Methods of coating resin and blending resin-coated proppant

Information

  • Patent Grant
  • 7216711
  • Patent Number
    7,216,711
  • Date Filed
    Tuesday, June 15, 2004
    20 years ago
  • Date Issued
    Tuesday, May 15, 2007
    17 years ago
Abstract
A method of consolidating particulates comprising providing a slurry comprising a carrier fluid, a first portion of particulates, and a second portion of particulates wherein the first portion of particulates is at least partially coated with resin or tackifying agent and wherein the second portion of particulates is substantially free of resin or tackifying agent; introducing the slurry into a portion of a subterranean formation such that the first portion of particulates and second portion of particulates to form a particulate pack in the portion of the subterranean formation; and, allowing the resin to substantially consolidate the particulate pack. A particulate slurry for use in subterranean formations comprising a carrier fluid, a first portion of particulates, and a second portion of particulates wherein the first portion of particulates is at least partially coated with resin or tackifying agent and wherein the second portion of particulates is substantially free of resin or tackifying agent.
Description
BACKGROUND

The present invention relates to methods and compositions for consolidating particulates in subterranean formations. More particularly, the present invention relates to methods of coating particulates with consolidating agents and blending consolidating agent-coated particulates.


Subterranean operations often use particulates coated with consolidating agents such as tackifying agents and/or resins. One example of a production stimulation operation using coated particulates is hydraulic fracturing, wherein a formation is treated to increase its permeability by hydraulically fracturing the formation to create or enhance one or more cracks or “fractures.” In most cases, a hydraulic fracturing treatment involves pumping a proppant-free, viscous fluid (known as a pad fluid) into a subterranean formation faster than the fluid can escape into the formation so that the pressure in the formation rises and the formation breaks, creating an artificial fracture or enlarging a natural fracture. Then a proppant is generally added to the fluid to form a slurry that is pumped into the fracture to prevent the fracture from closing when the pumping pressure is released. A portion of the proppant may be coated with a tackifying agent, inter alia, to prevent fines from migrating into the proppant pack. A portion of the proppant may also be coated with curable resin so that, once cured, the placed proppant forms a consolidated mass and prevents the proppant from flowing back during production of the well.


An example of a well completion operation using a treating fluid containing coated particulates is gravel packing. Gravel packing treatments are used, inter alia, to reduce the migration of unconsolidated formation particulates into the well bore. In gravel packing operations, particles known in the art as gravel are carried to a well bore by a hydrocarbon or water carrier fluid. That is, the particulates are suspended in a carrier fluid, which may be viscosified, and the carrier fluid is pumped into a well bore in which the gravel pack is to be placed. The carrier fluid leaks off into the subterranean zone and/or is returned to the surface while the particulates are left in the zone. The resultant gravel pack acts as a filter to separate formation sands from produced fluids while permitting the produced fluids to flow into the well bore. A portion of the gravel may be coated with resin or tackifying agent, inter alia, to further help control the migration of formation fines. Typically, gravel pack operations involve placing a gravel pack screen in the well bore and packing the surrounding annulus between the screen and the well bore with gravel designed to prevent the passage of formation sands through the pack. The gravel pack screen is generally a type of filter assembly used to support and retain the gravel placed during the gravel pack operation. A wide range of sizes and screen configurations are available to suit the characteristics of a particular well bore, the production fluid, and the subterranean formation sands. When installing the gravel pack, the gravel is carried to the formation in the form of a slurry by mixing the gravel with a viscosified carrier fluid. Once the gravel is placed in the well bore, the viscosity of the carrier fluid is reduced, and it is returned to the surface. Such gravel packs may be used to stabilize the formation while causing minimal impairment to well productivity. The gravel, inter alia, acts to prevent formation sands from occluding the screen or migrating with the produced fluids, and the screen, inter alia, acts to prevent the gravel from entering the well bore.


In some situations the processes of hydraulic fracturing and gravel packing are combined into a single treatment to provide stimulated production and an annular gravel pack to reduce formation sand production. Such treatments are often referred to as “frac pack” operations. In some cases, the treatments are completed with a gravel pack screen assembly in place, and the hydraulic fracturing treatment being pumped through the annular space between the casing and screen. In such a situation, the hydraulic fracturing treatment usually ends in a screen out condition creating an annular gravel pack between the screen and casing. This allows both the hydraulic fracturing treatment and gravel pack to be placed in a single operation.


SUMMARY OF THE INVENTION

The present invention relates to methods and compositions for consolidating particulates in subterranean formations. More particularly, the present invention relates to methods of coating particulates with consolidating agents and blending consolidating agent-coated particulates.


Some embodiments of the present invention provide methods of consolidating particulates comprising providing a slurry comprising a carrier fluid, a first portion of particulates, and a second portion of particulates wherein the first portion of particulates is at least partially coated with resin and wherein the second portion of particulates is substantially free of resin; introducing the slurry into a portion of a subterranean formation such that the first portion of particulates and second portion of particulates form a particulate pack in the portion of the subterranean formation; and, allowing the resin to substantially consolidate the particulate pack.


Other embodiments of the present invention provide methods of consolidating particulates comprising providing a slurry comprising a carrier fluid, a first portion of particulates, and a second portion of particulates wherein the first portion of particulates is at least partially coated with tackifying agent and wherein the second portion of particulates is substantially free of tackifying agent; introducing the slurry into a portion of a subterranean formation such that the first portion of particulates and second portion of particulates form a particulate pack in the portion of the subterranean formation; and, allowing the tackifying agent to substantially consolidate the particulate pack.


Other embodiments of the present invention provide particulate slurries for use in subterranean formations comprising a carrier fluid, a first portion of particulates, and a second portion of particulates wherein the first portion of particulates is at least partially coated with resin and wherein the second portion of particulates is substantially free of resin.


Other embodiments of the present invention provide particulate slurries for use in subterranean formations comprising a carrier fluid, a first portion of particulates, and a second portion of particulates wherein the first portion of particulates is at least partially coated with tackifying agent and wherein the second portion of particulates is substantially free of tackifying agent.


The features of the present invention will be readily apparent to those skilled in the art upon a reading of the description of the preferred embodiments that follows.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a stylized view of the distinction between a traditional resin coating (b) and the resin coatings of the present invention (a).





DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention relates to methods and compositions for consolidating particulates in subterranean formations. More particularly, the present invention relates to methods of coating particulates with consolidating agents and blending consolidating agent-coated particulates.


While it has been previously believed that in order to achieve strong, solid, conductive particulate packs it was necessary to coat as great a percentage of the particulates as possible, we have found that it is actually more beneficial to coat only a portion of the particulates, but to coat more heavily that portion with a relatively larger weight percentage of consolidating agent than has been previously used. By using a substantially homogeneous mixture of relatively heavily coated particulates and uncoated particulates to create a particulate pack, particular embodiments of the methods of the present invention offer economical approaches to coating particulates with resin while maintaining or enhancing the consolidation strength of the particulate pack.


In particular embodiments of the present invention, a first portion of particulates, typically ranging from about 10% to about 60% by weight of the total amount of particulates, is coated with a consolidating agent; then the consolidating agent-coated first portion of particulates is combined with a servicing fluid (such as a fracturing fluid or gravel packing fluid) with the remainder of the (uncoated) particulates (90% to 40% uncoated, depending on the percentage of consolidating agent-coated proppant). The mixing of the consolidating agent-coated and uncoated particulates in the servicing fluid allows the coated particulates to be distributed among the uncoated particulates. In certain embodiments, the resin consolidating agent-coated and uncoated particulates are substantially uniformly intermingled in the servicing fluid. When introduced into a subterranean fracture, the mixture of coated and uncoated particulates cures to form a particulate pack that may exhibit a consolidation strength equivalent to, and often even higher than, a traditional particulate pack comprised entirely of coated particulates.


Contributing to this enhanced consolidation strength is the fact that particular embodiments of the present invention use coated particulates that feature a thicker coating of consolidating agent than those found in traditional subterranean applications. For example, in traditional applications, consolidating agent-coated particulates are normally coated with a consolidating agent in an amount in the range of 3% to 5% by weight of the particulates. However, in particular embodiments of the present invention, the particulates used may be coated with a consolidating agent in an amount of at least about 5%, or in the range of from about 5.5% to about 50% by weight of the particulates. In other embodiments, the particulates used may be coated with a consolidating agent in an amount of at least about 7%. In other embodiments, the particulates used may be coated with a consolidating agent in an amount of at least about 10%. In other embodiments, the particulates used may be coated with a consolidating agent in an amount of at least about 15%. In accordance with certain methods of the present invention, one method of achieving such greater coatings of consolidating agent without greatly increasing costs is to use the same amount of consolidating agent that would be used to coat an entire batch of particulates in a traditional subterranean application, but use that amount of consolidating agent to coat only a fraction of the total amount of particulates.


The greater coating of consolidating agent on the first (coated) portion of the particulates may have numerous benefits. By coating only a portion of the particulates with this greater coating, more consolidating agent is concentrated at the contact points between the grains of particulates. This may allow the consolidating agent to build stronger grain-to-grain adhesions. Additionally, it is believed that the thicker coating of consolidating agent on the particulate may help to create larger interstitial spaces between the individual particulates. These larger interstitial spaces, or voids, may help enhance the conductivity of the particulate packs without reducing their consolidation strength. A stylized view of the distinction between the traditional consolidating agent coating and the consolidating agent coatings of the present invention is provided in FIG. 1. FIG. 1(a) illustrates a situation wherein only about 20–25% of the particulates is coated with consolidating agent, but that percentage is coated with a relatively greater coating of consolidating agent. FIG. 1(b) illustrates a situation wherein about 90–100% of the particulates are coated with a traditional thickness coating of consolidating agent. In FIGS. 1(a) and 1(b), the same amount of consolidating agent has been used to coat, but in FIG. 1(a) all of the consolidating agent is on one particulate while in FIG. 1(b) the resin is spread among five particulates.


The methods of the present invention may be used, inter alia, such that the total volume of consolidating agent used is less than that traditionally needed to effect good consolidation, thus resulting in a direct cost decrease due to the use of less consolidating agent. Alternatively, as described above, the methods of the present invention may use the same amount of consolidating agent coated on a smaller portion of the particulates, in that case while a direct cost benefit of reduced consolidating agent usage may not be seen, cost savings may still occur due to the fact that coating fewer particulates may result in simplified operating procedures, reduced horsepower requirement, and reduced equipment usage. It is within the ability of one skilled in the art to determine the minimum level of consolidation needed for a job and to select the level of consolidating agent accordingly. For example, when using curable resins, consolidation strengths (when considered in terms term of unconfined compressive strengths, UCC) may range from about 20 psi to 2,000 psi, depending on the resin concentration, cure time, and cure temperature.


Particulates used in accordance with the present invention are generally of a size such that formation sands that may migrate with produced fluids are prevented from being produced from the subterranean zone. Any suitable proppant or gravel may be used, including, but not limited to, graded sand, bauxite, ceramic materials, glass materials, walnut hulls, nut shells, polymer beads, and the like. Generally, the particulates have a size in the range of from about 4 to about 400 mesh, U.S. Sieve Series. In some embodiments of the present invention, the particulates are graded sand having a particle size in the range of from about 10 to about 70 mesh, U.S. Sieve Series.


As mentioned above, in accordance with the preferred methods of the present invention, only a portion of the total amount of proppant is coated with consolidating agent. In certain particular embodiments of the present invention, the particulates may be purchases as pre-coated from a commercial supplier (RCP). Suitable commercially available RCP materials include, but are not limited to, pre-cured resin-coated sand, curable resin-coated sand, curable resin-coated ceramics, single-coat, dual-coat, or multi-coat resin-coated sand, ceramic, or bauxite. Some examples available from Borden Chemical, Columbus, Ohio, are “XRT™ CERAMAX P,” “CERAMAX I,” “CERAMAX P,” “ACFRAC BLACK,” “ACFRAC CR,” “ACFRAC SBC,” “ACFRAC SC,” and “ACFRAC LTC.” Some examples available from Santrol, Fresno, Tex., are “HYPERPROP G2,” “DYNAPROP G2,” “MAGNAPROP G2,” “OPTIPROP G2,” “SUPER HS,” “SUPER DC,” “SUPER LC,” and “SUPER HT.” Typically, these products come from the supplier with a coating of resin in an amount in the range of about 3% to about 5% by weight of the proppant. However, as mentioned above, embodiments of the present invention generally employ a greater coating of than traditional RCP materials may be coated with consolidating agent in an amount of at least about 5%, or in the range of from about 5.5% to about 50% by weight of the particulates. In other embodiments, the particulates used may be coated with a consolidating agent in an amount of at least about 7%. In other embodiments, the particulates used may be coated with a consolidating agent in an amount of at least about 10%. In other embodiments, the particulates used may be coated with a consolidating agent in an amount of at least about 15%.


One suitable type of consolidating agent is a resin. Suitable resin compositions include those resins that are capable of forming a hardened, consolidated mass. Suitable resins include, but are not limited to, two-component epoxy-based resins, novolak resins, polyepoxide resins, phenol-aldehyde resins, urea-aldehyde resins, urethane resins, phenolic resins, furan/furfuryl alcohol resins, phenolic/latex resins, phenol formaldehyde resins, polyester resins and hybrids and copolymers thereof, polyurethane resins and hybrids and copolymers thereof, acrylate resins, and mixtures thereof. Some suitable resins, such as epoxy resins, may be of the two-component variety mentioned above and use an external catalyst or activator. Other suitable resins, such as furan resins generally require a time-delayed catalyst or an external catalyst to help activate the polymerization of the resins if the cure temperature is low (i.e., less than 250° F.), but will cure under the effect of time and temperature if the formation temperature is above about 250° F., preferably above about 300° F. Selection of a suitable resin coating material may be affected by the temperature of the subterranean formation to which the fluid will be introduced. By way of example, for subterranean formations having a bottom hole static temperature (“BHST”) ranging from about 60° F. to about 250° F., two-component epoxy-based resins comprising a hardenable resin component and a hardening agent component containing specific hardening agents may be preferred. For subterranean formations having a BHST ranging from about 300° F. to about 600° F., a furan-based resin may be preferred. For subterranean formations having a BHST ranging from about 200° F. to about 400° F., either a phenolic-based resin or a one-component HT epoxy-based resin may be suitable. For subterranean formations having a BHST of at least about 175° F., a phenol/phenol formaldehyde/furfuryl alcohol resin also may be suitable. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable resin for use in embodiments of the present invention and to determine whether a catalyst is required to trigger curing.


As mentioned above, particular embodiments of the present invention may employ an activator, or external catalyst, to trigger the curing of certain resin compositions, for example, two-component epoxy resins. In an exemplary embodiment, such an activator may be delivered by at least partially coating the non-resin-coated portion of the particulates with the activator prior to mixing the two portions of particulates together. Once mixed with the resin-coated particulates, the activator may trigger the curing of the resin, facilitating the consolidation of the particulates. When applied to the non-resin-coated portion of the particulates, the activator is typically present in an amount in the range of from about 0.01% to about 25% by weight of the particulates. Activators suitable for use in accordance with the present invention may depend on the resin employed in a particular embodiment. Examples of suitable activators include an alcohol; a ketone; an ester; an ether; an amide; benzene sulfonic acid; sulfuric acid; methane sulfonic acid; trichloroacetic acid; hydrochloric acid; hydrofluoric acid; ferric chloride; toluene sulfonic acid; chlorobenzene sulfonic acid; nitric acid; perchloric acid; a water soluble multivalent metal salt catalyst comprising at least one multivalent ion of either manganese, zinc, cadmium, magnesium, cobalt, nickel, copper, tin, iron, lead, or calcium; and combinations thereof. With the benefit of this disclosure, it is within the ability of one skilled in the art to select an activator appropriate for use with a selected resin, should an activator be necessary, and the amount necessary to trigger curing.


Similarly, particular embodiments of the present invention may also employ a curing agent to facilitate the curing of the resin. In an exemplary embodiment, such a curing agent may be delivered by at least partially coating the non-resin-coated portion of the particulates with the curing agent prior to mixing the two portions of particulates together. Once mixed with the coated particulates, the curing agent may facilitate the curing of the resin, and therefore the consolidation of the particulates. When applied to the non-resin-coated portion of the particulates, the curing agent is typically present in an amount in the range of from about 0.01% to about 25% by weight of the particulates. Curing agents suitable for use in accordance with the present invention may depend on the resin employed in a particular embodiment. Examples of suitable curing agents include amines, polyamines, amides, polyamides, hexachloroacetone, 1,1,3-trichlorotrifluoroacetone, benzotrichloride, benzylchloride, benzalchloride, 4,4′-diaminodiphenyl sulfone, and combinations thereof. With the benefit of this disclosure, it is within the ability of one skilled in the art to select a curing agent appropriate for use with a selected resin, should a curing agent be necessary, and the amount necessary to trigger curing.


In particular embodiments of the present invention, the consolidating agent may be a tackifying agent. In other embodiments, the consolidating agent may be a combination of resin and tackifying agent. When used in conjunction with resin coated particulates, a tackifying agent is typically applied after the application of the resin in an amount of from about 2% to about 10% by weight of the particulates. When used in place of a resin, the tackifying agent is typically present in an amount of from about 5% to about 25% by weight of the particulates.


Compositions suitable for use as tackifying agents in accordance with the present invention comprise any compound that, when in liquid form or in a solvent solution, will form a non-hardening coating upon a particulate. In particular embodiments, tackifying agents may include polyamides that are liquids or in solution at the temperature of the subterranean formation such that they are, by themselves, non-hardening when introduced into the subterranean formation. One such compound is a condensation reaction product comprised of commercially available polyacids and a polyamine. Such commercial products include compounds such as mixtures of C36 dibasic acids containing some trimer and higher oligomers and also small amounts of monomer acids produced from fatty acids, maleic anhydride, and acrylic acid, and the like. Such acid compounds are commercially available from companies such as Witco Corporation, Union Camp, Chemtall, and Emery Industries. The reaction products are available from, for example, Champion Technologies, Inc., and Witco Corporation. Additional compounds that may be used as tackifying agents include liquids and solutions of, for example, polyesters, polycarbonates and polycarbamates, natural resins such as shellac, and the like. Suitable tackifying agents are described in U.S. Pat. No. 5,853,048 issued to Weaver, et al., and U.S. Pat. No. 5,833,000 issued to Weaver, et al., the relevant disclosures of which are herein incorporated by reference.


Tackifying agents suitable for use in the present invention may be either used such that they form non-hardening coating or they may be combined with a multifunctional material capable of reacting with the tackifying compound to form a hardened coating. A “hardened coating” as used herein means that the reaction of the tackifying compound with the multifunctional material will result in a substantially non-flowable reaction product that exhibits a higher compressive strength in a consolidated agglomerate than the tackifying compound alone with the particulates. In this instance, the tackifying agent may function similarly to a hardenable resin. Multifunctional materials suitable for use in the present invention include, but are not limited to, aldehydes such as formaldehyde, dialdehydes such as glutaraldehyde, hemiacetals or aldehyde-releasing compounds, diacid halides, dihalides such as dichlorides and dibromides, polyacid anhydrides such as citric acid, epoxides, furfuraldehyde, glutaraldehyde or aldehyde condensates and the like, and combinations thereof. In some embodiments of the present invention, the multifunctional material may be mixed with the tackifying compound in an amount of from about 0.01% to about 50% by weight of the tackifying compound to effect formation of the reaction product. In some preferable embodiments, the compound is present in an amount of from about 0.5% to about 1% by weight of the tackifying compound. Suitable multifunctional materials are described in U.S. Pat. No. 5,839,510 issued to Weaver, et al., the relevant disclosure of which is herein incorporated by reference.


The tackifying agent may act, inter alia, to enhance the grain-grain contact between individual particulates. Moreover, the tackifying agent may soften any previously-applied, partially cured resin on the particulates. This dual action of the tackifying agent may improve the final consolidation strength of a particulate pack made in accordance with the present invention.


Any servicing fluid suitable for a subterranean application may be used in accordance with the teachings of the present invention, including aqueous gels, emulsions, and other suitable fracturing fluids. Suitable aqueous gels are generally comprised of water and one or more gelling agents. Suitable emulsions may be invert or regular and may be comprised of two immiscible liquids such as an aqueous gelled liquid and a liquefied, normally gaseous fluid, such as nitrogen. In certain exemplary embodiments of the present invention, the servicing fluids are aqueous gels comprised of water, a gelling agent for gelling the water and increasing its viscosity, and, optionally, a cross-linking agent for cross-linking the gel and further increasing the viscosity of the fluid. The increased viscosity of the gelled, or gelled and cross-linked, fracturing fluid, inter alia, reduces fluid loss and allows the fracturing fluid to transport significant quantities of suspended proppant particles.


To facilitate a better understanding of the present invention, the following examples of preferred embodiments are given. In no way should the following examples be read to limit or define the scope of the invention.


EXAMPLES
Example 1

Four 250-gram samples of 20/40-mesh size bauxite proppant were coated with a total of 7.8 cc of high-temperature epoxy resin. The samples were coated such that in each sample a different portion of the sample was coated with the resin (e.g., 100%, 75%, 50%, and 25%). Each resin-coated proppant sample was then poured into a cross-linking gel carrier fluid while the fluid was stirred at high speed using an overhead stirrer. After 10 seconds of high speed stirring, the proppant slurries were stirred at very low speed to stimulate the effect of pumping and suspending the proppant slurries in fractures during hydraulic fracturing treatments. Each proppant slurry was then poured into a brass chamber, packed, and cured at 325° F. for 20 hours. After curing, the consolidated cores were obtained, cut into size, and unconfined compressive strengths were determined for each sample composition. These unconfined compressive strengths are shown in Table 1, in which:

    • sample composition No. 1 contains 250 grams of proppant coated with a total of 7.8 cc of resin;
    • sample composition No. 2 contains 250 grams of proppant, 188 grams of which were coated with a total of 7.8 cc of resin;
    • sample composition No. 3 contains 250 grams of proppant, 125 grams of which were coated with a total of 7.8 cc of resin; and
    • sample composition No. 4 contains 250 grams of proppant, 62 grams of which were coated with a total of 7.8 cc of resin.










TABLE 1





Proppant
Unconfined Compressive Strength (psi)







Sample Composition No. 1
480


Sample Composition No. 2
565


Sample Composition No. 3
580


Sample Composition No. 4
545









From Table 1, it is evident that the unconfined compressive strengths of the sample compositions were higher when only a portion of the sample had been coated with resin.


Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims.

Claims
  • 1. A method of consolidating particulates comprising: providing a slurry comprising a substantially homogeneous mixture of a carrier fluid, a first portion of particulates, and a second portion of particulates wherein the first portion of particulates is at least partially coated with resin and wherein the second portion of particulates is substantially free of resin;introducing the slurry into a portion of a subterranean formation such that the first portion of particulates and second portion of particulates form a particulate pack in the portion of the subterranean formation; and,allowing the resin to substantially consolidate the particulate pack.
  • 2. The method of claim 1, wherein the portion of the subterranean formation comprises a portion of a fracture or a portion of an annulus surrounding a well bore.
  • 3. The method of claim 1, wherein the resin comprises at least one component chosen from an epoxy-based resin, a novolak resin, a polyepoxide resin, a phenol-aldehyde resin, a urea-aldehyde resin, a urethane resin, a phenolic resin, a furan/furfuryl alcohol resin, a phenolic/latex resin, a phenol formaldehyde resin, a polyester resin, a polyurethane resin, an acrylate resin, and a combination thereof.
  • 4. The method of claim 1, wherein the first portion of particulates comprises between about 10% and about 60%, by weight of the combined weight of the first and second portions of particulates.
  • 5. The method of claim 1, wherein the resin is present in an amount in the range of from about 5% to about 50% by weight of the first portion of particulates.
  • 6. The method of claim 1, wherein the resin comprises a curable resin.
  • 7. The method of claim 1, wherein the resin comprises a non-curable resin.
  • 8. The method of claim 1, wherein the first portion of particulates is at least partially coated with a tackifying agent.
  • 9. The method of claim 8, wherein the tackifying agent is present in an amount in the range of from about 2% to about 7% by weight of the first portion of particulates.
  • 10. The method of claim 8, wherein the tackifying agent comprises at least one component chosen from a polyamide, a polyester, a polycarbonate, a polycarbamate, a natural resin, and a combination thereof.
  • 11. The method of claim 8, wherein the first portion of the particulates is at least partially coated with a multifunctional material.
  • 12. The method of claim 11, wherein the multifunctional material comprises at least one component chosen from an aldehyde, a hemiacetal, an aldehyde-releasing compound, a diacid halide, a dihalide, a polyacid anhydride, an epoxide, a furfuraldehyde, a glutaraldehyde, an aldehyde condensate, and a combination thereof.
  • 13. The method of claim 11, wherein the multifunctional material is present in an amount in the range of from about 0.01% to about 50% by weight of the tackifying agent.
  • 14. The method of claim 11, wherein the multifunctional material is present in an amount in the range of from about 0.1% to about 1% by weight of the tackifying agent.
  • 15. The method of claim 1, wherein the second portion of particulates is at least partially coated with an activator.
  • 16. The method of claim 15, wherein the activator is present in an amount in the range of from about 0.01% to about 25% by weight of the second portion of particulates.
  • 17. The method of claim 15, wherein the activator comprises at least one component chosen from an alcohol; a ketone; an ester; an ether; an amide; benzene sulfonic acid; sulfuric acid; methane sulfonic acid; trichloroacetic acid; hydrochloric acid; hydrofluoric acid; ferric chloride; toluene sulfonic acid; chlorobenzene sulfonic acid; nitric acid; perchloric acid; a water soluble multivalent metal salt catalyst comprising at least one multivalent ion of either manganese, zinc, cadmium, magnesium, cobalt, nickel, copper, tin, iron, lead, or calcium; and a combination thereof.
  • 18. The method of claim 1, wherein the second portion of particulates is at least partially coated with an curing agent.
  • 19. The method of claim 18, wherein the curing agent is present in an amount in the range of from about 0.01% to about 25% by weight of the second portion of particulates.
  • 20. The method of claim 18, wherein the curing agent comprises at least one component chosen from an amine, a polyamine, an amide, a polyamide, hexachloroacetone, 1,1,3 -trichlorotrifluoroacetone, benzotrichloride, benzylchloride, benzalchloride, 4,4′-diaminodiphenyl sulfone, and a combination thereof.
  • 21. A method of consolidating particulates comprising: providing a slurry comprising a substantially homogeneous mixture of a carrier fluid, a first portion of particulates, and a second portion of particulates wherein the first portion of particulates is at least partially coated with tackifying agent and wherein the second portion of particulates is substantially free of tackifying agent;introducing the slurry into a portion of a subterranean formation such that the first portion of particulates and second portion of particulates form a particulate pack in the portion of the subterranean formation; and,allowing the tackifying agent to substantially consolidate the particulate pack.
  • 22. The method of claim 21, wherein the portion of the subterranean formation comprises a portion of a fracture or a portion of an annulus surrounding a well bore.
  • 23. The method of claim 21, wherein the first portion of particulates comprises between about 10% and about 60%, by weight, of the combined weight of the first and second portions of particulates.
  • 24. The method of claim 21, wherein the tackifying agent is present in an amount in the range of about 5% to about 10% by weight of the first portion of particulates.
  • 25. The method of claim 21, wherein the tackifying agent comprises at least one component chosen from a polyamide, polyester, polycarbonate, polycarbamate, a natural resin, and a combination thereof.
  • 26. The method of claim 21, wherein the first portion of particulates is at least partially coated with a multifunctional material.
  • 27. The method of claim 26, wherein the multifunctional material comprises at least one component chosen from an aldehyde, a hemiacetal, an aldehyde-releasing compound, a diacid halide, a dihalide, a polyacid anhydride, an epoxide, a furfuraldehyde, a glutaraldehyde, an aldehyde condensate, and a combination thereof.
  • 28. The method of claim 26, wherein the multifunctional material is present in an amount in the range of from about 0.01% to about 50% by weight of the tackifying agent.
  • 29. The method of claim 26, wherein the multifunctional material is present in an amount in the range of from about 0.1% to about 1% by weight of the tackifying agent.
  • 30. A particulate slurry for use in subterranean formations comprising a substantially homogeneous mixture of a carrier fluid, a first portion of particulates, and a second portion of particulates wherein the first portion of particulates is at least partially coated with resin and wherein the second portion of particulates is substantially free of resin.
  • 31. The particulate slurry of claim 30, wherein the resin comprises at least one component chosen from an epoxy-based resin, a novolak resin, a polyepoxide resin, a phenol-aldehyde resin, a urea-aldehyde resin, a urethane resin, a phenolic resin, a furan/furfuryl alcohol resin, a phenolic/latex resin, a phenol formaldehyde resin, a polyester resin, a polyurethane resin, an acrylate resin, and a combination thereof.
  • 32. The particulate slurry of claim 30, wherein the first portion of particulates comprises between about 10% and about 60%, by weight of the combined weight of the first and second portions of particulates.
  • 33. The particulate slurry of claim 30, wherein the resin is present in an amount in the range of about 5% to about 50% by weight of the first portion of particulates.
  • 34. The particulate slurry of claim 30, wherein the resin comprises a curable resin.
  • 35. The particulate slurry of claim 30, wherein the resin comprises a non-curable resin.
  • 36. The particulate slurry of claim 30, wherein the first portion of particulates is at least partially coated with a tackifying agent.
  • 37. The particulate slurry of claim 36, wherein the tackifying agent is present in an amount in the range of from about 2% to about 7% by weight of the first portion of particulates.
  • 38. The particulate slurry of claim 36, wherein the tackifying agent comprises at least one component chosen from a polyamide, polyester, polycarbonate, polycarbamate, a natural resin, and a combination thereof.
  • 39. The particulate slurry of claim 36, wherein the particulate slurry further comprises a multifunctional material.
  • 40. The particulate slurry of claim 39, wherein the multifunctional material comprises at least one component chosen from an aldehyde, a hemiacetal, an aldehyde-releasing compound, a diacid halide, a dihalide, a polyacid anhydride, an epoxide, a furfuraldehyde, a glutaraldehyde, an aldehyde condensate, and a combination thereof.
  • 41. The particulate slurry of claim 39, wherein the multifunctional material is present in an amount in the range of from about 0.01% to about 50% by weight of the tackifying agent.
  • 42. The particulate slurry of claim 39, wherein the multifunctional material is present in an amount in the range of from about 0.1% to about 1% by weight of the tackifying agent.
  • 43. The particulate slurry of claim 30, wherein the second portion of particulates is at least partially coated with an activator.
  • 44. The particulate slurry of claim 43, wherein the activator is present in an amount in the range of from about 0.0 1% to about 25% by weight of the second portion of particulates.
  • 45. The particulate slurry of claim 43, wherein the activator comprises at least one component chosen from an alcohol; a ketone; an ester; an ether; an amide; benzene sulfonic acid; sulfuric acid; methane sulfonic acid; trichloroacetic acid; hydrochloric acid; hydrofluoric acid; ferric chloride; toluene sulfonic acid; chlorobenzene sulfonic acid; nitric acid; perchloric acid; a water soluble multivalent metal salt catalyst comprising at least one multivalent ion of either manganese, zinc, cadmium, magnesium, cobalt, nickel, copper, tin, iron, lead, or calcium; and a combination thereof.
  • 46. The particulate slurry of claim 30, wherein the second portion of particulates is at least partially coated with a curing agent.
  • 47. The particulate slurry of claim 46, wherein the curing agent is present in an amount in the range of from about 0.01% to about 25% by weight of the second portion of particulates.
  • 48. The particulate slurry of claim 46, wherein the curing agent comprises at least one component chosen from an amine, a polyamine, an amide, a polyamide, hexachloroacetone, 1,1,3-trichlorotrifluoroacetone, benzotrichloride, benzylchloride, benzalchloride, 4,4′-diaminodiphenyl sulfone, and a combination thereof.
  • 49. A particulate slurry for use in subterranean formations comprising a substantially homogeneous mixture of a carrier fluid, a first portion of particulates, and a second portion of particulates wherein the first portion of particulates is at least partially coated with tackifying agent and wherein the second portion of particulates is substantially free of tackifying agent.
  • 50. The particulate slurry of claim 49, wherein the first portion of particulates comprises between about 10% and about 60%, by weight of the combined weight of the first and second portions of particulates.
  • 51. The particulate slurry of claim 49, wherein the tackifying agent is present in an amount in the range of about 5% to about 10% by weight of the first portion of particulates.
  • 52. The particulate slurry of claim 49, wherein the tackifying agent comprises at least one component chosen from a polyamide, a polyester, a polycarbonate, a polycarbamate, a natural resin, and a combination thereof.
  • 53. The particulate slurry of claim 49, wherein the proppant slurry further comprises a multifunctional material.
  • 54. The particulate slurry of claim 53, wherein the multifunctional material comprises at least one component chosen from an aldehyde, a hemiacetal, an aldehyde-releasing compound, a diacid halide, a dihalide, a polyacid anhydride, an epoxide, a furfuraldehyde, a glutaraldehyde, an aldehyde condensate, and a combination thereof.
  • 55. The particulate slurry of claim 53, wherein the multifunctional material is present in an amount in the range of from about 0.01% to about 50% by weight of the tackifying agent.
  • 56. The particulate slurry of claim 53, wherein the multifunctional material is present in an amount in the range of from about 0.1% to about 1% by weight of the tackifying agent.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 10/407,643, filed Apr. 4, 2003 now U.S. Pat. No. 6,962,200 which is a Continuation-In-Part of U.S. application Ser. No. 10/041,142 filed on Jan. 8, 2002 now U.S. Pat. No. 6,668,926 and of U.S. application Ser. No. 10/163,185 filed on Jun. 4, 2002, now abandoned, and of U.S. application Ser. No. 10/183,200 filed on Jun. 26, 2002 now U.S. Pat. No. 6,729,404 and of U.S. application Ser. No. 10/260,888 filed on Sep. 30, 2002 now U.S. Pat. No. 6,725,931.

US Referenced Citations (393)
Number Name Date Kind
2238671 Woodhouse Apr 1941 A
2703316 Schneider Mar 1955 A
2869642 McKay et al. Jan 1959 A
3047067 Williams et al. Jul 1962 A
3123138 Robichaux Mar 1964 A
3176768 Brandt et al. Apr 1965 A
3199590 Young Aug 1965 A
3272650 MacVittie Sep 1966 A
3297086 Spain Jan 1967 A
3308885 Sandiford Mar 1967 A
3316965 Watanabe May 1967 A
3375872 McLaughlin et al. Apr 1968 A
3404735 Young et al. Oct 1968 A
3415320 Young Dec 1968 A
3492147 Young et al. Jan 1970 A
3659651 Graham May 1972 A
3681287 Brown et al. Aug 1972 A
3754598 Holloway, Jr. Aug 1973 A
3765804 Brandon Oct 1973 A
3768564 Knox et al. Oct 1973 A
3784585 Schmitt et al. Jan 1974 A
3819525 Hattenbrun Jun 1974 A
3828854 Templeton et al. Aug 1974 A
3842911 Know et al. Oct 1974 A
3854533 Gurley et al. Dec 1974 A
3857444 Copeland Dec 1974 A
3863709 Fitch Feb 1975 A
3868998 Lybarger et al. Mar 1975 A
3888311 Cooke, Jr. Jun 1975 A
3912692 Casey et al. Oct 1975 A
3948672 Harnberger Apr 1976 A
3955993 Curtice May 1976 A
3960736 Free et al. Jun 1976 A
4008763 Lowe et al. Feb 1977 A
4029148 Emery Jun 1977 A
4031958 Sandiford et al. Jun 1977 A
4042032 Anderson et al. Aug 1977 A
4070865 McLaughlin Jan 1978 A
4074760 Copeland et al. Feb 1978 A
4127173 Watkins et al. Nov 1978 A
4169798 DeMartino Oct 1979 A
4172066 Zweigle et al. Oct 1979 A
4245702 Haafkens et al. Jan 1981 A
4273187 Satter et al. Jun 1981 A
4291766 Davies et al. Sep 1981 A
4305463 Zakiewicz Dec 1981 A
4336842 Graham et al. Jun 1982 A
4352674 Fery Oct 1982 A
4353806 Canter et al. Oct 1982 A
4387769 Erbstoesser et al. Jun 1983 A
4415805 Fertl et al. Nov 1983 A
4439489 Johnson et al. Mar 1984 A
4443347 Underdown et al. Apr 1984 A
4460052 Gockel Jul 1984 A
4470915 Conway Sep 1984 A
4493875 Beck et al. Jan 1985 A
4494605 Wiechel et al. Jan 1985 A
4498995 Gockel Feb 1985 A
4501328 Nichols Feb 1985 A
4526695 Erbstoesser et al. Jul 1985 A
4527627 Graham et al. Jul 1985 A
4541489 Wu Sep 1985 A
4546012 Brooks Oct 1985 A
4553596 Graham et al. Nov 1985 A
4564459 Underdown et al. Jan 1986 A
4572803 Yamazoe et al. Feb 1986 A
4649998 Friedman Mar 1987 A
4664819 Glaze et al. May 1987 A
4665988 Murphey et al. May 1987 A
4669543 Young Jun 1987 A
4675140 Sparks et al. Jun 1987 A
4683954 Walker et al. Aug 1987 A
4694905 Armbruster Sep 1987 A
4715967 Bellis et al. Dec 1987 A
4716964 Erbstoesser et al. Jan 1988 A
4733729 Copeland Mar 1988 A
4739832 Jennings, Jr. et al. Apr 1988 A
4785884 Armbruster Nov 1988 A
4787453 Hewgill et al. Nov 1988 A
4789105 Hosokawa et al. Dec 1988 A
4796701 Hudson et al. Jan 1989 A
4797262 Dewitz Jan 1989 A
4800960 Friedman et al. Jan 1989 A
4809783 Hollenbeck et al. Mar 1989 A
4817721 Pober Apr 1989 A
4829100 Murphey et al. May 1989 A
4838352 Oberste-Padtberg et al. Jun 1989 A
4842072 Friedman et al. Jun 1989 A
4843118 Lai et al. Jun 1989 A
4848467 Cantu et al. Jul 1989 A
4848470 Korpics Jul 1989 A
4850430 Copeland et al. Jul 1989 A
4886354 Welch et al. Dec 1989 A
4888240 Graham et al. Dec 1989 A
4895207 Friedman et al. Jan 1990 A
4903770 Friedman et al. Feb 1990 A
4934456 Moradi-Araghi Jun 1990 A
4936385 Weaver et al. Jun 1990 A
4942186 Murphey et al. Jul 1990 A
4957165 Cantu et al. Sep 1990 A
4959432 Fan et al. Sep 1990 A
4961466 Himes et al. Oct 1990 A
4969522 Whitehurst et al. Nov 1990 A
4969523 Martin et al. Nov 1990 A
4986353 Clark et al. Jan 1991 A
4986354 Cantu et al. Jan 1991 A
4986355 Casad et al. Jan 1991 A
5030603 Rumpf et al. Jul 1991 A
5049743 Taylor, III et al. Sep 1991 A
5082056 Tackett, Jr. Jan 1992 A
5107928 Hilterhaus Apr 1992 A
5128390 Murphey et al. Jul 1992 A
5135051 Fracteau et al. Aug 1992 A
5142023 Gruber et al. Aug 1992 A
5165438 Fracteau et al. Nov 1992 A
5173527 Calve Dec 1992 A
5178218 Dees Jan 1993 A
5182051 Bandy et al. Jan 1993 A
5199491 Kutta et al. Apr 1993 A
5199492 Surles et al. Apr 1993 A
5211234 Floyd May 1993 A
5216050 Sinclair Jun 1993 A
5218038 Johnson et al. Jun 1993 A
5232955 Csabai et al. Aug 1993 A
5232961 Murphey et al. Aug 1993 A
5238068 Fredickson Aug 1993 A
5247059 Gruber et al. Sep 1993 A
5249628 Surjaatmadia Oct 1993 A
5256729 Kutta et al. Oct 1993 A
5273115 Spafford Dec 1993 A
5285849 Surles et al. Feb 1994 A
5293939 Surles et al. Mar 1994 A
5295542 Cole et al. Mar 1994 A
5320171 Laramay Jun 1994 A
5321062 Landrum et al. Jun 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5330005 Card et al. Jul 1994 A
5332037 Schmidt et al. Jul 1994 A
5335726 Rodrogues Aug 1994 A
5351754 Hardin et al. Oct 1994 A
5358051 Rodrigues Oct 1994 A
5359026 Gruber Oct 1994 A
5360068 Sprunt et al. Nov 1994 A
5361856 Surjaatmadja et al. Nov 1994 A
5363916 Himes et al. Nov 1994 A
5373901 Norman et al. Dec 1994 A
5381864 Nguyen et al. Jan 1995 A
5386874 Laramay et al. Feb 1995 A
5388648 Jordan, Jr. Feb 1995 A
5393810 Harris et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5402846 Jennings, Jr. et al. Apr 1995 A
5422183 Sinclair et al. Jun 1995 A
5423381 Suries et al. Jun 1995 A
5439055 Card et al. Aug 1995 A
5460226 Lawton et al. Oct 1995 A
5464060 Hale et al. Nov 1995 A
5475080 Gruber et al. Dec 1995 A
5484881 Gruber et al. Jan 1996 A
5492178 Nguyen et al. Feb 1996 A
5494103 Surjaatmadja et al. Feb 1996 A
5497830 Boles et al. Mar 1996 A
5498280 Fistner et al. Mar 1996 A
5499678 Surjaatmadja et al. Mar 1996 A
5501275 Card et al. Mar 1996 A
5505787 Yamaguchi Apr 1996 A
5512071 Yam et al. Apr 1996 A
5520250 Harry et al. May 1996 A
5522460 Shu Jun 1996 A
5529123 Carpenter et al. Jun 1996 A
5531274 Bienvenu, Jr. Jul 1996 A
5536807 Gruber et al. Jul 1996 A
5545824 Stengel et al. Aug 1996 A
5547023 McDaniel et al. Aug 1996 A
5551513 Surles et al. Sep 1996 A
5551514 Nelson et al. Sep 1996 A
5582249 Caveny et al. Dec 1996 A
5582250 Constien Dec 1996 A
5588488 Vijn et al. Dec 1996 A
5591700 Harris et al. Jan 1997 A
5594095 Gruber et al. Jan 1997 A
5595245 Scott, III Jan 1997 A
5597784 Sinclair et al. Jan 1997 A
5604184 Ellis et al. Feb 1997 A
5604186 Hunt et al. Feb 1997 A
5609207 Dewprashad et al. Mar 1997 A
5620049 Gipson et al. Apr 1997 A
5639806 Johnson et al. Jun 1997 A
5670473 Scepanski Sep 1997 A
5697440 Weaver et al. Dec 1997 A
5698322 Tsai et al. Dec 1997 A
5712314 Surles et al. Jan 1998 A
5732364 Kalb et al. Mar 1998 A
5765642 Surjaatmadja Jun 1998 A
5775425 Weaver et al. Jul 1998 A
5782300 James et al. Jul 1998 A
5783822 Buchanan et al. Jul 1998 A
5787986 Weaver et al. Aug 1998 A
5791415 Nguyen et al. Aug 1998 A
5799734 Norman et al. Sep 1998 A
5806593 Surles Sep 1998 A
5830987 Smith Nov 1998 A
5833000 Weaver et al. Nov 1998 A
5833361 Funk Nov 1998 A
5836391 Jonasson et al. Nov 1998 A
5836392 Urlwin-Smith Nov 1998 A
5837656 Sinclair et al. Nov 1998 A
5837785 Kinsho et al. Nov 1998 A
5839510 Weaver et al. Nov 1998 A
5840784 Funkhouser et al. Nov 1998 A
5849401 El-Afandi et al. Dec 1998 A
5849590 Anderson, II et al. Dec 1998 A
5853048 Weaver et al. Dec 1998 A
5864003 Qureshi et al. Jan 1999 A
5865936 Edelman et al. Feb 1999 A
5871049 Weaver et al. Feb 1999 A
5873413 Chatterji et al. Feb 1999 A
5875844 Chatterji et al. Mar 1999 A
5875845 Chatterji et al. Mar 1999 A
5875846 Chatterji et al. Mar 1999 A
5893383 Fracteau Apr 1999 A
5893416 Read Apr 1999 A
5908073 Nguyen et al. Jun 1999 A
5911282 Onan et al. Jun 1999 A
5916933 Johnson et al. Jun 1999 A
5921317 Dewprashad et al. Jul 1999 A
5924488 Nguyen et al. Jul 1999 A
5929437 Elliott et al. Jul 1999 A
5944105 Nguyen Aug 1999 A
5945387 Chatterji et al. Aug 1999 A
5948734 Sinclair et al. Sep 1999 A
5957204 Chatterji et al. Sep 1999 A
5960877 Funkhouser et al. Oct 1999 A
5960880 Nguyen et al. Oct 1999 A
5964291 Bourne et al. Oct 1999 A
5969006 Onan et al. Oct 1999 A
5977283 Rossitto Nov 1999 A
5994785 Higuchi et al. Nov 1999 A
6003600 Nguyen et al. Dec 1999 A
6004400 Bishop et al. Dec 1999 A
6006835 Onan et al. Dec 1999 A
6006836 Chatterji et al. Dec 1999 A
6012524 Chatterji et al. Jan 2000 A
6016870 Dewprashad et al. Jan 2000 A
6024170 McCabe et al. Feb 2000 A
6028113 Scepanski Feb 2000 A
6028534 Ciglenec et al. Feb 2000 A
6040398 Kinsho et al. Mar 2000 A
6047772 Weaver et al. Apr 2000 A
6059034 Rickards et al. May 2000 A
6059035 Chatterji et al. May 2000 A
6059036 Chatterji et al. May 2000 A
6068055 Chatterji et al. May 2000 A
6069117 Onan et al. May 2000 A
6074739 Katagiri Jun 2000 A
6079492 Hoogteijling et al. Jun 2000 A
6098711 Chatterji et al. Aug 2000 A
6114410 Betzold Sep 2000 A
6123871 Carroll Sep 2000 A
6123965 Jacon et al. Sep 2000 A
6124246 Heathman et al. Sep 2000 A
6130286 Thomas et al. Oct 2000 A
6135987 Tsai et al. Oct 2000 A
6140446 Fujiki et al. Oct 2000 A
6152234 Newhouse et al. Nov 2000 A
6162766 Muir et al. Dec 2000 A
6169058 Le et al. Jan 2001 B1
6172077 Curtis et al. Jan 2001 B1
6176315 Reddy et al. Jan 2001 B1
6177484 Surles Jan 2001 B1
6187839 Eoff et al. Feb 2001 B1
6189615 Sydansk Feb 2001 B1
6192985 Hinkel et al. Feb 2001 B1
6192986 Urlwin-Smith Feb 2001 B1
6196317 Hardy Mar 2001 B1
6202751 Chatterji et al. Mar 2001 B1
6209643 Nguyen et al. Apr 2001 B1
6209644 Brunet Apr 2001 B1
6209646 Reddy et al. Apr 2001 B1
6210471 Craig Apr 2001 B1
6214773 Harris et al. Apr 2001 B1
6231664 Chatterji et al. May 2001 B1
6234251 Chatterji et al. May 2001 B1
6241019 Davidson et al. Jun 2001 B1
6242390 Mitchell et al. Jun 2001 B1
6244344 Chatterji et al. Jun 2001 B1
6257335 Nguyen et al. Jul 2001 B1
6260622 Blok et al. Jul 2001 B1
6271181 Chatterji et al. Aug 2001 B1
6279652 Chatterji et al. Aug 2001 B1
6283214 Guinot et al. Sep 2001 B1
6302207 Nguyen et al. Oct 2001 B1
6306998 Kimura et al. Oct 2001 B1
6311773 Todd et al. Nov 2001 B1
6321841 Eoff et al. Nov 2001 B1
6323307 Bigg et al. Nov 2001 B1
6326458 Gruber et al. Dec 2001 B1
6328105 Betzold Dec 2001 B1
6328106 Griffith et al. Dec 2001 B1
6330917 Chatterji et al. Dec 2001 B2
6350309 Chatterji et al. Feb 2002 B2
6357527 Norman et al. Mar 2002 B1
6364945 Chatterji et al. Apr 2002 B1
6367549 Chatterji et al. Apr 2002 B1
6372678 Youngman et al. Apr 2002 B1
6376571 Chawla et al. Apr 2002 B1
6387986 Moradi-Araghi et al. May 2002 B1
6390195 Nguyen et al. May 2002 B1
6401817 Griffith et al. Jun 2002 B1
6405797 Davidson et al. Jun 2002 B2
6406789 McDaniel et al. Jun 2002 B1
6408943 Schultz et al. Jun 2002 B1
6422314 Todd et al. Jul 2002 B1
6439310 Scott, III et al. Aug 2002 B1
6446727 Zemlak et al. Sep 2002 B1
6448206 Griffith et al. Sep 2002 B1
6450260 James et al. Sep 2002 B1
6454003 Chang et al. Sep 2002 B1
6485947 Rajgarhia et al. Nov 2002 B1
6488763 Brothers et al. Dec 2002 B2
6494263 Todd Dec 2002 B2
6503870 Griffith et al. Jan 2003 B2
6508305 Brannon et al. Jan 2003 B1
6527051 Reddy et al. Mar 2003 B1
6531427 Shuchart et al. Mar 2003 B1
6538576 Schultz et al. Mar 2003 B1
6543545 Chatterji et al. Apr 2003 B1
6552333 Storm et al. Apr 2003 B1
6554071 Reddy et al. Apr 2003 B1
6555507 Chatterji et al. Apr 2003 B2
6569814 Brady et al. May 2003 B1
6593402 Chatterji et al. Jul 2003 B2
6616320 Huber et al. Sep 2003 B2
6648501 Huber et al. Nov 2003 B2
6664343 Narisawa et al. Dec 2003 B2
6667279 Hessert et al. Dec 2003 B1
6669771 Tokiwa et al. Dec 2003 B2
6681856 Chatterji et al. Jan 2004 B1
6686328 Binder Feb 2004 B1
6705400 Nguyen et al. Mar 2004 B1
6710019 Sawdon et al. Mar 2004 B1
6725926 Nguyen et al. Apr 2004 B2
6732800 Acock et al. May 2004 B2
6745159 Todd et al. Jun 2004 B1
6763888 Harris et al. Jul 2004 B1
6766858 Nguyen et al. Jul 2004 B2
6776236 Nguyen Aug 2004 B1
6832650 Nguyen et al. Dec 2004 B2
6851474 Nguyen Feb 2005 B2
6866099 Nguyen Mar 2005 B2
6887834 Nguyen et al. May 2005 B2
6978836 Nguyen et al. Dec 2005 B2
20010016562 Muir et al. Aug 2001 A1
20020043370 Poe Apr 2002 A1
20020048676 McDaniel et al. Apr 2002 A1
20020070020 Nguyen Jun 2002 A1
20030006036 Malone et al. Jan 2003 A1
20030060374 Cooke, Jr. Mar 2003 A1
20030114314 Ballard et al. Jun 2003 A1
20030130133 Vollmer Jul 2003 A1
20030188766 Banerjee et al. Oct 2003 A1
20030196805 Boney et al. Oct 2003 A1
20030205376 Ayoub et al. Nov 2003 A1
20030230408 Acock et al. Dec 2003 A1
20030234103 Lee et al. Dec 2003 A1
20040014607 Sinclair et al. Jan 2004 A1
20040040706 Hossaini et al. Mar 2004 A1
20040040708 Stephenson et al. Mar 2004 A1
20040040713 Nguyen et al. Mar 2004 A1
20040048752 Nguyen et al. Mar 2004 A1
20040055747 Lee Mar 2004 A1
20040106525 Willbert et al. Jun 2004 A1
20040138068 Rimmer et al. Jul 2004 A1
20040149441 Nguyen et al. Aug 2004 A1
20040152601 Still et al. Aug 2004 A1
20040177961 Nguyen et al. Sep 2004 A1
20040194961 Nguyen et al. Oct 2004 A1
20040206499 Nguyen et al. Oct 2004 A1
20040211559 Nguyen et al. Oct 2004 A1
20040211561 Nguyen et al. Oct 2004 A1
20040221992 Nguyen et al. Nov 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20040231847 Nguyen et al. Nov 2004 A1
20040256099 Nguyen et al. Dec 2004 A1
20040261995 Nguyen et al. Dec 2004 A1
20040261997 Nguyen et al. Dec 2004 A1
20050000731 Nguyen et al. Jan 2005 A1
20050006093 Nguyen et al. Jan 2005 A1
20050006095 Justus et al. Jan 2005 A1
20050006096 Nguyen et al. Jan 2005 A1
20050045326 Nguyen Mar 2005 A1
20050263283 Nguyen Dec 2005 A1
20050274517 Blauch et al. Dec 2005 A1
Foreign Referenced Citations (33)
Number Date Country
2063877 May 2003 CA
0528595 Aug 1992 EP
0510762 Nov 1992 EP
0643196 Jun 1994 EP
0834644 Apr 1998 EP
0853186 Jul 1998 EP
0 864 726 Sep 1998 EP
0879935 Nov 1998 EP
0933498 Aug 1999 EP
1001133 May 2000 EP
1132569 Sep 2001 EP
1362978 Nov 2003 EP
1 394 355 Mar 2004 EP
1396606 Mar 2004 EP
1398640 Mar 2004 EP
1403466 Mar 2004 EP
1464789 Oct 2004 EP
1292718 Oct 1972 GB
2382143 Apr 2001 GB
WO 9407949 Apr 1994 WO
WO 9408078 Apr 1994 WO
WO 9408090 Apr 1994 WO
WO 9509879 Apr 1995 WO
WO 9711845 Apr 1997 WO
WO 9927229 Jun 1999 WO
WO 0181914 Nov 2001 WO
WO 0187797 Nov 2001 WO
WO 0212674 Feb 2002 WO
WO 03027431 Apr 2003 WO
WO 9315127 Aug 2003 WO
WO 04037946 May 2004 WO
WO 04038176 May 2004 WO
WO 05021928 Mar 2005 WO
Related Publications (1)
Number Date Country
20040221992 A1 Nov 2004 US
Continuation in Parts (5)
Number Date Country
Parent 10407643 Apr 2003 US
Child 10868593 US
Parent 10041142 Jan 2002 US
Child 10407643 US
Parent 10163185 Jun 2002 US
Child 10041142 US
Parent 10183200 Jun 2002 US
Child 10163185 US
Parent 10260888 Sep 2002 US
Child 10183200 US