METHODS OF DIAGNOSING AND TREATING CERVICAL CANCER

Information

  • Patent Application
  • 20240091305
  • Publication Number
    20240091305
  • Date Filed
    August 23, 2023
    a year ago
  • Date Published
    March 21, 2024
    9 months ago
  • Inventors
    • CHECA ROJAS; Alberto
    • SANTILLAN GODINEZ; Orlando
    • DOMINGUEZ PALESTINO; Raul
  • Original Assignees
    • TIMSER, S.A.P.I. DE C.V.
Abstract
The present invention is related to diagnostic tests or rapid detections of different types of cancer, especially cervical cancer and precancerous lesions. Especially, the invention relates to specific and useful protein biomarkers for the detection of said diseases, and to the methods for determination and detection of said biomarkers.
Description
INCORPORATION OF SEQUENCE LISTING

The Sequence Listing filed herewith, titled TMI2-PT004.1—Sequence Listing, created on Aug. 22, 2023, and having of file size of 277.5 KB is incorporated herein as if fully set forth.


BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates generally to methods of diagnosing and treating cervical cancer in a subject and more specifically to biomarkers used to diagnose cervical cancer.


Background Information

Cervical cancer (CC) is one of the most common cancers among women worldwide. Among the risk factors related to this disease are infection with the human papilloma virus (HPV), the microbiome, risky sexual behavior, multiparity, smoking, prolonged use of hormonal contraceptives and environmental factors. Cervical cancer is a disease of slow and progressive evolution. It is preceded by cervical intraepithelial neoplasms, which are the lesions considered to be the prelude to this condition. These malignancies or injuries can occur even 10 years before cervical cancer develops.


Human papillomavirus infection (HPV) causes more than 90% of cases. Other risk factors include smoking, a weak immune system, birth control pills, starting sex at a young age, and having many sexual partners, but these are less important. Cervical cancer typically develops from precancerous changes over 10 to 20 years. About 90% of cervical cancer cases are squamous cell carcinomas, 10% are adenocarcinoma, and a small number are other types. Diagnosis is typically by cervical screening followed by a biopsy. Medical imaging is then done to determine whether or not the cancer has spread.


Current methods of diagnosing cervical cancer are invasive. The most common method of diagnosing cervical cancer is by a smear screening with Papanicolaou staining, i.e. Pap smear. There is a need for non-invasive methods of detecting cervical cancer.


SUMMARY OF THE INVENTION

The present invention is based on the seminal discovery that a collection of biomarkers can be used for the diagnosis of cervical cancer.


In one embodiment, the present invention is directed to methods of detecting at least one polypeptide in a sample from a subject; wherein the at least one polypeptide is selected from Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat Shock Protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs: 1-20 or a fragment thereof; and diagnosing cervical cancer based on the detection of the at least one polypeptide.


In one aspect, the sample is selected from the group consisting of blood, plasma, urine, saliva, sweat, organ biopsy, cerebrospinal fluid (CSF), tear, vaginal fluid, feces, skin, and hair. In certain aspects the sample is a blood sample and the subject is human.


In another aspect, the at least one polypeptide is Farnesyl pyrophosphate synthase or a fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In an additional aspect, the at least one polypeptide is a polypeptide having at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:2-20 and a fragment thereof.


In a further aspect, the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical flow assay or immunoassay. In a specific aspect, the detecting is by lateral flow assay. In one aspect, the method also includes administering a treatment to the subject. In an additional aspect, the treatment is surgery, radiation, chemotherapy, targeted therapy and/or immunotherapy.


In another embodiment, the present invention provides a method of diagnosing cervical cancer in a subject by detecting at least one polypeptide in a sample from a subject; wherein the at least one polypeptide is selected from Farnesyl pyrophosphate synthase, neurofibromin 1, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat shock protein cognate protein 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs: 1-20 or a fragment thereof; and diagnosing cervical cancer based on the detection of at least one polypeptide.


In one aspect, the sample is blood, plasma, urine, saliva, sweat, organ biopsy, cerebrospinal fluid (CSF), tear, vaginal fluid, feces, skin, and hair. In certain aspects, the sample is a blood sample and the subject is human.


In an additional aspect, the at least one polypeptide is Farnesyl pyrophosphate synthase or a fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Cognate thermal shock protein 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In a further aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide with at least about 70% sequence identity to a polypeptide having an amino acid sequence selected from SEQ ID NOs:2-20 or a fragment thereof.


In another aspect, the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical flow assay or immunoassay. In a specific aspect, the detecting is by lateral flow assay. In one aspect, the method also includes administering a treatment to the subject. In certain aspects, the treatment is surgery, radiation, chemotherapy, targeted therapy and/or immunotherapy.


In an additional embodiment, the present invention provides a method of treating cervical cancer in a subject in need thereof, the method is detecting at least one polypeptide in a sample from a subject; wherein the at least one polypeptide is selected from Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs: 1-20 or a fragment thereof; diagnosing cervical cancer based on the detection of the at least one polypeptide; and administering a treatment to the subject. In one aspect, the sample is a blood sample.


In an additional aspect, the at least one polypeptide is Farnesyl pyrophosphate synthase or a fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In a further embodiment, the at least one polypeptides is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide with at least about 70% sequence identity to a polypeptide with an amino acid sequence selected from SEQ ID NOs:2-20 or a fragment thereof.


In another aspect, the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical flow or immunoassay. In a specific aspect, the detecting is by lateral flow assay. In an additional aspect, the treatment is selected from the group consisting of surgery, radiation, chemotherapy, targeted therapy and immunotherapy.


In a further aspect, the chemotherapy is Cisplatin, Carboplatin, Paclitaxel, Topotecan, docetaxel, ifosfamide, 5-fluorouracil, irinotecan, gemcitabine or mitomycin. In certain aspects, the targeted therapy is bevacizumab and the immunotherapy is pembrolizumab.


In a further embodiment, the present invention provides methods of predicting a response to treatment for a subject having cervical cancer by detecting at least one polypeptide in a sample from a subject; wherein the at least one polypeptide is selected from Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having amino acid sequence selected from SEQ ID NOs: 1-20 or a fragment thereof; and predicting a response to treatment based on the detection of the at least one polypeptide.


In one aspect, the at least one polypeptide is Farnesyl pyrophosphate synthase or a fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In another aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:2-20 or a fragment thereof.


In an additional aspect, the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical flow or immunoassay. In a further aspect, the detecting is by lateral flow assay. In certain aspects, the treatment is surgery, radiation, chemotherapy, targeted therapy and immunotherapy.


In another embodiment, the present invention provides methods for determining the stage of cervical cancer in a subject in need thereof by detecting at least one polypeptide in a sample from the subject; wherein the at least one polypeptide is selected from Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs: 1-20 or a fragment thereof; and determining the stage of cervical cancer in the subject based on the detection of the at least one polypeptide.


In one aspect, the at least one polypeptide is Farnesyl pyrophosphate synthase or a fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In another aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:2-20 or a fragment thereof.


In an additional aspect, the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical assay or immunoassay. In a specific aspect, the detecting is by lateral flow assay. In a further aspect, the method also includes administering a treatment to the subject. In certain aspects, the treatment is surgery, radiation, chemotherapy, targeted therapy or immunotherapy. In one aspect, the cervical cancer is stage I, stage II, stage III or stage IV.


In one embodiment, the present invention provides a kit with a sample collection unit; a lateral flow device; and instructions for using the lateral flow device.


In one aspect, the lateral flow device detects at least one polypeptide selected from Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs: 1-20 or a fragment thereof.


In an additional aspect, the at least one polypeptide is Farnesyl pyrophosphate synthase or a fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alph-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In a further aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:2-20 or a fragment thereof.


In another aspect, the lateral flow device detects the at least one polypeptide by an immunoassay. In one aspect, the sample collection unit collects a blood sample.


In an additional aspect, the present invention provides a use of the detection of at least one polypeptide for the diagnosis of cervical cancer in a subject in need thereof, wherein the at least one polypeptide is selected from Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs: 1-20 or a fragment thereof.


In a further aspect, the at least one polypeptide is detected in a sample from the subject and the sample is a blood sample. In another aspect, the at least one polypeptide is Farnesyl pyrophosphate synthase or a fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alph-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In one aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:2-20 or a fragment thereof.


In another aspect, the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical flow or immunoassay. In certain aspects, the detecting is by lateral flow assay.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the workflows to obtain secreted proteins in vivo or ex vivo.



FIG. 2 is a graph showing the growth kinetics of cell lines with and without fetal bovine serum (FBS).



FIG. 3A show analysis of the cervical cancer line secretome and its negative control. FIG. 3B illustrates the number of total protein in each cell line, the number of unique protein, and the protein shared between cell lines. FIG. 3C is a graphical representation of the data presented in FIG. 3B.



FIG. 4A shows a dotplot graph illustrating the label-free quantification (LFQ) of 200 CC cell line secretome proteins vs. their negative control. FIG. 4B is a graph bar representing the expression profile of proteins of interest. FIG. 4C is a heat map illustrating the label-free quantification (LFQ) of 200 CC cell line secretome proteins vs. their negative control.



FIG. 5A illustrates the workflow to collect blood and serum samples. FIG. 5B illustrate the western blot analysis of FPS (farnesyl pyrophosphatase) in mouse sera. FIG. 5C illustrates the quantification of the data presented in FIG. 5B.



FIG. 6A illustrates the validation of the candidate protein Farnesyl pyrophosphate synthase in the sera of patients with CC. FIG. 6B illustrates the level of Farnesyl pyrophosphate synthase protein detected in the sera of control patients. FIG. 6C illustrates the quantification of the data presented in FIGS. 6A and 6B.



FIG. 7A illustrates the validation of the candidate protein Farnesyl pyrophosphate synthase in precancerous cervical lesions. FIG. 7B illustrates the validation of the candidate protein Ankyrin-3 in precancerous cervical lesions. FIG. 7C illustrates the quantification of the data presented in FIGS. 7A and 7B.



FIG. 8A illustrates the detection of Farnesyl pyrophosphate synthase by western blot in the sera of patients with pre-cancerous lesions LI. FIG. 8B illustrates the detection of Farnesyl pyrophosphate synthase by western blot in the sera of patients with pre-cancerous lesions L2. FIG. 8C illustrates the detection of Farnesyl pyrophosphate synthase by western blot in the sera of control patients. FIG. 8D illustrates the quantification of the data provided in FIG. 8A-8C.



FIG. 9A illustrates the detection of Ankyrin-3 by western blot in the sera of patients with pre-cancerous lesions LI. FIG. 9B illustrates the detection of Ankyrin-3 by western blot in the sera of patients with pre-cancerous lesions L2. FIG. 9C illustrates the detection of Ankyrin-3 by western blot in the sera of control patients. FIG. 9D illustrates the quantification of the data provided in FIG. 9A-9C.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is based on the seminal discovery that a collection of biomarkers can be used for the diagnosis of cervical cancer.


Before the present compositions and methods are described, it is to be understood that this invention is not limited to particular compositions, methods, and experimental conditions described, as such compositions, methods, and conditions may vary. It is also to be understood that the terminology used herein is for purposes of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only in the appended claims.


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, references to “the method” includes one or more methods, and/or steps of the type described herein which will become apparent to those persons skilled in the art upon reading this disclosure and so forth.


All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, it will be understood that modifications and variations are encompassed within the spirit and scope of the instant disclosure. The preferred methods and materials are now described.


Cervical cancer (CC) is one of the most common cancers among women worldwide. Among the risk factors related to this disease are infection with the human papilloma virus (HPV), the microbiome, risky sexual behavior, multiparity, smoking, prolonged use of hormonal contraceptives and environmental factors. Cervical cancer is a disease of slow and progressive evolution. It is preceded by cervical intraepithelial neoplasms, which are the lesions considered to be the prelude to this condition.


These lesions are generally asymptomatic, making it difficult to detect the disease in a timely manner, so if they are not detected by any of the conventional methods, there is a risk that they will develop to the state of CC. Due to this, the diagnosis of neoplastic lesions or cancer in early stages, from HPV infection, is extremely important to be able to channel and treat these cases in a timely and adequate manner.


Currently the gold standard for the diagnosis of CC is the Pap test, while for the detection of HPV the most widely used method is detection by PCR and sequencing of the viral genome. Although both methods are an international benchmark, these tests have technical limitations, since highly trained personnel, facilities and specialized equipment are required; Furthermore, it is not easily accessible to the entire female population and the existence of socio-cultural beliefs prevent women from making diagnoses.


Molecular biomarkers would help in the detection of cervical cancer using non-invasive methods. These biomarkers will serve as detection, prognosis, or follow-up of treatment of preneoplastic lesions and cancers in early stages based on patient serum samples. Thus being able to decrease the incidence of the disease that continues to be a public health problem in many low and high income countries.


Due to all of the above, there is an urgent need to develop new and simpler disease detection methods that are applicable in early detection, specific, highly sensitive, inexpensive, and easily accessible to the population.


The methods, compositions, and kits disclosed herein may be used for the diagnosis, prognosis, and/or monitoring the status or outcome of a cancer in a subject. In some embodiments, the diagnosing, predicting, and/or monitoring the status or outcome of a cancer comprises determining the malignancy or malignant potential of the cancer or tumor. Alternatively, the diagnosing, predicting, and/or monitoring the status or outcome of a cancer comprises determining the stage of the cancer. The diagnosing, predicting, and/or monitoring the status or outcome of a cancer can comprise determining the tumor grade. Alternatively, the diagnosing, predicting, and/or monitoring the status or outcome of a cancer comprises assessing the risk of developing a cancer. In some embodiments, the diagnosing, predicting, and/or monitoring the status or outcome of a cancer includes assessing the risk of cancer recurrence. In some embodiments, diagnosing, predicting, and/or monitoring the status or outcome of a cancer may comprise determining the efficacy of treatment.


In one embodiment, the present invention is directed to methods of detecting at least one polypeptide in a sample from a subject; wherein the at least one polypeptide is selected from Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat Shock Protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs: 1-147 or a fragment thereof; and diagnosing cervical cancer based on the detection of the at least one polypeptide. In one aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:1-20 or a fragment thereof.


As used herein, the terms “detect”, “detecting” or “detection” may describe either the general act of discovering or discerning or the specific observation of a polypeptide. Detecting may comprise determining the presence or absence of a polypeptide. Detecting may comprise quantifying a polypeptide. For example, detecting comprises determining the expression level of a polypeptide. For example, the polypeptide may comprise at least a portion of the polypeptides disclosed herein.


The polypeptides or biomarkers of the present invention can be detected by any method that can be used for the specific detection and/or identification of a protein, peptide, fragment thereof, variant thereof, or mutant thereof. Examples of method of detecting protein include, but are not limited to: spectrometry methods, such as high-performance liquid chromatography (H PLC), partition chromatography, normal-phase chromatography, displacement chromatography, reversed-phase chromatography (RPC), size-exclusion chromatography, ion-exchange chromatography, bioaffinity chromatography, aqueous normal-phase chromatography, liquid chromatography-mass spectrometry (LC/MS); and antibody dependent or immunoassay based methods, such as enzyme-linked immunosorbent assay (ELISA), direct ELISA, sandwich ELISA, competitive ELISA, reverse ELISA, protein immunoprecipitation (direct or indirect), individual protein immunoprecipitation (IP), protein complex immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP), RNP Immunoprecipitation (RIP), immunoelectrophoresis, western blot, and protein immunostaining. The polypeptides or biomarkers of the present invention can also be detected using protein microarrays, lateral flow assays or vertical flow assays. In certain aspects, the polypeptides or biomarkers are detected using a lateral flow assay. A lateral flow assay is typically an immunoassay either a sandwich assay or competitive assay. Typically these assays use a conjugated gold, carbon or colored latex nanoparticles. Multiplexed assays may also be performed using these methods.


As used herein, the term “subject” refers to any organisms that are screened using the diagnostic methods and treated using the treatment methods described herein. Such organisms preferably include, but are not limited to, mammals (e.g., murines, simians, equines, bovines, porcines, canines, felines, and the like), and most preferably includes humans.


The term “diagnosed,” as used herein, refers to the recognition of a disease by its signs and symptoms, or genetic analysis, pathological analysis, histological analysis, and the like. Specifically, the term refers to the diagnosis or detection of cervical cancer.


The biomarkers of the present invention serve various functions within cells.


Farnesylpyrophosphate synthase (FPPS), also known as Dimethylallyltranstransferase (DMATT) or as farnesyldiphosphate synthase (FDPS), is an enzyme that in humans is encoded by the FDPS gene and catalyzes the transformation of dimethylallylpyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP) into farnesylpyrophosphate (FPP).


Neurofibromin 1 (NF1) is a gene in humans that is located on chromosome 17. NF1 codes for neurofibromin, a GTPase-activating protein that negatively regulates RAS/MAPK pathway activity by accelerating the hydrolysis of Ras-bound GTP. NF1 has a high mutation rate and mutations in NF1 can alter cellular growth control, and neural development, resulting in neurofibromatosis type 1 (NF1, also known as von Recklinghausen syndrome).


Glyceraldehyde 3-phosphate dehydrogenase (abbreviated as GAPDH or less commonly as G3PDH) (EC 1.2.1.12) is an enzyme of −37 kDa that catalyzes the sixth step of glycolysis and thus serves to break down glucose for energy and carbon molecules. In addition to this long established metabolic function, GAPDH has recently been implicated in several non-metabolic processes, including transcription activation, initiation of apoptosis, ER to Golgi vesicle shuttling, and fast axonal, or axoplasmic transport.


Protein 1 containing fibronectin domain type III also known as Fibronectin type III domain containing protein-1 may be an activator of G protein signaling. Protein 1 containing fibronectin domain type III is encoded by the FNDC1 gene.


Eukaryotic initiation factor 4A-I is an ATP-dependent RNA helicase which is a subunit of the eIF4F complex involved in cap recognition and is required for mRNA binding to ribosome. In the current model of translation initiation, eIF4A unwinds RNA secondary structures in the 5′-UTR of mRNAs which is necessary to allow efficient binding of the small ribosomal subunit, and subsequent scanning for the initiator codon. The protein is encoded by the EIF4A1 gene.


L-lactate dehydrogenase chain B is involved in step 1 of the subpathway that synthesizes (S)-lactate from pyruvate. The protein is encoded by the LDHB gene.


Nuclear heterogeneous Ribonucleoprotein A1, also known as heterogeneous nuclear ribonucleoprteon AI, is involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and may modulate splice site selection. May bind to specific mlRNA hairpins. Binds to the IRES and thereby inhibits the translation of the apoptosis protease activating factor APAF1. Nuclear heterogeneous Ribonucleoprotein A1 is encoded by the HNRNPA1 gene.


1-like protein 1 polycystic kidney disease, also known as polycystic kidney disease protein 1-like 1, is a component of a ciliary calcium channel that controls calcium concentration within primary cilia without affecting cytoplasmic calcium concentration. Forms a heterodimer with PKD2L1 in primary cilia and forms a calcium-permeant ciliary channel that regulates sonic hedgehog/SHH signaling and GLI2 transcription. Does not constitute the pore-forming subunit. Also involved in left/right axis specification downstream of nodal flow: forms a complex with PKD2 in cilia to facilitate flow detection in left/right patterning. Encoded by the PKD1L1 gene.


Heat Shock Protein Cognate 71 kDa is a molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle of HSP70, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity of HSP70 for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. HSP70 goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The HSP70-associated co-chaperones are of three types: J-domain co-chaperones HSP4Os (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB 1. Acts as a repressor of transcriptional activation. Inhibits the transcriptional coactivator activity of CITED1 on Smad-mediated transcription. Component of the PRP19-CDC5L complex that forms an integral part of the spliceosome and is required for activating pre-mRNA splicing. May have a scaffolding role in the spliceosome assembly as it contacts all other components of the core complex. Binds bacterial lipopolysaccharide (LPS) and mediates LPS-induced inflammatory response, including TNF secretion by monocytes. Participates in the ER-associated degradation (ERAD) quality control pathway in conjunction with J domain-containing co-chaperones and the E3 ligase STUB 1. Interacts with VGF-derived peptide TLQP-21. This protein is encoded by the HSPA8 gene.


Ankyrin 3 is found in skeletal muscle and is required for costamere localization of DMD and betaDAG1 (By similarity). Membrane-cytoskeleton linker. The protein may participate in the maintenance/targeting of ion channels and cell adhesion molecules at the nodes of Ranvier and axonal initial segments. Regulates KCNA1 channel activity in function of dietary Mg2+ levels, and thereby contributes to the regulation of renal Mg2+ reabsorption. Ankyrin-3 is encoded by the ANK3 gene.


Rho 23 GTPase-activating protein, also known as Rho GTPase activating protein 23, is part of the RHO family of small GTPases which are involved in signal transduction through transmembrane receptors, and they are inactive in the GDP-bound form and active in the GTP-bound form. GTPase-activating proteins, such as ARHGAP23, inactivate RHO family proteins by stimulating their hydrolysis of GTP. Rho GTPase-activating protein 23 is encoded by the ARHGAP23 gene.


Keratins are the major structural proteins in epithelial cells, forming a cytoplasmic network of 10 to 12 nm wide intermediate filaments and creating a scaffold that gives cells the ability to withstand mechanical and non-mechanical stresses. There are two types of cytoskeletal and microfibrillar keratin, I (acidic) and II (neutral to basic), i.e. Cytoskeletal Keratin 78 type II, also known as keratin, type II cytoskeletal 78. Cytoskeletal keratin 78 type II is encoded by the KRT78 gene.


Alpha 3 collagen chain (VI), also known as collagen alpha-3 (VI) chain, acts as a cell-binding protein. Collagen alpha-3(VI) chain is encoded by the COL6A3 gene.


Beta subunit of proteasome type-5, also known as Proteasome subunit beta type-5 and 20S proteasome subunit beta-5 is a protein that in humans is encoded by the PSMB5 gene. This protein is one of the 17 essential subunits (alpha subunits 1-7, constitutive beta subunits 1-7, and inducible subunits including betali, beta2i, beta5i) that contributes to the complete assembly of 20S proteasome complex. In particular, proteasome subunit beta type-5, along with other beta subunits, assemble into two heptameric rings and subsequently a proteolytic chamber for substrate degradation. This protein contains “chymotrypsin-like” activity and is capable of cleaving after large hydrophobic residues of peptide. The eukaryotic proteasome recognized degradable proteins, including damaged proteins for protein quality control purpose or key regulatory protein components for dynamic biological processes. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides. Beta subunit of proteasome type 5 is encoded by the PSMB5 gene.


Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non-random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs. Forms hnRNP particles with at least 20 other different hnRNP and heterogeneous nuclear RNA in the nucleus. Involved in transport of specific mRNAs to the cytoplasm in oligodendrocytes and neurons: acts by specifically recognizing and binding the A2RE (21 nucleotide hnRNP A2 response element) or the A2RE 11 (derivative 11 nucleotide oligonucleotide) sequence motifs present on some mRNAs, and promotes their transport to the cytoplasm. Specifically binds single-stranded telomeric DNA sequences, protecting telomeric DNA repeat against endonuclease digestion (By similarity). Also binds other RNA molecules, such as primary miRNA (pri-miRNAs): acts as a nuclear ‘reader’ of the N6-methyladenosine (m6A) mark by specifically recognizing and binding a subset of nuclear m6A-containing pri-miRNAs. Binding to m6A-containing pri-miRNAs promotes pri-miRNA processing by enhancing binding of DGCR8 to pri-miRNA transcripts. Involved in miRNA sorting into exosomes following sumoylation, possibly by binding (m6A)-containing pre-miRNAs. Acts as a regulator of efficiency of mRNA splicing, possibly by binding to m6A-containing pre-mRNAs. Plays also a role in the activation of the innate immune response. Mechanistically, senses the presence of viral DNA in the nucleus, homodimerizes and is demethylated by JMJD6. In turn, translocates to the cytoplasm where it activates the TBK1-IRF3 pathway, leading to interferon alpha/beta production. Heterogeneous nuclear ribonucleoproteins A2/B1 is a protein that in humans is encoded by the HNRNPA2B1 gene.


Histone H2B type 1-B is a core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Histone H2B type 1-B is encoded by the H2BC3 gene.


Homolog of DnaJ subfamily C member 13, also known as DnaJ homolog subfamily C member 13, is involved in membrane trafficking through early endosomes, such as the early endosome to recycling endosome transport implicated in the recycling of transferrin and the early endosome to late endosome transport implicated in degradation of EGF and EGFR. Involved in the regulation of endosomal membrane tubulation and regulates the dynamics of SNX1 on the endosomal membrane; via association with WASHC2 may link the WASH complex to the retromer SNX-BAR subcomplex. DnaJ homolog subfamily member 13 is encoded by the DNAJC13 gene.


Enolase 3 (ENO3), more commonly known as beta-enolase (ENO-(3), is an enzyme that in humans is encoded by the ENO3 gene. This gene encodes one of the three enolase isoenzymes found in mammals. This isoenzyme is found in skeletal muscle cells in the adult where it may play a role in muscle development and regeneration. A switch from alpha enolase to beta enolase occurs in muscle tissue during development in rodents. Mutations in this gene have been associated with glycogen storage disease. Alternatively spliced transcript variants encoding different isoforms have been described.


Glutathione S-transferases (GSTs) are a family of enzymes that play an important role in detoxification by catalyzing the conjugation of many hydrophobic and electrophilic compounds with reduced glutathione. Based on their biochemical, immunologic, and structural properties, the soluble GSTs are categorized into four main classes: alpha, mu, pi, and theta. The glutathione S-transferase pi gene (GSTP1) is a polymorphic gene encoding active, functionally different GSTP1 variant proteins that are thought to function in xenobiotic metabolism and play a role in susceptibility to cancer, and other diseases. Glutathione S-transferase P is an enzyme that in humans is encoded by the GSTP1 gene.


Glutathione S-transferase Mu 3 may govern uptake and detoxification of both endogenous compounds and xenobiotics at the testis and brain blood barriers. Glutathione S-transferase Mu 3 is encoded by the GSTM3 gene.


The amino acid sequences for the biomarkers of the present invention and variants thereof are shown in Table 1.










TABLE 1





Protein name/SEQ ID NO.
Amino acid sequence







Famesyl pyrophosphate synthase
MPLSRWLRSVGVFLLPAPYWAPRERWLGSLRRPSLVHGYPVLAW


(FDPS)
HSARCWCQAWTEEPRALCSSLRMNGDQNSDVYAQEKQDFVQHFS


SEQ ID NO: 1
QIVRVLTEDEMGHPEIGDAIARLKEVLEYNAIGGKYNRGLTVVVA



FRELVEPRKQDADSLQRAWTVGWCVELLQAFFLVADDIMDSSLTR



RGQICWYQKPGVGLDAINDANLLEACIYRLLKLYCREQPYYLNLIE



LFLQSSYQTEIGQTLDLLTAPQGNVDLVRFTEKRYKSIVKYKTAFY



SFYLPIAAAMYMAGIDGEKEHANAKKILLEMGEFFQIQDDYLDLF



GDPSVTGKIGTDIQDNKCSWLVVQCLQRATPEQYQILKENYGQKE



AEKVARVKALYEELDLPAVFLQYEEDSYSHIMALIEQYAAPLPPAV



FLGLARKIYKRRK





Neurofibromin 1
MAAHRPVEWVQAVVSRFDEQLPIKTGQQNTHTKVSTEHNKECLIN


(NF1)
ISKYKFSLVISGLTTILKNVNNMRIFGEAAEKNLYLSQLIILDTLEKC


SEQ ID NO: 2
LAGQPKDTMRLDETMLVKQLLPEICHFLHTCREGNQHAAELRNSA



SGVLFSLSCNNFNAVFSRISTRLQELTVCSEDNVDVHDIELLQYINV



DCAKLKRLLKETAFKFKALKKVAQLAVINSLEKAFWNWVENYPD



EFTKLYQIPQTDMAECAEKLFDLVDGFAESTKRKAAVWPLQIILLI



LCPEIIQDISKDVVDENNMNKKLFLDSLRKALAGHGGSRQLTESAA



IACVKLCKASTYINWEDNSVIFLLVQSMVVDLKNLLFNPSKPFSRG



SQPADVDLMIDCLVSCFRISPHNNQHFKICLAQNSPSTFHYVLVNS



LHRIITNSALDWWPKIDAVYCHSVELRNMFGETLHKAVQGCGAHP



AIRMAPSLTFKEKVTSLKFKEKPTDLETRSYKYLLLSMVKLIHADP



KLLLCNPRKQGPETQGSTAELITGLVQLVPQSHMPEIAQEAMEALL



VLHQLDSIDLWNPDAPVETFWEISSQMLFYICKKLTSHQMLSSTEIL



KWLREILICRNKFLLKNKQADRSSCHFLLFYGVGCDIPSSGNTSQM



SMDHEELLRTPGASLRKGKGNSSMDSAAGCSGTPPICRQAQTKLE



VALYMILWNPDTEAVLVAMSCFRHLCEEADIRCGVDEVSVHNLL



PNYNTFMEFASVSNMMSTGRAALQKRVMALLRRIEHPTAGNTEA



WEDTHAKWEQATKLILNYPKAKMEDGQAAESLHKTIVKRRMSHV



SGGGSIDLSDTDSLQEWINMTGFLCALGGVCLQQRSNSGLATYSPP



MGPVSERKGSMISVMSSEGNADTPVSKFMDRLLSLMVCNHEKVG



LQIRTNVKDLVGLELSPALYPMLFNKLKNTISKFFDSQGQVLLTDT



NTQFVEQTIAIMKNLLDNHTEGSSEHLGQASIETMMLNLVRYVRV



LGNMVHAIQIKTKLCQLVEVMMARRDDLSFCQEMKFRNKMVEYL



TDWVMGTSNQAADDDVKCLTRDLDQASMEAVVSLLAGLPLQPEE



GDGVELMEAKSQLFLKYFTLFMNLLNDCSEVEDESAQTGGRKRG



MSRRLASLRHCTVLAMSNLLNANVDSGLMHSIGLGYHKDLQTRA



TFMEVLTKILQQGTEFDTLAETVLADRFERLVELVTMMGDQGELPI



AMALANVVPCSQWDELARVLVTLFDSRHLLYQLLWNMFSKEVEL



ADSMQTLFRGNSLASKIMTFCFKVYGATYLQKLLDPLLRIVITSSD



WQHVSFEVDPTRLEPSESLEENQRNLLQMTEKFFHAIISSSSEFPPQ



LRSVCHCLYQATCHSLLNKATVKEKKENKKSVVSQRFPQNSIGAV



GSAMFLRFINPAIVSPYEAGILDKKPPPRIERGLKLMSKILQSIANHV



LFTKEEHMRPFNDFVKSNFDAARRFFLDIASDCPTSDAVNHSLSFIS



DGNVLALHRLLWNNQEKIGQYLSSNRDHKAVGRRPFDKMATLLA



YLGPPEHKPVADTHWSSLNLTSSKFEEFMTRHQVHEKEEFKALKT



LSIFYQAGTSKAGNPIFYYVARRFKTGQINGDLLIYHVLLTLKPYY



AKPYEIVVDLTHTGPSNRFKTDFLSKWFVVFPGFAYDNVSAVYIY



NCNSWVREYTKYHERLLTGLKGSKRLVFIDCPGKLAEHTEHEQQK



LPAATLALEEDLKVFHNALKLAHKDTKVSIKVGSTAVQVTSAERT



KVLGQSVFLNDIYYASEIEEICLVDENQFTLTIANQGTPLTFMHQEC



EAIVQSIIHIRTRWELSQPDSIPQHTKIRPKDVPGTLLNIALLNLGSSD



PSLRSAAYNLLCALTCTFNLKIEGQLLETSGLCIPANNTLFIVSISKT



LAANEPHLTLEFLEECISGFSKSSIELKHLCLEYMTPWLSNLVRFCK



HNDDAKRQRVTAILDKLITMTINEKQMYPSIQAKIWGSLGQITDLL



DVVLDSFIKTSATGGLGSIKAEVMADTAVALASGNVKLVSSKVIG



RMCKIIDKTCLSPTPTLEQHLMWDDIAILARYMLMLSFNNSLDVA



AHLPYLFHVVTFLVATGPLSLRASTHGLVINIIHSLCTCSQLHFSEET



KQVLRLSLTEFSLPKFYLLFGISKVKSAAVIAFRSSYRDRSFSPGSYE



RETFALTSLETVTEALLEIMEACMRDIPTCKWLDQWTELAQRFAF



QYNPSLQPRALVVFGCISKRVSHGQIKQIIRILSKALESCLKGPDTY



NSQVLIEATVIALTKLQPLLNKDSPLHKALFWVAVAVLQLDEVNL



YSAGTALLEQNLHTLDSLRIFNDKSPEEVFMAIRNPLEWHCKQMD



HFVGLNFNSNFNFALVGHLLKGYRHPSPAIVARTVRILHTLLTLVN



KHRNCDKFEVNTQSVAYLAALLTVSEEVRSRCSLKHRKSLLLTDIS



MENVPMDTYPIHHGDPSYRTLKETQPWSSPKGSEGYLAATYPTVG



QTSPRARKSMSLDMGQPSQANTKKLLGTRKSFDHLISDTKAPKRQ



EMESGITTPPKMRRVAETDYEMETQRISSSQQHPHLRKVSVSESNV



LLDEEVLTDPKIQALLLTVLATLVKYTTDEFDQRILYEYLAEASVV



FPKVFPVVHNLLDSKINTLLSLCQDPNLLNPIHGIVQSVVYHEESPP



QYQTSYLQSFGFNGLWRFAGPFSKQTQIPDYAELIVKFLDALIDTY



LPGIDEETSEESLLTPTSPYPPALQSQLSITANLNLSNSMTSLATSQH



SPGIDKENVELSPTTGHCNSGRTRHGSASQVQKQRSAGSFKRNSIK



KIV





Glyceraldehyde-3 phosphate
MGKVKVGVNGFGRIGRLVTRAAFNSGKVDIVAINDPFIDLNYMVY


dehydrogenase
MFQYDSTHGKFHGTVKAENGKLVINGNPITIFQERDPSKIKWGDA


(GAPDH)
GAEYVVESTGVFTTMEKAGAHLQGGAKRVIISAPSADAPMFVMG


SEQ ID NO: 3
VNHEKYDNSLKIISNASCTTNCLAPLAKVIHDNFGIVEGLMTTVHA



ITATQKTVDGPSGKLWRDGRGALQNIIPASTGAAKAVGKVIPELNG



KLTGMAFRVPTANVSVVDLTCRLEKPAKYDDIKKVVKQASEGPL



KGILGYTEHQVVSSDFNSDTHSSTFDAGAGIALNDHFVKLISWYDN



EFGYSNRVVDLMAHMASKE





Protein 1 containing fibronectin
MAPEAGATLRAPRRLSWAALLLLAALLPVASSAAASVDHPLKPRH


domain type III
VKLLSTKMGLKVTWDPPKDATSRPVEHYNIAYGKSLKSLKYIKVN


or Fibronectin Type III Domain
AETYSFLIEDVEPGVVYFVLLTAENHSGVSRPVYRAESPPGGEWIEI


Containing protein 1
DGFPIKGPGPFNETVTEKEVPNKPLRVRVRSSDDRLSVAWKAPRLS


(FNDC1)
GAKSPRRSRGFLLGYGESGRKMNYVPLTRDERTHEIKKLASESVY


SEQ ID NO: 4
VVSLQSMNSQGRSQPVYRAALTKRKISEEDELDVPDDISVRVMSS



QSVLVSWVDPVLEKQKKVVASRQYTVRYREKGELARWDYKQIA



NRRVLIENLIPDTVYEFAVRISQGERDGKWSTSVFQRTPESAPTTAP



ENLNVWPVNGKPTVVAASWDALPETEGKVKEYILSYAPALKPFG



AKSLTYPGDTTSALVDGLQPGERYLFKIRATNRRGLGPHSKAFIVA



MPTTSKADVEQNTEDNGKPEKPEPSSPSPRAPASSQIIPSVPASPQG



RNAKDLLLDLKNKILANGGAPRKPQLRAKKAEELDLQSTEITGEEE



LGSREDSPMSPSDTQDQKRTLRPPSRHGHSVVAPGRTAVRARMPA



LPRREGVDKPGFSLATQPRPGAPPSASASPAHHASTQGTSHRPSLP



ASLNDNDLVDSDEDERAVGSLHPKGAFAQPRPALSPSRQSPSSVLR



DRSSVIIPGAKPASPARRTPHSGAAEEDSSASAPPSRLSPPHGGSSRL



LPTQPHLSSPLSKGGKDGEDAPATNSNAPSRSTMSSSVSSHLSSRTQ



VSEGAEASDGESHGDGDREDGGRQAEATAQTLRARPASGHFHLL



RHKPFAANGRSPSRFSIGRGPRLQPSSSPQSTVPSRAHPRVPSHSDS



HPKLSSGIHGDEEDEKPLPATVVNDHVPSSSRQPISRGWEDLRRSP



QRGASLHRKEPIPENPKSTGADTHPQGKYSSLASKAQDVQQSTDA



DTEGHSPKAQPGSTDRHASPARPPAARSQQIIPSVPRRMTPGRAPQ



QQPPPPVATSQHHPGPQSRDAGRSPSQPRLSLTQAGRPRPTSQGRS



HSSSDPYTASSRGMLPTALQNQDEDAQGSYDDDSTEVEAQDVRAP



AHAARAKEAAASLPKHQQVESPTGAGAGGDHRSQRGHAASPARP



SRPGGPQSRARVPSRAAPGKSEPPSKRPLSSKSQQSVSAEDDEEED



AGFFKGGKEDLLSSSVPKWPSSSTPRGGKDADGSLAKEEREPAIAL



APRGGSLAPVKRPLPPPPGSSPRASHVPSRLPPRSAATVSPVAGTHP



WPQYTTRAPPGHFSTTPMLSLRQRMMHARFRNPLSRQPARPSYRQ



GYNGRPNVEGKVLPGSNGKPNGQRIINGPQGTKWVVDLDRGLVL



NAEGRYLQDSHGNPLRIKLGGDGRTIVDLEGTPVVSPDGLPLFGQG



RHGTPLANAQDKPILSLGGKPLVGLEVIKKTTHIPPTTTMQPTTITTP



LPTTTTPRPTTATTRRTTTTRRTTTRRPTTTVRTTTRTTTTTTFTPTT



PIPTCPPGTLERHDDDGNLIMSSNGIPECYAEEDEFSGLETDTAVPT



EEAYVIYDEDYEFETSRPPTTTEPSTTATTPRVIPEEGAISSFPEEEFD



LAGRKRFVAPYVTYLNKDPSAPCSLTDALDHFQVDSLDEIIPNDLK



KSDLPPQHAPRNITVVAVEGCHSFVIVDWDKATPGDVVTGYLVYS



ASYEDFIRNKWSTQASSVTHLPIENLKPNTRYYFKVQAQNPHGYG



PISPSVSFVTESDNPLLVVRPPGGEPIWIPFAFKHDPSYTDCHGRQY



VKRTWYRKFVGVVLCNSLRYKIYLSDNLKDTFYSIGDSWGRGED



HCQFVDSHLDGRTGPQSYVEALPTIQGYYRQYRQEPVRFGNIGFGT



PYYYVGWYECGVSIPGKW





Eukaryotic initiation factor 4A-I
MSASQDSRSRDNGPDGMEPEGVIESNWNEIVDSFDDMNLSESLLR


(EIF4A1)
GIYAYGFEKPSAIQQRAILPCIKGYDVIAQAQSGTGKTATFAISILQQ


SEQ ID NO: 5
IELDLKATQALVLAPTRELAQQIQKVVMALGDYMGASCHACIGGT



NVRAEVQKLQMEAPHIIVGTPGRVFDMLNRRYLSPKYIKMFVLDE



ADEMLSRGFKDQIYDIFQKLNSNTQVVLLSATMPSDVLEVTKKFM



RDPIRILVKKEELTLEGIRQFYINVEREEWKLDTLCDLYETLTITQA



VIFINTRRKVDWLTEKMHARDFTVSAMHGDMDQKERDVIMREFR



SGSSRVLITTDLLARGIDVQQVSLVINYDLPTNRENYIHRIGRGGRF



GRKGVAINMVTEEDKRTLRDIETFYNTSIEEMPLNVADLI





L-lactate dehydrogenase chain B
MATLKEKLIAPVAEEEATVPNNKITVVGVGQVGMACAISILGKSLA


(LDHB)
DELALVDVLEDKLKGEMMDLQHGSLFLQTPKIVADKDYSVTANS


SEQ ID NO: 6
KIVVVTAGVRQQEGESRLNLVQRNVNVFKFIIPQIVKYSPDCIIIVVS



NPVDILTYVTWKLSGLPKHRVIGSGCNLDSARFRYLMAEKLGIHPS



SCHGWILGEHGDSSVAVWSGVNVAGVSLQELNPEMGTDNDSEN



WKEVHKMVVESAYEVIKLKGYTNWAIGLSVADLIESMLKNLSRIH



PVSTMVKGMYGIENEVFLSLPCILNARGLTSVINQKLKDDEVAQLK



KSADTLWDIQKDLKDL





Nuclear heterogeneous
MSKSESPKEPEQLRKLFIGGLSFETTDESLRSHFEQWGTLTDCVVM


Ribonucleoprotein A1
RDPNTKRSRGFGFVTYATVEEVDAAMNARPHKVDGRVVEPKRAV


(BNRNPA1)
SREDSQRPGAHLTVKKIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIM


SEQ ID NO: 7
TDRGSGKKRGFAFVTFDDHDSVDKIVIQKYHTVNGHNCEVRKALS



KQEMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGNFSGRG



GFGGSRGGGGYGGSGDGYNGFGNDGGYGGGGPGYSGGSRGYGS



GGQGYGNQGSGYGGSGSYDSYNNGGGGGFGGGSGSNFGGGGSY



NDFGNYNNQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGG



YGGSSSSSSYGSGRRF





Polycystic kidney disease protein 1-
MAEEAAQNISDDQERCLQAACCLSFGGELSVSTDKSWGLHLCSCS


like 1
PPGGGLWVEVYANHVLLMSDGKCGCPWCALNGKAEDRESQSPSS


(PKD1L1)
SASRQKNIWKTTSEAALSVVNEKTQAVVNEKTQAPLDCDNSADRI


SEQ ID NO: 8
PHKPFIIIARAWSSGGPRFHHRRLCATGTADSTFSALLQLQGTTSAA



APCSLKMEASCCVLRLLCCAEDVATGLLPGTVTMETFTKVARPTQ



TSSQRVPLWPISHFPTSPRSSHGLPPGIPRTPSFTASQSGSEILYPPTQ



HPPVAILARNSDNFMNPVLNCSLEVEARAPPNLGFRVHMASGEAL



CLMMDFGDSSGVEMRLHNMSEAMAVTAYHQYSKGIFFHLLHFQL



DMSTYKEAETQNTTLNVYLCQSENSCLEDSDPSNLGYELISAFVTK



GVYMLKAVIYNEFHGTEVELGPYYVEIGHEAVSAFMNSSSVHEDE



VLVFADSQVNQKSTVVIHHFPSIPSYNVSFISQTQVGDSQAWHSMT



VWYKMQSVSVYTNGTVFATDTDITFTAVTKETIPLEFEWYFGEDP



PVRTTSRSIKKRLSIPQWYRVMVKASNRMSSVVSEPHVIRVQKKIV



ANRLTSPSSALVNASVAFECWINFGTDVAYLWDFGDGTVSLGSSS



SSHVYSREGEFTVEVLAFNNVSASTLRQQLFIVCEPCQPPLVKNMG



PGKVQIWRSQPVRLGVTFEAAVFCDISQGLSYTWNLMDSEGLPVS



LPAAVDTHRQTLILPSHTLEYGNYTALAKVQIEGSVVYSNYCVGLE



VRAQAPVSVISEGTHLFFSRTTSSPIVLRGTQSFDPDDPGATLRYHW



ECATAGSPAHPCFDSSTAHQLDAAAPTVSFEAQWLSDSYDQFLVM



LRVSSGGRNSSETRVFLSPYPDSAFRFVHISWVSFKDTFVNWNDEL



SLQAMCEDCSEIPNLSYSWDLFLVNATEKNRIEVPFCRVVGLLGSL



GLGAISESSQLNLLPTEPGTADPDATTTPFSREPSPVTLGQPATSAPR



GTPTEPMTGVYWIPPAGDSAVLGEAPEEGSLDLEPGPQSKGSLMT



GRSERSQPTHSPDPHLSDFEAYYSDIQEAIPSGGRQPAKDTSFPGSG



PSLSAEESPGDGDNLVDPSLSAGRAEPVLMIDWPKALLGRAVFQG



YSSSGITEQTVTIKPYSLSSGETYVLQVSVASKHGLLGKAQLYLTV



NPAPRDMACQVQPHHGLEAHTVFSVFCMSGKPDFHYEFSYQIGNT



SKHTLYHGRDTQYYFVLPAGEHLDNYKVMVSTEITDGKGSKVQP



CTVVVTVLPRYHGNDCLGEDLYNSSLKNLSTLQLMGSYTEIRNYIT



VITRILSRLSKEDKTASCNQWSRIQDALISSVCRLAFVDQEEMIGSV



LMLRDLVSFSNKLGFMSAVLILKYTRALLAQGQFSGPFVIDKGVRL



ELIGLISRVWEVSEQENSKEEVYRHEEGITVISDLLLGCLSLNHVST



GQMEFRTLLHYNLQSSVQSLGSVQVHLPGDLAGHSPAGAETQSPC



YISQLILFKKNPYPGSQAPGQIGGVVGLNLYTCSSRRPINRQWLRKP



VMVEFGEEDGLDNRRNKTTFVLLRDKVNLHQFTELSENPQESLQIE



IEFSKPVTRAFPVMLLVRFSEKPTPSDFLVKQIYFWDESIVQIYIPAA



SQKDASVGYLSLLDADYDRKPPNRYLAKAVNYTVHFQWIRCLFW



DKREWKSERFSPQPGTSPEKVNCSYHRLAAFALLRRKLKASFEVS



DISKLQSHPENLLPSIFTMGSVILYGFLVAKSRQVDHHEKKKAGYIF



LQEASLPGHQLYAVVIDTGFRAPARLTSKVYIVLCGDNGLSETKEL



SCPEKPLFERNSRHTFILSAPAQLGLLRKIRLWHDSRGPSPGWFISH



VMVKELHTGQGWFFPAQCWLSAGRHDGRVERELTCLQGGLGFR



KLFYCKFTEYLEDFHVWLSVYSRPSSSRYLHTPRLTVSFSLLCVYA



CLTALVAAGGQEQPHLDVSPTLGSFRVGLLCTLLASPGAQLLSLLF



RLSKEAPGSARVEPHSPLRGGAQTEAPHGPNSWGRIPDAQEPRKQP



ASAILSGSGRAQRKAASDNGTACPAPKLQVHGADHSRTSLMGKSH



CCPPHTQAPSSGLEGLMPQWSRALQPWWSSAVWAICGTASLACSL



GTGFLAYRFGQEQCVQWLHLLSLSVVCCIFITQPLMVCLMALGFA



WKRRADNHFFTESLCEATRDLDSELAERSWTRLPFSSSCSIPDCAG



EVEKVLAARQQARHLRWAIIPPSKAQLRGTRQRMRRESRTRAALR



DISMDILMLLLLLCVIYGRFSQDEYSLNQAIRKEFTRNARNCLGGL



RNIADWWDWSLTTLLDGLYPGGTPSARVPGAQPGALGGKCYLIGS



SVIRQLKVFPRHLCKPPRPFSALIEDSIPTCSPEVGGPENPYLIDPEN



QNVTLNGPGGCGTREDCVLSLGRTRTEAHTALSRLRASMWIDRST



RAVSVHFTLYNPPTQLFTSVSLRVEILPTGSLVPSSLVESFSIFRSDS



ALQYHLMLPQLVFLALSLIHLCVQLYRMMDKGVLSYWRKPRNWL



ELSVVGVSLTYYAVSGHLVTLAGDVTNQFHRGLCRAFMDLTLMA



SWNQRARWLRGILLFLFTLKCVYLPGIQNTMASCSSMMRHSLPSIF



VAGLVGALMLAALSHLHRFLLSMWVLPPGTFTDAFPGLLFHFPRR



SQKDCLLGLSKSDQRAMACYFGILLIVSATLCFGMLRGFLMTLPQ



KRKSFQSKSFVRLKDVTAYMWEKVLTFLRLETPKLEEAEMVENH



NYYLDEFANLLDELLMKINGLSDSLQLPLLEKTSNNTGEARTEESP



LVDISSYQAAEPADIKDF





Cognate thermal shock protein 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


or heat shock protein cognate 71 kDa
DTERLIGDAAKNQVAMNPTNTVFDAKRLIGRRFDDAVVQSDMKH


(HSPA8)
WPFMVVNDAGRPKVQVEYKGETKSFYPEEVSSMVLTKMKEIAEA


SEQ ID NO: 9
YLGKTVTNAVVTVPAYFNDSQRQATKDAGTIAGLNVLRIINEPTA



AAIAYGLDKKVGAERNVLIFDLGGGTFDVSILTIEDGIFEVKSTAGD



THLGGEDFDNRMVNHFIAEFKRKHKKDISENKRAVRRLRTACERA



KRTLSSSTQASIEIDSLYEGIDFYTSITRARFEELNADLFRGTLDPVE



KALRDAKLDKSQIHDIVLVGGSTRIPKIQKLLQDFFNGKELNKSINP



DEAVAYGAAVQAAILSGDKSENVQDLLLLDVTPLSLGIETAGGVM



TVLIKRNTTIPTKQTQTFTTYSDNQPGVLIQVYEGERAMTKDNNLL



GKFELTGIPPAPRGVPQIEVTFDIDANGILNVSAVDKSTGKENKITIT



NDKGRLSKEDIERMVQEAEKYKAEDEKQRDKVSSKNSLESYAFN



MKATVEDEKLQGKINDEDKQKILDKCNEIINWLDKNQTAEKEEFE



HQQKELEKVCNPITTKLYQSAGGMPGGMPGGFPGGGAPPSGGASS



GPTIEEVD





Anikirina-3
MAHAASQLKKNRDLEINAEEEPEKKRKHRKRSRDRKKKSDANAS


or Ankyrin-3
YLRAARAGHLEKALDYIKNGVDINICNQNGLNALHLASKEGHVEV


(ANK3)
VSELLQREANVDAATKKGNTALHEASLAGQAEVVKVLVTNGANV


SEQ ID NO: 10
NAQSQNGFTPLYMAAQENHLEVVKFLLDNGASQSLATEDGFTPLA



VALQQGHDQVVSLLLENDTKGKVRLPALHIAARKDDTKAAALLL



QNDNNADVESKSGFTPLHIAAHYGNINVATLLLNRAAAVDFTARN



DITPLHVASKRGNANMVKLLLDRGAKIDAKTRDGLTPLHCGARSG



HEQVVEMLLDRAAPILSKTKNGLSPLHMATQGDHLNCVQLLLQH



NVPVDDVTNDYLTALHVAAHCGHYKVAKVLLDKKANPNAKALN



GFTPLHIACKKNRIKVMELLLKHGASIQAVTESGLTPIHVAAFMGH



VNIVSQLMHHGASPNTTNVRGETALHMAARSGQAEVVRYLVQDG



AQVEAKAKDDQTPLHISARLGKADIVQQLLQQGASPNAATTSGYT



PLHLSAREGHEDVAAFLLDHGASLSITTKKGFTPLHVAAKYGKLE



VANLLLQKSASPDAAGKSGLTPLHVAAHYDNQKVALLLLDQGAS



PHAAAKNGYTPLHMAKKNQMDIATTLLEYGADANAVTRQGIASV



HLAAQEGHVDMVSLLLGRNANVNLSNKSGLTPLHLAAQEDRVNV



AEVLVNQGAHVDAQTKMGYTPLHVGCHYGNIKIVNFLLQHSAKV



NAKTKNGYTPLHQAAQQGHTHIINVLLQNNASPNELTVNGNTALG



IARRLGYISVVDTLKIVTEETMITTTVTEKHKMNVPETMNEVLDM



SDDEVRKANAPEMLSDGEYISDVEEGEDAMTGDTDKYLGPQDLK



ELGDDSLPAEGYMGFSLGARSASLRSFSSDRSYTLNRSSYARDSM



MIEELLVPSKEQHLTFTREFDSDSLRHYSWAADTLDNVNLVSSPIH



SGFLVSFMVDARGGSMRGSRHHGMRDIPPRKCTAPTRITCRLVKR



HKLANPPPMVEGEGLASRLVEMGPAGAQFLGPVIVEIPHFGSMRG



KERELIVLRSENGETWKEHQFDSKNEDLTELLNGMDEELDSPEELG



KKRICRIITKDFPQYFAVVSRIKQESNQIGPEGGILSSTTVPLVQASFP



EGALTKRIRVGLQAQPVPDEIVKKILGNKATFSPIVTVEPRRRKFHK



PITMTIPVPPPSGEGVSNGYKGDTTPNLRLLCSITGGTSPAQWEDIT



GTTPLTFIKDCVSFTTNVSARFWLADCHQVLETVGLATQLYRELIC



VPYMAKFVVFAKMNDPVESSLRCFCMTDDKVDKTLEQQENFEEV



ARSKDIEVLEGKPIYVDCYGNLAPLTKGGQQLVFNFYSFKENRLPF



SIKIRDTSQEPCGRLSFLKEPKTTKGLPQTAVCNLNITLPAHKKETE



SDQDDEIEKTDRRQSFASLALRKRYSYLTEPGMIERSTGATRSLPTT



YSYKPFFSTRPYQSWTTAPITVPGPAKSGFTSLSSSSSNTPSASPLKS



IWSVSTPSPIKSTLGASTTSSVKSISDVASPIRSFRTMSSPIKTVVSQS



PYNIQVSSGTLARAPAVTEATPLKGLASNSTFSSRTSPVTTAGSLLE



RSSITMTPPASPKSNINMYSSSLPFKSITTSAAPLISSPLKSVVSPVKS



AVDVISSAKTTMASSLSSPVKQMPGHAEVALVNGSISPLKYPSSSTL



INGCKATATLQEKISSATNSVSSVVSAATDTVEKVFSTTTAMPFSPL



RSYVSAAPSAFQSLRTPSASALYTSLGSSISATTSSVTSSITTVPVYSV



VNVLPEPALKKLPDSNSFTKSAAALLSPIKTLTTETHPQPHFSRTSSP



VKSSLFLAPSALKLSTPSSLSSSQEILKDVAEMKEDLMRMTAILQTD



VPEEKPFQPELPKEGRIDDEEPFKIVEKVKEDLVKVSEILKKDVCVD



NKGSPKSPKSDKGHSPEDDWIEFSSEEIREARQQAAASQSPSLPERV



QVKAKAASEKDYNLTKVIDYLTNDIGSSSLTNLKYKFEDAKKDGE



ERQKRVLKPAIALQEHKLKMPPASMRTSTSEKELCKMADSFFGTD



TILESPDDFSQHDQDKSPLSDSGFETRSEKTPSAPQSAESTGPKPLFH



EVPIPPVITETRTEVVHVIRSYDPSAGDVPQTQPEEPVSPKPSPTFME



LEPKPTTSSIKEKVKAFQMKASSEEDDHNRVLSKGMRVKEETHITT



TTRMVYHSPPGGEGASERIEETMSVHDIMKAFQSGRDPSKELAGLF



EHKSAVSPDVHKSAAETSAQHAEKDNQMKPKLERDEVHIEKGNQ



AEPTEVIIRETKKHPEKEMYVYQKDLSRGDINLKDFLPEKHDAFPC



SEEQGQQEEEELTAEESLPSYLESSRVNTPVSQEEDSRPSSAQLISD



DSYKTLKLLSQHSIEYHDDELSELRGESYRFAEKMLLSEKLDVSHS



DTEESVTDHAGPPSSELQGSDKRSREKIATAPKKEILSKIYKDVSEN



GVGKVSKDEHFDKVTVLHYSGNVSSPKHAMWMRFTEDRLDRGR



EKLIYEDRVDRTVKEAEEKLTEVSQFFRDKTEKLNDELQSPEKKAR



PKNGKEYSSQSPTSSSPEKVLLTELLASNDEWVKARQHGPDGQGF



PKAEEKAPSLPSSPEKMVLSQQTEDSKSTVEAKGSISQSKAPDGPQ



SGFQLKQSKLSSIRLKFEQGTHAKSKDMSQEDRKSDGQSRIPVKKI



QESKLPVYQVFAREKQQKAIDLPDESVSVQKDFMVLKTKDEHAQS



NEIVVNDSGSDNVKKQRTEMSSKAMPDSFSEQQAKDLACHITSDL



ATRGPWDKKVFRTWESSGATNNKSQKEKLSHVLVHDVRENIIIGH



PESKSVDQKNEFMSVTERERKLLTNGSLSEIKEMTVKSPSKKVLYR



EYVVKEGDHPGGLLDQPSRRSESSAYSHIPVRVADERRMLSSNIPD



GFCEQSAFPKHELSQKLSQSSMSKETVETQHFNSIEDEKVTYSEISK



VSKHQSYVGLCPPLEETETSPTKSPDSLEFSPGKESPSSDVFDHSPID



GLEKLAPLAQTEGGKEIKTLPVYVSFVQVGKQYEKEIQQGGVKKII



SQECKTVQETRGTFYTTRQQKQPPSPQGSPEDDTLEQVSFLDSSGK



SPLTPETPSSEEVSYEFTSKTPDSLIAYIPGKPSPIPEVSEESEEEEQA



KSTSLKQTTVEETAVEREMPNDVSKDSNQRPKNNRVAYIEFPPPPP



LDADQIESDKKHHYLPEKEVDMIEVNLQDEHDKYQLAEPVIRVQP



PSPVPPGADVSDSSDDESIYQPVPVKKYTFKLKEVDDEQKEKPKAS



AEKASNQKELESNGSGKDNEFGLGLDSPQNEIAQNGNNDQSITECS



IATTAEFSHDTDATEIDSLDGYDLQDEDDGLTESDSKLPIQAMEIKK



DIWNTEGILKPADRSFSQSKLEVIEEEGKVGPDEDKPPSKSSSSEKT



PDKTDQKSGAQFFTLEGRHPDRSVFPDTYFSYKVDEEFATPFKTVA



TKGLDFDPWSNNRGDDEVFDSKSREDETKPFGLAVEDRSPATTPD



TTPARTPTDESTPTSEPNPFPFHEGKMFEMTRSGAIDMSKRDFVEE



RLQFFQIGEHTSEGKSGDQGEGDKSMVTATPQPQSGDTTVETNLE



RNVETPTVEPNPSIPTSGECQEGTSSSGSLEKSAAATNTSKVDPKLR



TPIKMGISASTMTMKKEGPGEITDKIEAVMTSCQGLENETITMISNT



ANSQMGVRPHEKHDFQKDNFNNNNNLDSSTIQTDNIMSNIVLTEH



SAPTCTTEKDNPVKVSSGKKTGVLQGHCVRDKQKVLGEQQKTKE



LIGIRQKSKLPIKATSPKDTFPPNHMSNTKASKMKQVSQSEKTKAL



TTSSCVDVKSRIPVKNTHRDNIIAVRKACATQKQGQPEKGKAKQL



PSKLPVKVRSTCVTTITTTATTITTITTTITTSCTVKVRKSQLKEV



CKHSIEYFKGISGETLKLVDRLSEEEKKMQSELSDEEESTSRNTSLS



ETSRGGQPSVTTKSARDKKTEAAPLKSKSEKAGSEKRSSRRTGPQS



PCERTDIRMAIVADHLGLSWTELARELNFSVDEINQIRVENPNSLIS



QSFMLLKKWVTRDGKNATTDALTSVLTKINRIDIVTLLEGPIFDYG



NISGTRSFADENNVFHDPVDGWQNETSSGNLESCAQARRVTGGLL



DRLDDSPDQCRDSITSYLKGEAGKFEANGSHTEITPEAKTKSYFPES



QNDVGKQSTKETLKPKIHGSGHVEEPASPLAAYQKSLEETSKLIIEE



TKPCVPVSMKKMSRTSPADGKPRLSLHEEEGSSGSEQKQGEGFKV



KTKKEIRHVEKKSHS





Rho 23
MNGVAFCLVGIPPRPEPRPPQLPLGPRDGCSPRRPFPWQGPRTLLL


or Rho GTPase-activating protein 23
YKSPQDGFGFTLRHFIVYPPESAVHCSLKEEENGGRGGGPSPRYRL


(ARHGAP23)
EPMDTIFVKNVKEDGPAHRAGLRTGDRLVKVNGESVIGKTYSQVI


SEQ ID NO: 11
ALIQNSDDTLELSIMPKDEDILQLAYSQDAYLKGNEPYSGEARSIPE



PPPICYPRKTYAPPARASTRATMVPEPTSALPSDPRSPAAWSDPGLR



VPPAARAHLDNSSLGMSQPRPSPGAFPHLSSEPRTPRAFPEPGSRVP



PSRLECQQALSHWLSNQVPRRAGERRCPAMAPRARSASQDRLEEV



AAPRPWPCSTSQDALSQLGQEGWHRARSDDYLSRATRSAEALGPG



ALVSPRFERCGWASQRSSARTPACPTRDLPGPQAPPPSGLQGLDDL



GYIGYRSYSPSFQRRTGLLHALSFRDSPFGGLPTFNLAQSPASFPPE



ASEPPRVVRPEPSTRALEPPAEDRGDEVVLRQKPPTGRKVQLTPAR



QMNLGFGDESPEPEASGRGERLGRKVAPLATTEDSLASIPFIDEPTS



PSIDLQAKHVPASAVVSSAMNSAPVLGTSPSSPTFTFTLGRHYSQD



CSSIKAGRRSSYLLAITTERSKSCDDGLNTFRDEGRVLRRLPNRIPS



LRMLRSFFTDGSLDSWGTSEDADAPSKRHSTSDLSDATFSDIRREG



WLYYKQILTKKGKKAGSGLRQWKRVYAALRARSLSLSKERREPG



PAAAGAAAAGAGEDEAAPVCIGSCLVDISYSETKRRHVFRLTTAD



FCEYLFQAEDRDDMLGWIRAIRENSRAEGEDPGCANQALISKKLN



DYRKVSHSSGPKADSSPKGSRGLGGLKSEFLKQSAARGLRTQDLP



AGSKDDSAAAPKTPWGINIIKKNKKAAPRAFGVRLEECQPATENQ



RVPLIVAACCRIVEARGLESTGIYRVPGNNAVVSSLQEQLNRGPGD



INLQDERWQDLNVISSLLKSFFRKLPEPLFTDDKYNDFIEANRIEDA



RERMRTLRKLIRDLPGHYYETLKFLVGHLKTIADHSEKNKMEPRN



LALVFGPTLVRTSEDNMTDMVTHMPDRYKIVETLIQHSDWFFSDE



EDKGERTPVGDKEPQAVPNIEYLLPNIGRTVPPGDPGSDSTTCSSAK



SKGSWAPKKEPYAREMLAISFISAVNRKRKKRREARGLGSSTDDD



SEQEAHKPGAGATAPGTQERPQGPLPGAVAPEAPGRLSPPAAPEER



PAADTRSIVSGYSTLSTMDRSVCSGASGRRAGAGDEADDERSELS



HVETDTEGAAGAGPGGRLTRRPSFSSIAHLMPCDTLARRRLARGRP



DGEGAGRGGPRAPEPPGSASSSSQESLRPPAAALASRPSRMEALRL



RLRGTADDMLAVRLRRPLSPETRRRRSSWRRHTVVVQSPLTDLNF



NEWKELGGGGPPEPAGARAHSDNKDSGLSSLESTKARAPSSAASQ



PPAPGDTGSLQSQPPRRSAASRLHQCL





Cytoskeletal Keratin 78 type II
MSLSPCRAQRGFSARSACSARSRGRSRGGFSSRGGFSSRSLNSFGG


or Keratin, type II cytoskeletal 78
CLEGSRGSTWGSGGRLGVRFGEWSGGPGLSLCPPGGIQEVTINQNL


(KRT78)
LTPLKIEIDPQFQVVRTQETQEIRTLNNQFASFIDKVRFLEQQNKVL


SEQ ID NO: 12
ETKWHLLQQQGLSGSQQGLEPVFEACLDQLRKQLEQLQGERGAL



DAELKACRDQEEEYKSKYEEEAHRRATLENDFVVLKKDVDGVFL



SKMELEGKLEALREYLYFLKHLNEEELGQLQTQASDTSVVLSMDN



NRYLDFSSITIEVRARYEEIARSSKAEAEALYQTKYQELQVSAQLH



GDRMQETKVQISQLHQEIQRLQSQTENLKKQNASLQAAITDAEQR



GELALKDAQAKVDELEAALRMAKQNLARLLCEYQELTSTKLSLD



VEIATYRRLLEGEECRMSGECTSQVTISSVGGSAVMSGGVGGGLG



STCGLGSGKGSPGSCCTSIVTGGSNIILGSGKDPVLDSCSVSGSSAG



SSCHTILKKTVESSLKTSITY





Alpha-3 collagen chain (VI)
MRKHRHLPLVAVFCLFLSGFPTTHAQQQQADVKNGAAADIIFLVD


or Collagen type VI, alpha 3
SSWTIGEEHFQLVREFLYDVVKSLAVGENDFHFALVQFNGNPHTE


(COL6A3)
FLLNTYRTKQEVLSHISNMSYIGGTNQTGKGLEYIMQSHLTKAAGS


SEQ ID NO: 13
RAGDGVPQVIVVLTDGHSKDGLALPSAELKSADVNVFAIGVEDAD



EGALKEIASEPLNMHMFNLENFTSLHDIVGNLVSCVHSSVSPERAG



DTETLKDITAQDSADIIFLIDGSNNTGSVNFAVILDFLVNLLEKLPIG



TQQIRVGVVQFSDEPRTMFSLDTYSTKAQVLGAVKALGFAGGELA



NIGLALDFVVENHFTRAGGSRVEEGVPQVLVLISAGPSSDEIRYGV



VALKQASVFSFGLGAQAASRAELQHRTDDNLVFTVPEFRSFGDLQ



EKLLPYIVGVAQRHWLKPPTIVTQVIEVNKRDIVFLVDGSSALGLA



NFNAIRDFIAKVIQRLEIGQDLIQVAVAQYADTVRPEFYFNTHPTKR



EVITAVRKMKPLDGSALYTGSALDFVRNNLFTSSAGYRAAEGIPKL



LVLITGGKSLDEISQPAQELKRSSIMAFAIGNKGADQAELEEIAFDS



SLVFIPAEFRAAPLQGMLPGLLAPLRTLSGTPEVHSNKRDIIFLLDGS



ANVGKTNFPYVRDFVMNLVNSLDIGNDNIRVGLVQFSDTPVTEFS



LNTYQTKSDILGHLRQLQLQGGSGLNTGSALSYVYANHFTEAGGS



RIREHVPQLLLLLTAGQSEDSYLQAANALTRAGILTFCVGASQANK



AELEQIAFNPSLVYLMDDFSSLPALPQQLIQPLTTYVSGGVEEVPLA



QPESKRDILFLFDGSANLVGQFPVVRDFLYKIIDELNVKPEGTRIAV



AQYSDDVKVESRFDEHQSKPEILNLVKRMKIKTGKALNLGYALDY



AQRYIFVKSAGSRIEDGVLQFLVLLVAGRSSDRVDGPASNLKQSGV



VPFIFQAKNADPAELEQIVLSPAFILAAESLPKIGDLIVQIVNLLKSV



HNGAPAPVSGEKDVVFLLDGSEGVRSGFPLLKEFVQRVVESLDVG



QDRVRVAVVQYSDRTRPEFYLNSYMNKQDVVNAVRQLTLLGGPT



PNTGAALEFVLRNILVSSAGSRITEGVPQLLIVLTADRSGDDVRNPS



VVVKRGGAVPIGIGIGNADITEMQTISFIPDFAVAIPTFRQLGTVQQ



VISERVTQLTREELSRLQPVLQPLPSPGVGGKRDVVFLIDGSQSAGP



EFQYVRTLIERLVDYLDVGFDTTRVAVIQFSDDPKVEFLLNAHSSK



DEVQNAVQRLRPKGGRQINVGNALEYVSRNIFKRPLGSRIEEGVPQ



FLVLISSGKSDDEVDDPAVELKQFGVAPFTIARNADQEELVKISLSP



EYVFSVSTFRELPSLEQKLLTPITTLTSEQIQKLLASTRYPPPAVESD



AADIVFLIDSSEGVRPDGFAHIRDFVSRIVRRLNIGPSKVRVGVVQF



SNDVFPEFYLKTYRSQAPVLDAIRRLRLRGGSPLNTGKALEFVARN



LFVKSAGSRIEDGVPQHLVLVLGGKSQDDVSRFAQVIRSSGIVSLG



VGDRNIDRTELQTITNDPRLVFTVREFRELPNIEERIMNSFGPSAATP



APPGVDTPPPSRPEKKKADIVFLLDGSINFRRDSFQEVLRFVSEIVD



TVYEDGDSIQVGLVQYNSDPTDEFFLKDFSTKRQIIDAINKVVYKG



GRHANTKVGLEHLRVNHFVPEAGSRLDQRVPQIAFVITGGKSVED



AQDVSLALTQRGVKVFAVGVRNIDSEEVGKIASNSATAFRVGNVQ



ELSELSEQVLETLHDAMHETLCPGVTDAAKACNLDVILGFDGSRD



QNVFVAQKGFESKVDAILNRISQMHRVSCSGGRSPTVRVSVVANT



PSGPVEAFDFDEYQPEMLEKFRNMRSQHPYVLTEDTLKVYLNKFR



QSSPDSVKVVIHFTDGADGDLADLHRASENLRQEGVRALILVGLE



RVVNLERLMHLEFGRGFMYDRPLRLNLLDLDYELAEQLDNIAEKA



CCGVPCKCSGQRGDRGPIGSIGPKGIPGEDGYRGYPGDEGGPGERG



PPGVNGTQGFQGCPGQRGVKGSRGFPGEKGEVGEIGLDGLDGEDG



DKGLPGSSGEKGNPGRRGDKGPRGEKGERGDVGIRGDPGNPGQDS



QERGPKGETGDLGPMGVPGRDGVPGGPGETGKNGGFGRRGPPGA



KGNKGGPGQPGFEGEQGTRGAQGPAGPAGPPGLIGEQGISGPRGS



GGAAGAPGERGRTGPLGRKGEPGEPGPKGGIGNRGPRGETGDDGR



DGVGSEGRRGKKGERGFPGYPGPKGNPGEPGLNGTTGPKGIRGRR



GNSGPPGIVGQKGDPGYPGPAGPKGNRGDSIDQCALIQSIKDKCPC



CYGPLECPVFPTELAFALDTSEGVNQDTFGRMRDVVLSIVNDLTIA



ESNCPRGARVAVVTYNNEVTTEIRFADSKRKSVLLDKIKNLQVAL



TSKQQSLETAMSFVARNTFKRVRNGFLMRKVAVFFSNTPTRASPQ



LREAVLKLSDAGITPLFLTRQEDRQLINALQINNTAVGHALVLPAG



RDLTDFLENVLTCHVCLDICNIDPSCGFGSWRPSFRDRRAAGSDVD



IDMAFILDSAETTTLFQFNEMKKYIAYLVRQLDMSPDPKASQHFAR



VAVVQHAPSESVDNASMPPVKVEFSLTDYGSKEKLVDFLSRGMTQ



LQGTRALGSAIEYTIENVFESAPNPRDLKIVVLMLTGEVPEQQLEEA



QRVILQAKCKGYFFVVLGIGRKVNIKEVYTFASEPNDVFFKLVDKS



TELNEEPLMRFGRLLPSFVSSENAFYLSPDIRKQCDWFQGDQPTKN



LVKFGHKQVNVPNNVTSSPTSNPVTTTKPVTTTKPVTTTTKPVTTT



TKPVTIINQPSVKPAAAKPAPAKPVAAKPVATKMATVRPPVAVKP



ATAAKPVAAKPAAVRPPAAAAAKPVATKPEVPRPQAAKPAATKP



ATTKPMVKMSREVQVFEITENSAKLHWERAEPPGPYFYDLTVTSA



HDQSLVLKQNLTVTDRVIGGLLAGQTYHVAVVCYLRSQVRATYH



GSFSTKKSQPPPPQPARSASSSTINLMVSTEPLALTETDICKLPKDEG



TCRDFILKWYYDPNTKSCARFWYGGCGGNENKFGSQKECEKVCA



PVLAKPGVISVMGT





Beta subunit of proteasome type-5
MALASVLERPLPVNQRGFFGLGGRADLLDLGPGSLSDGLSLAAPG


or Proteasome subunit beta type-5
WGVPEEPGIEMLHGTTTLAFKFRHGVIVAADSRATAGAYIASQTV


(PSMB5)
KKVIEINPYLLGTMAGGAADCSFWERLLARQCRIYELRNKERISVA


SEQ ID NO: 14
AASKLLANMVYQYKGMGLSMGTMICGWDKRGPGLYYVDSEGNR



ISGATFSVGSGSVYAYGVMDRGYSYDLEVEQAYDLARRAIYQATY



RDAYSGGAVNLYHVREDGWIRVSSDNVADLHEKYSGSTP





Heterogeneous nuclear
MEKTLETVPLERKKREKEQFRKLFIGGLSFETTEESLRNYYEQWGK


ribonucleoproteins A2/B1
LTDCVVMRDPASKRSRGFGFVTFSSMAEVDAAMAARPHSIDGRV


(HNRNPA2B1)
VEPKRAVAREESGKPGAHVTVKKLFVGGIKEDTEEHHLRDYFEEY


SEQ ID NO: 15
GKIDTIEITIDRQSGKKRGFGFVTFDDHDPVDKIVLQKYHTINGHNA



EVRKALSRQEMQEVQSSRSGRGGNFGFGDSRGGGGNFGPGPGSNF



RGGSDGYGSGRGFGDGYNGYGGGPGGGNFGGSPGYGGGRGGYG



GGGPGYGNQGGGYGGGYDNYGGGNYGSGNYNDFGNYNQQPSN



YGPMKSGNFGGSRNMGGPYGGGNYGPGGSGGSGGYGGRSRY





Histone H2B type 1-B
MPEPSKSAPAPKKGSKKATTKAQKKDGKKRKRSRKESYSIYVYKV


(HIST1H2BB)
LKQVIIPDTGISSKAMGIMNSFVNDIFERIAGEASRLAHYNKRSTITS


SEQ ID NO: 16
REIQTAVRLLLPGELAKHAVSEGTKAVTKYTSSK





homolog of DnaJ subfamily C member
MNIIRENKDLACFYTTKHSWRGKYKRVFSVGTHATITYNPNTLEV


13
TNQWPYGDICSISPVGKGQGTEFNLTFRKGSGKKSETLKFSTEHRT


or DnaJ homolog subfamily C member
ELLTEALRFRTDFSEGKITGRRYNCYKHHWSDSRKPVILEVTPGGF


13
DQINPATNRVLCSYDYRNIEGFVDLSDYQGGFCILYGGFSRLHLFA


(DNAJC13)
SEQREEIIKSAIDHAGNYIGISLRIRKEPLEFEQYLNLRFGKYSTDESI


SEQ ID NO: 17
TSLAEFVVQKISPRHSEPVKRVLALTETCLVERDPATYNIATLKPLG



EVFALVCDSENPQLFTIEFIKGQVRKYSSTERDSLLASLLDGVRASG



NRDVCVKMTPTHKGQRWGLLSMPVDEEVESLHLRFLATPPNGNF



ADAVFRFNANISYSGVLHAVTQDGLFSENKEKLINNAITALLSQEG



DVVASNAELESQFQAVRRLVASKAGFLAFTQLPKFRERLGVKVVK



ALKRSNNGIIHAAVDMLCALMCPMHDDYDLRQEQLNKASLLSSK



KFLENLLEKFNSHVDHGTGALVISSLLDFLTFALCAPYSETTEGQQF



DMLLEMVASNGRTLFKLFQIIPSMAIIKGAGLVMKAIIEEGDKEIAT



KMQELALSEGALPRHLHTAMFTISSDQRMLTNRQLSRHLVGLWTA



DNATATNLLKRILPPGLLAYLESSDLVPEKDADRMHVRDNVKIAM



DQYGKFNKVPEWQRLAGKAAKEVEKFAKEKVDLVLMHWRDRM



GIAQKENINQKPVVLRKRRQRIKIEANWDLFYYRFGQDHARSNLI



WNFKTREELKDTLESEMRAFNIDRELGSANVISWNHHEFEVKYEC



LAEEIKIGDYYLRLLLEEDENEESGSIKRSYEFFNELYHRFLLTPKV



NMKCLCLQALAIVYGRCHEEIGPFTDTRYIIGMLERCTDKLERDRLI



LFLNKLILNKKNVKDLMDSNGIRILVDLLTLAHLHVSRATVPLQSN



VIEAAPDMKRESEKEWYFGNADKERSGPYGFHEMQELWTKGML



NAKTRCWAQGMDGWRPLQSIPQLKWCLLASGQAVLNETDLATLI



LNMLITMCGYFPSRDQDNAIIRPLPKVKRLLSDSTCLPHIIQLLLTFD



PILVEKVAILLYHEMQDNPQLPRLYLSGVFFFIMMYTGSNVLPVAR



FLKYTHTKQAFKSEETKGQDIFQRSILGHILPEAMVCYLENYEPEKF



SEIFLGEFDTPEAIWSSEMRRLMIEKIAAHLADFTPRLQSNTRALYQ



YCPIPIINYPQLENELFCNIYYLKQLCDTLRFPDWPIKDPVKLLKDTL



DAWKKEVEKKPPMMSIDDAYEVLNLPQGQGPHDESKIRKAYFRL



AQKYHPDKNPEGRDMFEKVNKAYEFLCTKSAKIVDGPDPENIILIL



KTQSILFNRHKEDLQPYKYAGYPMLIRTITMETSDDLLFSKESPLLP



AATELAFHTVNCSALNAEELRRENGLEVLQEAFSRCVAVLTRASK



PSDMSVQVCGYISKCYSVAAQFEECREKTIEMPSIIKDLCRVLYFG



KSIPRVAALGVECVSSFAVDFWLQTHLFQAGILWYLLGFLFNYDY



TLEESGIQKSEETNQQEVANSLAKLSVHALSRLGGYLAEEQATPEN



PTIRKSLAGMLTPYVARKLAVASVTEILKMLNSNTESPYLIWNNST



RAELLEFLESQQENMIKKGDCDKTYGSEFVYSDHAKELIVGEIFVR



VYNEVPTFQLEVPKAFAASLLDYIGSQAQYLHTFMAITHAAKVESE



QHGDRLPRVEMALEALRNVIKYNPGSESECIGHFKLIFSLLRVHGA



GQVQQLALEVVNIVTSNQDCVNNIAESMVLSSLLALLHSLPSSRQL



VLETLYALTSSTKIIKEAMAKGALIYLLDMFCNSTHPQVRAQTAEL



FAKMTADKLIGPKVRITLMKFLPSVFMDAMRDNPEAAVHIFEGTH



ENPELIWNDNSRDKVSTTVREMMLEHFKNQQDNPEANWKLPEDF



AVVFGEAEGELAVGGVFLRIFIAQPAWVLRKPREFLIALLEKLTELL



EKNNPHGETLETLTMATVCLFSAQPQLADQVPPLGHLPKVIQAMN



HRNNAIPKSAIRVIHALSENELCVRAMASLETIGPLMNGMKKRADT



VGLACEAINRMFQKEQSELVAQALKADLVPYLLKLLEGIGLENLD



SPAATKAQIVKALKAMTRSLQYGEQVNEILCRSSVWSAFKDQKHD



LFISESQTAGYLTGPGVAGYLTAGTSTSVMSNLPPPVDHEAGDLGY



QT





Beta enolase
MAMQKIFAREILDSRGNPTVEVDLHTAKGRFRAAVPSGASTGIYE


(ENO3)
ALELRDGDKGRYLGKGVLKAVENINNTLGPALLQKKLSVVDQEK


SEQ ID NO: 18
VDKFMIELDGTENKSKFGANAILGVSLAVCKAGAAEKGVPLYRHI



ADLAGNPDLILPVPAPNVINGGSHAGNKLAMQEFAMILPVGASSFKE



AMRIGAEVYHHLKGVIKAKYGKDATNVGDEGGFAPNILENNEAL



ELLKTAIQAAGYPDKVVIGMDVAASEFYRNGKYDLDFKSPDDPAR



HITGEKLGELYKSFIKNYPVVSIEDPFDQDDWATWTSFLSGVNIQIV



GDDLTVTNPKRIAQAVEKKACNCLLLKVNQIGSVTESIQACKLAQS



NGWGVMVSHRSGETEDTFIADLVVGLCTGQIKTGAPCRSERLAKY



NQLMRIEEALGDKAIFAGRKFRNPKAK





Glutathione S-transferase P
MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGS


(GSTP1)
LKASCLYGQLPKFQDGDLTLYQSNTILRHLGRTLGLYGKDQQEAA


SEQ ID NO: 19
LVDMVNDGVEDLRCKYISLIYTNYEAGKDDYVKALPGQLKPFETL



LSQNQGGKTFIVGDQISFADYNLLDLLLIHEVLAPGCLDAFPLLSAY



VGRLSARPKLKAFLASPEYVNLPINGNGKQ





Glutathione 5-transferase Mu 3
MSCESSMVLGYWDIRGLAHAIRLLLEFTDTSYEEKRYTCGEAPDY


(GSTM3)
DRSQWLDVKFKLDLDFPNLPYLLDGKNKITQSNAILRYIARKHNM


SEQ ID NO: 20
CGETEEEKIRVDIIENQVMDFRTQLIRLCYSSDHEKLKPQYLEELPG



QLKQFSMFLGKFSWFAGEKLTFVDFLTYDILDQNRIFDPKCLDEFP



NLKAFMCRFEALEKIAAYLQSDQFCKMPINNKMAQWGNKPVC





Farnesyl pyrophosphate synthase
MPLSRWLRSVGVFLLPAPYWAPRERWLGSLRRPSLVHGYPVLAW


Variant 2
HSARCWCQAWTEEPRALCSSLRMNGDQNSDVYAQEKQDFVQHFS


SEQ ID NO: 21
QIVRVLTEDEMGHPEIGDAIARLKEVLEYNAIGGKYNRGLTVVVA



FRELVEPRKQDADSLQRAWTVGWCVELLQAFFLVADDIMDSSLTR



RGQICWYQKPGVGLDAINDANLLEACIYRLLKLYCREQPYYLNLIE



LFLQSSYQTEIGQTLDLLTAPQGNVDLVRFTEKRYKSIVKYKTAFY



SFYLPIAAAMYMAGIDGEKEHANAKKILLEMGEFFQIQDDYLDLF



GDPSVTGKIGTDIQDNKCSWLVVQCLQRATPEQYQILKENYGQKE



AEKVARVKALYEELDLPAVFLQYEEDSYSHIMALIEQYAAPLPPAV



FLGLARKIYKRRK





Farnesyl pyrophosphate synthase
MNGDQNSDVYAQEKQDFVQHFSQIVRVLTEDEMGHPEIGDAIARL


Variant 3
KEVLEYNAIGGKYNRGLTVVVAFRELVEPRKQDADSLQRAWTVG


SEQ ID NO: 22
WCVELLQAFFLVADDIMDSSLTRRGQICWYQKPGVGLDAINDANL



LEACIYRLLKLYCREQPYYLNLIELFLQSSYQTEIGQTLDLLTAPQG



NVDLVRFTEKRYKSIVKYKTAFYSFYLPIAAAMYMAGIDGEKEHA



NAKKILLEMGEFFQIQDDYLDLFGDPSVTGKIGTDIQDNKCSWLVV



QCLQRATPEQYQILKENYGQKEAEKVARVKALYEELDLPAVFLQY



EEDSYSHIMALIEQYAAPLPPAVFLGLARKIYKRRK





Farnesyl pyrophosphate synthase
MNGDQNSDVYAQEKQDFVQHFSQIVRVLTEDEMGHPEIGDAIARL


Variant 4
KEVLEYNAIGGKYNRGLTVVVAFRELVEPRKQDADSLQRAWTVG


SEQ ID NO: 23
WCVELLQAFFLVADDIMDSSLTRRGQICWYQKPGVGLDAINDANL



LEACIYRLLKLYCREQPYYLNLIELFLQSSYQTEIGQTLDLLTAPQG



NVDLVRFTEKRYKSIVKYKTAFYSFYLPIAAAMYMAGIDGEKEHA



NAKKILLEMGEFFQIQDDYLDLFGDPSVTGKIGTDIQDNKCSWLVV



QCLQRATPEQYQILKENYGQKEAEKVARVKALYEELDLPAVFLQY



EEDSYSHIMALIEQYAAPLPPAVFLGLARKIYKRRK





Famesyl pyrophosphate synthase
MDSSLTRRGQICWYQKPGVGLDAINDANLLEACIYRLLKLYCREQ


Variant 5
PYYLNLIELFLQSSYQTEIGQTLDLLTAPQGNVDLVRFTEKRYKSIV


SEQ ID NO: 24
KYKTAFYSFYLPIAAAMYMAGIDGEKEHANAKKILLEMGEFFQIQ



DDYLDLFGDPSVTGKIGTDIQDNKCSWLVVQCLQRATPEQYQILK



ENYGQKEAEKVARVKALYEELDLPAVFLQYEEDSYSHIMALIEQY



AAPLPPAVFLGLARKIYKRRK





Famesyl pyrophosphate synthase
MNGDQNSDVYAQEKQDFVQHFSQIVRVLTEDEMGHPEIGDAIARL


Variant 6
KEVLEYNAIGGKYNRGLTVVVAFRELVEPRKQDADSLQRAWTVG


SEQ ID NO: 25
WCVELLQAFFLVADDIMDSSLTRRGQICWYQKPGVGLDAINDANL



LEACIYRLLKLYCREQPYYLNLIELFLQSSYQTEIGQTLDLLTAPQG



NVDLVRFTEKRYKSIVKYKTAFYSFYLPIAAAMYMAGIDGEKEHA



NAKKILLEMGEFFQIQDDYLDLFGDPSVTGKIGTDIQDNKCSWLVV



QCLQRATPEQYQILKENYGQKEAEKVARVKALYEELDLPAVFLQY



EEDSYSHIMALIEQYAAPLPPAVFLGLARKIYKRRK





Famesyl pyrophosphate synthase
MPLSRWLRSVGVFLLPAPYWAPRERWLGSLRRPSLVHGYPVLAW


Variant 7
HSARCWCQAWTEEPRALCSSLRMNGDQNSDVYAQEKQDFVQHFS


SEQ ID NO: 26
QIVRVLTEDEMGHPEIGDAIARLKEVLEYNAIGGKYNRGLTVVVA



FRELVEPRKQDADSLQRAWTVGWCVELLQAFFLVADDIMDSSLTR



RGQICWYQKPGVGLDAINDANLLEACIYRLLKLYCREQPYYLNLIE



LFLQSSYQTEIGQTLDLLTAPQGNVDLVRFTEKRYKSIVKYKTAFY



SFYL





Famesyl pyrophosphate synthase
MPLSRWLRSVGVFLLPAPYWAPRERWLGSLRRPSLVHGYPVLAW


Variant 8
HSARCWCQAWTEEPRALCSSLRMNGDQNSDVYAQEKQDFVQHFS


SEQ ID NO: 27
QIVRVLTEDEMGHPEIGDAIARLKEVLEYNAIGGKYNRGLTVVVA



FRELVEPRKQDADSLQRAWTVGWCVELLQAFFLVADDIMDS





Neurofibromin 1
MAAHRPVEWVQAVVSRFDEQLPIKTGQQNTHTKVSTEHNKECLIN


Variant 2
ISKYKFSLVISGLTTILKNVNNMRIFGEAAEKNLYLSQLIILDTLEKC


SEQ ID NO: 28
LAGQPKDTMRLDETMLVKQLLPEICHFLHTCREGNQHAAELRNSA



SGVLFSLSCNNFNAVFSRISTRLQELTVCSEDNVDVHDIELLQYINV



DCAKLKRLLKETAFKFKALKKVAQLAVINSLEKAFWNWVENYPD



EFTKLYQIPQTDMAECAEKLFDLVDGFAESTKRKAAVWPLQIILLI



LCPEIIQDISKDVVDENNMNKKLFLDSLRKALAGHGGSRQLTESAA



IACVKLCKASTYINWEDNSVIFLLVQSMVVDLKNLLFNPSKPFSRG



SQPADVDLMIDCLVSCFRISPHNINQHFKICLAQNSPSTFHYVLVNS



LHRIITNSALDWWPKIDAVYCHSVELRNMFGETLHKAVQGCGAHP



AIRMAPSLTFKEKVTSLKFKEKPTDLETRSYKYLLLSMVKLIHADP



KLLLCNPRKQGPETQGSTAELITGLVQLVPQSHMPEIAQEAMEALL



VLHQLDSIDLWNPDAPVETFWEISSQMLFYICKKLTSHQMLSSTEIL



KWLREILICRNKFLLKNKQADRSSCHFLLFYGVGCDIPSSGNTSQM



SMDHEELLRTPGASLRKGKGNSSMDSAAGCSGTPPICRQAQTKLE



VALYMFLWNPDTEAVLVAMSCFRHLCEEADIRCGVDEVSVHNLL



PNYNTFMEFASVSNMMSTGRAALQKRVMALLRRIEHPTAGNTEA



WEDTHAKWEQATKLILNYPKAKMEDGQAAESLHKTIVKRRMSHV



SGGGSIDLSDTDSLQEWINMTGFLCALGGVCLQQRSNSGLATYSPP



MGPVSERKGSMISVMSSEGNADTPVSKFMDRLLSLMVCNHEKVG



LQIRTNVKDLVGLELSPALYPMLFNKLKNTISKFFDSQGQVLLTDT



NTQFVEQTIAIMKNLLDNHTEGSSEHLGQASIETNIMLNLVRYVRV



LGNMVHAIQIKTKLCQLVEVMMARRDDLSFCQEMKFRNKMVEYL



TDWVMGTSNQAADDDVKCLTRDLDQASMEAVVSLLAGLPLQPEE



GDGVELMEAKSQLFLKYFTLFMNLLNDCSEVEDESAQTGGRKRG



MSRRLASLRHCTVLAMSNLLNANVDSGLMHSIGLGYHKDLQTRA



TFMEVLTKILQQGTEFDTLAETVLADRFERLVELVTMMGDQGELPI



AMALANVVPCSQWDELARVLVTLFDSRHLLYQLLWNMFSKEVEL



ADSMQTLFRGNSLASKIMTFCFKVYGATYLQKLLDPLLRIVITSSD



WQHVSFEVDPTRLEPSESLEENQRNLLQMTEKFFHAIISSSSEFPPQ



LRSVCHCLYQVVSQRFPQNSIGAVGSAMFLRFINPAIVSPYEAGILD



KKPPPRIERGLKLMSKILQSIANHVLFTKEEHMRPFNDFVKSNFDA



ARRFFLDIASDCPTSDAVNHSLSFISDGNVLALHRLLWNNQEKIGQ



YLSSNRDHKAVGRRPFDKMATLLAYLGPPEHKPVADTHWSSLNL



TSSKFEEFMTRHQVHEKEEFKALKTLSIFYQAGTSKAGNPIFYYVA



RRFKTGQINGDLLIYHVLLTLKPYYAKPYEIVVDLTHTGPSNRFKT



DFLSKWFVVFPGFAYDNVSAVYIYNCNSWVREYTKYHERLLTGL



KGSKRLVFIDCPGKLAEHLEHEQQKLPAATLALEEDLKVFHNALKL



AHKDTKVSIKVGSTAVQVTSAERTKVLGQSVFLNDIYYASEIEEICL



VDENQFTLTIANQGTPLTFMHQECEAIVQSIIHIRTRWELSQPDSIPQ



HTKIRPKDVPGTLLNIALLNLGSSDPSLRSAAYNLLCALTCTFNLKI



EGQLLETSGLCIPANNTLFIVSISKTLAANEPHLTLEFLEECISGFSKS



SIELKHLCLEYMTPWLSNLVRFCKIINDDAKRQRVTAILDKLITMTI



NEKQMYPSIQAKIWGSLGQITDLLDVVLDSFIKTSATGGLGSIKAE



VMADTAVALASGNVKLVSSKVIGRMCKIIDKTCLSPTPTLEQHLM



WDDIAILARYMLMLSFNNSLDVAAHLPYLFHVVTFLVATGPLSLR



ASTHGLVINIIHSLCTCSQLHFSEETKQVLRLSLTEFSLPKFYLLFGIS



KVKSAAVIAFRSSYRDRSFSPGSYERETFALTSLETVTEALLEIMEA



CMRDIPTCKWLDQWTELAQRFAFQYNPSLQPRALVVFGCISKRVS



HGQIKQIIRILSKALESCLKGPDTYNSQVLIEATVIALTKLQPLLNKD



SPLHKALFWVAVAVLQLDEVNLYSAGTALLEQNLHTLDSLRIFND



KSPEEVFMAIRNPLEWHCKQMDHFVGLNFNSNFNFALVGHLLKG



YRHPSPAIVARTVRILHTLLTLVNKHRNCDKFEVNTQSVAYLAALL



TVSEEVRSRCSLKHRKSLLLTDISMENVPMDTYPIHHGDPSYRTLK



ETQPWSSPKGSEGYLAATYPTVGQTSPRARKSMSLDMGQPSQANT



KKLLGTRKSFDHLISDTKAPKRQEMESGITTPPKMRRVAETDYEM



ETQRISSSQQHPHLRKVSVSESNVLLDEEVLTDPKIQALLLTVLATL



VKYTTDEFDQRILYEYLAEASVVFPKVFPVVIINLLDSKINTLLSLC



QDPNLLNPIHGIVQSVVYHEESPPQYQTSYLQSFGFNGLWRFAGPF



SKQTQIPDYAELIVKFLDALIDTYLPGIDEETSEESLLTPTSPYPPAL



QSQLSITANLNLSNSMTSLATSQHSPGIDKENVELSPTTGHCNSGRT



RHGSASQVQKQRSAGSFKRNSIKKIV





Neurofibromin 1
MAAHRPVEWVQAVVSRFDEQLPIKTGQQNTHTKVSTEHNKECLIN


Variant 3
ISKYKFSLVISGLTTILKNVNNMRIFGEAAEKNLYLSQLIILDTLEKC


SEQ ID NO: 29
LAGQPKDTMRLDETMLVKQLLPEICHFLHTCREGNQHAAELRNSA



SGVLFSLSCNNFNAVFSRISTRLQELTVCSEDNVDVHDIELLQYINV



DCAKLKRLLKETAFKFKALKKVAQLAVINSLEKAFWNWVENYPD



EFTKLYQIPQTDMAECAEKLFDLVDGFAESTKRKAAVWPLQIILLI



LCPEIIQDISKDVVDENNMNKKLFLDSLRKALAGHGGSRQLTESAA



IACVKLCKASTYINWEDNSVIFLLVQSMVVDLKNLLFNPSKPFSRG



SQPADVDLMIDCLVSCFRISPHNNQHFKICLAQNSPSTFHYVLVNS



LHRIITNSALDWWPKIDAVYCHSVELRNMFGETLHKAVQGCGAHP



AIRMAPSLTFKEKVTSLKFKEKPTDLETRSYKYLLLSMVKLIHADP



KLLLCNPRKQGPETQGSTAELITGLVQLVPQSHMPEIAQEAMEALL



VLHQLDSIDLWNPDAPVETFWEIRYMYFYFLNSTFKFYFVFLS





Neurofibromin 1
NWEDNSVIFLLVQSMVVDLKNLLFNPSKPFSRGSQPADVDLMIDC


Variant 4
LVSCFRISPHNINQHFKICLAQNSPSTFHYVLVNSLHRIITNSALDWW


SEQ ID NO: 30
PKIDAVYCHSVELRNMFGETLHKAVQGCGAHPAIRMAPSLTFKEK



VTSLKFKEKPTDLETRSYKYLLLSMVKLIHADPKLLLCNPRKQGPE



TQGSTAELITGLVQLVPQSHMPEIAQEAMEALLVLHQLDSIDLWNP



DAPVETFWEISSQMLFYICKKLTSHQMLSSTEILKWLREILICRNKF



LLKNKQADRSSCHFLLFYGVGCDIPSSGNTSQMSMDHEELLRTPG



ASLRKGKGNSSMDSAAGCSGTPPICRQAQTKLEVALYMFLWNPDT



EAVLVAMSCFRHLCEEADIRCGVDEVSVIINLLPNYNTFMEFASVS



NMMSTGRAALQKRVMALLRRIEHPTAGNTEAWEDTHAKWEQAT



KLILNYPKAKMEDGQAAESLHKTIVKRRMSHVSGGGSIDLSDTDS



LQEWINMTGFLCALGGVCLQQRSNSGLATYSPPMGPVSERKGSMI



SVMSSEGNADTPVSKFMDRLLSLMVCNHEKVGLQIRTNVKDLVG



LELSPALYPMLFNKLKNTISKFFDSQGQVLLTDTNTQFVEQTIAIIVIK



NLLDNHTEGSSEHLGQASIETNIMLNLVRYVRVLGNMVHAIQIKTK



LCQLVEVMMARRDDLSFCQEMKFRNKMVEYLTDWVMGTSNQA



ADDDVKCLTRDLDQASMEAVVSLLAGLPLQPEEGDGVELMEAKS



QLFLKYFTLFMNLLNDCSEVEDESAQTGGRKRGMSRRLASLRHCT



VLAMSNLLNANVDSGLMHSIGLGYHKDLQTRATFMEVLTKILQQ



GTEFDTLAETVLADRFERLVELVTMMGDQGELPIAMALANVVPCS



QWDELARVLVTLFDSRHLLYQLLWNMFSKEVELADSMQTLFRGN



SLASKIMTFCFKVYGATYLQKLLDPLLRIVITSSDWQHVSFEVDPT



RLEPSESLEENQRNLLQMTEKFFHAIISSSSEFPPQLRSVCHCLYQV



VSQRFPQNSIGAVGSAMFLRFINPAIVSPYEAGILDKKPPPRIERGLK



MSKILQSIANHVLFTKEEHMRPFNDFVKSNFDAARRFFLDIASDC



PTSDAVNHSLSFISDGNVLALHRLLWNNQEKIGQYLSSNRDHKAV



GRRPFDKMATLLAYLGPPEHKPVADTHWSSLNLTSSKFEEFMTRH



QVHEKEEFKALKTLSIFYQAGTSKAGNPIFYYVARRFKTGQINGDL



LIYHVLLTLKPYYAKPYEIVVDLTHTGPSNRFKTDFLSKWFVVFPG



FAYDNVSAVYIYNCNSWVREYTKYHERLLTGLKGSKRLVFIDCPG



KLAEHIEHEQQKLPAATLALEEDLKVFIINALKLAHKDTKVSIKVG



STAVQVTSAERTKVLGQSVFLNDIYYASEIEEICLVDENQFTLTIAN



QGTPLTFMHQECEAIVQSIIHIRTRWELSQPDSIPQHTKIRPKDVPGT



LLNIALLNLGSSDPSLRSAAYNLLCALTCTFNLKIEGQLLETSGLCIP



ANNTLFIVSISKTLAANEPHLTLEFLEECISGFSKSSIELKHLCLEYM



TPWLSNLVRFCKHNIDDAKRQRVTAILDKLITMTINEKQMYPSIQA



KIWGSLGQITDLLDVVLDSFIKTSATGGLGSIKAEVMADTAVALAS



GNVKLVSSKVIGRMCKIIDKTCLSPTPTLEQHLMWDDIAILARYML



MLSFNNSLDVAAHLPYLFHVVTFLVATGPLSLRASTHGLVINHEISL



CTCSQLHFSEETKQVLRLSLTEFSLPKFYLLFGISKVKSAAVIAFRSS



YRDRSFSPGSYERETFALTSLETVTEALLEIMEACMRDIPTCKWLD



QWTELAQRFAFQYNPSLQPRALVVFGCISKRVSHGQIKQIIRILSKA



LESCLKGPDTYNSQVLIEATVIALTKLQPLLNKDSPLHKALFWVAV



AVLQLDEVNLYSAGTALLEQNLHTLDSLRIFNDKSPEEVFMAIRNP



LEWHCKQMDHFVGLNFNSNFNFALVGHLLKGYRHPSPAIVARTV



RILHTLLTLVNKHRNCDKFEVNTQSVAYLAALLTVSEEVRSRCSLK



HRKSLLLTDISMENVPMDTYPIHHGDPSYRTLKETQPWSSPKGSEG



YLAATYPTVGQTSPRARKSMSLDMGQPSQANTKKLLGTRKSFDHL



ISDTKAPKRQEMESGITTPPKMRRVAETDYEMETQRISSSQQIIPHL



RKVSVSESNVLLDEEVLTDPKIQALLLTVLATLVKYTTDEFDQRIL



YEYLAEASVVFPKVFPVVIINILLDSKINTLLSLCQDPNLLNPIHGIVQ



SVVYHEESPPQYQTSYLQSFGFNGLWRFAGPFSKQTQIPDYAELIV



KFLDALIDTYLPGIDEETSEESLLTPTSPYPPALQSQLSITANLNLSNS



MTSLATSQHSPASLPCSKSAVFMQLFPHQGIDKENVELSPTTGHCN



SGRTRHGSASQVQKQRSAGSFKRNSIKKIV





Neurofibromin 1
MAAHRPVEWVQAVVSRFDEQLPIKTGQQNTHTKVSTEHNKECLIN


Variant 5
ISKYKFSLVISGLTTILKNVNNMRIFGEAAEKNLYLSQLBLDTLEKC


SEQ ID NO: 31
LAGQPKDTMRLDETMLVKQLLPEICHFLHTCREGNQHAAELRNSA



SGVLFSLSCNNFNAVFSRISTRLQELTVCSEDNVDVHDIELLQYINV



DCAKLKRLLKETAFKFKALKKVAQLAVINSLEKAFWNWVENYPD



EFTKLYQIPQTDMAECAEKLFDLVDGFAESTKRKAAVWPLQIILLI



LCPEIIQDISKDVVDENNMNKKLFLDSLRKALAGHGGSRQLTESAA



IACVKLCKASTYINWEDNSVIFLLVQSMVVDLKNLLFNPSKPFSRG



SQPADVDLMIDCLVSCFRISPHNNQHFKICLAQNSPSTFHYVLVNS



LHRIITNSALDWWPKIDAVYCHSVELRNMFGETLHKAVQGCGAHP



AIRMAPSLTFKEKVTSLKFKEKPTDLETRSYKYLLLSMVKLIHADP



KLLLCNPRKQGPETQGSTAELITGLVQLVPQSHMPEIAQEAMEVRG



K





Neurofibromin 1
MHQECEAIVQSIIHIRTRWELSQPDSIPQHTKIRPKDVPGTLLNIALL


Variant 6
NLGSSDPSLRSAAYNLLCALTCTFNLKIEGQLLETSGLCIPANNTLFI


SEQ ID NO: 32
VSISKTLAANEPHLTLEFLEECISGFSKSSIELKHLCLEYMTPWLSNL



VRFCKIINDDAKRQRVTAILDKLITMTINEKQMYPSIQAKIWGSLG



QITDLLDVVLDSFIKTSATGGLGSIKAEVMADTAVALASGNVKLVS



SK





Neurofibromin 1
MKRCWSNSCCQKSAIFFTPVVKETSMQLNFGILPLGFYFLSAATTS


Variant 7
MQSLVAFLPETAFKFKALKKVAQLAVINSLEKAFWNWVENYPDE


SEQ ID NO: 33
FTKLYQIPQTDMAECAEKLFDLVDGFAESTKRKAAVWPLQIILLIL



CPEIIQDISKDVVDENNMNKVRRAKLFPLYLDVKQFILLKVCITLGL



LFKQSISGNHLNDHFRFLCLMDLEETYSYIILFGRGKIIPGNEQRFKII



P





Neurofibromin 1
XIHGIVQSVVYHEESPPQYQTSYLQSFGFNGLWRFAGPFSKQTQIP


Variant 8
DYAELIVKFLDALIDTYLPGIDEETSEESLLTPTSPYPPALQSQLSITA


SEQ ID NO: 34
NLNLSNSMTSLATSQHSPGQ





Glyceraldehyde-3 phosphate
MVYMFQYDSTHGKFHGTVKAENGKLVINGNPITIFQERDPSKIKW


dehydrogenase
GDAGAEYVVESTGVFTTMEKAGAHLQGGAKRVIISAPSADAPMFV


Variant 2
MGVNHEKYDNSLKIISNASCTTNCLAPLAKVIHDNFGIVEGLMTTV


SEQ ID NO: 35
HAITATQKTVDGPSGKLWRDGRGALQNIIPASTGAAKAVGKVIPEL



NGKLTGMAFRVPTANVSVVDLTCRLEKPAKYDDIKKVVKQASEG



PLKGILGYTEHQVVSSDFNSDTHSSTFDAGAGIALNDHFVKLISWY



DNEFGYSNRVVDLMAHMASKE





Glyceraldehyde-3 phosphate
MGKVKVGVNGFGRIGRLVTRAAFNSGKVDIVAINDPFIDLNYMVY


dehydrogenase
MFQYDSTHGKFHGTVKAENGKLVINGNPITIFQERDPSKIKWGDA


Variant 3
GAEYVVESTGVFTTMEKAGAHLQGGAKRVIISAPSADAPMFVMG


SEQ ID NO: 36
VNHEKYDNSLKIISNASCTTNCLAPLAKVIHDNFGIVEGLMTTVHA



ITATQKTVDGPSGKLWRDGRGALQNIIPASTGAAKAVGKVIPELNG



KLTGMAFRVPTANVSVVDLTCRLEKPAKYDDIKKVVKQASEGPL



KGILGYTEHQVVSSDFNSDTHSSTFDAGAGIALNDHFVKLISWYDN



EFGYSNRVVDLMAHMASKE





Glyceraldehyde-3 phosphate
MGKVKVGVNGFGRIGRLVTRAAFNSGKVDIVAINDPFIDLNYMVY


dehydrogenase
MFQYDSTHGKFHGTVKAENGKLVINGNPITIFQERDPSKIKWGDA


Variant 4
GAEYVVESTGVFTTMEKAGAHLQGGAKRVIISAPSADAPMFVMG


SEQ ID NO: 37
VNHEKYDNSLKIISNASCTTNCLAPLAKVIHDNFGIVEGLMTTVHA



ITATQKTVDGPSGKLWRDGRGALQNIIPASTGAAKAVGKVIPELNG



KLTGMAFRVPTANVSVVDLTCRLEKPAKYDDIKKVVKQASEGPL



KGILGYTEHQVVSSDFNSDTHSSTFDAGAGIALNDHFVKLISWYDN



EFGYSNRVVDLMAHMASKE





Glyceraldehyde-3 phosphate
MEEMRDPSKIKWGDAGAEYVVESTGVFTTMEKAGAHLQGGAKR


dehydrogenase
VIISAPSADAPMFVMGVNHEKYDNSLKIISNASCTTNCLAPLAKVIH


Variant 5
DNFGIVEGLMTTVHAITATQKTVDGPSGKLWRDGRGALQNIIPAST


SEQ ID NO: 38
GAAKAVGKVIPELNGKLTGMAFRVPTANVSVVDLTCRLEKPAKY



DDIKKVVKQASEGPLKGILGYTEHQVVSSDFNSDTHSSTFDAGAGI



ALNDHFVKLISWYDNEFGYSNRVVDLMAHMASKE





Glyceraldehyde-3 phosphate
MVYMFQYDSTHGKFHGTVKAENGKLVINGNPITIFQERDPSKIKW


dehydrogenase
GDAGAEYVVESTGVFTTMEKAGAHLQGGAKRVIISAPSADAPMFV


Variant 6
MGVNHEKYDNSLKIISNASCTTNCLAPLAKVIHDNFGIVEGLMTTV


SEQ ID NO: 39
HAITATQKTVDGPSGKLWRDGRGALQNIIPASTGAAKAVGKVIPEL



NGKLTGMAFRVPTANVSVVDLTCRLEKPAKYDDIKKVVKQASEG



PLKGILGYTEHQVVSSDFNSDTHSSTFDAGAGIALNDHFVKLISWY



DNEFGYSNRVVDLMAHMASKE





Fibronectin Type BI Domain
XPRHVKLLSTKMGLKVTWDPPKDATSRPVEHYNIAYGKSLKSLKY


Containing protein 1
IKVNAETYSFLIEDVEPGVVYFVLLTAENHSGVSRPVYRAESPPGG


Variant 2
EWIEIDGFPIKGPGPFNETVTEKEVPNKPLRVRVRSSDDRLSVAWK


SEQ ID NO: 40
APRLSGAKSPRRSRGFLLGYGESGRKMNYVPLTRDERTHEIKKLAS



ESVYVVSLQSMNSQGRSQPVYRAALTKRKISEEDELDVPDDISVRV



MSSQSVLVSWVDPVLEKQKKVVASRQYTVRYREKGELARWDYK



QIANRRVLIENLIPDTVYEFAVRISQGERDGKWSTSVFQRTPESAPT



TAPENLNVWPVNGKPTVVAASWDALPETEGKVKASKADVEQNTE



DNGKPEKPEPSSPSPRAPASSQIIPSVPASPQGRNAKDLLLDLKNKIL



ANGGAPRKPQLRAKKAEELDLQSTEITGEEELGSREDSPMSPSDTQ



DQKRTLRPPSRHGHSVVAPGRTAVRARMPALPRREGVDKPGFSLA



TQPRPGAPPSASASPAHHASTQGTSHRPSLPASLNDNDLVDSDEDE



RAVGSLIIPKGAFAQPRPALSPSRQSPSSVLRDRSSVIIPGAKPASPA



RRTPHSGAAEEDSSASAPPSRLSPPHGGSSRLLPTQPHLSSPLSKGG



KDGEDAPATNSNAPSRSTMSSSVSSHLSSRTQVSEGAEASDGESHG



DGDREDGGRQAEATAQTLRARPASGHFHLLRHKPFAANGRSPSRF



SIGRGPRLQPSSSPQSTVPSRAHPRVPSHSDSHIPKLSSGIHGDEEDEK



PLPATVVNDHVPSSSRQPISRGWEDLRRSPQRGASLHRKEPIPENPK



STGADTHPQGKYSSLASKAQDVQQSTDADTEGHSPKAQPGSTDRH



ASPARPPAARSQQHPSVPRRMTPGRAPQQQPPPPVATSQHHPGPQS



RDAGRSPSQPRLSLTQAGRPRPTSQGRSHSSSDPYTASSRGMLPTA



LQNQDEDAQGSYDDDSTEVEAQDVRAPAHAARAKEAAASLPKHQ



QVESPTGAGAGGDHRSQRGHAASPARPSRPGGPQSRARVPSRAAP



GKSEPPSKRPLSSKSQQSVSAEDDEEEDAGFFKGGKEDLLSSSVPK



WPSSSTPRGGKDADGSLAKEEREPAIALAPRGGSLAPVKRPLPPPP



GSSPRASHVPSRLPPRSAATVSPVAGTHPWPQYTTRAPPGHFSTTP



MLSLRQRMMHARFRNPLSRQPARPSYRQGYNGRPNVEGKVLPGS



NGKPNGQRIINGPQGTKWVVDLDRGLVLNAEGRYLQDSHGNPLRI



KLGGDGRTIVDLEGTPVVSPDGLPLFGQGRHGTPLANAQDKPILSL



GGKPLVGLEVIKKTTHIPPTTTMQPTITTTPLPTITTPRPTTATTRRT



TTTRRTTTRRPTTTVRTTTRITITTTPTFTTPIPTCPPGTLERHDDDG



NLIMSSNGIPECYAEEDEFSGLETDTAVPTEEAYVIYDEDYEFETSR



PPTTTEPSTTATTPRVIPEEGAISSFPEEEFDLAGRKRFVAPYVTYLN



KDPSAPCSLTDALDHFQVDSLDEIIPNDLKKSDLPPQHAPRNITVVA



VEGCHSFVIVDWDKATPGDVVTGYLVYSASYEDFIRNKWSTQASS



VTHLPIENLKPNTRYYFKVQAQNPHGYGPISPSVSFVTESDNPLLV



VRPPGGEPIWIPFAFKHDPSYTDCHGRQYVKRTWYRKFVGVVLCN



SLRYKIYLSDNLKDTFYSIGDSWGRGEDHCQFVDSHLDGRTGPQS



YVEALPTIQGYYRQYRQEPVRFGNIGFGTPYYYVGWYECGVSIPG



KW





Eukaryotic initiation factor 4A-I
MSASQDSRSRDNGPDGMEPEGVIESNWNEIVDSFDDMNLSESLLR


Variant 2
GIYAYGFEKPSAIQQRAILPCIKGYDVIAQAQSGTGKTATFAISILQQ


SEQ ID NO: 41
IELDLKATQALVLAPTRELAQQIQKVVMALGDYMGASCHACIGGT



NVRAEVQKLQMEAPHIIVGTPGRVFDMLNRRYLSPKYIKMFVLDE



ADEMLSRGFKDQIYDIFQKLNSNTQVVLLSATMPSDVLEVTKKFM



RDPIRILVKKEELTLEGIRQFYINVEREEWKLDTLCDLYETLTITQA



VIFINTRRKVDWLTEKMHARDFTVSAMHGDMDQKERDVIMREFR



SGSSRVLITTDLLGKLYPQNRSRWTVWP





Eukaryotic initiation factor 4A-I
MSASQDSRSRDNGPDGMEPEGVIESNWNEIVDSFDDMNLSESLLR


Variant 3
GIYAYGFEKPSAIQQRAILPCIKGYDVIAQAQSGTGKTATFAISILQQ


SEQ ID NO: 42
IELDLKATQALVLAPTRELAQQIQKVVMALGDYMGASCHACIGGT



NVRAEVQKLQMEAPHIIVGTPGRVFDMLNRRYLSPKYIKMFVLDE



ADEMLSRGFKDQIYDIFQKLNSNTQVVLLSATMPSDVLEVTKKFM



RDPIRILVKKEELTLEGIRQFYINVEREEWKLDTLCDLYETLTITQA



VIFINTRRKVDWLTEKMHARDFTVSAMHGDMDQKERDVIMREFR



SGSSRVLITTDLLNRSRWTVWP





Eukaryotic initiation factor 4A-I
MEPEGVIESNWNEIVDSFDDMNLSESLLRGIYAYGFEKPSAIQQRAI


Variant 4
LPCIKGYDVIAQAQSGTGKTATFAISILQQIELDLKATQALVLAPTR


SEQ ID NO: 43
ELAQQIQKVVMALGDYMGASCHACIGGTNVRAEVQKLQMEAPHI



IVGTPGRVFDMLNRRYLSPKYIKMFVLDEADEMLSRGFKDQIYDIF



QKLNSNTQVVLLSATMPSDVLEVTKKFMRDPIRILVKKEELTLEGI



RQFYINVEREEWKLDTLCDLYETLTIT





Eukaryotic initiation factor 4A-I
XVVMALGDYMGASCHACIGGTNVRAEVQKLQMEAPHIIVGTPGR


Variant 5
VFDMLNRRYLSPKYIKMFVLDEADEMLSRGFKDQIYDIFQKLNSN


SEQ ID NO: 44
TQVVLLSATMPSDVLEVTKKFMRDPIRILVKKEELTLEGIRQFYINV



EREEWKLDTLCDLYETLTITQAVIFINTRRKVDWLTEKMHARDFT



VSAMHGDMDQKERDVIMREFRSGSSRVLITTDLLGKLYPQNRSRW



TVWP





Eukaryotic initiation factor 4A-I
MSASQDSRSRDNGPDGMEPEGVIESNWNEIVDSFDDMNLSESLLR


Variant 6
GIYAYGFEKPSAIQQRAILPCIKGYDVIAQAQSGTGKTATFAISILQQ


SEQ ID NO: 45
IELDLKATQALVLAPTRELAQQKVVMALGDYMGASCHACIGGTN



VRAEVQKLQMEAPHIIVGTPGRVFDMLNRRYLSPKYIKMFVLDEA



DEMLSRGFKDQIYDIFQKLNSNTQVVLLSATMPSDVLEVTKKFMR



DPIRILVKKEELTLEGIRQFYINVEREEWKLDTLCDLYETLTITQAVI



FINTRRKVDWLTEKMHARDFTVSAM





Eukaryotic initiation factor 4A-I
MSASQDSRSRDNGPDGMEPEGVIESNWNEIVDSFDDMNLSESLLR


Variant 7
GIYAYGFEKPSAIQQRAILPCIKGYDVIAQAQSGTGKTATFAISILQQ


SEQ ID NO: 46
IELDLKATQALVLAPTRELAQQIQKVVMALGDYMGASCHACIGGT



NVRAEVQKLQMEAPHIIVGTPGRVFDMLNRRYLSPKYIKMFVLDE



ADEMLSRGFKDQIYDIFQKLNSNTQEELTLEGIRQFYINVEREEWK



LDTLCDLYETLTITQAVIFINTRRKVDWLTEKMHARDFTVSA





Eukaryotic initiation factor 4A-I
MEPEGVIESNWNEIVDSFDDMNLSESLLRGIYAYGFEKPSAIQQRAI


Variant 8
LPCIKGYDVIAQAQSGTGKTATFAISILQQIELDLKAT


SEQ ID NO: 47






Eukaryotic initiation factor 4A-I
XAWAHCARGRHRPRPPTSGSRDNGPDGMEPEGVIESNWNEIVDSF


Variant 9
DDMNLSESLLRGIYAYGFEKPSAIQQRAILPCIKGYDVIAQAQSGTG


SEQ ID NO: 48
KTATFAISILQQIELDLKATQALVLAPTRELAQQIQKVVMALGDYM



GASCHACIGGTNVRAEVQKLQMEAPHIIVGTPGRVFDMLNRRYLS



PKYIKMFVLDEADEMLSRGFKDQIYDIFQKL





Eukaryotic initiation factor 4A-I
MSASQDSRDNGPDGMEPEGVIESNWNEIVDSFDDMNLSESLLRGI


Variant 10
YAYGFEKPSAIQQRAILPCIKGYDVIAQAQSGTGKTATFAISILQQIE


SEQ ID NO: 49
LDLKATQALVLAPTRELAQQIQKVVMALGDYMGASCHACIGGTN



VRAEVQKLQMEAPHIIVGTPGRVFDMLNRRYLSPKYIKMFVLDEA



DEMLS





Eukaryotic initiation factor 4A-I
MNLSESLLRGIYAYGFEKPSAIQQRAILPCIKGYDVIAQAQSGTGKT


Variant 11
ATFAISILQQIELDLKATQALVLAPTRELAQQIQKVVMALGDYMG


SEQ ID NO: 50
ASCHACIGGTNVRAEVQKLQMEAPHIIVGTPGRVFDMLNRRYLSP



KYIKMFVLDEADEMLSRGFKDQIYDI





Eukaryotic initiation factor 4A-I
MNLSESLLRGIYAYGFEKPSAIQQRAILPCIKGYDVIAQAQSGTGKT


Variant 12
ATFAISILQQIELDLKATQALVLAPTRELAQQIQKVVMALGDYMG


SEQ ID NO: 51
ASCHACIGGTNVRAEVQKLQMEAPHIIVGTPGRVFDMLNRRY





Eukaryotic initiation factor 4A-I
MFVLDEADEMLSRGFKDQIYDIFQKLNSNTQVVLLSATMPSDVLE


Variant 13
VTKKFMRDPIRILVKKEELTLEGIRQFYINVEREEWKLDTLCDLYE


SEQ ID NO: 52
TLTITQAVIFINTRRKVDWLTEKMHA





Eukaryotic initiation factor 4A-I
MGRSTFLRGSRDNGPDGMEPEGVIESNWNEIVDSFDDMNLSESLL


Variant 14
RGIYAYGFEKPSAIQQRAILPCIKGYDVIAQAQSGTGKTA


SEQ ID NO: 53






L-lactate dehydrogenase chain B
MATLKEKLIAPVAEEEATVPNNKITVVGVGQVGMACAISILGKSLA


Variant 2
DELALVDVLEDKLKGEMMDLQHGSLFLQTPKIVADKDYSVTANS


SEQ ID NO: 54
KIVVVTAGVRQQEGESRLNLVQRNVNVFKFIIPQIVKYSPDCIIIVVS



NPVDILTYVTWKLSGLPKHRVIGSGCNLDSARFRYLMAEKLGIHPS



SCHGWILGEHGDSSVAVWSGVNVAGVSLQELNPEMGTDNDSEN



WKEVHKMVVESAYEVIKLKGYTNWAIGLSVADLIESMLKNLSRIH



PVSTMVKGMYGIENEVFLSLPCILNARGLTSVINQKLKDDEVAQLK



KSADTLWDIQKDLKDL





L-lactate dehydrogenase chain B
MATLKEKLIAPVAEEEATVPNNKITVVGVGQVGMACAISILGKSLA


Variant 3
DELALVDVLEDKLKGEMMDLQHGSLFLQTPKIVADKDYSVTANS


SEQ ID NO: 55
KIVVVTAGVRQQEGESRLNLVQRNVNVFKFIIPQIVKYSPDCIIIVVS



NPVDILTYVTWKLSGLPKHRVIGSGCNLDSARFRYLMAEKLGIHPS



SCHGWILGEHGDSSVAVWSGVNVAGVSLQELNPEMGTDNDSEN



WKEVHKMVVESAYEVIKLKGYTNWAIGLSVADLIESMLKNLSRIH



PVSTMVKGMYGIENEVFLSLPCILNARGLTSVINQKLKDDEVAQLK



KSADTLWDIQKDLKDLXLVSSRL





L-lactate dehydrogenase chain B
MATLKEKLIAPVAEEEATVPNNKITVVGVGQVGMACAISILGKSLA


Variant 4
DELALVDVLEDKLKGEMMDLQHGSLFLQTPKIVADKDYSVTANS


SEQ ID NO: 56
KIVVVTAGVRQQEGESRLNLVQRNVNVFKFIIPQIVKYSPDCIIIVVS



NPVDILTYVTWKLSGLPKHRVIGSGCNLDSARFRYLMAEKLGIHPS



SCHGWILGEHGDSSVAVWSGVNVAGVSLQELNPEMGTDNDSEN



WKEVH





L-lactate dehydrogenase chain B
MATLKEKLIAPVAEEEATVPNNKITVVGVGQVGMACAISILGKSLA


Variant 5
DELALVDVLEDKLKGEMMDLQHGSLFLQTPKIVADKDYSVTANS


SEQ ID NO: 57
KIVVVTAGVRQQEGESRLNLVQRNVNVFKFIIPQIVKYSPDCIIIV





L-lactate dehydrogenase chain B
MATLKEKLIAPVAEEEATVPNNKITVVGVGQVGMACAISILGKSLA


Variant 6
DELALVDVLEDKLKGEMMDLQHGSLFLQTPKIVADKDYSVTANS


SEQ ID NO: 58
KIVVVTAGVRQQ





Nuclear heterogeneous
MSKSESPKEPEQLRKLFIGGLSFETTDESLRSHFEQWGTLTDCVVM


Ribonucleoprotein A1
RDPNTKRSRGFGFVTYATVEEVDAAMNARPHKVDGRVVEPKRAV


Variant 2
SREDSQRPGAHLTVKKIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIM


SEQ ID NO: 59
TDRGSGKKRGFAFVTFDDHDSVDKIVIQKYHTVNGIINCEVRKALS



KQEMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGNFSGRG



GFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGSYNDFGNYNNQ



SSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGYGGSSSSSSY



GSGRRF





Nuclear heterogeneous
MSKSESPKEPEQLRKLFIGGLSFETTDESLRSHFEQWGTLTDCVVM


Ribonucleoprotein A1
RDPNTKRSRGFGFVTYATVEEVDAAMNARPHKVDGRVVEPKRAV


Variant 3
SREDSQRPGAHLTVKKIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIM


SEQ ID NO: 60
TDRGSGKKRGFAFVTFDDHDSVDKIVIQKYHTVNGIINCEVRKALS



KQEMASASSSQRGRSGSGNFGGGSYNDFGNYNNQSSNFGPMKGG



NFGGRSSGPYGGGGQYFAKPRNQGGYGGSSSSSSYGSGRRF





Nuclear heterogeneous
MSKSESPKEPEQLRKLFIGGLSFETTDESLRSHFEQWGTLTDCVVM


Ribonucleoprotein A1
RDPNTKRSRGFGFVTYATVEEVDAAMNARPHKVDGRVVEPKRAV


Variant 4
SREDSQRPGAHLTVKKIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIM


SEQ ID NO: 61
TDRGSGKKRGFAFVTFDDHDSVDKIVIQKYHTVNGIINCEVRKALS



KQEMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRGGNFSGRG



IGDGYNGFGNDGSNFGGGGSYNDFGNYNNQSSNFGPMKGGNFGG



RSSGPYGGGGQYFAKPRNQGGYGGSSSSSSYGSGRRF





Nuclear heterogeneous
KIEVIEIMTDRGSGKKRGFAFVTFDDHDSVDKIVIQKYHTVNGHNIC


Ribonucleoprotein A1
EVRKALSKQEMASASSSQRGRSGSGNFGGGRGGGFGGNDNFGRG


Variant 5
GNFSGRGGFGGSRGGGGYGGSGDGYNGFGNDGSNFGGGGSYNDF


SEQ ID NO: 62
GNYNNQSSNFGPMKGGNFGGRSSGPYGGGGQYFAKPRNQGGYG



GSSSSSSYGSGRRF





Nuclear heterogeneous
MRDSLLVAKFLGTQDLCLFLNLALSPKEPEQLRKLFIGGLSFETTDE


Ribonucleoprotein A1
SLRSHFEQWGTLTDCVVMRDPNTKRSRGFGFVTYATVEEVDAAM


Variant 6
NARPHKVDGRVVEPKRAVSREDSQRPGAHLTVKKIFVGGIKEDTE


SEQ ID NO: 63
EHHLRDYFEQYGKIEVIEIMTDRGSGKKRGFAFVTFDDHDSVDKIV



IQKYHTVNGIINCEVRKALSKQEMASASSSQRGRSGSGNFGGGRG



GGFGG





Nuclear heterogeneous
MRDPNTKRSRGFGFVTYATVEEVDAAMNARPHKVDGRVVEPKR


Ribonucleoprotein A1
AVSREDSQRPGAHLTVKKIFVGGIKEDTEEHHLRDYFEQYGKIEVI


Variant 7
EIMTDRGSGKKRGFAFVTFDDHDS


SEQ ID NO: 64






Nuclear heterogeneous
MSKSESPKEPEQLRKLFIGGLSFETTDESLRSHFEQWGTLTDCVVM


Ribonucleoprotein A1
RDPNTKRSRGFGFVTYATVEEVDAAMNARPHKVDGRVVEPKRAV


Variant 8
SREDSQRPGAHLTVKKIFVGGFGGSRGGGGYGGSGDGYNGFGND


SEQ ID NO: 65
GSNFGGGGSYNDFGNYNNQSSN





Nuclear heterogeneous
MSKSESPKEPEQLRKLFIGGLSFETTDESLRSHFEQWGTLTDCVDS


Ribonucleoprotein A1
QRPGAHLTVKKIFVGGIKEDTEEHHLRDYFEQYGKIEVIEIMTDRG


Variant 9
SGKKRGFAFVTFDDHDSVDKIVIQKYHTVNGHNCEVRKALSKQE


SEQ ID NO: 66
MASASSSQR





Polycystic kidney disease protein 1-
XSRLRASMWIDRSTRAVSVHFTLYNPPTQLFTSVSLRVEILPTGSLV


like 1
PSSLVESFSIFRSDSALQYHLMLPQLVFLALSLIHLCVQLYRNIMDK


Variant 2
GVLSYWRKPRNWLELSVVGVSLTYYAVSGHLVTLAGDVTNQFHR


SEQ ID NO: 67
GLCRAFMDLTLMASWNQRARWLRGILLFLFTLKCVYLPGIQNTM



ASCSSMIMRHSLPSIFVAGLVGALMLAALSHLHRFLLSMWVLPPGT



FTDAFPGLLFHFPRRSQKDCLLGLSKSDQRAMACYFGILLIVSATL



CFGMLRGFLMTLPQKRKSFQSKSFVRLKDVTAYMWEKVLTFLRL



ETPKLEEAEMVENIANYYLDEFANLLDELLMKINGLSDSLQLPLLE



KTSNNTGEARTEESPLVDISSYQAAESLTLVTQTEVQWHDLGSLQP



PHPRFKQFSCLSLPSSWDYRRVPLCLANF





Polycystic kidney disease protein 1-
XVGGPENPYLIDPENQNVTLNGPGGCGTREDCVLSLGRTRTEAHT


like 1
ALSRLRASMWIDRSTRAVSVHFTLYNPPTQLFTSVSLRVEILPTGSL


Variant 3
VPSSLVESFSIFRSDSALQYHLMLPQLVFLALSLIHLCVQLYRMMD


SEQ ID NO: 68
KGVLSYWRKPRNWLEVASLVSFSFEK





Heat shock protein cognate 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


Variant 2
DTERLIGDAAKNQVAMNPTNTVFDAKRLIGRRFDDAVVQSDMKH


SEQ ID NO: 69
WPFMVVNDAGRPKVQVEYKGETKSFYPEEVSSMVLTKMKEIAEA



YLGKTVTNAVVTVPAYFNDSQRQATKDAGTIAGLNVLRIINEPTA



AAIAYGLDKKVGAERNVLIFDLGGGTFDVSILTIEDGIFEVKSTAGD



THLGGEDFDNRMVNHFIAEFKRKHKKDISENKRAVRRLRTACERA



KRTLSSSTQASIEIDSLYEGIDFYTSITRARFEELNADLFRGTLDPVE



KALRDAKLDKSQIHDIVLVGGSTRIPKIQKLLQDFFNGKELNKSINP



DEAVAYGAAVQAAILSGDKSENVQDLLLLDVTPLSLGIETAGGVM



TVLIKRNTTIPTKQTQTFTTYSDNQPGVLIQVYEGERAMTKDNNLL



GKFELTGIPPAPRGVPQIEVTFDIDANGILNVSAVDKSTGKENKITIT



NDKGRLSKEDIERMVQEAEKYKAEDEKQRDKVSSKNSLESYAFN



MKATVEDEKLQGKINDEDKQKILDKCNEIINWLDKNQTAEKEEFE



HQQKELEKVCNPIITKLYQSAGGMPGGMPGGFPGGGAPPSGGASS



GPTIEEVD





Heat shock protein cognate 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


Variant 3
DTERLIGDAAKNQVAMNPTNTVFDAKRLIGRRFDDAVVQSDMKH


SEQ ID NO: 70
WPFMVVNDAGRPKVQVEYKGETKSFYPEEVSSMVLTKMKEIAEA



YLGKTVTNAVVTVPAYFNDSQRQATKDAGTIAGLNVLRIINEPTA



AAIAYGLDKKVGAERNVLIFDLGGGTFDVSILTIEDGIFEVKSTAGD



THLGGEDFDNRMVNHFIAEFKRKHKKDISENKRAVRRLRTACERA



KRTLSSSTQASIEIDSLYEGIDFYTSITRARFEELNADLFRGTLDPVE



KALRDAKLDKSQIHDIVLVGGSTRIPKIQKLLQDFFNGKELNKSINP



DEAVAYGAAVQAAILSGDKSENVQDLLLLDVTPLSLGIETAGGVM



TVLIKRNTTIPTKQTQTFTTYSDNQPGVLIQVYEGERAMTKDNNLL



GKFELTGIPPAPRGVPQIEVTFDIDANGILNVSAVDKSTGKENKITIT



NDKGRLSKEDIERMVQEAEKYKAEDEKQRDKVSSKNSLESYAFN



MKATVEDEKLQGKINDEDKQKILDKCNEIINWLDKNQTAEKEEFE



HQQKELEKVCNPIITKLYQSAGGMPGGMPGGFPGGGAPPSGGASS



GPTIEEVD





Heat shock protein cognate 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


Variant 4
DTERLIGDAAKNQVAMNPTNTVFDAKRLIGRRFDDAVVQSDMKH


SEQ ID NO: 71
WPFMVVNDAGRPKVQVEYKGETKSFYPEEVSSMVLTKMKEIAEA



YLGKTVTNAVVTVPAYFNDSQRQATKDAGTIAGLNVLRIINEPTA



AAIAYGLDKKVGAERNVLIFDLGGGTFDVSILTIEDGIFEVKSTAGD



THLGGEDFDNRMVNHFIAEFKRKHKKDISENKRAVRRLRTACERA



KRTLSSSTQASIEIDSLYEGIDFYTSITRARFEELNADLFRGTLDPVE



KALRDAKLDKSQIHDIVLVGGSTRIPKIQKLLQDFFNGKELNKSINP



DEAVAYGAAVQAAILSGDKSENVQDLLLLDVTPLSLGIETAGGVM



TVLIKRNTTIPTKQTQTFTTYSDNQPGVLIQVYEGERAMTKDNNLL



GKFELTGMPGGMPGGFPGGGAPPSGGASSGPTIEEVD





Heat shock protein cognate 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


Variant 5
DTERLIGDAAKNQVAMNPTNTVFDAKRLIGRRFDDAVVQSDMKH


SEQ ID NO: 72
WPFMVVNDAGRPKVQVEYKGETKSFYPEEVSSMVLTKMKEIAEA



YLGKATKDAGTIAGLNVLRIINEPTAAAIAYGLDKKVGAERNVLIF



DLGGGTFDVSILTIEDGIFEVKSTAGDTHLGGEDFDNRMVNHFIAE



FKRKHKKDISENKRAVRRLRTACERAKRTLSSSTQASIEIDSLYEGI



DFYTSITRARFEELNADLFRGTLDPVEKALRDAKLDKSQIHDIVLV



GGSTRIPKIQKLLQDFFNGKELNKSINPDEAVAYGAAVQAAILSGD



KSENVQDLLLLDVTPLSLGIETAGGVMTVLIKRNTTIPTKQTQTFTT



YSDNQPGVLIQVYEGERAMTKDNNLLGKFELTGIPPAPRGVPQIEV



TFDIDANGILNVSAVDKSTGKENKITITNDKGRLSKEDIERMVQEA



EKYKAEDEKQRDKVSSKNSLESYAFNMKATVEDEKLQGKINDED



KQKILDKCNEIINWLDKNQTAEKEEFEHQQKELEKVCNPITTKLYQ



SAGGMPGGMPGGFPGGGAPPSGGASSGPTIEEVD





Heat shock protein cognate 71 kDa
MVNHFIAEFKRKHKKDISENKRAVRRLRTACERAKRTLSSSTQASI


Variant 6
EIDSLYEGIDFYTSITRARFEELNADLFRGTLDPVEKALRDAKLDKS


SEQ ID NO: 73
QIHDIVLVGGSTRIPKIQKLLQDFFNGKELNKSINPDEAVAYGAAV



QAAILSGDKSENVQDLLLLDVTPLSLGIETAGGVMTVLIKRNTTIPT



KQTQTFTTYSDNQPGVLIQVYEGERAMTKDNNLLGKFELTGIPPAP



RGVPQIEVTFDIDANGILNVSAVDKSTGKENKITITNDKGRLSKEDI



ERMVQEAEKYKAEDEKQRDKVSSKNSLESYAFNMKATVEDEKLQ



GKINDEDKQKILDKCNEIINWLDKNQTAEKEEFEHQQKELEKVCN



PITTKLYQSAGGMPGGMPGGFPGGGAPPSGGASSGPTIEEVD





Heat shock protein cognate 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


Variant 7
DTERLIGDAAKNQVAMNPTNTVFDAKRLIGRRFDDAVVQSDMKH


SEQ ID NO: 74
WPFMVVNDAGRPKHKKDISENKRAVRRLRTACERAKRTLSSSTQ



ASIEIDSLYEGIDFYTSITRARFEELNADLFRGTLDPVEKALRDAKL



DKSQIHDIVLVGGSTRIPKIQKLLQDFFNGKELNKSINPDEAVAYGA



AVQAAILSGDKSENVQDLLLLDVTPLSLGIETAGGVMTVLIKRNTT



IPTKQTQTFTTYSDNQPGVLIQVYEGERAMTKDNNLLGKFELTGIP



PAPRGVPQIEVTFDIDANGILNVSAVDKSTGKENKITITNDKGRLSK



EDIERMVQEAEKYKAEDEKQRDKVSSKNSLESYAFNMKATVEDE



KLQGKINDEDKQKILDKCNEIINWLDKNQTAEKEEFEHQQKELEK



VCNPITTKLYQSAGGMPGGMPGGFPGGGAPPSGGASSGPTIEEVD





Heat shock protein cognate 71 kDa
MNPTNTVFDAKRLIGRRFDDAVVQSDMKHWPFMVVNDAGRPKV


Variant 8
QVEYKGETKSFYPEEVSSMVLTKMKEIAEAYLGKTVTNAVVTVPA


SEQ ID NO: 75
YFNDSQRQATKDAGTIAGLNVLIINEPTAAAIAYGLDKKVGAER



NVLIFDLGGGTFDVSILTIEDGIFEVKSTAGDTHLGGEDFDNRMVN



HFIAEFKRKHKKDISENKRAVRRLRTACERAKRTLSSSTQASIEIDS



LYEGIDFYTSITRARFEELNADLFRGTLDPVEKALRDAKLDKSQIH



DIVLVGGSTRIPKIQKLLQDFFNGKELNKSINPDEAVAYG





Heat shock protein cognate 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


Variant 9
DTERLIGDAAKNQVAMNPTNTVFDAKRLIGRRFDDAVVQSDMKH


SEQ ID NO: 76
WPFMVVNDAGRPKVQVEYKGETKSFYPEEVSSMVLTKMKEIAEA



YLGKTVTNAVVTVPAYFNDSQRQATKDAGTIAGLNVLRIINEPTA



AAIAYGLDK





Heat shock protein cognate 71 kDa
MTVLIKRNTTIPTKQTQTFTTYSDNQPGVLIQVYEGERAMTKDNNL


Variant 10
LGKFELTGIPPAPRGVPQIEVTFDIDANGILNVSAVDKSTGKENKITI


SEQ ID NO: 77
TNDKGRLSKEDIERMVQEAEKYKAEDEKQRDKVSSKNSLESYAFN



MKATVEDEKLQGKINDEDKQKILDKCNEIINWLDKNQTAEKEEFE



HQQKELEKVCNPITTKLYQSAGGMPGGMPGGFPGGGAPP





Heat shock protein cognate 71 kDa
MTKDNNLLGKFELTGIPPAPRGVPQIEVTFDIDANGILNVSAVDKST


Variant 11
GKENKITITNDKGRLSKEDIERMVQEAEKYKAEDEKQRDKVSSKN


SEQ ID NO: 78
SLESYAFNMKATVEDEKLQGKINDEDKQKILDKCNEIINWLDKNQ



TAEKEEFEHQQKE





Heat shock protein cognate 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


Variant 12
DTERLIGDAAKNQVAMNPTNTVFDAKRLIGRRFDDAVVQSDMKH


SEQ ID NO: 79
WPFMVVNDAGRPKVQVEYKGETKSFYPEEVSSMVLTKMKEIAEA



YLGKTVTNAVVTVPAYFNDSQRQATKDAGTIAGLNVLR





Heat shock protein cognate 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


Variant 13
DTERLIGDAAKNQVAMNPTNTVFDAKRLIGRRFDDAVVQSDMKH


SEQ ID NO: 80
WPFMVVNDAGRPKVQVEYKGETKSFYPEEVSSMVLTKMKEIAE





Heat shock protein cognate 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


Variant 14
DTERLIGDAAKNQVAMNPTNTVFDAKRLIGRRFDDAVVQSDMKH


SEQ ID NO: 81
WPFMVVNDAGRPKVQVEYKGETKSFYPEEVSSMVLTKMKEIAEA



YLGKTVTNAVVTVPAYFNDSQRQATKDAGTIAGLNVLRIINEPTA



AAIAY





Heat shock protein cognate 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


Variant 15
DTERLIGDAAKNQVAMNPTNTVFETKSFYPEEVSSMVLTKMKEIA


SEQ ID NO: 82
EAYLGKTVTNAVVTVPAYFNDSQRQATKDAGTIAGLNVLRIINEPT



AAAIAYGLDKKVGAERNVLIFDLGGGTFDVSI





Heat shock protein cognate 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


Variant 16
DTERLIGDAAKNQVAMNPTNTVFDAKRLIGRRFDDAVVQSDMKH


SEQ ID NO: 83
WPFMVVNDAGRPKVQVEYKGETKSFYPEEVSSMVLTKMKEIAEA



YLGKTVTNAVVTVPAYFNDSQRQATKDAGTIAGLNVLRIINEPTA





Heat shock protein cognate 71 kDa
MSKGPAVGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFT


Variant 17
DTERLIGDAAKNQVAMNPTNTVFDAKRLIGRRFDDAVVQSDMKH


SEQ ID NO: 84
WPFMVVNDAGRPKVQVEYKGETKSFYPEEVSSMVLTKMKEIAEA



YLGK





Ankyrin-3
MASSASSSPAGTEDSAPAQGGFGSDYSRSSRKSDANASYLRAARA


Variant 2
GHLEKALDYIKNGVDINICNQNGLNALHLASKEGHVEVVSELLQR


SEQ ID NO: 85
EANVDAATKKGNTALHIASLAGQAEVVKVLVTNGANVNAQSQN



GFTPLYMAAQENHLEVVKFLLDNGASQSLATEDGFTPLAVALQQG



HDQVVSLLLENDTKGKVRLPALIIIAARKDDTKAAALLLQNDNNA



DVESKSGFTPLIIIAAHYGNINVATLLLNRAAAVDFTARNDITPLHV



ASKRGNANMVKLLLDRGAKIDAKTRDGLTPLHCGARSGHEQVVE



MLLDRAAPILSKTKNGLSPLHMATQGDHLNCVQLLLQIINVPVDD



VTNDYLTALHVAAHCGHYKVAKVLLDKKANPNAKALNGFTPLIII



ACKKNRIKVMELLLKHGASIQAVTESGLTPIHVAAFMGHVNIVSQL



MHHGASPNTTNVRGETALHMAARSGQAEVVRYLVQDGAQVEAK



AKDDQTPLIIISARLGKADIVQQLLQQGASPNAATTSGYTPLHLSAR



EGHEDVAAFLLDHGASLSITTKKGFTPLHVAAKYGKLEVANLLLQ



KSASPDAAGKSGLTPLHVAAHYDNQKVALLLLDQGASPHAAAKN



GYTPLIIIAAKKNQMDIATTLLEYGADANAVTRQGIASVHLAAQEG



HVDMVSLLLGRNANVNLSNKSGLTPLHLAAQEDRVNVAEVLVNQ



GAHVDAQTKMGYTPLHVGCHYGNIKIVNFLLQHSAKVNAKTKNG



YTPLHQAAQQGHTHIINVLLQNNASPNELTVNGNTALGIARRLGYI



SVVDTLKIVTEETMITTTVTEKHKMNVPETMNEVLDMSDDEVRK



ANAPEMLSDGEYISDVEEGEDAMTGDTDKYLGPQDLKELGDDSLP



AEGYMGFSLGARSASLRSFSSDRSYTLNRSSYARDSMMIEELLVPS



KEQHLTFTREFDSDSLRHYSWAADTLDNVNLVSSPIHSGFLVSFMV



DARGGSMRGSRHHGMRICIPPRKCTAPTRITCRLVKRHKLANPPPM



VEGEGLASRLVEMGPAGAQFLGPVIVEIPHFGSMRGKERELIVLRS



ENGETWKEHQFDSKNEDLTELLNGMDEELDSPEELGKKRICRIITK



DFPQYFAVVSRIKQESNQIGPEGGILSSTTVPLVQASFPEGALTKRIR



VGLQAQPVPDEIVKKILGNKATFSPIVTVEPRRRKFHKPITMTIPVPP



PSGEGVSNGYKGDTTPNLRLLCSITGGTSPAQWEDITGTTPLTFIKD



CVSFTTNVSARFWLADCHQVLETVGLATQLYRELICVPYMAKFVV



FAKMNDPVESSLRCFCMTDDKVDKTLEQQENFEEVARSKDIEVLE



GKPIYVDCYGNLAPLTKGGQQLVFNFYSFKENRLPFSIKIRDTSQEP



CGRLSFLKEPKTTKGLPQTAVCNLNITLPAHKKIEKTDRRQSFASL



ALRKRYSYLTEPGMSPQSPCERTDIRMAIVADHLGLSWTELARELN



FSVDEINQIRVENPNSLISQSFMLLKKWVTRDGKNATTDALTSVLT



KINRIDIVTLLEGPIFDYGNISGTRSFADENNVFHDPVDGYPSLQVE



LETPTGLHYTPPTPFQQDDYFSDISSIESPLRTPSRLSDGLVPSQGNIE



HSADGPPVVTAEDASLEDSKLEDSVPLTEMPEAVDVDESQLENVC



LSWQNETSSGNLESCAQARRVTGGLLDRLDDSPDQCRDSITSYLK



GEAGKFEANGSHTEITPEAKTKSYFPESQNDVGKQSTKETLKPKIH



GSGHVEEPASPLAAYQKSLEETSKLIIEETKPCVPVSMKKMSRTSPA



DGKPRLSLHEEEGSSGSEQKQGEGFKVKTKKEIRHVEKKSHS





Ankyrin-3
MSEEPKEKNAKPAHRKRKGKKSDANASYLRAARAGHLEKALDYI


Variant 3
KNGVDINICNQNGLNALHLASKEGHVEVVSELLQREANVDAATK


SEQ ID NO: 86
KGNTALHIASLAGQAEVVKVLVTNGANVNAQSQNGFTPLYMAAQ



ENHLEVVKFLLDNGASQSLATEDGFTPLAVALQQGHDQVVSLLLE



NDTKGKVRLPALHIAARKDDTKAAALLLQNDNNADVESKSGFTPL



HIAAHYGNINVATLLLNRAAAVDFTARNDITPLHVASKRGNANMV



KLLLDRGAKIDAKTRDGLTPLHCGARSGHEQVVEMLLDRAAPILS



KTKNGLSPLHMATQGDHLNCVQLLLQIINVPVDDVTNDYLTALHV



AAHCGHYKVAKVLLDKKANPNAKALNGFTPLHIACKKNRIKVME



LLLKHGASIQAVTESGLTPIHVAAFMGHVNIVSQLMHHGASPNTT



NVRGETALHMAARSGQAEVVRYLVQDGAQVEAKAKDDQTPLHIS



ARLGKADIVQQLLQQGASPNAATTSGYTPLHLSAREGHEDVAAFL



LDHGASLSITTKKGFTPLHVAAKYGKLEVANLLLQKSASPDAAGK



SGLTPLHVAAHYDNQKVALLLLDQGASPHAAAKNGYTPLHIAAK



KNQMDIATTLLEYGADANAVTRQGIASVHLAAQEGHVDMVSLLL



GRNANVNLSNKSGLTPLHLAAQEDRVNVAEVLVNQGAHVDAQT



KMGYTPLHVGCHYGNIKIVNFLLQHSAKVNAKTKNGYTPLHQAA



QQGHTHIINVLLQNNASPNELTVNGNTALGIARRLGYISVVDTLKI



VTEETMTITTVTEKHKMNVPETMNEVLDMSDDEVRKANAPEMLS



DGEYISDVEEGNRCTWYKIPKVQEFTVKSEDAMTGDTDKYLGPQD



LKELGDDSLPAEGYMGFSLGARSASLRSFSSDRSYTLNRSSYARDS



MMTEELLVPSKEQHLTFTREFDSDSLRHYSWAADTLDNVNLVSSPI



HSGFLVSFMVDARGGSMRGSRHHGMRHIPPRKCTAPTRITCRLVK



RHKLANPPPMVEGEGLASRLVEMGPAGAQFLGPVIVEIPHFGSMR



GKERELIVLRSENGETWKEHQFDSKNEDLTELLNGMDEELDSPEEL



GKKRICRITTKDFPQYFAVVSRIKQESNQIGPEGGILSSTTVPLVQAS



FPEGALTKRIRVGLQAQPVPDEIVKKILGNKATFSPIVTVEPRRRKF



HKPITMTIPVPPPSGEGVSNGYKGDTTPNLRLLCSITGGTSPAQWED



ITGTTPLTFIKDCVSFTTNVSARFWLADCHQVLETVGLATQLYRELI



CVPYMAKFVVFAKMNDPVESSLRCFCMTDDKVDKTLEQQENFEE



VARSKDIEVLEGKPIYVDCYGNLAPLTKGGQQLVFNFYSFKENRLP



FSIKIRDTSQEPCGRLSFLKEPKTTKGLPQTAVCNLNITLPAHKKIEK



TDRRQSFASLALRKRYSYLTEPGMSPQSPCERTDIRMAIVADHLGL



SWTELARELNFSVDEINQIRVENPNSLISQSFMLLKKWVTRDGKNA



TTDALTSVLTKINRIDIVTLLEGPIFDYGNISGTRSFADENNVFHDPV



DGYPSLQVELETPTGLHYTPPTPFQQDDYFSDISSIESPLRTPSRLSD



GLVPSQGNIEHSADGPPVVTAEDASLEDSKLEDSVPLTEMPEAVDV



DESQLENVCLSWQNETSSGNLESCAQARRVTGGLLDRLDDSPDQC



RDSITSYLKGEAGKFEANGSHTEITPEAKTKSYFPESQNDVGKQST



KETLKPKIHGSGHVEEPASPLAAYQKSLEETSKLIIEETKPCVPVSM



KKMSRTSPADGKPRLSLHEEEGSSGSEQKQGEGFKVKTKKEIRHV



EKKSHS





Ankyrin-3
MALPQSEDAMTGDTDKYLGPQDLKELGDDSLPAEGYMGFSLGAR


Variant 4
SASLRSFSSDRSYTLNRSSYARDSMMTEELLVPSKEQHLTFTREFDS


SEQ ID NO: 87
DSLRHYSWAADTLDNVNLVSSPIHSGFLVSFMVDARGGSMRGSR



HHGMRHIPPRKCTAPTRITCRLVKRHKLANPPPMVEGEGLASRLVE



MGPAGAQFLGPVIVEIPHFGSMRGKERELIVLRSENGETWKEHQFD



SKNEDLTELLNGMDEELDSPEELGKKRICRITTKDFPQYFAVVSRIK



QESNQIGPEGGILSSTTVPLVQASFPEGALTKRIRVGLQAQPVPDEI



VKKILGNKATFSPIVTVEPRRRKFHKPITMTIPVPPPSGEGVSNGYK



GDTTPNLRLLCSITGGTSPAQWEDITGTTPLTFIKDCVSFTTNVSAR



FWLADCHQVLETVGLATQLYRELICVPYMAKFVVFAKMNDPVES



SLRCFCMTDDKVDKTLEQQENFEEVARSKDIEVLEGKPIYVDCYG



NLAPLTKGGQQLVFNFYSFKENRLPFSIKIRDTSQEPCGRLSFLKEP



KTTKGLPQTAVCNLNITLPAHKKIEKTDRRQSFASLALRKRYSYLT



EPGMSPQSPCERTDIRMAIVADHLGLSWTELARELNFSVDEINQIR



VENPNSLISQSFMLLKKWVTRDGKNATTDALTSVLTKINRIDIVTL



LEGPIFDYGNISGTRSFADENNVFHDPVDGYPSLQVELETPTGLHY



TPPTPFQQDDYFSDISSIESPLRTPSRLSDGLVPSQGNIEHSADGPPV



VTAEDASLEDSKLEDSVPLTEMPEAVDVDESQLENVCLSWQNETS



SGNLESCAQARRVTGGLLDRLDDSPDQCRDSITSYLKGEAGKFEA



NGSHTEITPEAKTKSYFPESQNDVGKQSTKETLKPKIHGSGHVEEP



ASPLAAYQKSLEETSKLIIEETKPCVPVSMKKMSRTSPADGKPRLSL



HEEEGSSGSEQKQGEGFKVKTKKEIRHVEKKSHS





Ankyrin-3
XFLVSFMVDARGGSMRGSRHHGMRHIPPRKCTAPTRITCRLVKRH


Variant 5
KLANPPPMVEGEGLASRLVEMGPAGAQFLGPVIVEIPHFGSMRGK


SEQ ID NO: 88
ERELIVLRSENGETWKEHQFDSKNEDLTELLNGMDEELDSPEELGK



KRICRITTKDFPQYFAVVSRIKQESNQIGPEGGILSSTTVPLVQASFPE



GALTKRIRVGLQAQPVPDEIVKKILGNKATFSPIVTVEPRRRKFHKP



ITMTIPVPPPSGEGVSNGYKGDTTPNLRLLCSITGGTSPAQWEDITG



TTPLTFIKDCVSFTINVSARFWLADCHQVLETVGLATQLYRELICV



PYMAKFVVFAKMNDPVESSLRCFCMTDDKVDKTLEQQENFEEVA



RSKDIEVLEGKPIYVDCYGNLAPLTKGGQQLVFNFYSFKENRLPFSI



KIRDTSQEPCGRLSFLKEPKTTKGLPQTAVCNLNITLPAHKKIEKTD



RRQSFASLALRKRYSYLTEPGMKTVERSTGATRSLPTTYSYKPFFS



TRPYQSWTTAPITVPGPAKSGFTSLSSSSSNTPSASPLKSIWSVSTPS



PIKSTLGASTTSSVKSISDVASPIRSFRTMSSPIKTVVSQSPYNIQVSS



GTLARAPAVTEATPLKGLASNSTFSSRTSPVTTAGSLLERSSITMTP



PASPKSNINMYSSSLPFKSIITSAAPLISSPLKSVVSPVKSAVDVISSA



KITMASSLSSPVKQMPGHAEVALVNGSISPLKYPSSSTLINGCKATA



TLQEKISSATNSVSSVVSAATDTVEKVFSTTTAMPFSPLRSYVSAAP



SAFQSLRTPSASALYTSLGSSISATTSSVTSSITIVPVYSVVNVLPEPA



LKKLPDSNSFTKSAAALLSPIKTLTTETHPQPHFSRTSSPVKSSLFLA



PSALKLSTPSSLSSSQEILKDVAEMKEDLMRMTAILQTDVPEEKPFQ



PELPKEGRIDDEEPFKIVEKVKEDLVKVSEILKKDVCVDNKGSPKSP



KSDKGHSPEDDWIEFSSEEIREARQQAAASQSPSLPERVQVKAKAA



SEKDYNLTKVIDYLTNDIGSSSLTNLKYKFEDAKKDGEERQKRVL



KPAIALQEHKLKMPPASMRTSTSEKELCKMADSFFGTDTILESPDD



FSQHDQDKSPLSDSGFETRSEKTPSAPQSAESTGPKPLFHEVPIPPVI



TETRTEVVHVIRSYDPSAGDVPQTQPEEPVSPKPSPTFMELEPKPTT



SSIKEKVKAFQMKASSEEDDIINTRVLSKGMRVKEETHITTTTRMVY



HSPPGGEGASERIEETMSVHDIMKAFQSGRDPSKELAGLFEHKSAV



SPDVHKSAAETSAQHAEKDNQMKPKLERIIEVIIIEKGPQSPCERTDI



RMAIVADHLGLSWTELARELNFSVDEINQIRVENPNSLISQSFMLL



KKWVTRDGKNATTDALTSVLTKINRIDIVTLLEGPIFDYGNISGTRS



FADENNVFHDPVDGWQNETSSGNLESCAQARRVTGGLLDRLDDS



PDQCRDSITSYLKGEAGKFEANGSHTEITPEAKTKSYFPESQNDVG



KQSTKETLKPKIEIGSGHVEEPASPLAAYQKSLEETSKLIIEETKPCV



PVSMKKMSRTSPADGKPRLSLHEEEGSSGSEQKQGEGFKVKTKKE



IRHVEKKSHS





Ankyrin-3
XPVIVEIPHFGSMRGKERELIVLRSENGETWKEHQFDSKNEDLTEL


Variant 6
LNGMDEELDSPEELGKKRICRIITKDFPQYFAVVSRIKQESNQIGPE


SEQ ID NO: 89
GGILSSTTVPLVQASFPEGALTKRIRVGLQAQPVPDEIVKKILGNKA



TFSPIVTVEPRRRKFHKPITMTIPVPPPSGEGVSNGYKGDTTPNLRL



LCSITGGTSPAQWEDITGTTPLTFIKDCVSFTINVSARFWLADCHQ



VLETVGLATQLYRELICVPYMAKFVVFAKMNDPVESSLRCFCMTD



DKVDKTLEQQENFEEVARSKDIEVLEGKPIYVDCYGNLAPLTKGG



QQLVFNFYSFKENRLPFSIKIRDTSQEPCGRLSFLKEPKTTKGLPQT



AVCNLNITLPAHKKETESDQDDEIEKTDRRQSFASLALRPQSPCERT



DIRMAIVADHLGLSWTELARELNFSVDEINQIRVENPNSLISQSFML



LKKWVTRDGKNATTDALTSVLTKINRIDIVTLLEGPIFDYGNISGTR



SFADENNVFHDPVDGYPSLQVELETPTGLHYTPPTPFQQDDYFSDI



SSIESPLRTPSRLSDGLVPSQGNIEHSADGPPVVTAEDASLEDSKLE



DSVPLTEMPEAVDVDESQLENVCLSEYPQYLGNLAGSPKDVKPAE



PRKLGVSSEQQEKGKSGPDEEMMEEKLKSLFEDIQLEEGVESEEMT



EEKVQAILKRVQQAELEMSSITGWQNETSSGNLESCAQARRVTGG



LLDRLDDSPDQCRDSITSYLKGEAGKFEANGSHTEITPEAKTKSYFP



ESQNDVGKQSTKETLKPKIEIGSGHVEEPASPLAAYQKSLEETSKLII



EETKPCVPVSMKKMSRTSPADGKPRLSLHEEEGSSGSEQKDLKDS



ESDSSSEEERRVTTRVIRRRLIIKGEEAKNIPGESVTEEQFTDEEGNLI



TRKITRKVLRRIVIPQERKRDDVQGEGFKVKTKKEIRHVEKKSHS





Ankyrin-3
PKTTKGLPQTAVCNLNITLPAHKKETESDQDDEIEKTDRRQSFASL


Variant 7
ALRKRYSYLTEPGMSPQSPCERTDIRMAIVADHLGLSWTELARELN


SEQ ID NO: 90
FSVDEINQIRVENPNSLISQSFMLLKKWVTRDGKNATTDALTSVLT



KINRIDIVTLLEGPIFDYGNISGTRSFADENNVFHDPVDGYPSLQVE



LETPTGLHYTPPTPFQQDDYFSDISSIESPLRTPSRLSDGLVPSQGNIE



HSADGPPVVTAEDASLEDSKLEDSVPLTEMPEAVDVDESQLENVC



LSWQNETSSGNLESCAQARRVTGGLLDRLDDSPDQCRDSITSYLK



GEAGKFEANGSHTEITPEAKTKSYFPESQNDVGKQSTKETLKPKIH



GSGHVEEPASPLAAYQKSLEETSKLIIEETKPCVPVSMKKMSRTSPA



DGKPRLSLHEEEGSSGSEQKQGEGFKVKTKKEIRHVEKKSHS





Ankyrin-3
XLARELNFSVDEINQIRVENPNSLISQSFMLLKKWVTRDGKNATTD


Variant 8
ALTSVLTKINRIDIVTLLEGPIFDYGNISGTRSFADENNVFHDPVDG


SEQ ID NO: 91
NRI





Ankyrin-3
XGPDEDKPPSKSSSSEKTPDKTDQKSGAQFFTLEGRHPDRSVFPDT


Variant 9
YFSYKVDEEFATPFKTVATKGLDFDPWSNNRGDDEVFDSKSREDE


SEQ ID NO: 92
TKPFGLAVEDRSPATTPDTTPARTPTDESTFTSEPNPFPFHEGKMFE



MTRSGAIDMSKRDFVEERLQFFQIGPQSPCERTDIRMAIVADHLGL



SWTELARELNFSVDEINQIRVENPNSLISQSFMLLKKWVTRDGKNA



TTDALTSVLTKINRIDIVTLLEGPIFDYGNISGTRSFADENNVFHDPV



DGWQNETSSGNLESCAQARRVTGGLLDRLDDSPDQCRDSITSYL





Ankyrin-3
MAVEEGESFPEQSDANASYLRAARAGHLEKALDYIKNGVDINICN


Variant 10
QNGLNALHLASKEGHVEVVSELLQREANVDAATKKGNTALIITAS


SEQ ID NO: 93
LAGQAEVVKVLVTNGANVNAQSQNGFTPLYMAAQENHLEVVKF



LLDNGASQSLATEDGFTPLAVALQQGHDQVVSLLLENDTKGKVRL



PALIIIAARKDDTKAAALLLQNDNNADVESKSGFTPLHAAHYGNI



NVATLLLNRAAAVDFTARNDITPLHVASKRGNANMVKLLLDRGA



KIDAKTR





Ankyrin-3
MAVEEGESFPEQSDANASYLRAARAGHLEKALDYIKNGVDINICN


Variant 11
QNGLNALHLASKEGHVEVVSELLQREANVDAATKKGNTALIITAS


SEQ ID NO: 94
LAGQAEVVKVLVTNGANVNAQSQNGFTPLYMAAQENHLEVVKF



LLDNGASQSLATEDGFTPLAVALQQGHDQVVSLLLENDTKGKVRL



PALIIIAARKDDTKAAALLLQNDNNADVESKSGFTPLHAAHYGNI



NVATLLLNRAAAVDFTARNDITPLHVASKRGNANMVKLLLDRGA



KIDAKTR





Ankyrin-3
XTVATKGLDFDPWSNNRGDDEVFDSKSREDETKPFGLAVEDRSPA


Variant 12
TTPDTTPARTPTDESTPTSEPNPFPFHEGKMFEMTRSGAIDMSKRDF


SEQ ID NO: 95
VEERLQFFQIGPQSPCERTDIRMAIVADHLGLSWTELARELNFSVD



EINQIRVENPNSLISQSFMLLKKWVTRDGKNATTDALTSVLTKINRI



DIVTLLEGPIFDYGNISGTRSFADENNVFHDPVDGYPSLQVELETPT



GLHYTPPTP





Ankyrin-3
XWQNETSSGNLESCAQARRVTGGLLDRLDDSPDQCRDSITSYLKG


Variant 13
EAGKFEANGSHTEITPEAKTKSYFPESQNDVGKQSTKETLKPKIHG


SEQ ID NO: 96
SGHVEEPASPLAAYQKSLEETSKLIIEETKPCVPVSMKKMSRTSPAD



GKPRLSLHEEEGSSGSEQKGEGFKVKTKKEIRHVEKKSHS





Ankyrin-3
MNVPETMNEVLDMSDDEGNRCTWYKIPKVQEFTVKSEDAMTGD


Variant 14
TDKYLGPQDLKELGDDSLPAEGYMGFSLGARSARYFVVAVFHS


SEQ ID NO: 97






Ankyrin-3
MTGDTDKYLGPQDLKELGDDSLPAEGYMGFSLGARSASLRSFSSD


Variant 15
RSYTLNRSSYARDSMMTEELLVPSKEQHLTFTREFDSDSLRHYSWA


SEQ ID NO: 98
ADTLDNVNLVSSPIHSGFLVSFMVDARGGSMRGSRHHGMRIUPPR



KCTAPTRITCRLVKRHKLANPPPMVEGEGLASRLVEMGPAGAQFL



GPVIVEIPHFGSM





Ankyrin-3
SPDQCRDSITSYLKGEAGKFEANGSHTEITPEAKTKSYFPESQNDV


Variant 16
GKQSTKETLKPKIHGSGHVEEPASPLAAYQKSLEETSKLIIEETKPC


SEQ ID NO: 99
VPVSMKKMSRTSPADGKPRLSLHEEEGSSGSEQKVKSPGAAPTRM



TACCYKQGEGFKVKTKKEIRHVEKKSHS





Ankyrin-3
XLARELNFSVDEINQIRVENPNSLISQSFMLLKKWVTRDGKNATTD


Variant 17
ALTSVLTKINRIDIVTLLEGPIFDYGNISGTRSFADENNVFHDPVDVS


SEQ ID NO: 100
PNVLSSIGYPSLQVELETPTGLHYTPPTPFQQDDYFSDISSIESPLRTP



SRLSDGLVPSQGNIEHSADGPPVVTAEDASLEDSKLEDSVPLTEMP



EAVDVDESQLENVCLSWQNETSSGNLES





Ankyrin-3
XEDAMTGDTDKYLGPQDLKELGDDSLPAEGYMGFSLGARSASPKI


Variant 18
SLRSFSSDRSYTLNRSSYARDSMMTEELLVPSKEQHLTFTREFDSDS


SEQ ID NO: 101
LRHYSWAADTLDNVNLVSSPIHSGYSSPLPQYDSRFLVSFMVDAR



GGSMRGSRHHGMRICIPPRKCTAPTRITCRLVKRHKLANPPPMVEG



EGLASRLVEMGPAGAQFL





Ankyrin-3
XSSPIHSGFLVSFMVDARGGSMRGSRHHGMRICIPPRKCTAPTRITC


Variant 19
RLVKRHKLANPPPMVEGEGLASRLVEMGPAGAQFLGKLHLPTNPP


SEQ ID NO: 102
PVNEGESLVSRILQLGPQGTKFIGPVIVEIPHFGSMRGKERELIVLRS



ENGETWKEHQFDSKNEDLTELLNGMDEELDSPEELGKKRICRIITK



DFPQYFAVVS





Ankyrin-3
MTGDTDKYLGPQDLKELGDDSLPAEGYMGFSLGARSASLRSFSSD


Variant 20
RSYTLNRSSYARDSMMTEELLVPSKEQ


SEQ ID NO: 103






Ankyrin-3
XIEKTDRRQSFASLALRKRYSYLTEPGMSPQSPCERTDIRMAIVAD


Variant 21
HLGLSWTELARELNFSVDEINQIRVENPNSLISQSFMLLKKWVTRD


SEQ ID NO: 104
GKNATTDALTSVLTKINRIDIVTLLEGPIFDYGNISGTRSFADENNV



FHDPVDDGPPVVTAEDASLEDSKLEDSVPLTEMPEAVDVDESQLE



NVC





Ankyrin-3
XSPLAAYQKSLEETSKLIIEETKPCVPVSMKKMSRTSPADGKPRLSL


Variant 22
HEEEGSSGSEQKVKSPGAAPTRMTACCYKDLKDSESDSSSEEERR


SEQ ID NO: 105
VTTRVIRRRLIIKGEEAKNIPGESVTEEQFTDEEGNLITRKITRKVLR



RIVIPQERKRDDVQGEGFKVKTKKEIRHVEKKSHS





Ankyrin-3
MTGDTDKYLGPQDLKELGDDSLPAEGYMGFSLGARSASLRSFSSD


Variant 23
RSYTLNRSSYARDSMMTEELLVPSKEQHLTFTREFDSDSLRHYSWA


SEQ ID NO: 106
ADTLDNVNLVSSPIHSGFLVSFMVDARGGSMRGSRHHGMRIUPPR



KCTAPTRITCRLVKRHKLANPP





Ankyrin-3
MTGDTDKYLGPQDLKELGDDSLPAEGYMGFSLGARSASHAASTV


Variant 24
AKELTDKTGRTNLSHIFQN


SEQ ID NO: 107






Rho GTPase-activating protein 32
MKSRPTKQKLKQRGILKERVFGCDLGEHLLNSGFEVPQVLQSCTA


Variant 2
FIERYGIVDGIYRLSGVASNIQRLRHEFDSEHVPDLTKEPYVQDIHS


SEQ ID NO: 108
VGSLCKLYFRELPNPLLTYQLYEKFSDAVSAATDEERLIKIHDVIQQ



LPPPHYRTLEFLMRHLSLLADYCSITNMHAKNLAIVWAPNLLRSK



QIESACFSGTAAFMEVRIQSVVVEFILNHVDVLFSGRISMAMQEGA



ASLSRPKSLLVSSPSTKLLTLEEAQARTQAQVNSPIVTENKYIEVGE



GPAALQGKFHTBEFPLERKRPQNKMKKSPVGSWRSFFNLGKSSSV



SKRKLQRNESEPSEMKAMALKGGRAEGTLRSAKSEESLTSLHAVD



GDSKLFRPRRPRSSSDALSASFNGEMLGNRCNSYDNLPHDNESEEE



GGLLHIPALMSPHSAEDVDLSPPDIGVASLDFDPMSFQCSPPKAESE



CLESGASFLDSPGYSKDKPSANKKDAETGSSQCQTPGSTASSEPVS



PLQEKLSPFFTLDLSPTEDKSSKPSSFTEKVVYAFSPKIGRKLSKSPS



MSISEPISVTLPPRVSEVIGTVSNTTAQNASSSTWDKCVEERDATNR



SPTQIVKMKTNETVAQEAYESEVQPLDQVAAEEVELPGKEDQSVS



SSQSKAVASGQTQTGAVTHDPPQDSVPVSSVSLIPPPPPPKNVARM



LALALAESAQQASTQSLKRPGTSQAGYTNYGDIAVATTEDNLSSS



YSAVALDKAYFQTDRPAEQFHLQNNAPGNCDHPLPETTATGDPTH



SNTTESGEQHHQVDLTGNQPHQAYLSGDPEKARITSVPLDSEKSDD



HVSFPEDQSGKNSMPTVSFLDQDQSPPRFYSGDQPPSYLGASVDKL



HHPLEFADKSPTPPNLPSDKIYPPSGSPEENTSTATMTYMTTTPATA



QMSTKEASWDVAEQPTTADFAAATLQRTHRTNRPLPPPPSQRSAE



QPPVVGQVQAATNIGLNNSHKVQGVVPVPERPPEPRAMDDPASAF



ISDSGAAAAQCPMATAVQPGLPEKVRDGARVPLLHLRAESVPAHP



CGFPAPLPPTRMMESKMIAAIHSSSADATSSSNYHSFVTASSTSVD



DALPLPLPVPQPKHASQKTVYSSFARPDVTTEPFGPDNCLHFNMTP



NCQYRPQSVPPHHNKLEQHQVYGARSEPPASMGLRYNTYVAPGR



NASGHHSKPCSRVEYVSSLSSSVRNTCYPEDIPPYPTIRRVQSLHAP



PSSMIRSVPISRTEVPPDDEPAYCPRPLYQYKPYQSSQARSDYHVTQ



LQPYFENGRVHYRYSPYSSSSSSYYSPDGALCDVDAYGTVQLRPL



HRLPNRDFAFYNPRLQGKSLYSYAGLAPRPRANVTGYFSPNDIINV



VSMPPAADVKHTYTSWDLEDMEKYRMQSIRRESRARQKVKGPV



MSQYDNMTPAVQDDLGGIYVIHLRSKSDPGKTGLLSVAEGKESRH



AAKAISPEGEDRFYRRHPEAEMDRAHHHGGHGSTQPEKPSLPQKQ



SSLRSRKLPDMGCSLPEHRAHQEASHRQFCESKNGPPYPQGAGQL



DYGSKGIPDTSEPVSYHNSGVKYAASGQESLRLNHKEVRLSKEME



RPWVRQPSAPEKHSRDCYKEEEHLTQSIVPPPKPERSHSLKLHHTQ



NVERDPSVLYQYQPHGKRQSSVTVVSQYDNLEDYHSLPQHQRGV



FGGGGMGTYVPPGFPHPQSRTYATALGQGAFLPAELSLQHPETQIH



AE





Rho GTPase-activating protein 32
MKSRPTKQKLKQRGILKERVFGCDLGEHLLNSGFEVPQVLQSCTA


Variant 3
FIERYGIVDGIYRLSGVASNIQRLRHEFDSEHVPDLTKEPYVQDIHS


SEQ ID NO: 109
VGSLCKLYFRELPNPLLTYQLYEKFSDAVSAATDEERLIKIHDVIQQ



LPPPHYRTLEFLMRHLSLLADYCSITNMHAKNLAIVWAPNLLRSK



QIESACFSGTAAFMEVRIQSVVVEFILNHVDVLFSGRISMAMQEGA



ASLSRPKSLLVSSPSTKLLTLEEAQARTQAQVNSPIVTENKYIEVGE



GPAALQGKFHTIIEFPLERKRPQNKMKKSPVGSWRSFFNLGKSSSV



SKRKLQRNESEPSEMKAMALKGGRAEGTLRSAKSEESLTSLHAVD



GDSKLFRPRRPRSSSDALSASFNGEMLGNRCNSYDNLPHDNESEEE



GGLLHIPALMSPHSAEDVDLSPPDIGVASLDFDPMSFQCSPPKAESE



CLESGASFLDSPGYSKDKPSANKKDAETGSSQCQTPGSTASSEPVS



PLQEKLSPFFTLDLSPTEDKSSKPSSFTEKVVYAFSPKIGRKLSKSPS



MSISEPISVTLPPRVSEVIGTVSNTTAQNASSSTWDKCVEERDATNR



SPTQIVKMKTNETVAQEAYESEVQPLDQVAAEEVELPGKEDQSVS



SSQSKAVASGQTQTGAVTHDPPQDSVPVSSVSLIPPPPPPKNVARM



LALALAESAQQASTQSLKRPGTSQAGYTNYGDIAVATTEDNLSSS



YSAVALDKAYFQTDRPAEQFHLQNNAPGNCDHPLPETTATGDPTH



SNTTESGEQHHQVDLTGNQPHQAYLSGDPEKARITSVPLDSEKSDD



HVSFPEDQSGKNSMPTVSFLDQDQSPPRFYSGDQPPSYLGASVDKL



HHPLEFADKSPTPPNLPSDKIYPPSGSPEENTSTATMTYMTTTPATA



QMSTKEASWDVAEQPTTADFAAATLQRTHRTNRPLPPPPSQRSAE



QPPVVGQVQAATNIGLNNSHKVQGVVPVPERPPEPRAMDDPASAF



ISDSGAAAAQCPMATAVQPGLPEKVRDGARVPLLHLRAESVPAHP



CGFPAPLPPTRMMESKMIAAIHSSSADATSSSNYHSFVTASSTSVD



DALPLPLPVPQPKHASQKTVYSSFARPDVTTEPFGPDNCLHFNMTP



NCQYRPQSVPPHHNKLEQHQVYGARSEPPASMGLRYNTYVAPGR



NASGHHSKPCSRVEYVSSLSSSVRNTCYPEDIPPYPTIRRVQSLHAP



PSSMIRSVPISRTEVPPDDEPAYCPRPLYQYKPYQSSQARSDYHVTQ



LQPYFENGRVHYRYSPYSSSSSSYYSPDGALCDVDAYGTVQLRPL



HRLPNRDFAFYNPRLQGKSLYSYAGLAPRPRANVTGYFSPNDIINV



VSMPPAADVKHTYTSWDLEDMEKYRMQSIRRESRARQKVKGPV



MSQYDNMTPAVQDDLGGIYVIHLRSKSDPGKTGLLSVAEGKESRH



AAKAISPEGEDRFYRRHPEAEMDRAHHHGGHGSTQPEKPSLPQKQ



SSLRSRKLPDMGCSLPEHRAHQEASHRQFCESKNGPPYPQGAGQL



DYGSKGIPDTSEPVSYHNSGVKYAASGQESLRLNHKEVRLSKEME



RPWVRQPSAPEKHSRDCYKEEEHLTQSIVPPPKPERSHSLKLHHTQ



NVERDPSVLYQYQPHGKRQSSVTVVSQYDNLEDYHSLPQHQRGV



FGGGGMGTYVPPGFPHPQSRTYATALGQGAFLPAELSLQIIPETQM



AE





Rho GTPase-activating protein 32
MARGADVPEIPGDLTLKTCGSTASMKVKHVKKLPFTKGHFPKMA


Variant 4
ECAHFHYENVEFGSIQLSLSEEQNEVMKNGCESKELVYLVQIACQ


SEQ ID NO: 110
GKSWIVKRSYEDFRVLDKHLHLCIYDRRFSQLSELPRSDTLKDSPE



SVTQMLMAYLSRLSAIAGNKINCGPALTWMEIDNKGNHLLVHEES



SINTPAVGAAHVIKRYTARAPDELTLEVGDIVSVIDMPPKVLSTWW



RGKHGFQVGLFPGHCVELINQKVPQSVTNSVPKPVSKKHGKLITFL



RTFMKSRPTKQKLKQRGILKERVFGCDLGEHLLNSGFEVPQVLQS



CTAHERYGIVDGIYRLSGVASNIQRLRHEFDSEHVPDLTKEPYVQD



IHSVGSLCKLYFRELPNPLLTYQLYEKFSDAVSAATDEERLIKIHDV



IQQLPPPHYRTLEFLMRHLSLLADYCSITNMITAKNLAIVWAPNLLR



SKQIESACFSGTAAFMEVRIQSVVVEFILNHVDVLFSGRISMAMQE



GAASLSRPKSLLVSSPSTKLLTLEEAQARTQAQVNSPIVTENKYIEV



GEGPAALQGKFHTIIEFPLERKRPQNKMKKSPVGSWRSFFNLGKSS



SVSKRKLQRNESEPSEMKAMALKGGRAEGTLRSAKSEESLTSLHA



VDGDSKLFRPRRPRSSSDALSASFNGEMLGNRCNSYDNLPHDNES



EEEGGLLHIPALMSPHSAEDVDLSPPDIGVASLDFDPMSFQCSPPKA



ESECLESGASFLDSPGYSKDKPSANKKDAETGSSQCQTPGSTASSE



PVSPLQEKLSPFFTLDLSPTEDKSSKPSSFTEKVVYAFSPKIGRKLSK



SPSMSISEPISVTLPPRVSEVIGTVSNTTAQNASSSTWDKCVEERDA



TNRSPTQIVKMKTNETVAQEAYESEVQPLDQVAAEEVELPGKEDQ



SVSSSQSKAVASGQTQTGTVCFPPFFL





Rho GTPase-activating protein 32
MKSSVHSEEDDFVPELHRNVIIPRERPDWEETLSAMARGADVPEIP


Variant 5
GDLTLKTCGSTASMKVKHVKKSTTPGLMGCDNIHRLPFTKGHFPK


SEQ ID NO: 111
MAECAHFHYENVEFGSIQLSLSEEQNEVMKNGCESKELVYLVQIA



CQGKSWIVKRSYEDFRVLDKHLHLCIYDRRFSQLSELPRSDTL





Cytoskeletal Keratin 78 type II
MEGHEASPAQVGQGDRGKVRFLEQQNKVLETKWHLLQQQGLSG


Variant 2
SQQGLEPVFEACLDQLRKQLEQLQGERGALDAELKACRDQEEEYK


SEQ ID NO: 112
SKYEEEAHRRATLENDFVVLKKDVDGVFLSKMELEGKLEALREYL



YFLKHLNEEELGQLQTQASDTSVVLSMDNNRYLDFSSITTEVRARY



EEIARSSKAEAEALYQTKYQELQVSAQLHGDRMQETKVQISQLHQ



EIQRLQSQTENLKKQNASLQAAITDAEQRGELALKDAQAKVDELE



AALRMAKQNLARLLCEYQELTSTKLSLDVEIATYRRLLEGEECRM



SGECTSQVTISSVGGSAVMSGGVGGGLGSTCGLGSGKGSPGSCCTS



IVTGGSNIILGSGKDPVLDSCSVSGSSAGSSCHTILKKTVESSLKTSIT



Y





Cytoskeletal Keratin 78 type II
XDVEIATYRRLLEGEECSLGGRQRCHVWRSWWRLGEHLWTR


Variant 3



SEQ ID NO: 113






Collagen type VI, alpha 3
MRKHRHLPLVAVFCLFLSGFPTTHAQQQQAAQDSADIIFLIDGSNN


Variant 2
TGSVNFAVILDFLVNLLEKLPIGTQQIRVGVVQFSDEPRTMFSLDTY


SEQ ID NO: 114
STKAQVLGAVKALGFAGGELANIGLALDFVVENHFTRAGGSRVEE



GVPQVLVLISAGPSSDEIRYGVVALKQASVFSFGLGAQAASRAELQ



HRTDDNLVFTVPEFRSFGDLQEKLLPYIVGVAQRHWLKPPTIVTQ



VIEVNKRDIVFLVDGSSALGLANFNAIRDFIAKVIQRLEIGQDLIQV



AVAQYADTVRPEFYFNTHPTKREVITAVRKMKPLDGSALYTGSAL



DFVRNNLFTSSAGYRAAEGIPKLLVLITGGKSLDEISQPAQELKRSSI



MAFAIGNKGADQAELEEIAFDSSLVFIPAEFRAAPLQGMLPGLLAP



LRTLSGTPEVHSNKRDIIFLLDGSANVGKTNFPYVRDFVMNLVNSL



DIGNDNIRVGLVQFSDTPVTEFSLNTYQTKSDILGHLRQLQLQGGS



GLNTGSALSYVYANHFTEAGGSRIREHVPQLLLLLTAGQSEDSYLQ



AANALTRAGILTFCVGASQANKAELEQIAFNPSLVYLMDDFSSLPA



LPQQLIQPLTTYVSGGVEEVPLAQPESKRDILFLFDGSANLVGQFPV



VRDFLYKIIDELNVKPEGTRIAVAQYSDDVKVESRFDEHQSKPEILN



LVKRMKIKTGKALNLGYALDYAQRYIFVKSAGSRIEDGVLQFLVL



LVAGRSSDRVDGPASNLKQSGVVPFIFQAKNADPAELEQIVLSPAFI



LAAESLPKIGDLHPQIVNLLKSVIINGAPAPVSGEKDVVFLLDGSEG



VRSGFPLLKEFVQRVVESLDVGQDRVRVAVVQYSDRTRPEFYLNS



YMNKQDVVNAVRQLTLLGGPTPNTGAALEFVLRNILVSSAGSRIT



EGVPQLLIVLTADRSGDDVRNPSVVVKRGGAVPIGIGIGNADITEM



QTISFIPDFAVAIPTFRQLGTVQQVISERVTQLTREELSRLQPVLQPL



PSPGVGGKRDVVFLIDGSQSAGPEFQYVRTLIERLVDYLDVGFDTT



RVAVIQFSDDPKVEFLLNAHSSKDEVQNAVQRLRPKGGRQINVGN



ALEYVSRNIFKRPLGSRIEEGVPQFLVLISSGKSDDEVDDPAVELKQ



FGVAPFTIARNADQEELVKISLSPEYVFSVSTFRELPSLEQKLLTPIT



TLTSEQIQKLLASTRYPPPAVESDAADIVFLIDSSEGVRPDGFAHIRD



FVSRIVRRLNIGPSKVRVGVVQFSNDVFPEFYLKTYRSQAPVLDAI



RRLRLRGGSPLNTGKALEFVARNLFVKSAGSRIEDGVPQHLVLVL



GGKSQDDVSRFAQVIRSSGIVSLGVGDRNIDRTELQTITNDPRLVFT



VREFRELPNIEERIMNSFGPSAATPAPPGVDTPPPSRPEKKKADIVFL



LDGSINFRRDSFQEVLRFVSEIVDTVYEDGDSIQVGLVQYNSDPTD



EFFLKDFSTKRQIIDAINKVVYKGGRHANTKVGLEHLRVNHFVPEA



GSRLDQRVPQIAFVITGGKSVEDAQDVSLALTQRGVKVFAVGVRN



IDSEEVGKIASNSATAFRVGNVQELSELSEQVLETLHDAMHETLCP



GVTDAAKACNLDVILGFDGSRDQNVFVAQKGFESKVDAILNRISQ



MHRVSCSGGRSPTVRVSVVANTPSGPVEAFDFDEYQPEMLEKFRN



MRSQUPYVLTEDTLKVYLNKFRQSSPDSVKVVIHFTDGADGDLAD



LHRASENLRQEGVRALILVGLERVVNLERLMHLEFGRGFMYDRPL



RLNLLDLDYELAEQLDNIAEKACCGVPCKCSGQRGDRGPIGSIGPK



GIPGEDGYRGYPGDEGGPGERGPPGVNGTQGFQGCPGQRGVKGSR



GFPGEKGEVGEIGLDGLDGEDGDKGLPGSSGEKGNPGRRGDKGPR



GEKGERGDVGIRGDPGNPGQDSQERGPKGETGDLGPMGVPGRDG



VPGGPGETGKNGGFGRRGPPGAKGNKGGPGQPGFEGEQGTRGAQ



GPAGPAGPPGLIGEQGISGPRGSGGAAGAPGERGRTGPLGRKGEPG



EPGPKGGIGNRGPRGETGDDGRDGVGSEGRRGKKGERGFPGYPGP



KGNPGEPGLNGTTGPKGIRGRRGNSGPPGIVGQKGDPGYPGPAGP



KGNRGDSIDQCALIQSIKDKCPCCYGPLECPVFPTELAFALDTSEGV



NQDTFGRMRDVVLSIVNDLTIAESNCPRGARVAVVTYNNEVTTEI



RFADSKRKSVLLDKIKNLQVALTSKQQSLETAMSFVARNTFKRVR



NGFLMRKVAVFFSNTPTRASPQLREAVLKLSDAGITPLFLTRQEDR



QLINALQINNTAVGHALVLPAGRDLTDFLENVLTCHVCLDICNIDP



SCGFGSWRPSFRDRRAAGSDVDIDMAFILDSAETTTLFQFNEMKK



YIAYLVRQLDMSPDPKASQHFARVAVVQHAPSESVDNASMPPVK



VEFSLTDYGSKEKLVDFLSRGMTQLQGTRALGSAIEYTIENVFESA



PNPRDLKIVVLMLTGEVPEQQLEEAQRVILQAKCKGYFFVVLGIGR



KVNIKEVYTFASEPNDVFFKLVDKSTELNEEPLMRFGRLLPSFVSSE



NAFYLSPDIRKQCDWFQGDQPTKNLVKFGHKQVNVPNNVTSSPTS



NPVTTTKPVTITKPVTITTKPVTITTKPVTIINQPSVKPAAAKPAPA



KPVAAKPVATKMATVRPPVAVKPATAAKPVAAKPAAVRPPAAAA



AKPVATKPEVPRPQAAKPAATKPATTKPMVKMSREVQVFEITENS



AKLHWERAEPPGPYFYDLTVTSAHDQSLVLKQNLTVTDRVIGGLL



AGQTYHVAVVCYLRSQVRATYHGSFSTKKSQPPPPQPARSASSSTI



NLMVSTEPLALTETDICKLPKDEGTCRDFILKWYYDPNTKSCARF



WYGGCGGNENKFGSQKECEKVCAPVLAKPGVISVMGT





Collagen type VI, alpha 3
MRKHRHLPLVAVFCLFLSGFPTTHAQQQQAAQDSADIIFLIDGSNN


Variant 3
TGSVNFAVILDFLVNLLEKLPIGTQQIRVGVVQFSDEPRTMFSLDTY


SEQ ID NO: 115
STKAQVLGAVKALGFAGGELANIGLALDFVVENHFTRAGGSRVEE



GVPQVLVLISAGPSSDEIRYGVVALKQASVFSFGLGAQAASRAELQ



HRTDDNLVFTVPEFRSFGDLQEKLLPYIVGVAQRHWLKPPTIVTQ



VIEVNKRDIVFLVDGSSALGLANFNAIRDFIAKVIQRLEIGQDLIQV



AVAQYADTVRPEFYFNTHPTKREVITAVRKMKPLDGSALYTGSAL



DFVRNNLFTSSAGYRAAEGIPKLLVLITGGKSLDEISQPAQELKRSSI



MAFAIGNKGADQAELEEIAFDSSLVFIPAEFRAAPLQGMLPGLLAP



LRTLSGTPEVHSNKRDIIFLLDGSANVGKTNFPYVRDFVMNLVNSL



DIGNDNIRVGLVQFSDTPVTEFSLNTYQTKSDILGHLRQLQLQGGS



GLNTGSALSYVYANHFTEAGGSRIREHVPQLLLLLTAGQSEDSYLQ



AANALTRAGILTFCVGASQANKAELEQIAFNPSLVYLMDDFSSLPA



LPQQLIQPLTTYVSGGVEEVPLAQPESKRDILFLFDGSANLVGQFPV



VRDFLYKIIDELNVKPEGTRIAVAQYSDDVKVESRFDEHQSKPEILN



LVKRMKIKTGKALNLGYALDYAQRYIFVKSAGSRIEDGVLQFLVL



LVAGRSSDRVDGPASNLKQSGVVPFIFQAKNADPAELEQIVLSPAFI



LAAESLPKIGDLIVQIVNLLKSVIANGAPAPVSGEKDVVFLLDGSEG



VRSGFPLLKEFVQRVVESLDVGQDRVRVAVVQYSDRTRPEFYLNS



YMNKQDVVNAVRQLTLLGGPTPNTGAALEFVLRNILVSSAGSRIT



EGVPQLLIVLTADRSGDDVRNPSVVVKRGGAVPIGIGIGNADITEM



QTISFIPDFAVAIPTFRQLGTVQQVISERVTQLTREELSRLQPVLQPL



PSPGVGGKRDVVFLIDGSQSAGPEFQYVRTLIERLVDYLDVGFDTT



RVAVIQFSDDPKVEFLLNAHSSKDEVQNAVQRLRPKGGRQINVGN



ALEYVSRNIFKRPLGSRIEEGVPQFLVLISSGKSDDEVDDPAVELKQ



FGVAPFTIARNADQEELVKISLSPEYVFSVSTFRELPSLEQKLLTPIT



TLTSEQIQKLLASTRYPPPAVESDAADIVFLIDSSEGVRPDGFAHIRD



FVSRIVRRLNIGPSKVRVGVVQFSNDVFPEFYLKTYRSQAPVLDAI



RRLRLRGGSPLNTGKALEFVARNLFVKSAGSRIEDGVPQHLVLVL



GGKSQDDVSRFAQVIRSSGIVSLGVGDRNIDRTELQTITNDPRLVFT



VREFRELPNIEERIMNSFGPSAATPAPPGVDTPPPSRPEKKKADIVFL



LDGSINFRRDSFQEVLRFVSEIVDTVYEDGDSIQVGLVQYNSDPTD



EPPLKDFSTKRQIIDAINKVVYKGGRHANTKVGLEHLRVNHFVPEA



GSRLDQRVPQIAFVITGGKSVEDAQDVSLALTQRGVKVFAVGVRN



IDSEEVGKIASNSATAFRVGNVQELSELSEQVLETLHDAMHETLCP



GVTDAAKACNLDVILGFDGSRDQNVFVAQKGFESKVDAILNRISQ



MHRVSCSGGRSPTVRVSVVANTPSGPVEAFDFDEYQPEMLEKFRN



MRSQHPYVLTEDTLKVYLNKFRQSSPDSVKVVIHFTDGADGDLAD



LHRASENLRQEGVRALILVGLERVVNLERLMHLEFGRGFMYDRPL



RLNLLDLDYELAEQLDNIAEKACCGVPCKCSGQRGDRGPIGSIGPK



GIPGEDGYRGYPGDEGGPGERGPPGVNGTQGFQGCPGQRGVKGSR



GFPGEKGEVGEIGLDGLDGEDGDKGLPGSSGEKGNPGRRGDKGPR



GEKGERGDVGIRGDPGNPGQDSQERGPKGETGDLGPMGVPGRDG



VPGGPGETGKNGGFGRRGPPGAKGNKGGPGQPGFEGEQGTRGAQ



GPAGPAGPPGLIGEQGISGPRGSGGAAGAPGERGRTGPLGRKGEPG



EPGPKGGIGNRGPRGETGDDGRDGVGSEGRRGKKGERGFPGYPGP



KGNPGEPGLNGTTGPKGIRGRRGNSGPPGIVGQKGDPGYPGPAGP



KGNRGDSIDQCALIQSIKDKCPCCYGPLECPVFPTELAFALDTSEGV



NQDTFGRMRDVVLSIVNDLTIAESNCPRGARVAVVTYNNEVTTEI



RFADSKRKSVLLDKIKNLQVALTSKQQSLETAMSFVARNTFKRVR



NGFLMRKVAVFFSNTPTRASPQLREAVLKLSDAGITPLFLTRQEDR



QLINALQINNTAVGHALVLPAGRDLTDFLENVLTCHVCLDICNIDP



SCGFGSWRPSFRDRRAAGSDVDIDMAFILDSAETTTLFQFNEMKK



YIAYLVRQLDMSPDPKASQHFARVAVVQHAPSESVDNASMPPVK



VEFSLTDYGSKEKLVDFLSRGMTQLQGTRALGSAIEYTIENVFESA



PNPRDLKIVVLMLTGEVPEQQLEEAQRVILQAKCKGYFFVVLGIGR



KVNIKEVYTFASEPNDVFFKLVDKSTELNEEPLMRFGRLLPSFVSSE



NAFYLSPDIRKQCDWFQGDQPTKNLVKFGHKQVNVPNNVTSSPTS



NPVTTTKPVTITKPVTITTKPVTITTKPVTIINQPSVKPAAAKPAPA



KPVAAKPVATKMATVRPPVAVKPATAAKPVAAKPAAVRPPAAAA



AKPVATKPEVPRPQAAKPAATKPATTKPMVKMSREVQVFEITENS



AKLHWERAEPPGPYFYDLTVTSAHDQSLVLKQNLTVTDRVIGGLL



AGQTYHVAVVCYLRSQVRATYHGSFSTKKSQPPPPQPARSASSSTI



NLMVSTEPLALTETDICKLPKDEGTCRDFILKWYYDPNTKSCARF



WYGGCGGNENKFGSQKECEKVCAPVLAKPGVISVMGT





Collagen type VI, alpha 3
MRKHRHLPLVAVFCLFLSGFPTTHAQQQQAVIEVNKRDIVFLVDG


Variant 4
SSALGLANFNAIRDFIAKVIQRLEIGQDLIQVAVAQYADTVRPEFYF


SEQ ID NO: 116
NTHPTKREVITAVRKMKPLDGSALYTGSALDFVRNNLFTSSAGYR



AAEGIPKLLVLITGGKSLDEISQPAQELKRSSIMAFAIGNKGADQAE



LEEIAFDSSLVFIPAEFRAAPLQGMLPGLLAPLRTLSGTPEESKRDIL



FLFDGSANLVGQFPVVRDFLYKDDELNVKPEGTRIAVAQYSDDVK



VESRFDEHQSKPEILNLVKRMKIKTGKALNLGYALDYAQRYIFVKS



AGSRIEDGVLQFLVLLVAGRSSDRVDGPASNLKQSGVVPFIFQAKN



ADPAELEQIVLSPAHLAAESLPKIGDLIVQIVNLLKSVIANGAPAPV



SGEKDVVFLLDGSEGVRSGFPLLKEFVQRVVESLDVGQDRVRVAV



VQYSDRTRPEFYLNSYMNKQDVVNAVRQLTLLGGPTPNTGAALE



FVLRNILVSSAGSRITEGVPQLLIVLTADRSGDDVRNPSVVVKRGG



AVPIGIGIGNADITEMQTISFIPDFAVAIPTFRQLGTVQQVISERVTQL



TREELSRLQPVLQPLPSPGVGGKRDVVFLIDGSQSAGPEFQYVRTLI



ERLVDYLDVGFDTTRVAVIQFSDDPKVEFLLNAHSSKDEVQNAVQ



RLRPKGGRQINVGNALEYVSRNIFKRPLGSRIEEGVPQFLVLISSGK



SDDEVDDPAVELKQFGVAPFTIARNADQEELVKISLSPEYVFSVSTF



RELPSLEQKLLTPITTLTSEQIQKLLASTRYPPPAVESDAADIVFLIDS



SEGVRPDGFAHIRDFVSRIVRRLNIGPSKVRVGVVQFSNDVFPEFYL



KTYRSQAPVLDAIRRLRLRGGSPLNTGKALEFVARNLFVKSAGSRI



EDGVPQHLVLVLGGKSQDDVSRFAQVIRSSGIVSLGVGDRNIDRTE



LQTITNDPRLVFTVREFRELPNIEERIMNSFGPSAATPAPPGVDTPPP



SRPEKKKADIVFLLDGSINFRRDSFQEVLRFVSEIVDTVYEDGDSIQ



VGLVQYNSDPTDEFFLKDFSTKRQIIDAINKVVYKGGRHANTKVG



LEHLRVNHFVPEAGSRLDQRVPQIAFVITGGKSVEDAQDVSLALTQ



RGVKVFAVGVRNIDSEEVGKIASNSATAFRVGNVQELSELSEQVLE



TLHDAMHETLCPGVTDAAKACNLDVILGFDGSRDQNVFVAQKGF



ESKVDAILNRISQMHRVSCSGGRSPTVRVSVVANTPSGPVEAFDFD



EYQPEMLEKFRNMRSQHPYVLTEDTLKVYLNKFRQSSPDSVKVVI



HFTDGADGDLADLHRASENLRQEGVRALILVGLERVVNLERLMH



LEFGRGFMYDRPLRLNLLDLDYELAEQLDNIAEKACCGVPCKCSG



QRGDRGPIGSIGPKGIPGEDGYRGYPGDEGGPGERGPPGVNGTQGF



QGCPGQRGVKGSRGFPGEKGEVGEIGLDGLDGEDGDKGLPGSSGE



KGNPGRRGDKGPRGEKGERGDVGIRGDPGNPGQDSQERGPKGET



GDLGPMGVPGRDGVPGGPGETGKNGGFGRRGPPGAKGNKGGPG



QPGFEGEQGTRGAQGPAGPAGPPGLIGEQGISGPRGSGGAAGAPGE



RGRTGPLGRKGEPGEPGPKGGIGNRGPRGETGDDGRDGVGSEGRR



GKKGERGFPGYPGPKGNPGEPGLNGTTGPKGIRGRRGNSGPPGIVG



QKGDPGYPGPAGPKGNRGDSIDQCALIQSIKDKCPCCYGPLECPVF



PTELAFALDTSEGVNQDTFGRMRDVVLSIVNDLTIAESNCPRGARV



AVVTYNNEVTTEIRFADSKRKSVLLDKIKNLQVALTSKQQSLETA



MSFVARNTFKRVRNGFLMRKVAVFFSNTPTRASPQLREAVLKLSD



AGITPLFLTRQEDRQLINALQINNTAVGHALVLPAGRDLTDFLENV



LTCHVCLDICNIDPSCGFGSWRPSFRDRRAAGSDVDIDMAFILDSA



ETTTLFQFNEMKKYIAYLVRQLDMSPDPKASQHFARVAVVQHAPS



ESVDNASMPPVKVEFSLTDYGSKEKLVDFLSRGMTQLQGTRALGS



AIEYTIENVFESAPNPRDLKIVVLMLTGEVPEQQLEEAQRVILQAKC



KGYFFVVLGIGRKVNIKEVYTFASEPNDVFFKLVDKSTELNEEPLM



RFGRLLPSFVSSENAFYLSPDIRKQCDWFQGDQPTKNLVKFGHKQ



VNVPNNVTSSPTSNPVTTTKPVITTKPVTITTKPVTITTKPVTIINQ



PSVKPAAAKPAPAKPVAAKPVATKMATVRPPVAVKPATAAKPVA



AKPAAVRPPAAAAAKPVATKPEVPRPQAAKPAATKPATTKPMVK



MSREVQVFEITENSAKLHWERAEPPGPYFYDLTVTSAHDQSLVLK



QNLTVTDRVIGGLLAGQTYHVAVVCYLRSQVRATYHGSFSTKKSQ



PPPPQPARSASSSTINLMVSTEPLALTETDICKLPKDEGTCRDFILKW



YYDPNTKSCARFWYGGCGGNENKFGSQKECEKVCAPVLAKPGVI



SVMGT





Collagen type VI, alpha 3
MRKHRHLPLVAVFCLFLSGFPTTHAQQQQAAQDSADIIFLIDGSNN


Variant 5
TGSVNFAVILDFLVNLLEKLPIGTQQIRVGVVQFSDEPRTMFSLDTY


SEQ ID NO: 117
STKAQVLGAVKALGFAGGELANIGLALDFVVENHFTRAGGSRVEE



GVPQVLVLISAGPSSDEIRYGVVALKQASVFSFGLGAQAASRAELQ



HRTDDNLVFTVPEFRSFGDLQEKLLPYIVGVAQRHWLKPPTIVTQ



VIEVNKRDIVFLVDGSSALGLANFNAIRDFIAKVIQRLEIGQDLIQV



AVAQYADTVRPEFYFNTHIPTKREVITAVRKMKPLDGSALYTGSAL



DFVRNNLFTSSAGYRAAEGIPKLLVLITGGKSLDEISQPAQELKRSSI



MAFAIGNKGADQAELEEIAFDSSLVFIPAEFRAAPLQGMLPGLLAP



LRTLSGTPEVHSNKRDIIFLLDGSANVGKTNFPYVRDFVMNLVNSL



DIGNDNIRVGLVQFSDTPVTEFSLNTYQTKSDILGHLRQLQLQGGS



GLNTGSALSYVYANHFTEAGGSRIREHVPQLLLLLTAGQSEDSYLQ



AANALTRAGILTFCVGASQANKAELEQIAFNPSLVYLMDDFSSLPA



LPQQLIQPLTTYVSGGVEEVPLAQPESKRDILFLFDGSANLVGQFPV



VRDFLYKIIDELNVKPEGTRIAVAQYSDDVKVESRFDEHQSKPEILN



LVKRMKIKTGKALNLGYALDYAQRYIFVKSAGSRIEDGVLQFLVL



LVAGRSSDRVDGPASNLKQSGVVPFIFQAKNADPAELEQIVLSPAFI



LAAESLPKIGDLIVQIVNLLKSVIANGAPAPVSGEKDVVFLLDGSEG



VRSGFPLLKEFVQRVVESLDVGQDRVRVAVVQYSDRTRPEFYLNS



YMNKQDVVNAVRQLTLLGGPTPNTGAALEFVLRNILVSSAGSRIT



EGVPQLLIVLTADRSGDDVRNPSVVVKRGGAVPIGIGIGNADITEM



QTISFIPDFAVAIPTFRQLGTVQQVISERVTQLTREELSRLQPVLQPL



PSPGVGGKRDVVFLIDGSQSAGPEFQYVRTLIERLVDYLDVGFDTT



RVAVIQFSDDPKVEFLLNAHSSKDEVQNAVQRLRPKGGRQINVGN



ALEYVSRNIFKRPLGSRIEEGVPQFLVLISSGKSDDEVDDPAVELKQ



FGVAPFTIARNADQEELVKISLSPEYVFSVSTFRELPSLEQKLLTPIT



TLTSEQIQKLLASTRYPPPGEMGASEVLLGAFSI





Collagen type VI, alpha 3
MRKHRHLPLVAVFCLFLSGFPTTHAQQQQAVIEVNKRDIVFLVDG


Variant 6
SSALGLANFNAIRDFIAKVIQRLEIGQDLIQVAVAQYADTVRPEFYF


SEQ ID NO: 118
NTHIPTKREVITAVRKMKPLDGSALYTGSALDFVRNNLFTSSAGYR



AAEGIPKLLVLITGGKSLDEISQPAQELKRSSIMAFAIGNKGADQAE



LEEIAFDSSLVFIPAEFRAAPLQGMLPGLLAPLRTLSGTPEVHSNKR



DIIFLLDGSANVGKTNFPYVRDFVMNLVNSLDIGNDNIRVGLVQFS



DTPVTEFSLNTYQTKSDILGHLRQLQLQGGSGLNTGSALSYVYAN



HFTEAGGSRIREHVPQLLLLLTAGQSEDSYLQAANALTRAGILTFC



VGASQANKAELEQIAFNPSLVYLMDDFSSLPALPQQLIQPLTTYVS



GGVEEVPLAQPESKRDILFLFDGSANLVGQFPVVRDFLYKIIDELNV



KPEGTRIAVAQYSDDVKVESRFDEHQSKPEILNLVKRMKIKTGKAL



NLGYALDYAQRYIFVKSAGSRIEDGVLQFLVLLVAGRSSDRVDGP



ASNLKQSGVVPFIFQAKNADPAELEQIVLSPAHLAAESLPKIGDLH



PQIVNLLKSVIINGAPAPVSGEKDVVFLLDGSEGVRSGFPLLKEFVQ



RVVESLDVGQDRVRVAVVQYSDRTRPEFYLNSYMNKQDVVNAV



RQLTLLGGPTPNTGAALEFVLRNILVSSAGSRITEGVPQLLIVLTAD



RSGDDVRNPSVVVKRGGAVPIGIGIGNADITEMQTISFIPDFAVAIPT



FRQLGTVQQVISERVTQLTREELSRLQPVLQPLPSPGVGGKRDVVF



LIDGSQSAGPEFQYVRTLIERLVDYLDVGFDTTRVAVIQFSDDPKV



EFLLNAHSSKDEVQNAVQRLRPKGGRQINVGNALEYVSRNIFKRP



LGSRIEEGVPQFLVLISSGKSDDEVDDPAVELKQFGVAPFTIARNAD



QEELVKISLSPEYVFSVSTFRELPSLEQKLLTPITTLTSEQIQKLLAST



RYPPPGEMGASEVLLGAFSI





Collagen type VI, alpha 3
MRKHRHLPLVAVFCLFLSGFPTTHAQQQQAVIEVNKRDIVFLVDG


Variant 7
SSALGLANFNAIRDFIAKVIQRLEIGQDLIQVAVAQYADTVRPEFYF


SEQ ID NO: 119
NTHPTKREVITAVRKMKPLDGSALYTGSALDFVRNNLFTSSAGYR



AAEGIPKLLVLITGGKSLDEISQPAQELKRSSIMAFAIGNKGADQAE



LEEIAFDSSLVFIPAEFRAAPLQGMLPGLLAPLRTLSGTPEESKRDIL



FLFDGSANLVGQFPVVRDFLYKIIDELNVKPEGTRIAVAQYSDDVK



VESRFDEHQSKPEILNLVKRMKIKTGKALNLGYALDYAQRYIFVKS



AGSRIEDGVLQFLVLLVAGRSSDRVDGPASNLKQSGVVPFIFQAKN



ADPAELEQIVLSPAHLAAESLPKIGDLHPQIVNLLKSVIANGAPAPV



SGEKDVVFLLDGSEGVRSGFPLLKEFVQRVVESLDVGQDRVRVAV



VQYSDRTRPEFYLNSYMNKQDVVNAVRQLTLLGGPTPNTGAALE



FVLRNILVSSAGSRITEGVPQLLIVLTADRSGDDVRNPSVVVKRGG



AVPIGIGIGNADITEMQTISFIPDFAVAIPTFRQLGTVQQVISERVTQL



TREELSRLQPVLQPLPSPGVGGKRDVVFLIDGSQSAGPEFQYVRTLI



ERLVDYLDVGFDTTRVAVIQFSDDPKVEFLLNAHSSKDEVQNAVQ



RLRPKGGRQINVGNALEYVSRNIFKRPLGSRIEEGVPQFLVLISSGK



SDDEVDDPAVELKQFGVAPFTIARNADQEELVKISLSPEYVFSVSTF



RELPSLEQKLLTPITTLTSEQIQKLLASTRYPPPAVESDAADIVFLIDS



SEGVRPDGFAHIRDFVSRIVRRLNIGPSKVRVGVVQFSNDVFPEFYL



KTYRSQAPVLDAIRRLRLRGGSPLNTGKALEFVARNLFVKSAGSRI



EDGVPQHLVLVLGGKSQDDVSRFAQVIRSSGIVSLGVGDRNIDRTE



LQTITNDPRLVFTVREFRELPNIEERIMNSFGPSAATPAPPGVDTPPP



SRPEKKKADIVFLLDGSINFRRDSFQEVLRFVSEIVDTVYEDGDSIQ



VGLVQYNSDPTDEFFLKDFSTKRQIIDAINKVVYKGGRHANTKVG



LEHLRVNHFVPEAGSRLDQRVPQIAFVITGGKSVEDAQDVSLALTQ



RGVKVFAVGVRNIDSEEVGKIASNSATAFRVGNVQELSELSEQVLE



TLHDAMHETLCPGVTDAAKACNLDVILGFDGSRDQNVFVAQKGF



ESKVDAILNRISQMHRVSCSGGRSPTVRVSVVANTPSGPVEAFDFD



EYQPEMLEKFRNMRSQHPYVLTEDTLKVYLNKFRQSSPDSVKVVI



HFTDGADGDLADLHRASENLRQEGVRALILVGLERVVNLERLMH



LEFGRGFMYDRPLRLNLLDLDYELAEQLDNIAEKACCGVPCKCSG



QRGDRGPIGSIGPKGIPGEDGYRGYPGDEGGPGERGPPGVNGTQGF



QGCPGQRGVKGSRGFPGEKGEVGEIGLDGLDGEDGDKGLPGSSGE



KGNPGRRGDKGPRGEKGERGDVGIRGDPGNPGQDSQERGPKGET



GDLGPMGVPGRDGVPGGPGETGKNGGFGRRGPPGAKGNKGGPG



QPGFEGEQGTRGAQGPAGPAGPPGLIGEQGISGPRGSGGAAGAPGE



RGRTGPLGRKGEPGEPGPKGGIGNRGPRGETGDDGRDGVGSEGRR



GKKGERGFPGYPGPKGNPGEPGLNGTTGPKGIRGRRGNSGPPGIVG



QKGDPGYPGPAGPKGNRGDSIDQCALIQSIKDKCPFHGPLECPVFP



TELAFALDTSEGVNQDTFGRMRDVVLSIVNDLTIAESNCPRGARV



AVVTYNNEVTTEIRFADSKRKSVLLDKIKNLQVALTSKQQSLETA



MSFVARNTFKRVRNGFLMRKVAVFFSNTPTRASPQLREAVLKLSD



AGITPLFLTRQEDRQLINALQINNTAVGHALVLPAGRDLTDFLENV



LTCHVCLDICNIDPSCGFGSWRPSFRDRRAAGSDVDIDMAFILDSA



ETTTLFQFNEMKKYIAYLVRQLDMSPDPKASQHFARVAVVQHAPS



ESVDNASMPPVKVEFSLTDYGSKEKLVDFLSRGMTQLQGTRALGS



AIEYTIENVFESAPNPRDLKIVVLMLTGEVPEQQLEEAQRVILQAKC



KGYFFVVLGIGRKVNIKEVYTFASEPNDVFFKLVDKSTELNEEPLM



RFGRLLPSFVSSENAFYLSPDIRKQCDWFQGDQPTKNLVKFGHKQ



VNVPNNVTSSPTSNPVTTTKPVITTKPVTITTKPVTITTKPVTIINQ



PSVKPAAAKPAPAKPVAAKPVATKMATVRPPVAVKPATAAKPVA



AKPAAVRPPAAAAAKPVATKPEVPRPQAAKPAATKPATTKPMVK



MSREVQVFEITENSAKLHWERAEPPGPYFYDLTVTSAHDQSLVLK



QNLTVTDRVIGGLLAGQTYHVAVVCYLRSQVRATYHGSFSTKKSQ



PPPPQPARSASSSTINLMVSTEPLALTETDICKLPKDEGTCRDFILKW



YYDPNTKSCARFWYGGCGGNENKFGSQKECEKVCAPVLAKPGVI



SVMGT





Collagen type VI, alpha 3
MRKHRHLPLVAVFCLFLSGFPTTHAQQQQADVKNGAAADIIFLVD


Variant 8
SSWTIGEEHFQLVREFLYDVVKSLAVGENDFHFALVQFNGNPHTE


SEQ ID NO: 120
FLLNTYRTKQEVLSHISNMSYIGGTNQTGKGLEYIMQSHLTKAAGS



RAGDGVPQVIVVLTDGHSKDGLALPSAELKSADVNVFAIGVEDAD



EGALKEIASEPLNMHMFNLENFTSLHDIVGNLVSCVHSSVSPERAG



DTETLKDITAQDSADIIFLIDGSNNTGSVNFAVILDFLVNLLEKLPIG



TQQIRVGVVQFSDEPRTMFSLDTYSTKAQVLGAVKALGFAGGELA



NIGLALDFVVENHFTRAGGSRVEEGVPQVLVLISAGPSSDEIRYGV



VALKQASVFSFGLGAQAASRAELQHRTDDNLVFTVPEFRSFGDLQ



EKLLPYIVGVAQRHWLKPPTIVTQVIEVNKRDIVFLVDGSSALGLA



NFNAIRDFIAKVIQRLEIGQDLIQVAVAQYADTVRPEFYFNTHIPTKR



EVITAVRKMKPLDGSALYTGSALDFVRNNLFTSSAGYRAAEGIPKL



LVLITGGKSLDEISQPAQELKRSSIMAFAIGNKGADQAELEEIAFDS



SLVFIPAEFRAAPLQGMLPGLLAPLRTLSGTPEESKRDILFLFDGSA



NLVGQFPVVRDFLYKIIDELNVKPEGTRIAVAQYSDDVKVESRFDE



HQSKPEILNLVKRMKI





Collagen type VI, alpha 3
PIGTQQIRVGVVQFSDEPRTMFSLDTYSTKAQVLGAVKALGFAGG


Variant 9
ELANIGLALDFVVENHFTRAGGSRVEEGVPQVLVLISAGPSSDEIRY


SEQ ID NO: 121
GVVALKQASVFSFGLGAQAASRAELQHRTDDNLVFTVPEFRSFG



DLQEKLLPYIVGVAQRHWLKPPTIVTQEYGLNENW





Proteasome subunit beta type-5
MALASVLERPLPVNQRGFFGLGGRADLLDLGPGSLSDGLSLAAPG


Variant 2
WGVPEEPGIEMLHGTTTLAFKFRHGVIVAADSRATAGAYIASQTV


SEQ ID NO: 122
KKVIEINPYLLGTMAGGAADCSFWERLLARQCRIYELRNKERISVA



AASKLLANMVYQYKGMGLSMGTMICGWDKRGPVSEVLCLKPKS



FGMYLFCGCAERIGNMARPLLRGQ





Proteasome subunit beta type-5
MAGGAADCSFWERLLARQCRIYELRNKERISVAAASKLLANMVY


Variant 3
QYKGMGLSMGTMICGWDKRGPGLYYVDSEGNRISGATFSVGSGS


SEQ ID NO: 123
VYAYGVMDRGYSYDLEVEQAYDLARRAIYQATYRDAYSGGAVN



LYHVREDGWIRVSSDNVADLHEKYSGSTP





Proteasome subunit beta type-5
MALASVLERPLPVNQRGFFGLGGRADLLDLGPGSLSDGLSLAAPG


Variant 4
WGVPEEPGIEMLHGTTTLAFKASTTWTVKGTGFQGPPSL


SEQ ID NO: 124






Proteasome subunit beta type-5
XGIEMLHGTTTLAFKFRHGVIVAADSRATAGAYIASQTVKKVIEIN


Variant 5
PYLLGTMAGGAADCSFWERLLARQCRIYELRNKERISVAAASKLL


SEQ ID NO: 125
ANMVYQYKGMGLSMGTMICGWDKRGPG





Heterogeneous nuclear
MEREKEQFRKLFIGGLSFETTEESLRNYYEQWGKLTDCVVMRDPA


ribonucleoproteins A2/B1
SKRSRGFGFVTFSSMAEVDAAMAARPHSIDGRVVEPKRAVAREES


Variant 2
GKPGAHVTVKKLFVGGIKEDTEEHHLRDYFEEYGKIDTIEITTDRQS


SEQ ID NO: 126
GKKRGFGFVTFDDHDPVDKIVLQKYHTINGIINAEVRKALSRQEM



QEVQSSRSGRGGNFGFGDSRGGGGNFGPGPGSNFRGGSDGYGSGR



GFGDGYNGYGGGPGGGNFGGSPGYGGGRGGYGGGGPGYGNQGG



GYGGGYDNYGGGNYGSGNYNDFGNYNQQPSNYGPMKSGNFGGS



RNMGGPYGGGNYGPGGSGGSGGYGGRSRY





Heterogeneous nuclear
MEREKEQFRKLFIGGLSFETTEESLRNYYEQWGKLTDCVVMRDPA


ribonucleoproteins A2/B1
SKRSRGFGFVTFSSMAEVDAAMAARPHSIDGRVVEPKRAVAREES


Variant 3
GKPGAHVTVKKLFVGGIKEDTEEHHLRDYFEEYGKIDTIEITTDRQS


SEQ ID NO: 127
GKKRGFGFVTFDDHDPVDKIVLQKYHTINGIINAEVRKALSRQEM



QEVQSSRSGRGGNFGFGDSRGGGGNFGPGPGSNFRGGSDGYGSGR



GFGDGYNGYGGGPGGGNFGGSPGYGGGRGGYGGGGPGYGNQGG



GYGGGYDNYGGGNYGSGNYNDFGNYNQQPSNYGPMKSGNFGGS



RNMGGPYGGGNYGPGGSGGSGGYGGRSRY





Heterogeneous nuclear
MEKTLETVPLERKKREKEQFRKLFIGGLSFETTEESLRNYYEQWGK


ribonucleoproteins A2/B1
LTDCVVMRDPASKRSRGFGFVTFSSMAEVDAAMAARPHSIDGRV


Variant 4
VEPKRAVAREESGKPGAHVTVKKLFVGGIKEDTEEHHLRDYFEEY


SEQ ID NO: 128
GKIDTIEITTDRQSGKKRGFGFVTFDDHDPVDKIVLQKYHTINGIINA



EVRKALSRQEMQEDLEVAILEVAPVMEEEEEDMVVEDLDMATRV



GATEVVMTTMEEEIMEVEITMILEITTSNLLTTVQ





Beta enolase
MAMQKIFAREILDSRGNPTVEVDLHTAKGRFRAAVPSGASTGIYE


Variant 2
ALELRDGDKGRYLGKGVLKAVENINNTLGPALLQKKLSVVDQEK


SEQ ID NO: 129
VDKFMIELDGTENKSKFGANAILGVSLAVCKAGAAEKGVPLYRIII



ADLAGNPDLILPVPAFNVINGGSHAGNKLAMQEFMILPVGASSFKE



AMRIGAEVYHHLKGVIKAKYGKDATNVGDEGGFAPNILENNEAL



ELLKTAIQAAGYPDKVVIGMDVAASEFYRNGKYDLDFKSPDDPAR



HITGEKLGELYKSFIKNYPVVSIEDPFDQDDWATWTSFLSGVNIQIV



GDDLTVTNPKRIAQAVEKKACNCLLLKVNQIGSVTESIQACKLAQS



NGWGVMVSHRSGETEDTFIADLVVGLCTGQIKTGAPCRSERLAKY



NQLMRIEEALGDKAIFAGRKFRNPKAK





Beta enolase
MAMQKIFAREILDSRGNPTVEVDLHTAKGRFRAAVPSGASTGIYE


Variant 3
ALELRDGDKGRYLGKGVLKAVENINNTLGPALLQKKLSVVDQEK


SEQ ID NO: 130
VDKFMIELDGTENKSKFGANAILGVSLAVCKAGAAEKGVPLYRIII



ADLAGNPDLILPVPAFNVINGGSHAGNKLAMQEFMILPVGASSFKE



AMRIGAEVYHHLKGVIKAKYGKDATNVGDEGGFAPNILENNEAL



ELLKTAIQAAGYPDKVVIGMDVAASEFYRNGKYDLDFKSPDDPAR



HITGEKLGELYKSFIKNYPVVSIEDPFDQDDWATWTSFLSGVNIQIV



GDDLTVTNPKRIAQAVEKKACNCLLLKVNQIGSVTESIQACKLAQS



NGWGVMVSHRSGETEDTFIADLVVGLCTGQIKTGAPCRSERLAKY



NQLMRIEEALGDKAIFAGRKFRNPKAK





Beta enolase
MAMQKIFAREILDSRGNPTVEVDLHTAKGRFRAAVPSGASTGIYE


Variant 4
ALELRDGDKGRYLGKAKFGANAILGVSLAVCKAGAAEKGVPLYR


SEQ ID NO: 131
HIADLAGNPDLILPVPAPNVINGGSHAGNKLAMQEFMILPVGASSF



KEAMRIGAEVYHHLKGVIKAKYGKDATNVGDEGGFAPNILENNE



ALELLKTAIQAAGYPDKVVIGMDVAASEFYRNGKYDLDFKSPDDP



ARHITGEKLGELYKSFIKNYPVVSIEDPFDQDDWATWTSFLSGVNI



QIVGDDLTVTNPKRIAQAVEKKACNCLLLKVNQIGSVTESIQACKL



AQSNGWGVMVSHRSGETEDTFIADLVVGLCTGQIKTGAPCRSERL



AKYNQLMRIEEALGDKAIFAGRKFRNPKAK





Beta enolase
MAMQKIFAREILDSRGNPTVEVDLHTAKGRFRAAVPSGASTGIYE


Variant 5
ALELRDGDKGRYLGKGVLKAVENINNTLGPALLQKKLSVVDQEK


SEQ ID NO: 132
VDKFMTELDGTENKSKFGANAILGVSLAVCKAGAAEKGVPLYRHI



ADLAGNPDLILPVPAPNVINGGSHAGNKLAMQEFMILPVGASSFKE



AMRIGAEVYHELKGVIKAKYGKDATNVGDEGG





Beta enolase
MAMQKIFAREILDSRGNPTVEVDLHTAKGRFRAAVPSGASTGIYE


Variant 6
ALELRDGDKGRYLGKGVLKAVENINNTLGPALLQKKLSVVDQEK


SEQ ID NO: 133
VDKFMTELDGTENKSKFGANAILGVSLAVCKAGAAEKGVPLYRHI



ADLAGNPDLILPVPAPNVINGGSHAGNKLAMQEFMILPVGASSFKE



AMRIGAEVYHELKGVI





Beta enolase
MAMQKIFAREILDSRGNPTVEVDLHTAKGRFRAAVPSGASTGIYE


Variant 7
ALELRDGDKGRYLGKGVLKAVENINNTLGPALLQKKLSVVDQEK


SEQ ID NO: 134
VDKFMTELDGTENKSKFGANAILGVSLAVCKAGAAEKGVPLYRHI



ADLAGNPDLILPVP





Beta enolase
MAMQKIFAREILDSRGNPTVEVDLHTAKGRFRAAVPSGASTGIYE


Variant 8
ALELRDGDKGRYLGKGVLKAVENINNTLGPALLQKKLSVVDQEK


SEQ ID NO: 135
VDKFMTELDGTENKSKFGANAILGVSLAVCKAGAAEKGVPLYRHI



ADLAGNPDLILPVP





Beta enolase
MAMQKIFAREILDSRGNPTVEVDLHTAKGRFRAAVPSGASTGIYE


Variant 9
ALELRDGDKGRYLGKGVLKAVENINNTLGPALLQKKLSVVDQEK


SEQ ID NO: 136
VDKFMTELDGTENKSKFGANAILGVSLAVCKAGAAEKGVPLYRHI



ADLAGNPDLILPVPAFNVIN





Beta enolase
MAMQKIFAREILDSRGNPTVEVDLHTAK


Variant 10



SEQ ID NO: 137






Glutathione 5-transferase P
MPPYTVVYFPVRGRCAALRMLLADQGQSWKEEVVTVETWQEGS


Variant 2
LKASCLYGQLPKFQDGDLTLYQSNTILRHLGRTLGLYGKDQQEAA


SEQ ID NO: 138
LVDMVNDGVEDLRCKYISLIYTNYISFADYNLLDLLLIHEVLAPGC



LDAFPLLSAYVGRLSARPKLKAFLASPEYVNLPINGNGKQ





Glutathione 5-transferase P
EAGKDDYVKALPGQLKPFETLLSQNQGGKTFIVGDQVSIWPHAVP


Variant 3
SSPPSASRWTQVSPSLTTTCWTCC


SEQ ID NO: 139






Glutathione 5-transferase Mu 3
MSCESSMVLGYWDIRGLAHAIRLLLEFTDTSYEEKRYTCGEAPDY


Variant 2
DRSQWLDVKFKLDLDFPNLPYLLDGKNKITQSNAILRYIARKIINM


SEQ ID NO: 140
CGETEEEKIRVDBENQVMDFRTQLIRLCYSSDHEKLKPQYLEELPG



QLKQFSMFLGKFSWFAGEKLTFVDFLTYD





Glutathione 5-transferase Mu 3
MSCESSMVLGYWDIRGLAHAIRLLLEFTDTSYEEKRYTCGEAPDY


Variant 3
DRSQWLDVKFKLDLDFPNLPYLLDGKNKITQSNAILRYIARKIINM


SEQ ID NO: 141
CGETEEEKIRVDIIENQVMDFRTQLIRLCYSSDHEKLKPQYLEELPG



QLKQFSMFLGKFSWFAGEKLTFVDFLTYDILDQNRIFDPKCLDEFP



NLKAFMCRFGDVLHFLYKTLTAPLGPADP





Rho 23 GTPase-activating protein
MNGVAFCLVGIPPRPEPRPPQLPLGPRDGCSPRRPFPWQGPRTLLL


Variant 2
YKSPQDGFGFTLRHFIVYPPESAVHCSLKEEENGGRGGGPSPRYRL


SEQ ID NO: 142
EPMDTIFVKNVKEDGPAHRAGLRTGDRLVKVNGESVIGKTYSQVI



ALIQNSDDTLELSIMPKDEDILQLAYSQDAYLKGNEPYSGEARSIPE



PPPICYPRKTYAPPARASTRATMVPEPTSALPSDPRSPAAWSDPGLR



VPPAARAHLDNSSLGMSQPRPSPGAFPHLSSEPRTPRAFPEPGSRVP



PSRLECQQALSHWLSNQVPRRAGERRCPAMAPRARSASQDRLEEV



AAPRPWPCSTSQDALSQLGQEGWHRARSDDYLSRATRSAEALGPG



ALVSPRFERCGWASQRSSARTPACPTRDLPGPQAPPPSGLQGLDDL



GYIGYRSYSPSFQRRTGLLHALSFRDSPFGGLPTFNLAQSPASFPPE



ASEPPRVVRPEPSTRALEPPAEDRGDEVVLRQKPPTGRKVQLTPAR



QMNLGFGDESPEPEASGRGERLGRKVAPLATTEDSLASIPFIDEPTS



PSIDLQAKHVPASAVVSSAMNSAPVLGTSPSSPTFTFTLGRHYSQD



CSSIKAGRRSSYLLAITTERSKSCDDGLNTFRDEGRVLRRLPNRIPS



LRMLRSFFTDGSLDSWGTSEDADAPSKRHSTSDLSDATFSDIRREG



WLYYKQILTKKGKKAGSGLRQWKRVYAALRARSLSLSKERREPG



PAAAGAAAAGAGEDEAAPVCIGSCLVDISYSETKRRHVFRLTTAD



FCEYLFQAEDRDDMLGWIRAIRENSRAEGEDPGCANQALISKKLN



DYRKVSHSSGPKADSSPKGSRGLGGLKSEFLKQSAARGLRTQDLP



AGSKDDSAAAPKTPWGINIIKKNKKAAPRAFGVRLEECQPATENQ



RVPLIVAACCRIVEARGLESTGIYRVPGNNAVVSSLQEQLNRGPGD



INLQDERWQDLNVISSLLKSFFRKLPEPLFTDDKYNDFIEANRIEDA



RERMRTLRKLIRDLPGHYYETLKFLVGHLKTIADHSEKNKMEPRN



LALVFGPTLVRTSEDNMTDMVTHMPDRYKIVETLIQHSDWFFSDE



EDKGERTPVGDKEPQAVPNIEYLLPNIGRTVPPGDPGSADLLEI





ARHGAP23
MDTIFVKNVKEDGPAHRAGLRTGDRLVKVNGESVIGKTYSQVIAL


Variant 3
IQNSDDTLELSIMPKDEDILQLAYSQDAYLKGNEPYSGEARSIPEPP


SEQ ID NO: 143
PICYPRKTYA





ARHGAP23
XFFSDEEDKGERTPVGDKEPQAVPNIEYLLPNIGRTVPPGDPGSDST


Variant 4
TCSSAKSKVRMKAILKA


SEQ ID NO: 144






ARHGAP23
XTFSDIRREGWLYYKQILTKKGKAEDRDDMLGWIRAIRENSRAEG


Variant 5
EDPGCANQALISKKLNDYRKVSHSSGPKADSSPKGSRGLGGLKSEF


SEQ ID NO: 145
LKQSAARGLRTQDLPAGSKDDSAAAPKTPWGINIIKKNKKAAPRA



FGVRLEECQPATENQRVPLIVAACCRI





ARHGAP23
IRDLPGHYYETLKFLVGHLKTIADHSEKNKMEPRNLALVFGPTLVR


Variant 6
TSEDNMTDMVTHMPDRYKIVETLIQHSDWFFSDEEDKGERILPPV


SEQ ID NO: 146
VQPSPRVRGPPRRSRTPGRCWRSPSSRPSTASARSGGRRGGWAA





Rho 32
METESESSTLGDDSVFWLESEVIIQVTDCEEEEREEKFRKMKSSVH


or Rho GTPase-activating protein 32
SEEDDFVPELHRNVIIPRERPDWEETLSAMARGADVPEIPGDLTLK


(ARHGAP32)
TCGSTASMKVKHVKKLPFTKGHFPKMAECAHFHYENVEFGSIQLS


SEQ ID NO: 147
LSEEQNEVMKNGCESKELVYLVQIACQGKSWIVKRSYEDFRVLDK



HLHLCIYDRRFSQLSELPRSDTLKDSPESVTQMLMAYLSRLSAIAG



NKINCGPALTWMEIDNKGNHLLVHEESSINTPAVGAAHVIKRYTA



RAPDELTLEVGDIVSVIDMPPKVLSTWWRGKHGFQVGLFPGHCVE



LINQKVPQSVTNSVPKPVSKKHGKLITFLRTFMKSRPTKQKLKQRG



ILKERVFGCDLGEHLLNSGFEVPQVLQSCTAHERYGIVDGIYRLSG



VASNIQRLRHEFDSEHVPDLTKEPYVQDIHSVGSLCKLYFRELPNPL



LTYQLYEKFSDAVSAATDEERLIKIHDVIQQLPPPHYRTLEFLMRHL



SLLADYCSITNMHAKNLAIVWAPNLLRSKQIESACFSGTAAFMEVR



IQSVVVEFILNHVDVLFSGRISMAMQEGAASLSRPKSLLVSSPSTKL



LTLEEAQARTQAQVNSPIVTENKYIEVGEGPAALQGKFHTIIEFPLE



RKRPQNKMKKSPVGSWRSFFNLGKSSSVSKRKLQRNESEPSEMKA



MALKGGRAEGTLRSAKSEESLTSLHAVDGDSKLFRPRRPRSSSDAL



SASFNGEMLGNRCNSYDNLPHDNESEEEGGLLHIPALMSPHSAED



VDLSPPDIGVASLDFDPMSFQCSPPKAESECLESGASFLDSPGYSKD



KPSANKKDAETGSSQCQTPGSTASSEPVSPLQEKLSPFFTLDLSPTE



DKSSKPSSFTEKVVYAFSPKIGRKLSKSPSMSISEPISVTLPPRVSEVI



GTVSNTTAQNASSSTWDKCVEERDATNRSPTQIVKMKTNETVAQE



AYESEVQPLDQVAAEEVELPGKEDQSVSSSQSKAVASGQTQTGAV



THDPPQDSVPVSSVSLIPPPPPPKNVARMLALALAESAQQASTQSL



KRPGTSQAGYTNYGDIAVATTEDNLSSSYSAVALDKAYFQTDRPA



EQFHLQNNAPGNCDHPLPETTATGDPIESNTTESGEQHHQVDLTG



NQPHQAYLSGDPEKARITSVPLDSEKSDDHVSFPEDQSGKNSMPTV



SFLDQDQSPPRFYSGDQPPSYLGASVDKLIIHPLEFADKSPTPPNLPS



DKIYPPSGSPEENTSTATMTYMTTTPATAQMSTKEASWDVAEQPT



TADFAAATLQRTHRTNRPLPPPPSQRSAEQPPVVGQVQAATNIGLN



NSHKVQGVVPVPERPPEPRAMDDPASAFISDSGAAAAQCPMATAV



QPGLPEKVRDGARVPLLHLRAESVPAIIPCGFPAPLPPTRMMESKM



IAAIHSSSADATSSSNYHSFVTASSTSVDDALPLPLPVPQPKHASQK



TVYSSFARPDVTTEPFGPDNCLHFNMTPNCQYRPQSVPPIIHNKLE



QHQVYGARSEPPASMGLRYNTYVAPGRNASGHHSKPCSRVEYVS



SLSSSVRNTCYPEDIPPYPTIRRVQSLHAPPSSMIRSVPISRTEVPPDD



EPAYCPRPLYQYKPYQSSQARSDYHVTQLQPYFENGRVHYRYSPY



SSSSSSYYSPDGALCDVDAYGTVQLRPLHRLPNRDFAFYNPRLQG



KSLYSYAGLAPRPRANVTGYFSPNDIINVVSMPPAADVKHTYTSW



DLEDMEKYRMQSIRRESRARQKVKGPVMSQYDNMTPAVQDDLG



GIYVIHLRSKSDPGKTGLLSVAEGKESRHAAKAISPEGEDRFYRRH



PEAEMDRAHHHGGHGSTQPEKPSLPQKQSSLRSRKLPDMGCSLPE



HRAHQEASHRQFCESKNGPPYPQGAGQLDYGSKGIPDTSEPVSYH



NSGVKYAASGQESLRLNHKEVRLSKEMERPWVRQPSAPEKHSRD



CYKEEEHLTQSIVPPPKPERSHSLKLHHTQNVERDPSVLYQYQPHG



KRQSSVTVVSQYDNLEDYHSLPQHQRGVFGGGGMGTYVPPGFPH



PQSRTYATALGQGAFLPAELSLQIIPETQIHAE









As used herein the terms “sequence identity” or “sequence homology,” which can be used interchangeably, refer to an exact amino acid-to-amino acid correspondence of two polypeptide sequences. Typically, techniques for determining sequence identity include determining the amino acid sequence of a polypeptide, and comparing these sequences to a second amino acid sequence. Two or more sequences can be compared by determining their “percent identity,” also referred to as “percent homology.” The percent identity to a reference sequence, which may be a sequence within a longer molecule, may be calculated as the number of exact matches between two optimally aligned sequences divided by the length of the reference sequence and multiplied by 100. Percent identity may also be determined, for example, by comparing sequence information using the advanced BLAST computer program, including version 2.2.9, available from the National Institutes of Health. The BLAST program is based on the alignment method of Karlin and Altschul, Proc. Natl. Acad. Sci. USA 87:2264-2268 (1990) and as discussed in Altschul, et al., J. Mol. Biol. 215:403-410 (1990); Karlin and Altschul, Proc. Natl. Acad. Sci. USA 90:5873-5877 (1993); and Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997). Briefly, the BLAST program defines identity as the number of identical aligned symbols (i.e., nucleotides or amino acids), divided by the total number of symbols in the shorter of the two sequences. The program may be used to determine percent identity over the entire length of the sequences being compared. Default parameters are provided to optimize searches with short query sequences, for example, with the blastp program. The program also allows use of an SEG filter to mask-off segments of the query sequences as determined by the SEG program of Wootton and Federhen, Computers and Chemistry 17: 149-163 (1993). Ranges of desired degrees of sequence identity are approximately 80% to 100% and integer values in between. Percent identities between a disclosed sequence and a claimed sequence can be at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more, or complete (100%) sequence identity. In general, an exact match indicates 100% identity over the length of the reference sequence. In some cases, reference to percent sequence identity refers to sequence identity as measured using BLAST (Basic Local Alignment Search Tool). In other cases, ClustalW can be used for multiple sequence alignment. Still other programs for comparing sequences and/or assessing sequence identity include the Needleman-Wunsch algorithm and the Smith-Waterman algorithm (see, e.g., the EMBOSS Water aligner. Optimal alignment may be assessed using any suitable parameters of a chosen algorithm, including default parameters.


In one aspect, the sequence identity is at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% (complete) sequence identity (homology). In one aspect, the sequence identity is over a region of at least about 10, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1100. 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000 or more amino acids, or the full length of a polypeptide.


As used herein, the term “fragment” refers at least 10 consecutive amino acids of a polypeptide that can be detected using methods known in the art. Fragment may refer to an “active” fragment which is a portion of the polypeptide required for polypeptide function. The fragment can be an “immunogenic” fragment which is a portion of the polypeptide which binds an antibody.


As used herein, a “sample” or “biological sample” is meant to refer to any “biological specimen” collected from a subject, and that is representative of the content or composition of the source of the sample, considered in its entirety. A sample can be collected and processed directly for analysis, or be stored under proper storage conditions to maintain sample quality until analyses are completed. Ideally, a stored sample remains equivalent to a freshly-collected specimen. The source of the sample can be an internal organ, vein, artery, or even a fluid. Non-limiting examples of sample include blood, plasma, urine, saliva, sweat, organ biopsy, cerebrospinal fluid (CSF), tear, vaginal fluid, feces, skin, and hair. In one aspect, the sample is selected from the group consisting of blood, plasma, urine, saliva, sweat, organ biopsy, cerebrospinal fluid (CSF), tear, vaginal fluid, feces, skin, and hair. In certain aspects the sample is a blood sample and the subject is human. Blood samples include whole blood, plasma and serum.


The at least one protein refers to one or more proteins. In an aspect, the at least one polypeptide comprises 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more proteins. In one aspect the at least one protein is selected from the group consisting of Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat Shock Protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal


Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In another aspect, the at least one protein is selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147 or a fragment thereof.


In one aspect the at least one protein is selected from the group consisting of Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat Shock Protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a combination thereof. In another aspect, the at least one protein is selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147 or a combination thereof.


The biomarkers of the present invention may be used individually or in combinations for the diagnosis of cervical cancer. Any combination of the biomarkers listed above and in Table 1 can be used for the diagnosis of cervical cancers.


In another aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In an additional aspect, the at least one polypeptide comprises a polypeptide having at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 and at least one polypeptide selected from a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:2-20 or a fragment thereof.


In one aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase and neurofibromin I; Farnesyl pyrophosphate synthase and Glyceraldehyde-3 phosphate dehydrogenase; Farnesyl pyrophosphate synthase and Protein 1 containing fibronectin domain type III; Farnesyl pyrophosphate synthase and Eukaryotic initiation factor 4A-I; Farnesyl pyrophosphate synthase and L-lactate dehydrogenase chain B; Farnesyl pyrophosphate synthase and Nuclear heterogeneous Ribonucleoprotein A1; Farnesyl pyrophosphate synthase and polycystic kidney disease protein 1-like 1; Farnesyl pyrophosphate synthase and heat shock protein Cognate 71 kDa; Farnesyl pyrophosphate synthase and Ankyrin-3; Farnesyl pyrophosphate synthase and Rho 23; Farnesyl pyrophosphate synthase and Rho 23-GTPase-activating protein; Farnesyl pyrophosphate synthase and Cytoskeletal Keratin 78 type II; Farnesyl pyrophosphate synthase and collagen chain (VI) Alpha-3; Farnesyl pyrophosphate synthase and Beta subunit of proteasome type-5; Farnesyl pyrophosphate synthase and Heterogeneous nuclear ribonucleoproteins A2/B1; Farnesyl pyrophosphate synthase and Histone H2B type 1-B; Farnesyl pyrophosphate synthase and homolog of DnaJ subfamily C member 13; Farnesyl pyrophosphate synthase and Beta enolase; Farnesyl pyrophosphate synthase and Glutathione S-transferase P; Farnesyl pyrophosphate synthase and Glutathione S-transferase Mu 3; or fragments thereof.


In another aspect, the at least one polypeptide comprises SEQ ID NO:1 and SEQ ID NO:2; SEQ ID NO:1 and SEQ ID NO:3; SEQ ID NO:1 and SEQ ID NO:4; SEQ ID NO:1 and SEQ ID NO:5; SEQ ID NO:1 and SEQ ID NO:6; SEQ ID NO:1 and SEQ ID NO:7; SEQ ID NO:1 and SEQ ID NO:8; SEQ ID NO:1 and SEQ ID NO:9; SEQ ID NO:1 and SEQ ID NO:10; SEQ ID NO:1 and SEQ ID NO:11; SEQ ID NO:1 and SEQ ID NO:12; SEQ ID NO:1 and SEQ ID NO:13; SEQ ID NO:1 and SEQ ID NO:14; SEQ ID NO:1 and SEQ ID NO:15; SEQ ID NO:1 and SEQ ID NO:16; SEQ ID NO:1 and SEQ ID NO:17; SEQ ID NO:1 and SEQ ID NO:18; SEQ ID NO:1 and SEQ ID NO:19; SEQ ID NO:1 and SEQ ID NO:20; or fragments thereof.


In one aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, neurofibromin or a fragment thereof, and at least one additional polypeptide selected from the group consisting of Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat Shock Protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In another aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Glyceraldehyde-3 phosphate dehydrogenase or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In one aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Protein 1 containing fibronectin domain type III or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In another aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Eukaryotic initiation factor 4A-I or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, and Glutathione S-transferase Mu 3 and a fragment thereof.


In one aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, L-lactate dehydrogenase chain B or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In another aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Nuclear heterogeneous Ribonucleoprotein A1 or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In one aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, polycystic kidney disease protein 1-like 1 or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In another aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, heat shock protein Cognate 71 kDa or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In one aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Ankyrin-3 or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In another aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Rho 23 GTPase-activating protein or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In one aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Cytoskeletal Keratin 78 type II or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In another aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, collagen chain (VI) Alpha-3 or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In one aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Beta subunit of proteasome type-5 or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In another aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Heterogeneous nuclear ribonucleoproteins A2/B1 or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In one aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Histone H2B type 1-B or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In another aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, homolog of DnaJ subfamily C member 13 or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In one aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Beta enolase or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Glutathione S-transferase P, Glutathione S-transferase Mu 3 and a fragment thereof.


In another aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Glutathione S-transferase P or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase Mu 3 and a fragment thereof.


In one aspect, the at least one polypeptide comprises Farnesyl pyrophosphate synthase or a fragment thereof, Glutathione S-transferase Mu 3 or a fragment thereof, and at least one additional polypeptide selected from the group consisting of neurofibromin, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, polycystic kidney disease protein 1-like 1, heat shock protein Cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, collagen chain (VI) Alpha-3, Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P and a fragment thereof.


In one aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:2 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NOs:3-20 and a fragment thereof.


In another aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:3 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2 and 4-20 and a fragment thereof.


In one aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:4 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-3 and 5-20 and a fragment thereof.


In another aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:5 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-4 and 6-20 and a fragment thereof.


In one aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:6 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-5 and 7-20 and a fragment thereof.


In another aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:7 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-6 and 8-20 and a fragment thereof.


In one aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:8 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-7 and 9-20 and a fragment thereof.


In another aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:9 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-8 and 10-20 and a fragment thereof.


In one aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:10 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-9 and 11-20 and a fragment thereof.


In another aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:11 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-10 and 12-20 and a fragment thereof.


In one aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:12 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-11 and 13-20 and a fragment thereof.


In another aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:13 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-12 and 14-20 and a fragment thereof.


In one aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:14 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-13 and 15-20 and a fragment thereof.


In another aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:15 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-14 and 16-20 and a fragment thereof.


In one aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:16 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-15 and 17-20 and a fragment thereof.


In another aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:17 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-16 and 18-20 and a fragment thereof.


In one aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:18 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-17 and 19-20 and a fragment thereof.


In another aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:19 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-18 and 20 and a fragment thereof.


In one aspect, the at least one polypeptide comprises a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof, and a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:20 or a fragment thereof, and at least one additional polypeptide having at least about 70% sequence identity to a polypeptide an amino acid sequence selected from the group consisting of SEQ ID NOs:2-19 and a fragment thereof.


In a further aspect, the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical flow assay or immunoassay. In a specific aspect, the detecting is by lateral flow.


In one aspect, the method also includes administering a treatment to the subject. In an additional aspect, the treatment is surgery, radiation, chemotherapy, targeted therapy and/or immunotherapy.


The term “treatment” is used interchangeably herein with the term “therapeutic method” and refers to both 1) therapeutic treatments or measures that cure, slow down, lessen symptoms of, and/or halt progression of a diagnosed pathologic conditions or disorder, and 2) and prophylactic/preventative measures. Those in need of treatment may include individuals already having a particular medical disorder as well as those who may ultimately acquire the disorder (i.e., those needing preventive measures).


The terms “therapeutically effective amount”, “effective dose,” “therapeutically effective dose”, “effective amount,” or the like refer to that amount of the subject compound that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by the researcher, veterinarian, medical doctor or other clinician.


The terms “administration of and or “administering” should be understood to mean providing a pharmaceutical composition in a therapeutically effective amount to the subject in need of treatment. Administration routes can be enteral, topical or parenteral. As such, administration routes include but are not limited to intracutaneous, subcutaneous, intravenous, intraperitoneal, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, transdermal, transtracheal, subcuticular, intraarticulare, subcapsular, subarachnoid, intraspinal and intrasternal, oral, sublingual buccal, rectal, vaginal, nasal ocular administrations, as well infusion, inhalation, and nebulization. The phrases “parenteral administration” and “administered parenterally” as used herein means modes of administration other than enteral and topical administration. The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. Suitable unit dosage forms, include, but are not limited to powders, tablets, pills, capsules, lozenges, suppositories, patches, nasal sprays, injectables, implantable sustained-release formulations, lipid complexes, etc.


The biomarkers and polypeptides disclosed herein are useful for the diagnosis of cervical cancer. As used herein, the term “diagnosis” refers to any method of detecting or determining that a subject has cervical cancer.


In another embodiment, the present invention provides a method of diagnosing cervical cancer in a subject by detecting at least one polypeptide in a sample from a subject; wherein the at least one polypeptide is selected from Farnesyl pyrophosphate synthase, neurofibromin 1, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat shock protein cognate protein 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence to a polypeptide having the amino acid sequence selected from SEQ ID NOs: 1-147 or a fragment thereof; and diagnosing cervical cancer based on the detection of at least one polypeptide. In one aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:1-20 or a fragment thereof.


In one aspect, the sample is blood, plasma, urine, saliva, sweat, organ biopsy, cerebrospinal fluid (CSF), tear, vaginal fluid, feces, skin, and hair. In certain aspects, the sample is a blood sample and the subject is human.


In an additional aspect, the at least one polypeptide is selected is Farnesyl pyrophosphate synthase or a fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Cognate thermal shock protein 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In a further aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide with at least about 70% sequence identity to a polypeptide having an amino acid sequence selected from SEQ ID NOs:2-20 or a fragment there of.


In another aspect, the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical flow assay or immunoassay. In a specific aspect, the detecting is by lateral flow. In one aspect, the method also includes administering a treatment to the subject. In certain aspects, the treatment is surgery, radiation, chemotherapy, targeted therapy and/or immunotherapy.


In some embodiments, diagnosing, predicting, and/or monitoring the status or outcome of a cancer may comprise determining a therapeutic regimen. Determining a therapeutic regimen may comprise administering an anti-cancer therapeutic. Alternatively, determining the treatment for the cancer may comprise modifying a therapeutic regimen. Modifying a therapeutic regimen may comprise increasing, decreasing, or terminating a therapeutic regimen.


Treatment options for cervical cancer include surgery, radiation, chemotherapy, targeted therapy, and immunotherapy.


Surgical Treatment for cervical cancer depends on the type and stage of cervical cancer. For precancerous lesion surgical interventions include ablation and excision surgery. Surgical intervention for advanced cervical cancer include hysterectomy (simple or radical) and Trachelectomy.


Radiation is used to treat cervical cancer and to treat cervical cancer recurrence. There are two types of radiation typically used for treating cervical cancer, external beam radiation and brachytherapy. External beam radiation therapy (EBRT) aims x-rays at the cancer from a machine outside the body. Treatment is much like getting a regular x-ray, but the radiation dose is stronger. When EBRT is used as the main treatment for cervical cancer, it is usually combined with chemotherapy. Brachytherapy, or internal radiation therapy, puts a source of radiation in or near the cancer. Brachytherapy is mainly used in addition to EBRT as a part of the main treatment for cervical cancer.


Chemotherapy is also used to treat cervical cancer, wither alone or in combination with another method. Chemotherapy may include Cisplatin, Carboplatin, Paclitaxel (Taxol), Topotecan, docetaxel (Taxotere), ifosfamide (Ifex), 5-fluorouracil (5-FU), irinotecan (Camptosar), gemcitabine (Gemzar) and mitomycin. Targeted therapy for the treatment of cervical cancer includes Bevacizumab. Immunotherapy for the treatment of cervical cancer includes Pembrolizumab (PD-1 inhibitor).


In an additional embodiment, the present invention provides a method of treating cervical cancer in a subject in need thereof, the method is detecting at least one polypeptide in a sample from a subject; wherein the at least one polypeptide is selected from Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NOs: 1-147 or a fragment thereof; diagnosing cervical cancer based on the detection of the at least one polypeptide; and administering a treatment to the subject. In one aspect, the sample is a blood sample. In one aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:1-20 or a fragment thereof.


In an additional aspect, the at least one polypeptide is Farnesyl pyrophosphate synthase and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In a further embodiment, the at least one polypeptides is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide with at least about 70% sequence identity to a polypeptide with an amino acid sequence selected from SEQ ID NOs:2-20 or a fragment thereof.


In another aspect, the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay or immunoassay. In a specific aspect, the detecting is by lateral flow assay. In an additional aspect, the treatment is selected from the group consisting of surgery, radiation, chemotherapy, targeted therapy and immunotherapy. In a further aspect, the chemotherapy is Cisplatin, Carboplatin, Paclitaxel, Topotecan, docetaxel, ifosfamide, 5-fluorouracil, irinotecan, gemcitabine or mitomycin. In certain aspects, the targeted therapy is bevacizumab and the immunotherapy is pembrolizumab.


The biomarkers of the present invention can be used to predict response to treatment for cervical cancer.


In a further embodiment, the present invention provides methods of predicting a response to treatment for a subject having cervical cancer by detecting at least one polypeptide in a sample from a subject; wherein the at least one polypeptide is selected from Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having amino acid sequence selected from SEQ ID NOs: 1-147 or a fragment thereof; and predicting a response to treatment based on the detection of the at least one polypeptide. In one aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:1-20 or a fragment thereof.


In one aspect, the at least one polypeptide is Farnesyl pyrophosphate synthase or a fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In another aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:2-20 or a fragment thereof.


In an additional aspect, the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical flow or immunoassay. In a further aspect, the detecting is by lateral flow assay. In certain aspects, the treatment is surgery, radiation, chemotherapy, targeted therapy and immunotherapy.


The biomarkers of the present application are useful for determining the stage of cervical cancer. Cervical cancer can be classified on different scales. The Papanicolau system classifies the lesions in degrees of severity, from grade I that corresponds to normal cytology, to grade V that corresponds to invasive squamous cancer of the cervix. The Richart classification system classifies the results of a cytology into: Negative, Reactive or not classifiable squamous atypical, HPV infection, Cervical intraepithelial neoplasia (CIN) grades I, II and III, carcinoma in situ and invasive squamous cancer of the cervix. Finally, the Bethesda nomenclature classifies the results of a cytology as: Negative, ASCUS-ASCH, low-grade intraepithelial lesions, high-grade intraepithelial lesions and invasive squamous cancer of the cervix.


The FIGO (International Federation of Gynecology and Obstetrics) staging system is used most often for cancers of the female reproductive organs, including cervical cancer. For cervical cancer, the clinical stage is used and is based on the results of the doctor's physical exam, biopsies, imaging tests, and a few other tests that are done in some cases, such as cystoscopy and proctoscopy.










TABLE 2





FIGO Stage
Stage description

















I
IA
The cancer cells have grown from the surface of the cervix




into deeper tissues of the cervix.




Cancer has not spread to nearby lymph nodes.




Cancer has not spread to distant sites.




It has not spread to distant sites.



IA1
The area of cancer can only be seen with a microscope and




is less than 3 mm (about ⅛-inch) deep.




It has not spread to nearby lymph nodes.




It has not spread to distant sites.



IA2
The area of cancer can only be seen with a microscope and




is between 3 mm and 5 mm (about ⅕-inch) deep.




It not has not spread to nearby lymph nodes.




It has not spread to distant sites.



1B
This includes stage I cancer that has spread deeper than 5




mm (about ⅕ inch) but is still limited to the cervix.




It has not spread to nearby lymph nodes.




It has not spread to distant sites.



1B1
The cancer is deeper than 5 mm (about ⅕-inch) but not




more than 2 cm (about ⅘-inch) in size.




It has not spread to nearby lymph nodes.




It has not spread to distant sites.



1132
The cancer is at least 2 cm in size but not larger than 4 cm.




It has not spread to nearby lymph nodes.




It has not spread to distant sites.



1B3
The cancer is at least 4 cm in size and limited to the cervix.




It has not spread to nearby lymph nodes.




It has not spread to distant sites.


11

The cancer has grown beyond the cervix and uterus, but




hasn't spread to the walls of the pelvis or the lower part of




the vagina.




It has not spread to nearby lymph nodes.




It has not spread to distant sites.



11A
The cancer has grown beyond the cervix and uterus but has




not spread into the tissues next to the cervix (called the




parametria).




It has not spread to nearby lymph nodes.




It has not spread to distant sites.



HAI.
The cancer is not larger than 4 cm (about 1⅗ inches).




It not has not spread to nearby lymph nodes.




It has not spread to distant sites.



11A2
The cancer is 4 cm or larger.




It has not spread to nearby lymph nodes.




It has not spread to distant sites.



BB
The cancer has grown beyond the cervix and uterus and has




spread into the tissues next to the cervix (the parametria).




It has not spread to nearby lymph nodes.




It has not spread to distant sites.


111

The cancer has spread to the lower part of the vagina or the




walls of the pelvis. The cancer may be blocking the ureters




(tubes that carry urine from the kidneys to the bladder).




It might or might not have not spread to nearby lymph




nodes.




It has not spread to distant sites.



DIA
The cancer has spread to the lower part of the vagina but




not the walls of the pelvis.




It has not spread to nearby lymph nodes.




It has not spread to distant sites.



111B
The cancer has grown into the walls of the pelvis and/or is




blocking one or both ureters causing kidney problems




(called hydronephrosis).




It has not spread to nearby lymph nodes.




It has not spread to distant sites.



BIC
The cancer can be any size.




Imaging tests or a biopsy show the cancer has spread to




nearby pelvic lymph nodes (BIC1) or para-aortic lymph




nodes (BIC2).




It has not spread to distant sites.


IV

The cancer has grown into the bladder or rectum or to far




away organs like the lungs or bones.



WA
The cancer has spread to the bladder or rectum or it is




growing out of the pelvis.



IVB
The cancer has spread to distant organs outside the pelvic




area, such as distant lymph nodes, lungs or bones.









In another embodiment, the present invention provides methods for determining the stage of cervical cancer in a subject in need thereof by detecting at least one polypeptide in a sample from the subject; wherein the at least one polypeptide is selected from Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs: 1-147 or a fragment thereof; and determining the stage of cervical cancer in the subject based on the detection of the at least one polypeptide. In one aspect, the at least one polypeptide is a polypeptide having the amino acid sequence selected from SEQ ID NOs:1-20 or a fragment thereof.


In one aspect, the at least one polypeptide is Farnesyl pyrophosphate synthase or a fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, Heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In another aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:2-20 or a fragment thereof.


In an additional aspect, the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical flow assay or immunoassay. In a specific aspect, the detecting is by lateral flow assay. In a further aspect, the method also includes administering a treatment to the subject. In certain aspects, the treatment is surgery, radiation, chemotherapy, targeted therapy or immunotherapy. In one aspect, the cervical cancer is stage I, stage II, stage III or stage IV.


In one embodiment, the present invention provides a kit with a sample collection unit; a lateral flow device; and instructions for using the lateral flow device.


Sample collection device is any device that can be used to collect a sample. The sample blood, plasma, urine, saliva, sweat, organ biopsy, cerebrospinal fluid (CSF), tear, vaginal fluid, feces, skin, and hair.


A lateral flow device is a simple to use diagnostic device used to confirm the presence or absence of a target analyte, such as pathogens or biomarkers in a sample. The most commonly known type of lateral flow rapid test strip is the pregnancy test.


Typically lateral flow assays use a device comprises several pads (made of a series of capillary beds, capable of transporting a fluid): a sample pad to receive the liquid sample; a conjugate pad, including reactive molecules used to visualize positive control, a positive line and a test line.


For the detection of a target protein, the conjugate pad includes antibodies specific for the target protein conjugated to a detectable tag; a positive line (positive control) is generated comprising fixed anti-anti-target protein antibodies (for example anti IgG antibodies), and a test line was generated comprising fixed anti-target protein antibodies. When the sample pad is contacted with a sample containing the target protein, the target protein reacts with the anti-target protein antibodies conjugated to a detectable tag in the conjugate pad. As the liquid flows to the test and positive lines, the target protein present in the sample, conjugated with the labeled antibodies reacted with the fixed anti-target protein antibodies on the test line, and anti-target protein antibodies conjugated to the detectable tag but not conjugated to the target protein reacts with the fixed anti-Ig antibodies on the positive line. Both reactions generate a positive reading on the test line, and on the positive line.


In one aspect, the lateral flow device detects at least one polypeptide selected from Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs: 1-147 or a fragment thereof. In one aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:1-20 or a fragment thereof.


In an additional aspect, the at least one polypeptide is Farnesyl pyrophosphate synthase or a fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alph-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In a further aspect, the at least one polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide selected from a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NO:2-20 or a fragment thereof.


In another aspect, the lateral flow device detects the at least one polypeptide by an immunoassay. In one aspect, the sample collection unit collects a blood sample.


In an additional embodiment, the present invention provides a use of the detection of at least one polypeptide for the diagnosis of cervical cancer in a subject in need thereof, wherein the at least one polypeptide is selected from Farnesyl pyrophosphate synthase, neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alpha-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof; or a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs: 1-147 or a fragment thereof. In one aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:1-20 or a fragment thereof.


In a further aspect, the at least one polypeptide is detected in a sample from the subject and the sample is a blood sample. In another aspect, the at least one polypeptide is Farnesyl pyrophosphate synthase or a fragment thereof and at least one polypeptide selected from neurofibromin I, Glyceraldehyde-3 phosphate dehydrogenase, Protein 1 containing fibronectin domain type III, Eukaryotic initiation factor 4A-I, L-lactate dehydrogenase chain B, Nuclear heterogeneous Ribonucleoprotein A1, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, Ankyrin-3, Rho 23 GTPase-activating protein, Cytoskeletal Keratin 78 type II, Alph-3 collagen chain (VI), Beta subunit of proteasome type-5, Heterogeneous nuclear ribonucleoproteins A2/B1, Histone H2B type 1-B, homolog of DnaJ subfamily C member 13, Beta enolase, Glutathione S-transferase P, Glutathione S-transferase Mu 3 or a fragment thereof. In one aspect, the at least one polypeptide is a polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment thereof and at least one polypeptide with at least about 70% sequence identity to a polypeptide having the amino acid sequence selected from SEQ ID NOs:2-20 or a fragment thereof.


In another aspect, the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical flow assay or immunoassay. In certain aspects, the detecting is by lateral flow assay.


The following examples are provided to further illustrate the embodiments of the present invention, but are not intended to limit the scope of the invention. While they are typical of those that might be used, other procedures, methodologies, or techniques known to those skilled in the art may alternatively be used.


EXAMPLES
Example 1

Secretome Analysis of Cervical Cancer Cell Lines


In order to identify cervical cancer biomarkers, a secretome analysis of cervical cancer cells was performed using cervical cancer cell line HeLa (cervical adenocarcinoma, positive for HPV18), SiHa cells (grade II, squamous cell cervical carcinoma, positive for HPV16), and C-33A (cervical carcinoma, negative for HPV) and the HaCaT cell line as a negative control. These lines were selected because they represent the most frequent histological types and viral genotypes in cervical intraepithelial lesions and in CC; and were either cultured (in vitro secretome), or inoculated into mice (ex vivo secretome).


HeLa and SiHa cells were cultured in serum-free Advanced RPMI 1640 supplemented with 2 mM L-glutamine and Penicillin-Streptomycin at 1% v/v, at 37° C. and with 5% CO2 until a 70-80% confluence was reached. The cells were washed three times with sterile physiological solution (0.9% NaCl (w/v)). As illustrated in FIG. 2, there was no significant growth differences between the cells at day 6, when the cells reached 70% confluence.


For in vitro secretome analysis, the cells were then incubated in serum-free RPMI 1640 without phenol red for 20 hours, and the medium collected and centrifuged at 1,500 g for 5 minutes. The supernatant was passed through a 0.22 μm size PVDF membrane and stored at −70° C. until further use (see FIG. 1).


For the ex vivo secretome analysis, the secreted proteins were collected from tumors collected on female Nu/Nu mice (4-6 weeks) inoculated with 10′ HeLa or SiHa cells. After 30, 45 and 50 days after inoculation, the tumors were collected (triplicate) and washed 3 times with 50 mL of physiological solution and then incubated for 20 hours with serum free RMPI medium without phenol red. The medium was removed and centrifuged at 1,500×g for 5 minutes, the supernatant was passed through a 0.22 μm pore size membrane PVDF membrane and stored at −70° C. until further use (see FIG. 1). The secreted proteins collected in vitro and ex vivo were lyophilized and resuspended in 1 mL of ultrapure water. Protein isolation was performed by phenol extraction.


To identify the proteins secreted by the different cell lines, the proteins were separated by electrophoresis on an SDS-PAGE matrix and stained with bright Coomassie blue (see FIG. 3A). Each lane containing 30 μg protein was cut into 20 lines throughout the column, the proteins contained were extracted and digested with trypsin. The generated peptides were analyzed in a nano LC-MS/MS system. The identification of peptides and proteins was performed using the MASCOT search engine through the MASCOT Distiller interface. The databases consulted were Swiss-Prot and NCBI.


1662 secretome proteins were identified (see FIG. 3B). As illustrated in the Venn diagram of FIG. 3C, showing the intersection between the shared proteins of the CC cell lines and their negative control, 20 proteins were shared in the 3 CC cell lines and absent in the negative control (see Table 3). These proteins were candidates for use in a rapid diagnostic test. In addition to the qualitative study, a quantitative analysis of 200 secreted proteins was performed using the label-free quantification (LFQ) technique. As shown in FIG. 4A, 92 proteins were found over-expressed in the 3 CC cell lines according to their Log 2 value (CC cell lines vs. HaCaT). For HeLa: 45 over-expressed proteins, SiHa: 35 over-expressed proteins, C-33A: 12 over-expressed proteins. As shown in FIG. 4B, 6 secreted proteins: Glyceraldehyde-3-phosphate dehydrogenase, cognate heat shock protein 71 kDa, L-lactate dehydrogenase chain B, beta subunit of proteasome type-5 and nuclear ribonucleoproteins heterogeneous A2/B1 were found over expressed in the 3 CC cell lines compared to its negative control. Further, and as shown in FIG. 4C (which represents the Heat map of proteins expressed in cell lines, where the complete linkage hierarchical grouping shows the values in Log 2 (protein expression/HSP71) on a color scale), the hierarchy analysis by cluster in the heat map revealed a similarity in protein expression between the HPV positive cell lines (SiHa and HeLa). These analyzes allowed obtaining a set of common over-expressed proteins for the HPV and CC lines.











TABLE 3





Gene
Protein
Name







NF1
NF1_HUMAN
Neurofibromin


GAPDH
G3P_HUMAN
Glyceraldehyde-3 phosphate




dehydrogenase


FNDC1
FNDC1_HUMAN
Protein 1 containing fibronectin




domain type III


EIF4A1
IF4A1_HUMAN
Eukaryotic initiation factor 4A-I


LDHB
LDHB_HUMAN
L-lactate dehydrogenase chain




B


HNRNPA1
ROA1_HUMAN
Nuclear heterogeneous




Ribonucleoprotein A1


PKD1L1
PK1L1_HUMAN
Polycystic kidney disease




protein 1-like 1


FDPS
FPPS_HUMAN
Farnesyl pyrophosphate




synthase


HSPA8
HSP7C_HUMAN
Heat Shock Protein Cognate 71




kDa


ANK3
ANK3 HUMAN
Ankirin-3


ARHGAP23
ARHG23_HUMAN
Rho 23 GTPase-activating




protein


KRT78
K2C78_HUMAN
Cytoskeletal Keratin 78 type II


COL6A3
CO6A3_HUMAN
Alpha-3 collagen chain (VI)


PSMB5
PSB5_HUMAN
Beta subunit of proteasome




type-5


HNRNPA2B1
ROA2_HUMAN
Heterogeneous nuclear




ribonucleoproteins A2/B1


HIST1H2BB
H2B1B_HUMAN
Histone H2B type 1-B


RME8
DNAJC13
homolog of DnaJ subfamily C




member 13


ENO3
ENOB_HUMAN
Beta enolase


GSTP1
GSTP1 HUMAN
Glutathione S-transferase P


GSTM3
GSTM3 HUMAN
Glutathione S-transferase Mu 3









Example 2

Detection of Cervical Tumors


To evaluate if the proteins identified in the in vitro secretome analysis could be used as biomarkers for the detection of cervical tumors, female mice were inoculated with DC cells to develop tumors, and secreted proteins were measured in the serum of the animals (see FIG. 5A).


A cohort of 9 mice was generated, with 3 different cell lines and their controls established at 3 different times of the PT (tumor progression). The mice were inoculated with 107 cells DC tumor cell lines (either HeLa or SiHa cells), and the sera were collected 30, 45 and 50 days post inoculation. Sera were subjected to a Western blot with 20 μg protein per sample. The tests were performed in triplicate and were presented as means (±standard deviation). A statistical Student's t-test was performed.


As illustrated in FIG. 5B, illustrating the example of the detection of one of the protein of the secretome identified in Example 1; it was found by Western blot that the farnesyl pyrophosphate synthase protein was detectable in the sera of the mice inoculated with HeLa and SiHa (sera from uninoculated mice were used as controls). The protein was found expressed in all sera of the tumor-bearing mice, an as detailed in FIG. 5C, the level of expression was found to increase levels over time in the sera of the mice inoculated with SiHa.


The validation of the protein Farnesyl pyrophosphate synthase as a biomarker in sera was further performed in serum obtain from patients with CC:


The serum of 10 patients with CC and 10 negative controls for CC were tested, and the expression of Farnesyl pyrophosphate synthase was assessed by western blot. As illustrated in FIGS. 6A and 6B, all the patients analyzed presented Farnesyl pyrophosphate synthase expression, and no expression of Farnesyl pyrophosphate synthase was found in the sera of the controls. It was also observed that the level of expression was variable among patients (see FIG. 6C). As further illustrated in FIGS. 7A-7C, Ankyrin-3 was also demonstrated as a promising biomarker that can be used to detect cervical cancer in the serum of patient, by presenting with a significantly higher level of expression as compared to the serum of control patients. The proteome analysis of the secretome, identified 20 proteins present in CC cells and absent in negative control; and among the 6 overexpressed proteins Farnesyl pyrophosphate synthase and Ankyrin-3, used an a proof-of-principle were used to demonstrate that its level of expression (i.e., overexpression) could be analyzed in the serum of patient, showing that these proteins may be a useful promising candidate in the identification of this disease.


Example 3

Detection of Pre-Cancerous Cervical Lesions


To evaluate if the proteins identified in the in vitro secretome analysis could be used as biomarkers to detect pre-cancerous cervical lesions, the serum of patient presenting pre-cancerous cervical lesions were assessed for the detection of the biomarkers by western blot.


The serum of patients with pre-neoplasic lesions, with cervical cancer or with no lesions (control) were collected and analyzed for the expression of Ankyrin-3, Rho 23 GTPase-activating protein, Alpha-3 collagen chain (IV), Beta enolase, Farnesyl pyrophosphate synthase, Histone H2B type 1-BB, Heterogeneous nuclear ribonucleoproteins A2/B1, Heat shock protein cognate 71 kDa, Cytoskeletal Keratin 78 type II, Beta subunit of proteasome type-5 and homolog of DnaJ subfamily C member 13.


As illustrated in FIGS. 8A-8C, it was demonstrated that Farnesyl pyrophosphate synthase was detectable in the serum of patient having pre-cancerous cervical lesions LI and L2, as compared to control sera. Specifically, it was found that Farnesyl pyrophosphate synthase expression was 12-times higher in the serum of patient with pre-cancerous lesions as compared to control (see FIG. 8D), demonstrating that pre-cancerous lesions, as well as cancerous (see example 2) can be detected in the serum of patient, by detecting the expression of Farnesyl pyrophosphate synthase in the serum, which can be used as a biomarker for the detection of precancerous cervical lesions.


As illustrated in FIGS. 9A-9C, it was demonstrated that Ankyrin-3 was detectable in the serum of patient having pre-cancerous cervical lesions LI and L2, as compared to control sera. Specifically, it was found that Ankirin-3 expression was 10-times higher in the serum of patient with pre-cancerous lesions as compared to control (see FIG. 9D), demonstrating that pre-cancerous lesions, as well as cancerous (see example 2) can be detected in the serum of patient, by detecting the expression of Ankyrin-3 in the serum, which can be used as a biomarker for the detection of precancerous cervical lesions.


Similar results were obtained when the quantification of the proteins was intended by ELISA instead of by Western blot.


Example 4

Lateral Flow Assay for the Detection of Cervical Tumor and Precancerous Lesions


For lateral flow assay, strip containing dried spot antibodies for test lines and positive lines were prepared, and samples collected from patients were tested for the detection of Farnesyl pyrophosphate synthase.


Blood samples collected from patients were either directly diluted in Chase buffer at a 1/5 dilution rate (for serum sample), or further absorbed onto blood separator pad (for whole blood sample) prior to being diluted in Chase buffer. 70 ul of diluted sample were used for each test.


The strip was assembled by removing the membrane section of the protective cover and apply CN-95 membrane. Two pieces of protective cover were removed from sections above where the nitrocellulose was placed. A 21 mm wick pad was then applied by aligning the top of the wick pad with the top of the backing card edge, and the excess backing card below the membrane, was cut off, leaving just the membrane and wick pad. The strips were cut to 5.0 mm width using Kinematic Guillotine and package in pouch with desiccant.


The test and positive lines were then prepared on the strip by spot drying antibodies. 1.0 μL of test line antibody was applied around 9 mm from the bottom of the nitrocellulose on 20 precut test strips; and 1 μL of control line antibody was applied around 15 mm up from the bottom of the nitrocellulose on each pre-cut and spotted test strip. The strips were tapped down on piece of paper and place in 40 C oven for 1-hour. Once dried, the strips were packaged with desiccant. The antibodies were previously conjugated with gold (using colloidal gold) or biotinylated.


For the assay, each conjugate were diluted to 0.02% solids using 50 mM borate, 0.5% casein, 1% tween. 8 μL of conjugate were pipetted into glass tube, followed by 10 μL of serum. Half of the strip was place in glass tube, with bottom of nitro submerged in the testing solution to allow conjugate/serum solution to run up strip. 50 μL of 1×PBS, 1% tween20 were then added to glass tube to chase sample.


Using the FLI assay described herein, it was demonstrated that Farnesyl pyrophosphate synthase expression level could be determined a liquid sample collected from a patient, such as the serum, and that therefore pre-cancerous lesions of low and high grade, as well as cancerous cervical lesions could be detected using the device.


Although the invention has been described with reference to the above examples, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention. Accordingly, the invention is limited only by the following claims.

Claims
  • 1. A method comprising: a) detecting altered expression of at least one polypeptide in a sample from a subject; wherein the at least one polypeptide comprises:protein 1 containing fibronectin domain type III, L-lactate dehydrogenase chain B, 1-like protein 1 polycystic kidney disease, heat shock protein cognate 71 kDa, rho 23 GTPase-activating protein, cytoskeletal keratin 78 type II, alpha-3 collagen chain (VI), beta subunit of proteasome type-5, heterogeneous nuclear ribonucleoproteins A2/B1, histone H2B type 1-B, homolog of DnaJ subfamily c member 13 beta enolase and, glutathione S-transferase P; andb) diagnosing cervical cancer or a cervical lesion based on the detection of the altered expression of said at least one polypeptide; andc) administering a cervical cancer or cervical lesion treatment to the subject, wherein the treatment is selected from the group consisting of surgery, radiation, chemotherapy, targeted therapy and immunotherapy.
  • 2. The method of claim 1, wherein the sample is of a human subject and selected from the group consisting of blood, plasma, urine, saliva, sweat, organ biopsy, cerebrospinal fluid (CSF), tear, vaginal fluid, feces, skin, and hair.
  • 3. The method of claim 1, wherein the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical flow or immunoassay.
  • 4. A method of diagnosing, predicting, and/or monitoring the status or outcome of cervical cancer or a cervical lesion in a subject comprising: a) detecting altered expression of at least one polypeptide in a sample from a subject; wherein the at least one polypeptide comprises:protein 1 containing fibronectin domain type III, L-lactate dehydrogenase chain B, 1-like protein 1 polycystic kidney disease, heat shock protein cognate protein 71 kDa, rho 23 GTPase-activating protein, cytoskeletal keratin 78 type II, alpha-3 collagen chain (VI), beta subunit of proteasome type-5, heterogeneous nuclear ribonucleoproteins A2/B1, histone H2B type 1-B, homolog of DnaJ subfamily c member 13beta enolase and Glutathione S-transferase; andb) one or more of diagnosing, predicting, or monitoring cervical cancer or a cervical lesion based on the detection of the altered expression of the at least one polypeptide, thereby diagnosing, predicting, and/or monitoring the status or outcome of cervical cancer.
  • 5. The method of claim 4, wherein the sample is selected from the group consisting of blood, plasma, urine, saliva, sweat, organ biopsy, cerebrospinal fluid (CSF), tear, vaginal fluid, feces, skin, and hair.
  • 6. The method of claim 4, wherein the detecting is by protein microarray, fluorescence detection, flow cytometry, microfluidic device, lateral flow assay, vertical flow assay or immunoassay.
  • 7. The method of claim 4, further comprising administering a treatment to the subject.
  • 8. The method of claim 1, wherein the cervical cancer treatment comprises the surgery, and the surgery comprises ablation and excision surgery of the cervical cancer.
  • 9. The method of claim 1, wherein the cervical cancer treatment comprises the surgery, and the surgery comprises one of simple hysterectomy, radical hysterectomy, and trachelectomy.
  • 10. The method of claim 1, wherein the cervical cancer treatment comprises the radiation, and the radiation is one or more of external beam radiation or brachytherapy targeted to in or near the cervical cancer.
  • 11. The method of claim 1, wherein the cervical cancer treatment comprises the chemotherapy, and the chemotherapy comprises administering one selected from the group consisting of cisplatin, Carboplatin, Paclitaxel (Taxol), Topotecan, docetaxel (Taxotere), ifosfamide (Ifex), 5-fluorouracil (5-FU), irinotecan (Camptosar), gemcitabine (Gemzar) and mitomycin.
  • 12. The method of claim 1, wherein the cervical cancer treatment comprises the chemotherapy, and the chemotherapy comprises administering one selected from the group consisting of Bevacizumab and Pembrolizumab.
  • 13. The method of claim 1, wherein the sample is of a human subject and selected from the group consisting of blood, plasma, urine, saliva, sweat, cerebrospinal fluid (CSF), tear, vaginal fluid, feces, skin, and hair.
  • 14. The method of claim 1, wherein the sample is of a human subject and selected from the group consisting of blood and plasma.
Priority Claims (1)
Number Date Country Kind
MX/A/2019/005940 May 2019 MX national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application from U.S. application Ser. No. 16/879,748, which was filed May 20, 2020, is titled METHODS OF DIAGNOSING AND TREATING CERVICAL CANCER, and claimed priority under 35 USC § 119(a) to Mexican Patent Application No. MX/a/2019/005940, which was filed May 21, 2019, both of which are incorporated herein by reference as if fully set forth.

Divisions (1)
Number Date Country
Parent 16879748 May 2020 US
Child 18454391 US