Continuous S-transform (ST) can be regarded as a hybrid of Gabor and continuous wavelet transforms, providing a “time frequency representation” (TFR) of a signal by localizing with a Gaussian window that depends on the frequency. Its discrete 1-dimensional form (1D ST) is finding many applications in processing signals and time series, while its discrete 2-dimensional form (2D ST) is used for processing 2-dimensional data and images, where it should be more correctly called a “space frequency representation” (SFR), as it represents the localized frequency spectrum at each point in the 2-dimensional data set or at each pixel in the image.
Fast Time Frequency Transform tools have been developed, such as a FTFT-1D and FTFT-2D (Fast Time Frequency Transform), that generate discrete 1D ST values and 2D ST magnitudes fast and accurately. The FTFT-2D can produce local ST magnitudes at each pixel in a medical image, as well as ST statistics over a region of interest (ROI) in the image. However, the discretization of 2D ST renderings are not rotationally invariant. By rotational invariance of an SFR, it is meant that when the image is rotated by any angle, the radial component of the SFR is unchanged. This is desirable as the pathology inferred from this radial component should not be affected when the patient is positioned at a different orientation on the imaging couch.
A method of determining rotational invariant local spectrum at a pixel in an image processing device. The method may include receiving an input image; receiving an input coordinate of the pixel; and determining the values of a rotational invariant form of two-dimensional S-Transform (RIST) at the input coordinate.
In some implementations, the method further includes determining the S-Transform (ST) magnitudes (A1) using positive discretization at the input coordinate of the pixel; flipping the input image along x direction; determining the ST magnitudes (A2) using positive discretization at the coordinate of the corresponding pixel in the flipped image; and determining the average of the above two sets A1 and A2 of magnitudes.
The RIST algorithm may be implemented using a modified form of a FTFT-2D method.
In some implementations, the method may be implemented by a computing device executing the method as computer-executable instructions read from a tangible computer-readable medium.
It should be understood that the above-described subject matter may also be implemented as a computer-controlled apparatus, a computer process, a computing system, or an article of manufacture, such as a computer-readable storage medium.
Other systems, methods, features and/or advantages will be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be protected by the accompanying claims.
The components in the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding parts throughout the several views.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure. As used in the specification, and in the appended claims, the singular forms “a,” “an,” “the” include plural referents unless the context clearly dictates otherwise. The term “comprising” and variations thereof as used herein is used synonymously with the term “including” and variations thereof and are open, non-limiting terms. While implementations will be described for performing an S-transform in the context of performing image processing techniques, it will become evident to those skilled in the art that the implementations are not limited thereto.
Below, the present disclosure describes a variant of a 2D S-transform (ST), called a “Rotationally Invariant S-Transform” (RIST), that is substantially rotationally invariant. Regarding the usage of RIST, while the 2D ST is a complex value, the formula of RIST provides a magnitude (modulus) of the complex number, but not the phases. RIST may be used for square images; as such because most medical images are square or can be made so by cropping and padding the image, RIST has applicability to such images. Moreover, the RIST values obtained by the original formulae are inherently not smooth.
As determining the RIST value directly may take a long period of time and/or utilize large amounts of memory a FTFT-2D may be used to generate RIST magnitudes for pixels and RIST statistics for regions of interest quickly and accurately. The FTFT-2D algorithm and tools are disclosed in U.S. Provisional Patent Application No. 61/562,486, filed on Nov. 22, 2011, entitled “FTFT-2D Patent Detailed Description,” and U.S. Provisional Patent Application No. 61/562,498, filed on Nov. 22, 2011, entitled “FTFT-2D Patent Detailed Description,” the disclosures of which are expressly incorporated herein by reference in their entireties.
RIST magnitudes produced by the FTFT-2D tool may be used for SRF in many medical applications, such as virtual biopsy. Also described herein is another rotationally invariant ST, called RIST*. RIST* may be used in both SFT visualization and spectral analysis. In an implementation, a FTFT-RIST tool displays the values and graphs of RIST* for each pixel or a region of interest (ROI). It also outputs a vector of texture and spectral features based on RIST*.
Below is a discussion of the algorithms from which the RIST and RIST* are derived.
The 1-dimensional Continuous ST of a complex function of time h(t) is a joint complex function of time t and frequency f:
The discrete ST for a signal or time series can be found using the frequency domain, derived by the Convolution Theorem. There are two ways to perform the above, which differ in the summation endpoints.
A first is as follows:
A second is as follows:
Here, h[n]=h(n) is the discrete time series and H[k]=H(k/N) is its Fourier Transform, assuming that the sampling interval is 1. The values n and k are the time and frequency indices respectively. The value k is equal to Nf where f is the frequency. Herein, the usage of “[ ]” is for discrete functions of integers, while “( )” is for continuous functions of real or complex numbers. In practice, by Nyquist Theorem, the present disclosure seeks to find the ST for f from 0 to ½, i.e. for k=0, 1, . . . , N/2−1, as there may not be information to find ST for higher frequencies. The following terms, “positive discretization” and “symmetric discretization” are used respectively to signify that the values taken by the summation index are mostly positive in the former and are almost symmetric in the latter.
The 2-dimensional Discrete S-Transform (2D ST) of a complex 2-dimensional Nx×Ny data set or image is a simple extension of 1D ST. It is assumed that the intensity function h[nx, ny] in the image is real. 2D ST is a means of performing SFR. Like 1D ST, its frequency-domain formula has two forms: With positive discretization, the following relationship applies:
whereas with symmetric discretization, it becomes:
Here, nx, kx, ny, ky are the time and frequency indices respectively in each direction, and H[kx, ky] is the 2-dimensional Fourier Transform. In practice, by Nyquist Theorem, the present disclosure seeks to find the 2D ST for frequency fx and fy from 0 to ½, i.e. for kx=0, 1, . . . . , Nx/2−1, and ky=0, 1, . . . . , Ny/2−1. The above equations are applicable when kx, ky are positive.
In relationship (6), r is the radius in the k-space. | . . . | stands for the magnitude of the complex ST value. round( ) means the nearest integer of a real number. In implementations, the ST magnitudes for those points in the k-space whose magnitudes do not exceed N/2 are considered. Thus, in
For an SFR of a square image several types of transformational invariance may be defined. They are imposed on magnitudes only, as 2-dimensional phases are usually not useful. In practice, it is difficult for any transformational invariance to be satisfied by any SFR exactly (except for reflectional and right-angle rotational invariance of RIST as described in Section 6, below), because of the following concerns: The image is finite with edge effects; the image may not be square (as noted above, it is assumed that the image is square, as in most medical images); the pixel on a rotated image cannot be found that correspond exactly to a given pixel on the original; and a rotated image is a little blurred compared to the original one, due to the interpolation of pixel gray levels during the rotation operation.
3.1 Translational Invariance
An SFR possesses a “translational invariance” property if the following is true: For any image I and its translation I′ by any vector (u, v), and for any pixel P(nx, ny) on I and the corresponding pixel P′(nx+u, ny+v) on I′, the SFR magnitude at every (kx, ky) in the k-space for P on I is equal to the SFR magnitude at (kx, ky) for P′ on I′. Translational invariance is well satisfied by most SFR. It is easy to show that ST magnitude is translationally invariant (except for the edge effects), and so for RIST, which is formed in terms of ST.
3.2 Rotational Invariance
An SFR possesses “rotational invariance” property if the following is true: For any image I and its rotation I′ by any angle θ about any point (a, b), and for any pixel P on I and the corresponding pixel P′ on I′, the radial component of SFR magnitudes at any radius r in the k-space for P on I is identical to that for P′ on I′. Thus, given translational invariance, an SFR that is rotationally invariant about a point (a, b) is also rotationally invariant about any other point (a′, b′).
In accordance with the present disclosure, the image in
3.3 Reflectional Invariances
An SFR possesses a “reflectional invariance about x” property if the following is true: For any image I and its x-reflection IX about any line x=c (with intensity function hX[nx,ny]=h[2c−nx,ny]), and for any pixel P(nx,ny) on I and the corresponding pixel PX(2c−nx,ny) on IX, the SFR magnitude at every (kx, ky) in the k-space for P on I is identical to that at same point (kx, ky) for PX on IX.
An SFR possesses a “reflectional invariance about y” property if the following is true: For any image I and its y-reflection IY about any line y=d (with intensity function hY [nx,ny]=h[nx,2d−ny]), and for any pixel P(nx, ny) on I and the corresponding pixel PY(nx,2d−ny) on IY, the SFR magnitude at every (kx, ky) in the k-space for P on I is identical to that at the same point (kx, ky) for PY on IY. Thus, given translational invariance, an SFR that is reflectionally invariant about a line x=c is also reflectionally invariant about any other line x=c′. Similarly for reflectional invariance about y.
An SFR possesses a “diagonal reflectional invariance” property if the following is true: For any image I and its reflection ID about the diagonal x=y (with intensity function hD[nx, ny]=h[ny, nx]), and for any pixel P(nx, ny) on I and the corresponding pixel PD(ny, nx) on ID, the SFR magnitude at every (kx, ky) in the k-space for P on I is identical to that at the diagonally flipped point (ky, kx) for PD on ID. Thus, reflectional invariance about x (respectively y) and diagonal reflectional together imply reflectional invariance about y (respectively x).
3.4 Right-Angle Rotational Invariance
An SFR possesses a “right-angle rotational invariance” property if the following is true: For any image I and its rotation I′ by ±90° any point (a, b) and for any pixel P on I and the corresponding pixel P′ on I′, the SFR magnitude at every (kx, ky) in the k-space for P on I is equal to the SFR magnitude at the diagonally flipped point (ky, kx) in the k-space for P′ on I′. Thus, given translational invariance, an SFR that is right-angle rotationally invariant about a point (a, b) is also right-angle rotationally invariant about any other point (a′, b′).
It is implied by the conjunction of reflectional invariance about x or y, and the diagonal reflectional invariance, because a rotation by +90° is equivalent to diagonal reflection followed by x-reflection, or to y-reflection followed by the diagonal reflection, and similarly for −90°.
It is only defined for square images (N=Nx=Ny). For an N×N image I with intensity h[nx, ny], the 2-dimensional Discrete Rotationally Invariant S-Transform (RIST) magnitude is defined by:
where SPX [nx,ny,kx,ky] stands for the ST value in positive discretization for the image IX obtained by flipping the given image along x, i.e. the intensity in IX is given by hX [nx, ny]=h[N−1−nx,ny].
In the present disclosure, the magnitude of RIST has been defined in terms of the magnitudes of ST, without first defining the complex value of RIST, SRIST[nx, ny, kx, ky], itself. As such, relationship (7) can be expressed in words: For each (kx,ky) in the k-space, the RIST) magnitude of an image I at pixel P(nx,ny) is equal to the arithmetic mean of the positive-discretization ST magnitude of the given image at that pixel and that of the flipped image IX at the corresponding pixel PX(N−1−nx,ny).
As can be shown, the same results can be achieved if the image is flipped along y instead of along x, i.e.,
where SPY[nx,ny,kx,ky] stands for the positive-discretization ST value for the image IY obtained by flipping the given image along y, i.e. the intensity in IY is given by hY [nx,ny]=h[nx,N−1−ny]. To prove that relationship (8) is also true, the 2-dimensional Fourier Transforms of an image I and its flipped counterparts IX, IY are related by:
H
X
[k
x
,k
y
]=H[−k
x
,k
y
]e
i2πk
/N, (9)
and
H
Y
[k
x
,k
y
]=H[k
x
,−k
y
]e
i2πk
/N. (10)
Hence, from relationship (4),
The last equality comes from the fact that ei2πk
The right-hand sides of relationships (11) and (12) are equal because their summands are complex conjugates, due to the theorem that H[−a,−b] is the complex conjugate of H[a,b] when intensity function h is real. As such:
|SPY[nx,N−1−ny,kx,ky]|=|SPX[N−1−nx,ny,kx,ky]| (13)
and therefore relationship (8) is equivalent to relationship (7).
While there is no rigorous mathematical proof why relationship (7) attains some degree of rotational invariance, experimental results conclude that it is true. However, RIST satisfies right-angle rotational invariance. If the smoothness and small variation of the error function is assumed, then the error should vary from 0 at rotation angle 0° to 0 at angle 90°, through small values at intermediate rotation angles between 0 and 90°. A demonstration of rotational invariance of RIST will be given in Section 9. As RIST magnitude is based on positive discretization, the result is not smooth, as in
By relationship (7), RIST satisfies reflectional invariance exactly about the middle line x=(N−1)/2. By the alternative relationship (8), it also satisfies reflectional invariance about the middle line y=(N−1)/2. The diagonal reflectional invariance holds for RIST as well. To this end, x and y can be interchanged for each term on the right-hand side of relationship (7) without changing their values, because the order of double summations in relationship (4) and in the formula for 2-dimensional Fourier Transform inside (4) can be swapped. So, relationship (7) becomes:
When x, and y are interchanged, the images are reflected about the diagonal, so in relationship (14), SPD may be used instead of SP. Also, the second term is for reflection along y, so SPDY may be used.
From relationship (8), the right-hand side of relationship (14) is exactly |SRISTD [ny,nx,ky,kx], so the proof is complete. As explained in Section 3.4, above, these reflectional invariances imply right-angle rotational invariance about the centre about the centre ((N−1)/2, (N−1)/2) for RIST.
By virtue of translational invariance, it can be deduced that RIST has reflectional invariance about any line x=c and about any line y=d, as well as right-angle rotational invariance about any point. But all these are not exact since translational invariance is not.
The FTFT-2D may be modified so that they compute RIST values fast and accurately. By “accurately”, it is meant that the results obtained are a reasonable approximation of relationship (7). In particular, given a square image I, the flipped image IX is created and both images pre-processed. Then, to find the RIST value for a pixel P in I, the FTFT-2D algorithm is applied twice, to find the ST magnitude at P in I and that at the corresponding pixel PX in IX, for each (kx, ky) in the k-space. Finally, the magnitudes are averaged. Like RIST, this modified form of FTFT-2D for RIST satisfies the reflectional (and hence right-angle rotational) invariances. From
In accordance with some implementations, an improved form of RIST, called RIST* will now be described. It differs from RIST in several ways. First, it is defined as a complex number, whereas with RIST only a magnitude is defined by relationship (7). Second, it allows the frequency indexes kx and ky to be signed, thus enabling a more comprehensive visualization and analysis of the spectral characteristics of the image. Third, it provides a more convincing demonstration of the rotational invariance of RIST. The RIST* value at a point (nx, ny) in an N×N square image may be defined as a complex number: \
where kx and ky can take positive and negative values within N/2−1, . . . , −1, 0, 1, . . . , N/2−1, and SPXY means x-reflection followed by y-reflection.
Usually the magnitudes of RIST* are sufficient. Thus, only the cases with non-negative ky are needed:
The cases with negative ky are redundant because by relationship (13):
|SPY[nx,N−1−ny,kx,ky]|=|SPX[N−1−nx,ny,kx,ky]|, (17)
and, by replacing SP by SPX in relationship (17):
|SPXY[N−1−nx,N−1−ny,kx,ky]|=|SP[nx,ny,kx,ky]|. (18)
Hence, only the upper half of RIST* need be drawn.
Similarly to 2D and RIST, the RIST* magnitudes are of interest for those points in the k-space whose magnitudes do not exceed N/2. So the following figures, only a semicircle is displayed. The points outside the semicircle do not contribute to the texture curve. The texture curve for RIST* is formed in the same way as for RIST, by relationship (6), except that RIST* only averages over the semicircle of radius r, not over the quadrant there. From relationship (7) and relationship (16) that the texture curves of RIST and RIST*, shown in
Thus, described above are two methods of formulating a substantially rotationally invariant 2-dimensional discrete SFR based on 2D ST. These new representations, called RIST and RIST*, are different from the discrete ST, but are better in quantifying, visualizing and analyzing localized frequency content in the image. Moreover, the representations provide a very fast way to compute them for a pixel or for an ROI, using modified forms of the FTFT-2D tool. They are useful for spectral analysis of medical images.
Numerous other general purpose or special purpose computing system environments or configurations may be used. Examples of well known computing systems, environments, and/or configurations that may be suitable for use include, but are not limited to, personal computers, server computers, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, network personal computers (PCs), minicomputers, mainframe computers, embedded systems, distributed computing environments that include any of the above systems or devices, and the like.
Computer-executable instructions, such as program modules, being executed by a computer may be used. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Distributed computing environments may be used where tasks are performed by remote processing devices that are linked through a communications network or other data transmission medium. In a distributed computing environment, program modules and other data may be located in both local and remote computer storage media including memory storage devices.
With reference to
Computing device 800 may have additional features/functionality. For example, computing device 800 may include additional storage (removable and/or non-removable) including, but not limited to, magnetic or optical disks or tape. Such additional storage is illustrated in
Computing device 800 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by device 800 and includes both volatile and non-volatile media, removable and non-removable media.
Computer storage media include volatile and non-volatile, and removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Memory 804, removable storage 808, and non-removable storage 810 are all examples of computer storage media. Computer storage media include, but are not limited to, RAM, ROM, electrically erasable program read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computing device 800. Any such computer storage media may be part of computing device 800.
Computing device 800 may contain communications connection(s) 812 that allow the device to communicate with other devices. Computing device 800 may also have input device(s) 814 such as a keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s) 816 such as a display, speakers, printer, etc. may also be included. All these devices are well known in the art and need not be discussed at length here.
It should be understood that the various techniques described herein may be implemented in connection with hardware or software or, where appropriate, with a combination of both. Thus, the methods and apparatus of the presently disclosed subject matter, or certain aspects or portions thereof, may take the form of program code (i.e., instructions) embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-readable storage medium wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the presently disclosed subject matter. In the case of program code execution on programmable computers, the computing device generally includes a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. One or more programs may implement or utilize the processes described in connection with the presently disclosed subject matter, e.g., through the use of an application programming interface (API), reusable controls, or the like. Such programs may be implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the program(s) can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language and it may be combined with hardware implementations.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/562,504, filed on Nov. 22, 2011, entitled “RIST Patent Detailed Description,” the disclosure of which is expressly incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US12/66450 | 11/23/2012 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
60562504 | Apr 2004 | US |