treatment area is analysed for the presence of p53+ patches as described in Section 1.3.2.
Escalating the treatment dose to 0.05% PEP005 gel caused more of a reaction on the skin (
Treatment with 0.05% PEP005 gel resulted in a significant reduction (p=0.002) in the number of p53+ patches/cm2 formed within the treatment area. It was harder to separate the epidermis from the dermis in the 0.05% PEP005 gel treatment group and small areas of skin were sometimes lost. However, this was not significant enough to affect the analysis. These data show that topical treatment with 0.05% PEP005 gel removed p53+ patches in this model.
We observed that in the 0.05% PEP005 gel treatment group the tattoo marking was often removed, possibly at sites where the gel had spread over the tattoo. This suggested that PEP005 gel may find a utility as a tattoo removal agent. We further examined this potential new cosmetic indication for PEP005 gel in a small cohort of mice. A report for this study will be submitted as a separate extension to this contract.
2.3 Histological Changes Induced by Treating UVB-Damaged Skin with 0.05% PEP005 Gel
To identify the histological changes after 0.05% PEP005 gel treatment, skin is examined at different times after treatment; 6 h after the first dose is applied (6 h), 24 h after the first dose is applied (Day 1), and 24 h after the second dose is applied (Day 2). Placebo treated mice are treated with equivalent volumes of placebo gel and the skin examined 24 h after the second dose (
Placebo-treated skin (
To assess whether neutrophils are recruited to the site after treatment with 0.05% PEP005 gel, sections were stained with Leder stain that detects the enzyme chloroacetate esterase present in granulocytes. Leder stain stains granulocytes red-pink (
To determine whether mast cells were present, parallel sections were stained with toluidine blue, which stains mast cells pink-purple. In agreement with the literature (Ch'ng et al., 2006; Brand et al., 2002), UVB-irradiated skin contained abundant mast cells (
The histology suggests that the reduction in p53+ patches mediated by 0.05% PEP005 gel treatment is a result of direct chemoablation of keratinocytes. It also suggests that 0.05% PEP005 gel treatment results in (i) a neutrophilic infiltrate consistent with previous reports (Ogbourne et al., 2004), and (ii) a loss of cutaneous mast cells. Mast cells have been reported to contribute to a local immunosuppressive environment that supports the development of UVB-induced lesions (Ch'ng et al., 2006; Hart et al., 2000).
2.4. Field Treatment of a ˜4 cm2 Area of UVB-Damaged Skin with 0.05% PEP005 Gel Did not Affect the Formation of UVB-Induced Epidermal Lesions
The results in Section 2.1 suggest that treatment with 0.05% PEP005 gel leads to the reduction in photodamaged keratinocytes, with significantly fewer p53+ patches present after treatment. To determine whether the reduction of UVB-damaged keratinocytes would correlate with reduced formation of UVB-induced lesions, the same experimental design is used as described in Section 2.2. Briefly, SKH1/hr mice are irradiated with 30 doses of 1.25 MED of UVB over 10-11 weeks. The mice are then randomised into three groups and ˜4 cm2 areas demarcated by a tattoo on the mice dorsa are treated daily for 2 days with 40 μl of 0.05% PEP005 gel or placebo gel. An untreated control group was also included. Following treatment the mice are monitored weekly for the development of lesions both within and outside the treatment area. Both the number and size of the lesions is recorded.
Treatment with 0.05% PEP005 gel leads to a small decrease in the total number of UVB-induced lesions per mouse that emerged over time (
Twenty weeks after treatment with 0.05% PEP005 gel, the area within the tattoo had contracted by ˜3-fold compared to placebo gel and control mice (
2.5 Field Treatment of a ˜10 cm2 Area of UVB-Damaged Skin with 0.05% PEP005 Gel Reduced the Number of UVB-Induced Epidermal Lesions
SKH1/hr mice are exposed to 1.25 MED three times per week for a total of 30 doses. One day after the final irradiation dose, the mice are randomised into 3 groups and ˜10 cm2 areas demarcated by tattoos on the dorsa were treated topically daily for 2 days with ˜100 μl of 0.05% PEP005 gel or placebo gel. Control mice remained untreated. The mice were examined weekly for the development of UV-induced lesions. The number and size of the lesions located within and outside the treatment area were documented.
In addition to the tattooed treatment area, other lines parallel to the treatment rectangle are also tattooed on the mice to track skin movement following 0.05% PEP005 gel treatment.
Analysis of lesion numbers in the dorsal area show that 0.05% PEP005 gel treatment resulted in a significant ˜70% reduction in the number of dorsal lesions that developed per mouse (
To determine whether treatment of UVB-damaged skin with 0.05% PEP005 gel had an effect on lesion development outside the treatment area, the number of lesions outside the tattooed area was enumerated. Treatment with 0.05% PEP005 gel had no effect on the number of lesions that developed outside the treatment area (
The results described above illustrated that when the majority of photodamaged skin was treated with 0.05% PEP005 gel, a clearly apparent reduction in the number of skin lesions was observed, with both the total number of lesions per mouse significantly reduced (
2.6 Lesions Arising after PEP005 Gel Field Treatment Show No Difference in Growth Kinetics.
To determine whether there is any difference between the growth kinetics of lesions formed between treatment groups, we examined the growth rates of individual lesions that developed within the treatment areas. Week 0 was assigned as the week prior to an individual lesion being identified. Thus all the individual lesions' growth curves start at week 0, irrespective of the time of treatment. The growth curves in
2.7 Lesions Arising after PEP005 Gel Field Treatment Showed Similar Size Distribution to Placebo-Treated and Control Mice
To determine whether the lesions that arose after PEP005 gel treatment showed any changes in size profile, the size distribution of lesions within the treatment area 21 weeks post-treatment is analysed. Bar graphs show the area (mm2) of individual lesions 21 weeks post treatment in control mice (
One day after the last irradiation dose, the mice were treated topically, daily for 2 days with ˜100 μl of 0.05% PEP005gel or placebo gel over a ˜10 cm2 area demarcated by a tattoo on the dorsa. Control mice remained untreated. The mice were then examined weekly for the development of UV-induced lesions. A-C: Bar graph of the size of individual lesions 21 weeks post-treatment in Control (A), placebo gel treated (B) and 0.05% PEP005 gel treated (C) mice. Lesions were sorted smallest to largest area. D: Distribution of lesion areas. Tumour lesions from control, placebo gel and PEP005 gel treated mice were grouped into 5 groups according to the specified area ranges. Bars represent the number of lesions within each area range.
2.8 Histological Analysis of UVB-Induced Lesions and Skin Treated with 0.05% PEP005 Gel
H&E staining of representative control (
Low magnification images of 0.05% PEP005 gel treated skin from two mice with no visible lesions showed that the skin was also free of histologically observable lesions (
2.9 Skin Contraction Following Field Treatment with 0.05% PEP005 Gel
In the current study treatment of UVB-damaged skin with 0.05% PEP005 gel resulted in apparent chemoablation of the epithelial skin layer. A neutrophil-mediated response was apparent within 24 h of treatment (
2.10 Morphological Changes Induced by UVB-Damage and their Reversal after Field Treatment with 0.05% PEP005 Gel
Visual examination shows that by 21 weeks after 0.05% PEP005 gel treatment, the skin is healed with a favourable cosmetic outcome, in many cases devoid of UVB-induced lesions (
An apparent straightening of dermal collagen fibres following 0.05% PEP005 gel treatment is also evident by H&E staining (
2.11 Spot-Treatment of Established UV-Induced Lesions with 01-0.25% PEP005 Gel
Another aim of this Example 4 is to determine if topical treatment with 0.1-0.25% PEP005 gel applied after a lesion has developed could cure UVB-induced lesions. Mice are irradiated 3 times per week until a lesion is developed that is clearly visible. Mice with lesions were paired and one lesion from each mouse was treated with either 20 μA of PEP005 gel or placebo gel. The larger lesion within a pair is assigned to the PEP005 group. Four treatment regimens are tested and are summarized in Table 1. Group 1 consisted of mice bearing large (>15 mm2) tumours at time of treatment. These mice are treated with 20 μA of 0.1% PEP005 gel, daily for 2 days. Group 2 consisted of mice bearing smaller tumours (2.3-11.4 mm2) at time of treatment. These mice are also treated with 20 μA of 0.1% PEP005 gel, daily for 2 days. Group 3 consisted of mice bearing small tumours (1.6-8.1 mm2) at the time of treatment. These mice are treated 2 weeks after the last dose of UVB with 20 μA of 0.1% PEP005 gel, daily for 3 days. Group 4 consisted of mice with small tumours (4-9.6 mm2) at time of treatment. These mice are treated 3 weeks after UVB-irradiation has been ceased with 20 μA of 0.25% PEP005 gel, daily for 2 days. Lesions are monitored weekly. Mice are euthanased when the total tumour burden per mouse was considered excessive (usually >100 mm2) A number of mice developed testicular infections and are also euthanased.
No lesions appear to be cured by PEP005 gel treatment in any of the treatment regimens (
These results suggest that topical PEP005 gel spot-therapy of UVB-induced lesion did not result in any discernable cures in this model. Partial responses appeared to be evident when small lesions (<13 mm2) were treated, and the response was improved to ˜50% when the total PEP005 gel dose was escalated to >60 μg and there was a 2 weeks delay between the last UVB-irradiation and the first PEP005 gel treatment. The difficulty in identifying individual tumours when other tumours are emerging in and around the treated tumour made it difficult to obtain clear results, illustrating that this is not an ideal model for testing tumour treatment by PEP005 gel.
3.1 PEP005 Field Treatment
Treatment of UVB-damaged skin with 0.05% PEP005 gel results in a significant reduction in the number of epidermal UVB-induced p53+ patches (
Histological analysis of UVB damaged skin treated with 0.05% PEP005 gel also shows loss of the keratinocyte layer and cutaneous mast cells (
Field treatment with 0.05% PEP005 gel resulted in the treated skin shrinking, with a ˜3 fold reduction in area (
Field treatment with 0.05% PEP005 gel results in a clear reduction in the number of emerging lesions when a ˜10 cm2 area is treated (
This study suggests that prophylactic PEP005 field treatment is effective in preventing skin cancer development when, for example, a sizable area (˜10 cm2) is treated but may be less effective when a smaller area is treated (˜4 cm2). This may mean that either treating a relatively large area is important for prophylactic efficacy or that treating a large percentage of photodamaged skin in any particular area is important.
There is no difference in growth or size distribution of lesions after PEP005 gel or placebo gel treatment indicating that tumors emerging after 0.05% PEP005 gel treatment do not behave more aggressively.
Treatment with 0.05% PEP005 gel appears to lead to the removal of some of the tattooed lines suggesting that PEP005 gel is useful in tattoo removal.
Spot-therapy of UVB-induced lesions within a severely photodamaged area with high dose PEP005 gel (0.1-0.25%) did not lead to discernable cures of any of the lesions treated. However, partial responses following treatment with PEP005 gel did appear to occur (Table 1). A major problem with this model is the difficulty in determining the effect of treatment of a single lesion when multiple lesions emerge within the same and/or surrounding areas. This model would thus appear largely unsuitable for evaluating the efficacy of topical PEP005 gel for tumour therapy.
In accordance with this Example 5, it shows that about 70% of T7 tumours (established in female SKH1/hr mice) are cured after topical treatment, daily for 2 days with 0.25% ingenol mebutate gel. The cure rate in male mice is about 30%, although differences between the sexes did not reach statistical significance. Treatment of T7 tumours ias associated with hemorrhage at the treatment site and is accompanied by a neutrophil infiltrate. Transmission electron microscopy analysis shows that at one hour post-treatment the following could be seen; (i) swelling of mitochondrial cristae in cancer cells, (ii) extravasation of neutrophils and (iii) signs of hemorrhage. Further disruption of the inner mitochondrial membranes in cancer cells is seen at 6 h post-treatment, and tumour cell death by primary necrosis is clearly evident by 24 h. Ingenol mebutate treatment leads to the generation of anti-T7 antibodies, which appear to decline over time. Mice that are cured of T7 tumours by topical ingenol mebutate treatment do not show increased resistance to a subsequent challenge with T7 cells.
1.1 Materials
1.1.1 Cell Lines
Murine SCC cell lines UV-13.1 and T7 are provided by Dr G. Halliday (University of Sydney, NSW, Australia). Murine B16 cells are provided by Prof Peter Parsons (QIMR, QLD, Australia). All cell lines are negative for mycoplasma infection. Both T7 and UV-13-3 cell lines also test negative for mouse hepatitis virus, minute virus of mice, mouse parvovirus and rotavirus.
1.1.2 Description of Test Systems
Inbred C3H/HeN, inbred SKH1/hr, are obtained as follows: inbred C3H/HeN mice are imported from Charles River Laboratory, NCI Frederick, USA. A breeding colony is established at QIMR; inbred SKH1/hr mice are imported from ARC, Perth, Australia. A breeding colony is established at QIMR. Mice used in the studies are over 4 weeks old at time of inoculation.
1.1.3 Test and Control Articles
Drug Product—Ingenol mebutate
API-Ingenol mebutate (PEP005, #250803) is dissolved in acetone and aliquoted into 1 mg aliquots that are dried down and stored at 4° C.
1.1.4 Test and Control Articles Administration
Mice received 20-30 μl of 0.1-0.25% (w/v) gel applied daily for two days via topical route of administration.
1.2 Methods
1.2.1 Culture of Cell Lines
UV-13.1 and T7 cells are cultured in DMEM medium (Gibco Catalogue number 11960) supplemented with sodium-pyruvate (Gibco Catalogue number 11360-070, final concentration 1 mM), L-glutamine (Gibco, catalogue number 25030-081, final concentration 2 mM) and penicillin/streptomycin (Catalogue number 490269, diluted 1:100). B 16 cells are cultured in RPMI (QIMR) supplemented with 10% FBS and penicillin/streptomycin.
1.2.2 In Vitro Cytotoxicity Assay
Cells are seeded with in 10,000 per microtitre wells in 100 μl of culture medium and incubated overnight to enable them to adhere to the bottom of the well. Quadruplicate wells aere treated with ingenol mebutate (PEP005 #250803 final concentration 0.232-232 μM) dissolved in DMSO (Sigma, D2650). The concentration of the vehicle does not exceed 1% v/v and drug dilutions are made in DMEM. Included in the assay were cells treated with vehicle alone (1% DMSO) and control. The treated cells are incubated at 37° C. for 48 h. Medium from the microtitre plates is tipped out; the wells are washed once with PBS to remove any excess FBS and then are fixed with methylated spirits for a minimum of 5 min. The methylated spirit is tipped off and the wells are washed once with tap water. A volume of 50 μl of sulforhodmain B (SRB) solution (0.4% SRB in 1% acetic acid) is added to each well and the plates are incubated at room temperature for a minimum of 15 min. The SRB solution is tipped off and the plates are washed twice with tap water and then twice with 1% acetic acid. The final wash of acetic acid is tapped out of the plate and 100 μl of 10 mM Tris base (unbuffered, pH>9) is added per well. The plate is incubated at room temperature for at least 5 min and then the absorbance is read on an ELISA plate reader at 564 nm.
1.2.3 Inoculation of Mice with Tumours
Groups of hairless inbred SKH1/hr mice are injected s.c. on the dorsum with tumour cells (2×1042×106) harvested from exponentially growing cultures. Tumour development is monitored by visual examination and measurements of the tumour length and width are taken using digital callipers. The tumour size is represented as an area calculated as the tumour width×length as measured on the living animal. In accordance with the QIMR animal ethics committee (AEC) mice are sacrificed when tumours reached an area of 100 mm2.
1.2.4 Topical Treatment of Tumour
Ingenol mebutate or vehicle are dispensed over the tumour area using a pipette and then spread using the pipette tip.
1.2.5 Monitoring of Tumour Site
After treatment, lesions were monitored for tumour size (mm2), local tumour reoccurrence and eschar formation. Measurements were made using digital callipers.
1.2.6 Histology Analysis of Tumour Samples
Samples are processed and stained by QIMR Histotechnology.
1.2.7 Transmission Electron Microscopy (TEM)
Samples are processed for TEM by QIMR Histotechnology. Staining and photography is performed at the Royal Brisbane and Women's Hospital (RBWH) Anatomical Pathology Department.
1.2.8 T7 ELISA
Blood (˜50-100 μl) 1 s taken by tail bleeding the mice and is collected into 0.8 ml MiniCollect® Z Serum Separator tubes that are coated with spray-dried clot activator (Greiner bio-one Cat. Num. 450472) and are spun at 3000 rpm in a microfuge at room temperature for 10 min. The serum is collected and stored at 4° C. for analysis of anti-T7 antibodies by ELISA.
Preparation of T7 ELISA plates: T7 cells are grown to 90% confluence. The medium is aspirated and the cells are washed once with ice-cold PBS. T7 cells are harvested by scraping in PBS supplemented with protease inhibitor cocktail (PIC) and disrupted by sonication at 4° C. for 1-2 min. The T7 lys ate solution is supplemented with bicarbonate buffer (pH 9.6) containing PIC to a final volume of 40 ml and 70 μl/well is added to each well in a 96 well plate (Nunc, Invitro Technologies Cat. Num. 442404). The plates are dried overnight at 37° C.
The following day, the plates are blocked with 10% (w/v) skim milk in PBS for 1 h at room temperature. Meanwhile mouse serum is prepared by diluting 1:7 to 1:413343 in 3-fold dilutions in PBS/0.01% Tween20 (v/v)/1% (w/v) skim milk for the IgG2a plate and 1:10 10 1:590410 in 3-fold dilutions for the IgG1 plate. The blocking buffer is discarded from the wells, the plate is washed with PBS/(0.01%) Tween20 and 70 μl of pre-diluted mouse serum is added to duplicate wells. The ELISA plates are incubated at room temperature for 2 h. The plates are then washed 3 times with PBS/(0.01%) Tween20. After the final wash, 100 μl/well of Biotin-conjugated rat anti-mouse antibody IgG2a (BD Pharmingen™ Cat. Num. 553388) or IgG1 (BD Pharmingen™ Cat. Num. 553441) diluted 1:5000 (IgG2a) or 1:3000 (IgG1) in PBS/0.01% Tween20 is added and the ELISA plate is incubated at room temperature for 45 min. The plate is washed 3 times in PBS/(0.01%) Tween20 and 100 μl of streptavidin-HRP (Bioscource, Cat. Num SNN4004) diluted 1:10000 in PBS/0.01% Tween20 is added to each well and is incubated at room temperature for 45 min. The plate is washed a further 3 times in PBS/(0.01%) Tween20, and then is developed with 100 μl/well of solution containing 2,2′-Azino-bis(3-ethlbenzothiazoline-6-sulfoniate) (ABTS, Sigma Cat. Num. 697K41061, 10 mg/ml):(30%) H2O2 (Reidel de Haer, Cat Num. 18312) (1000:1) for 30 min at room temperature. Spectrophotometric readings are taken on an ELISA plate reader at 405 nm and graphs are generated using Graphpad Prism Version 5.01 software.
2.1 In Vitro Cytotoxicity Profile of Ingenol Mebutate
To determine the in vitro sensitivity profile of T7 cells to ingenol mebutate treatment, a dose-response is generated by using the SRB stain to monitor cellular protein. Cells are seeded at high density and treated with ingenol mebutate (0.232-232 μM) for 48 h. The plates are fixed and are stained with SRB. For comparative analysis, another UV-induced murine SCC cell line, UV-13.1, and the murine melanoma cell line, B16, cells are included in the assay.
2.2 Determining the Curative Regimen of Ingenol Mebutate in the T7/SKH1 Model of SCC
Female inbred SKH1/hr mice are injected on their dorsa on Day 0 s.c. with 2×106 T7 cells in 100 μl of medium. Four days later the mice are segregated into 3 groups so that the mean tumour area and the range of tumour sizes is approximately similar between the groups (Table 2). The groups are treated topically with 20 μl of 0.1% ingenol mebutate or placebo gel daily for 2 days. Control mice remain untreated. Tumour growth is monitored over time. Mice are excluded from the study if they developed intra-muscular tumours as this indicated that the tumours are injected too deep. In this study, one control and one ingenol mebutate treated mice are excluded for this reason. Mice are euthanased when the tumours reached 100 mm2. Table 2 summarizes the information for the mice cohort within the study, omitting mice that are excluded for the above stated reason. Survival curves are generated by attributing a death event when a tumour reached 100 mm2. The results depicted in
In an attempt to improve cure rates in this model, smaller T7 tumours are treated with 0.1% ingenol mebutate. In addition, the inoculation volume is reduced to about 50 μl to reduce the spread of tumour cells beyond the inoculation site. Female inbred SKH1/hr mice are injected on day 0 s.c. with 5×105 T7 cells (one quarter of the cell number used above) in about 50 μl of medium on their dorsa. Three days later the mice are segregated into 3 groups so that the mean tumour area and range is approximately similar between groups (Table 2). The groups are then treated topically with about 20 μl of 0.1% ingenol mebutate or placebo gel, daily for 2 days. Control mice remained untreated. Tumour growth is monitored over time. Mice are sacrificed when the tumours reached 100 mm2. Table 3 summarises the information for the mice in this cohort. Treatment with 0.1% ingenol mebutate daily for two days led to a significant reduction in tumour growth (Log-rank test placebo vs ingenol mebutate p=0.0006) (
Mice are inoculated s.c. with 5×105 T7 cells on their dorsa. On days 3 & 4, the tumours are treated topically with 20 μl of 0.1% ingenol mebutate. Tumour area is monitored over time. The mice are sacrificed when the tumours reach 100 mm2. Survival curves are generated by attributing a death event when a tumour reached 100 mm2. Log-rank test placebo vs ingenol mebutate p=0.0006.
Four changes are adopted to try and achieve cure with ingenol mebutate treatment in this model: (i) the dose of ingenol mebutate is increased to 0.25%; (ii) the injection depth of T7 cells is reduced to try and achieve a shallow subcutaneous inoculation; (iii) the T7 cell numbers are further reduced to 5×104 T7 cells; and (iv) the volume of gel applied is increased from 20 μl to 30 μl to ensure that the gel is spread around the entire tumour site. Female SKH1/hr mice are inoculated by shallow injection with 5×104 T7 cells in 30 μl (Study 1) or 50 μl (Study 2) on day 0. On day 4 the mice are segregated into 3 groups, on days 4 & 5 the mice are treated with either 30 μl of 0.25% ingenol mebutate or placebo gel. A control group remain untreated. By day 4, the tumours reach a similar mean size (Table 4) as those described above (Table 3). Tumour growth is monitored over time. Mice are euthanased when the tumours reach 100 mm2. Table 4 shows the combined data from two independent studies using the four adopted changes. Both studies show very similar results and data is thus combined. Survival curves in
Topical treatment of T7 tumours with 0.25% ingenol mebutate result in a significant reduction in the number of mice with tumours reaching 100 mm2 (Log-rank test placebo vs ingenol mebutate, p=0.0002), with 70% of mice showing no signs of tumour 4 months after treatment, suggesting that complete cure is achieved.
To determine whether male mice bearing T7 tumours are also cured by the same ingenol mebutate regimen, we conduct similar studies using male inbred SKH/hr1 mice. Male SKH1/hr mice are inoculated by shallow injection with 5×104 T7 cells in 30 μl on Day 0. On day 4, the mice are segregated into 3 groups and on days 4 & 5 the mice are treated with either 30 μl of 0.25% ingenol mebutate or placebo gel. Tumour growth is monitored over time. Mice are euthanased when the tumours reached 100 mm2. One ingenol mebutate treated mouse is found deceased due to unknown reasons and is therefore excluded from the study. Table 5 summarizes the information for cohorts of mice from 2 independent studies, which show similar results. Survival curves in
Topical treatment of T7 tumours with 0.25% ingenol mebutate in male SKH/hr mice result in a significant reduction in the number of mice with tumours reaching 100 mm2 (Log-rank test placebo vs ingenol mebutate, p=0.0084), with 30% of mice showing no signs of tumour reoccurrence 4 months after treatment, suggesting that complete cure is achieved.
2.3 No Statistical Significance Between Male and Female Cure Rates
To determine if there is any statistical difference in cure rates between male and female SKH1/hr mice two analyses are undertaken. Firstly, cure rates are compared from a study where male and female mice are inoculated from the same pool of T7 cells and treated with ingenol mebutate or placebo gel at the same time. (Each of these studies represented one of the two experiments combined to produce the data shown in 2.2). Table 6 summarizes the information for this cohort of mice. Topical treatment of T7 tumours in male mice leads to a reduction in tumour growth, although this does not reach statistical significance (log-rank test placebo vs. ingenol mebutate p=0.0834) (
In an alternative analysis of the results, combined data from males vs. females from Tables 4 and 5, and
2.4 Appearance of Ingenol Mebutate Gel Post Topical Application on T7 Tumours In Vivo
Visual examination of the gel formulation following treatment with 0.25% ingenol mebutate (
2.5 Visual & Histological Examination of T7 Tumours Treated Topically with 0.25% Ingenol Mebutate
To determine the effects of topical treatment of T7 tumour with 0.25% ingenol mebutate, we conducted a photographic and histological time-course analysis. Mice are inoculated with T7 cells on their dorsa. On days 4 & 5, the tumours are treated topically with 30 μl of 0.25% ingenol mebutate. The photographs in
Histology analysis (
Concomitant with the haemorrhage is an infiltration of polymorphonuclear cells (probably neutrophils) that were evident 3 h after treatment with ingenol mebutate (
2.6 Subcellular Changes Induced in T7 Tumour Cells Topically Treated with 0.25% Ingenol Mebutate
Previously TEM analysis of B 16 melanoma tumours are treated in vivo show early mitochondrial swelling (6 h post-treatment) and death by necrosis as key events in the chemoablative actions following topical treatment with ingenol mebutate (Ogbourne et al. 2004). In this study, we conduct a time-course analysis to determine the effects of topical treatment of T7 tumours with 0.25% ingenol mebutate. Female inbred SKH1/hr mice bearing T7 tumours are inoculated by shallow s.c. injection are topically treated with one dose of 0.25% ingenol mebutate or placebo gel. Mice are sacrificed, 1 h, 3 h, 6 h and 24 h post-ingenol mebutate treatment and 24 h post placebo treatment and are analyzed by TEM.
2.6.1 Effect of Ingenol Mebutate on T7 Cells
TEM showed that treatment with 0.25% ingenol mebutate results in cell death by primary necrosis and is evident 24 h after treatment (
Ingenol mebutate treatment also led to morphological changes to the nucleus (
2.6.2 Effect of Ingenol Mebutate on Vasculature and Immunity
Histological analysis of the T7 tumour that are treated with 0.25% ingenol mebutate show extensive local haemorrhaging and a neutrophil infiltrate as key features following treatment (
Previously reports suggests that neutrophils play an important role in ingenol mebutate-mediated cure of primary tumours by clearing residual tumour cells (Challacombe et al. 2006). The current TEM time-course analysis show that topical treatment of T7 tumours with 0.25% ingenol mebutate leads to extravasation of neutrophils to the tumour site, evident after 1 h (
2.7 Generation of Anti-T7 Antibodies Following Cure of T7 Tumours with Ingenol Mebutate
Previously we have shown that ingenol mebutate treated B 16 tumours growing in C57BL/6 mice, lead to increased levels of anti-B 16 antibodies on days 11 and 136 post ingenol mebutate treatment (Challacombe et al. 2006). To determine whether treatment of T7 tumours with ingenol mebutate also led to increased anti-T7 antibodies, an ELISA assay was used to measure the anti-T7 antibodies in (i) female mice cured of T7 tumours with 0.25% topical ingenol mebutate treatment and (ii) in naïve mice bearing no T7 tumours. Ingenol mebutate-cured mice had generated significantly more IgG1 and IgG2a anti-T7 antibodies than naïve mice in groups of mice bled 107 days post treatment (
2.8 Challenging Ingenol Mebutate Cured Mice with T7 Tumours
We previously reported that cure of large s.c. Lewis lung carcinomas with intratumoural ingenol mebutate treatment resulted in protection against challenge (on day 6 post treatment) with the same tumour at a separate site (Le et al. 2009). To determine if cure of primary T7 tumours in inbred SKH1/hr mice would protect mice from subsequent challenge with the same tumour, T7 cells were injected s.c. in female SKH1/hr mice that had primary T7 tumours previously cured by topical treatment with 0.25% ingenol mebutate. There were 2 groups of mice, mice that had primary tumours cured by ingenol mebutate 110 (group 1) and 159 (group 2) days prior to challenge. Included in the study was a control group that had not previously received T7 or ingenol mebutate treatment. Tumour growth is monitored over time. Mice are culled when tumours reached 100 mm2.
Cure of primary T7 tumours with ingenol mebutate have no protective effect on a subsequent T7 challenge. See
This Example 5 describes the efficacy of ingenol mebutate in a murine SCC model, which uses immunologically intact mice. This model might be viewed as a more appropriate model than B16 or LK2 in nude mice for treatment of non melanoma skin cancers in humans. However, the data from the current model parallel those seen in previous mouse models (Challacombe et al. 2006; Le et al. 2009; Ogbourne et al. 2004). Specifically (i) in vitro ingenol mebutate cytotoxicity is similar for T7 and B 16, supporting the view that the in vitro LD90 for most cell lines is quite similar; (ii) ingenol mebutate treatment in vivo results in hemorrhage, mitochondrial disruption in tumour cells, and primary necrosis of tumour cells, (iii) ingenol mebutate treatment results in the recruitment of neutrophils, which may be involved in killing tumour cells, and (iv) ingenol mebutate treatment results in the induction of anti-cancer antibodies. The T7/SKH1/hr model of NMSC has thus provided similar data to that seen previously using other mouse models (which did not use non-melanoma skin cancers and/or used nude mice). After the paper published by Li et al (2010) a greater focus is placed on analysing haemorrhage; however, there is no indication that this is more severe in this T7 model compared with the other models.
In vivo, topical treatment with 0.25% ingenol mebutate of T7 tumours injected shallow s.c. results in cure of about 70% of tumours in female mice.
In accordance with this Example 6, two daily topical applications of ingenol mebutate at about 0.1% or about 0.25% onto tattoos led to the eradication of the tattoo markings.
1.1 SKH1/hr Model
Male outbred hairless SKH1/hr mice were selected as the test model for this pilot study. Routine animal husbandry was undertaken by the QIMR Bancroft Centre Animal Facility according their standard operating procedures (SOPs). Feed and water was available ad libitum from individual baskets and water bottles attached to the cages.
1.2 Treatments
Ingenol Mebutate gel and placebo gel used in this study.
1.3 Tattoo Studies
Fifteen SKH1/hr mice are tattooed on their dorsa with an about 1 cm×about 1 cm cross using human grade blue tattoo ink (Tattoo supplies Australia, Catalogue number FFMB) on Day 0. Once the tattooed area heals (after 12 days), the tattoo (about 100 mm2) is topically treated daily for 2 days with 50 μl of PEP005 gel or placebo gel (Day 12 & Day 13). Two PEP005 doses are tested: 0.1% and 0.25% (w/v). The mice are examined over time to assess any changes to the tattooed area and photographs are taken.
2.1 PEP005 Treatment Leads to Eradication of Tattoo Markings.
The aim study is to determine whether PEP005 gel can remove tattoo markings when applied topically. Fifteen mice are tattooed with a cross on their dorsa. Twelve days after the tattoos are drawn, they are treated topically daily for 2 days with 0.1% PEP005, 0.25% PEP005 or placebo gel. The photographs in
Mice (n=5 per group) are tattooed on Day 0 with a cross (˜1 cmט1 cm) on their dorsa. Twelve days after the cross is tattooed, the mice are topically treated daily for 2 days with 50 μl of placebo gel, 0.1% PEP005 gel or 0.25% PEP005 gel (Days 12 & 13). The gel treatments are applied onto the tattoo and spread to ensure that the gel covers the entire tattoo making. The mice are examined weekly to assess any changes to the tattooed area and photographs taken. The photographs are taken prior to first treatment (Day 12) and at termination of experiment (Day 232).
Treatment of a tattooed area with 0.1% & 0.25% PEP005 daily for 2 days results in the removal of the tattoo markings.
Examples of ingenol mebutate gel formulations contemplated by the present invention and that are used in the Examples 1-6 above are as follows:
The attached Appendix B forms a part of this disclosure and is incorporated herein by reference in its entirety.
This application is a continuation of PCT Patent Application No. PCT/IB2011/001910, filed Jun. 27, 2011, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 61/501,253, filed Jun. 26, 2011, and U.S. Provisional Patent Application Ser. No. 61/501,171, filed Jun. 24, 2011. The contents of each of the foregoing applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61501253 | Jun 2011 | US | |
61501171 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB2011/001910 | Jun 2011 | US |
Child | 14139869 | US |