Units of unique engine modalities, and/or modules, consisting of a series of three or more aircraft engines of novel types. Each unique engine or engine combination or conformation, acting independently or together present an advancement in the state of the art, and acting in concert represent an improvement in the performance of the specifically derived attributes. The unit modules are made up of a combination of components consisting of specific engines and the means to connect or separate them into particular operational parts and supportive structures.
A Ramjet engine or Ramjet conformation engine, augmented (“supercharged” air induction) by an ambient atmosphere aspirated combustion-cycle “counter-rotation” turbine fan-jet engine. Referred to as the equal and opposite acting turbine fan-jet engine allowing it to be nearly instantly reversible. Having an internal central free-piston detonation-cycle engine within its hollow drive shaft that utilizes a self-contained supply of oxidant and fuel (carbohydrate or hydrocarbon or hydrogen).
The Ramjet, Ramjet conformation, or jet-tube engines often simply called J-tubes, consist basically of a tube constituting (making up) a combustion zone, thereby turning the tube into a jet-tube, which is finally resolved into the completed Ramjet or Ramjet conformation engine.
A brief historical statement regarding the “tube”. “The power plant proposed in 1913 by René Lorin consists, as is known, by only one flow channel designed in such a way that continuously inflowing air contrary to the direction of flight is first slowed down and damned up, then heated and accelerated beyond the inflow velocity at the discharge orifice. [So] That the whole motor assumes the shape of a pitot tube.” [Which is then referred to for simplicity sake as the jet tube.] E. Sangar*
The tube fitted with appropriately placed fuel injection nozzles and ignition means and creating an interior volume into which fuel is injected and the fuel and oxidizer become mixed and upon ignition and combustion convert the tube into a jet tube. The openings at both ends of the tube acting as inlet and exhaust ports and that other appropriate ports may be added as required by means of this invention. One such added port consisting of a jut-opposed tangent conduit tube or partition acting also as a supportive brace connecting the jet-tube engine to the turbine fan-jet engine, impeller fan driven oxidant pump (supercharger).
The Ramjet engine may utilize a means of being detached or retained, as a part of the unit core structure and may utilize adaptations designed into configurations that are best represented by the Venturi or Botanelle effect. (i.e. A constriction in the wall of a tube that conducts air and produces a stratified central zone or column of high velocity air and a low-pressure and velocity peripheral, laminar air zone into which exterior peripheral air or other fluid is introduced). This effect is characterized by a high velocity, high pressure inner central air column, and a turbulent stratified peripheral lower velocity, lower pressure layer of air developed at the intersection of intermixing and laminate air adjacent to the tube wall.
The constriction may also be produced by a body located in the center of the tube creating the stratified relatively low-pressure, low flow velocity zone of laminent turbulent air (oxidizer) adjacent to the tube wall constriction and the surface of the constricting center-body. Into which fuel and supercharged air is injected and mixed. Mixing with the higher relative velocity and pressure of the stratified central air column ignited and thereby converted into the even higher temperature, pressure and velocity of the combustion process. Exploding the pre-mixed fuel and thermal conditioned air and forcefully achieving pressures and deflagration velocities in the J. tube conformations. Causing shock flash-back compressive pulsation that brings about the stopping of the in-rushing air flow producing stabilized static pressure into which fuel is injected, ignited and thereby driving the compression and expansion processes within the “tube”. To realize at least deflagration velocities do to the constructive interactions produced by the tuned reflected harmonics within the constricted regions of the turbine engine. Obtaining detonation velocities within the restricted chambers of the Ram jet engine assisted by the discriminate use of oxygen injection.
Ejecting the pulsating explosions within the J. tubes of the Ram jet engines outward and backward, do to the in-rushing air mass and the relatively forward positioned constriction, toward the exhaust port. Creating a response reaction within the engine forcefully driving the engine and the aircraft forward while producing counter mass exhaust ejecta.
The forward component of the explosion checks the onrushing Ram inducted air momentarily stopping it, compressing, convection and radiant heating and shocking it, producing an ideal stabilized ignition and fuel injection zone into which fuel injectors and spark or glow plugs have been placed. Bringing about fuel and air ignition and combustion and thereby producing hypersonic explosive forward propelling drive. The cool onrushing Ram induced air could super-cool and quench the combustion processes. Therefore a method of reducing the amount of Ram air induction with a divergent cone shaped cowling to maintain a stabilized static pressure rise within the combustion zone of the J. tube conformations. Conversely at high velocities and high altitudes where the air is rarefied and super cold a selective method of convergent means has been devised to collect and preheat the required volumes of the air propelling and oxidizing medium.
When the term “mixing” is used relative to fuel and air and/or oxygen mixtures, it will be understood to include atomization and vaporization unless the fuel is injected in the gaseous state.
Whenever a gaseous-fluid flow is altered 90 degrees by the gas turbine engine's impeller deflection drive vanes set at an acute 45-degree angle of attack to the gas flow; the mass transfer energy is equal to one half the total energy of the inherent inertia in the gaseous-fluid flow. (This is an algorithmic extrapolated mean average involving velocity, pressure and temperature) Then deflection-transferring one-half the driving energy of that first half of the available energy and then one half again accordingly, through each series of 90-degree deflections brought about by the 45 degree oppositely driven fixed dihedral angles of the drive vanes. While being deflected from the oppositely rotating, interfacing oppositely transposed 45-degree dihedral angles of the alternate vanes driving the next set of drive impeller vanes of the gas turbine engine. This ratio of energy load distribution is altered differentially when the fluid flow is deflected by dihedral angles that are in relative motion. Terms representing converging flow altering driving elements (vanes) of the compressor stage are additive and those coefficient terms that represent diverging flow altering deflection driven, drive impeller elements are subtractive. When compared to the direct explosive driving energy applied to the driven, drive impeller vanes, this subtractive component is negligible and acts to equalize and to abate shock produced disturbances and turbulence. To realize at least quasi-detonation velocities do to the constructive interactions produced by the tuned reflected harmonics within the constricted regions of the turbine engine. Obtaining detonation velocities assisted from within by the very restricted chambers of the detonation free piston engine and further assisted by the discriminate use of oxygen or liquid oxygen and water injection.
The explosive driving force is expressed as pressure per square inch, distributed upon the surface of the impeller vanes directly but differentially, due to deflection. Inversely proportional to the square of the distance from the energy source and requiring concomitant increases in the surface square area of the drive impeller vanes. Do to the fact that the space involved exists in cubic measure, for each series or sets of vanes utilized, to achieve an equal distribution of propulsive load. This inherent inertial drive is transferred to these interacting vanes as forward and lateral force vectors, which translates into evenly distributed, differentially inter-dependent, co-operating, opposed rotation of the individual impeller driving stages further directed backward to drive other sets of drive impellers, finally being exhausted.
Whenever an explosion of combustibles occurs it is expressed in all directions leaving inertial and heat energy delivered to all the internal surfaces of an engine's combustion chamber and/or combustion field, whether the parts are at rest or in motion. The explosion is not instantaneous, but involves the partially delayed mixing of air and fuel and the partially delayed production of the flame front. Within microseconds the forces establish, form along and follow lines of least resistance directed by deflection, producing equal and opposite thrust that establishes kinetic inertial momentum forward and into the rotating elements of the engines. The rebounding gasses and the other backward directed half of the explosion, along with the remaining flame front builds heat and pressure producing the thrust to drive the next stage drive impellers with a portion of the differential pressure that forces the engine and aircraft forward.
When the vehicle that contains the engine is moving relative to the combustion processes. The whole engine as well as the drive elements can be moved under the pressure velocity of the combustion wave front until interacting subtractive energies of friction create dynamic equilibrium. The internal pressure velocities producing the forward force vectors of the engines are accumulative and added consecutively to that of the vehicle. Relatively added one to the other so that their sum velocity is greater than the forward force vector velocities of the engines as computed independently. An aircraft may be traveling at 3 Mach (Mach=the speed of sound) while the pre-combustion, combustion fluid flow average velocities within the engine's combustors do not exceed one half Mach.
The unique “gyroscopic, counter rotating, counter gyration” turbine fan-jet engine component of this invention utilizes a hub and radiating vane arrangement (
The high pressure of this combustion interacts directly with the vanes of the drive impeller and the vanes of a freely revolving oppositely rotating combustion mediating hub which acts to separate the compressor pressure zone from the combustion pressure zones. Driving them both by deflection in opposite directions, with the mediating hub free to be driven differentially, automatically equalizing the driven loads. (
The standard state of the art turbine and turbo-jet engines have intervening static or rotating combustor arrangements (
The free-piston detonation (combustion) cycle engine (FIGS. 1 and 3-28, 29, 41, 48, 49.) aspect of this modem concept utilizes a separate (from ambient air) chemically constituted or compressed oxidant and containment tank. Allowing it to be operated separately and separate of ambient atmospheric conditions, as a booster engine for operation under overload and high altitude conditions as well as acting in part as a starting engine for the turbine aspect of the co-operatively functioning engine combination. (Combined-cycle engine) Assuring and maintaining stoichiometric combustion-detonation throughout its co-operative operation.
Pertaining to the knowledge of the workings of Venturi tubes, low-pressure, low velocity and high pressure, high velocity differential regions can be produced within any straight tubes when they move through a fluid medium such as air. This stratification of pressure zones is do to the nature of airwaves. Which when confined within a tube constriction, produce first a standing wave high-pressure/velocity air zone followed by a standing wave low-pressure/velocity air zone without the need for other constrictions in the tubes, this is to say that almost any such straight tubes may be used. In another preferred variation, other Venturi like stratified airflow zones are produced within the restricted confined conformation conduit surrounding a central core-body housing which may contain the unique supercharging combined-cycle turbine fan-jet engine (
The standing differential pressure waves produced within this configuration can be supercharge driven and made to swirl or otherwise spin simply by controlling the angle of convergence of the air pressure differential zones. Many methods of directing this convergent airflow are well understood by those knowledgeable in the art. Veins, blades, flaps, steps, partitions or the asymmetric placement of a restricting centerbody can be used to direct the airflow into an apex, vortex or otherwise stratified conformation and can be made to be variable and that the airflow itself can be made to produce the desired effects. Proper fuel distribution within the zones of high and low-pressure air stratification can act to improve ignition and promote the complete combustion of fuel and oxidizer. In one preferred form (
Whenever the volume of relatively cool intake air exceeds the ability of fuel combustion to raise the volume's temperature enough to be maintained above the kindling or ignition temperature of the fuel and the fuel/air mixture, engine flame out will be experienced. Simply increasing the amount of the cool inducted air supplied to the engine does not automatically allow an indiscriminant increase in the quantity of injected fuel to provide a co-ordinate response in the effective operation of the engine. Or a correspondent increase in the power thrust of the engine and may simply “flood” the engine and shut it down.
By providing for the injection of a discrete amount of a three-dimensional oxidant flow column, a flow column constituting a pre-mixture of an ultra lean incombustible fuel to oxidizer mixture can be produced. (
Adequately and efficiently heating the overall volume of air and fuel prior to combustion. Allowing the engines to accept an additional surge of cool, supercharged ultra lean air-fuel mixture by a discreet two-stage fuel and air and (optional) pure oxygen injection procedure. Raising the air/fuel mixture temperatures and densities by convergent compression and the compression of supercharging without inducing flame flash back, preventing flame out and assuring the heat of combustion energy required to complete combustion in the adjacent stratified shear layers. Which in turn further accelerates the flame front toward hypersonic velocities, accelerating the velocity of the whole combustion process and thereby increasing the obtainable acceleration of the aircraft by promoting complete fuel combustion, reduced exhaust temperature and decreasing the exhaust velocity per unit of forward thrust.
Thereby increasing engine performance and efficiency, reducing the required combustor preheating energy component per unit of combustion heating, promoting and producing more forward thrust, reducing exhaust velocity and waste heat per unit of forward thrust, reducing exhaust pollution and avoiding engine flame out. Making possible the means to accommodate the discriminating requirements of the supercharging process in aircraft engines. (Flameout—The loss of the flame front and therefore the loss of combustion pressure differential drive)
Preventing instabilities, hot spot produced NOx and thermal imprint signature, poor thermal distribution, undesirable shock waves, and minimizing total pressure losses. Enabling reductions in the length to diameter ratio of the combustion zone and/or tube of the engine, by reducing heat and friction loss to the walls of the combustion zone or combustor tube. (Friction and heat losses increase with combustor length and additional workload requirements in algorithmic, exponential increments) Internal insulation and the resultant reduction of heat and friction losses to the combustor walls are achieved, do in part to the Venturi effect (and reduced combustor length), through the thermal and friction blanketing by the interceding strata of thin, lower velocity, relatively cool laminent inducted air.
The Venturi effect also automatically controls the differential negative pressure created surrounding the convergent central Venturi dynamic airflow stream. An increase in the central core airflow velocity within the interior of a Venturi like conformation restriction or tube construct automatically produces an increase in the peripheral laminate shear layer's relative negative air-pressure, slowing down it's turbulent velocity. Automatically increasing the efficient acceptance of the additional cool supercharged air into the surrounding strata of convergent airflow rates, fuel induction injection and concomitant intermixing rates and diminishing the stratification of the air stream. Producing an interfusing zone facilitating radiant heating and convection intermixing of fuel and air. Thereby allowing the combustor tube sections or zones to be designed relatively shorter (to achieve an optimum efficient cross-section profile). Making available a precisely controlled low-pressure recirculation (vestibule) zone for fuel and air injection and mixing and radiant preheat and heating of the inducted cool combustion air-fuel mixture (thermal pre-conditioning) (
The unique combined-cycle engine with a composite series of oppositely rotating, double acting stages of counter-gyration, supercharging fan-jet turbine engine and Ramjet engine or Ramjet conformation engine operating as a unit (
The unique combined-cycle, oppositely rotating fan-jet turbine engine supercharging air pump (
When a design is considered for aircraft engines, some basic parameters are standardized even though they may seem, at first, to be counter intuitive. Set the air speed of the aircraft at three times the speed of sound at altitude, then the velocity of the engine impeller vane tips should not exceed mach 1 (the speed of sound) relative to the airframe of the aircraft. This is due to the established shock wave's usually undesirable disturbances within the confines of the standard combustor configuration. In the standard turbo-jet engine designs, the air being vented off the impeller vane tips of the engines should, usually, not exceed Mach one relative to the velocity of the aircraft and thereby restricts and creates limits inherent to these designs. Nor should engine airflow velocities (internal to the combustor) be allowed to exceed a one half Mach one average flow velocity primarily to restrict shock wave effects. To maintain flame ignition performance, reduce heat and friction, and to prevent destructive shock induced detonation kickback (backfire) and the ejection of the contents of the static combustor along with, perhaps, parts of the engine and to prevent engine “flame out”.
In this invention airflow velocities momentarily approximate zero within the combined-cycle turbine engine's uniquely conformed compressor zone, relative to the velocity of the aircraft! Creating an increase in the rotational velocity limit for the compressor vane travel especially at high altitudes and velocities relative to the apparent closing velocity of the compressor vanes and those of the counter-rotating combustion mediating hub. The vanes are not as subject to the distress of shock events because of counter-harmonic cancellation and interference phenomena that create improved compression instead of the disruptive attributes, do to the convergent effect of the compressor vanes and thereby gaining advantages from shock induced effects. Producing a localized and stabilized ignition point created by the shock induced counter-checking of the air-flow approaching a zero point or zone. Toward which shock induced airflow processes actually accentuate the efficiency of the thermal and compression processes insuring a stabilized zone of compression and the adequate localized heat of ignition. Instead of blowing the ignition and combustion processes out of existence in an attempt at over-boosting engine performance which is an inherent limiting characteristic of standard static combustor design and is all to often realized. Further the placement of these static combustor elements within the engine is not conducive to cooling the peripheral zone of the combustor elements further severely limiting design parameters. (
In the case of the combined-cycle turbine engine the combustion mediating hub vanes and drive impeller vanes act to absorb the momentum of the forward and lateral thrust velocity vectors of combustion directly. Consequently these forces are converted directly by deflection and thereby more efficiently, into separate lateral rotational vectors as well as forward directed vectors. Converted from what would normally be backward directed lost inertia or friction drag, without the need for intervening static or rotating combustion containment vessels, or other static deflecting, channeling, compressing, flow directing or compacting vanes (
The explosive drive is directed to the counter-rotation of both, the combustion mediating hub vanes and drive impeller vanes without a need for the intervening standard static or rotating combustion chambers thereby increasing impeller drive efficiency, and decreasing space, heat, friction and weight requirements. The combined-cycle turbine engine's counter-rotating combustion mediating hub's inset, parallel, offset, juxtaposed (jut-positioned) vanes (
The production of an apparent wedging fluid flow indexed velocity which moves diagonally and outward relative to the established closing velocity of the counter rotating compressor impeller vanes and the combustion hub's impeller vanes, greatly exceeds the velocity of the overall fluid flow rate which becomes reduced toward zero. The combustion mediation hub with its vane type flow directing insets focuses these fluid flow rate vectors into fluid compression fields. The compressor and combustion mediation hub vane tip closing velocities high relative rate increases the effective compression rate, thereby building up more of the internalized heat of compression. Efficiently pre-heating and compressing the cool inducted air increasing the intermixing chemical reaction rate, capability and capacity potential, decreasing the chemical reaction time, decreasing the fuel and air mixture's required ignition temperature. Increasing the overall post-combustion expansion and cooling processes and thereby increasing the peak achievable rate and velocity of the combustion reaction and thereby increasing the propulsive potential of the engine.
What is most remarkable is the fact that the velocity of the interacting fluid flow rate is reduced from tangent lateral flow vectors into nearly fixed compressive flow fields. Further the impinging back pressure exerted by the back scattering oppositely (forward) directed explosive shock wave created by the combustion front completely counters (checks) the backward directed incoming compressed air flow. Counteracting the disruptive attributes of these shock waves, converting them into very effective compression, thermal (heat) and flow (checking) directing force vectors. Further reducing the overall volume of air by this means of shock wave compression into nearly fixed field points. The ignition “points” where the volume's temperature and pressure becomes ideal for efficient ignition and combustion expansion processes. Creating a localized zone where fuel and oxygen reach stoichiometry and the flame temperature approaches adiabatic flame temperature. Thereby increasing the efficiency of the reaction by reducing the time required of these processes and gaining localized flame retention stability, a cooler overall operating temperature, with concomitant flameout prevention capability.
The total lateral fluid flow rate approximates zero as the two converging interfacing counter-rotating sets of vanes squeeze and compress the inducted gases into a space convergent toward zero (the “ideal” ignition point) where fuel injection orifices and ignition electrode elements are located. This highly compressed superheated air is “spun out” in the direction of rotation of the combustion-mediating hub, into the equal and opposite rotating drive impeller vanes. Tortured to a near stop. Fuel is injected and ignited within the constricted space created between the combustion hub rim and the interior engine housing (into which fluid flow directing channels have been cut). The flow created by the turbulent interaction of the inertia of the gasses and the heat of friction produced by the velocity of the rotation of the rim of the combustion-mediating hub. Along with the heat and the pressure of the centrifugal compressed gas-flow rate, is successfully checked by the back-scattering pressure of the combustion wave shock front. Creating the stabilized turbulent compressing, heating and mixing conditions and an ideal point into which fuel is injected and intimately mix with the oxidant. Building up these compressive elements within the space allotted between the combustion-mediating hub rim and the engine housing and contribute in algorithmic exponential terms (volumetrically, in cubic measure) to insure a stabilized, highly compressed, superheated zone of combustion.
Through initiated combustion, the process of expansion and the inertia of the gases, driven by the high pressure highly compressed super heated burning gasses of combustion, around and away from the rim of the combustion-mediating hub and into the adjacent, relatively reduced pressure of the combustion field. Created within the space between the after face of the combustor hub vanes and the vanes of the oppositely rotating drive impeller and the engine's internal housing walls. The combustion process continues and further expansion occurs and acts directly upon and drives both sets of the oppositely rotating drive impeller vanes and interfacing combustion-meditation hub vanes.
The ignition electrode points need not be located at precisely “Top dead center” relative to the ideal ignition point. “Timing” of the engine is achieved through a selective axial, longitudinal movement of the combustion-mediating hub relative to the fuel injector orifice jet and the ignition electrode point. This can be done by moving the whole drive shaft and impellers along with the mediating hub arraignment, or through a separate carriage and toggle movable arraignment of the impeller hubs. “Upstream or downstream” and “forward or aft” longitudinally and axial relative to the location of the ignition electrode points and thereby locating “Top dead center”. Defined by the point where the outer diameter of the combustion-mediating hub rim is selectively positioned to be in nearest proximity to the ignition electrodes and inline with the fuel injector orifice jets (
Such positioning of the combustion mediating hub arrangement relative to “Top Dead Center” is used to bring about engine reversal. Rather like creating positive displacement engine backfiring by ignition advancement or retardation relative to top dead center. By moving the drive shaft or toggle carriage arraignment into the “aft” position and thereby moving the combustion mediating hub rim's proximity “aft” relative to the igniter and fuel injection jet ports (
Further fabricating selective switch transposed compressed oxygen injecting jets upstream and inline with the fuel injector ports and the ignition points, which can then supply additional oxygen to the engine. Furnishing an explosive charge means of starting the turbine engine and boosting and sustaining its operation in overloaded or high altitude circumstances and maintaining a stoichimetric mixture.
An electric starting motor or other auxiliary engine or starting motor and generator arrangement can be attached directly or indirectly to the turbine engine's drive shaft (not shown). Being placed forward of the air intake position, to supply (as necessary) the initial rpm velocity and the required inertial impetus and air compression to begin the operation of the engine and furnish any electrical requirements. The explosive charge detonation rotary-reciprocating drive, of the free piston engine component of the combined-cycle engine being more then adequate to furnish the starting impetus necessary to begin to run the turbine engine aspect of the combined-cycle engine. A synchronized charge of the pressurized oxygen or compressed air and timed electrical spark is required to furnish the initial explosive impetus required to start the free piston and/or to explosively start the turbine engine component.
The combined-cycle turbine-jet engine of claim 1. Being so connected by conducting channeling, and conduit constructions convergent toward the aft section of the central combustion zone ports or dump step arrangements of the apex or vortex stratified Ramjet or Ramjet conformation engine within the unit (
In one preferred form an airflow defining partition being operable for effecting both an outer circulation zone and a central circulation zone in the combustor. The outer circulation zone being partition stratified around and peripheral to the central circulation zone and being disposed inward of the outer stratified circulation zone. (
Further fuel injector and electrical ignition devices are located peripheral to this central core zone to initiate ignition of rich stratified and/or otherwise partitioned air and fuel mixtures (FIGS. 1 and 7-12, 66, 68, 70). Incorporating supercharged convergent combustible air and fuel mixtures into the central core air-column along with the radiant heat of combustion and combustion by products during combustion to thermal condition the inducted pre-combustion air fuel mixtures. A fractional portion being carried up stream, re-circulated by thermal convection and radiation and the positive pressure differential within the combustor to pre-heat tubular combustor injectors.
The tubular combustor injectors, being set into the supercharged induction partition conduit and arraigned to accept a plurality of periphery located fuel injector orifice jets and igniters. Employed to continually ignite inducted and supercharged combustible fuel and oxidizer mixture into the partition produced apex zone forming the Venturi convergent recirculation convection-preheating chamber partition. Arraigned and distributed adjacent to and forming the Venturi convergent combustion zone or chamber (
The turbulent stratified shear layer partitioning the Venturi apex or vortex stratified zone and thereby porting the air and fuel mixture and/or combustion gasses into and adjacent to each of the stratified outer and central circulation zones (
The J-tube or Ramjet engine, wherein the diameter to length ratio may be that of a combustor at 1 to 1 (“the classical square dimension”) or less (FIG. 10-75,84).
A J-tube or Ramjet engine wherein the diameter to length ratio may be that of a combustion tube of up to 1 to 6 (
The J-tube or Ramjet engine wherein the diameter to length ratio may be that of a combustor at about 1 to 2 and is tunable (
The apex or vortex stratified J-tube engine or Ramjet, Ramjet conformation engines. Further comprising an inlet for selectively controlling an amount of air directed from the core supercharging engine to the one or more J-tube engines, Ramjet, Ramjet conformation engines. The conduits for conducting the airflow, also being able to be built into the unit's structure. (
The Ramjet, Ramjet conformation engines or apex or vortex stratified J-tube engines wherein the inlet employs a variable geometry flow control. Using at least one of a hinged or sliding component. A translating component and instrumentation to control the amount of air from the core combination-cycle turbine engine supercharging fan pump and fed, or bled into at least the Ramjet engine conformation. (
The Ramjet, Ramjet conformation engines or J-tube and apex or vortex stratified engines, wherein the interconnecting bypass duct intersects the supercharging duct at either an oblique angle or perpendicular to the high pressure supercharging compressor housing and may be part of the unit's construction. (
The Ramjet or Ramjet conformation engine wherein a surface of the aft stem movable culling element, forms a portion of a nozzle of the j-tube engine's exhaust (
One preferred variation of the combined-cycle turbine-jet engine or Ramjet engine conformation of claim 1. (
The combine-cycle turbine-jet supercharging engine also having a similar forward and aft conforming cowling element, serving selectively relevant to and acting thereby as a Ramjet engine conformation variant and to partially close off or nozzle the exhaust ports when not being over-boosted. This element, including a fresh air outermost flow defining means and a fueling means consisting of a plurality of fuel injectors and spark ignition ports placed inward in a radial peripheral distribution to function as the Ramjet engine conformation of the module of claim 1. (
The fuel injectors of the turbine-jet engine are mounted in the interior facing engine wall protruding thereby into flow directing channel ports that have been cut into the wall convergent toward the spark ignition port (FIGS. 1 and 3-86). Functioning in unison to produce combustion and the propulsion supply of supercharged air in conjunction with an aft most buff or water drop shaped ellipsoid centerbody housing producing the required Venturi tube constricting element. Acting directly without any defined combustion chambers.
Containing within this centerbody housing is the combined-cycle turbine-jet supercharging engine functioning as the embodiment of a core engine central to a Ramjet engine conformation (
The fueling means, being operable for fueling the outer circulation zone of the peripheral Ramjet conformation of the module, creating combustion of the oxidizer and fuel ignited by the preheated supercharged air, superheated combustion gases and a greater high-pressure differential between these two stratified zones. Thereby producing an improved afterburner for the combined-cycle turbine engine and the Ramjet or Ramjet conformation engines. (FIGS. 3 and 10-4, 12, 47, 57, 61, 64, 65, 79, 84)
The exhaust gases need not be expelled near the central shaft and bearings of the jet turbine engine drive, but may be allowed to remain at a peripheral distance from said bearings, journals and shaft. Sparing them from the heat of combustion and keeping the peripheral by-pass cooling air (oxidant) readily available for cooling the engine and for use with the proper fuel injection to act as heated air (oxidant) for the Ramjet and Ramjet conformation engine. Including the centrally located combined-cycle turbine fan-jet engine afterburner arrangements. (FIGS. 1 and 3-31, 64)
The combined-cycle turbine fan-jet engine may be used independently or together with the Ramjet engine in other applications such as designs for air elevation-suspension and (ground effect) vehicles (
An embodiment of the combined-cycle turbine fan-jet engine may be designed as a variant design, to run in one rotational direction with an appropriate change in the combustion-mediating hub and drive vanes.
The ability of aircraft to travel at supersonic velocities puts great demands on the aircraft's propulsion system. Travel at supersonic velocities means an increase in weight of both airplane and fuel at take off and becomes an exponential increase in the power required particularly at zero velocities. To meet such unprecedented demands for lift and thrust propulsion different types and categories of engines and engine cycles used separately or in tandem have been proposed and some have been referred to as combined-cycle engines.
A great amount of power can be made available if an oxidizer is chemically or physically combined with the fuel, or otherwise carried separately, as is the case with rockets. But this must be done judiciously (oxygen weighs many times more than hydrogen adding that weight to the propulsive system) and can lead to mixtures that are very fast acting and explosive, making a potential bomb of the aircraft. This added weight must be overcome, adding inertial liabilities to the operational proficiencies particularly from zero velocity start up through low speed takeoff procedures. Requiring exponentially larger fuel and oxidant requirements over propulsion systems that acquire oxygen from the ambient air and do not have to carry the added weight of the oxidizers as well as carrying the heavy containment tanks. Further the impulse velocity resonance of the rocket combustor is limited by the physical constraints of dimension parameters and efficiency losses at low speed operation. Producing impulse resonance reaction times and burning rates measured in thousands of a second within the combustion reaction cones but achieving exhaust velocities that may reach 21,000 feet per second relative to the rocket at all operational speeds with correspondingly high operating temperatures. Allowing them to realize concomitant equal and opposite reaction response, accumulating very high maximum escape velocities providing they reach the frictionless expansions of space quickly, which they can do. Mandating very abrupt times to reach optimum altitude and velocity causing the rockets to expend all their vast fuel and oxidant reactants in the range of four minutes, more or less. Liquid reactant rockets are complex and expensive and predisposed to malfunction.
Solid propellant rockets although simple are made up of reactants that are usually toxic and polluting and not prone to easy restarting. All aspects of rocketry must be considered before deciding to integrate their propulsive drive into hybrid interaction with the driving potential of the Ram or Scramjet air-breathing engines. When there are more versatile, efficient, high performance alternatives available. That utilizing less overtly explosive hypergolic reactants which are prone to be expensive, tricky to use (sensitive and temperamental), dangerous, poisonous, highly polluting and a very wasteful means of lifting weights into space or near space upper altitudes being loaded down as they are with onboard oxidants.
Solid state rocketry involves highly toxic chemicals that are mixed in stoichiometric proportions. These combustion processes are often referred to as detonation reactions but involve burning processes that create harmonic pulsed surge, measured in hundredths to thousandths of a second. These burning processes produce extraordinarily high exhaust velocities. That in turn produce exponentially wasteful “lost” energy particularly during take-off and during low, heavily laden vehicular operations. They also carry the additional oxidizers that are an added weight burden. These destructive high velocity shock and thermal exhaust processes, when they are vented to the external environs produce thermal and shock related reactions that produce further environment pollutants. They utilize toxic reactants that produce toxic by-products that are not avoidable or reclaimable. The preferred oxidants are usually halogens, sulfuric acid or nitric acid complexes that further act to deplete the ozone layer.
Conventional by-pass turbojet engines with afterburners can be made to function as a “combined-cycle” engine if part of the intake air is shunted around the core by-pass turbojet engine and directed into the afterburner. Then once having obtained transition velocity run as a Ramjet engine by shutting down or shutting off the core by-pass turbojet engine. The by-pass turbojet engine may be run acting to supercharge the Ramjet conformation variation. It is not hard to visualize the two aspects of both engine functions being run simotaniously, aren't they then usually considered a “combined-cycle” turbojet engine or simply a double bypass turbojet engine? Shouldn't this arrangement be referred to simply as a bypass turbojet engine no matter the technique or number of engine bypasses? The ramjet bypass conforming aspect of the engine can be run relatively independent of the core by-pass turbojet engine and it is this characteristic of the engine design that has become referred to as a combined-cycle turbojet engine (
Referring now to the free piston detonation cycle engine and the unique combination it has within the central drive shaft of the equal and opposite acting supercharging turbine fan-jet engine, as the combined-cycle turbine engine (
It becomes imperative to maximize the operation of the combined-cycle supercharging fan-jet turbine engine and improve the overall performance of the unit, to understand what occurs when this unique supercharging turbine fan-jet engine is run while being “oxygen-boosted” by it's free piston detonation cycle engine component. Operating concurrent with optional by-pass supercharge injecting air and fuel and selectively injecting compressed oxygen into the systems. Allowing the free piston component of the combined-cycle engine to act as an excellent explosive charge-starting engine for the turbine engine component and otherwise boosting its performance. That this distinction becomes even more relevant when one engine cycle is such that it is a cycle of a new type of internal detonation cycle engine. Detonation cycle engines use fuel and pure oxidant mixtures and can function where purely air-aspirated engines cannot (without some sort of rocket assistance) because the velocity or the ambient air pressure and oxygen content are too low. Detonation occurs whenever the gaseous fluid velocity attempts to exceed the speed of sound within the confines of the detonation chamber of the engine allowing for vary rapid speeds of operation.
In one preferred form this invention comprises a combination of engine types and categories, referred to as “the unit” for providing propulsive thrust and power. The unit includes compartments, which may also be called pods or modular units, including within them a series of unique engines, at least one being a Ramjet engine or Ramjet conformation engine. A unit contains a unique equal and opposite turbine fan-jet supercharging engine module with a central pure oxidant aspirated free piston engine. This combined-cycle turbine fan-jet engine is used to produce thrust and to supercharge the ramjet engine or Ramjet conformation engine. Producing thrust when the unit has a velocity or air density that is less than that required to operate the Ramjet engine or Ramjet conformation aspect of the engine combination.
The Ramjet engine or Ramjet conformation engine, upon reaching a predetermined speed or a transitional velocity of approximately 3 Mach or less (some Ramjet designs develop propulsive thrust at 300 miles an hour or less) then takes over a portion or all of the propulsive thrust of the combined-cycle engine.
The advantage of being able to reverse the thrust of the J-tube, Ramjet or Ramjet conformation engine and/or the turbine engine aspect of the unit cannot be over emphasized. Extreme deceleration to aid in “re-entry” and other types of braking and ultra tight turning, elevating, and evasive maneuvers is made possible and the unit construction offering the strength and movement and/or stability capability necessary to take advantage of this potential has been incorporated into this invention.
The final stage may be the launch of rockets or Ramjet engine pod/modules or other vehicles. Designed to operate individually, in tandem or altogether within the unit concept. Modules can be made to be interchangeable, or exchangeable, or reversible.
The Ramjet engine or Ramjet conformation engine housing includes at least one air inlet to a combustor tube or zone. A supplementary supercharging means and connective conduit situated around this tube or zone that creates a space, fore and aft, around the combustion chamber section of this tube and a second inlet disposed laterally and tangentially into the combustion section. This space may constitute an apex and/or vortex vestibule section or zone and may act as combustion and/or pre-combustion Venturi like reduced air pressure and increased air velocity recirculation zone (
A combustion zone consisting of an annular internal section of the engine-housing wall furnished with central fuel injection and ignition flow directing channels (
In a preferred variation (
The oxidizer (air) flow velocity is increased through these constrictions into low-pressure peripheral; high-pressure central stratified zones conforming within and around the combustor tube or combustion zone. Relatively slowing down the mean average overall fluid flow rate in these stratified zones, while nozzle constricting and increasing the velocity of the central strata and/or core airflow velocity. Fuel is injected into the reduced pressure zones or column, ignited and combusted and explosively expanded outward and inward of the after section apex or vortex zone of the core center-body and into the hollow tubular expansion housing, to be exhausted through the exhaust nozzle port.
In another preferred variation (
In another preferred (
The designs of this invention (FIGS. 1 and 10-75, 76, 77) include bulkheads in the housings forward of the combustion zone adding structural elements and/or zones that absorb forward directed pressure more efficiently than may be achieved in engines without such constructs. Furthermore these bulkheads can be made moveable and act as an echo focusing means by creating standing sound waves (perpendicular shock waves) forming zones of compression-decompression stratification. Creating relatively stable standing wave zones into the turbulent stratified circulation, recirculation and repercussion processes facilitating fuel and oxidant injection and ignition. Producing explosive combustion processes, repercussion and counter-harmonic suppression response, momentarily stabilizing and localizing the flame front and maintaining combustion between supersonic and hypersonic surge spikes and impulses, counter-harmonic muffling silencing the sonic aspects of these interactions.
The unit has a preferred supercharging engine (
The present invention provides a gas turbine combustor (
Comprising a turbine housing case including a transposable translating high-pressure turbine section and a low-pressure turbine section (FIGS. 1 and 3-4).
A supercharging pump fan impeller case housing and by-pass conduit ducting disposed around at least a portion of the turbine case housing and spaced apart to form a bypass flow passage (FIGS. 1 and 3-4, 5, 38, 52).
A central hollow drive shaft-cylinder that houses the free piston detonation portion of the combined-cycle engine (
A catering injection system to furnish and synchronize, electrical spark, fuel and oxidant to the engine components of the combined-cycle engine (
A continuous flow fuel injection system having nozzles placed upstream and downstream or clockwise and counter-clockwise relative to the rotational direction of the combustion mediating hub, relative to the engine housing and in line with the sparkplugs. The heated compressed air from the compressor section may be maintained above the ignition temperature (flash point) of the oxidizer and fuel mixture. The spark plugs maybe necessary only to insure ignition of the fuel and air mixture during cold engine starting and when the unit is in a multi-fuel mode of operation (
A means of moving the combustion mediating hub co-operatively with the drive and compressor impellers forward or backward by moving the central drive shaft or by a spline and toggle carriage moved by a toggle extension (
A reverse (transposed) twisting channeled screw arraignment, free piston assembly (
A valve assembly mounted in the engine. The valve assembly including a valve inlet, outlet, port arrangement having at least a fluid inlet in fluid communication with a bypass flow passage (
A first fluid (gases of detonation) exhaust outlet port in fluid communication with the low-pressure exhaust port and nozzle of the turbine engine (
A second set of outlet exhaust ports in fluid communication with the exhaust porting means of the turbine engine. Where, in a preferred arraignment, the free piston acts also as a valve. As such the drive shaft-cylinder becomes the valve body. Selectively moveable between an open and a closed position, in which only the first fluid outlet port from the high-pressure fuel pump is in substantial fluid communication with the fluid inlet port built into the cylinder and sleeve. Thereby designed to supply an explosive charge of fuel and oxidizer mixture into the detonation chamber. Also having within the cylinder and sleeve an open position, in which the second fluid outlet ports are open to the internal spiraling exhaust ducting system built into the piston and co-operatively leading to the exterior exhaust ports (
Thereby causing a spiraling helical rotational response to the expanding channeled exiting exhausting gasses to be transmitted to the reciprocal motion of the piston, which is directly co-operatively transferred to the cylinder-driveshaft arraignment thereby also driving the rotating turbine mechanism of the turbine engine. This reciprocal-rotating arraignment incorporating a two cycle internal combustion engine method of intake and exhaust porting, utilizing the driving piston and cylinder as a method of incorporating an intake (fuel and oxidant) and exhaust gas valve system.
In one preferred method utilizing a positively displaced injection catering carriage, fuel and oxidant is injected through the intake port of the engine's detonation chamber and detonated, displacing the piston and that of the fuel and oxidant injector carriage, opening the exhaust port and exhausting the exhaust gasses. Thereby the other end of the piston is displaced into position and fuel and oxidant are injected within the opposite detonation chamber, acted upon by detonation to drive the other end of the piston and that of the fuel and oxidant injector carriage back to assume a pre-detonation status. Preparing the fuel and oxidant for injection, injecting and simotaniously relieving the exhaust, bringing about detonation and repeating the cycle (
The internal lubrication for the turbine bearings is utilized to cool the detonation chambers of the detonation free-piston engine (
The detonation engine's cycle involves the use of these responsive high explosive detonation reactions. Where upon the oxidant must intermix with the fuel only microseconds prior to detonation (to keep them separate and non-explosive), The systems of fuel and oxidant remains separated at all other times within the system to prevent any chance of “flash back” explosions. Fortunately this is accomplished in a simple and straightforward manner using the explosive reaction of detonation to drive solid high speed catering methods of injection that are both self-limiting and transposition checking (
The free-piston of the engine being channeled within the confinement of the cylinder so as not to allow any revolving movement except that which is communicated to the revolving cylinder-drive shaft wall. That acts as a piston-valve assembly mounted within the cylinder. The piston interacting cooperatively with the communicating cylinder exhaust and inlet porting of the engine and in fluid communication with the engine's fuel and oxidant injector catering system and bypass flow passage (
Both the free piston and slave injector and electric spark catering systems are kept in synchronization by controlling the ignition and detonating timing. The rate of detonation responding to and being controlled by controlling the quantity of injected oxidant and fuel. Electric sensing by magnetic position location and computing devises (not shown) track the relative positions of the catering carriage injector values to that of the piston, although the harmonic response shared relationship is self-regulating. Contact switch or electric circuit interrupting methods (not shown) can achieve ignition timing. Utilizing a computerized method (not shown) to fine tune advancement or retarding processing and the quantity of oxidant and fuel requirements to facilitate optimum engine performance.
In the closed valve position no fuel and oxidizer outlet port is in substantial fluid communication with the fluid inlet port to supply fuel and oxidizer to the detonation chamber of the engine. In the open position the detonation chamber inlet valve is open only to the interceding catering injector body. Simotaniously ignition is initiated activating the responsive reciprocating valve injector catering arrangement directly, actuating the opening and closing of the input ports metering and then injecting the fuel and oxidant (
Alternately injecting the reactants directly or indirectly into the detonation chambers at the opposite end of the cylinder, closing by intercession those valve-input ports to prevent a flash back into those mixing and detonation chambers and visa versa. Whereby ignition in the opposite detonation chamber commence, producing detonation, returning the free piston and corresponding slave injector catering and valve arrangement to their starting positions and thereby continuing the cycle. The whole operation of intermixing or premixing and injection can be reduced to only one injector plunger for each detonation chamber.
A spring, solenoid, pneumatic, hydraulic, or mechanical means of operation can be utilized along with a synchronized “inline” high-pressure fuel and oxidant pump (not shown), to the drive the injector catering apparatus. The pressure from the explosion and that of the pressurized fuel and oxidizer, liquid or gaseous, can be utilize so that these sources of high pressure can activate the injector pump operation, a separate pump may be employed to insure filling fluid flow volumetric velocities and bypass return (not shown). After delivering its charge the injector plunger catering end is left open to the detonation process. Allowing it to be in position to harness the energy of the explosion to rebound the valve, plunger injector catering carriage mechanism back into recycling (reloading-recharging) position much like the action of the bolt action carriage in an automatic rifle (
The inlet and outlet port valves may be cut into the cylinder shaft wall much as those in the cylinder-piston valve arrangement common to the two-cycle internal combustion engine. Therein allowing the exhaust outlet valve timing to be controlled by the reciprocation rate of the free piston in the cylinder, relieving the exhaust only when the exhaust port has been opened by the passage of the piston. Allowing the reacting input injector valve catering carriage to act by intercession as a flash back barrier, keeping the input ports closed until the processes of drive and exhaust are completed and only then opening the imports to supply the reactants to the mixing and detonation chambers. Thereby simplifying, strengthening and speeding up the fuel-oxidant catering and injection process (
The free piston engine has a very forgiving timing arrangement in that it dose not revolve around top dead center but unlike a crankshaft timed engine, the time the piston has to remain stopped at “top dead center” is relatively variable. In the compressed state of the impact inertia field of the free piston, the mixed fuel and oxidant has its “own time” to bring about the processes of detonation with a supportive electric spark charge. This in turn makes the reaction faster (more spontaneous), more complete and more efficient. Never the less there has to be a built in shock absorber built into the piston screw faces.
Never the less there has to be a built in shock absorber. Even though the expanding gases create a detonation shock wave. It becomes “crushed and tortured out of existence” or smothered by the relatively slow reaction time of the piston. It is this smothering or muffling effect (that is in part do to the tortured venting inherent in the piston screw face designs) upon the hypersonic detonation waves that act to silence the destructive aspect of these processes and effect efficient high velocity operation. Because of the screw like piston's “flow restriction” shape, fluted, beveled, spin direction channeling, the high velocity exhaust gases act as it's own muffler like built in shock absorber (
Further it is through the convoluted spiraling screw channel course provided the exhaust by the free piston porting means and through which the expanding exhaust gasses must transverse that act to force the free pistons reciprocating and rotating spin orientated driving response. Do to the acute angles of the faces of the piston and the conical space allotted the detonation chambers; the almost square area of the highly compressed explosive mixture, the displacement by detonation is calculate as cubic volume in expediential proportions. Fortunately the realized volume representing displacement and thereby representing work done by the expanding gasses of detonation, is able to be relieved in likewise expediential (cubic) proportions (
High altitude supercharging of ambient air into the Venturi induced low-pressure laminate air/fuel mixing zone of these ramjet tube engines increases their operational range do to reduced external air friction losses and increased internal to external pressure differential. Providing the maintenance of an airflow mass inertial velocity within the ramjet combustion tube where its associated forward response pressure differential is the only means of propelling it. When at the same altitude the non-supercharged ramjet-tube engines become inoperable.
In the case of the supercharged ramjet-tube engine dynamics the tube efficiencies increase when the mass-flow velocity increases do to the algorithmic increase in the internal inverse pressure differential ratio relative to altitude. The greater the altitude the less the ambient external air pressure and corresponding external friction loss and the associated correspondingly greater relative internal working pressure. While the relative internal pressure and explosive combustion velocity gradient goes up the negative pressure within the Venturi conformation is momentarily checked by the back-scattering effect created by the same explosive drive (the reason these engines are often referred to as impulse engines).
Effectively stopping the gas flow through the combustor, then correspondingly the fluid flow is increased by the increased Ramming impetus of the forward driving component of the explosion acting to increase the forward drive of the engine. This increased surge produces a reconstruction of the Venturi convergent stratified phenomena reducing internal friction and heat losses to the conformational combustion tube walls confining heating to the central core laminate of the Venturi and the inefficiencies go down and efficiencies go up. Reducing internal and external friction losses at high altitudes and increasing the Venturi central core air stream velocity, increasing the Venturi conformation efficiencies and thereby increasing the equal and opposite forward inertial driving response. This high velocity convergent air stream velocity quickly drops toward zero upon exhaust divergence processes and may need an exhaust nozzle means of internal gas flow velocity adjustment.
In the high upper atmosphere the air becomes so thin that the ramjet combustion processes cannot function, and we add supercharging processes. We end up adding less than twice the weight in fuel and/or oxidant for more than twice the work (range and speed) at greater velocities do to increases in efficiency, by continuing to operate at very high altitudes. Further more “an increase in efficiency can be attributed to up to a 90 to 99 percent stoichiometeric exhaust.” * (Edelman)
This result is do to the stratified fuel and airflow turbulence creating a more controlled intimate mixture of air and fuel allowing a richer more ignitable mixture at the points of ignition while retaining complete overall combustion. Too many centrifugal swirls added to the air stream and not enough turbulence and the stratified layers of air and fuel are not easily mixed. In prior art technology, a diffusion combustion system can have a problem of high level Nox. Premix combustion systems also has problems of combustion stability, such as flash back, and flame stabilization during the start up and partial or overloaded operation. In actual operation it is preferable to simultaneously solve these problems.
It takes a great deal of work and time for the fuel to cut through the 80% nitrogen of ambient air to bring the fuel and oxygen together and demands attention in understanding and improving ambient air engine design. Whereby as an example, the torturing of the airflow and fuel between the outer rim of the combustion mediating hub and the engine housing interior wall of the counter rotating turbine engine provides the required power, turbulence, and ideally located arraignment, relative to the realized ideal ignition points. To effectively compress, heat, inject and ignite the fuel and air mixture. With too much heat and pressure the nitrogen in the air reacts with oxygen and creates NOx, not enough heat and pressure or too stratified the layers of air and fuel and therefore too rich or too lean a mixture of fuel and air and there is incomplete combustion.
The Venturi phenomena promote and mediate the stratification effect. Furthermore do to the Venturi effect the friction and heat losses to the j-tube combustor walls are reduced. The combustor j-tube walls may be perforated to facilitate cooling. These losses go up by more than a square dimension (algorithmic) as the combustor length to width ratio is increased. A one to one or square dimension is considered the “classic” length to width ratio of Venturi tubes (FIGS. 1 and 10-61, 62). Efficiency is attributed as being inversely proportional to the velocity of the residual expanding exhaust and the exhaust velocity should, ideally become reduced toward zero relative to that of the ambient air. With little to no exhaust jetting, although we know why we call these engines Ramjets, they jet and they have become notorious for their sonic booms.
Reducing average internal flow rate velocities by the more efficient conversion of external velocity flow vectors into internal fluid gas convergent compression fields. Increasing the overall pressure differentials and subsequent drive efficiencies, reduce the residual exhaust velocities and increase forward propulsion and overall performance. Stratified swirling turbulent air within the combustion zone and the premixing chambers need to be tuned so that the dense fuel rich compression wave zones reach a spike or peak at the points of ignition and still reach stoicheometeric conditions at the exhaust. (Without unburned hydrocarbons or NOx) There is provision for the proper tuning of these chambers and zones and for adjusting the lengths of the combustion chambers of the j-tubes (
In another preferred aspect of the formulations of claims 1 and 2 consider the combined-cycle supercharging fan-jet turbine engine as an integrated part of the unit concept. Within the turbine there is a central drive shaft-cylinder containing the oxygen charged percussion-detonation driven free-piston component of the combined-cycle engine complex. (
The functioning of the turbine component of these engine complexes is the realization of the benefits derived from the counter rotating interfacing turbine vane arrangement besides reversibility. The fact that the very high apparent closing velocity of the counter rotating turbine blades means that the speed at the apex of the interfacing blades becomes that of a diagonal cross section as it moves outward. Thereby the speed of sound preceding ignition (a desirable characteristic in these engines) can be obtained directly and at less revolutions of each set of the interfacing oppositely rotating compressor vanes compared to those of standard turbojet engine designs. (
The convergence of these elements creates a stabilized point of greater pressure and temperature where the sonic echo is focused toward the points of ignition. Thereby converting much of the disruptive attributes of supersonic air shock wave and flow velocity effects into desirable processes further increasing the compression of the shocked and nearly stopped, impinged and highly tortured, superheated localized air stream creating a corresponding ignition point stabilization and enhanced flame-front propagation.
Creating ideal points for the fuel injection of rich stratified fuel air mixtures convergent to spike toward these points. These rich mixture strata enhances ignition do to the lower ignition temperature of the richer mixture, averaging a lower temperature of combustion while providing the overall heat of combustion required to insure the combustion of the adjacent leaner fuel air strata. These attributes then constitute the means of improved ignition and combustion performance by lowering the “heat of ignition” requirements and at the same time producing a higher internal pressure differential at overall lower operating temperatures. Thereby aiding in the elimination of “hot spots” and the associated NOx, assuring more complete combustion and the correspondent forward propulsion momentum at a reduced exhaust flow velocity and detectable heat signature (signal) at the exhaust port.
These attributes and characteristics acting as a unit and in concert constitute the unique combined-cycle engine supplemental supercharging of the Ramjet or Ramjet conformation engines of claim one and two. Offering, from the matching of these complimentary engines and cycling processes, a vista of efficient far-ranging highflying new accomplishments in engine design and development. The supercharged ramjet engine can begin operation at from 300 to 400 miles an hour or less to the operational range of the Brayton or Okamoto cycle rocket/ramjet hybrid engines and the scramjet at 9.6 Mach while obtaining greater range of operation and velocity when operating at high altitudes. Quite operation (the noise is smothered and muffled out of existence by counter-harmonic suppression inside the engines), greater performance and range, optional reversibility, marked by a cleaner cooler exhaust becomes the hallmark of the efficiency and applicability of the unit combined-engine concept.
It should be understood that the detailed description and specific examples, while indicating the preferred embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of this invention.
Additional advantages and features of the present invention become apparent from the description and the claims, taken in conjunction with the drawing.
Whenever the air speed reaches a predetermined ramjet velocity the forward and aft variable culling airflow control foils are positioned in position 1 of
Do to the elimination of the standard combustion chambers and/or combustors, the stratified air flow compression fields created within the combustion zone of the engines is greatly increased with reduced disruptive airflow turbulence. Reduced overall internal temperature and greater pressure differentials provide high performance significantly reducing the weight and size of the engines compared to other known engine design. It also reduces the hot section length within the combustion tubes and zones of the ramjet engines thus reducing cooling requirements.
Unique lip spike translators are deployed on the forward isentropic cone angle of the forward cowling to control the shock wave disruption on lip condition during supersonic flight. (Not shown)
The supercharged augmented ramjet combined-cycle engine combination allows compact engine packaging to reduce the weight and size of the engine systems. Achieving all these aforementioned capabilities with only two basic moving parts.
The density of the atmosphere and the velocity the aircraft is designed to travel in dictates the maximum and minimum length and opening angle of the air inlet veritable geometry forward cowling and the rpm the supercharging engine must be run at.
Number | Date | Country | |
---|---|---|---|
60854625 | Oct 2006 | US |