This invention relates generally to learning machines and statistical pattern recognition systems. More particularly the invention relates to using feature vectors and machine learning algorithms to determine discriminant functions of minimum risk linear classification systems. The invention is described in an article by applicant, “Design of Data-Driven Mathematical Laws for Optimal Statistical Classification Systems,” arXiv: 1612.03902v8: submitted on 22 Sep. 2017.
The design of statistical pattern recognition systems is important for a wide variety of statistical classification problems including, but not limited to: seismic signal analysis for geophysical exploration, radar signal analysis for weather radar systems and military applications, analysis of biomedical signals for medical and physiological applications, classification of objects in images, optical character recognition, speech recognition, handwriting recognition, face recognition, and fingerprint classification.
The statistical pattern recognition problem involves classifying a pattern into one of several classes by processing features associated with the pattern, wherein a pattern is determined by numerical features that have been extracted from a digital signal associated with one of the problems similar to those outlined above. Numerical features can be extracted from a variety of digital signals, e.g., seismic signals, radar signals, speech signals, biomedical signals, images of objects, hyperspectral images or multispectral images. For a given type of digital signal, thousands of numerical features are available, wherein numerical features are extracted by computer-implemented methods.
An important attribute of statistical pattern recognition systems involves learning from a set of training patterns, wherein a training pattern is represented by a d-dimensional vector of numerical features. Given a set of training patterns from each pattern class, the primary objective is to determine decision boundaries in a corresponding feature space that separate patterns belonging to different pattern classes. In the statistical decision theoretic approach, the decision boundaries are determined by the probability distributions of the feature vectors belonging to each category, wherein the probability distributions determine the structure of a discriminant function and the probability distributions must be specified or learned.
In the discriminant analysis-based approach, a parametric form of the decision boundary is specified, e.g., a linear or quadratic form, and the best decision boundary of the specified form is found based on the classification of the training patterns. For example, support vector machines learn decision boundaries from training patterns, wherein the capacity of a linear or nonlinear decision boundary is regulated by a geometric margin of separation between a pair of margin hyperplanes.
The computer-implemented design of a discriminant function of a classification system involves two fundamental problems: (1) the design of numerical features of the objects being classified for the different classes of objects, and (2) the computer-implemented design of the discriminant function of the classification system.
For M classes of feature vectors, the feature space of a classification system is composed of M regions of feature vectors, wherein each region contains feature vectors that belong to one of the M classes. The design of a computer-implemented discriminant function involves designing a computer-implemented method that uses feature vectors to determine discriminant functions which generate decision boundaries that divide feature spaces into M suitable regions, wherein a suitable criterion is necessary to determine the best possible partitioning for a given feature space.
The no-free-lunch theorem for supervised learning demonstrates that there is a cost associated with using machine learning algorithms to determine discriminant functions of classification systems. Criteria of performance for a classification system must be chosen, and a class of acceptable classification systems must be defined in terms of constraints on design and costs. Finally, a classification system can be determined within the specified class—which is best in terms of the selected criteria—by an extremum of an objective function of an optimization problem that satisfies the criteria of performance and the constraints on the design and costs.
Suppose that a theoretical model of a discriminant function of a classification system can be devised from first principles, wherein the structure and the properties of the theoretical model satisfy certain geometric and statistical criteria. The no-free-lunch theorem for supervised learning suggests that the best parametric model of the classification system matches the theoretical model, wherein the structure and the properties of the parametric model are determined by geometric and statistical criteria satisfied by the theoretical model.
What would be desired is to (1) devise a theoretical model of a discriminant function of a binary classification system, wherein the discriminant function of the binary classification system exhibits certain geometric and statistical properties and is represented by a geometric and statistical structure that satisfies certain geometric and statistical criteria, and (2) devise a parametric model of a discriminant function of a binary classification system that matches the theoretical model, wherein the structure and the properties of the parametric model satisfy fundamental geometric and statistical criteria of the theoretical model, wherein the discriminant function is represented by a geometric and statistical structure that matches the structure exhibited by the theoretical model and also exhibits fundamental geometric and statistical properties of the theoretical model, and (3) discover or devise an algorithm for which criteria of performance satisfy fundamental geometric and statistical criteria of the theoretical model of a discriminant function of a binary classification system, wherein a class of discriminant functions of binary classification systems are defined in terms of an objective function of an optimization problem that satisfies fundamental geometric and statistical conditions and costs.
In particular, it would be advantageous to devise a computer-implemented method for using feature vectors and machine learning algorithms to determine a discriminant function of a minimum risk linear classification system that classifies the feature vectors into two classes, wherein the feature vectors have been extracted from digital signals such as seismic signals, radar signals, speech signals, biomedical signals, fingerprint images, hyperspectral images, multispectral images or images of objects, and wherein the minimum risk linear classification system exhibits the minimum probability of error for classifying the feature vectors into the two classes.
Further, it would be advantageous if discriminant functions of minimum risk linear classification systems can be combined additively, wherein M ensembles of M−1 discriminant functions of M−1 minimum risk linear classification systems determine a discriminant function of an M−class minimum risk linear classification system that classifies feature vectors into M classes. It would also be advantageous to devise a method that determines a fused discriminant function of a fused minimum risk linear classification system that classifies different types of feature vectors into two classes, wherein different types of feature vectors have different numbers of vector components and may be extracted from different types of digital signals. Further, it would be advantageous to extend the method to M classes of feature vectors. Finally, it would be advantageous to devise a method that uses a discriminant function of a minimum risk linear classification system to determine a classification error rate and a measure of overlap between distributions of feature vectors for two classes of feature vectors, wherein the distributions of feature vectors have similar covariance matrices. A similar method could be used to determine if distributions of two collections of feature vectors are homogenous distributions.
The present invention involves the mathematical discovery of a theoretical model and a parametric model of a discriminant function of a minimum risk linear classification system that match each other. Both models are both determined by a system of fundamental locus equations of binary classification, subject to geometric and statistical conditions for a minimum risk linear classification system in statistical equilibrium.
An important aspect of both models involves the general idea of a geometric locus. The general idea of a curve or surface which at any point of it exhibits some uniform property is expressed in geometry by the term locus. Generally speaking, a geometric locus is a curve or surface formed by points, wherein each point on the geometric locus possesses some uniform property that is common to all points on the locus—and no other points. Any given curve or surface must pass through each point on a specified locus, and each point on the specified locus must satisfy certain geometric conditions. For example, a circle is a locus of points, all of which are at the same distance (the radius) from a fixed point (the center).
Any given geometric locus is determined by an equation, wherein the locus of the equation is the location of all those points whose coordinates are solutions of the equation. Classic geometric locus problems involve algebraic equations of conic sections or quadratic surfaces, wherein the algebraic form of an equation is determined by the geometric property and the Cartesian coordinate system of the locus. Finding the form of an equation for a geometric locus is often a difficult problem. The central problem involves identifying the geometric property exhibited by a certain locus of points. The inverse problem involves finding the form of an equation whose solution determines coordinates of all of the points on a locus that has been defined geometrically.
Another aspect of both models involves the idea of an extreme point. Take a collection of feature vectors for any two pattern classes that are drawn from any two statistical distributions, wherein the distributions are either overlapping or non-overlapping with each other. An extreme point is defined to be a feature vector that exhibits a high variability of geometric location, wherein the feature vector is located (1) relatively far from its distribution mean, (2) relatively close to the mean of the other distribution, and (3) relatively close to other extreme points. Accordingly, any given extreme point exhibits a large covariance, wherein the extreme point is located somewhere within an overlapping region or near a tail region between two distributions.
Given the geometric and statistical properties exhibited by the locus of an extreme point, it follows that a collection of extreme vectors determine principal directions of large covariance for a given collection of feature vectors, wherein extreme vectors are discrete principal components that specify directions for which the collection of feature vectors is most variable or spread out.
Further, decision regions of minimum risk linear classification systems are determined by distributions of extreme points, wherein the distributions have similar covariance matrices, and wherein positions and potential locations of extreme points determine regions of counter risk and risk associated with making right and wrong decisions.
The theoretical model of the invention demonstrates that a discriminant function of a minimum risk linear classification system is represented by a certain geometric and statistical structure, wherein the structure is the principal eigenaxis of a decision boundary of a minimum risk linear classification system. The principal eigenaxis is expressed as a dual locus of likelihood components and principal eigenaxis components and is determined by a geometric locus of signed and scaled extreme points, wherein likelihood components determine likelihoods for extreme points and principle eigenaxis components determine an intrinsic coordinate system of the geometric locus of a linear decision boundary.
The theoretical model also demonstrates that a minimum risk linear classification system seeks a point of statistical equilibrium, wherein conditional probabilities and critical minimum eigenenergies exhibited by the system are symmetrically concentrated, and wherein opposing and counteracting random forces and influences of the system are symmetrically balanced with each other, wherein the total allowed eigenenergy and the expected risk exhibited by the minimum risk linear classification system are minimized and the minimum risk linear classification system exhibits the minimum probability of error. However, the theoretical model does not provide a constructive proof for finding the point of statistical equilibrium that is sought by a minimum risk linear classification system—nor does it define its parametric form. Further, suitable models for equilibrium points of minimum risk linear classification systems cannot be found with analytical or numerical methods.
A discriminant function of a minimum risk linear classification system of the invention is determined by using feature vectors and machine learning algorithms of the invention, wherein for a given machine learning algorithm and a given collection of feature vectors, a discriminant function of a minimum risk linear classification system is determined by using the processors of a computer system to find a satisfactory solution of a certain dual optimization problem, wherein the discriminant function of the minimum risk linear classification system satisfies a system of fundamental locus equations of binary classification, subject to geometric and statistical conditions for a minimum risk linear classification system in statistical equilibrium.
One aspect of the principles of the invention provides a method for determining a discriminant function of a minimum risk linear classification system that classifies feature vectors into two classes, wherein the minimum risk linear classification system exhibits the minimum probability of error for classifying a collection of feature vectors that belong to the two classes and unknown feature vectors related to the collection.
Another aspect provides a method for determining a discriminant function of an M−class minimum risk linear classification system that classifies feature vectors into M classes, wherein the minimum risk linear classification system exhibits the minimum probability of error for classifying a collection of feature vectors that belong to the M classes and unknown feature vectors related to the collection of feature vectors. Yet another aspect provides a method for using a discriminant function of a minimum risk linear classification system to determine a classification error rate and a measure of overlap between distributions of feature vectors for two classes of feature vectors, wherein the distributions have similar covariance matrices. Additional aspects will become apparent in view of the following descriptions.
The innovative concept of the invention is a novel geometric and statistical structure that determines a discriminant function of a minimum risk linear classification system that classifies feature vectors into two classes along with the geometric and statistical architecture of a learning machine. The novel geometric and statistical structure is the principal eigenaxis of the decision boundary of the minimum risk linear classification system, wherein the principal eigenaxis determines an intrinsic coordinate system and an eigenaxis of symmetry for the decision space of the minimum risk linear classification system, wherein all of the points on a linear decision boundary and corresponding decision borders exclusively reference the principal eigenaxis, and wherein likelihoods are symmetrically distributed over the sides of the principal eigenaxis, wherein likelihoods determine conditional likelihoods for feature vectors—termed extreme vectors—that are located within overlapping regions or near tail regions of distributions of two given collections of feature vectors that belong to the two classes.
The discriminant function of the minimum risk linear classification system determines likely locations of feature vectors according to vector projections of the feature vectors along the eigenaxis of symmetry, wherein the vector projection of a feature vector along the principal eigenaxis accounts for the distance between the feature vector and the average extreme vector of the collection of feature vectors, and wherein the vector projection of the feature vector along the eigenaxis of symmetry determines a region of the decision space that the feature vector is located within, wherein the region is related to one of the two classes, and wherein the scalar projection of the feature vector along the eigenaxis of symmetry determines a signed magnitude related to one of the two classes.
The principal eigenaxis of the invention is determined by a geometric locus of signed and scaled extreme points, wherein the geometric locus of the principal eigenaxis is expressed as a dual locus of likelihood components and principal eigenaxis components, wherein likelihood components on the dual locus determine conditional likelihoods for extreme points that belong to the two classes, and wherein principal eigenaxis components on the dual locus determine the intrinsic coordinate system and the corresponding eigenaxis of symmetry for the decision space of the minimum risk linear classification system.
The minimum risk linear classification system is in statistical equilibrium, wherein the linear classification system exhibits the minimum probability of classification error for the given collection of feature vectors, in accordance with the principal eigenaxis of the linear decision boundary of the system, wherein conditional probabilities and critical minimum eigenenergies exhibited by the linear classification system are concentrated.
The geometric locus of signed and scaled extreme points satisfies a computer-implemented system of fundamental locus equations of binary classification, subject to geometric and statistical conditions for a minimum risk linear classification system in statistical equilibrium, wherein the principal eigenaxis of the linear decision boundary is in statistical equilibrium, wherein conditional probabilities and critical minimum eigenenergies exhibited by the minimum risk linear classification system are symmetrically concentrated within the geometric locus of the principal eigenaxis, and wherein counteracting and opposing components of conditional probabilities and total allowed eigenenergies exhibited by the minimum risk linear classification system are symmetrically balanced with each other within the geometric locus, wherein corresponding counter risks and risks of the minimum risk linear classification system are symmetrically balanced with each other about the geometric center of the geometric locus of the principal eigenaxis. Further, the computer-implemented system matches a theoretical system that has been devised.
The principal eigenaxis of the linear decision boundary exhibits symmetrical dimensions and density, wherein counteracting and opposing components of likelihood components and principal eigenaxis components are symmetrically distributed over either side of the dual locus, wherein conditional probabilities and critical minimum eigenenergies exhibited by the minimum risk linear classification system are symmetrically concentrated, and wherein counteracting and opposing components of critical minimum eigenenergies exhibited by all of the scaled extreme vectors on the dual locus together with corresponding counter risks and risks exhibited by the minimum risk linear classification system are symmetrically balanced with each other about the geometric center of the dual locus, and wherein the center of total allowed eigenenergy and minimum expected risk of the minimum risk linear classification system is at the geometric center of the dual locus of likelihood components and principal eigenaxis components, wherein the minimum risk linear classification system satisfies a state of statistical equilibrium, wherein the total allowed eigenenergy and the expected risk of the system are minimized, and wherein the minimum risk linear classification system exhibits the minimum probability of error for classifying the given collection of feature vectors and feature vectors related to the given collection.
Before describing illustrative embodiments of the invention, a detailed description of machine learning algorithms of the invention is presented along with a detailed description of the novel principal eigenaxis that determines a discriminant function of a minimum risk linear classification system.
The method to determine a discriminant function of a minimum risk linear classification system that classifies feature vectors into two categories, designed in accordance with the invention, uses machine learning algorithms and labeled feature vectors to determine a geometric locus of signed and scaled extreme points for feature vectors x of dimension d belonging to either of two classes A or B, wherein the geometric locus satisfies a system of fundamental locus equations of binary classification, subject to geometric and statistical conditions for a linear classification system in statistical equilibrium.
The input to a machine learning algorithm of the invention is a collection of N feature vectors xi with labels yi
(x1,y1),(x2,y2), . . . ,(xN,yN)
wherein yi=+1 if xiϵA and yi=1 if xiϵB, and wherein the N feature vectors are extracted from collections of digital signals.
Denote a minimum risk linear classification system of the invention by
wherein A or B is the true category. The discriminant function D(s)=sTτ+τ0 of the minimum risk linear classification system is represented by a novel principal eigenaxis that is expressed as a dual locus of likelihood components and principal eigenaxis components and is determined by a geometric locus of signed and scaled extreme points:
wherein x1i* and x2i* are extreme points located within overlapping regions or near tail regions of distributions of the N feature vectors, wherein the distributions have similar covariance matrices, and wherein τ1−τ2 determines an intrinsic coordinate system of geometric loci of a linear decision boundary and corresponding decision borders that jointly partition the decision space of the minimum risk linear classification system into symmetrical decision regions, wherein
determines an eigenaxis of symmetry for the decision space, and wherein the scale factors ψ1i* and ψ2i* determine magnitudes ∥ψ1i*x1i*∥ and ∥ψ2i*x2i*∥ as well as critical minimum eigen energies ∥ψ1i*x1i*∥min
A machine learning algorithm of the invention uses the collection of N labeled feature vectors to find a satisfactory solution for the inequality constrained optimization problem:
wherein τ is a d×1 geometric locus of signed and scaled extreme points that determines the principal eigenaxis of the decision boundary of a minimum risk linear classification system, wherein τ is expressed as a dual locus of likelihood components and principal eigenaxis components, and wherein ∥τ∥2 is the total allowed eigenenergy exhibited by τ, τ0 is a functional of τ, C and ξi are regularization parameters, and yi are class membership statistics: if xiϵA, assign yi=+1, and if xiϵB, assign yi=1.
The objective of the machine leaning algorithm is to find the dual locus of likelihood components and principal eigenaxis components τ that minimizes the total allowed eigenenergy ∥Z|τ∥min
wherein the system of N inequalities:
yi(xiTτ+τ0)≥1−ξi, i=1, . . . ,N,
is satisfied in a suitable manner, and wherein the dual locus of τ satisfies a critical minimum eigenenergy constraint:
γ(τ)=∥τ∥min
wherein the total allowed eigenenergy ∥Z|τ∥min
A satisfactory solution for the primal optimization problem in Eq. (1.1) is found by using Lagrange multipliers ψi≥0 and the Lagrangian function:
Lψ(τ)(τ,τ0,ξ,ψ)=∥τ∥2/2+C/2Σi=1Nξi2−Σi=1Nψi{yi(xiTτ+τ0)−1+ξi}, (1.2)
wherein the objective function and its constraints are combined with each other, that is minimized with respect to the primal variables τ and τ0, and is maximized with respect to the dual variables ψi. The Lagrange multipliers method introduces a Wolfe dual geometric locus ψ that is symmetrically and equivalently related to the primal geometric locus τ and finds extrema for the restriction of the primal geometric locus τ to a Wolfe dual principal eigenspace.
The fundamental unknowns associated with the primal optimization problem in Eq. (1.1) are the scale factors ψi of the principal eigenaxis components
on the geometric locus of a principal eigenaxis ψ. Each scale factor ψi determines a conditional density and a corresponding conditional likelihood for an extreme point on a dual locus of likelihood components, and each scale factor ψi determines the magnitude and the critical minimum eigenenergy exhibited by a scaled extreme vector on a dual locus of principal eigenaxis components.
The Karush-Kuhn-Tucker (KKT) conditions on the Lagrangian function LΨ(τ) in Eq. (1.2)
τ−Σi=1Nψiyixi=0, i=1, . . . ,N, (1.3)
Σi=1Nψiyi=0, i=1, . . . ,N, (1.4)
cΣi=1NξiΣi=1Nψi=0, i=1, . . . ,N, (1.5)
ψi≥0, i=1, . . . ,N, (1.6)
ψi[yi(xiTτ+τ0)−1+ξi]≥0, i=1, . . . ,N, (1.7)
determine a system of fundamental locus equations of binary classification, subject to geometric and statistical conditions for a minimum risk linear classification system in statistical equilibrium, that are jointly satisfied by the geometric locus of the principal eigenaxis ψ and the geometric locus of the principal eigenaxis τ.
Because the primal optimization problem in Eq. (1.1) is a convex optimization problem, the inequalities in Eqs (1.6) and (1.7) must only hold for certain values of the primal and the dual variables. The KKT conditions in Eqs (1.3)-(1.7) restrict the magnitudes and the eigenenergies of the principal eigenaxis components on both w and t, wherein the expected risk (Z|∥τ∥min
Substituting the expressions for τ and ψ in Eqs (1.3) and (1.4) into the Lagrangian functional LΨ(τ) of Eq. (1.2) and simplifying the resulting expression determines the Lagrangian dual problem:
wherein ψ is subject to the constraints Σi=1Nψiyi=0, and ψi≥0, and wherein δij is the Kronecker δ defined as unity for i=j and 0 otherwise.
Equation (1.8) is a quadratic programming problem that can be written in vector notation by letting QεI+{tilde over (X)}{tilde over (X)}T, wherein {tilde over (X)}DyX, wherein Dy is a N×N diagonal matrix of training labels (class membership statistics) yi, and wherein the N×d matrix {tilde over (X)} is a matrix of N labeled feature vectors:
{tilde over (X)}=(y1x1,y2x2, . . . ,yNxN)T.
The matrix version of the Lagrangian dual problem, which is also known as the Wolfe dual problem:
is subject to the constraints ψTy=0 and ψi≥0, wherein the inequalities ψi≥0 only hold for certain values of ψi.
Because Eq. (1.9) is a convex programming problem, the theorem for convex duality guarantees an equivalence and a corresponding symmetry between the dual loci of ψ and τ. Accordingly, the geometric locus of the principal eigenaxis ψ determines a dual locus of likelihood components and principal eigenaxis components, wherein the expected risk (Z|∥ψ∥min
The locations and the scale factors of the principal eigenaxis components on both ψ and τ are considerably affected by the rank and the eigenspectrum of the Gram matrix Q, wherein a low rank Gram matrix Q determines an unbalanced principal eigenaxis and an irregular linear partition of a decision space. The Gram matrix Q has low rank, wherein d<N for a collection of N feature vectors of dimension d. These problems are solved by the following regularization method.
The regularized form of Q, wherein ε<<1 and QεI+{tilde over (X)}{tilde over (X)}T, ensures that Q has full rank and a complete eigenvector set, wherein Q has a complete eigenspectrum. The regularization constant C is related to the regularization parameter ε by
For N feature vectors of dimension d, wherein d<N, all of the regularization parameters {ξi}i=1N in Eq. (1.1) and all of its derivatives are set equal to a very small value: ξi=ξ<<1, e.g. ξi=ξ=0.02. The regularization constant C is set equal to
For N feature vectors of dimension d, wherein N<d, all of the regularization parameters {ξi}i=1N in Eq. (1.1) and all of its derivatives are set equal to zero: ξi=ξ=0. The regularization constant C is set equal to infinity: C=∞.
The KKT conditions in Eqs (1.3) and (1.6) require that the geometric locus of the principal eigenaxis τ satisfy the vector expression:
τ=Σi=1Nyiψixi (1.10)
wherein ψi≥0 and feature vectors xi correlated with Wolfe dual principal eigenaxis components
that have non-zero magnitudes ψi>0 are termed extreme vectors. Denote the scaled extreme vectors that belong to class A and class B by ψ1i*x1i* and ψ2i*x2i*, respectively, wherein ψ1i* is the scale factor for the extreme vector x1i* and ψ2i* is the scale factor for the extreme vector x2i*. Let there be l1 scaled extreme vectors {ψ1i*x1i*}i=1l
Using Eq. (1.10), the class membership statistics and the assumptions outlined above, it follows that the geometric locus of the principal eigenaxis τ is determined by the vector difference between a pair of sides, i.e., a pair of directed line segments:
wherein τ1 and τ2 denote the sides of τ, wherein the side of τ1 is determined by the vector expression τ1=Σi=1l
All of the principal eigenaxis components ψ1i*x1i* and ψ2i*x2i* on the dual locus of τ=Σi=1l
The manner in which a discriminate function of the invention partitions the feature space Z=Z1+Z2 of a minimum risk linear classification system for a collection of N feature vectors is determined by the KKT condition in Eq. (1.7) and the KKT condition of complementary slackness.
The KKT condition in Eq. (1.7) and the KKT condition of complementary slackness determine a discriminant function
D(s)=sTτ+τ0 (1.12)
that satisfies the set of constraints:
D(s)=0, D(s)=+1, and D(s)=−1,
wherein D(s)=0 denotes a linear decision boundary that partitions the Z1 and Z2 decision regions of a minimum risk linear classification system
and wherein D(s)=+1 denotes the linear decision border for the Z1 decision region, and wherein D(s)=−1 denotes the linear decision border for the Z2 decision region.
The KKT condition in Eq. (1.7) and the KKT condition of complementary slackness also determines the following system of locus equations that are satisfied by τ0 and τ:
yi(xi*Tτ−τ0)−1+ξi=0, i=1, . . . ,l,
wherein τ0 satisfies the functional of τ in the following manner:
Using Eqs (1.12) and (1.13), the discriminant function is rewritten as:
Using Eq. (1.14) and letting D(s)=0, the discriminant function is rewritten as
wherein the constrained discriminant function D(s)=0 determines a linear decision boundary, and all of the points s on the linear decision boundary D(s)=0 exclusively reference the principal eigenaxis of τ.
Using Eq. (1.14) and letting D(s)=+1, the discriminant function is rewritten as
wherein the constrained discriminant function D(s)=+1 determines a linear decision border, and all of the points s on the linear decision border D(s)=+1 exclusively reference the principal eigenaxis of τ.
Using Eq. (1.14) and letting D(s)=−1, the discriminant function is rewritten as
wherein the constrained discriminant function D(s)=−1 determines a linear decision border, and all of the points s on the linear decision border D(s)=−1 exclusively reference the principal eigenaxis of τ.
Given Eqs (1.15)-(1.17), it follows that a constrained discriminant function of the invention
determines geometric loci of a linear decision boundary D(s)=0 and corresponding decision borders D(s)=+1 and D(s)=−1 that jointly partition the decision space Z of a minimum risk linear classification system
into symmetrical decision regions Z1 and Z2:Z=Z1+Z2:Z1≈Z2—wherein balanced portions of the extreme points x1i* and x2i* from class A and class B account for right and wrong decisions of the minimum risk linear classification system.
Therefore, the geometric locus of the principal eigenaxis τ determines an eigenaxis of symmetry
for the decision space of a minimum risk linear classification system, wherein a constrained discriminant function delineates symmetrical decision regions Z1 and Z2:Z1=Z2 for the minimum risk linear classification system
wherein the decision regions Z1 and Z2 are symmetrically partitioned by the linear decision boundary of Eq. (1.15), and wherein the span of the decision regions is regulated by the constraints on the corresponding decision borders of Eqs (1.16)-(1.17).
Substitution of the vector expressions for τ and τ0 in Eqs (1.11) and (1.13) into the expression for the discriminant function in Eq. (1.12) determines an expression for a discriminant function of a minimum risk linear classification system that classifies feature vectors s into two classes A and B:
wherein feature vectors s belong to and are related to a collection of N feature vectors {xi}i=1N, and wherein the average extreme vector
determines the average locus of the l extreme vectors {xi*}i=1l that belong to the collection of N feature vectors {xi}i=1N, and wherein the average sign
accounts for class memberships of the principal eigenaxis components on τ1 and τ2. The average locus
determines the average risk for the decision space Z=Z1+Z2 of the minimum risk linear classification system
wherein the vector transform
determines the distance between a feature vector s and the locus of average risk .
Let s denote an unknown feature vector related to a collection of N feature vectors {xi}i=1N that are inputs to one of the machine learning algorithms of the invention, wherein each feature vector xi has a label yi wherein yi=+1 if xiϵA and yi=−1 if xiϵB, and wherein a discriminant function of a minimum risk linear classification system has been determined. Now take any given unknown feature vector s.
The discriminant function
of Eq. (1.18) determines the likely location of the unknown feature vector s, wherein the likely location of s is determined by the vector projection of
onto the dual locus of likelihood components and principal eigenaxis components τ1−τ2:
wherein the component of
along the dual locus of τ1−τ2:
determines the signed magnitude
along the axis of τ1−τ2, wherein θ is the angle between the transformed unknown feature vector
and τ1−τ2, and wherein the decision region that the unknown feature vector s is located within is determined by the sign of the expression:
Therefore, the likely location of the unknown feature vector s is determined by the scalar value of
along the axis of the dual locus τ1−τ2, wherein the scalar value of the expression
indicates the decision region Z1 or Z2 that the unknown feature vector s is located within along with the corresponding class of s.
Thus, if:
then the unknown feature vector s is located within region Z1 and sϵA, whereas if
then the unknown feature vectors s is located within region Z2 and sϵB.
The minimum risk linear classification system of the invention decides which of the two classes A or B that the unknown feature vector s belongs to according to the sign of +1 or −1 that is output by the signum function:
and thereby classifies the unknown feature vector s.
Thus, the discriminant function of the invention in Eq. (1.18) determines likely locations of each one of the feature vectors xi that belong to a collection of N feature vectors {xi}i=1N and any given unknown feature vectors s related to the collection, wherein the feature vectors are inputs to one of the machine learning algorithms of the invention and a discriminant function of a minimum risk linear classification system has been determined.
Further, the discriminant function identifies the decision regions Z1 and Z2 related to the two classes A and B that each one of the N feature vectors xi and the unknown feature vectors s are located within, wherein the discriminant function recognizes the classes of each one of the N feature vectors xi and each one of the unknown feature vectors s, and the minimum risk linear classification system of the invention in Eq. (1.19) decides which of the two classes that each one of the N feature vectors xi and each one of the unknown feature vectors s belong to and thereby classifies the collection of N feature vectors {xi}i=1N and any given unknown feature vectors s.
Therefore, discriminant functions of the invention exhibit a novel and useful property, wherein, for any given collection of feature vectors that belong to two classes and are inputs to a machine learning algorithm of the invention, the discriminant function that is determined by the machine learning algorithm determines likely locations of each one of the feature vectors that belong to the given collection of feature vectors and any given unknown feature vectors related to the collection, and identifies the decision regions related to the two classes that each one of the feature vectors and each one of the unknown feature vectors are located within, wherein the discriminant function recognizes the classes of the feature vectors and the unknown feature vectors according to the signs related to the two classes.
The likelihood components and the corresponding principal eigenaxis components ψ1i*x1i* and ψ2i*x2i*, on the dual locus of ψ1i* and ψ2i* are determined by the geometric and the statistical structure of the geometric locus of signed and scaled extreme points: τ1−τ2=Σi=1l
Scale factors are determined by finding a satisfactory solution for the Lagrangian dual optimization problem in Eq. (1.9), wherein finding a geometric locus of signed and scaled extreme points involves optimizing a vector-valued cost function with respect to constraints on the scaled extreme vectors on the dual loci of ψ and τ, wherein the constraints are specified by the KKT conditions in Eqs (1.3)-(1.7).
The Wolfe dual geometric locus of scaled extreme points on ψ is determined by the largest eigenvector ψmax of the Gram matrix Q associated with the quadratic form ψmaxT Qψmax in Eq. (1.9), wherein ψTy=0, ψi*>0, and wherein ψmax is the principal eigenaxis of an implicit linear decision boundary—associated with the constrained quadratic form ωmaxT Qψmax—within the Wolfe dual principal eigenspace of ψ, wherein the inner product statistics contained within the Gram matrix Q determine an intrinsic coordinate system of the intrinsic linear decision boundary of Eq. (1.9).
The theorem for convex duality indicates that the principal eigenaxis of ψ satisfies a critical minimum eigenenergy constraint that is symmetrically and equivalently related to the critical minimum eigenenergy constraint on the principal eigenaxis of τ, within the Wolfe dual principal eigenspace of ψ and τ:∥Z|ψ∥min
max ψmaxTQψmax=λmax
and the functional 1Tψ−ψTQψ/2 in Eq. (1.9) is maximized by the largest eigenvector ψmax of Q, wherein the constrained quadratic form ψTQψ/2, wherein ψmaxTy=0 and ψi*>0, reaches its smallest possible value. It follows that the principal eigenaxis components on ψ satisfy minimum length constraints.
The principal eigenaxis components on ψ also satisfy an equilibrium constraint. The KKT condition in Eq. (1.4) requires that the magnitudes of the principal eigenaxis components on the dual locus of ψ satisfy the locus equation:
(yi=1)Σi=1l
wherein Eq. (1.20) determines the Wolf dual equilibrium point:
Σi=1l
of a minimum risk linear classification system, wherein the critical minimum eigenenergies exhibited by the principal eigenaxis of ψ are symmetrically concentrated.
Given Eq. (1.21), it follows that the integrated lengths of the Wolfe dual principal eigenaxis components correlated with each class balance each other, wherein the principal eigenaxis of ψ is in statistical equilibrium:
Σi=1l
Now, each scale factor ψ1i* or ψ2i* is correlated with a respective extreme vector x1i* or x2i*. Therefore, let l1+l2=l, and express the principal eigenaxis of ψ in terms of l scaled, unit extreme vectors:
wherein ψ1 and ψ2 denote the sides of the dual locus of ψ, wherein the side of ψ1 is determined by the vector expression
and wherein the side of ψ2 is determined by the vector expression
The system of locus equations in Eqs (1.20)-(1.23) demonstrates that the principal eigenaxis of ψ is determined by a geometric locus of scaled, unit extreme vectors from class A and class B, wherein all of the scaled, unit extreme vectors on ψ1 and ψ2 are symmetrically distributed over either side of the geometric locus of the principal eigenaxis ψ, wherein a statistical fulcrum is placed directly under the center of the principal eigenaxis of ψ.
Using Eq. (1.22) and Eq. (1.23), it follows that the length ∥ψ1∥ of ψ1is equal to the length ∥ψ2∥ of ψ2:∥ψ1∥=∥ψ2∥. It also follows that the total allowed eigenenergies ∥Z|ψ1∥min
The equilibrium constraint on the geometric locus of the principal eigenaxis ψ in Eq. (1.20) ensures that the critical minimum eigenenergies exhibited by all of the principal eigenaxis components on ψ1 and ψ2 are symmetrically concentrated within the principal eigenaxis of ψ:
Using Eq. (1.24), it follows that the principal eigenaxis of ψ satisfies a state of statistical equilibrium, wherein all of the principal eigenaxis components on ψ are equal or in correct proportions, relative to the center of ψ, wherein components of likelihood components and corresponding principal eigenaxis components of class A—along the axis of ψ1—are symmetrically balanced with components of likelihood components and corresponding principal eigenaxis components of class B—along the axis of ψ2.
Therefore, the principal eigenaxis of ψ determines a point at which the critical minimum eigenenergies exhibited by all of the scaled, unit extreme vectors from class A and class B are symmetrically concentrated, wherein the total allowed eigenenergy ∥Z|ψ∥min
The scale factors are associated with the fundamental unknowns of the constrained optimization problem in Eq. (1.1). Now, the geometric locus of the principal eigenaxis ψ can be written as
wherein each scale factor ψj is correlated with scalar projections ∥xj∥cos θx
Further, given a Gram matrix of all possible inner products of a collection of N feature vectors {xi}i=1N, the pointwise covariance statistic (xi) of any given feature vector xi
(xi)=∥xi∥Σj=1N∥xj∥cos θx
determines a unidirectional estimate of the joint variations between the random variables of each feature vector xj in the collection of N feature vectors {xi}i=1N and the random variables of the feature vector xi, along with a unidirectional estimate of the joint variations between the random variables of the mean feature vecto Σj=1Nxj and the feature vector xi, along the axis of the feature vector xi.
Let i=1:l1, where each extreme vector x1i, is correlated with a principal eigenaxis component
on ψ1. Now take the extreme vector x1i* that is correlated with the principal eigenaxis component
Using Eqs (1.25) and (1.26), it follows that the geometric locus of the principal eigenaxis component
on ψ1 is determined by the locus equation:
ψ1i*=λmax
wherein components of likelihood components and principal eigenaxis components for class A—along the axis of the extreme vector x1i*—are symmetrically balanced with opposing components of likelihood components and principal eigenaxis components for class B—along the axis of the extreme vector x1i*:
wherein ψ1i* determines a scale factor for the extreme vector
Accordingly, Eq. (1.27) determines a scale factor ω1i* for a correlated extreme vector x1i*.
Let i=1:l2, where each extreme vector x2i* is correlated with a principal eigenaxis component
on ψ2. Now take the extreme vector x2i* that is correlated with the principal eigenaxis component
Using Eqs (1.25) and (1.26), it follows that the geometric locus of the principal eigenaxis component
on ψ2 is determined by the locus equation:
ψ2i*=λmax
wherein components of likelihood components and principal eigenaxis components for class B—along the axis of the extreme vector x2i*—are symmetrically balanced with opposing components of likelihood components and principal eigenaxis components for class A—along the axis of the extreme vector x2:
wherein ψ2i* determines a scale factor for the extreme vector
Accordingly, Eq. (1.28) determines a scale factor ψ2, for a correlated extreme vector x2*.
Given the pointwise covariance statistic in Eq. (1.26), it follows that Eq. (1.27) and Eq. (1.28) determine the manner in which the vector components of a set of l scaled extreme vectors {ψj*xj*}j=1l, wherein the set belongs to a collection of N feature vectors {xi}i=1N, are distributed along the axes of respective extreme vectors x1i* or x2i*, wherein the vector components of each scaled extreme vector ψj*xj* are symmetrically distributed according to: (1) a class label +1 or −1; (2) a signed magnitude ∥xj*∥cos θx
on the geometric locus of the principal eigenaxis ψ determines the manner in which the components of an extreme vector x1i* or x2i* are symmetrically distributed over the axes of a set of l signed and scaled extreme vectors: {ψj*kx
It follows that the geometric locus of each principal eigenaxis component
on the geometric locus of the principal eigenaxis ψ determines a conditional distribution of coordinates for a correlated extreme point x1i* or x2i*, wherein
determines a pointwise conditional density estimate p(x1i*|comp{right arrow over (τ)}({right arrow over (x1i*)})) for the correlated extreme point x1i*, wherein the component of the extreme vector x1i* is symmetrically distributed over the geometric locus of the principal eigenaxis κ:
and wherein
determines a pointwise conditional density estimate p(x2i*|comp{right arrow over (−τ)}({right arrow over (x2i*)})) for the correlated extreme point x2i*, wherein the component of the extreme vector kx
Thus, each scale factor ψ1i* or ψ2i* determines a conditional density and a corresponding conditional likelihood for a correlated extreme point x1i* or x2i*.
Therefore, conditional densities and corresponding conditional likelihoods ψ1i*x2i* for the x1i* extreme points are identically distributed over the principal eigenaxis components on τ1
τ1=Σi=1l
wherein ψ1i*x1i* determines a conditional density and a corresponding conditional likelihood for a correlated extreme point x1i*, and wherein τ1 determines a parameter vector for a class-conditional probability density function p(x1i*|τ1) for a given set {x1i*}i=1l
τ1=p(x1i*|τ1),
wherein the area ∥ψ1i*x1i*∥2 under a scaled extreme vector ψ1i*x1i* determines a conditional probability that an extreme point x1i* will be observed within a localized region of either region Z1 or region Z2 within a decision space Z, and wherein the area under the conditional density function p(x1i*|τ1) determines the conditional probability P(x1i*|τ1) of observing the set {x1i*}i=1l
Likewise, conditional densities and corresponding conditional likelihoods ψ2i*x2i* for the x21* extreme points are identically distributed over the principal eigenaxis components on τ2
τ2=Σi=1l
wherein ψ2i*x2i* determines a conditional density and a corresponding conditional likelihood for a correlated extreme point x2i*, and wherein τ2 determines a parameter vector for a class-conditional probability density function p(x2i*|τ2) for a given set {x2i*}i=1l
τ2=p(x2i*|τ2),
wherein the area ∥ψ2i*x2i*∥2 under a scaled extreme vector ψ2i*x2i* determines a conditional probability that an extreme point x2i* will be observed within a localized region of either region Z1 or region Z2 within a decision space Z, and wherein the area under the conditional density function p(x2i*|τ2) determines the conditional probability P(x2i*|τ2) of observing the set {x2i*}i=1l
The integral of a conditional density function p(x1i*|τ1) for class A
over the decision space Z=Z1+Z2 of a minimum risk linear classification system, determines the conditional probability P(x1i*|τ1) of observing a set {x1i*}i=1l
Accordingly, all of the scaled extreme vectors ψ1i*x1i* from class A possess critical minimum eigenenergies ∥ψ1i*x1i*∥min
Therefore, the conditional probability function P(x1i*|τ1) for class A is given by the integral
P(x1i*∥τ1)=∫Zτ1dτ1=∥Z|τ1∥min
over the decision space Z=Z1+Z2 of a minimum risk linear classification system, wherein the integral of Eq. (1.29) has a solution in terms of the critical minimum eigenenergy ∥Z|τ1∥min
The integral of a conditional density function p(x2i*|τ2) for class B
over the decision space Z=Z1+Z2 of a minimum risk linear classification system, determines the conditional probability P(x2i*|τ2) of observing a set {x2i*}i=1l
Accordingly, all of the scaled extreme vectors ψ2i*kx
Therefore, the conditional probability function P(x2i*|τ2) for class B is given by the integral
P(x2i*|τ2)=∫Zτ2dτ2=∥Z|τ2∥min
over the decision space Z=Z1+Z2 of a minimum risk linear classification system, wherein the integral of Eq. (1.30) has a solution in terms of the critical minimum eigenenergy ∥Z|τ2∥min
Machine learning algorithms of the present invention find the right mix of principal eigenaxis components on the dual loci of ψ and τ by accomplishing an elegant, statistical balancing feat within the Wolfe dual principal eigenspace of ψ and τ. The scale factors {ψi*}i=1l of the principal eigenaxis components on ψ play a fundamental role in the statistical balancing feat.
Using Eq. (1.27), the integrated lengths Σi=1l
Σi=1l
and, using Eq. (1.28), the integrated lengths Σi=1l2ψ2i* of the principal eigenaxis components on ψ2 satisfy the identity:
Σi=1l
Returning to Eq. (1.22), wherein the principal eigenaxis of ψ is in statistical equilibrium, it follows that the RHS of Eq. (1.31) equals the RHS of Eq. (1.32):
λmax
λmax
wherein components of all of the extreme vectors x1i* and x2i* from class A and class B are distributed over the axes of τ1 and τ2 in the symmetrically balanced manner:
λmax
wherein components of extreme vectors x1i* along the axis of τ2 oppose components of extreme vectors x1i* along the axis of τ1, and components of extreme vectors x2i* along the axis of τ1 oppose components of extreme vectors x2i* along the axis of τ2.
Using Eq. (1.33), it follows that components ∥x1i*∥cos θτ
wherein counteracting and opposing components of likelihoods of extreme vectors x1i* associated with counter risks and risks for class A, along the axis of τ—are symmetrically balanced with counteracting and opposing components of likelihoods of extreme vectors x2i* associated with counter risks and risks for class B, along the axis of −τ.
Now rewrite Eq. (1.33) as:
λmax
λmax
wherein components of all of the extreme vectors x1i* and x2i* from class A and class B, along the axes of τ1 and τ2, satisfy the locus equation:
wherein components of likelihoods of extreme vectors x1i* and x2i* associated with counter risks and risks for class A and class B—along the axis of τ1, are symmetrically balanced with components of likelihoods of extreme vectors x1i* and x2i* associated with counter risks and risks for class A and class B—along the axis of τ2.
Therefore, machine learning algorithms of the invention determine scale factors ψ1i* and ψ2i* for the geometric locus of signed and scaled extreme points in Eq. (1.11)
that satisfy suitable length constraints, wherein the principal eigenaxis of ψ and the principal eigenaxis of τ are both formed by symmetrical distributions of likelihoods of extreme vectors x1i* and x2i* from class A and class B, wherein components of likelihoods of extreme vectors x1i* and x2i* associated with counter risks and risks for class A and class B are symmetrically balanced with each other: along the axis of ψ1 and ψ2 of the principal eigenaxis of ψ and along the axis of τ1 and τ2 of the principal eigenaxis of τ.
Given Eqs (1.33) and (1.34), it follows that the locus equation
λmax
determines the primal equilibrium point of a minimum risk linear classification system—within a Wolfe dual principal eigenspace—wherein the form of Eq. (1.35) is determined by geometric and statistical conditions that are satisfied by the dual loci of ψ and τ.
A discriminant function of the invention satisfies the geometric locus of a linear decision boundary of a minimum risk linear classification system in terms of the critical minimum eigenenergy ∥Z|τ∥min
The KKT condition in Eq. (1.7) on the Lagrangian function in Eq. (1.2) and the theorem of Karush, Kuhn, and Tucker determine the manner in which a discriminant function of the invention satisfies the geometric loci of the linear decision boundary in Eq. (1.15) and the linear decision borders in Eqs (1.16) and (1.17).
Accordingly, given a Wolfe dual geometric locus of scaled unit extreme vectors
wherein {ψi*>0}i=1l and Σi=1lψi*yi=0, it follows that the l likelihood components and corresponding principal eigenaxis components {ψi*xi*}i=1l on the dual locus of τ satisfy the system of locus equations:
ψi*[yi(xi*Tτ+τ0)−1+ξi]=0, i=1, . . . ,l (1.36)
within the primal principal eigenspace of the minimum risk linear classification system, wherein either ξi=ξ=0 or ξi=ξ<<1, e.g. ξi=ξ=0.02.
Take the set {ψ1i*x1i*}i=1l
∥Z|τ1∥min
wherein the constrained discriminant function sTτ+τ0=+1 satisfies the geometric locus of the linear decision border in Eq. (1.16) in terms of the critical minimum eigenenergy ∥Z|τ1∥min
Take the set {ψ2i*x2i*}i=1l
∥Z|τ2∥min
wherein the constrained discriminant function sTτ+τ0=−1 satisfies the geometric locus of the linear decision border in Eq. (1.17) in terms of the critical minimum eigenenergy ∥Z|τ2∥min
Summation over the complete system of locus equations that are satisfied by τ1
(Σi=1l
and by τ2
(−Σi=1l
and using the equilibrium constraint on the dual locus of ψ in Eq. (1.22), wherein the principal eigenaxis of ψ is in statistical equilibrium, produces the identity that determines the total allowed eigenenergy ∥Z|τ∥min
wherein the constrained discriminant function sTτ+τ0=0 satisfies the geometric locus of the linear decision boundary in Eq. (1.15) in terms of the critical minimum eigenenergy ∥Z|τ1−τ2∥min
within the primal principal eigenspace of the dual locus of τ1−T2, and wherein the dual loci of τ and ψ are symmetrically and equivalently related to each other within the Wolfe dual-principal eigenspace.
Given Eq. (1.39), it follows that the total allowed eigenenergy ∥Z|τ1−τ2∥min
(t1−T2)τ≡Σi=1lψi*(1−ξi)≡Σi=1lψi*−Σi=1lψi*ξi,
wherein regularization parameters ξi=ξ<<1 determine negligible constraints on the minimum expected risk (Z|∥τ1−τ2∥min
Now, take any given collection {xi}i=1N of feature vectors xi that are inputs to one of the machine learning algorithm of the invention, wherein each feature vector xi has a label yi, wherein yi=+1 if xiϵA and yi=−1 if xiϵB.
The system of locus equations in Eqs (1.37)-(1.39) determines the manner in which a constrained discriminant function of the invention satisfies parametric, primary and secondary integral equations of binary classification over the decision space of a minimum risk linear classification system of the invention. The primary integral equation is devised first.
Using Eq. (1.11), Eq. (1.13), Eq. (1.22) and Eqs (1.37)-(1.39), it follows that the constrained discriminant function
satisfies the locus equations
∥Z|τ1∥min
and
∥Z|τ2∥min
over the decision regions Z1 and Z2 of the decision space Z of the minimum risk linear classification system
wherein the parameters δ(y)Σi=1l
are equalizer statistics.
Using Eqs (1.40) and (1.41) along with the identity in Eq. (1.31)
Σi=1l
and the identity in Eq. (1.32)
Σi=1l
it follows that the constrained discriminant function satisfies the locus equation over the decision regions Z1 and Z2 of the decision space Z of the minimum risk linear classification system:
∥Z|τ1∥min
=∥Z|τ2∥min
wherein both the left-hand side and the right-hand side of Eq. (1.42) satisfy half the total allowed eigenenergy ∥Z|τ1−τ2∥min
Returning to the integral in Eq. (1.29):
P=(x1i*|τ1)=∫Zτ1dτ1=∥Z|τ1∥min
wherein the above integral determines a conditional probability P(x1i*|τ1) for class A, and to the integral in Eq. (1.30)
P=(x2i*|τ2)=∫Zτ2dτ2=∥Z|τ2∥min
wherein the above integral determines a conditional probability P(x2i*|τ2) for class B, it follows that the value for the integration constant C1 in Eq. (1.29) is: C1=−∥τ1∥∥τ2∥cos θτ1τ2, and the value for the integration constant C2 in Eq. (1.30) is: C2=−∥τ2∥∥τ1∥cos θτ2τ1.
Substituting the value for C1 into Eq. (1.29), and using Eq. (1.29) and Eq. (1.42), it follows that the conditional probability P(x1i*|τ1) for class A, wherein the integral of the conditional density function p(x1i*|τ1) for class A is given by the integral:
over the decision space Z=Z1+Z2 of the minimum risk linear classification system, is determined by half the total allowed eigenenergy ½∥Z|τ1−τ2∥min
Substituting the value for C2 into Eq. (1.30), and using Eq. (1.30) and Eq. (1.42), it follows that the conditional probability P(x2i|τ2) for class B, wherein the integral of the conditional density function p(x2i*|τ2) for class B is given by the integral:
over the decision space Z=Z1+Z2 of the minimum risk linear classification system, is determined by half the total allowed eigenenergy ½∥Z|τ1−τ2∥min
Given Eqs (1.43) and (1.44), it follows that the integral of the conditional density function p(x1i*|τ1) for class A and the integral of the conditional density function p(x2i*|τ2) for class B are both constrained to satisfy half the total allowed eigenenergy ½∥Z|τ1−τ2∥min
Therefore, the conditional probability P(x1i*|τ1) of observing the set {x1i*}i=1l
Therefore, minimum risk linear classification systems of the invention exhibit a novel property of computer-implemented linear classification systems, wherein for any given collection of feature vectors {xi}i=1N that are inputs to one of the machine learning algorithms of the invention, wherein distributions of the feature vectors have similar covariance matrices: (1) the conditional probability, (2) the minimum expected risk, and (3) the total allowed eigenenergy exhibited by a minimum risk linear classification system for class A is equal to (1) the conditional probability, (2) the minimum expected risk, and (3) the total allowed eigenenergy exhibited by the minimum risk linear classification system for class B.
Using Eqs (1.43) and (1.44), it follows that the constrained discriminant function of the invention
is the solution of the parametric, fundamental integral equation of binary classification:
over the decision space Z=Z1+Z2 of the minimum risk linear classification system
of the invention, wherein the decision space Z is spanned by symmetrical decision regions Z1+Z2=Z:Z1≈Z2 and wherein the conditional probability P(Z1|τ1) and the counter risk (Z1|∥τ1∥min
λmax
and the Wolfe dual equilibrium point:
of the integral equation ƒ1(D(s)).
Further, the novel principal eigenaxis of the invention that determines discriminant functions of the invention along with minimum risk linear classification systems of the invention satisfies the law of cosines in the symmetrically balanced manner that is outlined below.
Any given geometric locus of signed and scaled extreme points:
wherein the geometric locus of a principal eigenaxis τ determines a dual locus of likelihood components and principal eigenaxis components τ=τi−τ2 that represents a discriminant function D(s)=STτ+τ0 of the invention, wherein principal eigenaxis components and corresponding likelihood components ψ1i*x1i* and ψ2i*x2i* on the dual locus of τ1−τ2 determine conditional densities and conditional likelihoods for respective extreme points x1i* and x2i*, and wherein the geometric locus of the principal eigenaxis τ determines an intrinsic coordinate system τ1−τ2 of a linear decision boundary sTτ+τ0=0 and an eigenaxis of symmetry
for the decision space Z1+Z2=Z:Z1≈Z2 of a minimum risk linear classification
of the invention, satisfies the law of cosines
in the symmetrically balanced manner:
wherein θ is the angle between τ1 and τ2 and wherein the dual locus of likelihood components and principal eigenaxis components exhibits symmetrical dimensions and density, wherein the total allowed eigenenergy ∥τ1∥min
∥τ1∥min
wherein the length of side τ1 equals the length of side τ2
∥τ1∥=∥τ2∥,
and wherein components of likelihood components and principal eigenaxis components of class A—along the axis of t1—are symmetrically balanced with components of likelihood components and principal eigenaxis components of class B—along the axis of τ2:
∥τ1∥Σi=1l
wherein components of critical minimum eigenenergies exhibited by scaled extreme vectors from class A and corresponding counter risks and risks for class A—along the axis of τ1, are symmetrically balanced with components of critical minimum eigenenergies exhibited by scaled extreme vectors from class B and corresponding counter risks and risks for class B—along the axis of τ2 and wherein the opposing component of τ2—along the axis of τ1, is symmetrically balanced with the opposing component of τ1—along the axis of τ2:
∥τ1∥[−∥τ2∥cos θτ1τ2]=∥τ2∥[−∥τ1∥cos θτ2τ1],
wherein opposing components of likelihood components and principal eigenaxis components of class B—along the axis of τ1, are symmetrically balanced with opposing components of likelihood components and principal eigenaxis components of class A—along the axis of τ2:
∥τ1∥Σi=1l
wherein opposing components of critical minimum eigenenergies exhibited by scaled extreme vectors from class B and corresponding counter risks and risks for class B—along the axis of τ1, are symmetrically balanced with opposing components of critical minimum eigenenergies exhibited by scaled extreme vectors from class A and corresponding counter risks and risks for class A—along the axis of τ2 and wherein opposing and counteracting random forces and influences of the minimum risk linear classification system of the invention are symmetrically balanced with each other—about the geometric center of the dual locus τ:
—wherein the statistical fulcrum of τ is located.
Accordingly, counteracting and opposing components of critical minimum eigenenergies exhibited by all of the scaled extreme vectors on the geometric locus of the principal eigenaxis τ=τ1−τ2 of the invention, along the axis of the principal eigenaxis τ, and corresponding counter risks and risks exhibited by the minimum risk linear classification system
of the invention, are symmetrically balanced with each other about the geometric center of the dual locus τ, wherein the statistical fulcrum of τ is located.
Now, take the previous collection {xi}i=1N of labeled feature vectors xi that are inputs to one of the machine learning algorithm of the invention, wherein each feature vector xi has a label yi, wherein yi=+1 if xiϵA and yi=−1 if xiϵB, and wherein distributions of the feature vectors have similar covariance matrices.
Given that a constrained discriminant function of the invention
is the solution of the parametric, fundamental integral equation of binary classification in Eq. (1.45), and given that the discriminant function is represented by a dual locus of likelihood components and principal eigenaxis components τ=τ1−τ2 that satisfies the law of cosines in the symmetrically balanced manner outlined above, it follows that the constrained discriminant function satisfies the parametric, secondary integral equation of binary classification:
ƒ2(D(S)):∫Z
∫Z
over the Z1 and Z2 decision regions of a minimum risk linear classification system, wherein opposing and counteracting random forces and influences of the minimum risk linear classification system are symmetrically balanced with each other—within the Z1 and Z2 decision regions—in the following manners: (1) the eigenenergy ∥Z1|τ1∥min
Therefore, minimum risk linear classification systems of the invention exhibit a novel and useful property, wherein for any given collection of labeled feature vectors that are inputs to a machine learning algorithm of the invention, wherein distributions of the feature vectors have similar covariance matrices, the minimum risk linear classification system determined by the machine learning algorithm satisfies a state of statistical equilibrium, wherein the expected risk and the total allowed eigenenergy exhibited by the minimum risk linear classification system are minimized, and the minimum risk linear classification system exhibits the minimum probability of error for classifying the collection of feature vectors and feature vectors related to the collection into two classes, wherein the distributions of the feature vectors have similar covariance matrices.
Further, discriminant functions of minimum risk linear classification systems of the invention exhibit a novel and useful property, wherein a discriminant function D(s) of a minimum risk linear classification system is determined by a linear combination of a collection of extreme vectors xi*, a collection of signed and scaled extreme vectors and ψ1i*x1i*and −ψ2i*x2i*, a collection of signs yi=+1 or yi=−1 associated with the extreme vectors xi*, and a collection of regularization parameters ξi=ξ=0 or ξi=ξ<<1:
wherein the collection of extreme vectors {xi*}i=1l belong to a collection of feature vectors {xi}i=1N that are inputs to one of the machine learning algorithms of the invention, and wherein the scales of the extreme vectors are determined by the machine learning algorithm used to determine the discriminant function D(s) of the minimum risk linear classification system sign(D(s)) that classifies the collection of feature vectors {xi}i=1N into two classes:
wherein the output of the minimum risk linear classification system sign(D(s)) is related to the two classes, and wherein the minimum risk linear classification system sign(D(s)) exhibits the minimum probability of error for classifying feature vectors that belong to and are related to the collection of feature vectors used to determine the system sign(D(s)), wherein distributions of the feature vectors have similar covariance matrices.
Therefore, a discriminant function D(s) of a minimum risk linear classification system sign(D(s)) provides a scalable module that can be used to determine an ensemble E=Σj=1M-1 sign(Dij(s)) of discriminant functions of minimum risk linear classification systems, wherein the ensemble of M−1 discriminant functions of M−1 minimum risk linear classification systems exhibits the minimum probability of error for classifying feature vectors that belong to and are related to M given collections of feature vectors.
More specifically, discriminant functions of minimum risk linear classification systems provide scalable modules that are used to determine a discriminant function of an M− class minimum risk linear classification system that classifies feature vectors into M classes, wherein the total allowed eigenenergy and the minimum expected risk that is exhibited by the M− class minimum risk linear classification system is determined by the total allowed eigenenergy and the minimum expected risk that is exhibited by M ensembles of M−1 discriminant functions of M−1 minimum risk linear classification systems EM=τi=1MΣj=1M-1 sign(Dij(s)), wherein each minimum risk linear classification system sign(Dij(s)) of an ensemble Ec
It follows that discriminant functions of M− class minimum risk linear classification systems that are determined by machine learning algorithms of the invention exhibit the minimum probability of error for classifying feature vectors that belong to M collections of feature vectors and unknown feature vectors related to the M collections of feature vectors.
It immediately follows that discriminant functions of minimum risk linear classification systems of the invention also provide scalable modules that are used to determine a fused discriminant function of a fused minimum risk linear classification system that classifies two types of feature vectors into two classes, wherein each type of feature vector has a different number of vector components. The total allowed eigenenergy and the minimum expected risk exhibited by the fused minimum risk linear classification system is determined by the total allowed eigenenergy and the minimum expected risk that is exhibited by an ensemble of a discriminant function of a minimum risk linear classification system sign(D(s)) and a different discriminant function of a different minimum risk linear classification system sign({circumflex over (D)}(s)):
Any given fused discriminant function of a fused minimum risk linear classification system
Discriminant functions of minimum risk linear classification systems of the invention also provide scalable modules that are used to determine a fused discriminant function of a fused M−class minimum risk linear classification system that classifies two types of feature vectors into M classes, wherein each type of feature vector has a different number of vector components, and wherein the total allowed eigenenergy and the minimum expected risk exhibited by the fused M−class minimum risk linear classification system is determined by the total allowed eigenenergy and the minimum expected risk that is exhibited by M ensembles of M−1 discriminant functions of M−1 minimum risk linear classification systems EM=Σi=1MΣj=1M-1 sign(Dij(s)) and M different ensembles of M−1 different discriminant functions of M−1 different minimum risk linear classification systems ÊM=Σi=1MΣj=1M-1 sign({circumflex over (D)}ij((s)):
wherein the total allowed eigenenergy and the expected risk exhibited by the fused M− class minimum risk linear classification system is minimum for M given collections of feature vectors and M given collections of different feature vectors, wherein distributions of feature vectors have similar covariance matrices for each minimum risk linear classification system sign(Dij(s)), and wherein distributions of different feature vectors have similar covariance matrices for each different minimum risk linear classification system sign({circumflex over (D)}ij(s)).
Accordingly, fused discriminant functions of fused M− class minimum risk linear classification systems that are determined by machine learning algorithms of the invention exhibit the minimum probability of error for classifying feature vectors that belong to M collections of feature vectors and unknown feature vectors related to the M collections of feature vectors as well as different feature vectors that belong to M collections of different feature vectors and unknown different feature vectors related to the M collections of different feature vectors, wherein distributions of feature vectors have similar covariance matrices for each minimum risk linear classification system sign(Dij (s)) and distributions of different feature vectors have similar covariance matrices for each different minimum risk linear classification system sign({circumflex over (D)}ij(s)).
Further, given that discriminant functions of the invention determine likely locations of feature vectors that belong to given collections of feature vectors and any given unknown feature vectors related to a given collection, wherein a given collection of feature vectors belong to two classes, and given that discriminant functions of the invention identify decision regions related to two classes that given collections of feature vectors and any given unknown feature vectors related to a given collection are located within, and given that discriminant functions of the invention recognize classes of feature vectors that belong to given collections of feature vectors and any given unknown feature vectors related to a given collection, wherein minimum risk linear classification systems of the invention decide which of two classes that given collections of feature vectors and any given unknown feature vectors related to a given collection belong to, and thereby classify given collections of feature vectors and any given unknown feature vectors related to a given collection, it follows that discriminant functions of minimum risk linear classification systems of the invention can be used to determine a classification error rate and a measure of overlap between distributions of feature vectors for two classes of feature vectors, wherein distributions of the feature vectors have similar covariance matrices. Further, discriminant functions of minimum linear classification systems of the invention can be used to determine if distributions of two collections of feature vectors are homogenous distributions.
The method to determine a discriminant function of a minimum risk linear classification system that classifies feature vectors into two classes, designed in accordance with the invention, is fully described within the detailed description of the invention.
Receive an N×d data set of feature vectors within a computer system wherein N is the number of feature vectors, d is the number of vector components in each feature vector, and each one of the N feature vectors is labeled with information that identifies which of the two classes each one of the N feature vectors belongs to.
Receive unknown feature vectors related to the data set within the computer system.
Determine a Gram matrix using the data set by calculating a matrix of all possible inner products of the signed N feature vectors, wherein each one of the N feature vectors has a sign of +1 or 1 that identifies which of the two classes each one of the N feature vectors belongs to, and calculate a regularized Gram matrix from the Gram matrix.
Determine the scale factors of a geometric locus of signed and scaled extreme points by using the regularized Gram matrix to solve the dual optimization problem in Eq. (1.9).
Determine the extreme vectors on the geometric locus by identifying scale factors in the vector of scale factors that exceed zero by a small threshold T, e.g.: T=0.0050.
Determine a sign vector of the signs associated with the extreme vectors using the data set, and compute the average sign using the sign vector.
Determine a locus of average risk using the extreme vectors.
Determine the geometric locus by using the N feature vectors and the unknown feature vectors to calculate a matrix of inner products between the signed N feature vectors and the unknown feature vectors, and multiply the matrix by the vector of scale factors.
Determine the discriminant function of the minimum risk linear classification system, wherein the minimum risk linear classification system is determined by computing the sign of the discriminant function, and classify any given unknown feature vectors.
A discriminant function of an M− class minimum risk linear classification system that classifies feature vectors into M classes is determined by using a machine learning algorithm of the invention and M collections of N feature vectors, wherein each feature vector in a given collection belongs to the same class, to determine M ensembles of M−1 discriminant functions of M−1 minimum risk linear classification systems, wherein the determination of each one of the M ensembles involves using the machine algorithm to determine M−1 discriminant functions of M−1 minimum risk linear classification systems for a class ci of feature vectors, wherein the N feature vectors that belong to the class ci have the sign +1 and all of the N feature vectors
Therefore, the M ensembles of the M−1 discriminant functions of the M−1 minimum risk linear classification systems
EM=Σi=1MΣj=1M-1 sign(Dij(s))
determine the discriminant function of an M− class minimum risk linear classification system that classifies a feature vector s into the class ci associated with the ensemble Ec
The discriminant function of the M−class minimum risk linear classification system DE
DE
exhibits the minimum probability of error for classifying feature vectors that belong to the M collections of N feature vectors and unknown feature vectors related to the M collections of N feature vectors, wherein distributions of the feature vectors have similar covariance matrices, wherein the discriminant function of the M−class minimum risk linear classification system function determines likely locations of feature vectors that belong to and are related to the M collections of N feature vectors and identifies decision regions related to the M classes that the feature vectors are located within, wherein the discriminant function recognizes the classes of the feature vectors, and wherein the M− class minimum risk linear classification decides which of the M classes that the feature vectors belong to, and thereby classifies the feature vectors.
A fused discriminant function of a fused minimum risk linear classification system that classifies two types of feature vectors into two classes, wherein the types of feature vectors have different numbers of vector components, is determined by using a machine learning algorithm of the invention and a collection of N feature vectors and a collection of N different feature vectors to determine an ensemble of a discriminant function of a minimum risk linear classification system sign(D(s)) and a different discriminant function of a different minimum risk linear classification system sign({circumflex over (D)}(s)):
The fused discriminant function of the fused minimum risk linear classification system
exhibits the minimum probability of error for classifying the feature vectors that belong to the collection of N feature vectors and unknown feature vectors related to the collection of N feature vectors, wherein distributions of the feature vectors have similar covariance matrices, as well as the different feature vectors that belong to the collection of N different feature vectors and unknown different feature vectors related to the collection of N different feature vectors, wherein distributions of the different feature vectors have similar covariance matrices, wherein the fused discriminant function determines likely locations of feature vectors that belong to and are related to the collection of N feature vectors as well as different feature vectors that belong to and are related to the collection of N different feature vectors and identifies decision regions related to the two classes that the feature vectors and the different feature vectors are located within, wherein the fused discriminant function recognizes the classes of the feature vectors and the different feature vectors, and wherein the fused minimum risk linear classification decides which of the two classes that the feature vectors and the different feature vectors belong to, and thereby classifies the feature vectors and the different feature vectors.
A fused discriminant function of a fused M− class minimum risk linear classification system that classifies two types of feature vectors into M classes is determined by using a machine learning algorithm of the invention and M collections of N feature vectors to determine M ensembles of M−1 discriminant functions of M−1 minimum risk linear classification systems EM=Σi=1MΣj=1M-1 sign(Dij(s)) as well as M collections of N different feature vectors to determine M different ensembles of M−1 different discriminant functions of M−1 different minimum risk linear classification systems ÊM=Σi=1MΣj=1M-1 sign({circumflex over (D)}ij(s)), wherein the M ensembles and the M different ensembles are both determined by the process that is described in EMBODIMENT 2.
The fused discriminant function of the fused M− class minimum risk linear classification system
exhibits the minimum probability of error for classifying feature vectors that belong to the M collections of N feature vectors and unknown feature vectors related to the M collections of N feature vectors, wherein distributions of the feature vectors have similar covariance matrices, as well as different feature vectors that belong to the M collections of N different feature vectors and unknown different feature vectors related to the M collections of N different feature vectors, wherein distributions of the different feature vectors have similar covariance matrices, wherein the fused discriminant function determines likely locations of feature vectors that belong to and are related to the M collections of N feature vectors as well as different feature vectors that belong to and are related to the M collections of N different feature vectors and identifies decision regions related to the M classes that the feature vectors and the different feature vectors are located within, wherein the fused discriminant function recognizes the classes of the feature vectors and the different feature vectors, and wherein the fused M− class minimum risk linear classification decides which of the M classes that the feature vectors and the different feature vectors belong to, and thereby classifies the feature vectors and the different feature vectors.
The process of using a discriminant function of a minimum risk linear classification system to determine a classification error rate and a measure of overlap between distributions of feature vectors for two classes of feature vectors involves the following steps:
Receive an N×d data set of feature vectors within a computer system, wherein N is the number of feature vectors, d is the number of vector components in each feature vector, and each one of the N feature vectors is labeled with information that identifies which of the two classes each one of the N feature vectors belongs to.
Receive an N×d test data set of test feature vectors related to the data set within the computer system, wherein N is a number of test feature vectors, d is a number of vector components in each test feature vector, and each one of the N test feature vectors is labeled with information that identifies which of the two classes each one of the N test feature vectors belongs to.
Determine the discriminant function of the minimum risk linear classification system by performing the steps outlined in EMBODIMENT 1.
Use the minimum risk linear classification system to classify the N feature vectors.
Determine an in-sample classification error rate for the two classes of feature vectors by calculating the average number of wrong decisions of the minimum risk linear classification system for classifying the N features vectors.
Use the minimum risk linear classification system to classify the N test feature vectors.
Determine an out-of-sample classification error rate for the two classes of test feature vectors by calculating the average number of wrong decisions of the minimum risk linear classification system for classifying the N test feature vectors.
Determine the classification error rate for the two classes of feature vectors by averaging the in-sample classification error rate and the out-of-sample classification error rate.
Determine a measure of overlap between distributions of feature vectors for the two classes of feature vectors using the N feature vectors and the extreme vectors that have been identified, by calculating the ratio of the number of the extreme vectors to the number of the N feature vectors, wherein the ratio determines the measure of overlap.
Receive an N×d data set of feature vectors within a computer system, wherein N is the number of feature vectors, d is the number of vector components in each feature vector, and each one of the N feature vectors is labeled with information that identifies which of the two collections each one of the N feature vectors belongs to.
Determine the discriminant function of the minimum risk linear classification system by performing the steps outlined in EMBODIMENT 1.
Use the minimum risk linear classification system to classify the N feature vectors.
Determine an in-sample classification error rate for the two collections of feature vectors by calculating the average number of wrong decisions of the minimum risk linear classification system for classifying the N features vectors.
Determine a measure of overlap between distributions of feature vectors for the two collections of feature vectors using the N feature vectors and the extreme vectors that have been identified, by calculating the ratio of the number of the extreme vectors to the number of the N feature vectors, wherein the ratio determines the measure of overlap.
Determine if the distributions of the two collections of the N feature vectors are homogenous distributions by using the in-sample classification error rate and the measure of overlap, wherein the distributions of the two collections of the N feature vectors are homogenous distributions if the measure of overlap has an approximate value of one and the in-sample classification error rate has an approximate value of one half.
Machine learning algorithms of the invention involve solving certain variants of the inequality constrained optimization that is used by support vector machines, wherein regularization parameters have been defined.
Software for machine learning algorithms of the invention can be obtained by using any of the software packages that solve quadratic programming problems, or via LIBSVM (A Library for Support Vector Machines), SVMlight (an implementation of SVMs in C) or MATLAB SVM toolboxes.
The machine learning methods of the invention disclosed herein may be readily utilized in a wide variety of applications, wherein feature vectors have been extracted from outputs of sensors that include, but are not limited to radar and hyperspectral or multispectral images, biometrics, digital communication signals, text, images, digital waveforms, etc.
More specifically, the applications include, for example and without limitation, general pattern recognition (including image recognition, waveform recognition, object detection, spectrum identification, and speech and handwriting recognition, data classification, (including text, image, and waveform categorization), bioinformatics (including automated diagnosis systems, biological modeling, and bio imaging classification), etc.
One skilled in the art will recognize that any suitable computer system may be used to execute the machine learning methods disclosed herein. The computer system may include, without limitation, a mainframe computer system, a workstation, a personal computer system, a personal digital assistant, or other device or apparatus having at least one processor that executes instructions from a memory medium.
The computer system may further include a display device or monitor for displaying operations associated with the learning machine and one or more memory mediums on which computer programs or software components may be stored. In addition, the memory medium may be entirely or partially located in one or more associated computers or computer systems which connect to the computer system over a network, such as the Internet.
The machine learning method described herein may also be executed in hardware, a combination of software and hardware, or in other suitable executable implementations. The learning machine methods implemented in software may be executed by the processor of the computer system or the processor or processors of the one or more associated computer systems connected to the computer system.
While the invention herein disclosed has been described by means of specific embodiments, numerous modifications and variations could be made by those skilled in the art without departing from the scope of the invention set forth in the claims.
This application claims the benefit of U.S. provisional application No. 62/556,185, filed Sep. 8, 2017.
Number | Name | Date | Kind |
---|---|---|---|
5835901 | Duvoisin, III | Nov 1998 | A |
6760715 | Barnhill | Jul 2004 | B1 |
7010167 | Ordowski | Mar 2006 | B1 |
7305132 | Singh | Dec 2007 | B2 |
7529666 | Padmanabhan | May 2009 | B1 |
7624074 | Weston | Nov 2009 | B2 |
7660775 | Bougaev | Feb 2010 | B2 |
7961955 | Minter | Jun 2011 | B1 |
7961956 | Minter | Jun 2011 | B1 |
7979363 | Minter | Jul 2011 | B1 |
7983490 | Minter | Jul 2011 | B1 |
8527432 | Guo | Sep 2013 | B1 |
9189735 | Ni | Nov 2015 | B2 |
9406030 | Dolev | Aug 2016 | B2 |
9449260 | He | Sep 2016 | B2 |
20030216916 | Navratil | Nov 2003 | A1 |
20080086493 | Zhu | Apr 2008 | A1 |
20080301077 | Fung | Dec 2008 | A1 |
20100082639 | Li | Apr 2010 | A1 |
20170154209 | Nakano | Jun 2017 | A1 |
20190108423 | Jones | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
2012181579 | Sep 2012 | JP |
Entry |
---|
Yang et al.; “A Novel Multi-Surface Proximal Support Vector Machine Classification Model Incorporating Feature Selection”; Jul. 2009; 2009 International Conference on Machine Learning and Cybernetics; pp. 943-947 (Year: 2009). |
Ekmekci et al.; “Classifier Combination with Kernelized Eigenclassifiers”; Jul. 2013, International Society of Information Fusion; pp. 743-479 (Year: 2013). |
Reeves, Denise; “Design and Development of Bayes' Minimax Linear Classification Systems”; Dec. 13, 2016, arXiv: 1612.03902v2; pp. 1-122 (Year: 2016). |
Reeves, Denise; “Design of Data-Driven Mathematical Laws for Optimal Statistical Classification Systems”; May 12, 2018; arXiv: 1612.03902v9; pp. 1-339 (Year: 2018). |
Kittler et al.; “Discriminant Function Implementation of a Minimum Risk Classifier”; May 1975; Biological Cybernetics; vol. 18, Issue 3-4, pp. 169-179; <https://doi.org/10.1007/BF00326687> (Year: 1975). |
Aksu et al.; “Margin-Maximizing Feature Elimination Methods for Linear and Nonlinear Kernel-Based Discriminant Functions”; May 2010; IEEE Transactions on Neural Networks, vol. 21, No. 5; pp. 701-717 (Year: 2010). |
Reeves, Denise; “Resolving the Geometric Locus Dilemma for Support Vector Learning Machines”; Nov. 2015; arXiv:1511.05102v1 ; pp. 1-170 (Year: 2015). |
Number | Date | Country | |
---|---|---|---|
20190347572 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62556185 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15853787 | Dec 2017 | US |
Child | 16523793 | US |