Methods of fluid-controlled geometry stimulation

Information

  • Patent Grant
  • 8082992
  • Patent Number
    8,082,992
  • Date Filed
    Monday, July 13, 2009
    15 years ago
  • Date Issued
    Tuesday, December 27, 2011
    13 years ago
Abstract
Methods including the steps of selecting a target fracture geometry for a portion of a subterranean formation; selecting a target tip pressure and a target back flow pressure based at least in part on a calculation for the target fracture geometry; selecting a target surface pressure and a target bottom-hole pressure based at least in part on a calculation for the target tip pressure and the target back flow pressure; and introducing a slurry fluid comprising proppant particulates into one or more fractures in the portion of the subterranean formation. The surface pressure corresponds to the target surface pressure, and bottom-hole pressure corresponds to the target bottom-hole pressure.
Description
BACKGROUND

This invention relates to subterranean treatments and, more particularly, in certain embodiments, to methods of stimulating a high-permeability subterranean formation which provide an element of control over fluid leakoff and proppant pack formation.


To increase the production of desirable fluids, subterranean wells (such as hydrocarbon producing wells, water producing wells, and injection wells) may be stimulated by traditional hydraulic-fracturing treatments. In traditional hydraulic-fracturing treatments, a viscous fracturing fluid is pumped into a portion of a subterranean formation at or above a rate and pressure sufficient to create or enhance one or more fractures in the formation. It should be understood that there is growing evidence that stimulation by hydraulic fracturing in unconsolidated or poorly consolidated formations may not produce brittle fractures (macroscopic cracks or fissures), as would be expected in more consolidated formations. Rather, a region of high permeability may form, due, in part, to shear failure near the tip of the would-be fracture. To the extent that the methods disclosed herein are applicable to both brittle fractures and regions of high permeability produced by hydraulic-fracturing treatments, the term “fracture” will be used to generally describe the immediate physical results of hydraulic fracturing stimulation of a subterranean formation.


During traditional hydraulic-fracturing treatments, particulate solids, such as graded sand, may be suspended in a portion of the fracturing fluid and deposited in the fractures. These particulate solids, or “proppant particulates,” serve to prevent the fractures from fully closing once the hydraulic pressure is released. By preventing the fractures from fully closing, the proppant particulates aid in forming channels through which fluids may flow. In some instances, fracturing and gravel-packing treatments may be combined into a single treatment, often referred to as a “frac pac” treatment. In gravel packing treatments, larger particulate solids (commonly referred to as “gravel particulates”) may be suspended in a fluid for delivery to a desired area in a well bore, e.g., near unconsolidated or weakly consolidated formation zones, to form a gravel pack to enhance sand control. One common type of gravel-packing treatment involves placing a sand-control screen in the well bore and packing the annulus between the screen and the well bore with the gravel particulates of a specific size designed to prevent the passage of formation sand. The gravel particulates act, among other things, to prevent the formation particulates from occluding the screen or migrating with the produced hydrocarbons, and the screen acts, among other things, to prevent the particulates from entering the production tubing.


The downhole pressure needed to create or enhance one or more fractures in a subterranean formation is a function of the hydrostatic pressure (e.g., the weight of the hydrostatic column) and the surface pressure, provided by the pumping equipment, less the frictional pressure losses due, in part, to the tubing and other downhole equipment as the fracturing fluid passes therethrough. Due to the volume of fluids and proppant required in typical fracturing and frac pac treatments, supply vessels may be required. However, access to the requisite vessels may not be possible in certain locations, particularly internationally. Conventional gravel packing and cementing equipment may be available at these locations, but the size of the jobs typically precludes use of the gravel packing and cementing equipment.


SUMMARY

This invention relates to subterranean treatments and, more particularly, in certain embodiments, to methods of stimulating a high-permeability subterranean formation which provide an element of control over fluid leakoff and proppant-pack formation.


One embodiment of the present invention provides a method for stimulating a high-permeability subterranean formation. The method comprises selecting a target fracture geometry for a portion of a subterranean formation. The method further comprises introducing a pad fluid comprising a fluid-loss-control additive into the portion of the subterranean formation to create or extend one or more fractures in the portion of the subterranean formation, wherein an amount of the fluid-loss-control additive is determined based at least in part on the target fracture geometry. The method further comprises allowing a barrier to form along at least a portion of the one or more fractures, wherein the barrier comprises the fluid-loss-control additive. The method further comprises introducing a slurry fluid comprising proppant particulates into the one or more fractures, wherein a tip screen-out occurs in at least one of the one or more fractures.


In another embodiment, an additional method for stimulating a high-permeability subterranean formation is provided. The method comprises selecting a target fracture geometry for a portion of a subterranean formation. The method further comprises selecting a target tip pressure and a target back flow pressure based at least in part on a calculation for the target fracture geometry. The method further comprises selecting a target surface pressure and a target bottom-hole pressure based at least in part on a calculation for the target tip pressure and the target back flow pressure. The method further comprises introducing a slurry fluid comprising proppant particulates into one or more fractures in the portion of the subterranean formation, wherein surface pressure corresponds to the target surface pressure, and bottom-hole pressure corresponds to the target bottom-hole pressure.


In another embodiment, an additional method for stimulating a high-permeability subterranean formation is provided. The method comprises selecting a target fracture geometry for a portion of a subterranean formation. The method further comprises selecting a target barrier coverage based at least in part on a calculation for the target fracture geometry. The method further comprises selecting target pad fluid parameters based at least in part on a calculation for the target barrier coverage, wherein the target pad fluid parameters comprise a target volume of pad fluid, a target quantity of fluid-loss-control additive within the pad fluid, and a target pumping rate and pressure to pump the pad fluid. The method further comprises introducing a pad fluid into the portion of the subterranean formation, wherein volume of pad fluid, quantity of fluid-loss-control additive within the pad fluid, and pumping rate and pressure to pump the pad fluid correspond to the target pad fluid parameters. The method further comprises selecting target slurry fluid parameters based at least in part on a calculation for the target barrier coverage and target fracture geometry, wherein the target slurry fluid parameters comprise a target volume of slurry fluid, a target quantity of proppant within the slurry fluid, a target viscosity of the slurry fluid, and a target pumping rate and pressure to pump the slurry fluid. The method further comprises introducing a slurry fluid into the portion of the subterranean formation, wherein volume of slurry fluid, quantity of proppant within the slurry fluid, viscosity of the slurry fluid, and pumping rate and pressure to pump the slurry fluid correspond to the target slurry fluid parameters.


The features and advantages of the present invention will be readily apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

These drawings illustrate certain aspects of some of the embodiments of the present invention, and should not be used to limit or define the invention.



FIG. 1 illustrates initiation of a fracture with a pad fluid in accordance with an aspect of an embodiment of the invention.



FIG. 2 illustrates extension of the fracture with the pad fluid and introduction of the slurry fluid into the fracture in accordance with an aspect of an embodiment of the invention.



FIG. 3 illustrates introduction of the slurry fluid into the fracture with leakoff through the fracture tip in accordance with an aspect of an embodiment of the invention.



FIG. 4 illustrates an aspect of an embodiment of the invention near the beginning of tip screen-out.



FIG. 5 illustrates an aspect of an embodiment of the invention near the end of tip screen-out.



FIG. 6 illustrates an aspect of an embodiment of the invention at the conclusion of tip screen-out.



FIG. 7 illustrates aspects of pressure targets and measurement for an embodiment of the invention.



FIG. 8 illustrates leakoff behavior of an example pad fluid in accordance with an aspect of the invention.





DESCRIPTION OF PREFERRED EMBODIMENTS

This invention relates to subterranean treatments and, more particularly, in certain embodiments, to methods of stimulating a high-permeability subterranean formation which provide an element of control over fluid leakoff and proppant pack formation. As used herein, a subterranean formation having a high permeability is a formation that has a permeability of at least about 10 millidarcy (>10 md), as determined by core sample analysis or field production or well testing. In some embodiments, the methods of the present invention comprise introducing a pad fluid comprising a fluid-loss-control additive (“FLA”) into a subterranean formation so as to create and/or extend one or more fractures into the subterranean formation. As used herein, “pad fluid” generally refers to a fluid pumped at the beginning of a stimulation operation which does not contain proppant. The pad fluid comprising the FLA may form a barrier along the one or more fractures, such that the barrier may impede fracture face leakoff of aqueous fluids from the one or more fractures. Once the barrier is formed along the fracture face, a slurry fluid comprising proppant particulates is introduced into the one or more fractures so that a tip screen-out may occur in at least one of the one or more fractures once the slurry fluid extends beyond the barrier. In some embodiments, the methods of the present invention provide controlled fluid leakoff from a fracture face, which allows for the volume of fluid and the fluid pumping rate and pressure to be substantially less than required by traditional hydraulic-fracturing treatments. It is believed that fluid leakoff controlled under certain embodiments of this invention tends to be much less sensitive to variations in reservoir characteristics (such as permeability and fluid efficiency) than traditional hydraulic-fracturing treatments. Furthermore, due to reduced fluid volume requirements, cementing, and gravel packing equipment available at the site may be used in accordance with certain embodiments of the present invention.


An early phase of one embodiment of the invention is illustrated in FIG. 1. As illustrated, pad fluid 5 may be introduced into fracture 10, which emanates from well bore 15 in formation 20. In certain embodiments, formation 20 may be a high-permeability formation. In certain embodiments, formation 20 may be a high-permeability formation with a permeability of about 10 md to about 5 Darcies and, alternatively of about 100 md to about 2 Darcies. It should be understood that fracture 10 may have existed prior to the pumping of pad fluid 5, or fracture 10 may have been created and/or extended by the action of pumping pad fluid 5. Fracture 10 may be a macroscopic, brittle fracture, of the type traditionally associated with hydraulic fracturing. Fracture 10 also may be a microscopic fracture within a region of high permeability in a poorly consolidated formation. The well bore treated may be vertical, deviated, horizontal, multilateral, and or combinations thereof. The well bore may be completed with casing and perforations or open hole.


Pad fluid 5 may exit fracture 10 through fracture face leakoff 25 along the perimeter of fracture 10. As used herein, “fracture face leakoff” refers to fluid migration from the fracture into the formation through the fracture face and not through the tip of the fracture. In the process of exiting fracture 10 as fracture face leakoff 25, the pad fluid 5 generally forms a barrier 30 that is substantially impermeable to the flow of aqueous liquids. The pad fluid generally may be characterized based on the performance of the barrier in the presence of aqueous fluids. For example, a barrier may be formed by a suitable pad fluid wherein, after optional removal of any excess pad fluid, and introduction of an aqueous fluid without FLAs, the barrier may permit post-spurt fluid loss of less than 0.2 gal/ft2/hr, as measured on a 5-micron disc in an HPHT cell with 500 pounds per square inch (“psi”) differential pressure at 140° F. As used herein, “spurt” is the leakoff that occurs as the barrier (e.g., filter cake) is being deposited. As used herein, “post-spurt” is the leakoff that occurs after the barrier is in place with the leakoff taking-on a straight-line character when plotted in the square root of time (often referred to as Cw). Generally, barrier 30 may be any coating, caking, agglomeration, or other build-up of FLA which is substantially impermeable to the flow of aqueous liquids. In certain embodiments, the barrier 30 may be a filter cake that is substantially impermeable to aqueous liquid flow. The barrier 30 generally may be formed, for example, on the walls of fracture 10. In some embodiments, the barrier 30 may comprise self-degrading material.


The pad fluid 5 may generally comprise a FLA such that leakoff from the pad fluid is dominated by spurt, and very little time-dependent leakoff follows. It should be understood by one of ordinary skill in the art with the benefit of this disclosure that the amount of barrier surface area generated by such pad fluids may be strongly influenced by the amount of FLA present in the pad fluid. Therefore, the barrier coverage geometry (including length and height of the fracture) may be predicted substantially independent of the permeability and fluid efficiency of the formation, but primarily dependent upon the ability of a given quantity of FLA to cover a certain surface area of fracture face. The type and quantity of FLA in the pad fluid may be optimized so that the leading edge of the fracture reaches the desired fracture length within about 0.5 ft, for example, of the location where the pad volume is depleted, i.e., the end of the barrier.



FIG. 2 illustrates extension of fracture 10 with the pad fluid 5 and introduction of slurry fluid 35 into the fracture, in accordance with an aspect of an embodiment of the invention. As illustrated, pad fluid 5 may be introduced into fracture 10 at or above a pressure sufficient to extend fracture 10 into formation 20. In the illustrated embodiments, slurry fluid 35 may be pumped into fracture 10 following pad fluid 5. As those of ordinary skill in the art will appreciate, a spacer fluid may be introduced between pad fluid 5 and slurry fluid 35. Slurry fluid 35 also may be introduced into formation 20 at or above a pressure sufficient to extend fracture 10 into formation. As will be discussed in more detail below, the base fluid of the slurry fluid 35 generally may be a high-leakoff fluid. As used herein, a “high-leakoff fluid” will generally have a fluid loss of more than 10 gal/ft2/hr, as measured on a 5-micron disc in an HPHT cell with 500 psi differential pressure at 140° F. Slurry fluid 35 may generally not contain materials that would contribute to the barrier, and slurry fluid 35 may be designed to have an uncontrolled leakoff. However, even though slurry fluid 35 may be a high-leakoff fluid, since the pad fluid 5 has formed barrier 30 on the walls of the fracture 10, there may be very little fracture face leakoff 25 of slurry fluid 35. Slurry fluid 35 may not disrupt barrier 30 such that barrier 30 remains substantially impermeable to aqueous fluids during introduction of slurry fluid 35 into fracture 10. Likewise, barrier 30 should not substantially self-degrade during introduction of slurry fluid 35 into fracture 10. As additional slurry fluid 35 is pumped into fracture 10, pad fluid 5 may be substantially fully dissipated through fracture face leakoff 25 and formation of barrier 30.



FIG. 3 illustrates introduction of slurry fluid 35 into fracture 10 with tip leakoff 40 through the fracture tip. As previously mentioned, very little leakoff of slurry fluid 35 occurs through the perimeter of fracture 10 because of barrier 30. However, once the length of fracture 10 extends slightly beyond the area covered by barrier 30, leakoff of slurry fluid 35 may then occur substantially through tip leakoff 40 through the tip of fracture 10. The rate of leakoff of slurry fluid occurring substantially through the tip of fracture 10 may be at least about 10 gal/ft2/hr, and, in certain embodiments, as much as about 50 gal/ft2/hr.


In one embodiment of the invention, illustrated in FIG. 4, leakoff of slurry fluid 35 through tip leakoff 40 may result in tip screen-out (“TSO”). As used herein, “TSO” refers to the phenomena of minimal additional growth in fracture length as proppant particulates agglomerate from the fracture tip towards the well bore. Thus, in FIG. 4, proppant pack 45 may begin to form at the tip of fracture 10. In accordance with embodiments of the present invention, the TSO may occur just beyond the area of fracture 10 covered by barrier 30. By way of example, TSO may occur within about 0.1 feet to about 0.5 feet of the end of barrier 30.


In accordance with embodiments of the present invention, slurry fluid 35 may continue to leakoff through tip leakoff 40. In one embodiment of the invention, as illustrated in FIG. 5, continued tip leakoff 40 may result in the growth of the proppant pack 45 towards the well bore 15. With the growth of proppant pack 45, the pressure required for slurry fluid 35 to travel through proppant pack 45 to reach the tip of fracture 10 may increase. This increase in pressure may result in an increase in back pressure in the fracture 10, thereby expanding the width of fracture 10 as proppant pack 45 grows. By way of example, the back pressure in the fracture may be between about 10 psi and about 400 psi. It should be understood that this increase in width can be achieved even at relatively low pumping rates and pressures. For example, the pumping rate may be about 5 barrels to about 10 barrels/minute. In certain embodiments, the pumping rate may be adjusted (e.g., lowered) based on the desired back pressure. With the benefit of this disclosure, one of ordinary skill in the art should recognize that a specified fracture width may be achieved while decreasing pumping rates as the proppant pack agglomerates towards the well bore. One of ordinary skill in the art would also recognize that pressure above 400 psi may be desired given certain combination of the modulus of elasticity of the formation and the fracture length (radius), and that the conductivity of the fracture will depend, inter alia, on the formation permeability, the type and size of proppant used, and the amount of near well bore damage that is being bypassed.


Taken together, the barrier coverage geometry, the leading edge of the fracture, the location of TSO, and the width and height of the fracture may define a fracture geometry. As would be understood by one of ordinary skill in the art with the benefit of this disclosure, to control the geometry of fracture 10, the design of the stimulation job to produce a target fracture geometry may specify targets for the volume of pad fluid 5, the quantity of FLA within pad fluid 5, the pumping rate and pressure utilized to pump pad fluid 5, the volume of slurry fluid 35, the quantity of proppant within slurry fluid 35, the viscosity of slurry fluid 35, and the pumping rate and pressure utilized to pump slurry fluid 35. The barrier coverage geometry (including length and height of the fracture) may be primarily dependent upon the ability of a given quantity of FLA to cover a certain surface area of fracture face. The width of the fracture may be predicted primarily by the formation pressure response following TSO. The conductivity of the resulting fracture may be primarily dependent upon the permeability of the formation, the permeability of the proppant, and the width of the fracture.



FIG. 6 illustrates the resultant proppant pack 45 substantially filling widened fracture 10 in accordance with one embodiment of this invention. It should be understood that the treatment phases illustrated in FIGS. 1-6 may or may not be followed by a gravel-packing procedure at the well bore. Although the gravel packing procedure may be performed with a screen in place, the present method encompasses treatments that are done without a screen. Additional treatments which do not undesirably impact the formation of proppant pack 45 may be applied to fracture 30 at any point prior to, during, or following the aforementioned phases. The methods of the present invention optionally may include applying one or more preflush or afterflush fluids to the subterranean formation at any phase of the treatment process. Examples of suitable preflush fluids include, but are not limited to, acids and bases. Examples of suitable afterflush fluids include, but are not limited to, high-pH/caustic solutions. Acidic afterflushes may be particularly appropriate when the pad fluid comprises a FLA which is not self-degrading, such as calcium carbonate.


According to one embodiment of the invention, design of a stimulation job to produce a target fracture geometry may occur prior to introduction of pad fluid 5 into well bore 15. As previously discussed, the design of a stimulation job may specify targets for the volume of pad fluid, the quantity of FLA within the pad fluid, the pumping rate and pressure utilized to the pump pad fluid, the volume of slurry fluid, the quantity of proppant within the slurry fluid, the viscosity of the slurry fluid, and the pumping rate and pressure utilized to pump the slurry fluid. Moreover, the design may establish multiple stages for the pad, each uniquely characterized by type of fluid, volume of fluid, type and quantity of FLA, and/or pumping rates and pressures. Similarly, the design may specify parameters for the slurry fluid and establish multiple stages for the slurry fluid pumping, each uniquely characterized by type of fluid, volume of fluid, type of proppant, proppant concentration, and/or pumping rates and pressures.


According to one embodiment of the invention, design of a stimulation job may set target pressure parameters. One aspect of such job design may include setting targets for the pressure at the tip of the fracture, element 50 of FIG. 7. It should be appreciated that pressure at the tip 50 subsequent to TSO should remain below fracture extension pressure to minimize the risk of the fracture extending in length, rather than growing the proppant pack while expanding the width of the fracture. Yet another aspect of such job design may be to set target parameters for the back pressure in the fracture, element 55 in FIG. 7. As previously discussed, the back pressure 55 may increase with the growth of the proppant pack, thereby expanding the width of the fracture. Appropriate target parameters for the back pressure 55 in the fracture could provide constraints on the width of the resultant propped fracture. Once target parameters for the pressure at the tip 50 of the fracture and the back pressure 55 in the fracture have been established, standard flow equations may be used to model the formation stimulation job and thereby calculate acceptable measurable parameters, such as the bottom-hole pressure and the surface pressure, elements 60 and 65, respectively, in FIG. 7. While FIG. 7 illustrates a horizontal fracture, it should be understood that the fracture may be vertical, deviated, horizontal, multilateral, and or combinations thereof.


It is believed that the system's inherent simplicity may result in improved operational reliability during treatment. In addition, no preliminary step-rate and injection tests may be required for treatment design. Further, preparation of the fluids may not require polymer hydration time, and crosslinkers or specific internal breakers may not be needed. The reduced complexity of the treatment may not only simplify on-site mixing and metering, but also may increase reliability, as well.


Pad fluids of the present invention generally comprise a base fluid, a viscosifying agent, and a FLA. Optionally, other additives may be added as desired.


The pad fluid may provide a base fluid as a medium of transport for the other components into the formation. The base fluid may comprise water or brine. Selected organic or inorganic salts or mixtures may be included, provided that they do not undesirably interact with other components in the pad, other treatment fluids, the formation, and formation fluids. For example, a base fluid comprising about 1% to about 7% by weight potassium chloride or ammonium chloride may be used as the base fluid in pad fluids to stabilize clays and prevent clay swelling. Sometimes other brines or seawater may be used. An organic cation salt, such as, in particular, tetra methyl ammonium chloride, may be utilized, with a concentration of, for example, but not limited to, about 0.2% to about 0.5% by weight.


The pad fluid may include a FLA such that the filter cake and leakoff control that results is dominated by the spurt, and very little time dependent leakoff follows. By appropriately selecting the FLA, the amount of filter cake surface area generated by the pad fluid may be strongly influenced by the amount of FLA material pumped. Thereby, the resultant fracture geometry may be controlled by specifying the amount of FLA material included in the pad fluid. In general, the FLA may contain, for example, at least one component that can be broken or degraded (for example, oxidation of a polymer, or enzymatic degradation of a cross-linked natural polymer) or dissolved (for example, dissolution of calcium carbonate by an acid, or dissolution of a wax or resin by a solvent). By way of example, this generally may allow removal of the barrier formed by the FLAs subsequent to formation of the proppant pack in the fracture.


In certain embodiments of the present invention, the FLA may comprise a degradable material, such as be a degradable polymer. The terms “degradation” or “degradable” refer to both the two relatively extreme cases of hydrolytic degradation that the degradable material may undergo, e.g., heterogeneous (or bulk erosion) and homogeneous (or surface erosion), and any stage of degradation in between these two. This degradation can be a result of, inter alia, a chemical or thermal reaction, or a reaction induced by radiation. The terms “polymer” or “polymers” as used herein do not imply any particular degree of polymerization; for instance, oligomers are encompassed within this definition.


A polymer is considered to be “degradable” herein if it is capable of undergoing an irreversible degradation when used in an appropriate applications, e.g., in a well bore. The term “irreversible” as used herein means that the degradable material should degrade in situ but should not recrystallize or reconsolidate in situ after degradation.


Suitable examples of degradable polymers that may be used in accordance with the present invention include, but are not limited to, those described in the publication of Advances in Polymer Science, Vol. 157 entitled “Degradable Aliphatic Polyesters,” edited by A. C. Albertsson, pages 1-138. Specific examples include homopolymers, random, block, graft, and star- and hyper-branched aliphatic polyesters. Such suitable polymers may be prepared by polycondensation reactions, ring-opening polymerizations, free radical polymerizations, anionic polymerizations, carbocationic polymerizations, coordinative ring-opening polymerizations, as well as by any other suitable process. Examples of suitable degradable polymers that may be used in conjunction with the methods of this invention include, but are not limited to, aliphatic polyesters; poly(lactides); poly(glycolides); poly(ε-caprolactones); poly(hydroxy ester ethers); poly(hydroxybutyrates); poly(anhydrides); polycarbonates; poly(orthoesters); poly(amino acids); poly(ethylene oxides); poly(phosphazenes); poly ether esters, polyester amides, polyamides, and copolymers or blends of any of these degradable polymers, and derivatives of these degradable polymers. The term “copolymer” as used herein is not limited to the combination of two polymers, but includes any combination of polymers, e.g., terpolymers and the like. As referred to herein, the term “derivative” is defined herein to include any compound that is made from one of the listed compounds, for example, by replacing one atom in the base compound with another atom or group of atoms. Of these suitable polymers, aliphatic polyesters such as poly(lactic acid), poly(anhydrides), poly(orthoesters), and poly(lactide)-co-poly(glycolide) copolymers are preferred. Poly(lactic acid) is especially preferred. Poly(orthoesters) also may be preferred. Other degradable polymers that are subject to hydrolytic degradation also may be suitable. One's choice may depend on the particular application or use and the conditions involved. Other guidelines to consider include the degradation products that result, the time for required for the requisite degree of degradation, and the desired result of the degradation (e.g., voids).


Suitable aliphatic polyesters have the general formula of repeating units shown below:




embedded image



where n is an integer between 75 and 10,000 and R is selected from the group consisting of hydrogen, alkyl, aryl, alkylaryl, acetyl, heteroatoms, and mixtures thereof. In certain embodiments of the present invention wherein an aliphatic polyester is used, the aliphatic polyester may be poly(lactide). Poly(lactide) is synthesized either from lactic acid by a condensation reaction or, more commonly, by ring-opening polymerization of cyclic lactide monomer. Since both lactic acid and lactide can achieve the same repeating unit, the general term poly(lactic acid) as used herein refers to writ of formula I without any limitation as to how the polymer was made (e.g., from lactides, lactic acid, or oligomers), and without reference to the degree of polymerization or level of plasticization.


The lactide monomer exists generally in three different forms: two stereoisomers (L- and D-lactide) and racemic D,L-lactide (meso-lactide). The oligomers of lactic acid and the oligomers of lactide are defined by the formula:




embedded image



where m is an integer in the range of from greater than or equal to about 2 to less than or equal to about 75. In certain embodiments, m may be an integer in the range of from greater than or equal to about 2 to less than or equal to about 10. These limits may correspond to number average molecular weights below about 5,400 and below about 720, respectively. The chirality of the lactide units provides a means to adjust, inter alia, degradation rates, as well as physical and mechanical properties. Poly(L-lactide), for instance, is a semicrystalline polymer with a relatively slow hydrolysis rate. This could be desirable in applications or uses of the present invention in which a slower degradation of the degradable material is desired. Poly(D,L-lactide) may be a more amorphous polymer with a resultant faster hydrolysis rate. This may be suitable for other applications or uses in which a more rapid degradation may be appropriate. The stereoisomers of lactic acid may be used individually, or may be combined in accordance with the present invention. Additionally, they may be copolymerized with, for example, glycolide or other monomers like ε-caprolactone, 1,5-dioxepan-2-one, trimethylene carbonate, or other suitable monomers to obtain polymers with different properties or degradation times. Additionally, the lactic acid stereoisomers can be modified by blending high and low molecular weight polylactide or by blending polylactide with other polyesters. In embodiments wherein polylactide is used as the degradable material, certain preferred embodiments employ a mixture of the D and L stereoisomers, designed so as to provide a desired degradation time and/or rate. Examples of suitable sources of degradable material are poly(lactic acids) that are commercially available from NatureWorks® of Minnetonka, Minn., under the trade names “3001D” and “4060D.”


Aliphatic polyesters useful in the present invention may be prepared by substantially any of the conventionally known manufacturing methods such as those described in U.S. Pat. Nos. 6,323,307; 5,216,050; 4,387,769; 3,912,692; and 2,703,316, the relevant disclosures of which are incorporated herein by reference.


Polyanhydrides are another type of degradable polymer that may be suitable for use in the present invention. Examples of suitable polyanhydrides include poly(adipic anhydride), poly(suberic anhydride), poly(sebacic anhydride), and poly(dodecanedioic anhydride). Other suitable examples include, but are not limited to, poly(maleic anhydride) and poly(benzoic anhydride).


The physical properties of degradable polymers may depend on several factors including, but not limited to, the composition of the repeat units, flexibility of the chain, presence of polar groups, molecular mass, degree of branching, crystallinity, and orientation. For example, short chain branches may reduce the degree of crystallinity of polymers while long chain branches may lower the melt viscosity and may impart, inter alia, extensional viscosity with tension-stiffening behavior. The properties of the material utilized further may be tailored by blending, and copolymerizing it with another polymer, or by a change in the macromolecular architecture (e.g., hyper-branched polymers, star-shaped, or dendrimers, and the like). The properties of any such suitable degradable polymers (e.g., hydrophobicity, hydrophilicity, rate of degradation, and the like) can be tailored by introducing select functional groups along the polymer chains. For example, poly(phenyllactide) will degrade at about one-fifth of the rate of racemic poly(lactide) at a pH of 7.4 at 55° C. One of ordinary skill in the art, with the benefit of this disclosure, will be able to determine the appropriate functional groups to introduce to the polymer chains to achieve the desired physical properties of the degradable polymers.


In some embodiments, examples of suitable FLA may include degradable materials such as fatty alcohols, fatty esters, fatty acid salts, proteinous materials, or derivatives thereof. The melting points and solubilities in the following are from the HANDBOOK OF AQUEOUS SOLUBILITY DATA, by Samuel H. Yalkowsky and Yan He, Publisher: CRC Press, 2001 These materials may be used in any mixture or combination in the degradable diverting agents of the present invention. Fatty alcohols and fatty esters that may be suitable for use in the present invention include, but are not limited to montanyl alcohol (which has a melting point of 83° C. (171° F.)); tert-butylhydroquinone (which has a melting point of 128° C. (262° F.), and is insoluble in water); cholesterol (which has a melting point of 149° C. (300° F.), and has a solubility of 0.095 mg/L of water at 30° C. (86° F.)); cholesteryl nonanoate (which has a melting point of about 80° C. (176° F.), and is insoluble in water); benzoin (which has a melting point of about 137° C. (279° F.), and is slightly insoluble in water); borneol (which has a melting point of about 208° C. (406° F.), and is slightly insoluble in water); exo-norborneol (which has a melting point of 125° C. (257° F.) and; glyceraldehyde triphenylmethanol (which has a melting point of 164.2° C. (324° F.), and is insoluble in water; propyl gallate (which has a melting point of 150° C. (302° F.); and dimethyl terephthalate (“DMT”) (which has a melting point of 141° C. (286° F.), and limited solubility in water which is more soluble than “slightly”). Any combinations, derivatives, or mixtures of these may be suitable as well. Suitable fatty alcohols may also include, as examples: camphor (C10H16O, with a melting point of about 180° C. (356° F.), slightly soluble in water); cholecalciferol (a.k.a. vitamin D3, C27H44O, with a melting point of about 85° C. (185° F.), slightly soluble in water); ricinolyl alcohol (C18H36O2, with a melting point of about 89° C. (192° F.)); 1-heptacosanol (C27H56O, with a melting point of about 82° C. (180° F.)); 1-tetratriacontanol (a.k.a. geddyl alcohol C34H70O, with a melting point of about 92° C. (198° F.)); 1-dotriacontanol (lacceryl alcohol, C32H66O, with a melting point of about 89° C. (192° F.)); 1-hentriacontanol (melissyl alcohol, C31H64O, with a melting point of about 87° C. (189° F.)); 1-triacontanol (myricyl alcohol, C30H62O, with a melting point of about 87° C. (189° F.)); 1-nonacosanol (C29H60O, with a melting point of about 85° C. (185° F.)); 1-octasanol (a.k.a. montanyl alcohol, C28H58O, with a melting point of about 84° C. (183° F.)); 1-hexacosanol (ceryl alcohol, C26H54O, with a melting point of about 81° C. (178° F.)); 1,14-tetradecanediol (C14H30O2, with a melting point of about 85° C. (185° F.)); 1,16-hexadecanediol, (C16H34O2, with a melting point of about 91° C. (196° F.)); 1,17-heptadecanediol (C18H36O2, with a melting point of about 96° C. (205° F.)); 1,18-octadecanediol (C19H38O2, with a melting point of about 98° C. (208° F.)); 1,19-nonadecanediol (C20H40O2, with a melting point of about 101° C. (214° F.)); 1,20-eicosanediol (C20H42O2 with a melting point of about 102° C. (216° F.)); 1,21-heneicosanediol (C21H44O2, with a melting point of about 105° C. (221° F.)); and 1,22-docosanediol (C22H46O2, with a melting point of about 106° C. (223° F.)). Any combinations, derivatives, or mixtures of these may be suitable as well. The described fatty esters are generally reaction products of alcohols and acids. Examples include, but are not limited to, prednisolone acetate (C26H36O6, M.P. 233° C. (451° F.), slightly soluble in water), cellobiose tetraacetate (slightly soluble in water), terephthalic acid dimethyl ester, (C10H10O4, M.P. 140° C. (284° F.), slightly soluble in water). Other examples of esters can be found in ester waxes such as carnauba wax and ouricouri wax. Carnauba wax comprises ceryl palmitate, myricyl ceretate, and myricyl alcohol (C30H61OH) along with other high molecular weight esters and alcohols. Olho wax is a pure whitish gray carnauba wax obtained from young leaves. Other waxes that can be used include the following. Refined olho wax is also known as flora wax. Palha wax is a brownish wax obtained from older leaves. Palha wax can be emulsified with water to form chalky wax. Castor wax is a compound obtained by the controlled hydrogenation of pure castor oil. The principle constituent is glycerol tris 12-hydroxystearate, also known as opalwax with a melting point in the range from about 78° C. (172° F.) to about 85° C. (185° F.). Any combinations, derivatives, or mixtures of these may be suitable as well. Suitable proteinous materials may also be used in the present invention. The term “proteinous materials”, as used herein, relates to any of a group of complex organic macromolecules that contain carbon, hydrogen, oxygen, nitrogen, and/or sulfur and are composed of one or more chains of amino acids. Prolamins are a group of plant storage proteins having a high proline and glutamine content and can be found in the seeds of cereal grains. The prolamins that are suitable for use in the degradable diverting agents of the present invention include, but are not limited to, such prolamins as: gliadin, hordein, secalin, zein, avenin, and combinations thereof. Prolamins are generally soluble only in strong alcohol solutions and have a melting point in the range from about 160° C. (320° F.) to about 200° C. (392° F.). Fatty acid salts that may be suitable for use in the present invention include, but are not limited to, such fatty acid salts as: sucrose distearate, calcium stearate, glyceryl monostearate, zinc stearate and magnesium stearate which is a hydrophobic substance with a melting point of 88° C. (190° F.). Additional information concerning degradable materials which are suitable FLA may be found in co-pending U.S. Patent Publication No. 2011/0005761, entitled “Degradable Diverting Agents and Associated Methods,” to Luo et al., which is filed on the same day herewith on Jul. 13, 2009, and which is herein incorporated by reference in its entirety.


Suitable FLAs may also include, by non-limiting example, water-soluble polymers, or crosslinked water-soluble polymers. In certain embodiment, suitable water-soluble polymers include relative permeability modifiers. In general, suitable relative permeability modifiers may be any of a variety of compounds that are capable of selectively reducing the effective permeability of a formation to water-based fluids without a comparable reduction of the formation's effective permeability to hydrocarbons. Suitable relative permeability modifiers generally include water-soluble polymers that attach to surfaces within the formation, reducing the water permeability without a comparable reduction in hydrocarbon permeability. As used in this disclosure, “water soluble” refers to at least about 0.01 weight percent soluble in distilled water at room temperature (about 72° F.). In certain embodiments, the water-soluble polymer is at least about 0.45 weight percent soluble in distilled water at room temperature. In certain embodiments, the water-soluble polymer is at least about 0.6 weight percent soluble in distilled water at room temperature.


Those of ordinary skill in the art, with the benefit of this disclosure, will appreciate that a variety of different water-soluble polymers may be suitable for use as the relative permeability modifiers. Examples of suitable water-soluble polymers include, but are not limited to, homo-, co-, and terpolymers of acrylamide, 2-acrylamido-2-methyl propane sulfonic acid, N,N-dimethylacrylamide, vinyl pyrrolidone, dimethylaaminoethyl methacrylate, acrylic acid, dimethylaminopropylmethacrylamide, vinyl amine, vinyl acetate, trimethylammoniumethyl methacrylate chloride, methacrylamide, hydroxyethyl acrylate, vinyl sulfonic acid, vinyl phosphonic acid, methacrylic acid, vinyl caprolactam, N-vinylformamide, N,N-diallylacetamide, dimethyldiallyl ammonium halide, itaconic acid, styrene sulfonic acid, methacrylamidoethyltrimethyl ammonium halide, quaternary salt derivatives of acrylamide, quaternary salt derivatives of acrylic acid, and combinations thereof.


In addition, water-soluble polymers suitable for use as relative permeability modifiers also may include hydrophobically modified polymers. As used in this disclosure, the terms “hydrophobically modified,” “hydrophobic modification,” and the like refer to the incorporation into the hydrophilic polymer structure of hydrophobic groups, wherein the alkyl chain length is about 4 to about 22 carbons. While these hydrophobically modified polymers have hydrophobic groups incorporated into the hydrophilic polymer structure, they should remain water soluble. In some embodiments, a mole ratio of a hydrophilic monomer to the hydrophobic compound in the hydrophobically modified polymer is in the range of from about 99.98:0.02 to about 90:10, wherein the hydrophilic monomer is a calculated amount present in the hydrophilic polymer. In certain embodiments, the hydrophobically modified polymers may comprise a polymer backbone that comprises polar heteroatoms. Generally, the polar heteroatoms present within the polymer backbone of the hydrophobically modified polymers include, but are not limited to, oxygen, nitrogen, sulfur, or phosphorous.


Example hydrophobically modified polymers may contain a hydrophilic polymer backbone and a hydrophobic branch, wherein the hydrophobic branch includes an alkyl chain of about 4 to about 22 carbons. In certain embodiments, the hydrophobic branch may have an alkyl chain length of about 7 to about 22 carbons. In certain embodiments, the hydrophobic branch may have an alkyl chain length of about 12 to about 18 carbons.


Additional examples of suitable hydrophobically modified polymers include a polymer that has been hydrophobically modified with an alkyl group present on an amino group (in the polymer backbone or as a pendant group) in quaternized form. For example, an alkyl group may be present on a dialkyl amino pendant group in quaternized form. In one embodiment, the dialkyl amino pendant group comprises a dimethyl amino pendant group. One specific example of a hydrophobically modified polymer includes a polydimethylaminoethylmethacrylate or polydimethylaminopropylmethacrylamide that has been hydrophobically modified with an alkyl group with 4 carbons to 22 carbons (e.g., 4 carbons, 6, carbons, 8 carbons, 10 carbons, 12 carbons, 14 carbons, 16 carbons, 18 carbons, 20 carbons, 22 carbons, etc.) on a dimethylamino group. An example of a suitable hydrophobically modified polymer is HPT-1™, available from Halliburton Energy Services, Inc., Duncan, Okla.


Suitable FLAs also may include particulate solids. Examples of suitable particulate solids include, but are not limited to, magnesia, aluminum hydroxide, calcium carbonate (calcite), calcium oxalate, calcium phosphate, aluminum metaphosphate, sodium zinc potassium polyphosphate ceramic, sodium calcium magnesium polyphosphate ceramic, chemically bonded ceramics, chemical cements, asbestos, granular starch, particulate mica, plastic particles, solid wax or wax-polymer particles, solid oil-soluble resin particles, insoluble salts, slowly soluble salts (such as sodium chloride if the carrier fluid and formation water have high ionic strengths), salts where solubility is highly dependent on pH (such as calcium citrate, lactides, anhydrides, benzoic acid, lactones), and mixtures thereof. An example of a suitable particulate solid is BioVert™ H150 Diverter available from Halliburton Energy Services, Duncan, Okla. In certain embodiments, the particulate solid may comprise a degradable polymer. Examples of suitable degradable polymers include, but are not limited to, poly(orthoesters); aliphatic polyesters (e.g., polylactic acid); poly(lactides); poly(glycolides); poly(ε-caprolactone); poly(hydroxybutyrate); poly(anhydrides); and poly(amino acids), and polymers suitable among other things, to chemical and/or radical process such as hydrolysis, oxidation, or enzymatic decomposition. The degradability of a polymer depends at least in part on its backbone structure, type of repetitive unit, composition, sequence, length, molecular geometry, molecular weight, morphology (e.g., crystallinity, size of spherulites, and orientation), hydrophilicity, hydrophobicity, surface area, and additives. Also, the environment to which the polymer is subjected may affect how it degrades, for example, temperature, presence of moisture, oxygen, microorganisms, enzymes, pH, and the like.


The amount of the FLA to include in the pad fluid depends a number of factors, including the desired leakoff parameters and the particular FLA chosen, among others. By way of example, the FLA may be present in the pad fluid in an amount of about 0.5% to about 15% by weight of the pad fluid and, more particularly, in an amount of about 0.75% to about 5% by weight.


A variety of viscosifying agents may be used in conjunction with the pad fluids, including, but not limited to, viscoelastic surfactants, biopolymers, and/or synthetic polymers. As used herein the term “viscosifying agent” refers to any agent that increases the viscosity of a fluid. By way of example, a viscoelastic surfactant may be utilized to prepare a surfactant gel wherein association of the surfactants to form micelles or specialized or larger associates structures (e.g., wormlike structures) increase the viscosity of the pad fluid. In addition, the polymers or synthetic polymers may be utilized to prepare a linear gel. The viscosifying agents may serve to increase the viscosity of the pad fluid. Examples of suitable viscoelastic surfactants include, but are not limited to, anionic surfactants such as alkyl sarcosinate, cationic surfactants such as fatty amine salts or N-erucyl-M,N-bis(2-hydroxyethyl)-N-methyl ammonium chloride, zwitterionic surfactants such as erucylamidopropyl betaine amine, non-ionic surfactants such as amidoamine oxides, amine oxides, and combinations thereof. Examples of suitable polymers include polymers comprising natural, modified and derivatized polysaccharides, and derivatives thereof, which contain one or more of these monosaccharide units: galactose, mannose, glucoside, glucose, xylose, arabinose, fructose, glucuronic acid, or pyranosyl sulfate. Additional examples of suitable polymers include, but are not limited to, guar, hydroxypropyl guar, carboxymethyl guar, carboxymethylhydroxypropyl guar, other derivatives of guar gum, xanthan, galactomannan gums, cellulose, hydroxyethylcellulose, carboxymethylcellulose, succinoglycan, and/or other cellulose derivatives. Examples of suitable synthetic polymers include, but are not limited to, polyacrylate, polymethacrylate, polyacrylamide, polyvinyl alcohol, and polyvinylpyrrolidone.


Typically, the amount of a viscosifying agent that may be included in a pad fluid depends on the viscosity desired. Thus, the amount to include may be an amount effective to achieve a desired viscosity effect. In certain embodiments, the viscosifying agent may be present in the pad fluid in an amount of about 0.1% to about 10% by weight of the pad fluid and, alternatively, in an amount of from about 0.1% to about 2% by weight of the pad fluid. One skilled in the art with the benefit of this disclosure will recognize the appropriate viscosifying agent and amount of the viscosifying agent to use for a particular application.


Optionally, the pad fluid may contain a variety of additional additives that may be suitable for use in hydraulic-fracturing treatment. Examples of such additives include, but are not limited to, gelling agents, foam control agents, oxidizing agents, lost circulation materials, surfactants, clay stabilizers, penetrating agents, buffers, acids, bases, clay control additives, breakers, breaker activators, anti-sludging, delayed release acids, scale inhibitors, corrosion inhibitors, friction reducers, enzymes, catalysts, solvents, iron control additives, paraffin and asphaltene control additives, bactericides, fines stabilization additives, oxygen scavengers, sulfide scavengers, emulsifiers, foamers, gases, sand consolidation chemicals, tackifiers, proppant flow back control additives, free radical generators, chelating agents, mutual solvents, derivatives thereof and combinations thereof, and the like.


Slurry fluids of the present invention may generally comprise a base fluid, a viscosifying agent, and proppant particulates. Acceptable slurry fluids may be any fluid which exhibits both high leakoff characteristics and proppant transport ability. It should be understood by those of ordinary skill in the art that a test for high leakoff characteristics would be to flow the fluid through a permeable medium, seeking a near steady-state result over extended time intervals. Such acceptable slurry fluids may include clean biopolymers, surfactant gels, viscoelastic surfactants (“VES”), and linear gels. In general, the slurry fluid may be formulated to be a high-leakoff fluid. In addition, the slurry fluid may be formulated such that it does not disrupt the barrier (e.g., the filter cake) during its introduction into the fracture. Accordingly, the barrier may remain substantially impermeable to aqueous fluids during introduction of the slurry fluid into the fracture.


The slurry fluid may contain a base fluid as a medium of transport for the other components of the fluid and/or proppant particulates into the formation. The base fluid may comprise water or brine. Selected organic or inorganic salts or mixtures may be included, provided that they do not undesirably interact with other components in the pad, other treatment fluids, the formation, and formation fluids. For example, a base fluid comprising about 1% to about 7% by weight potassium chloride or ammonium chloride may be used as the base fluid in pad fluids to stabilize clays and prevent clay swelling. Sometimes other brines or seawater may be used. An organic cation salt, such as, in particular, tetra methyl ammonium chloride, may be utilized, with a concentration of, for example, but not limited to, about 0.2% to about 0.5% by weight.


In addition, the slurry fluid may further comprise a viscosifying agent in accordance with embodiments of the present invention. By way of example, a viscosifying agent may be used in a slurry fluid to impart a sufficient carrying capacity and/or thixotropy to the slurry fluid, enabling the slurry fluid to transport proppant particulates and/or preventing the undesired settling of the proppant particulates.


A variety of viscosifying agents may be used in conjunction with the slurry fluids, including, but not limited to, VES, bipolymers, and/or synthetic polymers. By way of example, VES may be utilized to prepare a surfactant gel, wherein association of the surfactants to form micelles or specialized or larger associates structures (e.g., wormlike structures) increases the viscosity of the slurry fluid. In addition, biolymers or synthetic polymers may be utilized to prepare a linear gel. The viscosifying agents may serve to increase the viscosity of the slurry fluid. Examples of suitable viscoelastic surfactants include, but are not limited to, anionic surfactants such as alkyl sarcosinate, cationic surfactants such as fatty amine salts or N-erucyl-M,N-bis(2-hydroxyethyl)-N-methyl ammonium chloride, zwitterionic surfactants such as erucylamidopropyl betaine amine, non-ionic surfactants such as amidoamine oxides, amine oxides, and combinations thereof. Examples of suitable biopolymers comprising natural, modified and derivatized polysaccharides, and derivatives thereof, which contain one or more of these monosaccharide units: galactose, mannose, glucoside, glucose, xylose, arabinose, fructose, glucuronic acid, or pyranosyl sulfate. Additional examples of suitable biopolymers include, but are not limited to, guar, hydroxypropyl guar, carboxymethyl guar, carboxymethylhydroxypropyl guar, other derivatives of guar gum, xanthan, galactomannan gums, cellulose, hydroxyethylcellulose, carboxymethylcellulose, succinoglycan, and/or other cellulose derivatives. Examples of suitable synthetic polymers include, but are not limited to, polyacrylate, polymethacrylate, polyacrylamide, polyvinyl alcohol, and polyvinylpyrrolidone.


Typically, the amount of a viscosifying agent that may be included in a slurry fluid depends on the viscosity desired. Thus, the amount to include may be an amount effective to achieve a desired viscosity effect. In certain embodiments, the viscosifying agent may be present in the slurry fluid in an amount of about 0.1% to about 10% by weight of the slurry fluid and, alternatively, in an amount of from about 0.1% to about 2% by weight of the slurry fluid. One skilled in the art with the benefit of this disclosure will recognize the appropriate viscosifying agent and amount of the viscosifying agent to use for a particular application.


A variety of different proppant particulates may be utilized in accordance with embodiments of the present invention. In general, any type of proppant particulate may be used, provided that it does not undesirably interact with the formation, the fluids, and the desired results of the treatment. Such proppant particulates may be natural or synthetic, coated, or contain chemicals; more than one may be used sequentially or in mixtures of different sizes or different materials. Examples of suitable proppant materials include sand, resin coated sand, bauxite, particulate ceramics, glass microspheres, sintered bauxite, polymer materials, synthetic organic beads such as styrene-divinylbenzene copolymer beads, TEFLON® (polytetrafluoroethylene) materials, nut shell pieces, cured resinous particulates comprising nut shell pieces, seed shell pieces, cured resinous particulates comprising seed shell pieces, fruit pit pieces, cured resinous particulates comprising fruit pit pieces, wood, composite particulates, and combinations thereof. Suitable composite particulates may comprise a binder and a filler material wherein suitable filler materials include silica, alumina, fumed carbon, carbon black, graphite, mica, titanium dioxide, meta-silicate, calcium silicate, kaolin, talc, zirconia, boron, fly ash, hollow glass microspheres, solid glass, and combinations thereof. It should be understood that the term “particulate,” as used in this disclosure, includes all known shapes of materials, including substantially spherical materials, fibrous materials, polygonal materials (such as cubic materials), and mixtures thereof. Moreover, fibrous materials, that may or may not be used to bear the pressure of a closed fracture, may be included in certain embodiments of the present invention. In certain embodiments, the particulates included in the treatment fluids of the present invention may be coated with any suitable resin or tackifying agent known to those of ordinary skill in the art. The mean particulate size generally may range from about 2 mesh to about 400 mesh on the U.S. Sieve Series; however, in certain circumstances, other mean particulate sizes may be desired and will be entirely suitable for practice of the present invention. Mean particulates size distribution ranges may be one or more of 6/12, 8/16, 12/20, 16/30, 20/40, 30/50, 40/60, 40/70, or 50/70 mesh sized materials.


The concentration of proppant particulates in the slurry fluid may vary over time. For example, the slurry fluid may be pumped into the fracture in two or more stages, wherein each stage may have a lower concentration of proppant particulates than the next subsequent stage. In certain embodiments, the particulates may be present in the slurry fluids of the present invention in an amount in the range of from about 0.25 pounds per gallon (“ppg”) to about 30 ppg by volume of the slurry fluid.


The slurry fluids may further comprise additional additives as deemed appropriate by one of ordinary skill in the art, with the benefit of this disclosure. Examples of such additives include, but are not limited to, gelling agents, foam control agents, oxidizing agents, lost circulation materials, surfactants, clay stabilizers, penetrating agents, buffers, acids, bases, clay control additives, breakers, breaker activators, anti-sludging, delayed release acids, scale inhibitors, corrosion inhibitors, friction reduces, enzymes, catalysts, solvents, iron control additives, paraffin and asphaltene control additives, bactericides, fines stabilization additives, oxygen scavengers, sulfide scavengers, emulsifiers, foamers, gases, sand consolidation chemicals, tackifiers, proppant flow back control additives, free radical generators, chelating agents, mutual solvents, derivatives thereof and combinations thereof, and the like.


To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. In no way should the following examples be read to limit, or define, the entire scope of the invention.


EXAMPLE

An extrusion test was performed to evaluate leakoff behavior of an example pad fluid that comprised tap water, 40 pounds per thousand gallons of a xanthan gelling agent, and 50 pounds per thousand gallons of BioVert™ fluid loss agent.


For this extrusion test, the test apparatus comprised a “Fann® Instrument Company's HPHT Filter Press 500 ml” having full opening valves on the inlet and exit ports. The bottom end cap of the HPHT cell had circumferential grooves to permit flow through a core sample to communicate with the exit port. A 5-micron Aloxite disk was fixed in the bottom of the test cell on top of the bottom end cap. The disk had a surface area of about 0.03 ft2. The cell was mounted vertically and filled with the example pad fluid. The example pad fluid was allowed to age for about 2 hours in the test cell at about 140° F., and a 500 psi nitrogen gas source was connected to the inlet port of the HPHT cell. To begin the test, the top valve was opened to allow the 500 psi nitrogen gas pressure to be applied to the fluid in the cell to create a 500 psi differential, and then the bottom valve was opened to begin the fluid loss test. The time was monitored, and any fluid caused to be extruded through the Aloxite disk was collected and measured. The results of the test are set forth in FIG. 8. The example pad fluid has a very high initial spurt rate at greater than 10 gal/ft2/hr, a spurt volume of less than 5 gal/ft2, and a post-spurt rate of less than 0.2 gal/ft2/hr.


Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. While compositions and methods are described in terms of “comprising,” “containing,” or “including” various components or steps, the compositions and methods can also “consist essentially of” or “consist of” the various components and steps. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range is specifically disclosed. In particular, every range of values (of the form, “from about a to about b,” or, equivalently, “from approximately a to b,” or, equivalently, “from approximately a-b”) disclosed herein is to be understood to set forth every number and range encompassed within the broader range of values. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee. Moreover, the indefinite articles “a” or “an”, as used in the claims, are defined herein to mean one or more than one of the element that it introduces. If there is any conflict in the usages of a word or term in this specification and one or more patent or other documents that may be incorporated herein by reference, the definitions that are consistent with this specification should be adopted.

Claims
  • 1. A method comprising: selecting a target fracture geometry for a portion of a subterranean formation;introducing a pad fluid comprising a fluid-loss-control additive into the subterranean formation to create or extend one or more fractures in the portion of the subterranean formation, wherein an amount of the fluid-loss-control additive is determined based at least in part on the target fracture geometry;allowing a barrier to form along at least a portion of the one or more fractures, wherein the barrier comprises the fluid-loss-control additive; andintroducing a slurry fluid comprising proppant particulates into the one or more fractures, wherein a tip screen-out occurs in at least one of the one or more fractures.
  • 2. The method of claim 1, wherein the portion of the subterranean formation is a high-permeability subterranean formation.
  • 3. The method of claim 1, wherein the fluid-loss-control additive comprises at least one material selected from the group consisting of: a breakable material, a degradable material, a dissolvable material, a water-soluble polymer, a particulate solid, and any derivative thereof.
  • 4. The method of claim 1, wherein the fluid-loss-control additive comprises at least one degradable material selected from the group consisting of: a poly(lactide); a poly(glycolide); a poly(ε-caprolactone); a poly(hydroxy ester ether); a poly(hydroxybutyrate); a poly(anhydride); a polycarbonate; a poly(orthoester); a poly(amino acid); a poly(ethylene oxide); a poly(phosphazene); a poly ether ester; a polyester amide; a polyamide; a poly(lactic acid), a poly(anhydride), a poly(orthoester), a poly(lactide)-co-poly(glycolide)copolymer; a fatty alcohol, a fatty ester, a fatty acid salt, a proteinous material, and any derivative thereof.
  • 5. The method of claim 1, wherein the barrier comprises a filter cake that is substantially impermeable to aqueous fluids.
  • 6. The method of claim 1, wherein the barrier permits post-spurt fluid loss of less than about 0.2 gal/ft2/hr.
  • 7. The method of claim 1, wherein the slurry fluid comprises a high-leakoff fluid.
  • 8. The method of claim 1, wherein the rate of introduction of the slurry fluid is less than about 10 barrels/minute.
  • 9. The method of claim 1, wherein the barrier does not substantially degrade until after introduction of the slurry fluid into the one or more fractures.
  • 10. The method of claim 1, wherein the step of introducing the pad fluid comprises multiple stages of pad fluids.
  • 11. The method of claim 1, wherein the step of introducing the slurry fluid comprises multiple stages of slurry fluids.
  • 12. A method comprising: selecting a target fracture geometry for a portion of a subterranean formation;selecting a target tip pressure and a target back flow pressure based at least in part on a calculation for the target fracture geometry;selecting a target surface pressure and a target bottom-hole pressure based at least in part on a calculation for the target tip pressure and the target back flow pressure; andintroducing a slurry fluid comprising proppant particulates into one or more fractures in the portion of the subterranean formation, wherein surface pressure corresponds to the target surface pressure, and bottom-hole pressure corresponds to the target bottom-hole pressure.
  • 13. The method of claim 12, wherein a tip screen-out occurs in at least one of the one or more fractures.
  • 14. The method of claim 12, further comprising: introducing a pad fluid comprising a fluid-loss-control additive into the portion of the subterranean formation, wherein the fluid-loss-control additive forms a barrier along at least a portion of the one or more fractures.
  • 15. The method of claim 14, wherein the fluid-loss-control additive comprises at least one material selected from the group consisting of: a breakable material, a degradable material, a dissolvable material, a water-soluble polymer, a particulate solid, and any derivative thereof.
  • 16. The method of claim 14, wherein the barrier permits post-spurt fluid loss of less than about 0.2 gal/ft2/hr.
  • 17. The method of claim 14, wherein the slurry fluid does not disrupt the barrier during introduction of the slurry fluid into the one or more fractures.
  • 18. The method of claim 14, wherein the barrier does not substantially degrade until after introduction of the slurry fluid into the one or more fractures.
  • 19. The method of claim 12, wherein the slurry fluid comprises a high-leakoff fluid.
  • 20. A method comprising: selecting a target fracture geometry for a portion of a subterranean formation;selecting a target barrier coverage based at least in part on a calculation for the target fracture geometry;selecting target pad fluid parameters based at least in part on a calculation for the target barrier coverage, wherein the target pad fluid parameters comprise a target volume of pad fluid, a target quantity of fluid-loss-control additive within the pad fluid, and a target pumping rate and pressure to pump the pad fluid;introducing a pad fluid into the portion of the subterranean formation, wherein volume of pad fluid, quantity of fluid-loss-control additive within the pad fluid, and pumping rate and pressure to pump the pad fluid correspond to the target pad fluid parameters;selecting target slurry fluid parameters based at least in part on a calculation for the target barrier coverage and target fracture geometry, wherein the target slurry fluid parameters comprise a target volume of slurry fluid, a target quantity of proppant within the slurry fluid, a target viscosity of the slurry fluid, and a target pumping rate and pressure to pump the slurry fluid; andintroducing a slurry fluid into the portion of the subterranean formation, wherein volume of slurry fluid, quantity of proppant within the slurry fluid, viscosity of the slurry fluid, and pumping rate and pressure to pump the slurry fluid correspond to the target slurry fluid parameters.
US Referenced Citations (351)
Number Name Date Kind
2238671 Woodhouse Apr 1941 A
2703316 Palmer Mar 1955 A
3173484 Huitt et al. Mar 1965 A
3195635 Fast Jul 1965 A
3272650 MacVittie Sep 1966 A
3302719 Fischer Feb 1967 A
3364995 Atkins et al. Jan 1968 A
3366178 Malone et al. Jan 1968 A
3455390 Gallus Jul 1969 A
3784585 Schmitt et al. Jan 1974 A
3819525 Hattenbrun Jun 1974 A
3828854 Templeton et al. Aug 1974 A
3836465 Rhudy et al. Sep 1974 A
3868998 Lybarger et al. Mar 1975 A
3912692 Casey et al. Oct 1975 A
3948672 Harnsberger Apr 1976 A
3955993 Curtice May 1976 A
3960736 Free et al. Jun 1976 A
3968840 Tate Jul 1976 A
3986355 Klaeger Oct 1976 A
3998272 Maly Dec 1976 A
3998744 Arnold et al. Dec 1976 A
4010071 Colegrove Mar 1977 A
4068718 Cooke, Jr. et al. Jan 1978 A
4169798 DeMartino Oct 1979 A
4172066 Zweigle et al. Oct 1979 A
4261421 Watanabe Apr 1981 A
4265673 Pace et al. May 1981 A
4267887 Watanabe May 1981 A
4299825 Lee Nov 1981 A
4387769 Erbstoesser et al. Jun 1983 A
4460052 Gockel Jul 1984 A
4470915 Conway Sep 1984 A
4498995 Gockel Feb 1985 A
4502540 Byham Mar 1985 A
4506734 Nolte Mar 1985 A
4521316 Sikorski Jun 1985 A
4526695 Erbstoesser et al. Jul 1985 A
4632876 Laird et al. Dec 1986 A
4694905 Armbruster Sep 1987 A
4715967 Bellis Dec 1987 A
4716964 Erbstoesser et al. Jan 1988 A
4767706 Levesque Aug 1988 A
4772346 Anderson et al. Sep 1988 A
4785884 Armbruster Nov 1988 A
4793416 Mitchell Dec 1988 A
4797262 Dewitz Jan 1989 A
4809783 Hollenbeck et al. Mar 1989 A
4817721 Pober Apr 1989 A
4822500 Dobson, Jr. et al. Apr 1989 A
4829100 Murphey et al. May 1989 A
4836940 Alexander Jun 1989 A
4843118 Lai et al. Jun 1989 A
4848467 Cantu et al. Jul 1989 A
4863980 Cowan et al. Sep 1989 A
4886354 Welch et al. Dec 1989 A
4894231 Moreau et al. Jan 1990 A
4957165 Cantu et al. Sep 1990 A
4961466 Himes et al. Oct 1990 A
4986353 Clark et al. Jan 1991 A
4986354 Cantu et al. Jan 1991 A
4986355 Casad et al. Jan 1991 A
5034139 Reid et al. Jul 1991 A
5082056 Tackett, Jr. Jan 1992 A
5142023 Gruber et al. Aug 1992 A
5152781 Tang et al. Oct 1992 A
5161615 Hutchins et al. Nov 1992 A
5203834 Hutchins et al. Apr 1993 A
5213446 Dovan May 1993 A
5216050 Sinclair Jun 1993 A
5247059 Gruber et al. Sep 1993 A
5249628 Surjaatmadja Oct 1993 A
5251697 Shuler Oct 1993 A
5295542 Cole et al. Mar 1994 A
5304620 Holtmyer et al. Apr 1994 A
5314031 Hale et al. May 1994 A
5325923 Surjaatmadja et al. Jul 1994 A
5330005 Card et al. Jul 1994 A
5359026 Gruber Oct 1994 A
5360068 Sprunt et al. Nov 1994 A
5363916 Himes et al. Nov 1994 A
5373901 Norman et al. Dec 1994 A
5386874 Laramay et al. Feb 1995 A
5396957 Surjaatmadja et al. Mar 1995 A
5402846 Jennings, Jr. et al. Apr 1995 A
5439055 Card et al. Aug 1995 A
5460226 Lawton et al. Oct 1995 A
5464060 Hale et al. Nov 1995 A
5475080 Gruber et al. Dec 1995 A
5484881 Gruber et al. Jan 1996 A
5487897 Polson et al. Jan 1996 A
5492177 Yeh et al. Feb 1996 A
5496557 Feijen et al. Mar 1996 A
5497830 Boles et al. Mar 1996 A
5499678 Surjaatmadja et al. Mar 1996 A
5501276 Weaver et al. Mar 1996 A
5505787 Yamaguchi Apr 1996 A
5512071 Yam et al. Apr 1996 A
5536807 Gruber et al. Jul 1996 A
5555936 Pirri et al. Sep 1996 A
5558161 Vitthal et al. Sep 1996 A
5591700 Harris et al. Jan 1997 A
5594095 Gruber et al. Jan 1997 A
5602083 Gabrysch et al. Feb 1997 A
5604186 Hunt et al. Feb 1997 A
5607905 Dobson, Jr. et al. Mar 1997 A
5613558 Dillenbeck Mar 1997 A
5670473 Scepanski Sep 1997 A
5697440 Weaver et al. Dec 1997 A
5698322 Tsai et al. Dec 1997 A
5723416 Liao Mar 1998 A
5765642 Surjaatmadja Jun 1998 A
5783527 Dobson, Jr. et al. Jul 1998 A
5791415 Nguyen et al. Aug 1998 A
5799734 Normal et al. Sep 1998 A
5833000 Weaver et al. Nov 1998 A
5849401 El-Afandi et al. Dec 1998 A
5853048 Weaver et al. Dec 1998 A
5888944 Patel Mar 1999 A
5893416 Read Apr 1999 A
5908073 Nguyen et al. Jun 1999 A
5916849 House Jun 1999 A
5924488 Nguyen et al. Jul 1999 A
5964291 Bourne et al. Oct 1999 A
5977030 House Nov 1999 A
5979557 Card et al. Nov 1999 A
5996693 Heathman Dec 1999 A
6004400 Bishop et al. Dec 1999 A
6024170 McCabe et al. Feb 2000 A
6028113 Scepanski Feb 2000 A
6047772 Weaver et al. Apr 2000 A
6110875 Tjon-Joe-Pin et al. Aug 2000 A
6114410 Betzold Sep 2000 A
6123159 Brookey et al. Sep 2000 A
6123965 Jacob et al. Sep 2000 A
6131661 Conner et al. Oct 2000 A
6135987 Tsai et al. Oct 2000 A
6143698 Murphey et al. Nov 2000 A
6148917 Brookey et al. Nov 2000 A
6162766 Muir et al. Dec 2000 A
6169058 Le et al. Jan 2001 B1
6172011 Card et al. Jan 2001 B1
6189615 Sydansk Feb 2001 B1
6202751 Chatterji et al. Mar 2001 B1
6209643 Nguyen et al. Apr 2001 B1
6209646 Reddy et al. Apr 2001 B1
6214773 Harris et al. Apr 2001 B1
6242390 Mitchell et al. Jun 2001 B1
6260622 Blok et al. Jul 2001 B1
6291013 Gibson et al. Sep 2001 B1
6300286 Dobson, Jr. et al. Oct 2001 B1
6302209 Thompson et al. Oct 2001 B1
6308788 Patel et al. Oct 2001 B1
6311773 Todd et al. Nov 2001 B1
6323307 Bigg et al. Nov 2001 B1
6326458 Gruber et al. Dec 2001 B1
6328105 Betzold Dec 2001 B1
6330917 Chatterji et al. Dec 2001 B2
6357527 Norman et al. Mar 2002 B1
6364945 Chatterji et al. Apr 2002 B1
6380138 Ischy et al. Apr 2002 B1
6387986 Moradi-Araghi et al. May 2002 B1
6390195 Nguyen et al. May 2002 B1
6394185 Constien May 2002 B1
6422314 Todd et al. Jul 2002 B1
6422326 Brookey et al. Jul 2002 B1
6432155 Swazey et al. Aug 2002 B1
6454003 Chang et al. Sep 2002 B1
6476169 Eoff et al. Nov 2002 B1
6485947 Rajgarhia et al. Nov 2002 B1
6488763 Brothers et al. Dec 2002 B2
6494263 Todd Dec 2002 B2
6508305 Brannon et al. Jan 2003 B1
6509301 Vollmer et al. Jan 2003 B1
6527051 Reddy et al. Mar 2003 B1
6554071 Reddy et al. Apr 2003 B1
6566310 Chan May 2003 B2
6569814 Brady et al. May 2003 B1
6578630 Simpson et al. Jun 2003 B2
6599863 Palmer et al. Jul 2003 B1
6667279 Hessert et al. Dec 2003 B1
6669771 Tokiwa et al. Dec 2003 B2
6681856 Chatterji et al. Jan 2004 B1
6686328 Binder Feb 2004 B1
6691780 Nguyen et al. Feb 2004 B2
6702023 Harris et al. Mar 2004 B1
6710019 Sawdon et al. Mar 2004 B1
6716797 Brookey Apr 2004 B2
6737385 Todd et al. May 2004 B2
6749022 Fredd Jun 2004 B1
6761218 Nguyen et al. Jul 2004 B2
6763888 Harris et al. Jul 2004 B1
6764981 Eoff et al. Jul 2004 B1
6770293 Angel et al. Aug 2004 B2
6793018 Dawson et al. Sep 2004 B2
6793730 Reddy et al. Sep 2004 B2
6806235 Mueller et al. Oct 2004 B1
6817414 Lee Nov 2004 B2
6818594 Freeman et al. Nov 2004 B1
6828280 England et al. Dec 2004 B2
6837309 Boney et al. Jan 2005 B2
6840318 Lee et al. Jan 2005 B2
6852173 Banerjee et al. Feb 2005 B2
6861394 Ballard et al. Mar 2005 B2
6877563 Todd et al. Apr 2005 B2
6883608 Parlar et al. Apr 2005 B2
6886635 Hossaini et al. May 2005 B2
6896058 Munoz, Jr. et al. May 2005 B2
6904971 Brothers et al. Jun 2005 B2
6938693 Boney et al. Sep 2005 B2
6949491 Cooke, Jr. Sep 2005 B2
6953090 Vijn et al. Oct 2005 B2
6959767 Horton et al. Nov 2005 B2
6971448 Slabaugh et al. Dec 2005 B2
6978838 Parlar et al. Dec 2005 B2
6981552 Reddy et al. Jan 2006 B2
6983798 Todd Jan 2006 B2
6983801 Dawson et al. Jan 2006 B2
6987083 Phillippi et al. Jan 2006 B2
6994166 Huang et al. Feb 2006 B2
6997259 Nguyen Feb 2006 B2
7000701 Todd et al. Feb 2006 B2
7007752 Reddy et al. Mar 2006 B2
7021377 Todd et al. Apr 2006 B2
7032663 Nguyen Apr 2006 B2
7036586 Roddy et al. May 2006 B2
7036587 Munoz, Jr. et al. May 2006 B2
7036588 Munoz, Jr. et al. May 2006 B2
7044220 Nguyen et al. May 2006 B2
7044224 Nguyen May 2006 B2
7049272 Sinclair et al. May 2006 B2
7063151 Nguyen et al. Jun 2006 B2
7066258 Justus et al. Jun 2006 B2
7066260 Sullivan et al. Jun 2006 B2
7069994 Cooke, Jr. Jul 2006 B2
7080688 Todd et al. Jul 2006 B2
7093658 Chatterji et al. Aug 2006 B2
7093664 Todd et al. Aug 2006 B2
7096947 Todd et al. Aug 2006 B2
7101829 Guichard et al. Sep 2006 B2
7117942 Dalrymple et al. Oct 2006 B2
7131491 Blauch et al. Nov 2006 B2
7132389 Lee Nov 2006 B2
7140438 Frost et al. Nov 2006 B2
7147067 Getzlaf et al. Dec 2006 B2
7151077 Prud'homme et al. Dec 2006 B2
7153902 Altes et al. Dec 2006 B2
7156174 Roddy et al. Jan 2007 B2
7165617 Lord et al. Jan 2007 B2
7166560 Still et al. Jan 2007 B2
7168489 Frost et al. Jan 2007 B2
7172022 Reddy et al. Feb 2007 B2
7178594 Patel Feb 2007 B2
7178596 Blauch et al. Feb 2007 B2
7195068 Todd Mar 2007 B2
7204311 Welton et al. Apr 2007 B2
7204312 Roddy et al. Apr 2007 B2
7205264 Boles Apr 2007 B2
7211548 Munoz, Jr. et al. May 2007 B2
7216705 Saini et al. May 2007 B2
7219731 Sullivan May 2007 B2
7228904 Todd et al. Jun 2007 B2
7256159 Guichard et al. Aug 2007 B2
7261156 Nguyen et al. Aug 2007 B2
7264051 Nguyen et al. Sep 2007 B2
7265079 Wilbert et al. Sep 2007 B2
7267170 Mang et al. Sep 2007 B2
7276466 Todd et al. Oct 2007 B2
7281583 Whitfill et al. Oct 2007 B2
7299869 Kalman Nov 2007 B2
7299876 Lord et al. Nov 2007 B2
7303014 Reddy et al. Dec 2007 B2
7306037 Nguyen et al. Dec 2007 B2
7322412 Badalamenti et al. Jan 2008 B2
7353876 Savery et al. Apr 2008 B2
7353879 Todd et al. Apr 2008 B2
7413017 Nguyen et al. Aug 2008 B2
7419937 Rimmer et al. Sep 2008 B2
7448450 Luke et al. Nov 2008 B2
7455112 Moorehead et al. Nov 2008 B2
7461697 Todd et al. Dec 2008 B2
7462581 Munoz, Jr. et al. Dec 2008 B2
7475728 Pauls et al. Jan 2009 B2
7476644 Cooke, Jr. Jan 2009 B2
7484564 Welton et al. Feb 2009 B2
7497258 Savery et al. Mar 2009 B2
7497278 Schriener et al. Mar 2009 B2
7501530 Gewehr et al. Mar 2009 B2
7506689 Surjaatmadja et al. Mar 2009 B2
7547665 Welton et al. Jun 2009 B2
7553800 Munoz, Jr. et al. Jun 2009 B2
20010016562 Muir et al. Aug 2001 A1
20010053749 Cowan et al. Dec 2001 A1
20030130133 Vollmer Jul 2003 A1
20030147965 Bassett et al. Aug 2003 A1
20030230407 Vijn et al. Dec 2003 A1
20040070093 Mathiowitz et al. Apr 2004 A1
20040170836 Bond et al. Sep 2004 A1
20040231845 Cooke, Jr. Nov 2004 A1
20040261996 Munoz, Jr. et al. Dec 2004 A1
20050028976 Nguyen Feb 2005 A1
20050034861 Saini et al. Feb 2005 A1
20050059556 Munoz, Jr. et al. Mar 2005 A1
20050059557 Todd et al. Mar 2005 A1
20050130848 Todd et al. Jun 2005 A1
20050161220 Todd et al. Jul 2005 A1
20050183741 Surjaatmadja et al. Aug 2005 A1
20050277554 Blauch et al. Dec 2005 A1
20060032633 Nguyen Feb 2006 A1
20060046938 Harris et al. Mar 2006 A1
20060105918 Munoz, Jr. et al. May 2006 A1
20060118300 Welton et al. Jun 2006 A1
20060169182 Todd et al. Aug 2006 A1
20060169448 Savery et al. Aug 2006 A1
20060169450 Mang et al. Aug 2006 A1
20060169452 Savery et al. Aug 2006 A1
20060169453 Savery et al. Aug 2006 A1
20060172893 Todd et al. Aug 2006 A1
20060172894 Mang et al. Aug 2006 A1
20060172895 Mang et al. Aug 2006 A1
20060205608 Todd Sep 2006 A1
20060234873 Ballard Oct 2006 A1
20060243449 Welton et al. Nov 2006 A1
20060254774 Saini et al. Nov 2006 A1
20060258543 Saini Nov 2006 A1
20060258544 Saini Nov 2006 A1
20060276345 Todd et al. Dec 2006 A1
20060283597 Schriener et al. Dec 2006 A1
20070042912 Welton et al. Feb 2007 A1
20070049501 Saini et al. Mar 2007 A1
20070066492 Funkhouser et al. Mar 2007 A1
20070066493 Funkhouser et al. Mar 2007 A1
20070078063 Munoz Apr 2007 A1
20070078064 Munoz, Jr. et al. Apr 2007 A1
20070100029 Reddy et al. May 2007 A1
20070238623 Saini et al. Oct 2007 A1
20070281868 Pauls et al. Dec 2007 A1
20070298977 Mang et al. Dec 2007 A1
20080009423 Mang et al. Jan 2008 A1
20080026955 Munoz et al. Jan 2008 A1
20080026959 Munoz et al. Jan 2008 A1
20080026960 Munoz et al. Jan 2008 A1
20080027157 Munoz, Jr. et al. Jan 2008 A1
20080035338 Pauls et al. Feb 2008 A1
20080070810 Mang Mar 2008 A1
20080139415 Todd et al. Jun 2008 A1
20080169102 Carbajal et al. Jul 2008 A1
20080202744 Crews et al. Aug 2008 A1
20080227672 Crews et al. Sep 2008 A1
20080269081 Lin et al. Oct 2008 A1
20090062157 Munoz et al. Mar 2009 A1
Foreign Referenced Citations (23)
Number Date Country
0 510 762 Oct 1992 EP
0 879 935 Nov 1998 EP
0 879 935 Feb 1999 EP
1 413 710 Apr 2004 EP
2 412 389 Mar 2004 GB
WO 9315127 Aug 1993 WO
WO 9407949 Apr 1994 WO
WO 9408078 Apr 1994 WO
WO 9408090 Apr 1994 WO
WO 9509879 Apr 1995 WO
WO 9711845 Apr 1997 WO
WO 9927229 Jun 1999 WO
WO 0057022 Sep 2000 WO
WO 0102698 Jan 2001 WO
WO 0187797 Nov 2001 WO
WO 0194744 Dec 2001 WO
WO 0255843 Jan 2002 WO
WO 0212674 Feb 2002 WO
WO 03027431 Apr 2003 WO
WO 03027431 Apr 2003 WO
WO 2004007905 Jan 2004 WO
WO 2004037946 May 2004 WO
WO 2004038176 May 2004 WO
Related Publications (1)
Number Date Country
20110005753 A1 Jan 2011 US