| Dasgupta, P.K. et al., "Electroosmosis: A Reliable fluid Propulsion System for Flow Injection Analysis," Anal. Chem. 66:1792-1798 (1994). |
| Jacobson, S.C. et al., "Fused Quartz Substrates for Microchip Electrophoresis," Anal. Chem. 67:2059-2063 (1995). |
| Manz, A. et al., "Electroosmotic pumpgin and electrophoretic separations for miniaturized chemical analysis systems," J. Micromech. Microeng. 4:257-265 (1994). |
| Manz, A. et al., "Parallel Capillaries for High Throughput in Electrophoretic and Electroosmotic Drug Discovery Systems," Transducers 97 Chicago, IL Jun. 16-19, 1997 2:915-918. |
| McCormick, R.M. et al., "Microchannel electrophoretic Separations of DNA in Injection-Molded Plastic substrates," Anal. Chem. 69:2626-2630 (1997). |
| Milby, R.V., Plastics Technology, McGraw-Hill Book Company, New York, pp. 305-306, 529-530 (1973). |
| Ramsey, J.M. et al., "Microfabricated chemical measurement systems," Nature Med. 1:1093-1096 (1995). |
| Seiler, K. et al., "Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantitation, and Separation Efficiency," Anal. Chem. 65:1481-1488 (1993). |
| Seiler, K. et al., "Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip," Anal. Chem. 66:3485-3491 (1994). |
| Woolley, A.T. et al., "High-Speed DNA Genotyping Using Microfabricated Capillary Array Electrophoresis Chips," Anal. Chem. 69:2181-2186 (1997). |