Not Applicable
Not Applicable
A volumetric 3D display displays 3D images in a real 3D space. Each “voxel” in a volumetric image locates actually and physically at the spatial position where it is supposed to be, and light rays travel directly from that position toward omni-directions to form a real image in the eyes of viewers. As a result, a volumetric display possesses all major elements in both physiological and psychological depth cues and allows 360° walk-around viewing by multiple viewers without the need of special glasses.
For example, Tsao in Japanese patent application publication no. P2002-268136A describes a volumetric 3D (V3D) display that a “rotary reciprocating” mechanism drives a flat panel display to create volumetric 3D images directly, as illustrated in
Another category of V3D displays uses a moving screen and projecting 2D images on the screen.
One issue of a V3D display is the limit of psychological visual depth. The display space has a finite size and therefore the physiological visual depth is limited. In contrast, a 2D display can display basically an infinite depth by psychological cues in the form of perspective view.
This invention is to describe methods of displaying both physiological and psychological depth cues in a volumetric image display. This added psychological visual depth can display a background image of infinite depth and is useful in applications such as flight simulation or in gaming.
The basic concept is to combine a skewed coordinate system with a 2D image plane and display the V3D object (size and position) as a V3D image according to the skewed 3D coordinates if the object falls in the physical 3D space, but display the object as a 2D perspective image if it falls beyond the 3D space into the 2D plane's virtual space.
There are two preferred methods to display images in the 2D image plane. The first method is to display images on the 2D image plane as planar volumetric 3D images. A variation of the first method displays the 2D image by texture mapping of a 2D map. Another variation displays the 2D image by refined multiple image frames, including multiple frames by pulse-width modulation. The second method uses a separate projector.
One advantage of V3D display based on rotary reciprocating screen (projection or active screen) is that high quality 2D image can be projected on selected frames. Making use of this advantage plus a skewed coordinate system, additional psychological visual depth can be added to the existing physical depth of V3D displays to further enhance the 3D visual effect.
The basic concept is to combine a skewed coordinate system with a 2D image plane and display the V3D object (size and position) as a V3D image according to the skewed 3D coordinates if the object falls in the physical 3D space, but display the object as a 2D perspective image if it falls beyond the 3D space into the 2D plane's virtual space.
First, in the non-skewed coordinate system, set a reference plane bb′ of size W at a distance Ob from eyes to just fit in the 2D image plane BC in the eye view. The relation between W and Ob is:
BC/W=OB/Ob (101)
Assuming CQ is a straight line, then the mapping is to map the rectangular space P b b′Q into the skewed space PBCQ, and to map the space beyond bb′ plane into the virtual space displayed on the 2D image plane BC.
For a plane (f f′) of size W at a distance Of from eye location, Of<Ob, its corresponding location OF and size FF′ in the skewed coordinate system can be found.
Per triangle O f f′,
OF/Of=FF′/W. (102)
Per triangle LCQ,
BF/BP=(FF′−PL)/(PQ−PL)
(OB−OF)/BP=(FF′−PL)/(W−PL) (103)
OF and FF′ can be obtained as a function of Of and other known parameters from eqn. (102) and (103). This means that an image of size FF′ at OF appears juts as big as image f f′ at Of.
For a plane (h h′) of size W at a distance Oh from eye location, Oh>Ob, its corresponding size BH′ on BC can be found from triangle Ohh′,
BH′/W=OB/Oh (104)
Any point on plane f f′, 450, can be mapped to a location on plane FF′, 451, by proportion form the size ratio, e.g.
Fn/fm=FF′/W (105).
The same principle applies to mapping points on plane h h′ to plane BH′.
Accordingly, any point in the non-skewed space beyond (below) PQ plane can be mapped either into the skewed space PBCQ or into the 2D image plane on BC using eqn. (102)-(105).
There are basically two preferred methods to display images in the 2D image plane. The first method is to display images on the 2D image plane as planar volumetric 3D images. Tsao U.S. provisional patent application No. 60/589,626 “Data Rendering Method for Volumetric 3D Displays” describes methods of rendering geometric primitives such as line and triangular surface. It also describes a method of texture mapping. By the method of texture mapping, a 2D bitmap can be mapped on to the 2D image plane, which is basically two large triangular plane, and be displayed.
For V3D display based on rotary reciprocating screen (or display panel), the frame position in the display space can be refined to put more frames into positions near the 2D image plane to further increase color or gray level on the 2D image plane.
Alternatively, the number of frames and frame time periods near bottom can be refined and selected such that the time periods of different frames have a ratio. As a result, pixels on different frames will have different brightness, due to different frame time periods. When a 2D image is formed by superimposing a number of frames, this brightness difference helps to increase presentable brightness level further. For example, if three frames are used with the brightness ratio as 1:2:4, then each pixel in the superimposed 2D image will have 8 brightness level (0-7), instead of 3. This is similar to the method of pulse-width modulation, in Hornbeck U.S. Pat. No. 5,280,277, which is incorporated herein by reference.
The second preferred method is to use a separate 2D projector, in addition to projector 15 to display the 2D images.
The foregoing discussion should be understood as illustrative and should not be considered to be limiting in any sense.
For example, this invention is not limited to V3D displays based on “rotary reciprocating mechanism”. The general method of a skewed coordinate system integrated with a 2D virtual plane can be applied to all forms of V3D displays. For another example, the reference location of eyes does not have to be at the middle top of the display space. It can be offset away from the center line if necessary, and if the mapping is done accordingly. Further, the 2D image plane can be placed at any desired location, not just at the bottom of the display space. For example,
While this invention has been particularly shown and described with reference to certain embodiments thereof, it will be understood that these embodiments are shown by way of example only. Those skilled in the art will appreciate that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims and their equivalents.
This is a continuation of application Ser. No. 11/188,409, filed Jul. 25, 2005, now abandoned. This invention relates to Tsao U.S. patent application sr. No. 09/882,826, filed Jun. 16, 2001, which has been allowed. This invention also relates to the following co-pending U.S. provisional application by Tsao: Ser. No. 60/581,422, filed Jun. 21, 2004, Ser. No. 60/589,108 filed Jul. 19, 2004, and Ser. No. 60/589,626 filed Jul. 21, 2004. This invention also relates to the following US patents: Tsao et al., U.S. Pat. No. 5,754,147, 1998; Tsao, U.S. Pat. No. 5,954,414, 1999; Tsao, U.S. Pat. No. 6,302,542 B1, 2001; and Tsao, U.S. Pat. No. 6,765,566 B1, 2004. This invention also relates to Tsao Japanese patent application no. 2001-318189, filed Oct. 16, 2001, laid open on Sep. 18, 2002 under no. P2002-268136A. The above mentioned patents and pending applications are therefore incorporated herein for this invention by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11188409 | Jul 2005 | US |
Child | 12011185 | US |