Methods of feeding cards

Information

  • Patent Grant
  • 10525329
  • Patent Number
    10,525,329
  • Date Filed
    Wednesday, September 13, 2017
    6 years ago
  • Date Issued
    Tuesday, January 7, 2020
    4 years ago
Abstract
A card-feeding device for feeding cards into a card-handling device may include a card infeed area that supports a stack of cards, where a pivoting arm presses against a card at the top of the stack. Methods of shuffling cards may include providing cards to be shuffled into a card infeed area as a stack with a top and bottom and removing cards one at a time from the bottom of the stack and moving the removed cards to a shuffling zone. The stack of cards is stabilized by a pivoting arm capable of pressing against the top of the stack in an engaged position. The pivot arm may be automatically rotated from a first card-engaging position to a second recessed position.
Description
FIELD

The present invention relates to playing card-feeding systems, particularly card-feeding systems for shuffling devices that may be used in a casino or card club environment, and particularly playing card-shuffling devices that use a gravity-feed system for providing playing cards from a playing card input chamber.


BACKGROUND

In the movement of cards within playing card-handling devices, a typical card-feeding system may include pick-off roller(s) that are located on the bottom of stacks to remove one card at a time. The weight of a stack of cards ordinarily provides sufficient traction against the rollers to assure proper movement of most of the cards. But as the stack thins out after most of the cards have been delivered, the weight may no longer be sufficient (especially with the last few remaining cards in the stack) to assure proper movement of the cards.


U.S. Pat. No. 5,692,748 (Frisco) describes a card-shuffling device containing free-swinging weights on pivoting arms to apply pressure to the top of stacks of cards that are to be mixed. The disclosure, particularly that relating to FIGS. 4b-4d, states: “To assure traction between the wheels 48a, b, the circumference thereof has a coefficient friction to engage and pull a card, transport it and ejected it from the respective chutes 44a, b into the shaft 24. While preferably pairs of wheels 48a, b are used, it is to be understood that a single wheel or a cylinder could also be used as the tractive element. To impose a load on cards 30 deposited in the first and second chambers 34, 36 to assure traction with the wheels 48a, b, means are provided to vertically load the cards and urge them against the floors 40. For this purpose, each of the first and second chambers 34, 36 has an arm 52 pivotly mounted at one end by a pivot 54 to the housing 12 and having at the other end a foot 56. As described hereinafter, when cards are cut and deposited into the first and second chambers 34, 36, the arms 52 pivot as the cards 30 are urged over the front barriers 42 into their nested positions in the first and second chambers 34, 36. As nested on the floors 40 of the first and second chambers 34, 36, the arms remain in contact with the top of the cards 30 to impose a vertical load on the cards 30 to urge them to be contacted by the wheels 48a, b. Proximate the foot 56 of each arm 52, a weight 58 is provided on each of the arms 52. While a single arm 52 is shown it is to be understood that a pair of such arms 52 could be used at each of the chambers.” These weights on pivoting arms apply pressure through the stack(s) of cards to assure traction against a pick-off roller at the bottom of the stack. This shows a pivoting weighted arm over the card infeed portions of a playing card shuffler.


U.S. Pat. Nos. 6,655,684; 6,588,751; 6,588,750; 6,568,678; 6,325,373; 6,254,096; 6,149,154; (Grauzer) and U.S. Pat. Nos. 6,139,014; 6,068,258; 5,695,189 (Breeding) describe a shuffler or card delivery shoe having a standard free-floating weight to provide increased force on the cards to keep them oriented and assist in their advancing. The Breeding references disclose sensors for detecting the presence of cards in a delivery tray or elsewhere.


U.S. Pat. No. 6,637,622 (Robinson) describes a card delivery device with a weighted roller assisting in allowing the cards to be easily removed. The weighted cover is on the delivery end of the dealing shoe, covering the next card to be delivered.


U.S. Pat. No. 5,722,893 (Hill) describes the use of a weighted block behind cards in a delivery shoe to provide additional weight on the cards to trigger sensors. The reference specifically states: “In operation, a wedge-shaped block mounted on a heavy stainless steel roller (not shown) in a first position indicates that no cards are in the shoe. When the cards are placed in the shoe, the wedge-shaped block will be placed behind the cards and it and the cards will press against the load switch.


U.S. Pat. No. 5,431,399 (Kelley) describes a bridge hand-forming device in which cards are placed into an infeed area and the cards are randomly or predeterminately distributed to four receiving trays. A weight is shown placed over the infeed cards.


In shufflers where there is a single stack of cards to be shuffled and the weight of the cards presses the lowermost cards into contact with card-moving elements such as pick-off rollers, friction contact plates, and the like, it has been suggested by the inventors that as the stack of cards diminishes and fewer cards are present to provide contact forces with the lowermost card-moving element, this failure of strong contact forces may be a cause for delivery failures in the last cards in a set of cards in the delivery chamber. It would be desirable to provide a mechanism that applies a force to gravity-fed cards to assure consistent feeding, yet have the capability of automatically retracting as to not interfere with card loading.


SUMMARY

The present invention describes a moveable weight that is pivotally engaged with a frame of the card-feeding device to provide force against the top of the stack, even as the stack is lowered into the delivery chamber or input chamber of a shuffler. This moveable weight is provided in the form as a pivoting arm, and preferably a motor-driven pivoting arm with weighted roller to both press against the tops of the infeed stack of cards and to assist in sensing the absence of cards in the card infeed stack. In one form of the invention, the weighted arm is retractable.


The moveable weight may be pivotally attached at a point significantly below the elevation of the top of the stack of cards in the input chamber without potential damage to the cards. This reduces the height of the shuffling device and improves ergonomics for the dealer in not having to reach over the elevation of the pivoting device.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows a cutaway side elevational view of the input end of a gravity feed shuffling system that embodies one structure used in the practice of the technology described herein.



FIG. 2 shows a second side elevational view of an example of the present invention.





DETAILED DESCRIPTION

It is first to be noted that the presently described advance in technology is independent of the nature of the mechanism and format for actually shuffling the cards, but relates to the card input section of any shuffling machine where playing cards are fed one at a time from the bottom of a stack of playing cards. The stack of cards can rest on a substantially horizontal plane or can be positioned at an angle with respect to the horizontal. The shuffling mechanism could use card ejection technology, distribution of cards into an elevator stack of cards, distribution of cards into a circular carousel of compartments, distribution of cards into a fan array of compartments, distribution of cards into an opening created in a stack, or distribution into any array of compartments, etc.


In the practice of the described technology, a set of playing cards is usually placed as a stack or pile into a chamber. The cards are usually vertically stacked (with the face of each card being in a horizontal plane) within this type of chamber, but they may also be slightly angled (e.g., ±30 degrees from horizontal). The cards are stacked in the input chamber or card input area and then the cards are removed one at a time from the bottom of the set of cards. Preferably, the cards are placed with the face of the cards down, so that not even a single card is ever exposed, but this is not of functional importance to the practice of the present technology.


Typically, the bottommost playing card in the set of cards is the next playing card to be removed. Typically, as shown in the references described above, particularly some of the Grauzer et al. patents, a friction wheel (referred to as a pick-off roller) extends upwardly and into the bottom of the playing card input chamber, and rotation of the pick-off roller provides a driving force against the playing card, forcing the playing card out of the card input chamber and towards the shuffling area.


It is at this point in the shuffling machines where the thickness and mass of the set of cards in the input chamber varies as cards are removed, to the ultimate situation where there are just a few cards, then a single card and then no cards remaining in the chamber. When there are few cards or a single card remaining, the weight of the few cards or single card may be insufficient to retain efficient frictional contact with the pick-off roller, and the last cards may not be moved out of the input chamber when desired.


There are numerous independent elements of the technology described herein that provide advances over the existing technology and attempt to address these problems in a manner that does not create additional problems.


A first concept developed herein is the use of a pivoting weighted arm with a center of rotation of the pivoting arm that is below a point that is spaced above, and preferably at least 15 mm above the card support surface in the card-receiving chamber. The center of rotation may be located above the playing card support surface by at least 18 mm, at least 20 mm or at least 25 mm or more. Preferably, the pivot point is also spaced apart from the card infeed tray. The ability to provide this elevation of the pivot point of the arm in relation to the playing card surface allows for a lower height to the system, better consistency of weight against the cards, and the like. The relative elevation is provided by having an arm that extends above the rotation point on one end of the arm and also above the playing card contact point on the other end of the arm. This creates an elevated middle area or recess in the arm that can extend over the edge of the playing cards in the card input area to avoid contact with those cards.


A second concept developed herein is the use of a motor-driven arm that controls the height of the contact point and/or the force at the contact point and/or the retraction/lowering of the arm and/or other actions by the arm with respect to the loading, unloading and shuffling process, including addressing any card jam events.


Reference to the figures will assist in an understanding of the practice and scope of the technology described herein.



FIG. 1 shows a sectioned or cutaway side elevational view of the playing card-feeding portion 2 of a playing card-handling system. The height of a set of cards (e.g., a deck or decks of cards) 6 is shown in the playing card-receiving or input chamber 5. A pivoting arm 8 is shown with a roller 12 pivotally mounted about rotational shaft 14 at the contact end of the arm 8 resting on the top of the set of cards 6. This may represent a locked or controlled (as explained later) position of the arm 8. The arm 8 pivots about pivotal shaft 10 and the roller 12 pivots about pivotal shaft 14. A line 16 is shown between the rotation point 10 and the lower surface of the roller 12. As can be seen, this line intersects the height of the playing cards 6, which would mean that the traditional straight weighted arm (as shown by Frisco, above) would rest against the edge of the cards and possibly interfere with, damage or mark the cards. As is shown in FIG. 1, there is a significant gap 18 above the line 16 and the height of the set of playing cards 6 in the input chamber 5. This structure prevents the need for elevating the pivot point 10 of the arm 8 above the height of the uppermost card in the stack 6. When the arm and pivot point 10 have to be so elevated, the overall height of the shuffler is increased. Additionally, other functioning parts of the arm system, (i.e., the belts if used, drive wheels and the shaft, for example) may be exposed and subject to damage from the exposure.


A bottommost playing card 7 is driven by pick-off rollers 22, 23 through an outlet slot 24 in the bottom of the playing card input chamber 5. The playing card 7 driven though the slot 24 then engages rollers 28 and 30, which form a nip 26 that moves the playing card into the shuffling area of the shuffler (not shown). A motor 40 drives shaft 42. Shaft 42 rotates, causing sheaves 44, 46 and 48 to rotate. Endless member 50 contacts sheaves 44, 46 and 48.


A stepper motor 32 is provided to drive a drive wheel 34 with drive belt 36 that also engages drive wheel 38, causing the weighted arm 8 to pivot. Once the last card exits the feed area 5, the pivot arm 8 rotates downwardly in a direction of arrow 52 into a retracted position. In the retracted position, as shown in FIG. 2, the pivot arm 8 is completely free of the card infeed area 5. Cards can be manually loaded without any interference from the pivot-mounted card weight 8.


After the next group of cards is inserted into the feed area 5, the pivot arm 8 continues to rotate in a clockwise direction as shown by arrow 54 until the wheel 12 comes back into contact with the top card in the next stack.


The card weight advantageously retracts and does not interfere with the loading of cards. A card present sensor 56 sends a signal to the processor (not shown) that in turn actuates motor 32 to rotate arm 8 into the “card engaged” position.


Operation of the arm may be controlled by a processor (not shown) and/or react to sensors or be free in its pivoting. When the arm has the spacing 18 built in, the arm may pivot and retain cards under its own weight. Because of the initial elevation of the arm (as shown by the angle of line 16 with respect to the horizontal), the arm will initially (under its own weight) pivot first towards the horizontal and then slightly below the horizontal. The contact point between the roller 12 and the top surface of the uppermost playing card will also move from a non-centered position towards a more centered position, as the height 6 of the uppermost playing cards changes. This orientation of the arm with a roller thereon reduces damage to the surface of the cards that is contacted by the roller.


When the arm is motor driven, an intelligent drive system (as with a processor, microprocessor or computer, with “processor” used generically) may assist in driving the positioning of the arm and apply contact pressure between the arm and the top of the set of playing cards in the card input chamber. The application of pressure can be accomplished a number of ways. For example, the processor may instruct the stepper motor to move a defined number of positions for each fed card.


One mode of operation of the intelligent drive system may include some or all of the following features. When no playing cards are present in the chamber (signals or data of which may be obtained from sensors or cameras), the processor may direct the arm to be rotated into a retracted position to facilitate depositing of the playing cards by hand. When the processor is provided with information such as signals or data indicating that playing cards are positioned in the input chamber 5, the arm is rotated (clockwise in FIG. 1) until contact is sufficiently made with the top of playing cards. This sensing may be accomplished in numerous ways, as with a contact sensor in the shaft 14, tension reduction sensed in the pulley 36 through the motor 34, cameras or optical sensors in the input chamber, and the like. Once contact is made, the arm may remain under tension by the drive system or become free in its rotating by disengaging gearing or pulleys driving the arm. Or upon removal of cards, the processor will adjust the tension in the pulley 36 to adjust the contact force of the roller 12 against playing cards. This adjustment may be done continually, periodically or at specific event occurrences, such as the movement of a single card, the movement of a specific number of cards out of the input chamber, or the like. The force applied by the roller to the top playing cards should usually be sufficient that removal of a single card from the bottom of the set of cards will not completely remove the force applied by the roller 12.


The system may also indicate the absence of playing cards in the input chamber. For example, sensor 56 may indicate that no cards are in the input chamber 5. The system may utilize the same sensors that indicate the presence of cards in the playing card input to indicate the absence of cards in the chamber. Alternatively, the arm itself may be associated with various sensors to indicate the absence of playing cards in the card input chamber. For example, when there are no cards in the chamber, the arm may continue to rotate clockwise, to a “retracted” position. The arm (as associated sensors or systems that measure the degree of rotation of the arm) may be preprogrammed or trained to recognize the lowest position of the arm with a single card in the chamber. When that position or degree of rotation is subsequently exceeded, a signal will be sent to send the pivot arm to the lowest position (shown in FIG. 2).


As noted above, the end of the arm is provided with a roller, but a low friction surface may also be provided in place of the roller. For example, a smooth, flat, rounded edge with a polymeric coating (e.g., fluorinated polymer, polysiloxane polymer, polyurethane, etc.) can provide a low friction surface that will slide over the playing cards without scratching the cards.


Among the properties and structure of the exemplary pivotally mounted card weight arm with the roller or glide surface thereon are:

    • 1) Essentially downward (towards the cards) free-swinging or controlled arm, with a lower edge gap that extends over edges of playing cards when the arm is elevated;
    • 2) A sensing device identifying the position of the arm along its movement path;
    • 3) The sensed position including sensing of a position of the arm or contact of the arm, indicating the presence, absence or approximate amount (number) of cards in the infeed area;
    • 4) The sensor signaling a processor that commands a motor attached to a belt that can motivate the weighted arm into a contact position, and a retracted position; and
    • 5) An automatic sequence that rotates the weighted arm into a retracted position to allow insertion of additional cards into the shuffler.


Various methods and structures of this technology may be variously described as a card-feeding device used as a subcomponent of a shuffling, card delivery or deck verification device having a card infeed area where cards are stacked to be automatically moved within the device. The device may comprise a card infeed area that supports a stack of cards that has a card support surface; a card-removing system that removes cards individually from the bottom of the stack; a pivoting arm that presses against a card at the top of the stack and at least one sensor that detects at least one of a relative position of the arm within the shuffling device and a presence of a card in the card infeed area. The card-feeding device may also have a motor that rotates the pivoting arm. The rotation of the arm by the motor positions the pivoting arm and applies pressure against the card at the top of the stack to improve frictional contact between a lowest card and the rollers of the card-removing system.


One form of the present invention can be characterized as a card-feeding device that is a component of a card-handling device. The card-handling device can dispense cards, shuffle and dispense cards or verify cards. The card-feeding device has a card infeed area that supports a stack of cards that has a card support surface. In one form of the invention, the card support surface is substantially horizontal. In another form of the invention, the card support surface is sloped. The card-feeding device also includes a card-removing system that removes cards individually from the bottom of the stack. The card-removing system is typically controlled by a microprocessor, and may include a motor, belt drive and at least one roller that comes into frictional contact with the lowermost card in the stack. A pivoting arm is provided. The pivoting arm lowers as cards are dispensed, maintaining a force on cards in the infeed area. The arm presses against a card at the top of the stack in a first position. The card-feeding device also includes at least one sensor that detects at least one of a position of the arm within the shuffling device and a presence of a card in the card infeed area.


Although the pivoting arm may move freely about the pivot point, in one form of the invention, the pivot arm is spring loaded such that a force must be applied to the arm in order to raise the arm high enough to insert cards. In another form of the invention, the card-feeding device includes a computer-controlled drive system. An exemplary drive system includes a motor that rotates the pivoting arm about the pivot point or (pivotal shaft). In a first engaged position, a contact end of the pivot arm applies a downward force to the stack of cards. The drive, the weight of the arm or both applies a downward force to the cards. When the pivot arm is rotated by a motorized drive system, the motor positions the pivoting arm to apply pressure against the card at the top of the stack.


According to a microcomputer-controlled card embodiment, the pivoting arm is positionable in a first card engaged position and a second retracted position. The drive system may move the pivot arm about the pivotal axis in two directions, or may rotate the pivot arm about the pivotal axis in only one direction. The pivot point is spaced apart (horizontally) from the card infeed area so that when in the retracted position, the pivot arm is clear of the card infeed area, so as to not interfere with card loading.


Sensors may be provided to signal the microprocessor to instruct the drive system to rotate the pivot arm. An example of one sensor is a position sensor located on the pivotal shaft. This sensor provides an indication of the position or degree of rotation of the pivoting arm. Each provided sensor is in communication with the processor. The processor may also instruct the motor to alter the position of the pivoting arm upon receiving a sensor signal. Another example of a suitable sensor is a card present sensor located on or beneath the card support surface.


One preferred drive motor is a stepper motor. The stepper motor may rotate in two directions or just in a single direction. When the motor rotates the pivoting arm in a single direction, the pivot arm is capable of moving from a recessed position back into a card-engaging position without interfering with card loading. Preferably, the pivot arm is completely concealed within an interior of the machine when in the recessed position. When in the recessed position, no part of the pivot arm extends into the card infeed area, leaving the area free for typical card loading.


Another aspect of the present invention is a card-feeding device comprising a card infeed area that supports a stack of cards, the card infeed area having a card support surface. The feeding device includes a card-removing system that removes cards from the bottom of the stack of cards, preferably individually. A rotating pivot arm is provided that presses against a card at the top of the stack at a first end, the arm having a second rotating pivot end and a bridging length. The bridging length is elongated and has a recess that is elevated above a line connecting a bottom of the first contact end and a second pivot point on the pivot end when in the card-engaged position. This recess allows for clearance of the cards when the pivot point is mounted closer to the card support surface than an upper surface of the card-feeding device. In one embodiment, the card-contacting end of the pivot arm includes a roller. In one form of the invention, the roller is free-rolling and is formed of an elastomer such as rubber.


A method of shuffling cards is disclosed. The method includes the step of providing cards to be shuffled into a single card infeed as a stack, the stack having a top and bottom surface. The method includes removing cards, one at a time, from the bottom of the stack and moving the removed cards to a shuffling zone. The cards are then shuffled. Examples of known suitable shuffling apparatuses are known in the art and include rack structures, carousel shufflers with multiple compartments, devices that grab groups of cards from a vertical stack, lift the grabbed group and provide a point of insertion, and ejection devices that randomly select an elevation within a stack of cards and eject individual cards out of the stack.


According to the method, the stack of cards inserted into the shuffler is stabilized by a pivoting arm pressing against the top of the stack. When the last card is fed, the microprocessor receives a signal from a sensor and instructs the drive system to automatically move the arm on command. In one embodiment of the method, the processor sends commands to the drive system in response to a received sensor signal. In another form of the invention, a user input is received by the processor, and in turn, the drive system is activated. User commands may result from a sensor or dealer input, as by a button, keyboard, touchscreen or the like.


The pivot arm may include a wheel at the card-contacting end. When the pivot arm is in the engaged position, the wheel contacts the uppermost card in the stack. The sensor may detect the presence or absence of playing cards in the card infeed area. One example of a suitable sensor is an optical sensor. The sensor signals received by the processor may also be from a sensor that senses the position of a rotational shaft of the pivot arm.


Another aspect of the invention is a card feed system, comprising a card infeed area with a card support surface. The system includes a card removal system capable of removing cards individually from a bottom of a stack of cards. A rotating pivot arm is provided that in a first engaged position applies a downward force to a stack of cards being fed and in a second recessed position is free of the card infeed area. The card feed system may advantageously be used as a card feeder for a card-shuffling mechanism, a card delivery system such as a mechanical card shoe, a deck verification device, a card sorter or combination shuffler/hand-forming device.


Although specific examples, sequences and steps have been clearly described, variations and alternatives would be apparent to those skilled in the art and are intended to be within the scope of the invention claimed.

Claims
  • 1. A method of feeding cards, the method comprising: placing a stack of cards into a card infeed area of a card-feeding device;applying a force to an uppermost card of the stack of cards with a pivoting arm having a pivot point that is positioned below an upper portion of the card infeed area and below the uppermost card of the stack of cards; andremoving cards one at a time from the bottom of the stack of the cards.
  • 2. The method of claim 1, further comprising supporting the stack of cards in the card infeed area with at least one feed roller for removing cards individually from the bottom of the stack of cards.
  • 3. The method of claim 1, further comprising rotating a portion of the pivoting arm into contact with the uppermost card of the stack of cards with a motor to apply the force to the uppermost card.
  • 4. The method of claim 3, further comprising removing the pivoting arm from the card infeed area with the motor.
  • 5. The method of claim 3, further comprising adjusting an amount of force applied to the uppermost card of the stack of cards by the pivoting arm with the motor.
  • 6. The method of claim 1, further comprising contacting the uppermost card of the stack of cards with a wheel carried by the pivoting arm.
  • 7. The method of claim 6, further comprising positioning an upper portion of the stack of cards within a recess formed in the pivoting arm between the pivot point and the wheel.
  • 8. The method of claim 1, further comprising detecting the presence or absence of cards in the card infeed area with a sensor.
  • 9. The method of claim 1, further comprising detecting at least one of a degree of rotation of the pivoting arm or pressure by the pivoting arm against playing cards in the infeed area with a sensor.
  • 10. The method of claim 1, further comprising positioning a card-engaging portion of the arm within a volume sized to receive the stack of cards in the card infeed area.
  • 11. The method of claim 10, further comprising entirely removing the card-engaging portion of the arm from the volume sized to receive the stack of cards in the card infeed area.
  • 12. A method of feeding cards, the method comprising: placing a stack of cards into a card infeed area of a card-feeding device;contacting an uppermost card of the stack of cards with a pivotable arm having a pivot point that is positioned below the uppermost card of the stack of cards in the card infeed area;positioning at least a corner portion of the stack of cards directly between a card-engaging portion of the pivotable arm and the pivot point of the pivotable arm; andremoving cards from the stack of the cards.
  • 13. The method of claim 12, further comprising extending a bridging length of the pivotable arm having a recess that is elevated above a line connecting the pivot point of the pivotable arm and the card-engaging portion of the pivotable arm over the at least a corner of the stack of cards when the pivotable arm is in a card-engaging position.
  • 14. The method of claim 12, further comprising forcing the pivotable arm into the uppermost card of the stack of cards with a motor.
  • 15. The method of claim 14, further comprising entirely removing the card-engaging portion of the pivotable arm from a volume containing the stack of cards in the card infeed area with the motor.
  • 16. The method of claim 12, further comprising rotating the card-engaging portion of the pivotable arm at least 180 degrees to a position outside of the card infeed area.
  • 17. The method of claim 16, wherein rotating the card-engaging portion of the pivotable arm comprises rotating the card-engaging portion of the pivotable arm from a lower portion of the card infeed area, through a volume containing the stack of cards in the card infeed area, through an upper portion of the card infeed area, and to the position outside of the card infeed area.
  • 18. A method of feeding cards, the method comprising: placing a stack of cards into a card infeed area of a card-feeding device;applying a force to an uppermost card of the stack of cards with a pivotable arm having a pivot point that is positioned below the uppermost card of the stack of cards in the card infeed area; andremoving cards from the stack of the cards.
  • 19. The method of claim 18, further comprising rotating a card-engaging portion of the pivotable arm from a lower portion of the card infeed area, through a volume containing the stack of cards in the card infeed area, through an upper portion of the card infeed area, and to a position outside of the card infeed area.
  • 20. The method of claim 18, further comprising rotating a card-engaging portion of the pivotable arm at least 180 degrees to a positon outside of the card infeed area.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 14/195,554, filed Mar. 3, 2014, now U.S. Pat. No. 9,764,221, issued Sep. 19, 2017, which is a continuation of U.S. patent application Ser. No. 13/741,236 filed Jan. 14, 2013, now U.S. Pat. No. 8,662,500, issued Mar. 4, 2014, which in turn, is a continuation of U.S. patent application Ser. No. 11/444,167 filed May 31, 2006, now U.S. Pat. No. 8,353,513, issued Jan. 15, 2013, the disclosure of each of which is hereby incorporated herein in its entirety by this reference.

US Referenced Citations (959)
Number Name Date Kind
130281 Coughlin Aug 1872 A
205030 Ash Jun 1878 A
609730 Booth Aug 1898 A
673154 Bellows Apr 1901 A
793489 Williams Jun 1905 A
892389 Bellows Jul 1908 A
1014219 Hall Jan 1912 A
1043109 Hurm Nov 1912 A
1157898 Perret Oct 1915 A
1256509 Belknap Feb 1918 A
1380898 Hall Jun 1921 A
1992085 McKay Feb 1925 A
1556856 Lipps Oct 1925 A
1850114 McCaddin Jun 1929 A
1757553 Gustav May 1930 A
1885276 McKay Nov 1932 A
1889729 Hammond Nov 1932 A
1955926 Matthaey Apr 1934 A
1998690 Shepherd et al. Apr 1935 A
2001220 Smith May 1935 A
2001918 Nevius May 1935 A
2016030 Woodruff et al. Oct 1935 A
2043343 Warner Jun 1936 A
2060096 McCoy Nov 1936 A
2065824 Plass Dec 1936 A
2159958 Sachs May 1939 A
2185474 Nott Jan 1940 A
2254484 Hutchins Sep 1941 A
D132360 Gardner May 1942 S
2328153 Laing Aug 1943 A
2328879 Isaacson Sep 1943 A
D139530 Schindler Nov 1944 S
2364413 Wittel Dec 1944 A
2525305 Lombard Oct 1950 A
2543522 Cohen Feb 1951 A
2588582 Sivertson Mar 1952 A
2615719 Fonken Oct 1952 A
2659607 Skillman et al. Nov 1953 A
2661215 Stevens Dec 1953 A
2676020 Ogden Apr 1954 A
2692777 Miller Oct 1954 A
2701720 Ogden Feb 1955 A
2705638 Newcomb Apr 1955 A
2711319 Morgan et al. Jun 1955 A
2714510 Oppenlander et al. Aug 1955 A
2717782 Droll Sep 1955 A
2727747 Semisch, Jr. Dec 1955 A
2731271 Brown Jan 1956 A
2747877 Howard May 1956 A
2755090 Aldrich Jul 1956 A
2757005 Nothaft Jul 1956 A
2760779 Ogden et al. Aug 1956 A
2770459 Wilson et al. Nov 1956 A
2778643 Williams Jan 1957 A
2778644 Stephenson Jan 1957 A
2782040 Matter Feb 1957 A
2790641 Adams Apr 1957 A
2793863 Liebelt May 1957 A
2815214 Hall Dec 1957 A
2821399 Heinoo Jan 1958 A
2914215 Neidig Nov 1959 A
2937739 Levy May 1960 A
2950005 MacDonald Aug 1960 A
RE24986 Stephenson May 1961 E
3067885 Kohler Dec 1962 A
3107096 Osborn Oct 1963 A
3124674 Edwards et al. Mar 1964 A
3131935 Gronneberg May 1964 A
3147978 Sjostrand Sep 1964 A
D200652 Fisk Mar 1965 S
3222071 Lang Dec 1965 A
3235741 Plaisance Feb 1966 A
3288308 Gingher Nov 1966 A
3305237 Granius Feb 1967 A
3312473 Friedman et al. Apr 1967 A
3452509 Hauer Jul 1969 A
3530968 Palmer Sep 1970 A
3588116 Miura Jun 1971 A
3589730 Slay Jun 1971 A
3595388 Castaldi Jul 1971 A
3597076 Hubbard et al. Aug 1971 A
3598396 Andrews et al. Aug 1971 A
3618933 Roggenstein et al. Nov 1971 A
3627331 Lyon, Jr. Dec 1971 A
3666270 Mazur May 1972 A
3680853 Houghton et al. Aug 1972 A
3690670 Cassady et al. Sep 1972 A
3704938 Fanselow Dec 1972 A
3716238 Porter Feb 1973 A
3751041 Seifert Aug 1973 A
3761079 Azure, Jr. Sep 1973 A
3810627 Levy May 1974 A
D232953 Oguchi Sep 1974 S
3861261 Maxey Jan 1975 A
3897954 Erickson et al. Aug 1975 A
3899178 Watanabe Aug 1975 A
3909002 Levy Sep 1975 A
3929339 Mattioli Dec 1975 A
3944077 Green Mar 1976 A
3944230 Fineman Mar 1976 A
3949219 Crouse Apr 1976 A
3968364 Miller Jul 1976 A
4023705 Reiner et al. May 1977 A
4033590 Pic Jul 1977 A
4072930 Lucero et al. Feb 1978 A
4088265 Garczynski May 1978 A
4151410 McMillan et al. Apr 1979 A
4159581 Lichtenberg Jul 1979 A
4162649 Thornton Jul 1979 A
4166615 Noguchi et al. Sep 1979 A
4232861 Maul Nov 1980 A
4280690 Hill Jul 1981 A
4283709 Lucero et al. Aug 1981 A
4310160 Willette et al. Jan 1982 A
4339134 Macheel Jul 1982 A
4339798 Hedges et al. Jul 1982 A
4361393 Noto Nov 1982 A
4368972 Naramore Jan 1983 A
4369972 Parker Jan 1983 A
4374309 Walton Feb 1983 A
4377285 Kadlic Mar 1983 A
4385827 Naramore May 1983 A
4388994 Suda et al. Jun 1983 A
4397469 Carter, III Aug 1983 A
4421312 Delgado et al. Dec 1983 A
4421501 Scheller Dec 1983 A
D273962 Fromm May 1984 S
D274069 Fromm May 1984 S
4467424 Hedges et al. Aug 1984 A
4494197 Troy et al. Jan 1985 A
4497488 Plevyak et al. Feb 1985 A
4512580 Matviak Apr 1985 A
4513969 Samsel, Jr. Apr 1985 A
4515367 Howard May 1985 A
4531187 Uhland Jul 1985 A
4534562 Cuff et al. Aug 1985 A
4549738 Greitzer Oct 1985 A
4566782 Britt et al. Jan 1986 A
4575367 Karmel Mar 1986 A
4586712 Loiter et al. May 1986 A
4659082 Greenberg Apr 1987 A
4662637 Pfeiffer May 1987 A
4662816 Fabrig May 1987 A
4667959 Pfeiffer et al. May 1987 A
4741524 Bromage May 1988 A
4750743 Nicoletti Jun 1988 A
4755941 Bacchi Jul 1988 A
4759448 Kawabata Jul 1988 A
4770412 Wolfe Sep 1988 A
4770421 Hoffman Sep 1988 A
4807884 Breeding Feb 1989 A
4822050 Normand et al. Apr 1989 A
4832342 Plevyak et al. May 1989 A
4858000 Lu Aug 1989 A
4861041 Jones et al. Aug 1989 A
4876000 Mikhail Oct 1989 A
4900009 Kitahara et al. Feb 1990 A
4904830 Rizzuto Feb 1990 A
4921109 Hasuo et al. May 1990 A
4926327 Sidley May 1990 A
4948134 Suttle et al. Aug 1990 A
4951950 Normand et al. Aug 1990 A
4969648 Hollinger et al. Nov 1990 A
4993587 Abe Feb 1991 A
4995615 Cheng Feb 1991 A
5000453 Stevens et al. Mar 1991 A
5004218 Sardano et al. Apr 1991 A
5039102 Miller Aug 1991 A
5067713 Soules et al. Nov 1991 A
5078405 Jones et al. Jan 1992 A
5081487 Royer et al. Jan 1992 A
5096197 Embury Mar 1992 A
5102293 Schneider Apr 1992 A
5118114 Tucci Jun 1992 A
5121192 Kazui Jun 1992 A
5121921 Friedman et al. Jun 1992 A
5146346 Knoll Sep 1992 A
5154429 LeVasseur Oct 1992 A
5179517 Sarbin et al. Jan 1993 A
5197094 Tillery et al. Mar 1993 A
5199710 Lamle Apr 1993 A
5209476 Eiba May 1993 A
5224712 Laughlin et al. Jul 1993 A
5240140 Huen Aug 1993 A
5248142 Breeding Sep 1993 A
5257179 DeMar Oct 1993 A
5259907 Soules et al. Nov 1993 A
5261667 Breeding Nov 1993 A
5267248 Reyner Nov 1993 A
5275411 Breeding Jan 1994 A
5276312 McCarthy Jan 1994 A
5283422 Storch et al. Feb 1994 A
5288081 Breeding Feb 1994 A
5299089 Lwee Mar 1994 A
5303921 Breeding Apr 1994 A
5344146 Lee Sep 1994 A
5356145 Verschoor Oct 1994 A
5362053 Miller Nov 1994 A
5374061 Albrecht Dec 1994 A
5377973 Jones et al. Jan 1995 A
5382024 Blaha Jan 1995 A
5382025 Sklansky et al. Jan 1995 A
5390910 Mandel et al. Feb 1995 A
5397128 Hesse et al. Mar 1995 A
5397133 Penzias Mar 1995 A
5416308 Hood et al. May 1995 A
5431399 Kelley Jul 1995 A
5431407 Hofberg et al. Jul 1995 A
5437462 Breeding Aug 1995 A
5445377 Steinbach Aug 1995 A
5470079 LeStrange et al. Nov 1995 A
D365853 Zadro Jan 1996 S
5489101 Moody Feb 1996 A
5515477 Sutherland May 1996 A
5524888 Heidel Jun 1996 A
5531448 Moody Jul 1996 A
5544892 Breeding Aug 1996 A
5575475 Steinbach Nov 1996 A
5584483 Sines et al. Dec 1996 A
5586766 Forte et al. Dec 1996 A
5586936 Bennett et al. Dec 1996 A
5605334 McCrea, Jr. Feb 1997 A
5613912 Slater Mar 1997 A
5632483 Garczynski et al. May 1997 A
5636843 Roberts Jun 1997 A
5651548 French et al. Jul 1997 A
5655961 Acres et al. Aug 1997 A
5655966 Verdin et al. Aug 1997 A
5669816 Garczynski et al. Sep 1997 A
5676231 Legras et al. Oct 1997 A
5676372 Sines et al. Oct 1997 A
5681039 Miller Oct 1997 A
5683085 Johnson et al. Nov 1997 A
5685543 Gamer Nov 1997 A
5690324 Otomo et al. Nov 1997 A
5692748 Frisco et al. Dec 1997 A
5695189 Breeding et al. Dec 1997 A
5701565 Morgan Dec 1997 A
5707286 Carlson Jan 1998 A
5707287 McCrea, Jr. Jan 1998 A
5711525 Breeding Jan 1998 A
5718427 Cranford et al. Feb 1998 A
5719288 Sens et al. Feb 1998 A
5720484 Hsu Feb 1998 A
5722893 Hill et al. Mar 1998 A
5735525 McCrea, Jr. Apr 1998 A
5735724 Udagawa Apr 1998 A
5735742 French Apr 1998 A
5743798 Adams et al. Apr 1998 A
5768382 Schneier et al. Jun 1998 A
5770533 Franchi Jun 1998 A
5770553 Kroner et al. Jun 1998 A
5772505 Garczynski et al. Jun 1998 A
5779546 Meissner et al. Jul 1998 A
5781647 Fishbine et al. Jul 1998 A
5785321 van Putten et al. Jul 1998 A
5788574 Ornstein et al. Aug 1998 A
5791988 Nomi Aug 1998 A
5802560 Joseph et al. Sep 1998 A
5803808 Strisower Sep 1998 A
5810355 Trilli Sep 1998 A
5813326 Salomon Sep 1998 A
5813912 Shultz Sep 1998 A
5814796 Benson Sep 1998 A
5836775 Hiyama et al. Nov 1998 A
5839730 Pike Nov 1998 A
5845906 Wirth Dec 1998 A
5851011 Lott Dec 1998 A
5867586 Liang Feb 1999 A
5879233 Stupero Mar 1999 A
5883804 Christensen Mar 1999 A
5890717 Rosewarne et al. Apr 1999 A
5892210 Levasseur Apr 1999 A
5909876 Brown Jun 1999 A
5911626 McCrea, Jr. Jun 1999 A
5919090 Mothwurf Jul 1999 A
D412723 Hachuel et al. Aug 1999 S
5936222 Korsunsky Aug 1999 A
5941769 Order Aug 1999 A
5944310 Johnson et al. Aug 1999 A
D414527 Tedham Sep 1999 S
5957776 Hoehne Sep 1999 A
5974150 Kaish et al. Oct 1999 A
5989122 Roblejo Nov 1999 A
5991308 Fuhrmann et al. Nov 1999 A
6015311 Benjamin et al. Jan 2000 A
6019368 Sines et al. Feb 2000 A
6019374 Breeding Feb 2000 A
6039650 Hill Mar 2000 A
6050569 Taylor Apr 2000 A
6053695 Longoria et al. Apr 2000 A
6061449 Candelore et al. May 2000 A
6068258 Breeding et al. May 2000 A
6069564 Hatano et al. May 2000 A
6071190 Weiss et al. Jun 2000 A
6093103 McCrea, Jr. Jul 2000 A
6113101 Wirth Sep 2000 A
6117012 McCrea, Jr. Sep 2000 A
D432588 Tedham Oct 2000 S
6126166 Lorson et al. Oct 2000 A
6131817 Miller Oct 2000 A
6139014 Breeding et al. Oct 2000 A
6149154 Grauzer et al. Nov 2000 A
6154131 Jones, II et al. Nov 2000 A
6165069 Sines et al. Dec 2000 A
6165072 Davis et al. Dec 2000 A
6183362 Boushy Feb 2001 B1
6186895 Oliver Feb 2001 B1
6196416 Seagle Mar 2001 B1
6200218 Lindsay Mar 2001 B1
6210274 Carlson Apr 2001 B1
6213310 Wennersten et al. Apr 2001 B1
6217447 Lofink et al. Apr 2001 B1
6234900 Cumbers May 2001 B1
6236223 Brady et al. May 2001 B1
6250632 Albrecht Jun 2001 B1
6254002 Litman Jul 2001 B1
6254096 Grauzer et al. Jul 2001 B1
6254484 McCrea, Jr. Jul 2001 B1
6257981 Acres et al. Jul 2001 B1
6267248 Johnson et al. Jul 2001 B1
6267648 Katayama et al. Jul 2001 B1
6267671 Hogan Jul 2001 B1
6270404 Sines et al. Aug 2001 B2
6272223 Carlson Aug 2001 B1
6293546 Hessing et al. Sep 2001 B1
6293864 Romero Sep 2001 B1
6299167 Sines et al. Oct 2001 B1
6299534 Breeding et al. Oct 2001 B1
6299536 Hill Oct 2001 B1
6308886 Benson et al. Oct 2001 B1
6313871 Schubert Nov 2001 B1
6325373 Breeding et al. Dec 2001 B1
6334614 Breeding Jan 2002 B1
6341778 Lee Jan 2002 B1
6342830 Want et al. Jan 2002 B1
6346044 McCrea, Jr. Feb 2002 B1
6361044 Block Mar 2002 B1
6386973 Yoseloff May 2002 B1
6402142 Warren et al. Jun 2002 B1
6403908 Stardust et al. Jun 2002 B2
6443839 Stockdale et al. Sep 2002 B2
6446864 Kim et al. Sep 2002 B1
6454266 Breeding et al. Sep 2002 B1
6460848 Soltys et al. Oct 2002 B1
6464584 Oliver Oct 2002 B2
6490277 Tzotzkov Dec 2002 B1
6508709 Karmarkar Jan 2003 B1
6514140 Storch Feb 2003 B1
6517435 Soltys et al. Feb 2003 B2
6517436 Soltys et al. Feb 2003 B2
6520857 Soltys et al. Feb 2003 B2
6527271 Soltys et al. Mar 2003 B2
6530836 Soltys et al. Mar 2003 B2
6530837 Soltys et al. Mar 2003 B2
6532297 Lindquist Mar 2003 B1
6533276 Soltys et al. Mar 2003 B2
6533662 Soltys et al. Mar 2003 B2
6561897 Bourbour et al. May 2003 B1
6568678 Breeding et al. May 2003 B2
6579180 Soltys et al. Jun 2003 B2
6579181 Soltys et al. Jun 2003 B2
6581747 Charlier et al. Jun 2003 B1
6582301 Hill Jun 2003 B2
6582302 Romero Jun 2003 B2
6585586 Romero Jul 2003 B1
6585588 Hard Jul 2003 B2
6585856 Zwick et al. Jul 2003 B2
6588750 Grauzer et al. Jul 2003 B1
6588751 Grauzer et al. Jul 2003 B1
6595857 Soltys et al. Jul 2003 B2
6609710 Order Aug 2003 B1
6612928 Bradford et al. Sep 2003 B1
6616535 Nishizaki et al. Sep 2003 B1
6619662 Miller Sep 2003 B2
6622185 Johnson et al. Sep 2003 B1
6626757 Oliveras Sep 2003 B2
6629019 Legge et al. Sep 2003 B2
6629591 Griswold et al. Oct 2003 B1
6629889 Mothwurf Oct 2003 B2
6629894 Purton Oct 2003 B1
6637622 Robinson Oct 2003 B1
6638161 Soltys et al. Oct 2003 B2
6645068 Kelly et al. Nov 2003 B1
6645077 Rowe Nov 2003 B2
6651981 Grauzer et al. Nov 2003 B2
6651982 Grauzer et al. Nov 2003 B2
6651985 Sines et al. Nov 2003 B2
6652379 Soltys et al. Nov 2003 B2
6655684 Grauzer et al. Dec 2003 B2
6655690 Oskwarek Dec 2003 B1
6658135 Morito et al. Dec 2003 B1
6659460 Blaha et al. Dec 2003 B2
6659461 Yoseloff Dec 2003 B2
6659875 Purton Dec 2003 B2
6663490 Soltys et al. Dec 2003 B2
6666768 Akers Dec 2003 B1
6671358 Seidman et al. Dec 2003 B1
6676127 Johnson et al. Jan 2004 B2
6676517 Beavers Jan 2004 B2
6680843 Farrow et al. Jan 2004 B2
6685564 Oliver Feb 2004 B2
6685567 Cockerille et al. Feb 2004 B2
6685568 Soltys et al. Feb 2004 B2
6688597 Jones Feb 2004 B2
6688979 Soltys et al. Feb 2004 B2
6690673 Jarvis Feb 2004 B1
6698756 Baker et al. Mar 2004 B1
6698759 Webb et al. Mar 2004 B2
6702289 Feola Mar 2004 B1
6702290 Buono-Correa et al. Mar 2004 B2
6709333 Bradford et al. Mar 2004 B1
6712696 Soltys et al. Mar 2004 B2
6719288 Hessing et al. Apr 2004 B2
6719634 Mishina et al. Apr 2004 B2
6722974 Sines et al. Apr 2004 B2
6726205 Purton Apr 2004 B1
6732067 Powderly May 2004 B1
6733012 Bui et al. May 2004 B2
6733388 Mothwurf May 2004 B2
6746333 Onda et al. Jun 2004 B1
6747560 Stevens, III Jun 2004 B2
6749510 Giobbi Jun 2004 B2
6758751 Soltys et al. Jul 2004 B2
6758757 Luciano, Jr. et al. Jul 2004 B2
6769693 Huard et al. Aug 2004 B2
6774782 Runyon et al. Aug 2004 B2
6789801 Snow Sep 2004 B2
6802510 Haber Oct 2004 B1
6804763 Stockdale et al. Oct 2004 B1
6808173 Snow Oct 2004 B2
6827282 Silverbrook Dec 2004 B2
6834251 Fletcher Dec 2004 B1
6840517 Snow et al. Jan 2005 B2
6842263 Saeki Jan 2005 B1
6843725 Nelson Jan 2005 B2
6848616 Tsirline et al. Feb 2005 B2
6848844 McCue, Jr. et al. Feb 2005 B2
6848994 Knust et al. Feb 2005 B1
6857961 Soltys et al. Feb 2005 B2
6874784 Promutico et al. Apr 2005 B1
6874786 Bruno Apr 2005 B2
6877657 Ranard et al. Apr 2005 B2
6877748 Patroni et al. Apr 2005 B1
6886829 Hessing et al. May 2005 B2
6889979 Blaha et al. May 2005 B2
6893347 Zilliacus et al. May 2005 B1
6899628 Leen et al. May 2005 B2
6902167 Webb Jun 2005 B2
6905121 Timpano Jun 2005 B1
6923446 Snow Aug 2005 B2
6938900 Snow Sep 2005 B2
6941180 Fisher et al. Sep 2005 B1
6950948 Neff Sep 2005 B2
6955599 Bourbour et al. Oct 2005 B2
6957746 Martin et al. Oct 2005 B2
6959925 Baker et al. Nov 2005 B1
6960134 Hartl et al. Nov 2005 B2
6964612 Soltys et al. Nov 2005 B2
6986514 Snow Jan 2006 B2
6988516 Debaes Jan 2006 B2
7011309 Soltys et al. Mar 2006 B2
7020307 Hinton et al. Mar 2006 B2
7028598 Teshima Apr 2006 B2
7029009 Grauzer et al. Apr 2006 B2
7036818 Grauzer et al. May 2006 B2
7046458 Nakayama May 2006 B2
7046764 Kump May 2006 B1
7048629 Sines et al. May 2006 B2
7059602 Grauzer et al. Jun 2006 B2
7066464 Blad et al. Jun 2006 B2
7068822 Scott Jun 2006 B2
7073791 Grauzer et al. Jul 2006 B2
7079010 Champlin Jul 2006 B2
7084769 Bauer et al. Aug 2006 B2
7089420 Durst et al. Aug 2006 B1
D527900 Dewa Sep 2006 S
7106201 Tuttle Sep 2006 B2
7113094 Garber et al. Sep 2006 B2
7114718 Grauzer et al. Oct 2006 B2
7124947 Storch Oct 2006 B2
7128652 Lavoie et al. Oct 2006 B1
7137627 Grauzer et al. Nov 2006 B2
7139108 Andersen et al. Nov 2006 B2
7140614 Snow Nov 2006 B2
7162035 Durst et al. Jan 2007 B1
7165769 Crenshaw et al. Jan 2007 B2
7165770 Snow Jan 2007 B2
7175522 Hartl Feb 2007 B2
7186181 Rowe Mar 2007 B2
7201656 Darder Apr 2007 B2
7202888 Tecu et al. Apr 2007 B2
7203841 Jackson et al. Apr 2007 B2
7213812 Schubert May 2007 B2
7222852 Soltys May 2007 B2
7222855 Sorge May 2007 B2
7231812 Lagare Jun 2007 B1
7234698 Grauzer et al. Jun 2007 B2
7237969 Bartman Jul 2007 B2
7243148 Keir et al. Jul 2007 B2
7243698 Siegel Jul 2007 B2
7246799 Snow Jul 2007 B2
7255344 Grauzer et al. Aug 2007 B2
7255351 Yoseloff et al. Aug 2007 B2
7255642 Sines et al. Aug 2007 B2
7257630 Cole et al. Aug 2007 B2
7261294 Grauzer et al. Aug 2007 B2
7264241 Schubert et al. Sep 2007 B2
7264243 Yoseloff et al. Sep 2007 B2
7277570 Armstrong Oct 2007 B2
7278923 Grauzer et al. Oct 2007 B2
7294056 Lowell et al. Nov 2007 B2
7297062 Gatto et al. Nov 2007 B2
7300056 Gioia et al. Nov 2007 B2
7303473 Rowe Dec 2007 B2
7303475 Britt et al. Dec 2007 B2
7309065 Yoseloff et al. Dec 2007 B2
7316609 Dunn et al. Jan 2008 B2
7316615 Soltys et al. Jan 2008 B2
7322576 Grauzer et al. Jan 2008 B2
7331579 Snow Feb 2008 B2
7334794 Snow Feb 2008 B2
7338044 Grauzer et al. Mar 2008 B2
7338362 Gallagher Mar 2008 B1
7341510 Bourbour et al. Mar 2008 B2
D566784 Palmer Apr 2008 S
7357321 Yoshida Apr 2008 B2
7360094 Neff Apr 2008 B2
7367561 Blaha et al. May 2008 B2
7367563 Yoseloff et al. May 2008 B2
7367565 Chiu May 2008 B2
7367884 Breeding et al. May 2008 B2
7374170 Grauzer et al. May 2008 B2
7384044 Grauzer et al. Jun 2008 B2
7387300 Snow Jun 2008 B2
7389990 Mourad Jun 2008 B2
7390256 Soltys et al. Jun 2008 B2
7399226 Mishra Jul 2008 B2
7407438 Schubert et al. Aug 2008 B2
7413191 Grauzer et al. Aug 2008 B2
7434805 Grauzer et al. Oct 2008 B2
7436957 Fisher et al. Oct 2008 B1
7448626 Fleckenstein Nov 2008 B2
7458582 Snow et al. Dec 2008 B2
7461843 Baker et al. Dec 2008 B1
7464932 Darling Dec 2008 B2
7464934 Schwartz Dec 2008 B2
7472906 Shai Jan 2009 B2
7478813 Hofferber et al. Jan 2009 B1
7500672 Ho Mar 2009 B2
7506874 Hall Mar 2009 B2
7510186 Fleckenstein Mar 2009 B2
7510190 Snow et al. Mar 2009 B2
7510194 Soltys et al. Mar 2009 B2
7510478 Benbrahim et al. Mar 2009 B2
7513437 Douglas Apr 2009 B2
7515718 Nguyen et al. Apr 2009 B2
7523935 Grauzer et al. Apr 2009 B2
7523936 Grauzer et al. Apr 2009 B2
7523937 Fleckenstein Apr 2009 B2
7525510 Beland et al. Apr 2009 B2
7537216 Soltys et al. May 2009 B2
7540497 Tseng Jun 2009 B2
7540498 Crenshaw et al. Jun 2009 B2
7549643 Quach Jun 2009 B2
7554753 Wakamiya Jun 2009 B2
7556197 Yoshida Jul 2009 B2
7556266 Blaha et al. Jul 2009 B2
7575237 Snow Aug 2009 B2
7578506 Lambert Aug 2009 B2
7584962 Breeding et al. Sep 2009 B2
7584963 Krenn et al. Sep 2009 B2
7584966 Snow Sep 2009 B2
7591728 Gioia et al. Sep 2009 B2
7593544 Downs Sep 2009 B2
7594660 Baker et al. Sep 2009 B2
7597623 Grauzer et al. Oct 2009 B2
7644923 Dickinson et al. Jan 2010 B1
7661676 Smith et al. Feb 2010 B2
7666090 Hettinger Feb 2010 B2
7669852 Baker et al. Mar 2010 B2
7669853 Jones Mar 2010 B2
7677565 Grauzer et al. Mar 2010 B2
7677566 Krenn et al. Mar 2010 B2
7686681 Soltys et al. Mar 2010 B2
7699694 Hill Apr 2010 B2
7735657 Johnson Jun 2010 B2
7740244 Ho Jun 2010 B2
7744452 Cimring et al. Jun 2010 B2
7753373 Grauzer et al. Jul 2010 B2
7753374 Ho Jul 2010 B2
7753798 Soltys Jul 2010 B2
7758425 Poh et al. Jul 2010 B2
7762554 Ho Jul 2010 B2
7764836 Downs et al. Jul 2010 B2
7766332 Grauzer et al. Aug 2010 B2
7766333 Stardust Aug 2010 B1
7769232 Downs, III Aug 2010 B2
7769853 Nezamzadeh Aug 2010 B2
7773749 Durst et al. Aug 2010 B1
7780529 Rowe et al. Aug 2010 B2
7784790 Grauzer et al. Aug 2010 B2
7804982 Howard et al. Sep 2010 B2
7824255 Lutnick Nov 2010 B2
7846020 Walker et al. Dec 2010 B2
7867080 Nicely et al. Jan 2011 B2
7890365 Hettinger Feb 2011 B2
7900923 Toyama et al. Mar 2011 B2
7901285 Tran et al. Mar 2011 B2
7908169 Hettinger Mar 2011 B2
7909689 Lardie Mar 2011 B2
7933448 Downs, III Apr 2011 B2
7946586 Krenn et al. May 2011 B2
7959153 Franks, Jr. Jun 2011 B2
7967294 Blaha et al. Jun 2011 B2
7976023 Hessing et al. Jul 2011 B1
7931533 Lemay et al. Aug 2011 B2
7988152 Sines et al. Aug 2011 B2
7988554 LeMay et al. Aug 2011 B2
7995196 Fraser Aug 2011 B1
8002638 Grauzer et al. Aug 2011 B2
8011661 Stasson Sep 2011 B2
8016663 Soltys et al. Sep 2011 B2
8021231 Walker et al. Sep 2011 B2
8025294 Grauzer et al. Sep 2011 B2
8038521 Grauzer et al. Oct 2011 B2
RE42944 Blaha et al. Nov 2011 E
8057302 Wells et al. Nov 2011 B2
8062134 Kelly et al. Nov 2011 B2
8070574 Grauzer et al. Dec 2011 B2
8092307 Kelly Jan 2012 B2
8092309 Bickley Jan 2012 B2
8109514 Toyama Feb 2012 B2
8141875 Grauzer et al. Mar 2012 B2
8150158 Downs, III Apr 2012 B2
8171567 Fraser et al. May 2012 B1
8210536 Blaha et al. Jul 2012 B2
8221244 French Jul 2012 B2
8251293 Nagata et al. Aug 2012 B2
8267404 Grauzer et al. Sep 2012 B2
8270603 Durst et al. Sep 2012 B1
8287347 Snow et al. Oct 2012 B2
8287386 Miller et al. Oct 2012 B2
8319666 Weinmann et al. Nov 2012 B2
8337296 Grauzer et al. Dec 2012 B2
8342525 Scheper Jan 2013 B2
8342526 Sampson Jan 2013 B1
8342529 Snow Jan 2013 B2
8353513 Swanson Jan 2013 B2
8381918 Johnson Feb 2013 B2
8419521 Grauzer et al. Apr 2013 B2
8429229 Sepich et al. Apr 2013 B2
8444147 Grauzer et al. May 2013 B2
8444489 Lian et al. May 2013 B2
8469360 Sines Jun 2013 B2
8475252 Savage et al. Jul 2013 B2
8480088 Toyama et al. Jul 2013 B2
8485527 Sampson et al. Jul 2013 B2
8490973 Yoseloff et al. Jul 2013 B2
8498444 Sharma Jul 2013 B2
8505916 Grauzer et al. Aug 2013 B2
8511684 Grauzer et al. Aug 2013 B2
8512146 Gururajan et al. Aug 2013 B2
8550464 Soltys et al. Oct 2013 B2
8556263 Grauzer et al. Oct 2013 B2
8579289 Rynda Nov 2013 B2
8602416 Toyama Dec 2013 B2
8616552 Czyzewski et al. Dec 2013 B2
8628086 Krenn et al. Jan 2014 B2
8651485 Stasson Feb 2014 B2
8662500 Swanson Mar 2014 B2
8695978 Ho Apr 2014 B1
8702100 Snow et al. Apr 2014 B2
8702101 Scheper et al. Apr 2014 B2
8720891 Hessing et al. May 2014 B2
8758111 Lutnick Jun 2014 B2
8777710 Grauzer et al. Jul 2014 B2
8820745 Grauzer et al. Sep 2014 B2
8844930 Sampson Sep 2014 B2
8899587 Grauzer et al. Dec 2014 B2
8919775 Inadds et al. Dec 2014 B2
9101821 Snow Aug 2015 B2
9251661 Tammesoo Feb 2016 B2
9266012 Grauzer Feb 2016 B2
9280866 Nayak Mar 2016 B2
9378766 Kelly et al. Jun 2016 B2
9474957 Haushalter et al. Oct 2016 B2
9504905 Kelly et al. Nov 2016 B2
9511274 Kelly et al. Dec 2016 B2
9566501 Stasson et al. Feb 2017 B2
9679603 Kelly et al. Jun 2017 B2
9731190 Sampson et al. Aug 2017 B2
9764221 Swanson Sep 2017 B2
20010036231 Easwar et al. Nov 2001 A1
20010036866 Stockdale et al. Nov 2001 A1
20010054576 Stardust et al. Dec 2001 A1
20020017481 Johnson et al. Feb 2002 A1
20020045478 Soltys et al. Apr 2002 A1
20020045481 Soltys et al. Apr 2002 A1
20020063389 Breeding et al. May 2002 A1
20020068635 Hill Jun 2002 A1
20020070499 Breeding et al. Jun 2002 A1
20020094869 Harkham Jul 2002 A1
20020107067 McGlone et al. Aug 2002 A1
20020107072 Giobbi Aug 2002 A1
20020113368 Hessing et al. Aug 2002 A1
20020135692 Fujinawa Sep 2002 A1
20020142820 Bartlett Oct 2002 A1
20020155869 Soltys et al. Oct 2002 A1
20020163122 Vancura Nov 2002 A1
20020163125 Grauzer et al. Nov 2002 A1
20020187821 Soltys et al. Dec 2002 A1
20020187830 Stockdale et al. Dec 2002 A1
20030003997 Vuong et al. Jan 2003 A1
20030007143 McArthur et al. Jan 2003 A1
20030042673 Grauzer Mar 2003 A1
20030047870 Blaha et al. Mar 2003 A1
20030048476 Yamakawa Mar 2003 A1
20030052449 Grauzer et al. Mar 2003 A1
20030052450 Grauzer et al. Mar 2003 A1
20030064798 Grauzer et al. Apr 2003 A1
20030067112 Grauzer et al. Apr 2003 A1
20030071413 Blaha et al. Apr 2003 A1
20030073498 Grauzer et al. Apr 2003 A1
20030075865 Grauzer et al. Apr 2003 A1
20030075866 Blaha et al. Apr 2003 A1
20030087694 Storch May 2003 A1
20030090059 Grauzer et al. May 2003 A1
20030094756 Grauzer et al. May 2003 A1
20030151194 Hessing et al. Aug 2003 A1
20030195025 Hill Oct 2003 A1
20040015423 Walker et al. Jan 2004 A1
20040036214 Baker et al. Feb 2004 A1
20040067789 Grauzer et al. Apr 2004 A1
20040100026 Haggard May 2004 A1
20040108654 Grauzer et al. Jun 2004 A1
20040116179 Nicely et al. Jun 2004 A1
20040169332 Grauzer et al. Sep 2004 A1
20040180722 Giobbi Sep 2004 A1
20040224777 Smith et al. Nov 2004 A1
20040245720 Grauzer et al. Dec 2004 A1
20040259618 Soltys et al. Dec 2004 A1
20050012671 Bisig Jan 2005 A1
20050012818 Kiely et al. Jan 2005 A1
20050023752 Grauzer et al. Feb 2005 A1
20050026680 Gururajan Feb 2005 A1
20050035548 Yoseloff Feb 2005 A1
20050037843 Wells et al. Feb 2005 A1
20050040594 Krenn et al. Feb 2005 A1
20050051955 Schubert et al. Mar 2005 A1
20050051956 Grauzer et al. Mar 2005 A1
20050062227 Grauzer et al. Mar 2005 A1
20050062228 Grauzer et al. Mar 2005 A1
20050062229 Grauzer et al. Mar 2005 A1
20050082750 Grauzer et al. Apr 2005 A1
20050093231 Grauzer et al. May 2005 A1
20050104289 Grauzer et al. May 2005 A1
20050104290 Grauzer et al. May 2005 A1
20050110210 Soltys et al. May 2005 A1
20050113166 Grauzer et al. May 2005 A1
20050113171 Hodgson May 2005 A1
20050119048 Soltys Jun 2005 A1
20050121852 Soltys et al. Jun 2005 A1
20050137005 Soltys et al. Jun 2005 A1
20050140090 Breeding et al. Jun 2005 A1
20050146093 Grauzer et al. Jul 2005 A1
20050148391 Tain Jul 2005 A1
20050164759 Smith et al. Jul 2005 A1
20050164761 Tain Jul 2005 A1
20050192092 Breckner et al. Sep 2005 A1
20050206077 Grauzer et al. Sep 2005 A1
20050242500 Downs Nov 2005 A1
20050272501 Tran et al. Dec 2005 A1
20050277463 Knust et al. Dec 2005 A1
20050288083 Downs Dec 2005 A1
20050288086 Schubert et al. Dec 2005 A1
20060027970 Kyrychenko Feb 2006 A1
20060033269 Grauzer et al. Feb 2006 A1
20060033270 Grauzer et al. Feb 2006 A1
20060046853 Black Mar 2006 A1
20060063577 Downs, III et al. Mar 2006 A1
20060066048 Krenn et al. Mar 2006 A1
20060084502 Downs et al. Apr 2006 A1
20060151946 Ngai Jul 2006 A1
20060181022 Grauzer et al. Aug 2006 A1
20060183540 Grauzer et al. Aug 2006 A1
20060189381 Daniel et al. Aug 2006 A1
20060199649 Soltys et al. Sep 2006 A1
20060205508 Green Sep 2006 A1
20060220312 Baker et al. Oct 2006 A1
20060220313 Baker et al. Oct 2006 A1
20060252521 Gururajan et al. Nov 2006 A1
20060252554 Gururajan et al. Nov 2006 A1
20060279040 Downs et al. Dec 2006 A1
20060281534 Grauzer et al. Dec 2006 A1
20070001395 Gioia et al. Jan 2007 A1
20070006708 Laakso Jan 2007 A1
20070015583 Tran Jan 2007 A1
20070018389 Downs, III Jan 2007 A1
20070045959 Soltys Mar 2007 A1
20070049368 Kuhn et al. Mar 2007 A1
20070057454 Fleckenstein Mar 2007 A1
20070057469 Grauzer et al. Mar 2007 A1
20070066387 Matsuno et al. Mar 2007 A1
20070069462 Downs, III et al. Mar 2007 A1
20070072677 Lavoie et al. Mar 2007 A1
20070102879 Stasson May 2007 A1
20070111773 Gururajan et al. May 2007 A1
20070184905 Gatto et al. Aug 2007 A1
20070197294 Gong Aug 2007 A1
20070197298 Rowe Aug 2007 A1
20070202941 Miltenberger et al. Aug 2007 A1
20070222147 Blaha et al. Sep 2007 A1
20070225055 Weisman Sep 2007 A1
20070233567 Daly Oct 2007 A1
20070238506 Ruckle Oct 2007 A1
20070241498 Soltys Oct 2007 A1
20070259709 Kelly et al. Nov 2007 A1
20070267812 Grauzer et al. Nov 2007 A1
20070272600 Johnson Nov 2007 A1
20070278739 Swanson Dec 2007 A1
20070287534 Fleckenstein Dec 2007 A1
20070290438 Grauzer et al. Dec 2007 A1
20070298865 Soltys Dec 2007 A1
20080004107 Nguyen et al. Jan 2008 A1
20080006997 Scheper et al. Jan 2008 A1
20080006998 Grauzer et al. Jan 2008 A1
20080022415 Kuo et al. Jan 2008 A1
20080032763 Giobbi Feb 2008 A1
20080039192 Laut Feb 2008 A1
20080039208 Abrink et al. Feb 2008 A1
20080096656 LeMay et al. Apr 2008 A1
20080111300 Czyzewski et al. May 2008 A1
20080113700 Czyzewski et al. May 2008 A1
20080113783 Czyzewski et al. May 2008 A1
20080136108 Polay Jun 2008 A1
20080143048 Shigeta Jun 2008 A1
20080176627 Lardie Jul 2008 A1
20080217218 Johnson Sep 2008 A1
20080234046 Kinsley Sep 2008 A1
20080234047 Nguyen Sep 2008 A1
20080248875 Beatty Oct 2008 A1
20080284096 Toyama et al. Nov 2008 A1
20080303210 Grauzer et al. Dec 2008 A1
20080315517 Toyama et al. Dec 2008 A1
20090026700 Shigeta Jan 2009 A2
20090048026 French Feb 2009 A1
20090054161 Schuber et al. Feb 2009 A1
20090072477 Tseng et al. Mar 2009 A1
20090121429 Walsh et al. Mar 2009 A1
20090091078 Grauzer et al. Apr 2009 A1
20090100409 Toneguzzo Apr 2009 A1
20090104963 Burman Apr 2009 A1
20090134575 Dickinson et al. May 2009 A1
20090140492 Yoseloff et al. Jun 2009 A1
20090166970 Rosh et al. Jul 2009 A1
20090176547 Katz Jul 2009 A1
20090179378 Amaitis et al. Jul 2009 A1
20090186676 Amaitis et al. Jul 2009 A1
20090189346 Krenn et al. Jul 2009 A1
20090191933 French Jul 2009 A1
20090194988 Wright et al. Aug 2009 A1
20090197662 Wright et al. Aug 2009 A1
20090224476 Grauzer et al. Sep 2009 A1
20090227318 Wright et al. Sep 2009 A1
20090227360 Gioia et al. Sep 2009 A1
20090250873 Jones Oct 2009 A1
20090253478 Walker et al. Oct 2009 A1
20090253503 Krise et al. Oct 2009 A1
20090267296 Ho et al. Oct 2009 A1
20090267297 Blaha et al. Oct 2009 A1
20090283969 Tseng et al. Nov 2009 A1
20090298577 Gagner et al. Dec 2009 A1
20090302535 Ho et al. Dec 2009 A1
20090302537 Ho et al. Dec 2009 A1
20090312093 Walker et al. Dec 2009 A1
20090314188 Toyama et al. Dec 2009 A1
20100013152 Grauzer Jan 2010 A1
20100038849 Scheper et al. Feb 2010 A1
20100048304 Boesen Feb 2010 A1
20100069155 Schwartz et al. Mar 2010 A1
20100178987 Pacey Jul 2010 A1
20100197410 Leen et al. Aug 2010 A1
20100234110 Clarkson Sep 2010 A1
20100240440 Szrek et al. Sep 2010 A1
20100244376 Johnson Sep 2010 A1
20100244382 Snow Sep 2010 A1
20100252992 Sines Oct 2010 A1
20100255899 Paulsen Oct 2010 A1
20100276880 Grauzer et al. Nov 2010 A1
20100311493 Miller et al. Dec 2010 A1
20100311494 Miller et al. Dec 2010 A1
20100314830 Grauzer et al. Dec 2010 A1
20100320685 Grauzer Dec 2010 A1
20110006480 Grauzer Jan 2011 A1
20110012303 Kourgiantakis et al. Jan 2011 A1
20110024981 Tseng Feb 2011 A1
20110052049 Rajaraman et al. Mar 2011 A1
20110062662 Ohta Mar 2011 A1
20110078096 Bounds Mar 2011 A1
20110079959 Hartley Apr 2011 A1
20110105208 Bickley May 2011 A1
20110109042 Rynda May 2011 A1
20110130185 Walker Jun 2011 A1
20110130190 Hamman et al. Jun 2011 A1
20110159952 Kerr Jun 2011 A1
20110159953 Kerr Jun 2011 A1
20110165936 Kerr Jul 2011 A1
20110172008 Alderucci Jul 2011 A1
20110183748 Wilson et al. Jul 2011 A1
20110230148 Demuynck et al. Sep 2011 A1
20110230268 Williams Sep 2011 A1
20110269529 Baerlocher Nov 2011 A1
20110272881 Sines Nov 2011 A1
20110285081 Stasson Nov 2011 A1
20110287829 Clarkson et al. Nov 2011 A1
20120015724 Ocko et al. Jan 2012 A1
20120015725 Ocko et al. Jan 2012 A1
20120015743 Lam et al. Jan 2012 A1
20120015747 Ocko et al. Jan 2012 A1
20120021835 Keller et al. Jan 2012 A1
20120034977 Kammler Feb 2012 A1
20120062745 Han et al. Mar 2012 A1
20120074646 Grauzer et al. Mar 2012 A1
20120091656 Blaha et al. Apr 2012 A1
20120095982 Lennington et al. Apr 2012 A1
20120161393 Krenn et al. Jun 2012 A1
20120175841 Grauzer Jul 2012 A1
20120181747 Grauzer et al. Jul 2012 A1
20120187625 Downs, III et al. Jul 2012 A1
20120242782 Huang Sep 2012 A1
20120286471 Grauzer Nov 2012 A1
20120306152 Krishnamurty et al. Dec 2012 A1
20130020761 Sines et al. Jan 2013 A1
20130023318 Abrahamson Jan 2013 A1
20130085638 Weinmann et al. Apr 2013 A1
20130099448 Scheper et al. Apr 2013 A1
20130109455 Grauzer et al. May 2013 A1
20130132306 Kami et al. May 2013 A1
20130147116 Stasson Jun 2013 A1
20130161905 Grauzer et al. Jun 2013 A1
20130228972 Grauzer et al. Sep 2013 A1
20130241147 McGrath Sep 2013 A1
20130300059 Sampson et al. Nov 2013 A1
20130337922 Kuhn Dec 2013 A1
20140027979 Stasson Jan 2014 A1
20140094239 Grauzer et al. Apr 2014 A1
20140103606 Grauzer et al. Apr 2014 A1
20140138907 Rynda et al. May 2014 A1
20140145399 Krenn et al. May 2014 A1
20140171170 Krishnamurty et al. Jun 2014 A1
20140175724 Huhtala et al. Jun 2014 A1
20140183818 Czyzewski et al. Jul 2014 A1
20150021242 Johnson Jan 2015 A1
20150069699 Blazevic Mar 2015 A1
20150196834 Snow Jul 2015 A1
20150238848 Kuhn et al. Aug 2015 A1
20170157499 Krenn et al. Jun 2017 A1
20180200610 Riordan et al. Jul 2018 A1
Foreign Referenced Citations (93)
Number Date Country
2383667 Jan 1969 AU
5025479 Mar 1980 AU
697805 Oct 1998 AU
757636 Feb 2003 AU
2266555 Sep 1996 CA
2284017 Sep 1998 CA
2612138 Dec 2006 CA
2051521 Jan 1990 CN
1383099 Dec 2002 CN
1824356 Aug 2006 CN
2848303 Dec 2006 CN
2855481 Jan 2007 CN
1933881 Mar 2007 CN
2877425 Mar 2007 CN
101025603 Aug 2007 CN
200954370 Oct 2007 CN
200987893 Dec 2007 CN
101099896 Jan 2008 CN
101127131 Feb 2008 CN
101134141 Mar 2008 CN
201085907 Jul 2008 CN
201132058 Oct 2008 CN
201139926 Oct 2008 CN
101437586 May 2009 CN
100571826 Dec 2009 CN
1771077 Jun 2010 CN
102125756 Jul 2011 CN
102170944 Aug 2011 CN
101783011 Dec 2011 CN
102847311 Jan 2013 CN
202724641 Feb 2013 CN
202983149 Jun 2013 CN
24952 Feb 2013 CZ
0291230 Apr 1916 DE
2816377 Oct 1979 DE
3807127 Sep 1989 DE
2757341 Sep 1998 DE
0777514 Feb 2000 EP
1502631 Feb 2005 EP
1713026 Oct 2006 EP
1194888 Aug 2009 EP
2228106 Sep 2010 EP
1575261 Aug 2012 EP
2375918 Jul 1978 FR
289552 Apr 1928 GB
337147 Sep 1929 GB
414014 Jul 1934 GB
672616 May 1952 GB
10063933 Mar 1998 JP
11045321 Feb 1999 JP
2000251031 Sep 2000 JP
2001327647 Nov 2001 JP
2002165916 Jun 2002 JP
2003-154320 May 2003 JP
2003250950 Sep 2003 JP
2005198668 Jul 2005 JP
2008246061 Oct 2008 JP
4586474 Nov 2010 JP
M335308 Jul 2008 TW
M357307 May 2009 TW
M359356 Jun 2009 TW
I345476 Jul 2011 TW
8700764 Feb 1987 WO
9221413 Dec 1992 WO
9528210 Oct 1995 WO
9607153 Mar 1996 WO
9710577 Mar 1997 WO
9814249 Apr 1998 WO
9840136 Sep 1998 WO
9943404 Sep 1999 WO
9952610 Oct 1999 WO
9952611 Oct 1999 WO
200051076 Aug 2000 WO
156670 Aug 2001 WO
178854 Oct 2001 WO
205914 Jan 2002 WO
3026763 Apr 2003 WO
2004067889 Dec 2004 WO
2004112923 Dec 2004 WO
2006031472 Mar 2006 WO
2006039308 Apr 2006 WO
3004116 Nov 2007 WO
2008005286 Jan 2008 WO
2008006023 Jan 2008 WO
2008091809 Jul 2008 WO
2009067758 Jun 2009 WO
2009137541 Nov 2009 WO
2010052573 May 2010 WO
2010055328 May 2010 WO
2010117446 Oct 2010 WO
2012053074 Apr 2012 WO
2013019677 Feb 2013 WO
2016058085 Apr 2016 WO
Non-Patent Literature Citations (118)
Entry
U.S. Appl. No. 15/276,476, filed Sep. 26, 2016, titled “Devices, Systems, and Related Methods for Real-Time Monitoring and Display of Related Data for Casino Gaming Devices”, to Nagaragatta et al., 36 pages.
U.S. Appl. No. 15/365,610, filed Nov. 30, 2016, titled “Card Handling Devices and Related Assemblies and Components”, to Nelsen et al., 62 pages.
Shuffle Tech International LLC et al. vs. Scientific Games Corporation et al., Order Denying Motion for Summary Judgement: Memorandum Opinion and Order, in the U.S. District Court, for the Northern District of Illinois Eastern Division, No. 15 C 3702, Sep. 1, 2017, 35 pages.
Weisenfeld, Bernie; Inventor betting on shuffler; Courier-Post; Sep. 11, 1990; 1 page.
Solberg, Halyard; Deposition; Shuffle Tech International v. Scientific Games Corp., et al., 1:15-cv-3702 (N.D. III.) Oct. 18, 2016; pp. 187, 224-246, 326-330, 338-339, 396; Baytowne Reporting; Panama City, FL.
Prototype Glossary and Timelines; Shuffle Tech International v. Scientific Games Corp., et al. 1:15-cv-3702 (N.D. III.); undated; pp. 1-4.
Olsen, Eddie; Automatic Shuffler ‘ready’ for Atlantic City experiment; Blackjack Confidential; Jul./Aug. 1989; pp. 6-7.
Gros, Roger; New Card Management System to Be Tested At Bally's Park Place; Casino Journal; Apr. 1989; 5 pages.
Gola, Steve; Deposition; Shuffle Tech International v. Scientific Games Corp., et al. 1:15-cv-3702 (N.D. III.); Oct. 13, 2016; pp. 1, 9-21, 30-69, 150-167, 186-188, 228-231, 290-315, 411; Henderson Legal Services, Inc.; Washington, DC.
Shuffle Master, Inc. (1996). Let It Ride, The Tournament, User Guide, 72 pages.
“TableScanner (TM) from Advansys”, Casino Inside Magazine, No. 30, pp. 34-36 (Dec. 2012) (4 pages).
TableScanner “Accounting & Cage”. Product Information Datasheets [online]. Advansys, 2013. Retrieved on Oct. 11, 2016 from the Internet: <URL: http://advansys.si/products/tablescanner/accounting-cage/> (4 pages).
TableScanner “Casino Management System”. Product Information Datasheets [online]. Advansys, 2013. Retrieved on Oct. 11, 2016 from the Internet: <URL: http://advansys.si/> (6 pages).
TableScanner “Multisite”. Product Information Datasheets [online]. Advansys, 2013. Retrieved on Oct. 11, 2016 from the Internet: <URL: http://advansys.si/products/tablescanner/multisite/> (3 pages).
TableScanner “Player Tracking”. Product Information Datasheets [online]. Advansys, 2013. Retrieved on Sep. 23, 2016 from the Internet: <URL: http://advansys.si/products/tablescanner/player-tracking/> (4 pages).
TableScanner “Table Management system”. Product Information Datasheets [online]. Advansys, 2013. Retrieved on Oct. 11, 2016 from the Internet: <URL: http://advansys.si/products/tablescanner/> (4 pages).
tbm=pts&hl=en Google Search for card handling device with storage area, card removing system pivoting arm and processor ; http://www.google.com/?tbm=pts&hl=en; Jul. 28, 2012, 2 pages.
Tracking the Tables, by Jack Bularsky, Casino Journal, May 2004, vol. 17, No. 5, pp. 44-47.
“TYM @ A Glance—Table Games Yield Management”, TYM Live Product Information Datasheets [online]. Tangam Systems, 2016. Retrieved on Oct. 3, 2016 from the Internet: <URL: http://tangamgaming.com/wp-content/uploads/2016/12/TG_TYMGlance_2016-V4-1.pdf> (2 pages).
United States Court of Appeals for the Federal Circuit Decision Decided Dec. 27, 2005 for Preliminary Injuction for Shuffle Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL.
VendingData Corporation's Answer and Counterclaim Jury Trial Demanded for Shuffle Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Oct. 25, 2004.
VendingData Corporation's Opposition to Shuffle Master Inc.'s Motion for Preliminary Injection for Shuffle Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. CV-S-04-373-JCM-LRL, Nov. 12, 2004.
VendingData Corporation's Responses to Shuffle Master, Inc.'s First set of interrogatories for Shuffler Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. CV-S-04-1373-JCM-LRL, Mar. 14, 2005.
European Search Report for European Application No. 12 152 303, dated Apr. 16, 2012, 3 pages.
European Patent Application Search Report—European Patent Application No. 06772987.1, dated Dec. 10, 2009, 5 pages.
European Examination Report for European Application No. 02 780 410, dated Jan. 25, 2010, 5 pages.
European Examination Report for European Application No. 02 780 410, dated Aug. 9, 2011, 4 pages.
Fine, Randall A., “Talking Tables”, dated Apr. 25, 2012. Global Gaming Business Magazine, vol. 11, No. 5, May 2012. Retrieved on Oct. 3, 2016 from the Internet: <URL: https://ggbmagazine.com/issue/vol-11-no-5-may-2012/article/talking-tables> (4 pages).
Genevieve Orr, CS-449: Neural Networks Willamette University, http://www.willamette.edu/˜gorr/classes/cs449/intro.html (4 pages), Fall 1999.
http://www.google.com/search?tbm=pts&q=Card+handling+devicve+with+input+and+outpu . . . Jun. 8, 2012.
http://www.ildado.com/casino_glossary.html, Feb. 1, 2001, p. 1-8.
https://web.archive.org/web/19991004000323/http://travelwizardtravel.com/majon.htm, Oct. 4, 1999, 2 pages.
http://www.google.com/search?tbm=pts&q=shuffling+zone+onOopposite+site+of+input+. . . Jul. 18, 2012.
Litwiller, Dave, CCD vs. CMOS: Facts and Fiction reprinted from Jan. 2001 Issue of Photonics Spectra, Laurin Publishing Co. Inc. (4 pages).
Malaysian Patent Application Substantive Examination Adverse Report—Malaysian Patent Application Serial No. PI 20062710, dated May 9, 2009, 4 pages.
Neon Product Information Datasheets [online]. “Enterprise Casino Management, Table Management System, Mobile, Gaming”. Intelligent Gaming, 2014. Retrieved on Oct. 12, 2016 from the Internet: <URL: http://www.intelligentgaming.co.uk/products/neon-enterprise/> (4 pages).
PCT International Preliminary Examination Report for International Patent Application No. PCT/US02/31105 dated Jul. 28, 2004, 9 pages.
PCT International Search Report for International Application No. PCT/US2003/015393, dated Oct. 6, 2003, 2 pages.
PCT International Search Report and Written Opinion, PCT/US2012/48706, dated Oct. 16, 2012, 12 pages.
PCT International Search Report for PCT/US2005/034737 dated Apr. 7, 2006, 1 page.
PCT International Search Report for PCT/US2007/022894, dated Jun. 11, 2008, 3 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2010/001032, dated Jun. 16, 2010, 11 pages.
PCT International Search Report and Written Opinion for PCT/US07/15035, dated Sep. 29, 2008, 6 pages.
PCT International Search Report and Written Opinion for PCT/US07/15036, dated Sep. 23, 2008, 6 pages.
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2015/051038, dated Jan. 22, 2016, 11 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US2008/007069, dated Sep. 8, 2008, 10 pages.
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2015/022158, dated Jun. 17, 2015, 13 pages.
PCT International Search Report and Written Opinion for International Application No. PCT/US2007/023168, dated Sep. 12, 2008, 8 pages.
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2015/040196, dated Jan. 15, 2016, 20 pages.
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2013/062391, dated Dec. 17, 2013, 13 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US05/31400, dated Sep. 25, 2007, 12 pages.
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2015/025420, dated Oct. 2, 2015, 15 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US13/59665, dated Apr. 25, 2014, 21 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/IB2013/001756, dated Jan. 10, 2014, 7 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/US11/59797, dated Mar. 27, 2012, 14 pages.
PCT International Search Report and Written Opinion for International Application No. PCT/US2007/022858, dated Mar. 7, 2008, 7 pages.
PCT International Search Report and Written Opinion for International Patent Application No. PCT/US2006/22911, dated Jun. 1, 2007, 6 pages.
PCT International Search Report and Written Opinion of the International Searching Authority for PCT/GB2011/051978, dated Jan. 17, 2012, 11 pages.
Philippines Patent Application Formality Examination Report—Philippines Patent Application No. 1-2006-000302, dated Jun. 13, 2006.
“Playtech Retail begins roll out of Neon across Grosvenos 55 UK Casinos”. Playtech, Apr. 21, 2016. Retrieved on Oct. 11, 2016 from the Internet: <URL: https://www.playtech.cominews/latest_news_and_prs/playtech_retail_begins_roll_out_of neon_across_grosvenor_s_55_uk_casinos> (1 page).
Press Release for Alliance Gaming Corp., Jul. 26, 2004—Alliance Gaming Announces Control with Galaxy Macau for New MindPlay Baccarat Table Technology, 2 pages, http://biz.yahoo.com/pmews.
Scarne's Encyclopedia of Games by John Scame, 1973, “Super Contract Bridge”, p. 153.
Shuffle Master Gaming, Service Manual, ACETM Single Deck Card Shuffler, (1998), 63 pages.
Shuffle Master Gaming, Service Manual, Let It Ride Bonus® With Universal Keypad, 112 pages, © 2000 Shuffle Master, Inc.
Service Manual/User Manual for Single Deck Shufflers: BG1, BG2 and BG3 by Shuffle Master © 1997, 151 page.
Singapore Patent Application Examination Report—Singapore Patent Application No. SE 2008 01914 A, dated Jun. 18, 2008, 9 pages.
SHFL Entertainment, Inc. Docket No. 60, Opening Claim Construction Brief, filed in Nevada District Court Case No. 2:12-cv-01782 with exhibits, Aug. 8, 2013, p. 1-125.
Shuffle Master's Reply Memorandum in Support of Shuffle Master's Motion for Preliminary Injunction for Shuffle Master, Inc. vs. VendingData Corporation, In the U.S. District Court, District of Nevada, No. CV-S-4-1373-JCM-LRL, Nov. 29, 2004.
Statement of Relevance of Cited References, Submitted as Part of a Third-Party Submission Under 37 CFR 1.290 on Dec. 7, 2012 (12 pages).
⅓″ B/W CCD Camera Module EB100 by EverFocus Electronics Corp., Jul. 31, 2001, 3 pgs.
“ACE, Single Deck Shuffler,” Shuffle Master, Inc., (2005), 2 pages.
Advansys, “Player Tracking” http://advansys.si/products/tablescanner/player-tracking/[Sep. 23, 2016 1:41:34 PM], 4 pages.
Australian Examination Report for Australian Application No. 2008202752, dated Sep. 25, 2009, 2 pages.
Australian Examination Report for Australian Application No. 2010202856, dated Aug. 11, 2011, 2 pages.
Australian Provisional Patent Application for Australian Patent Application No. PM7441, filed Aug. 15, 1994, Applicants: Rodney G. Johnson et al., Title: Card Handling Apparatus, 13 pages.
“Automatic casino card shuffle,” Alibaba.com, (last visited Jul. 22, 2014), 2 pages.
Bally Systems Catalogue, Ballytech.com/systems, 2012, 13 pages.
Canadian Office Action for CA 2,580,309 dated Mar. 20, 2012 (6 pages).
Canadian Office Action for Canadian Application No. 2,461,726, dated Jul. 19, 2010, 3 pages.
Canadian Office Action for Canadian Application No. 2,461,726, dated Dec. 11, 2013, 3 pages.
CasinoTrac TableTrac Services. Product Information Datasheet [online]. CasinoTrac, 2015. Retrieved on Oct. 12, 2016 from the Internet: <URL: http://www.tabletrac.com/?pageid=15#prettyPhoto> (3 pages).
Christos Stergiou and Dimitrios Siganos, “Neural Networks,” http://www.doc.ic.ac.uk/˜nd/surprise_96/journal/vol4/cs11/report.html (13 pages), Dec. 15, 2011.
Complaint filed in the matter of SHFL entertainment, In. v. DigiDeal Corporation, U.S. District Court, District of Nevada, Civil Action No. Cv 2:12-cv-01782-GMC-VCF, Oct. 10, 2012, 62 pages.
CONNECT2TABLE Administrator Manual, Jan. 7, 2013 (82 pages).
CONNECT2TABLE Quick Installation Guide, Feb. 20, 2013 (36 pages).
CONNECT2TABLE Connect2Table System Summary, generated Oct. 21, 2016 (2 pages).
CONNECT2TABLE User Manual, Feb. 7, 2013 (35 pages).
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 18 of 23 (color copies from Binder 1).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 1 of 23 (Master Index and Binder 1, 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 2 of 23 (Master Index and Binder 1, 2 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 3 of 23 (Binder 2, 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 4 of 23 (Binder 2, 2 of 2).
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 19 of 23 (color copies from Binder 3).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 5 of 23 (Binder 3, 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 6 of 23 (Binder 3, 2 of 2).
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 20 of 23 (color copies from Binder 4).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 7 of 23 (Binder 4, 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 8 of 23 (Binder 4, 2 of 2).
Documents submitted in case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 21 of 23 (color copies from Binder 6).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 10 of 23 (Binder 6, 2 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 9 of 23 (Binder 5 having no contents; Binder 6, 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 11 of 23 (Binder 7, 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 12 of 23 (Binder 7, 2 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 13 of 23 (Binder 8, 1 of 5).
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 22 of 23 (color copies from Binder 8, part 1 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 14 of 23 (Binder 8, 2 of 5).
Documents submitted in case of Shuffle Master, Inc. v. Card Aurstia, et al., Case No. CV-N-0508-HDM-(VPC) consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, scan of color pages, for clarity, Part 23 of 23 (color copies from Binder 8, part 2 of 2).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 15 of 23 (Binder 8, 3 of 5).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al., Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 16 of 23 (Binder 8, 4 of 5).
Documents submitted in the case of Shuffle Master, Inc. v. Card Austria, et al.,Case No. CV-N-0508-HDM-(VPC) (Consolidated with Case No. CV-N-02-0244-ERC-(RAM)), May 6, 2003, Part 17 of 23 (Binder 8, 5 of 5).
DVD labeled Exhibit 1. This is a Dvd taken by Shuffle Master personnel of the live operation of a CARD One2Sil Shuffler (Oct. 7, 2003).
DVD labeled Morrill Decl. Ex. A is (see Binder 4-1, p. 149/206, Morrill Decl., para. 2.): A video (16 minutes) that the attorney for Card, Robert Morrill, made to describe the Roblejo prototype card shuffler.
DVD labeled Solberg Decl.Ex.C, which is not a video at all, is (see Binder 4-1, p. 34/206, Solberg Decl., para.8): Computer source code for operating a computer-controlled card shuffler (an early Roblejo prototype card shuffler) and descriptive comments of how the code works.
DVD labeled Luciano Decl. Ex. K is (see Binder 2-1, p. 215/237, Luciano Decl., para.14): A video demonstration (11minutes) of a Luciano Packaging prototype shuffler.
“Error Back propagation,” http://willamette.edu˜gorr/classes/cs449/backprop.html (4 pages), Nov. 13, 2008.
“i-Deal,” Bally Technologies, Inc., (2014), 2 pages.
“Shufflers—SHFL entertainment,” Gaming Concepts Group, (2012), 6 pages.
“TAG Archives: Shuffle Machine,” Gee Wiz Online, (Mar. 25, 2013), 4 pages.
Related Publications (1)
Number Date Country
20180001185 A1 Jan 2018 US
Divisions (1)
Number Date Country
Parent 14195554 Mar 2014 US
Child 15702986 US
Continuations (2)
Number Date Country
Parent 13741236 Jan 2013 US
Child 14195554 US
Parent 11444167 May 2006 US
Child 13741236 US