The present invention relates to the treatment of subterranean formations. More particularly, the present invention relates to methods of enhancing uniform placement of a resin in a subterranean formation.
The methods of the present invention generally comprise: introducing a pre-flush fluid comprising an oil-soluble diverting agent into a portion of a subterranean formation; introducing a resin and an aqueous soluble diverting agent into at least a portion of the subterranean formation; allowing the oil soluble diverting agent to at least partially dissolve; and allowing the resin to at least partially consolidate at least a portion of the subterranean formation. The resin and aqueous soluble diverting agents may be provided and/or introduced into the subterranean formation as a component of one or more treatment fluids introduced into the subterranean formation. The term “diverting agent,” is defined herein to include any substance whose presence may, at least in part, ensure substantially uniform injection of a treatment fluid over the region of the subterranean formation to be treated.
The subterranean formations treated in the methods of the present invention may be any subterranean formation wherein at least a plurality of unconsolidated particulates resides in the formation. The subterranean formation may be penetrated by a well bore through which the resin and/or other treatment fluids may be introduced. A well bore penetrating the subterranean formation being treated may contain one or more casing strings (e.g., “cased” or “partially cased”), or the well bore may be uncased. Such a well bore optionally may contain one or more screens (e.g., gravel packs) to, inter alia, provide some degree of sand control in the well.
The methods of the present invention include introducing one or more preflush fluids comprising an oil soluble diverting agent into the subterranean formation at any stage of the treatment process. The term “preflush fluid” is defined herein to include any fluid (e.g., a liquid, a gel, a gas, or combination thereof) that may be introduced into a subterranean formation prior to some other process or occurrence in the subterranean formation, and does not require any particular action by the preflush fluid. The preflush fluid may be introduced into the subterranean formation using any means suitable for introducing fluids into the subterranean formation. Typically, a preflush fluid may be introduced into the subterranean formation at any time before the resin is introduced into the subterranean formation. The preflush fluids used in the methods of the present invention further comprise an oil soluble diverting agent. The oil-soluble diverting agent may at least partially ensure substantially uniform injection of a consolidating treatment fluid over the region of the subterranean formation to be treated. In certain embodiments, a preflush fluid may be applied to the subterranean formation, among other purposes, to clean out undesirable substances (e.g., oil, residue, or debris) from the pore spaces in the matrix of the subterranean formation and/or to prepare the subterranean formation for later placement of the resin. For example, an acidic preflush fluid may be introduced into at least a portion of the subterranean formation that may, inter alia, dissolve undesirable substances in the subterranean formation. Generally, the volume of the preflush fluid introduced into the formation ranges from about 0.1 times to about 50 times the volume of the resin. Examples of preflush fluids that may be suitable for use with the present invention are described in more detail in Section II.A below.
The methods of the present invention optionally may include applying one or more afterflush fluids into the subterranean formation at any stage of the treatment process. The term “afterflush fluid” is defined herein to include any fluid (e.g., a liquid, a gel, a gas, or combination thereof) that may be introduced into a subterranean formation after some other process or occurrence in the subterranean formation, and does not require any particular action by or purpose of the afterflush fluid. Where used, the afterflush fluid may be introduced into the subterranean formation using any means suitable for introducing fluids into the subterranean formation. Typically, injection of an afterflush fluid may occur at any time after the resin is introduced into the subterranean formation. When used, the afterflush fluid is preferably placed into the subterranean formation while the resin is still in a flowing state. For example, an afterflush fluid may be placed into the formation prior to a shut-in period. Optionally, the afterflush may further comprise an oil soluble diverting agent. In certain embodiments, an afterflush fluid may be applied to the subterranean formation, among other purposes, to restore the permeability of a portion of the subterranean formation by displacing at least a portion of the resin from the pore channels therein or forcing the displaced portion of the resin further into the subterranean formation where it may have negligible impact on subsequent hydrocarbon production. Generally, the volume of afterflush fluid introduced into the subterranean formation ranges from about 0.1 times to about 50 times the volume of the resin. In some embodiments of the present invention, the volume of afterflush fluid introduced into the subterranean formation ranges from about 0.1 times to about 5 times the volume of the resin. Examples of afterflush fluids that may be suitable for use with the present invention are described in more detail in Section II.A below.
According to the methods of the present invention, after placement of the resin, the subterranean formation may be shut in for a period of time to allow the resin composition to transform a portion of the subterranean formation into a consolidated region. The shutting-in of the well bore for a period of time may, inter alia, stabilize unconsolidated portions of the subterranean formation, for example, by enhancing the curing of the resin between formation particulates. Typically, the shut-in period of the well bore occurs after placement of the resin. In embodiments using an afterflush fluid, the shut-in period preferably occurs after the use of the afterflush fluid. The optional shut-in time period is dependent, among other things, on the composition of the resin used and the temperature of the formation. Generally, the chosen period of time will be between about 0.5 hours and about 72 hours or longer. Determining the proper period of time to shut in the formation is within the ability of one skilled in the art with the benefit of this disclosure.
The methods of the present invention optionally may comprise performing one or more additional subterranean treatments for a variety of different purposes, for example, to restore the permeability of a portion of the subterranean formation that has undergone a consolidation treatment (including, but not limited to, a treatment performed according to a method of the present invention). These additional treatments may be performed prior to, during, or subsequent to performing all or some part of a method of the present invention. As used herein, the term “treatment,” or “treating,” refers to any subterranean operation performed in conjunction with a desired function and/or for a desired purpose. The term “treatment,” or “treating,” does not imply any particular action.
In certain embodiments, one or more fractures may be created or enhanced in a portion of the subterranean formation, among other purposes, to at least partially restore the permeability of the portion of the subterranean formation and reconnect the well bore with portions of the formation (e.g., the reservoir formation) outside the consolidated region. “Enhancing” one or more fractures in a subterranean formation, as that term is used herein, refers to the extension or enlargement of one or more new, natural, or previously created fractures in the subterranean formation. This fracturing may be accomplished by any means known by a person skilled in the art for creating or enhancing one or more fractures in a subterranean formation. For example, a hydraulic fracturing treatment may be used wherein a fluid (e.g., a fracturing fluid, a fluid comprising the relative permeability modifier) is introduced into the subterranean formation at a pressure sufficient to create or enhance one or more fractures in the formation. In certain embodiments, the fluid used in the hydraulic fracturing treatment may comprise a viscosified fluid (e.g., a fluid comprising a gelling agent, a crosslinked gelling agent, a surfactant, or a combination thereof). In certain embodiments, a fluid (e.g., a fracturing fluid) comprising proppant particulates may be introduced into the subterranean formation, and the proppant particulates therein may be deposited in the fracture, among other purposes, to maintain fluid conductivity of the fracture. The proppant may be coated with a curable resin or consolidating agent to form a hard, permeable solid mass in the fracture or fractures, among other things, to prevent proppant flow back during production from the well. The proppant also may be blended with fibrous particulates to form a stable network with the proppant and also partially control proppant flow back.
A. Fluids
In certain embodiments, the resin may be provided and/or introduced into the subterranean formation as a component of one or more treatment fluids introduced into the subterranean formation. These treatment fluids may include any non-aqueous based fluid that does not adversely interact with the other components used in accordance with this invention or with the subterranean formation. Non-aqueous based treatment fluids may comprise one or more organic liquids, such as hydrocarbons (e.g., kerosene, xylene, toluene, or diesel), oils (e.g., mineral oils or synthetic oils), esters, and the like.
The preflush and afterflush fluids utilized in certain embodiments of the present invention may include any aqueous based fluid that does not adversely interact with the other components used in accordance with this invention or with the subterranean formation. Aqueous base fluids may comprise fresh water, salt water, brine, or seawater, or any other aqueous fluid that does not adversely react with the other components used in accordance with this invention or with the subterranean formation. In certain embodiments, a preflush or afterflush fluid may comprise a surfactant. Any surfactant compatible with later-used treatments (e.g., a resin) may be used in the present invention, for example, to aid a resin in flowing to the contact points between adjacent particulates in the formation. Such surfactants include, but are not limited to, ethoxylated nonyl phenol phosphate esters, mixtures of one or more cationic surfactants, one or more non-ionic surfactants, and an alkyl phosphonate surfactant. Suitable mixtures of one or more cationic and nonionic surfactants are described in U.S. Pat. No. 6,311,773, the relevant disclosure of which is incorporated herein by reference. A C12-C22 alkyl phosphonate surfactant is preferred. The surfactant or surfactants used may be included in the preflush or afterflush fluid in an amount sufficient to prepare the subterranean formation to receive a consolidation treatment. In some embodiments of the present invention, the surfactant is present in the preflush or afterflush fluid in an amount in the range of from about 0.1% to about 10% by weight of the aqueous fluid.
The treatment fluids, preflush fluids, and/or afterflush fluids utilized in methods of the present invention may comprise any number of additional additives, including, but not limited to, salts, surfactants, acids, fluid loss control additives, gas, foamers, corrosion inhibitors, scale inhibitors, catalysts, clay control agents, biocides, friction reducers, antifoam agents, bridging agents, dispersants, flocculants, H2S scavengers, CO2 scavengers, oxygen scavengers, lubricants, viscosifiers, breakers, weighting agents, particulate materials (e.g., proppant particulates) and the like. In certain embodiments the treatment fluids, preflush fluids, and/or afterflush fluids may comprise an activator or catalyst which may be used, inter alia, to activate the polymerization of the resin. A person skilled in the art, with the benefit of this disclosure, will recognize the types of additives that may be included in the treatment fluids, preflush fluids, and/or afterflush fluids for a particular application.
B. Resins
Resins suitable for use in the present invention include any resin that is capable of forming a hardened, consolidated mass. The term “resin” as used herein includes any of numerous physically similar polymerized synthetics or chemically modified natural resins, including but not limited to thermoplastic materials and thermosetting materials. Many such resins are commonly used in subterranean consolidation operations, and some suitable resins include two component epoxy based resins, novolak resins, polyepoxide resins, phenol-aldehyde resins, urea-aldehyde resins, urethane resins, phenolic resins, furan resins, furan/Iurfuryl alcohol resins, phenolic/latex resins, phenol formaldehyde resins, polyester resins and hybrids and copolymers thereof, polyurethane resins and hybrids and copolymers thereof, acrylate resins, and mixtures thereof. Some suitable resins, such as epoxy resins, may be cured with an internal catalyst or activator so that when pumped downhole, they may be cured using only time and temperature. Other suitable resins, such as furan resins generally require a time-delayed catalyst or an external catalyst to help activate the polymerization of the resins if the cure temperature is low (i.e., less than 250° F.) but will cure under the effect of time and temperature if the formation temperature is above about 250° F., preferably above about 300° F. It is within the ability of one skilled in the art, with the benefit of this disclosure, to select a suitable resin for use in embodiments of the present invention and to determine whether a catalyst is required to trigger curing.
Selection of a suitable resin may be affected by the temperature of the subterranean formation to which the fluid will be introduced. By way of example, for subterranean formations having a bottom hole static temperature (“BHST”) ranging from about 60° F. to about 250° F., two component epoxy based resins comprising a hardenable resin component and a hardening agent component containing specific hardening agents may be preferred. For subterranean formations having a BHST ranging from about 300° F. to about 600° F., a furan based resin may be preferred. For subterranean formations having a BHST ranging from about 200° F. to about 400° F., either a phenolic based resin or a one component HT epoxy based resin may be suitable. For subterranean formations having a BHST of at least about 175° F., a phenol/phenol formaldehyde/furfuryl alcohol resin may also be suitable.
Any solvent that is compatible with the chosen resin and achieves the desired viscosity effect is suitable for use in the present invention. Some preferred solvents are those having high flash points (e.g., about 125° F.) because of, among other things, environmental and safety concerns; such solvents include butyl lactate, butylglycidyl ether, dipropylene glycol methyl ether, dipropylene glycol dimethyl ether, dimethyl formamide, diethyleneglycol methyl ether, ethyleneglycol butyl ether, diethyleneglycol butyl ether, propylene carbonate, methanol, butyl alcohol, d-limonene, fatty acid methyl esters, and combinations thereof. Other preferred solvents include aqueous dissolvable solvents such as, methanol, isopropanol, butanol, glycol ether solvents, and combinations thereof. Suitable glycol ether solvents include, but are not limited to, diethylene glycol methyl ether, dipropylene glycol methyl ether, 2-butoxy ethanol, ethers of a C2 to C6 dihydric alkanol containing at least one C1 to C6 alkyl group, mono ethers of dihydric alkanols, methoxypropanol, butoxyethanol, hexoxyethanol, and isomers thereof. Selection of an appropriate solvent is dependent on the resin chosen and is within the ability of one skilled in the art with the benefit of this disclosure.
C. Diverting Agents
Suitable diverting agents for use in the present invention include any substance whose presence may, at least in part, ensure substantially uniform injection of a treatment fluid over the region of the subterranean formation to be treated. As injected fluids tend to follow the path of least resistance, the least permeable areas of the subterranean formation may receive inadequate treatment. By using a diverting agent, a treatment may be focused on an area where the treatment is most desired. Additionally, the diversion effect of the diverting agent should preferably be temporary to enable productivity of the well after treatment. Examples of suitable diverting agents include aqueous soluble diverting agents and oil soluble diverting agents.
1. Aqueous Soluble Diverting Agents
Aqueous soluble diverting agents suitable for use in the methods of the present invention may comprise any aqueous soluble diverting agent capable of degrading and/or dissolving in the presence of an aqueous based fluid. In one embodiment, a resin and an aqueous soluble diverting agent may be introduced into the subterranean formation and the resin may then be diverted by the diverting agent. Examples of suitable aqueous soluble diverting agents include KCl, NaCl, NH4Cl, CaCl2, and rock salt.
2. Oil Soluble Diverting Agents
Oil soluble diverting agents suitable for use in the methods of the present invention may comprise any oil soluble diverting agent capable of degrading and/or dissolving in the presence of an oil based fluid. In one embodiment, a preflush fluid comprising an oil soluble diverting agent, and optionally an afterflush fluid comprising an oil soluble diverting agent, may be introduced into the subterranean formation and the preflush and/or afterflush may then be diverted by the diverting agent. Examples of suitable oil soluble diverting agents include napthalene, xylene, toluene, benzene, ethyl benzene, crude oil, mineral oil, oil-soluble resin particulates, and emulsions with an internal oil phase.
Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. While numerous changes may be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. In particular, every range of values (e.g., “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood as referring to the power set (the set of all subsets) of the respective range of values. The terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.