The present invention is generally directed to a removable anchored device, system, and method for treating Chronic Obstructive Pulmonary Disease (COPD). The present invention is more particularly directed to providing an anchored intra-bronchial obstruction that may be removable.
COPD has become a major cause of morbidity and mortality in the United States over the last three decades. COPD is characterized by the presence of airflow obstruction due to chronic bronchitis or emphysema. The airflow obstruction in COPD is due largely to structural abnormalities in the smaller airways. Important causes are inflammation, fibrosis, goblet cell metaplasia, and smooth muscle hypertrophy in terminal bronchioles.
The incidence, prevalence, and health-related costs of COPD are on the rise. Mortality due to COPD is also on the rise. In 1991, COPD was the fourth leading cause of death in the United States and had increased 33% since 1979. COPD affects the patient's whole life. It has three main symptoms: cough; breathlessness; and wheeze. At first, breathlessness may be noticed when running for a bus, digging in the garden, or walking uphill. Later, it may be noticed when simply walking in the kitchen. Over time, it may occur with less and less effort until it is present all of the time. COPD is a progressive disease and currently has no cure. Current treatments for COPD include the prevention of further respiratory damage, pharmacotherapy, and surgery. Each is discussed below.
The prevention of further respiratory damage entails the adoption of a healthy lifestyle. Smoking cessation is believed to be the single most important therapeutic intervention. However, regular exercise and weight control are also important. Patients whose symptoms restrict their daily activities or who otherwise have an impaired quality of life may require a pulmonary rehabilitation program including ventilatory muscle training and breathing retraining. Long-term oxygen therapy may also become necessary.
Pharmacotherapy may include bronchodilator therapy to open up the airways as much as possible or inhaled beta-agonists. For those patients who respond poorly to the foregoing or who have persistent symptoms, ipratropium bromide may be indicated. Further, courses of steroids, such as corticosteroids, may be required. Lastly, antibiotics may be required to prevent infections and influenza and pneumococcal vaccines may be routinely administered. Unfortunately, there is no evidence that early, regular use of pharmacotherapy will alter the progression of COPD.
About 40 years ago, it was first postulated that the tethering force that tends to keep the intrathoracic airways open was lost in emphysema and that by surgically removing the most affected parts of the lungs, the force could be partially restored. Although the surgery was deemed promising, the lung volume reduction surgery (LVRS) procedure was abandoned. LVRS was later revived. In the early 1990's, hundreds of patients underwent the procedure. However, the procedure fell out of favor when Medicare stopped reimbursing for LVRS. Unfortunately, data is relatively scarce and many factors conspire to make what data exists difficult to interpret. The procedure is currently under review in a controlled clinical trial. However, what data does exist tends to indicate that patients benefited from the procedure in terms of an increase in forced expiratory volume, a decrease in total lung capacity, and a significant improvement in lung function, dyspnea, and quality of life. Improvements in pulmonary function after LVRS have been attributed to at least four possible mechanisms. These include enhanced elastic recoil, correction of ventilation/perfusion mismatch, improved efficiency of respiratory musculature, and improved right ventricular filling.
Lastly, lung transplantation is also an option. Today, COPD is the most common diagnosis for which lung transplantation is considered. Unfortunately, this consideration is given for only those with advanced COPD. Given the limited availability of donor organs, lung transplant is far from being available to all patients.
There is a need for additional non-surgical options for permanently treating COPD. A promising new therapy includes non-surgical apparatus and procedures for lung volume reduction by permanently obstructing the air passageway that communicates with the portion of the lung to be collapsed. The therapy includes placing an obstruction in the air passageway that prevents inhaled air from flowing into the portion of the lung to be collapsed. Lung volume reduction with concomitant improved pulmonary function may be obtained without the need for surgery. The effectiveness of obstructions may be enhanced if it is anchored in place. The effectiveness may also be enhanced if the obstruction is removable. However, no readily available apparatus and method exists for anchoring the obstruction, and for removal if required.
In view of the foregoing, there is a need in the art for a new and improved apparatus and method for permanently obstructing an air passageway that is anchored in place, and that may be removed if required. The present invention is directed to a device, system, and method that provide such an improved apparatus and method for treating COPD.
The present invention provides an anchored intra-bronchial device for placement in an air passageway of a patient to collapse a lung portion associated with the air passageway. The device includes a support structure, an obstructing member carried by the support structure that prevents air from being inhaled into the lung portion to collapse the lung portion, and at least one anchor carried by the support structure that anchors the obstruction device within the air passageway when the anchor is deployed. The support structure, or a portion thereof, may be collapsible. The obstructing member and at least one anchor may be simultaneously deployable. The support structure may be configured to urge at least one anchor to engage the air passageway wall. The obstructing member may be a one-way valve. The obstructing member may be releasable from the support structure and removable from the air passageway.
In accordance with the present invention, alternative embodiments are provided for the anchors. An anchor may have an anchoring end that engages the air passageway wall, and that may pierce into the air passageway wall. An anchor may include a stop dimensioned for limiting the piercing of the air passageway wall. An anchor may include a resilient material for imparting a force against the air passageway to deform the air passageway to more positively anchor the obstructing member. An anchor may be releasable from the air passageway for removal of the intra-bronchial device. An anchor may include a pad that frictionally engages the air passageway. Further, an anchor may be configured to move from a first configuration to a second configuration to engage the air passageway. An anchor may be configured to move from a first configuration to a second configuration to engage the air passageway, and to move from the second configuration to the first configuration to disengage the air passageway. Alternatively, an anchor may be configured to move from a first configuration to a second configuration to engage the air passageway, and to move from the second configuration to a third configuration to disengage the air passageway.
In accordance with the present invention, alternative embodiments provide for the anchors to be carried on different portions of the device. An anchor may be carried by a peripheral portion of the support structure, and/or by a central portion of the support structure. An anchor may be carried distal to the obstructing member, and/or proximal to the obstructing member.
The present invention further provides a method of reducing the size of a lung, or reducing ventilation to a portion of a lung, by collapsing at least a portion of the lung. The method includes the step of providing an intra-bronchial device that includes a support structure, an obstructing member carried by the support structure which is so dimensioned when deployed in an air passageway communicating with the portion of the lung to be collapsed to preclude air from being inhaled, and at least one anchor carried by the support structure that anchors the obstructing member when the anchor is deployed. The method further includes the steps of placing the obstructing member in the air passageway, and deploying at least one anchor. An anchor may be releasable for removal of the intra-bronchial device. The obstructing member may form a one-way valve. The support structure may be collapsible.
The present invention yet further provides a method of reducing the size of a lung, or reducing ventilation to a portion of a lung, by collapsing a portion of the lung with a removable device. The method includes the step of providing an intra-bronchial device comprising a support structure, an obstructing member carried by the support structure which is so dimensioned when deployed in an air passageway communicating with the portion of the lung to be collapsed to preclude air from being inhaled, and at least one anchor carried by the support structure that anchors the obstructing member when the anchor is deployed. The method further includes the steps of placing the obstructing member in the air passageway, and deploying at least one anchor. The method further includes the step of removing at least the obstructing member. At least one anchor may be releasable from the air passageway for removal of at least the obstructing device, and the step of removing at least the obstructing device includes releasing at least one anchor. At least a portion of the obstructing member is releasable from the support structure, and the step of removing at least the obstructing member includes releasing the obstructing member from the support structure. The obstructing member may form a one-way valve. At least a portion of the support structure may be collapsible.
The present invention additionally provides an air passageway obstructing device. The device includes frame means for forming a support structure, flexible membrane means for obstructing air flow within the air passageway and carried by the support structure, and anchoring means to anchor the air passageway obstructing device, carried by the support structure. The frame means is expandable to an expanded state within an air passageway to support the membrane means and the anchoring means. The anchoring means is releasable for removal of the device from the air passageway.
These and various other features as well as advantages which characterize the present invention will be apparent from a reading of the following detailed description and a review of the associated drawings.
The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further objects and advantages thereof, may best be understood by making reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like referenced numerals identify like elements, and wherein:
In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings that form a part hereof. The detailed description and the drawings illustrate how specific exemplary embodiments by which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It is understood that other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the present invention. The following detailed description is therefore not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
Throughout the specification and claims, the following terms take the meanings explicitly associated herein unless the context clearly dictates otherwise. The meaning of “a”, “an”, and “the” include plural references. The meaning of “in” includes “in” and “on.” Referring to the drawings, like numbers indicate like parts throughout the views. Additionally, a reference to the singular includes a reference to the plural unless otherwise stated or inconsistent with the disclosure herein.
Additionally, throughout the specification, claims, and drawings, the term “proximal” means nearest the trachea, and “distal” means nearest the bronchioles.
Briefly stated, an aspect of the invention provides an anchored intra-bronchial device for placement in an air passageway of a patient. The intra-bronchial device obstructs the air passageway, reducing the ventilation to a portion of the lung and/or collapsing the lung portion associated with the air passageway. A further aspect of the invention provides removability of the intra-bronchial device, either by releasing the anchors for removal of the entire device or by separating the obstructing member and removing it.
The respiratory system 20 includes the trachea 28, the left mainstem bronchus 30, the right mainstem bronchus 32, the bronchial branches 34, 36, 38, 40, and 42 and sub-branches 44, 46, 48, and 50. The respiratory system 20 further includes left lung lobes 52 and 54 and right lung lobes 56, 58, and 60. Each bronchial branch and sub-branch communicates with a respective different portion of a lung lobe, either the entire lung lobe or a portion thereof. As used herein, the term “air passageway” is meant to denote either a bronchi or bronchiole, and typically means a bronchial branch or sub-branch which communicates with a corresponding individual lung lobe or lung lobe portion to provide inhaled air thereto or conduct exhaled air therefrom.
Characteristic of a healthy respiratory system is the arched or inwardly arcuate diaphragm 26. As the individual inhales, the diaphragm 26 straightens to increase the volume of the thorax 22. This causes a negative pressure within the thorax. The negative pressure within the thorax in turn causes the lung lobes to fill with air. When the individual exhales, the diaphragm returns to its original arched condition to decrease the volume of the thorax. The decreased volume of the thorax causes a positive pressure within the thorax which in turn causes exhalation of the lung lobes.
In contrast to the healthy respiratory system of
It has been found that the apex portions 62 and 66 of the upper lung lobes 52 and 56, respectively, are most affected by COPD. Hence, bronchial sub-branch obstructing devices are generally employed for treating the apex 66 of the right, upper lung lobe 56. However, as will be appreciated by those skilled in the art, the present invention may be applied to any lung portion without departing from the present invention. As will be further appreciated by those skilled the in art, the present invention may be used with any type of obstructing member to provide an anchored obstructing device, which may be removed. The inventions disclosed and claimed in U.S. Pat. Nos. 6,258,100 and 6,293,951, both of which are incorporated herein by reference, provide an improved therapy for treating COPD by obstructing an air passageway using an intra-bronchial valve or plug. The present invention may be used with the apparatus, system, and methods of these patents as will be briefly described in conjunction with the disclosure of the preferred embodiments of the present invention.
The insertion of an obstructing member treats COPD by deriving the benefits of lung volume reduction surgery without the need of performing the surgery. The treatment contemplates permanent collapse of a lung portion. This leaves extra volume within the thorax for the diaphragm to assume its arched state for acting upon the remaining healthier lung tissue. As previously mentioned, this should result in improved pulmonary function due to enhanced elastic recoil, correction of ventilation/perfusion mismatch, improved efficiency of respiratory musculature, and improved right ventricle filling. The present invention supports the use of intra-bronchial obstructions to treat COPD by anchoring the obstruction device in the air passageway. The present invention further supports the use of intra-bronchial obstructions by providing for their removal if necessary. Use of anchors can allow the obstructing member to be relatively loosely fitted against the air passageway wall, which may preserve mucociliary transport of mucus and debris out of the collapsed lung portion and allow distal mucus to be coughed.
Another step in placing an obstructing member 90 may include sizing the air passageway location where the obstructing member 90 will be positioned.
A function of the intra-bronchial device disclosed and claimed in this specification, including the detailed description and the claims, is described in terms of collapsing a lung portion associated with an air passageway. In some lungs, a portion of a lung may receive air from collateral air passageways. Obstructing one of the collateral air passageways may reduce the volume of the lung portion associated with the air passageway, but not completely collapse the lung portion, as that term may be generally understood. As used herein, the meaning of “collapse” includes both a complete collapse of a lung portion, and a partial collapse resulting in a marked decrease in the volume of a lung portion.
Once deployed, the obstructing member precludes inhaled air from entering the lung portion to be collapsed. In accordance with the present invention, it is preferable that the obstructing member takes the form of a one-way valve. In addition to precluding inhaled air from entering the lung portion, the member further allows air within the lung portion to be exhaled. This results in more rapid collapse of the lung portion. In addition, anchoring obstructing members that preclude both inhaled and exhaled airflow are contemplated as within the scope of the invention.
More specifically, the obstructing member 90 has an outer dimension 91, and when expanded, enables a contact zone with the air passageway inner dimension 51. This seals the air passageway upon placement of the obstructing member 90 in the air passageway 50 for maintaining the lung portion 66 in the collapsed state.
Alternatively, the lung portion 66 may be collapsed using vacuum prior to placement of obstructing member 90, or sealing the air passageway 50 with obstructing member 90 may collapse it. The air within the lung portion 66 will be absorbed by the body over time, reducing the volume of and/or collapsing the lung portion 66. Alternatively, obstructing member 90 may include the function of a one-way valve that allows air to escape from lung portion 66. Lung portion 66 will then collapse, and the valve will prevent air from being inhaled.
The support structure 101 of intra-bronchial device includes central support structure 109, and support members 102, 104, 106, and 108. The support members 102, 104, 106, and 108, carry anchors 112, 114, 116, and 118; and anchor ends 122, 124, 126, and 128, respectively. Central support structure 109 is a tubular member, preferably hypodermic needle tubing. Support members 102, 104, 106, and 108, are coupled mechanically to central support structure 109, such as by crimping, or by other methods such as adhesive or welding. Support members 102, 104, 106, and 108 are generally similar to each other. The support members are preferably formed of stainless steel, Nitinol, or other suitable material having a memory of its original shape, and resiliency to return the material to that shape.
Anchors 112, 114, 116, and 118 are extensions of support members 102, 104, 106, and 108. The anchors are formed by bending the support members to an angle that will result in a deployed anchor engaging the air passageway wall by piercing it approximately perpendicularly. In this preferred embodiment, the bend angle is approximately a right angle. Anchor ends 122, 124, 126, and 128 may be shaped to promote piercing the air passageway wall. In an alternative embodiment, the elements of support structure 101 may be formed by laser cutting a single piece of hypodermic needle tubing.
Obstructing member 110 is carried on the support structure 101, and includes a flexible membrane open in the proximal direction and which may be formed of silicone or polyurethane, for example. The obstructing member 110 is secured to the central support structure 109, and may be additionally secured to the support members at its larger diameter 91. It may be secured by adhesive, or other manner known in the art. Obstructing member 110 may be loosely carried on support members 102, 104, 106, and 108, such that it expands on inhalation to form a seal against a wall of the air passageway, and contracts on exhalation to allow air and mucociliary transport from the collapsed lung. This provides a one-way valve function.
Intra-bronchial device 100 is collapsible for insertion into an internal lumen of a catheter. At least the support members 102, 104, 106, and 108, and the obstructing member 110, may be collapsed. Intra-bronchial device 100 is inserted into the catheter lumen, which is typically already placed in the air passageway 50 as generally illustrated in
The preclusion of air from being inhaled into the lung portion may be terminated by eliminating the obstructing effect of intra-bronchial device 100. The preclusion of air by the embodiment illustrated in
When intra-bronchial device 140 is compressed for insertion into the catheter lumen for placement in the air passageway, the anchors 112, 114, 116, and 118 are collapsed into a first configuration. In the first configuration, the anchor ends 122, 124, 126, and 128 are moved toward obstructing member 110, and anchors 112, 114, 116, and 118 thereby folded toward obstructing member 110. In an alternative embodiment, the anchor ends 122, 124, 126, and 128 are moved away from obstructing member 110, and anchors 112, 114, 116, and 118 thereby folded away from obstructing member 110.
When intra-bronchial device 100 is deployed from the catheter lumen, the memory and resiliency of the anchors 112, 114, 116, and 118 impart a force that moves the anchor ends 122, 124, 126, and 128 into a second configuration to engage air passageway wall 130. This is the deployed configuration illustrated in
Central support structure 109 extends both proximal and distal of obstructing member 110, and carries anchor base 161 proximal of obstructing member 110, carries anchors 112, 114, and 116, and includes anchor base aperture 165. The linear plane of anchors 112, 114, and 116 intersect anchor base 161 at anchor base angle 163. Anchor base angle 163 is selected to optimize anchor deployment force and anchor release. Stops 152, 154, and 156 include a flat area to limit the piercing of the air passageway wall by anchor ends 122, 124, and 126. In alternative embodiments, the stops can be any configuration or shape known to those skilled in the art to limit the piercing.
In operation, when intra-bronchial device 150 is compressed for insertion into the catheter lumen for placement in the air passageway, anchors 112, 114, and 116 are collapsed into a first configuration. In the first configuration, the anchor ends 122, 124, and 126 are moved toward obstructing member 110, thereby decreasing anchor base angle 163 and folding anchors 112, 114, and 116 toward obstructing member 110. The anchor ends and the anchors may be moved by sliding a catheter or hollow member over anchor base 161 and toward obstructing member 110. When intra-bronchial device 150 is deployed from the catheter lumen, the memory and resiliency of the anchors 112, 114, and 116, anchor angle 163, and anchor base 161 impart a force that moves the anchor members into a second configuration, which is the deployed configuration, to engage air passageway wall 130. The second or deployed configuration is illustrated in
For removal, a retractor device is deployed from a catheter to engage anchor base 161 and restrain intra-bronchial device 150. Anchor base aperture 165 is arranged for being gripped by a retractor device. The retractor device may be a biopsy forceps to engage anchor base 161, or a hooked device to engage anchor base aperture 165. The retractor device is then used to draw intra-bronchial device 150 proximal, releasing the anchors 112, 114, and 116 from the air passageway wall. This collapses the anchors into to the first configuration for removal.
In an alternative step to collapse the anchors, after anchor base 161 or aperture 165 is engaged, a catheter may then moved distally over anchor base 161, and in contact with anchors 112, 114, and 116. The catheter is further moved against anchors 112, 114, and 116, while intra-bronchial device 150 is restrained at anchor base 161. This releases the anchors 112, 114, and 116 from the air passageway wall. This collapses the anchors into to the first configuration for removal.
Continuing with the removal steps, intra-bronchial device 150 is then further drawn into the catheter by pulling on the retractor device used to engage anchor base 161. This collapses support structure 101 and obstructing member 110 so that they may be fully drawn into the catheter. Once drawn into the catheter, intra-bronchial device 160 may be removed from the air passageway and the patient.
Central support structure 109 extends distal of obstructing member 110, and carries anchor base 161 distal of obstructing member 110. Anchor base 161 carries anchors 112, 114, 116, and 118. The linear plane of anchors 112, 114, 116, and 118 intersects anchor base 161 at anchor angle 163. Anchor angle 163 is selected to optimize anchor deployment force and anchor release. The anchors 112, 114, 116, and 118, and anchor base 161 may be constructed by laser cutting a single piece of hypodermic tubing lengthwise to form the anchors 112, 114, 116, and 118, and then bending the anchors to form anchor angle 163. Anchor base 161 is secured to central support structure 109. Support members 102, 103, 104, 105, 106, and 108, and the obstructing member support member base 170 may be constructed in a like manner. Obstructing member 110 is secured to the obstructing member support base 170, and alternatively to support members 102, 103, 104, 105, 106, and 108. The assembly of obstructing member 110 and support base 170 is secured to central support structure 109. Central support structure 109 may extend proximal of support member base 170 to provide a surface for gripping the intra-bronchial device 160 for removal, and may include an aperture to be engaged by a hooked device.
Intra-bronchial device 190 is generally similar in construction, operation, placement, and removal to the intra-bronchial device 150 of
“U” shaped retracting member 192 is coupled to support members 103 and 104, and “U” shaped retracting member 194 is coupled to support members 106 and 108. “U” shaped retracting members 192 and 194 may be constructed of any material suitable for use within a patient, and may or may not be resilient as required by the particular embodiment. When intra-bronchial device 190 is fully deployed in an air passageway, the “U” shaped retracting members 192 and 194 are arranged opposite each other, and they partially overlap, with the apex of one lying within a space bounded by the “U” shape of the other member. In the deployed configuration, increasing the distance between apex 193 and apex 195 moves support member pairs 103-104 and 106-108 centrally.
In operation, when intra-bronchial device 190 is compressed for insertion into a catheter lumen and placement in an air passageway, support members 102, 103, 104, 105, 106, and 108 are collapsed centrally into a first configuration. This causes the anchor ends 123, 124, 126 and 128 to move centrally.
When intra-bronchial device 190 is deployed from the catheter lumen, the memory and resiliency of the support member pairs 103,104 and 106,108 impart a force that moves the anchors 113 and 114, and 116 and 118, and their anchor ends 123 and 124, and 126 and 128 into a second configuration, which is the deployed configuration to engage air passageway wall. In addition, deployment of intra-bronchial device 190 may include a step of forcibly decreasing the distance between apexes 193 and 195 to forcibly move the anchors 113 and 114, and 116 and 118 into engagement with the wall of the air passageway. While the anchors 113 and 114, and 116 and 118 of this embodiment do not include stops, the expansive or peripheral movement of the anchors will be limited by the interior surface of obstructing member 110. This may limit the piercing of the air passageway wall by anchors 113 and 114, and 116 and 118.
In an alternative embodiment, support member pairs 103,104 and 106,108 may be compressed for insertion into a catheter lumen by a device that increases the distance between apex 193 and apex 195. Such a device could be a tool with spreading jaws, or a tapered member inserted between the apexes. The device could be left in engagement after insertion into the catheter, and then withdrawn to allow support member pairs 103-104 and 106-108 to move apart and engage their anchors into the wall of the air passageway.
For removal, a retractor device is deployed from a catheter lumen to engage apex 193 and 195, and restrain intra-bronchial device 190. The retractor device may be any device that fits into the space defined by apexes 193 and 195 when the intra-bronchial device 190 is in its fully deployed configuration. The retractor device is used to increase the distance between apexes 193 and 195 until anchors 113, 114, 116, and 118, and anchor ends 123, 124, 126, and 128 are released from the air passageway wall. This collapses the anchors into to the first configuration for removal. Intra-bronchial device 190 is then further collapsed, and drawn into the catheter by pulling on the retractor device. This additionally collapses support structure 101 and obstructing member 110 into the first position so that they may be fully drawn into the catheter. Once drawn into the catheter, intra-bronchial device 190 may be removed from the air passageway and the patient.
The central support structure 109 of support structure 101 extends both distally and proximally of obstructing member 110, and carries both the proximal anchors 112, 113, 114, 116, and 118 and distal anchors 212, 213, 214, 216, and 218. The support structure 101 also includes support members 102, 103, 104, 106, and 108. Because of the perspective of
Although the present invention has been described in considerable detail with reference to certain preferred embodiments, other embodiments are possible. Therefore, the spirit or scope of the appended claims should not be limited to the description of the embodiments contained herein. It is intended that the invention resides in the claims hereinafter appended.
This is a divisional of U.S. patent application Ser. No. 10/150,547, filed on May 17, 2002, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2981254 | Vanderbilt | Apr 1961 | A |
3540431 | Mobin-Uddin | Nov 1970 | A |
3657744 | Ersek | Apr 1972 | A |
3760808 | Bleuer | Sep 1973 | A |
3788327 | Donowitz et al. | Jan 1974 | A |
3874388 | King et al. | Apr 1975 | A |
4014318 | Dockum et al. | Mar 1977 | A |
4086665 | Poirier | May 1978 | A |
4212463 | Repinski et al. | Jul 1980 | A |
4250873 | Bonnet | Feb 1981 | A |
4302854 | Runge | Dec 1981 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4681110 | Wiktor | Jul 1987 | A |
4710192 | Liotta et al. | Dec 1987 | A |
4727873 | Mobin-Uddin | Mar 1988 | A |
4732152 | Wallsten et al. | Mar 1988 | A |
4759758 | Gabbay | Jul 1988 | A |
4795449 | Schneider et al. | Jan 1989 | A |
4808183 | Panje | Feb 1989 | A |
4819664 | Nazari | Apr 1989 | A |
4830003 | Wolff et al. | May 1989 | A |
4832680 | Haber et al. | May 1989 | A |
4846836 | Reich | Jul 1989 | A |
4850999 | Planck | Jul 1989 | A |
4852568 | Kensey | Aug 1989 | A |
4877025 | Hanson | Oct 1989 | A |
4934999 | Bader | Jun 1990 | A |
4968294 | Salama | Nov 1990 | A |
5061274 | Kensey | Oct 1991 | A |
5116360 | Pinchuk et al. | May 1992 | A |
5116564 | Jansen et al. | May 1992 | A |
5123919 | Sauter et al. | Jun 1992 | A |
5151105 | Kwan-Gett | Sep 1992 | A |
5158548 | Lau et al. | Oct 1992 | A |
5161524 | Evans | Nov 1992 | A |
5283063 | Freeman | Feb 1994 | A |
5304199 | Myers | Apr 1994 | A |
5306234 | Johnson | Apr 1994 | A |
5314473 | Godin | May 1994 | A |
5352240 | Ross | Oct 1994 | A |
5358518 | Camilli | Oct 1994 | A |
5366478 | Brinkerhoff et al. | Nov 1994 | A |
5382261 | Palmaz | Jan 1995 | A |
5392775 | Adkins, Jr. et al. | Feb 1995 | A |
5409019 | Wilk | Apr 1995 | A |
5411507 | Heckele | May 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5413599 | Imachi et al. | May 1995 | A |
5417226 | Juma | May 1995 | A |
5445626 | Gigante | Aug 1995 | A |
5453090 | Martinez et al. | Sep 1995 | A |
5486154 | Kelleher | Jan 1996 | A |
5499995 | Teirstein | Mar 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5507754 | Green et al. | Apr 1996 | A |
5509900 | Kirkman | Apr 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5562608 | Sekins et al. | Oct 1996 | A |
5603698 | Roberts et al. | Feb 1997 | A |
5645565 | Rudd et al. | Jul 1997 | A |
5660175 | Dayal | Aug 1997 | A |
5662713 | Andersen et al. | Sep 1997 | A |
5683451 | Lenker et al. | Nov 1997 | A |
5693089 | Inoue | Dec 1997 | A |
5697968 | Rogers et al. | Dec 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5725519 | Penner et al. | Mar 1998 | A |
5752965 | Francis et al. | May 1998 | A |
5755770 | Ravenscroft | May 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5800339 | Salama | Sep 1998 | A |
5803078 | Brauner | Sep 1998 | A |
5833694 | Poncet | Nov 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5851232 | Lois | Dec 1998 | A |
5855587 | Hyon et al. | Jan 1999 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5947997 | Pavcnik et al. | Sep 1999 | A |
5954636 | Schwartz et al. | Sep 1999 | A |
5954766 | Zadno-Azizi et al. | Sep 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5972009 | Fortier et al. | Oct 1999 | A |
5976158 | Adams et al. | Nov 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5984965 | Knapp et al. | Nov 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6007575 | Samuels | Dec 1999 | A |
6009614 | Morales | Jan 2000 | A |
6010525 | Bonutti et al. | Jan 2000 | A |
6020380 | Killian | Feb 2000 | A |
6027525 | Suh et al. | Feb 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6051022 | Cai et al. | Apr 2000 | A |
6068635 | Gianotti | May 2000 | A |
6068638 | Makower | May 2000 | A |
6077291 | Das | Jun 2000 | A |
6083255 | Laufer et al. | Jul 2000 | A |
6096027 | Layne | Aug 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6123663 | Rebuffat | Sep 2000 | A |
6132458 | Staehle et al. | Oct 2000 | A |
6135729 | Aber | Oct 2000 | A |
6135991 | Muni et al. | Oct 2000 | A |
6141855 | Morales | Nov 2000 | A |
6149664 | Kurz | Nov 2000 | A |
6162245 | Jayaraman | Dec 2000 | A |
6165179 | Cathcart et al. | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6174323 | Biggs et al. | Jan 2001 | B1 |
6183520 | Pintauro et al. | Feb 2001 | B1 |
6200333 | Laufer | Mar 2001 | B1 |
6203551 | Wu | Mar 2001 | B1 |
6206918 | Campbell et al. | Mar 2001 | B1 |
6234996 | Bagaoisan et al. | May 2001 | B1 |
6238334 | Easterbrook, III et al. | May 2001 | B1 |
6240615 | Kimes et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6258100 | Alferness et al. | Jul 2001 | B1 |
6267775 | Clerc et al. | Jul 2001 | B1 |
6270527 | Campbell et al. | Aug 2001 | B1 |
6287290 | Perkins et al. | Sep 2001 | B1 |
6287334 | Moll et al. | Sep 2001 | B1 |
6293951 | Alferness et al. | Sep 2001 | B1 |
6302893 | Limon et al. | Oct 2001 | B1 |
6312407 | Zadno-Azizi et al. | Nov 2001 | B1 |
6325777 | Zadno-Azizi et al. | Dec 2001 | B1 |
6325778 | Zadno-Azizi et al. | Dec 2001 | B1 |
6327772 | Zadno-Azizi et al. | Dec 2001 | B1 |
6328689 | Gonzalez et al. | Dec 2001 | B1 |
6355014 | Zadno-Azizi et al. | Mar 2002 | B1 |
6398775 | Perkins et al. | Jun 2002 | B1 |
6402754 | Gonzalez | Jun 2002 | B1 |
6416554 | Alferness et al. | Jul 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6428561 | Johansson-Ruden et al. | Aug 2002 | B1 |
6439233 | Geertsema | Aug 2002 | B1 |
6447530 | Ostrovsky et al. | Sep 2002 | B1 |
6458076 | Pruitt | Oct 2002 | B1 |
6471718 | Staehle et al. | Oct 2002 | B1 |
6485407 | Alferness et al. | Nov 2002 | B2 |
6488673 | Laufer et al. | Dec 2002 | B1 |
6491706 | Alferness et al. | Dec 2002 | B1 |
6493589 | Medhkour et al. | Dec 2002 | B1 |
6503272 | Duerig et al. | Jan 2003 | B2 |
6510846 | O'Rourke | Jan 2003 | B1 |
6514290 | Loomas | Feb 2003 | B1 |
6527761 | Soltesz et al. | Mar 2003 | B1 |
6558429 | Taylor | May 2003 | B2 |
6568387 | Davenport et al. | May 2003 | B2 |
6569166 | Gonzalez | May 2003 | B2 |
6585639 | Kotmel et al. | Jul 2003 | B1 |
6592594 | Rimbaugh et al. | Jul 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6610043 | Ingenito | Aug 2003 | B1 |
6629951 | Laufer et al. | Oct 2003 | B2 |
6634363 | Danek et al. | Oct 2003 | B1 |
6638285 | Gabbay | Oct 2003 | B2 |
6679264 | Deem et al. | Jan 2004 | B1 |
6682250 | Banks | Jan 2004 | B2 |
6694979 | Deem et al. | Feb 2004 | B2 |
6709401 | Perkins et al. | Mar 2004 | B2 |
6712812 | Roschak et al. | Mar 2004 | B2 |
6722360 | Doshi | Apr 2004 | B2 |
6743259 | Ginn | Jun 2004 | B2 |
6749606 | Keast et al. | Jun 2004 | B2 |
6860847 | Alferness et al. | Mar 2005 | B2 |
20010010017 | Letac et al. | Jul 2001 | A1 |
20010025132 | Alferness et al. | Sep 2001 | A1 |
20010037808 | Deem et al. | Nov 2001 | A1 |
20010041906 | Gonzalez | Nov 2001 | A1 |
20010052344 | Doshi | Dec 2001 | A1 |
20010056274 | Perkins et al. | Dec 2001 | A1 |
20020007831 | Davenport et al. | Jan 2002 | A1 |
20020052626 | Gilson | May 2002 | A1 |
20020062120 | Perkins et al. | May 2002 | A1 |
20020077593 | Perkins et al. | Jun 2002 | A1 |
20020077696 | Zadno-Azizi et al. | Jun 2002 | A1 |
20020087153 | Roschak et al. | Jul 2002 | A1 |
20020095209 | Zadno-Azizi et al. | Jul 2002 | A1 |
20020111619 | Keast et al. | Aug 2002 | A1 |
20020111620 | Cooper et al. | Aug 2002 | A1 |
20020112729 | DeVore et al. | Aug 2002 | A1 |
20020138135 | Duerig et al. | Sep 2002 | A1 |
20020147462 | Mair et al. | Oct 2002 | A1 |
20030013935 | Alferness et al. | Jan 2003 | A1 |
20030018327 | Truckai et al. | Jan 2003 | A1 |
20030018344 | Kaji et al. | Jan 2003 | A1 |
20030050648 | Alferness et al. | Mar 2003 | A1 |
20030051733 | Kotmel et al. | Mar 2003 | A1 |
20030055331 | Kotmel et al. | Mar 2003 | A1 |
20030070682 | Wilson et al. | Apr 2003 | A1 |
20030127090 | Gifford et al. | Jul 2003 | A1 |
20030154988 | DeVore | Aug 2003 | A1 |
20030158515 | Gonzalez | Aug 2003 | A1 |
20030167065 | Kumar | Sep 2003 | A1 |
20030180922 | Alferness | Sep 2003 | A1 |
20030183235 | Rimbaugh et al. | Oct 2003 | A1 |
20030195385 | DeVore | Oct 2003 | A1 |
20030212412 | Dillard et al. | Nov 2003 | A1 |
20030216769 | Dillard et al. | Nov 2003 | A1 |
20030228344 | Fields et al. | Dec 2003 | A1 |
20040039250 | Tholfsen et al. | Feb 2004 | A1 |
20040243140 | Alferness et al. | Dec 2004 | A1 |
20050033310 | Alferness et al. | Feb 2005 | A1 |
20050033344 | Dillard et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
100 04 979 | Aug 2000 | DE |
1151729 | Nov 2001 | EP |
1157663 | Nov 2001 | EP |
324 729 | Nov 1998 | GB |
2140211 | Oct 1999 | RU |
852321 | Jul 1981 | SU |
WO 9426175 | Nov 1994 | WO |
9532018 | Nov 1995 | WO |
WO 9634582 | Nov 1996 | WO |
WO 9744085 | Nov 1997 | WO |
WO 9800840 | Jan 1998 | WO |
WO 9819633 | May 1998 | WO |
PCTUS9818366 | Sep 1998 | WO |
WO 9839047 | Sep 1998 | WO |
WO 9844854 | Oct 1998 | WO |
PCTGB9800652 | Nov 1998 | WO |
WO 9901076 | Jan 1999 | WO |
9913801 | Mar 1999 | WO |
WO 9926692 | Jun 1999 | WO |
9932040 | Jul 1999 | WO |
WO 9942161 | Aug 1999 | WO |
WO 9964109 | Dec 1999 | WO |
WO 0042950 | Jul 2000 | WO |
WO 0051510 | Sep 2000 | WO |
0062699 | Oct 2000 | WO |
0078386 | Dec 2000 | WO |
WO 0078407 | Dec 2000 | WO |
0103642 | Jan 2001 | WO |
PCTUS0018286 | Jan 2001 | WO |
WO 0105334 | Jan 2001 | WO |
WO 0110313 | Feb 2001 | WO |
WO 0110314 | Feb 2001 | WO |
WO 0112104 | Feb 2001 | WO |
0128433 | Apr 2001 | WO |
WO 0145590 | Jun 2001 | WO |
WO 0149213 | Jul 2001 | WO |
WO 0152775 | Jul 2001 | WO |
WO 0154585 | Aug 2001 | WO |
WO 0154625 | Aug 2001 | WO |
WO 0154685 | Aug 2001 | WO |
PCTUS0106958 | Sep 2001 | WO |
0174271 | Oct 2001 | WO |
0189366 | Nov 2001 | WO |
PCTNZ0100092 | Nov 2001 | WO |
WO 0187170 | Nov 2001 | WO |
WO 0205884 | Jan 2002 | WO |
PCTUS0128360 | Mar 2002 | WO |
WO 0222072 | Mar 2002 | WO |
WO 0232333 | Apr 2002 | WO |
0234322 | May 2002 | WO |
WO 0247575 | Jun 2002 | WO |
WO 0256794 | Jul 2002 | WO |
02064045 | Aug 2002 | WO |
WO 02064190 | Aug 2002 | WO |
02094087 | Nov 2002 | WO |
01095786 | Dec 2002 | WO |
WO 03022124 | Mar 2003 | WO |
WO 03030975 | Apr 2003 | WO |
WO 03041779 | May 2003 | WO |
WO 03047468 | Jun 2003 | WO |
WO 03078579 | Sep 2003 | WO |
WO 03088820 | Oct 2003 | WO |
WO 03099164 | Dec 2003 | WO |
WO 2004010845 | Feb 2004 | WO |
2004010845 | May 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20040167636 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10150547 | May 2002 | US |
Child | 10744577 | US |