The present invention relates to subterranean drilling operations. More particularly, the present invention relates to methods of drilling a well bore in a subterranean formation comprising placing a self-degrading kickoff plug or the like in the well bore.
During drilling of a well for production of oil, gas, or other fluids, it may be desirable to perform directional drilling, which may result in drilling of a deviated well bore. Directional drilling operations may be conducted for a variety of reasons, including, but not limited to, evading obstructions (e.g., drilling equipment that may have become stuck in the original well bore), drilling multiple wells from a single vertical well bore, or increasing production by increasing flow from adjacent subterranean formations.
Directional drilling operations may involve the setting of a kickoff plug, or the like, in a primary well bore. A kickoff plug may have a length ranging from about 50 to about 500 feet, and may comprise a cement composition. The kickoff plug typically is set in the well bore by lowering a drillstring or an open-ended tubing string to the desired depth and pumping a cement composition into the well bore. The cement composition may set to form a plug. After the cement plug has been formed, a drillstring may be used to reinitiate drilling operations. The drillstring and drill bit intentionally may be contacted with the plug, so as to thereby deflect the drill string and change the direction in which subsequent drilling proceeds.
The use of conventional kickoff plugs may be problematic, for a variety of reasons. Conventional kickoff plugs may be difficult to remove from the primary well bore, and may block the well bore and/or impair production of hydrocarbons from the subterranean formation. Even where removal of the kickoff plug from the well bore is possible, the removal procedure may require additional trips into the well bore, adding cost to the drilling operation. Furthermore, in cases in which a mechanical kickoff plug assembly is used, retrieving the kickoff plug by pulling it back up through the well bore may be problematic, because the well bore may lack sufficient space through which to pull the kickoff plug without damaging upper portions of the well bore and/or casing strings set therein.
Conventional approaches to solving these problems have included, inter alia, the use of a salt plug which, once used, can be dissolved by the introduction of an acidic solution into the well bore. However, significant drawbacks may be associated with this approach, including, but not limited to, environmental and occupational safety risks that may result from the use of large quantities of the acidic solution, the risk that a portion of the acidic solution may escape into other regions of the subterranean formation, and the delay of waiting for the acidic solution to dissolve the plug.
Another conventional approach involves drilling through the kickoff plug. However, this approach may require the use of other drilling equipment (e.g., drilling strings capable of producing a greater force, and a stabilizer assembly to keep the drill string from being deflected by the plug) that may further complicate the drilling operation and/or risk damage to the well bore.
The present invention relates to subterranean drilling operations. More particularly, the present invention relates to methods of drilling a well bore in a subterranean formation comprising placing a self-degrading kickoff plug or the like in the well bore.
An example of a method of the present invention is a method comprising: providing a self-degrading cement composition that comprises a degradable material, an acid source, a base source, and a water source; placing the self-degrading cement composition in a desired location in a well bore that penetrates a subterranean formation; and allowing the self-degrading cement composition to set to form a hardened kickoff plug.
Another example of a method of the present invention is a method of placing a degradable kickoff plug at a desired location in a well bore penetrating a subterranean formation, the method comprising: providing a self-degrading cement composition that comprises a degradable material, an acid source, a base source, and a water source; placing the self-degrading cement composition in the desired location in the well bore; and allowing the self-degrading cement composition to set to form the degradable kickoff plug.
Another example of a method of the present invention is a method of drilling a directional hole through the side of a well bore penetrating a subterranean formation, the method comprising: providing a self-degrading cement composition that comprises a degradable material, an acid source, a base source, and a water source; placing the self-degrading cement composition in a desired location in the well bore; allowing the self-degrading cement composition to set to form a hardened kickoff plug; contacting the hardened kickoff plug with a drill string such that the path of the drill string deviates away from the well bore; and allowing the drill string to continue drilling a directional hole that deviates from the well bore.
The features and advantages of the present invention will be apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.
These drawings illustrate certain aspects of some of the embodiments of the present invention, and should not be used to limit or define the invention.
The present invention relates to subterranean drilling operations. More particularly, the present invention relates to methods of drilling a well bore in a subterranean formation comprising placing a self-degrading kickoff plug or the like in the well bore.
1. Self-Degrading Cement Compositions
The self-degrading cement compositions utilized in the methods of the present invention generally comprise a degradable material, an acid source, a base source, and a water source. In certain embodiments of the present invention, the self-degrading cement composition initially will set to form a hardened mass that provides sufficient structural integrity to permit kickoff to occur, after which the degradable material may degrade either entirely, or partially. In certain embodiments in which the degradable material degrades only partially, such partial degradation may create voids within the hardened mass of the self-degrading cement composition that may permit fluid communication through the region of the well bore in which it is placed.
A broad variety of acid sources and base sources may be suitable for use in the self-degrading cement compositions utilized in the methods of the present invention. Examples of suitable acid sources include, inter alia, magnesium chloride (MgCl2), potassium phosphate monobasic (KH2PO4), phosphoric acid (H3PO4), magnesium sulfate (MgSO4), sodium phosphate monobasic (NaH2PO4), and ammonium phosphate monobasic (NH6PO4). Examples of suitable base sources include, inter alia, magnesium oxide (MgO), and ammonia (NH3). An example of a suitable source of magnesium oxide is commercially available from Martin Marietta under the trade name “MagChem 10.” An example of a suitable source of potassium phosphate monobasic is commercially available from Fisher Scientific.
Generally, an acid source and base source may be chosen that may react so as to form an acid-base cement. For example, magnesium oxide may be chosen as a base source, and potassium phosphate monobasic may be chosen as an acid source, so that in the presence of water they may react to produce an acid-base cement having the chemical formula MgKPO4.6H2O. As another example, magnesium oxide may be chosen as a base source, and magnesium chloride may be chosen as an acid source, so that in the presence of water they may react to produce an acid-base cement having three oxychloride phases; one oxychloride phase may have the chemical formula 5Mg(OH)2MgCl2.8H2O, which may be referred to as “5-form.” As another example, magnesium oxide may be chosen as a base source, and phosphoric acid may be chosen as an acid source, so that in the presence of water they may react to produce an acid-base cement having the chemical formula MgHPO4.3H2O. As still another example, magnesium oxide may be chosen as a base source, and magnesium sulfate may be chosen as an acid source, so that in the presence of water they may react to produce an acid-base cement having four possible oxysulfate phases; one oxysulfate phase may have the chemical formula 3 Mg(OH)2MgSO4.8H2O, which may be referred to as “3-form.” As still another example, magnesium oxide may be chosen as a base source, and ammonium phosphate monobasic may be chosen as an acid source, so that in the presence of water they may react to produce an acid-base cement having the chemical formula Mg(NH4)PO4.6H2O. A broad variety of acid sources and base sources may be used, and a broad variety of acid-base cements may be produced, in accordance with the present invention, including, but not limited to, those acid sources, base sources, and acid-base cements that are disclosed in “Acid-Base Cements: Their Biomedical and Industrial Applications,” by Alan D. Wilson and John W. Nicholson (Cambridge Univ. Press, 1993).
Generally, the acid source and base source may be present in the self-degrading cement composition in a stoichiometric amount. For example, in certain embodiments of the present invention wherein magnesium oxide is used as a base source and potassium phosphate monobasic is used as an acid source, their relative concentrations may be illustrated by Equation 1 below:
0.15 grams MgO+0.52 grams KH2PO4+0.33 grams H2O→1 gram MgKPO4.6H2O EQUATION 1
Equation 1 is exemplary only, and may be modified as one of ordinary skill in the art will recognize, with the benefit of this disclosure. For example, additional quantities of magnesium oxide may be included, in amounts in the range of from about 1% excess by weight to about 25% excess by weight.
The self-degrading cement compositions utilized in the methods of the present invention generally comprise a water source. The water source may comprise fresh water, salt water (e.g., water containing one or more salts dissolved therein), brine (e.g., saturated salt water), or seawater. Generally, any water source may be used, provided that it does not contain an excess of compounds that may adversely affect other components in the self-degrading cement composition.
A broad variety of materials may be suitable as the degradable materials in the self-degrading cement compositions utilized in the methods of the present invention. In certain embodiments of the present invention, the degradable material may be a degradable polymer. The terms “degradation” or “degradable” refer to both the two relatively extreme cases of hydrolytic degradation that the degradable material may undergo, e.g., heterogeneous (or bulk erosion) and homogeneous (or surface erosion), and any stage of degradation in between these two. This degradation can be a result of, inter alia, a chemical or thermal reaction, or a reaction induced by radiation. The terms “polymer” or “polymers” as used herein do not imply any particular degree of polymerization; for instance, oligomers are encompassed within this definition.
A polymer is considered to be “degradable” herein if it is capable of undergoing an irreversible degradation when used in subterranean applications, e.g., in a well bore. The term “irreversible” as used herein means that the degradable material should degrade in situ (e.g., within a well bore) but should not recrystallize or reconsolidate in situ after degradation (e.g., in a well bore).
The degradability of a degradable polymer often depends, at least in part, on its backbone structure. For instance, the presence of hydrolyzable and/or oxidizable linkages in the backbone often yields a material that will degrade as described herein. The rates at which such polymers degrade are dependent on the type of repetitive unit, composition, sequence, length, molecular geometry, molecular weight, morphology (e.g., crystallinity, size of spherulites, and orientation), hydrophilicity, hydrophobicity, surface area, and additives. Also, the environment to which the polymer is subjected may affect how it degrades, e.g., temperature, presence of moisture, oxygen, microorganisms, enzymes, pH, and the like.
Suitable examples of degradable polymers that may be used in accordance with the present invention include, but are not limited to, those described in the publication of Advances in Polymer Science, Vol. 157 entitled “Degradable Aliphatic Polyesters,” edited by A. C. Albertsson, pages 1-138. Specific examples include homopolymers, random, block, graft, and star- and hyper-branched aliphatic polyesters. Such suitable polymers may be prepared by polycondensation reactions, ring-opening polymerizations, free radical polymerizations, anionic polymerizations, carbocationic polymerizations, coordinative ring-opening polymerizations, as well as by any other suitable process. Examples of suitable degradable polymers that may be used in conjunction with the methods of this invention include, but are not limited to, aliphatic polyesters; poly(lactides); poly(glycolides); poly(ε-caprolactones); poly(hydroxy ester ethers); poly(hydroxybutyrates); poly(anhydrides); polycarbonates; poly(orthoesters); poly(amino acids); poly(ethylene oxides); poly(phosphazenes); poly ether esters, polyester amides, polyamides, and copolymers or blends of any of these degradable polymers, and derivatives of these degradable polymers. The term “copolymer” as used herein is not limited to the combination of two polymers, but includes any combination of polymers, e.g., terpolymers and the like. As referred to herein, the term “derivative” is defined herein to include any compound that is made from one of the listed compounds, for example, by replacing one atom in the base compound with another atom or group of atoms. Of these suitable polymers, aliphatic polyesters such as poly(lactic acid), poly(anhydrides), poly(orthoesters), and poly(lactide)-co-poly(glycolide) copolymers are preferred. Poly(lactic acid) is especially preferred. Poly(orthoesters) also may be preferred. Other degradable polymers that are subject to hydrolytic degradation also may be suitable. One's choice may depend on the particular application and the conditions involved. Other guidelines to consider include the degradation products that result, the time for required for the requisite degree of degradation, and the desired result of the degradation (e.g., voids).
Aliphatic polyesters degrade chemically, inter alia, by hydrolytic cleavage. Hydrolysis can be catalyzed by either acids or bases. Generally, during the hydrolysis, carboxylic end groups may be formed during chain scission, which may enhance the rate of further hydrolysis. This mechanism is known in the art as “autocatalysis,” and is thought to make polyester matrices more bulk-eroding.
Suitable aliphatic polyesters have the general formula of repeating units shown below:
where n is an integer between 75 and 10,000 and R is selected from the group consisting of hydrogen, alkyl, aryl, alkylaryl, acetyl, heteroatoms, and mixtures thereof. In certain embodiments of the present invention wherein an aliphatic polyester is used, the aliphatic polyester may be poly(lactide). Poly(lactide) is synthesized either from lactic acid by a condensation reaction or, more commonly, by ring-opening polymerization of cyclic lactide monomer. Since both lactic acid and lactide can achieve the same repeating unit, the general term poly(lactic acid) as used herein refers to writ of formula I without any limitation as to how the polymer was made (e.g., from lactides, lactic acid, or oligomers), and without reference to the degree of polymerization or level of plasticization.
The lactide monomer exists generally in three different forms: two stereoisomers (L- and D-lactide) and racemic D,L-lactide (meso-lactide). The oligomers of lactic acid and the oligomers of lactide are defined by the formula:
where m is an integer in the range of from greater than or equal to about 2 to less than or equal to about 75. In certain embodiments, m may be an integer in the range of from greater than or equal to about 2 to less than or equal to about 10. These limits may correspond to number average molecular weights below about 5,400 and below about 720, respectively. The chirality of the lactide units provides a means to adjust, inter alia, degradation rates, as well as physical and mechanical properties. Poly(L-lactide), for instance, is a semicrystalline polymer with a relatively slow hydrolysis rate. This could be desirable in applications of the present invention in which a slower degradation of the degradable material is desired. Poly(D,L-lactide) may be a more amorphous polymer with a resultant faster hydrolysis rate. This may be suitable for other applications in which a more rapid degradation may be appropriate. The stereoisomers of lactic acid may be used individually, or may be combined in accordance with the present invention. Additionally, they may be copolymerized with, for example, glycolide or other monomers like ε-caprolactone, 1,5-dioxepan-2-one, trimethylene carbonate, or other suitable monomers to obtain polymers with different properties or degradation times. Additionally, the lactic acid stereoisomers can be modified by blending high and low molecular weight polylactide or by blending polylactide with other polyesters. In embodiments wherein polylactide is used as the degradable material, certain preferred embodiments employ a mixture of the D and L stereoisomers, designed so as to provide a desired degradation time and/or rate. Examples of suitable sources of degradable material are poly(lactic acids) that are commercially available from Cargill Dow under the trade names “6250D” and “5639A.”
Aliphatic polyesters useful in the present invention may be prepared by substantially any of the conventionally known manufacturing methods such as those described in U.S. Pat. Nos. 6,323,307; 5,216,050; 4,387,769; 3,912,692; and 2,703,316, the relevant disclosures of which are incorporated herein by reference.
Polyanhydrides are another type of degradable polymer that may be suitable for use in the present invention. Polyanhydride hydrolysis proceeds, inter alia, via free carboxylic acid chain-ends to yield carboxylic acids as final degradation products. Their erosion time can be varied over a broad range of changes in the polymer backbone. Examples of suitable polyanhydrides include poly(adipic anhydride), poly(suberic anhydride), poly(sebacic anhydride), and poly(dodecanedioic anhydride). Other suitable examples include, but are not limited to, poly(maleic anhydride) and poly(benzoic anhydride).
The physical properties of degradable polymers may depend on several factors including, but not limited to, the composition of the repeat units, flexibility of the chain, presence of polar groups, molecular mass, degree of branching, crystallinity, and orientation. For example, short chain branches may reduce the degree of crystallinity of polymers while long chain branches may lower the melt viscosity and may impart, inter alia, extensional viscosity with tension-stiffening behavior. The properties of the material utilized further may be tailored by blending, and copolymerizing it with another polymer, or by a change in the macromolecular architecture (e.g., hyper-branched polymers, star-shaped, or dendrimers, and the like). The properties of any such suitable degradable polymers (e.g., hydrophobicity, hydrophilicity, rate of degradation, and the like) can be tailored by introducing select functional groups along the polymer chains. For example, poly(phenyllactide) will degrade at about one-fifth of the rate of racemic poly(lactide) at a pH of 7.4 at 55° C. One of ordinary skill in the art, with the benefit of this disclosure, will be able to determine the appropriate functional groups to introduce to the polymer chains to achieve the desired physical properties of the degradable polymers.
Whichever degradable material is used in the present invention, the degradable material may have any shape, including, but not limited to, particles having the physical shape of platelets, shavings, flakes, ribbons, rods, strips, spheroids, toroids, pellets, tablets, or any other physical shape. In certain embodiments of the present invention, the degradable material used may comprise a mixture of fibers and spherical particles. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the specific degradable material that may be used in accordance with the present invention, and the preferred size and shape for a given application.
In certain embodiments of the present invention, the degradable material used may comprise a self-degrading fiber that comprises an outer shell and a core liquid, wherein the outer shell comprises a degradable polymer and substantially retains the core liquid. In certain embodiments of the present invention, the outer shell may comprise a degradable polymer that is subject to hydrolytic degradation. The core liquid may comprise a liquid that is able to at least partially facilitate or catalyze the hydrolysis of the degradable polymer in the outer shell. Optionally, the self-degrading fiber may comprise a coating on the outer shell and/or a suitable additive within the core liquid, e.g., an additive chosen to interact with the degradable polymer, its degradation products, or the surrounding subterranean environment. In certain embodiments, the outer shell may be non-porous. Methods of making the self-degrading fibers described herein include any suitable method for forming hollow fibers. One such method involves extruding hollow fibers made from a desired degradable polymer, soaking the hollow fibers in a liquid that will be the core liquid, saturating the hollow fibers with the liquid, and drying the exterior of the outer core of the fibers in such a manner that the liquid is retained in the hollow fibers and becomes a core liquid. Another method involves extruding a spinning solution of a chosen degradable polymer from an annular slit of a double pipe orifice to form a sheath solution while simultaneously extruding a liquid through the inside pipe of the double pipe orifice, to form a core liquid within the hollow fibers. Another method involves using capillary action to place the core liquid in an already-formed suitable hollow fiber. Other suitable methods known in the art may be used as well.
In choosing the appropriate degradable material, one should consider the degradation products that will result, and choose a degradable material that will not yield degradation products that would adversely affect other operations or components utilized in that particular application. The choice of degradable material also may depend, at least in part, on the conditions of the well (e.g., well bore temperature). For instance, lactides have been found to be suitable for lower temperature wells, including those within the range of 60° F. to 150° F., and polylactides have been found to be suitable for well bore temperatures above this range.
In certain embodiments, the degradation of the degradable material could result in a final degradation product having the potential to affect the pH of the self-degrading cement compositions utilized in the methods of the present invention. For example, in certain embodiments wherein the degradable material is poly(lactic acid), the degradation of the poly(lactic acid) to produce lactic acid may alter the pH of the self-degrading cement composition. In certain embodiments, a buffer compound may be included within the self-degrading cement compositions utilized in the methods of the present invention in an amount sufficient to neutralize the final degradation product. Examples of suitable buffer compounds include, but are not limited to, calcium carbonate, magnesium oxide, ammonium acetate, and the like. One of ordinary skill in the art, with the benefit of this disclosure, will be able to identify the proper type and concentration of a buffer compound to include in the self-degrading cement composition for a particular application. An example of a suitable buffer compound comprises ammonium acetate and is commercially available from Halliburton Energy Services, Inc., under the trade name “BA-20.”
The degradable materials utilized in the methods of the present invention may degrade over time at a rate that depends upon, among other things, the well bore temperature. Referring now to
Using a disposable pipette, an aliquot was removed from each flask and placed in a 10 mL beaker. A carefully measured aliquot of 5.00 mL was removed and placed in a 50 mL round-bottom flask. The contents of the flasks were frozen by placing the flasks in liquid nitrogen. The flasks then were placed on a high vacuum line and the samples were allowed to dry overnight. After 24 hours, 1 mL of D2O was added to each flask, and the contents of the flask were stirred until the residue re-dissolved. The freeze drying was repeated to remove D2O and residual water. The remaining materials were dissolved in D2O for NMR measurement.
The 1H NMR spectrum was collected using a Bruker 300 Avance NMR spectrometer operating at 300 MHz, using a 5 mm QNP probe at various time intervals. The integrated area of the methyl proton peak of lactic acid was compared to the integrated area of the 6.919 mM sodium p-toluene sulfonate internal standard, and the lactic acid concentration for each point displayed in
For certain embodiments of the self-degrading cement compositions utilized in the methods of the present invention wherein poly(lactic acid) is used as the degradable material, Table 1 below demonstrates the relationship that may exist between the concentration of poly(lactic acid) in the self-degrading cement composition and the degree of void space that may result in the solid mass after the poly(lactic acid) is allowed to degrade.
Optionally, the self-degrading cement compositions utilized in the methods of the present invention may include a set retarder. Generally, any set retarder may be used with the self-degrading cement compositions utilized in the methods of the present invention. Examples of set retarders suitable for use in the self-degrading cement compositions utilized in the methods of the present invention include, but are not limited to, sodium citrate and sodium borate. An example of a suitable commercially-available set retarder is Component R, available from Halliburton Energy Services, Inc., of Duncan, Okla. Where included, the set retarder may be present in the self-degrading cement compositions utilized in the methods of the present invention in an amount in the range of from about 0.05% to about 10% by weight of the self-degrading cement composition. In certain embodiments, the set retarder may be present in the self-degrading cement compositions utilized in the methods of the present invention in an amount in the range of from about 0.1% to about 4% by weight of the self-degrading cement composition.
The self-degrading cement compositions utilized in the methods of the present invention optionally may include a strength-enhancing additive, which may act, among other things, to increase the stability of the set cement. Examples of these strength-enhancing additives include, but are not limited to, Newberyite, calcium carbonate, and Struvite. Where included, the strength-enhancing additive may be present in the self-degrading cement compositions utilized in the methods of the present invention in an amount in the range of from about 5% to about 60% by weight of the self-degrading cement composition. In certain embodiments, the strength-enhancing additive may be present in the self-degrading cement compositions utilized in the methods of the present invention in an amount in the range of from about 10% to about 30% by weight of the self-degrading cement composition.
Examples of other additional additives that may be added to the self-degrading cement compositions of the present invention include, among other things, fluid loss control additives, salts, vitrified shale, fly ash, fumed silica, betonies, viscosities, suspending agents, dispersants, and the like. An example of a suitable fly ash is “POZMIX® A,” commercially available from Halliburton Energy Services, Inc., of Duncan, Okla. An example of a suitable source of fumed silica is “SILICALITE™,” commercially available from Halliburton Energy Services, Inc., of Duncan, Okla. An example of a suitable viscosifier is “VERSASET™,” commercially available from Halliburton Energy Services, Inc., of Duncan, Okla. One skilled in the art, with the benefit of this disclosure, will be able to determine which additional additives are appropriate for a particular application of the methods of the present invention, as well as the amounts of those additives that should be used.
2. Methods of Forming and Using Kickoff Plugs
In one embodiment, the present invention provides a method of placing a plug in a well bore in a subterranean formation. The well bore in which the self-degrading cement composition is placed may be an open hole, a cased hole, or any combination thereof.
Referring now to
Referring now to
Referring now to
After the placement of the self-degrading cement composition 2 within the subterranean formation, the water source within the self-degrading cement composition 2 may combine with the dry materials in the self-degrading cement composition 2 to form what may be referred to as a “hydrate,” e.g., a solid compound comprising water molecules that may combine in a definite ratio. Furthermore, the water molecules within the hydrate may provide a hydrolysis source for the degradable material.
The amount of time required for the self-degrading cement composition 2 to set to form a hardened kickoff plug 150 may depend upon a variety of factors, including, but not limited to, the temperature in well bore 100, the desired size and/or strength of the kickoff plug 150, the formulation of the self-degrading cement composition 2, and/or the presence of a set retarder. One of ordinary skill in the art, with the benefit of this disclosure, will recognize the amount of time required for the self-degrading cement composition 2 to set. In some embodiments of the present invention, permitting the self-degrading cement composition 2 to set to form a hardened kickoff plug 150 may require waiting an amount of time in the range of from about 15 minutes to about 72 hours.
Referring now to
In some embodiments, the methods of the present invention further may comprise contacting the hardened kickoff plug 150 with a drill string such that the path of the drill string deviates away from well bore 100 to a desired degree and allows the drill string to continue drilling a directional hole at a desired deviation from well bore 100. Referring now to
Referring now to
Certain embodiments of the methods of the present invention may be used in well bores comprising casing. Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. In no way should the following examples be read to limit, or to define, the scope of the invention.
Sample compositions were formed as follows. First, 7.58 grams of magnesium oxide were dry blended with 25.75 grams of potassium phosphate monobasic crystals (KH2PO4), and mixed with 16.67 grams of tap water. The mixture was stirred for some time, and poly(lactic acid) (“6250D”) was added, generally in an amount in the range of from about 35% by weight to about 40% by weight. Certain of the sample compositions further comprised an acid-base cement referred to as Newberyite, and having the chemical formula MgH(PO4).3H2O. Among other things, Newberyite is thought to impart strength-enhancing properties to the sample composition, and the additional water that Newberyite may supply may facilitate hydrolysis of the degradable material (6250D, in this example). Table 2 sets forth the respective amounts of 6250D and Newberyite included in a particular sample composition.
Each sample composition was placed in a 20 mL plastic cylinder, and was allowed to set therein into a hard rod. Each rod then was left for a designated cure time at room temperature. Next, the set rod was taken out of the cylinder and either tested for compressibility or directly placed in a bomb supplied by PARR Instrument Company, Moline, Ill. Among other things, the bomb prevented the escape of water that may have been present in the set rod. The bomb was heated in a stove at 250° F. After a time (listed as “PARR Time” in Table 3 below), the bomb was removed from the stove, and its contents were observed to see whether or not degradation occurred.
Certain sample compositions were tested for compressibility using an apparatus supplied by Tinius Olsen Company of Willow Grove, Pa. The procedure was performed as follows. After the sample composition had cured and set into a hard rod, the rod was cut down to a 1 inch diameter and a 3 inch length. Two faces of the rod were smoothed. The rod then was placed under the Tinius Olsen compressibility load cell and subjected to a displacement load at a rate of 0.07 inches per minute. The maximum loading that each rod could withstand until failure was recorded.
The results of the testing are set forth in Table 3 below.
Example 1 demonstrates, inter alia, that the combination of a degradable material and an acid-base cement may be suitable for use in the methods of the present invention.
Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims. The terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/048,272 now U.S. Pat. No. 7,353,876 and Ser. No. 11/048,591, both entitled “Self-Degrading Cement Compositions and Methods of Using Self-Degrading Cement Compositions in Subterranean Formations,” both filed on Feb. 1, 2005, the entirety of which are herein incorporated by reference, and from which priority is claimed pursuant to 35 U.S.C. § 120. This application is also related to co-pending U.S. patent application Ser. No. 11/188,280, entitled “Methods of Isolating Zones in Subterranean formations using Self-Degrading Cement Compositions,” and U.S. patent application Ser. No. 11/188,262, entitled “Kickoff Plugs Comprising a Self-Degrading Cement in Subterranean Well Bores,” both filed on the same day herewith, the entirety of both of which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2238671 | Woodhouse | Apr 1941 | A |
2288557 | Vollmer | Jun 1942 | A |
2703316 | Schneider | Mar 1955 | A |
3044547 | Jarboe, Jr. | Jul 1962 | A |
3173484 | Huitt et al. | Mar 1965 | A |
3195635 | Fast | Jul 1965 | A |
3272650 | MacVittie | Sep 1966 | A |
3302719 | Fischer | Feb 1967 | A |
3364995 | Atkins et al. | Jan 1968 | A |
3366178 | Malone et al. | Jan 1968 | A |
3368623 | Carter et al. | Feb 1968 | A |
3448800 | Parker et al. | Jun 1969 | A |
3455390 | Gallus | Jul 1969 | A |
3784585 | Schmitt et al. | Jan 1974 | A |
3819525 | Hattenbrun | Jun 1974 | A |
3828854 | Templeton et al. | Aug 1974 | A |
3836465 | Rhudy et al. | Sep 1974 | A |
3862663 | Curtice et al. | Jan 1975 | A |
3868998 | Lybarger et al. | Mar 1975 | A |
3912692 | Casey et al. | Oct 1975 | A |
3948672 | Harnsberger | Apr 1976 | A |
3955993 | Curtice et al. | May 1976 | A |
3960736 | Free et al. | Jun 1976 | A |
3968840 | Tate | Jul 1976 | A |
3986355 | Klaeger | Oct 1976 | A |
3998272 | Maly | Dec 1976 | A |
3998744 | Arnold et al. | Dec 1976 | A |
4010071 | Colegrove | Mar 1977 | A |
4068718 | Cooke, Jr. et al. | Jan 1978 | A |
4083407 | Griffin, Jr. et al. | Apr 1978 | A |
4169798 | DeMartino | Oct 1979 | A |
4172066 | Zweigle et al. | Oct 1979 | A |
4210455 | Metcalf et al. | Jul 1980 | A |
4261421 | Watanabe | Apr 1981 | A |
4265673 | Pace et al. | May 1981 | A |
4299825 | Lee | Nov 1981 | A |
4387769 | Erbstoesser et al. | Jun 1983 | A |
4460052 | Gockel | Jul 1984 | A |
4470915 | Conway | Sep 1984 | A |
4498995 | Gockel | Feb 1985 | A |
4502540 | Byham | Mar 1985 | A |
4506734 | Nolte | Mar 1985 | A |
4521316 | Sikorski | Jun 1985 | A |
4526695 | Erbstoesser et al. | Jul 1985 | A |
4632876 | Laird et al. | Dec 1986 | A |
4694905 | Armbruster | Sep 1987 | A |
4715967 | Bellis et al. | Dec 1987 | A |
4716964 | Erbstoesser et al. | Jan 1988 | A |
4767706 | Levesque | Aug 1988 | A |
4772346 | Anderson et al. | Sep 1988 | A |
4785884 | Armbruster | Nov 1988 | A |
4793416 | Mitchell | Dec 1988 | A |
4797262 | Dewitz | Jan 1989 | A |
4809783 | Hollenbeck et al. | Mar 1989 | A |
4817721 | Pober | Apr 1989 | A |
4822500 | Dobson, Jr. et al. | Apr 1989 | A |
4829100 | Murphey et al. | May 1989 | A |
4836940 | Alexander | Jun 1989 | A |
4843118 | Lai et al. | Jun 1989 | A |
4848467 | Cantu et al. | Jul 1989 | A |
4863980 | Cowan et al. | Sep 1989 | A |
4886354 | Welch et al. | Dec 1989 | A |
4894231 | Moreau et al. | Jan 1990 | A |
4957165 | Cantu et al. | Sep 1990 | A |
4961466 | Himes et al. | Oct 1990 | A |
4986353 | Clark et al. | Jan 1991 | A |
4986354 | Cantu et al. | Jan 1991 | A |
4986355 | Cassad et al. | Jan 1991 | A |
5034139 | Reid et al. | Jul 1991 | A |
5082056 | Tackett, Jr. | Jan 1992 | A |
5086850 | Harris et al. | Feb 1992 | A |
5142023 | Gruber et al. | Aug 1992 | A |
5151203 | Riley et al. | Sep 1992 | A |
5152781 | Tang et al. | Oct 1992 | A |
5161615 | Hutchins et al. | Nov 1992 | A |
5203834 | Hutchins et al. | Apr 1993 | A |
5213446 | Dovan | May 1993 | A |
5216050 | Sinclair | Jun 1993 | A |
5247059 | Gruber et al. | Sep 1993 | A |
5249628 | Surjaatmadja | Oct 1993 | A |
5251697 | Shuler | Oct 1993 | A |
5295542 | Cole et al. | Mar 1994 | A |
5298069 | King et al. | Mar 1994 | A |
5304620 | Holtmyer et al. | Apr 1994 | A |
5311945 | Cowan et al. | May 1994 | A |
5314031 | Hale et al. | May 1994 | A |
5325923 | Surjaatmadja et al. | Jul 1994 | A |
5330005 | Card et al. | Jul 1994 | A |
5359026 | Gruber | Oct 1994 | A |
5360068 | Sprunt et al. | Nov 1994 | A |
5363916 | Himes et al. | Nov 1994 | A |
5368103 | Heathman et al. | Nov 1994 | A |
5373901 | Norman et al. | Dec 1994 | A |
5386874 | Laramay et al. | Feb 1995 | A |
5396957 | Surjaatmadja et al. | Mar 1995 | A |
5402846 | Jennings, Jr. et al. | Apr 1995 | A |
5439055 | Card et al. | Aug 1995 | A |
5460226 | Lawson et al. | Oct 1995 | A |
5464060 | Hale et al. | Nov 1995 | A |
5475080 | Gruber et al. | Dec 1995 | A |
5484881 | Gruber et al. | Jan 1996 | A |
5487897 | Polson et al. | Jan 1996 | A |
5492177 | Yeh et al. | Feb 1996 | A |
5496557 | Feijen et al. | Mar 1996 | A |
5497830 | Boles et al. | Mar 1996 | A |
5499678 | Surjaatmadja et al. | Mar 1996 | A |
5501276 | Weaver et al. | Mar 1996 | A |
5505787 | Yamaguchi | Apr 1996 | A |
5512071 | Yam et al. | Apr 1996 | A |
5518541 | Fogel et al. | May 1996 | A |
5529123 | Carpenter et al. | Jun 1996 | A |
5536807 | Gruber et al. | Jul 1996 | A |
5555936 | Pirri et al. | Sep 1996 | A |
5566757 | Carpenter et al. | Oct 1996 | A |
5591700 | Harris et al. | Jan 1997 | A |
5594095 | Gruber et al. | Jan 1997 | A |
5602083 | Gabrysch et al. | Feb 1997 | A |
5604186 | Hunt et al. | Feb 1997 | A |
5607905 | Dobson, Jr. et al. | Mar 1997 | A |
5613558 | Dillenbeck | Mar 1997 | A |
5670473 | Scepanski | Sep 1997 | A |
5697440 | Weaver et al. | Dec 1997 | A |
5698322 | Tsai et al. | Dec 1997 | A |
5723416 | Liao | Mar 1998 | A |
5765642 | Surjaatmadja | Jun 1998 | A |
5783527 | Dobson, Jr. et al. | Jul 1998 | A |
5791415 | Nguyen et al. | Aug 1998 | A |
5799734 | Norman et al. | Sep 1998 | A |
5833000 | Weaver et al. | Nov 1998 | A |
5849401 | El-Afandi et al. | Dec 1998 | A |
5853048 | Weaver et al. | Dec 1998 | A |
5893416 | Read | Apr 1999 | A |
5908073 | Nguyen et al. | Jun 1999 | A |
5916849 | House | Jun 1999 | A |
5924488 | Nguyen et al. | Jul 1999 | A |
5964291 | Bourne et al. | Oct 1999 | A |
5977030 | House | Nov 1999 | A |
5979557 | Card et al. | Nov 1999 | A |
5996693 | Heathman | Dec 1999 | A |
6004400 | Bishop et al. | Dec 1999 | A |
6024170 | McCabe et al. | Feb 2000 | A |
6026903 | Shy et al. | Feb 2000 | A |
6028113 | Scepanski | Feb 2000 | A |
6047772 | Weaver et al. | Apr 2000 | A |
6073694 | Crawshaw | Jun 2000 | A |
6110875 | Tjon-Joe-Pin et al. | Aug 2000 | A |
6114410 | Betzold | Sep 2000 | A |
6123159 | Brookey et al. | Sep 2000 | A |
6123965 | Jacob et al. | Sep 2000 | A |
6131661 | Conner et al. | Oct 2000 | A |
6135987 | Tsai et al. | Oct 2000 | A |
6143698 | Murphey et al. | Nov 2000 | A |
6148917 | Brookey et al. | Nov 2000 | A |
6162766 | Muir et al. | Dec 2000 | A |
6169058 | Le et al. | Jan 2001 | B1 |
6172011 | Card et al. | Jan 2001 | B1 |
6189615 | Sydansk | Feb 2001 | B1 |
6202751 | Chatterji et al. | Mar 2001 | B1 |
6203213 | Seo et al. | Mar 2001 | B1 |
6209643 | Nguyen et al. | Apr 2001 | B1 |
6209646 | Reddy et al. | Apr 2001 | B1 |
6214773 | Harris et al. | Apr 2001 | B1 |
6242390 | Mitchell et al. | Jun 2001 | B1 |
6258160 | Chatterji et al. | Jul 2001 | B1 |
6260622 | Blok et al. | Jul 2001 | B1 |
6291013 | Gibson et al. | Sep 2001 | B1 |
6300286 | Dobson, Jr. et al. | Oct 2001 | B1 |
6302209 | Thompson et al. | Oct 2001 | B1 |
6308788 | Patel et al. | Oct 2001 | B1 |
6311773 | Todd et al. | Nov 2001 | B1 |
6323307 | Bigg et al. | Nov 2001 | B1 |
6326458 | Gruber et al. | Dec 2001 | B1 |
6328105 | Betzold | Dec 2001 | B1 |
6330917 | Chatterji et al. | Dec 2001 | B2 |
6357527 | Norman et al. | Mar 2002 | B1 |
6364945 | Chatterji et al. | Apr 2002 | B1 |
6380138 | Ischy et al. | Apr 2002 | B1 |
6387986 | Moradi-Araghi et al. | May 2002 | B1 |
6390195 | Nguyen et al. | May 2002 | B1 |
6394185 | Constien | May 2002 | B1 |
6422314 | Todd et al. | Jul 2002 | B1 |
6422326 | Brookey et al. | Jul 2002 | B1 |
6432155 | Swazey et al. | Aug 2002 | B1 |
6454003 | Chang et al. | Sep 2002 | B1 |
6485947 | Rajgarhia et al. | Nov 2002 | B1 |
6488763 | Brothers et al. | Dec 2002 | B2 |
6494263 | Todd | Dec 2002 | B2 |
6508305 | Brannon et al. | Jan 2003 | B1 |
6509301 | Vollmer et al. | Jan 2003 | B1 |
6527051 | Reddy et al. | Mar 2003 | B1 |
6554071 | Reddy et al. | Apr 2003 | B1 |
6566310 | Chan | May 2003 | B2 |
6569814 | Brady et al. | May 2003 | B1 |
6578630 | Simpson et al. | Jun 2003 | B2 |
6592660 | Nguyen et al. | Jul 2003 | B2 |
6599863 | Palmer et al. | Jul 2003 | B1 |
6667279 | Hessert et al. | Dec 2003 | B1 |
6669771 | Tokiwa et al. | Dec 2003 | B2 |
6681856 | Chatterji et al. | Jan 2004 | B1 |
6686328 | Binder | Feb 2004 | B1 |
6691780 | Nguyen et al. | Feb 2004 | B2 |
6702023 | Harris et al. | Mar 2004 | B1 |
6710019 | Sawdon et al. | Mar 2004 | B1 |
6716797 | Brookey | Apr 2004 | B2 |
6737385 | Todd et al. | May 2004 | B2 |
6761218 | Nguyen et al. | Jul 2004 | B2 |
6763888 | Harris et al. | Jul 2004 | B1 |
6764981 | Eoff et al. | Jul 2004 | B1 |
6793018 | Dawson et al. | Sep 2004 | B2 |
6793730 | Reddy et al. | Sep 2004 | B2 |
6806235 | Mueller et al. | Oct 2004 | B1 |
6817414 | Lee | Nov 2004 | B2 |
6818594 | Freeman et al. | Nov 2004 | B1 |
6837309 | Boney et al. | Jan 2005 | B2 |
6840318 | Lee et al. | Jan 2005 | B2 |
6852173 | Banerjee et al. | Feb 2005 | B2 |
6861394 | Ballard et al. | Mar 2005 | B2 |
6883608 | Parlar et al. | Apr 2005 | B2 |
6886635 | Hossaini et al. | May 2005 | B2 |
6896058 | Munoz, Jr. et al. | May 2005 | B2 |
6904971 | Brothers et al. | Jun 2005 | B2 |
6908506 | Zimmermann | Jun 2005 | B2 |
6949491 | Cooke, Jr. | Sep 2005 | B2 |
6959767 | Horton et al. | Nov 2005 | B2 |
6968898 | Todd et al. | Nov 2005 | B2 |
6978838 | Parlar et al. | Dec 2005 | B2 |
6981552 | Reddy et al. | Jan 2006 | B2 |
6983801 | Dawson et al. | Jan 2006 | B2 |
6987083 | Phillippi et al. | Jan 2006 | B2 |
6997259 | Nguyen | Feb 2006 | B2 |
7000701 | Todd et al. | Feb 2006 | B2 |
7007752 | Reddy et al. | Mar 2006 | B2 |
7021377 | Todd et al. | Apr 2006 | B2 |
7032663 | Nguyen | Apr 2006 | B2 |
7036586 | Roddy et al. | May 2006 | B2 |
7036587 | Munoz, Jr. et al. | May 2006 | B2 |
7044220 | Nguyen et al. | May 2006 | B2 |
7044224 | Nguyen | May 2006 | B2 |
7049272 | Sinclair et al. | May 2006 | B2 |
7063151 | Nguyen et al. | Jun 2006 | B2 |
7066258 | Justus et al. | Jun 2006 | B2 |
7066260 | Sullivan et al. | Jun 2006 | B2 |
7069994 | Cooke, Jr. | Jul 2006 | B2 |
7080688 | Todd et al. | Jul 2006 | B2 |
7093664 | Todd et al. | Aug 2006 | B2 |
7096947 | Todd et al. | Aug 2006 | B2 |
7101829 | Guichard et al. | Sep 2006 | B2 |
7131491 | Blauch et al. | Nov 2006 | B2 |
7132389 | Lee | Nov 2006 | B2 |
7140438 | Frost et al. | Nov 2006 | B2 |
7147067 | Getzlaf et al. | Dec 2006 | B2 |
7151077 | Prud'homme et al. | Dec 2006 | B2 |
7153902 | Altes et al. | Dec 2006 | B2 |
7156174 | Roddy et al. | Jan 2007 | B2 |
7165617 | Lord et al. | Jan 2007 | B2 |
7166560 | Still et al. | Jan 2007 | B2 |
7168489 | Frost et al. | Jan 2007 | B2 |
7172022 | Reddy et al. | Feb 2007 | B2 |
7178596 | Blauch et al. | Feb 2007 | B2 |
7195068 | Todd | Mar 2007 | B2 |
7204312 | Roddy et al. | Apr 2007 | B2 |
7205264 | Boles | Apr 2007 | B2 |
7216705 | Saini et al. | May 2007 | B2 |
7219731 | Sullivan et al. | May 2007 | B2 |
7228904 | Todd et al. | Jun 2007 | B2 |
7261156 | Nguyen et al. | Aug 2007 | B2 |
7264051 | Nguyen et al. | Sep 2007 | B2 |
7265079 | Wilbert et al. | Sep 2007 | B2 |
7267170 | Mang et al. | Sep 2007 | B2 |
7276466 | Todd et al. | Oct 2007 | B2 |
7299869 | Kalman | Nov 2007 | B2 |
7299876 | Lord et al. | Nov 2007 | B2 |
7303014 | Reddy et al. | Dec 2007 | B2 |
7306037 | Nguyen et al. | Dec 2007 | B2 |
7322412 | Badalamenti et al. | Jan 2008 | B2 |
7353876 | Savery et al. | Apr 2008 | B2 |
7353879 | Todd et al. | Apr 2008 | B2 |
7413017 | Nguyen et al. | Aug 2008 | B2 |
7448450 | Luke et al. | Nov 2008 | B2 |
7455112 | Moorehead et al. | Nov 2008 | B2 |
7461697 | Todd et al. | Dec 2008 | B2 |
7475728 | Pauls et al. | Jan 2009 | B2 |
7484564 | Welton et al. | Feb 2009 | B2 |
7497258 | Savery et al. | Mar 2009 | B2 |
7497278 | Schriener et al. | Mar 2009 | B2 |
7506689 | Surjaatmadja et al. | Mar 2009 | B2 |
20010016562 | Muir et al. | Aug 2001 | A1 |
20010032022 | Ricci et al. | Oct 2001 | A1 |
20020036088 | Todd | Mar 2002 | A1 |
20020119169 | Angel et al. | Aug 2002 | A1 |
20020125012 | Dawson et al. | Sep 2002 | A1 |
20030054962 | England et al. | Mar 2003 | A1 |
20030060374 | Cooke, Jr. | Mar 2003 | A1 |
20030114314 | Ballard et al. | Jun 2003 | A1 |
20030130133 | Vallmer | Jul 2003 | A1 |
20030147965 | Bassett et al. | Aug 2003 | A1 |
20030217847 | Reddy et al. | Nov 2003 | A1 |
20030230407 | Vijn et al. | Dec 2003 | A1 |
20030234103 | Lee et al. | Dec 2003 | A1 |
20040014606 | Parlar et al. | Jan 2004 | A1 |
20040014607 | Sinclair et al. | Jan 2004 | A1 |
20040040706 | Hossaini et al. | Mar 2004 | A1 |
20040055747 | Lee | Mar 2004 | A1 |
20040070093 | Mathiowitz et al. | Apr 2004 | A1 |
20040094300 | Sullivan et al. | May 2004 | A1 |
20040099416 | Vijn et al. | May 2004 | A1 |
20040106525 | Willberg et al. | Jun 2004 | A1 |
20040138068 | Rimmer et al. | Jul 2004 | A1 |
20040152601 | Still et al. | Aug 2004 | A1 |
20040152602 | Boles | Aug 2004 | A1 |
20040170836 | Bond et al. | Sep 2004 | A1 |
20040231845 | Cooke, Jr. | Nov 2004 | A1 |
20040261993 | Nguyen et al. | Dec 2004 | A1 |
20040261996 | Munoz, Jr. et al. | Dec 2004 | A1 |
20050028976 | Nguyen | Feb 2005 | A1 |
20050034861 | Saini et al. | Feb 2005 | A1 |
20050059556 | Munoz, Jr. et al. | Mar 2005 | A1 |
20050059557 | Todd et al. | Mar 2005 | A1 |
20050126785 | Todd et al. | Jun 2005 | A1 |
20050130848 | Todd et al. | Jun 2005 | A1 |
20050167104 | Roddy et al. | Aug 2005 | A1 |
20050183741 | Surjaatmadja et al. | Aug 2005 | A1 |
20050205258 | Reddy et al. | Sep 2005 | A1 |
20050205266 | Todd et al. | Sep 2005 | A1 |
20050252659 | Sullivan et al. | Nov 2005 | A1 |
20050272613 | Cooke, Jr. | Dec 2005 | A1 |
20050277554 | Blauch et al. | Dec 2005 | A1 |
20060016596 | Pauls et al. | Jan 2006 | A1 |
20060032633 | Nguyen | Feb 2006 | A1 |
20060042798 | Badalamenti et al. | Mar 2006 | A1 |
20060046938 | Harris et al. | Mar 2006 | A1 |
20060065397 | Nguyen et al. | Mar 2006 | A1 |
20060086503 | Reddy et al. | Apr 2006 | A1 |
20060105917 | Munoz, Jr. | May 2006 | A1 |
20060105918 | Munoz, Jr. et al. | May 2006 | A1 |
20060108150 | Luke et al. | May 2006 | A1 |
20060169182 | Todd et al. | Aug 2006 | A1 |
20060169448 | Savery et al. | Aug 2006 | A1 |
20060169449 | Mang et al. | Aug 2006 | A1 |
20060169450 | Mang et al. | Aug 2006 | A1 |
20060169453 | Savery et al. | Aug 2006 | A1 |
20060172893 | Todd et al. | Aug 2006 | A1 |
20060172894 | Mang et al. | Aug 2006 | A1 |
20060172895 | Mang et al. | Aug 2006 | A1 |
20060185848 | Surjaatmadja et al. | Aug 2006 | A1 |
20060205608 | Todd | Sep 2006 | A1 |
20060243449 | Welton et al. | Nov 2006 | A1 |
20060247135 | Welton et al. | Nov 2006 | A1 |
20060254774 | Saini et al. | Nov 2006 | A1 |
20060258543 | Saini | Nov 2006 | A1 |
20060258544 | Saini | Nov 2006 | A1 |
20060276345 | Todd et al. | Dec 2006 | A1 |
20070042912 | Welton et al. | Feb 2007 | A1 |
20070049501 | Saini et al. | Mar 2007 | A1 |
20070066492 | Funkhouser et al. | Mar 2007 | A1 |
20070066493 | Funkhouser et al. | Mar 2007 | A1 |
20070078063 | Munoz, Jr. | Apr 2007 | A1 |
20070078064 | Munoz et al. | Apr 2007 | A1 |
20070100029 | Reddy et al. | May 2007 | A1 |
20070238623 | Saini et al. | Oct 2007 | A1 |
20070281868 | Pauls et al. | Dec 2007 | A1 |
20070298977 | Mang et al. | Dec 2007 | A1 |
20080009423 | Mang et al. | Jan 2008 | A1 |
20080026955 | Munoz et al. | Jan 2008 | A1 |
20080026959 | Munoz et al. | Jan 2008 | A1 |
20080026960 | Munoz et al. | Jan 2008 | A1 |
20080027157 | Munoz et al. | Jan 2008 | A1 |
20080070810 | Mang | Mar 2008 | A1 |
20080139415 | Todd et al. | Jun 2008 | A1 |
20080169102 | Carbajal et al. | Jul 2008 | A1 |
20090062157 | Munoz et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
0 510 762 | Mar 1996 | EP |
0 879 935 | Nov 1998 | EP |
1 413 710 | Apr 2004 | EP |
2 412 389 | Mar 2004 | GB |
2004181820 | Dec 2002 | JP |
WO 9315127 | Aug 1993 | WO |
WO 9407949 | Apr 1994 | WO |
WO 9408078 | Apr 1994 | WO |
WO 9408090 | Apr 1994 | WO |
WO 9509879 | Apr 1995 | WO |
WO 9711845 | Apr 1997 | WO |
WO 9927229 | Jun 1999 | WO |
WO 0057022 | Sep 2000 | WO |
WO 0102698 | Jan 2001 | WO |
WO 0187797 | Nov 2001 | WO |
WO 0194744 | Dec 2001 | WO |
WO 0212674 | Feb 2002 | WO |
WO 03027431 | Apr 2003 | WO |
WO 2004007905 | Jan 2004 | WO |
WO 2004037946 | May 2004 | WO |
WO 2004038176 | May 2004 | WO |
WO 2005000993 | Jan 2005 | WO |
WO 2007010237 | Jan 2007 | WO |
WO 2007010239 | Jan 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20060169452 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11048272 | Feb 2005 | US |
Child | 11188238 | US | |
Parent | 11048591 | Feb 2005 | US |
Child | 11048272 | US |