A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only and is not intended as limiting the broader aspects of the present invention.
Detailed reference will now be made to the drawings in which examples embodying the present invention are shown. The detailed description uses numerical and letter designations to refer to features of the drawings. Like or similar designations of the drawings and description have been used to refer to like or similar parts of the invention.
The drawings and detailed description provide a full and written description of the invention, and of the manner and process of making and using it, so as to enable one skilled in the pertinent art to make and use it, as well as the best mode of carrying out the invention. However, the examples set forth in the drawings and detailed descriptions are provided by way of explanation only and are not meant as limitations of the invention. The present invention thus includes any modifications and variations of the following examples as come within the scope of the appended claims and their equivalents.
With reference to
As further shown in
As briefly introduced above, the customer can choose duration for the license agreement and be guaranteed a price of the optical analysis system 10 for that duration. In other words, a prearranged price or fee, such as a flat yearly fee, covers the use of the optical analysis system 10 for the life of the license. In this example, the license fee is flat and constant per the yearly basis for the duration of the license agreement. In exchange for the fee, the optical analysis system 10 and its separate components, as will be described in further detail below, are supported, maintained and upgraded with the latest, state-of-the-art enhancements for the duration of the license agreement. Of course, those skilled in the art will appreciate that the terms of the license agreement, such as its duration, can be modified to accommodate customer requirements; thus, the license agreement is not limited to the exemplary flat yearly fee. For example, the customer may only require use of the optical analysis system 10 for a one-time project for a calendar year quarter, and the license agreement can be drafted to reflect such alternative terms.
The license agreement is an expense for the customer, not a capital equipment investment. Thus, the customer is not affected by equipment obsolescence, cost of capital, depreciation, cost of maintenance and the like. Accordingly, the customer is assured of always having state-of-the-art performance with no worries of technology obsolescence. Moreover, there are no unanticipated expenses and no capital expenditures. According to the invention, full support and maintenance of the selected technology option are provided without separate hardware or software service contracts. Perhaps most importantly, the customer is ensured of satisfaction; i.e., there is no “buyer's remorse” if the equipment fails to meet expectations since the equipment can be upgraded or modified according to terms of the license agreement. If the equipment can not be upgraded or modified to the satisfaction of the customer, then the equipment can be returned and the license agreement cancelled.
With particular reference now to
As shown in
As shown in
As further shown in
Various detectors such as PbSe, PbS, Si, Ge, InAs, InGaAs, HgCdTe and the like are suitable for use as the detectors 52,56 in the optical analysis system 10. As with any component of the optical analysis system 10, these detectors 52, 56 can be specifically identified as replacement or upgradeable items in the license agreement according to the invention.
As further shown in
Also, in an additional aspect of the invention as shown in
Due to variations in system optical and electronic performance combined with changes in sample reflectance, the optical analysis system 10 may use a reference signal (and detector) to account for those variations. For a system with small such variation, it would be possible to use a single detector (with the MOE). In this case, the response from the reference detector would be considered a constant.
Specifically, for improved detector performance, the light signal can be modulated by continuously monitoring the intensity of a beam of light. The easiest way to achieve this is to allow the beam to impinge upon some kind of photo-electric detector (such as a photo-diode or photo-multiplier tube) and monitor the resultant electrical output. If the light beam is very weak then the electrical output from the photo-detector will be very small and therefore some sort of amplification of this signal will be required.
A continuous optical beam will create a DC signal at the output of the photo-detector so any subsequent amplifier used to increase this signal level will need to be capable of amplifying DC. Although this is perfectly feasible, DC amplifiers do suffer from drift due to temperature fluctuations. This is particularly evident in high gain amplifiers. Also any other perturbation of the signal due to other stimuli (stray light for example) will also be amplified and appear as genuine output.
If the signal of interest (that is the original light beam) could be made to act as an AC signal then the detector output would be AC and any further amplification could be carried out with an AC (only) amplifier. AC amplifiers do not suffer from temperature drift and will not respond to DC signals. So the only signal that would be amplified is that due to the (AC) light beam. To make a light beam act in an AC manner it needs to be turned on and off regularly and accurately. This can be achieved by chopping.
The most common technique is to pass the beam through a rotating disk that has holes or slots cut into it at regular intervals. As the disk rotates it “chops” the beam producing an on/off signal which when detected by a photo-detector will appear as an AC signal.
The mechanical chopping of the light beam is very precisely controlled by the chopper and therefore the resultant AC signal due to the chopped light is at a known and stable frequency which can be monitored and amplified easily.
The operating principle of a photoelastic modulator (PEM) modulates light polarization which manifests the photoelastic effect in which a mechanically stressed sample exhibits optical birefringence.
In addition to the reflectance mode described above, one or more optical analysis systems can operate in a transmission mode in conjunction with the foregoing embodiments. In such a case, light is directed (passes) through the sample W, e.g., a fluid sample, and collected on another side of the sample W to enable study of particle density in the fluid in conjunction with the chemical content described above. For instance, the system 10 can be configured to operate in transmission mode where the light is shone through the sample W to a similar detection system as shown in
The present invention may be better understood with reference to the following example and to
Real-Life Example: Cost of Equipment Ownership
Purchase price of capital equipment: $100,000
* Annual maintenance: $15,000
Annual cost of capital to purchase capital equipment: 7%
Total cost after 4 years: $202,000
Failure to upgrade capital equipment based on technological advances:
Unknowable but probably a poor business decision (good for competitors).
Thus, owning capital equipment has surreptitious and unknowable costs, which add up to significantly more than just the purchase price of the equipment.
As shown in
Although the invention has been described in such a way as to provide an enabling disclosure for one skilled in the art to make and use the invention, it should be understood that the descriptive examples of the invention are not intended to limit the present invention to use only as shown in the figures. For instance, the optical head 12 can be shaped as a square, an oval, or in a variety of other shapes. Further, a variety of light sources can be substituted for those described above. It is intended to claim all such changes and modifications as fall within the scope of the appended claims and their equivalents. Thus, while exemplary embodiments of the invention have been shown and described, those skilled in the art will recognize that changes and modifications may be made to the foregoing examples without departing from the scope and spirit of the invention.