In printing processes, marking material is applied to substrates to form images. In these processes, pressure can be applied to the substrates and marking material with contact surfaces to level the marking material on the substrates. The marking material can offset to the surfaces, resulting in unsatisfactory fixed images.
It would be desirable to provide methods of forming images on substrates in printing and apparatuses for forming images on substrates that can form images having adjustable gloss with ink.
Apparatuses and methods for forming images on substrates in printing are provided. An exemplary embodiment of the apparatuses comprises a first marking station for applying a first ink having a first color to a surface of a substrate; a first partial-curing station downstream from the first marking station including at least one first radiant energy source for irradiating the first ink on the surface of the substrate with first radiation to partially-cure, and adjust gloss of, the first ink; a second marking station downstream from the first partial-curing station for applying a second ink having a second color to the surface of the substrate; a second partial-curing station downstream from the second marking station including at least one second radiant energy source for irradiating the first ink and the second ink on the surface of the substrate with second radiation to further partially-cure the first ink and to partially-cure the second ink to adjust gloss of the first ink and the second ink; a leveling device comprising a first member, a second member, and a nip formed by the first member and second member, the first member and second member being configured to apply pressure to the partially-cured first ink and second ink when the substrate is received at the nip to level the first ink and second ink on the surface of the substrate; and a post-leveling curing device for irradiating the as-leveled first ink and second ink on the surface of the substrate to substantially-fully cure the first ink and the second ink.
The disclosed embodiments include apparatuses for forming images on substrates in printing. An exemplary embodiment of the apparatuses comprises a first marking station for applying a first ink having a first color to a surface of a substrate; a first partial-curing station downstream from the first marking station including at least one first radiant energy source for irradiating the first ink on the surface of the substrate with first radiation to partially-cure, and adjust gloss of, the first ink; a second marking station downstream from the first partial-curing station for applying a second ink having a second color to the surface of the substrate; a second partial-curing station downstream from the second marking station including at least one second radiant energy source for irradiating the first ink and the second ink on the surface of the substrate with second radiation to further partially-cure the first ink and to partially-cure the second ink to adjust gloss of the first ink and the second ink; a leveling device comprising a first member, a second member, and a nip formed by the first member and second member, the first member and second member being configured to apply pressure to the partially-cured first ink and second ink when the substrate is received at the nip to level the first ink and second ink on the surface of the substrate; and a post-leveling curing device for irradiating the as-leveled first ink and second ink on the surface of the substrate to substantially-fully cure the first ink and the second ink.
The disclosed embodiments further include methods for forming images on substrates in printing. An exemplary embodiment of the methods comprises applying a first ink having a first color to a surface of a substrate with a first marking station; irradiating the first ink on the surface of the substrate with first radiation emitted by at least one first radiant energy source of a first partial-curing station downstream from the first marking station to partially-cure, and adjust gloss of, the first ink; applying a second ink having a second color to the surface of the substrate with a second marking station downstream from the first partial-curing station; irradiating the second ink on the surface of the substrate with second radiation emitted by at least one second radiant energy source of a second partial-curing station downstream from the second marking station to further partially-cure the first ink and to partially-cure the second ink to adjust gloss of the first ink and the second ink; applying pressure to the substrate and the partially-cured first ink and second ink at a nip of a leveling device with a first member and a second member forming the nip to level the first ink and second ink on the surface of the substrate; and irradiating the as-leveled first ink and second ink on the surface of the substrate to substantially-fully cure the first ink and second ink.
Ultra-violet (UV) curable inks can be used to form images on substrates in printing. UV-curable inks applied to a substrate are exposed to UV radiation to cure the ink. During this exposure, photoinitiator substances contained in the ink are irradiated with the UV radiation, and the incident flux converts monomers in the ink into a cross-linked polymer matrix, resulting in a hard and durable mark on the substrate. However, for various applications it is desirable for the ink to be leveled prior to this UV curing. Additionally, certain print applications, such as packaging, may benefit from having thin ink layers of relatively-constant thickness on prints.
UV-curable phase change inks may have a gel-like consistency at ambient temperature. When these inks are heated from about ambient temperature to an elevated temperature, they undergo a phase change to a low-viscosity liquid. These inks can be heated until they change to a liquid and then applied to a substrate. Once the ink contacts the substrate, the ink cools and changes phase from the liquid phase back to its more-viscous, gel consistency.
At ambient temperature, UV-curable gel inks have very little cohesive strength prior to being cured. Moreover, these inks may be formulated to have good affinity to many types of materials. Consequently, conventional methods and devices used for flattening a layer of other ink types, such as a conventional fixing roll that may be used in xerography, are unsuitable for leveling gel inks prior to curing, because gel inks will tend to split and offset onto the device used to try to flatten it.
It has been determined that radiation-curable inks, such as UV-curable gel inks, applied to substrates, can be exposed to radiation to partially-cure the inks prior to contact leveling to allow the inks to be leveled with zero, or substantially no, offset of the inks to contact surfaces of the leveling device. The term “curable” describes, for example, a material that may be cured via polymerization, including for example free radical routes, and/or in which polymerization is photoinitiated though use of a radiation-sensitive photoinitiator.
The term “radiation-curable” refers, for example, to all forms of curing upon exposure to a radiation source, including light and heat sources and including in the presence or absence of initiators. Exemplary radiation-curing techniques include, but are not limited to, curing using ultraviolet (UV) light, for example having a wavelength of 200-400 nm or more rarely visible light, optionally in the presence of photoinitiators and/or sensitizers, curing using thermal curing, in the presence or absence of high-temperature thermal initiators (and which may be largely inactive at the jetting temperature), and appropriate combinations thereof.
As used herein, the term “partial-cure” means that the radiant energy directed onto the ink is effective to cause some photoinitiators contained in the ink to be activated such that only partial polymerization of the ink occurs. The ink may contain two or more photoinitiators where some are activated in part and some are not activated at all by the radiation used during partial-curing. As a result of this partial polymerization, the viscosity of the ink is increased sufficiently to allow the as-irradiated ink to be passed through a nip and subjected to pressure substantially without offset of the ink in the nip. When the substrate enters the nip, the partially-cured ink has a sufficient viscosity that allows it to flow or spread on the substrate when sufficient pressure is applied to the ink to provide the desired leveling of the ink on the substrate with zero, or substantially no, offset of the inks.
It has been further determined that because pigments contained in individual ink colors absorb and reflect radiation differently, the cure rate for different ink colors is different. For example, black ink cures more slowly than cyan, magenta or yellow inks. Consequently, black ink will have significantly less gloss than magenta or yellow inks when cured using the same irradiation conditions. As a result, if all of these inks are UV-curable and laid down at once, and the image is then exposed to UV radiation, the inks will achieve different viscosity levels and have different gloss characteristics. Therefore, if multiple layers of ink are laid down on a substrate and then pre-cured prior to leveling, different colors of the ink will have different gloss. Additionally, within-sheet gloss will vary from color to color. For graphics on a sheet, such a non-uniform gloss appearance is undesirable. For some applications, it is desirable that the gloss level for all ink colors on a sheet be the same. Furthermore, even if the gloss levels of individual ink colors were the same, the overall gloss might still be higher or lower than desired on a substrate.
In light of these observations, methods of forming images on substrates in printing and apparatuses for forming images on substrates in printing are provided that can reduce differential gloss for different ink colors and allow the modification of the overall gloss level of images. In embodiments, the irradiation conditions used for the partial-curing of different ink colors applied to substrates can be selected to allow the gloss of individual colors to be changed using constant leveling conditions. The irradiation conditions that can be adjusted include radiant energy intensity and radiation exposure time of an ink, i.e., dwell. For example, the gloss of a first ink can be made to match the gloss of a second ink by using different irradiation conditions for the first ink than for the second ink. This result is due to the effectiveness of the radiation used during the partial curing in the presence of pigments contained in the individual ink colors.
In the methods and apparatuses, two or more inks may be applied to a substrate and then partially cured to adjust the gloss of the inks. The partial-curing conditions used for individual ink colors can be selected to provide the desired gloss for each color. The partial-curing can result in multi-colored images comprised of different ink colors with matching gloss.
The depicted substrate 110 is a sheet. For example, the substrate 110 can be a sheet of plain paper, a polymer film, metal foil, packaging material, or the like. In other embodiments, the substrate can be a continuous web of material, such as plain paper, a polymer film, metal foil, packaging material, or the like. In embodiments, the marking/partial-curing device 120 and the post-leveling curing device 200 are stationary and the substrate 110 is moved past these devices to deposit ink onto the substrate 110 and then irradiate the ink 116.
Embodiments of the marking/partial-curing device 120 include at least two marking stations and at least two partial-curing stations. Each marking station can apply a different color of ink to the substrate 110.
Each of the first marking station 122, second marking station 124, third marking station 126 and fourth marking station 128 can include print heads arranged in a “direct-to-substrate” arrangement to deposit ink droplets on the front surface 112 of the substrate 110 advancing in the process direction P. For example, the print heads can be heated piezoelectric print heads, MEMS (micro-electro-mechanical system) print heads, or the like.
The marking/partial-curing device 120 further includes a first partial-curing station 130 positioned between the first marking station 122 and the second marking station 124, a second partial-curing station 132 positioned downstream from the first partial-curing station 130 and between the second marking station 124 and the third marking station 126, a third partial-curing station 134 positioned downstream from the second partial-curing station 132 and between the third marking station 126 and the fourth marking station 128, and a fourth partial-curing station 136 positioned downstream from the fourth marking station 128. The first partial-curing station 130, second partial-curing station 132, third partial-curing station 134 and fourth partial-curing station 136 are connected in a conventional manner to a controller 138 configured to control their respective operation in printing.
Each of the first marking station 122, second marking station 124, third marking station 126 and fourth marking station 128 can apply a different primary color of ink to the front face 112 of the substrate 110. For example, these marking stations can use the subtractive primary colors cyan, magenta and yellow with black ink. The print heads can place different color separations onto the front surface 112 to build a desired full-color image according to input digital data. In terms of difficulty of curing, black ink is most difficult to cure, followed by cyan ink, then magenta ink and then yellow ink. In the marking/partial-curing device 120, the order that different ink colors are applied to a substrate to form a multi-color image can be from the most-difficult to cure ink color to the least-difficult to cure ink color of the different ink colors that are applied. For example, the first marking station 122 can apply black ink, the second marking station 124 can apply cyan ink, the third marking station 126 can apply magenta ink, and the fourth marking station 128 can apply yellow ink to the substrate 110 to form a full-color image. For this arrangement of the marking stations, the as-deposited black ink is irradiated by each of the first partial-curing station 130, second partial-curing station 132, third partial-curing station 134 and fourth partial-curing station 136 prior to being leveled at the leveling device 160, as the substrate 110 is advanced along the process direction P. The black ink is progressively further partially-cured by radiant energy as the substrate 110 advances. The as-deposited cyan ink is exposed to radiation at the second partial-curing station 132, third partial-curing station 134 and fourth partial-curing station 136; the magenta ink is exposed to radiation at the third partial-curing station 134 and fourth partial-curing station 136; and the yellow ink is exposed to radiation only at the fourth partial-curing station 136. By arranging the marking stations and partial-curing stations of the marking/partial-curing device 120 in this order, black ink applied to a substrate is subjected to the most partial-curing to increase its viscosity, cyan ink the second most partial-curing, magenta ink the third most partial-curing, and yellow ink the least partial-curing, to modify the gloss of these inks.
The dosage of radiant energy applied to each ink color deposited on the substrate 110 can be controlled by adjusting the radiation intensity and/or dwell. The intensity of the radiation emitted by each of the first partial-curing station 130, second partial-curing station 132, third partial-curing station 134 and fourth partial-curing station 136; the transport speed of the substrate 110 past these partial-curing stations; and the number of radiant energy sources of each of these partial-curing stations can be selected to reduce differential gloss and make the gloss of each ink color in an image the same, or substantially the same. Black ink can be given sufficient radiant energy exposure that its gloss (and viscosity) matches, or substantially matches, the gloss (and viscosity) of the yellow ink. Likewise, the cyan and magenta inks can be given sufficient radiation exposure that their respective glosses (and viscosities) also match, or substantially match, the gloss (and viscosity) of the yellow ink.
In embodiments, the gloss level of different ink colors applied to a substrate can be measured and quantified by Gardner gloss units. Using, e.g., 75° Gardner gloss units (i.e., an angle of illumination of 75° C.) for gloss measurements, the difference in gloss between any two ink colors on the substrate can be limited to range from 0 to about 5 Gardner gloss units, such as less than 4, less than 3, less than 2, or less than 1, Gardner gloss units.
In embodiments, the partial-curing conditions used for each ink color applied to a substrate can also be adjusted to shift the overall gloss of an image either up or down as desired for the given application, i.e., substrate matching. The overall gloss of an image is substantially the same as the gloss of the individual ink colors that are made to be substantially the same as each other by partial-curing. In these embodiments, the intensity of the radiation emitted by the radiant energy sources of each of the first partial-curing station 130, second partial-curing station 132, third partial-curing station 134 and fourth partial-curing station 136; the number of radiant energy sources of each of these partial-curing stations, and/or dwell time can be adjusted to vary the overall gloss.
The ink has a composition that allows it to be cured using suitable radiant energy to fix robust images onto substrates. The ink can comprise ultraviolet light (UV)-curable ink containing one or more photoinitiator materials. UV-curable inks can be heated to an elevated temperature and jetted while at a low viscosity. When these inks impinge on a cooler substrate, such as paper at ambient temperature, the inks cool to the substrate temperature. During cooling, the inks become increasingly viscous. When the UV-curable ink is exposed to UV radiation, polymerization and cross-linking occurs in the ink, which further increases its viscosity.
The UV-curable inks used in embodiments can include curable gellator and/or curable wax components.
Exemplary inks that can be used to form images on substrates in embodiments of the disclosed methods and apparatuses are described in U.S. Pat. No. 7,665,835, which discloses a phase change ink comprising a colorant, an initiator, and an ink vehicle; in U.S. Patent Application Publication No. 2007/0123606, which discloses a phase change ink comprising a colorant, an initiator, and a phase change ink carrier; and in U.S. Pat. No. 7,559,639, which discloses a radiation curable ink comprising a curable monomer that is liquid at 25° C., curable wax and colorant that together form a radiation curable ink, each of which is incorporated herein by reference in its entirety.
The print heads of the marking/partial-curing device 120 can be used to heat phase-change inks, for example, to a sufficiently-high temperature to reduce their viscosity for jetting as droplets onto the substrate 110. When a phase-change ink impinges on the substrate 110, the ink rapidly cools and develops a gel consistency on the substrate 110. Due to this rapid cooling, the phase-change ink does not have sufficient time to level on the front surface 112 of the substrate 110 before developing the gel consistency.
In embodiments of the printing apparatus 100, each ink color of the as-deposited layer of ink 116 on the front surface 112 of the substrate 110 is irradiated by the marking/partial-curing device 120 with radiant energy effective to partially-cure the ink. As a result of this partial polymerization, the viscosity and cohesion of the ink are increased sufficiently to allow the as-irradiated ink to be passed through a nip, where pressure is applied to the ink, without offset of the ink in the nip. When the substrate 110 enters the nip, the partially-cured ink 116 has viscosity and hardness characteristics that allow it to flow or spread on the front surface 112 of the substrate 110 when sufficient pressure is applied to provide the desired leveling of the ink on the front surface 112.
In embodiments, each of the first partial-curing station 130, second partial-curing station 132, third partial-curing station 134 and fourth partial-curing station 136 includes one or more radiant energy sources.
As shown in
The radiant energy sources of the first partial-curing station 130, second partial-curing station 132, third partial-curing station 134 and fourth partial-curing station 136 can comprise at least one light-emitting diode (LED) array, or the like. For example, each of the radiant energy sources 136A, 136B and 136C shown in
The radiant energy sources of the partial-curing stations can be selected to emit radiant energy having a spectrum that is optimized for the ink compositions used in printing in order to produce optimized partial-curing of the ink 116. The spectrum of the radiant energy is generally provided by a graph giving the intensity of the radiant energy at a range of wavelengths extending from the far UV (about 100 nm wavelength) to the near UV (about 400 nm wavelength).
During partial-curing, the temperature of the substrate 110 and layer of ink 116 can be controlled using a temperature-controlled platen 150. The platen 150 can typically be operated at a temperature of about 10° C. to about 30° C., such as about 15° C. to about 20° C., to control the temperature of the substrate 110 and ink 116 to the desired temperature. During partial-curing, the temperature of the ink 116 may be controlled to be below ambient temperature, at ambient temperature, or above ambient temperature.
In some embodiments of the marking/partial-curing device 120, the radiant energy sources of the first partial-curing station 130, second partial-curing station 132, third partial-curing station 134 and fourth partial-curing station 136 of the marking/partial-curing device 120 can be turned ON throughout the partial-curing as the substrate 110 is moved continuously past these devices. In these embodiments, the radiant energy sources of each of the first partial-curing station 130, second partial-curing station 132, third partial-curing station 134 and fourth partial-curing station 136 can have the same radiation spectrum. The intensity of the radiation emitted by the radiant energy sources of each of the first partial-curing station 130, second partial-curing station 132, third partial-curing station 134 and fourth partial-curing station 136 can be varied for different ink colors. For example, the intensity of the radiation emitted by the radiant energy sources of the first partial-curing station 130 can be higher than the intensity of the radiation emitted by the radiant energy sources of the second partial-curing station 132, third partial-curing station 134 and fourth partial-curing station 136. In these embodiments, the imaged regions of the substrate 110 can have the same, or about the same, gloss.
In embodiments of the marking/partial-curing device 120 in which each of the first partial-curing station 130, second partial-curing station 132, third partial-curing station 134 and fourth partial-curing station 136 includes one or more LED arrays, the LEDs of the array(s) can be turned ON throughout the partial-curing as the substrate 110 is moved continuously past these devices.
The partially-cured ink 116 has viscosity and cohesion characteristics that allow it to be leveled using the leveling device 160 to spread the ink on the front surface 112 to increase the line width of the ink 116. The leveling device 160 includes members having opposed surfaces for applying pressure to the ink 116 on the substrate 110. The members can include two rolls; a first roll and a belt provided on a second roll; or two belts.
The leveling roll 162 can be made from various materials. For example, the illustrated leveling roll 162 includes a core 168 and an outer layer 170 including an outer surface 172 overlying the core 168. The core 168 can comprise a suitable metal, such as aluminum, an aluminum alloy, or the like. In embodiments, the outer layer 170 can be comprised of a durable, hydrophilic material. The outer layer 170 can be applied, e.g., as a coating over the core 168. In embodiments, the outer layer 170 can be comprised of a polymer having suitable properties, such as a fluorinated polymer, or the like.
The pressure roll 164 can be made from various materials. The illustrated pressure roll 164 includes a core 174 and an outer layer 176 including an outer surface 178 overlying the core 174. In embodiments, the core 174 is comprised of a relatively-hard material. For example, the core 168 can be comprised of a suitable metal, such as steel, stainless steel, or the like. The outer layer 176 can be comprised of a material that is elastically deformed by contact with the leveling roll 162 to form the nip 166. For example, the outer layer 176 can be comprised of silicone rubber, or the like.
In embodiments, a release liquid can be applied to the outer surface 172 of the leveling roll 162 to wet the outer surface 172 to aid in the reduction of image offset during leveling. For example, the release liquid can be comprised substantially of water, with an effective amount of added detergent to reduce surface tension.
In the apparatus 100, the post-leveling curing device 200 includes at least one radiant energy source that emits radiant energy having a spectrum effective to substantially fully cure the ink 116 subsequent to the leveling of the ink 116 by the leveling device 160. The spectrum of the radiant energy source(s) of the post-leveling curing device 200 can be the same as, or can be different from, the spectrum of the radiant energy emitted by the radiant energy sources of the marking/partial-curing device 120. For example, the post-leveling curing device 200 can comprise a UV-LED array that emits at a different peak wavelength and intensity than the radiant energy sources of the marking/partial-curing device 120.
It will be appreciated that various ones of the above-disclosed, as well as other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also, various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art, which are also intended to be encompassed by the following claims.
This application is related to the applications entitled “METHODS OF FORMING IMAGES ON SUBSTRATES WITH INK PARTIAL-CURING AND CONTACT LEVELING AND APPARATUSES USEFUL IN FORMING IMAGES ON SUBSTRATES” (Attorney Docket No. 056-0244) and “METHODS OF ADJUSTING GLOSS OF IMAGES LOCALLY ON SUBSTRATES USING INK PARTIAL-CURING AND CONTACT LEVELING AND APPARATUSES USEFUL IN FORMING IMAGES ON SUBSTRATES” (Attorney Docket No. 056-0245), which are filed on the same date as the present application, commonly assigned to the assignee of the present application, and incorporated herein by reference in its entirety.