The invention relates to drug delivery devices. More particularly, the invention relates to needle and hub assemblies for automatic injection devices.
Many types of syringes and other injection devices are used in the medical device arts. Typical syringes, for example, use a hollow needle to deliver a medicament subcutaneously, intramuscularly, or intravenously to a patient. The needle is usually connected by a hub assembly to the portion of the syringe that holds the medicament. The hub assembly secures the needle and also supports it.
An automatic injector is a type of injection device that enables intramuscular (IM) or subcutaneous administration of a dose of medicament. In the typical automatic injector, a cartridge carries the dose of medicament and is connected to a needle assembly. The cartridge and needle assembly are contained within a housing, which also carries an actuation assembly. Activation of the actuation assembly causes the needle to penetrate and protrude from the housing and the medicament to be injected into the patient. Thus, automatic injectors allow for quick and simple IM injection of a medicament in emergency situations without the need for measuring dosages. Additionally, automatic injectors are convenient for self-administration of medicament, because the user does not see the needle before actuation of the device, and there is no need to manually force the needle into the patient.
There are three main types of automatic injectors. A first type carries its medicament mixed in liquid form. A second type of automatic injector, called a “wet/dry” automatic injector, has two separate compartments and carries its medicament in the form of two components, a dry component and a liquid component. When the actuation assembly is activated, structure within the cartridge of the automatic injector forces the dry and liquid components of the medicament to mix. A third type of automatic injector, called a “wet/wet” automatic injector, has two separate compartments and carries its medicament in the form of two liquid components. The wet/wet automatic injector includes structure within the cartridge that may force the two components to mix when the actuation assembly is activated or the automatic injector may deliver the fluid consecutively.
In one common arrangement of an automatic injector, one of the medicament compartments is directly adjacent the needle assembly. During manufacture, the compartment adjacent the needle assembly is filled with a medicament component, and the needle assembly is installed over the opening in the compartment to seal it. The needle assembly includes a needle hub and the needle itself. With this arrangement, having the opening in the cartridge and the compartment as wide as possible is beneficial, because wide openings allow for easier filling of the compartment with the medicament, especially when the medicament or component is in the form of a dry powder or a lyophilized tablet. However, the size of the opening is limited in practice because it is difficult to make a needle assembly that can seal the compartment well and support the needle adequately.
One aspect of the invention relates to a needle and hub assembly for an injection device. The needle and hub assembly comprises a cap, a first hub portion, a needle, and a second hub portion engaged with the first hub portion. The cap has an engaging portion constructed and arranged to engage an exterior surface of a cartridge and a needle-supporting portion having a wall that includes an opening therein. The wall defines interior and exterior surfaces. The first hub portion defines a needle-receiving channel through the opening in the wall and has a section that extends along the interior surface of the wall. The needle is mounted in the needle receiving channel and extends outwardly therefrom. The second hub portion is engaged with the first hub portion and receives at least a portion of the needle. The second hub portion also has reinforcing structures which extend outwardly along the exterior surface of the wall. The wall of the needle-supporting portion of the cap is reinforced on the interior surface by the first hub portion and on the exterior surface by the second hub portion.
Another aspect of the invention that relates to an automatic injector. The automatic injector comprises a housing, a cartridge, an actuation assembly, a cap, a first hub portion, a needle, and a second hub portion. The cartridge is disposed in the housing, has at least one opening, and contains a medicament. The medicament is rearwardly confined by a plunger. The actuation assembly includes a stored energy source that is capable of being released to drive the plunger through the cartridge. The cap has an engaging portion constructed and arranged to engage an exterior surface of the cartridge to cover the opening in the cartridge, and a needle-supporting portion having a wall that includes an opening therein. The wall defines interior and exterior surfaces. The first hub portion defines a needle-receiving channel through the opening in the wall and has a section that extends along the interior surface of the wall. The needle is mounted in the needle receiving channel and extends outwardly therefrom. It is adapted to expel the medicament when the plunger is driven through the chamber. The second hub portion is engaged with the first hub portion and receives at least a portion of the needle. The second hub portion also has reinforcing structures which extend outwardly along the exterior surface of the wall. The wall of the needle-supporting portion of the cap is reinforced on the interior surface by the first hub portion and on the exterior surface by the second hub portion.
Yet another aspect of the invention relates to a method of forming a needle and hub assembly. The method comprises forming a first hub portion, providing a cap having an opening therein, arranging the first hub portion such that it has a portion thereof extending through the opening in the cap, arranging a needle in a channel defined by the first hub portion, and forming a second hub portion over an exterior surface of the cap such that the second hub portion is engaged with the first hub portion and extends over at least a portion of the exterior surface of the cap.
These and other aspects, features, and advantages of the invention will become apparent from the following description.
The invention will be described in conjunction with the following drawing figures, in which like reference numerals designate like elements throughout the figures, and in which:
Typically, the cartridge and needle assembly 10 would be carried within an outer housing 2 that includes an actuation assembly 3 having a stored energy source 4, such as a compressed spring, shown in
The cartridge 12 is of the type designed to maintain a liquid medicament component separately from a dry medicament component until activation of the automatic injector, at which time the two components are mixed. However, a needle and hub assembly 14 according to embodiments of the invention may be used with a wet/dry cartridge like cartridge 12, a wet/wet cartridge, or a cartridge that is designed to house a one-component liquid medicament.
The cartridge 12 is generally formed of glass, or another rigid material that does not react with the medicament or its components. The cartridge 12 is generally cylindrical and has a smooth cylindrical inner surface. The cartridge 12 is divided into a wet medicament compartment 16 and a dry medicament compartment 18. The medicament contained within the dry medicament compartment 18 may be in powder, lyophilized, or any other solid formulation known in the art. On one end of the cartridge 12, a plunger 20 seals the liquid medicament compartment 16 and, when the actuation assembly is activated, is engaged and driven forwardly, and into the liquid medicament compartment 16. A sealing structure 22 sealingly engages the walls of the cartridge 12 to separate the liquid medicament compartment 16 from the dry medicament compartment 18.
The sealing structure 22 is of the type disclosed and claimed in commonly-assigned U.S. patent application Ser. No. 10/690,987, the disclosure of which specifically incorporated herein by reference. Although any type of sealing structure may be used, and if a wet/wet cartridge is used, the sealing structure 22 may take the form of a rupturable membrane or another more conventional type of sealing structure. The sealing structure 22 includes an outer sealing member 24, a moveable plug 26 secured within the outer sealing member 24, a flow pathway 28, and bypass zone 30. When the automatic injector is activated, the advancing plunger 20 creates a pressure in the liquid medicament compartment 16, which causes the moveable sealing plug 26 to move forwardly within the sealing structure 22. Once the sealing plug 26 has moved forwardly within the sealing structure 22, the fluid in the liquid medicament compartment 16 can enter the bypass zone 30 and mix with the medicament component in the dry medicament compartment 18.
Methods of filling the cartridges of automatic injectors such as cartridge 12 are described in U.S. patent application Ser. No. 10/690,987, and will not be repeated here in great detail. Briefly, one difficulty with traditional filling methods is that in a two-compartment cartridge, such as cartridge 12, if both medicament components are filled through the same opening, cross-contamination may easily occur. That is, a powder component may inadvertently be mixed with a liquid component or vice versa, especially around the opening. Therefore, especially with two-compartment cartridges, it is advantageous if the two components are filled through separate openings in the cartridge 12. As was noted above, it is also beneficial if the openings are relatively wide. In addition to allowing easier and faster filling of both wet and powder medicament components, wide openings allow a dry medicament tablet that has been lyophilized in a separate container to be placed directly in the dry medicament compartment 18. In the cartridge 12, the dry medicament compartment 18 has a relatively wide opening 32 located in the forward end of the cartridge 12, adjacent the needle and hub assembly 14.
In one filling process according to the invention, once the dry component is loaded into the dry medicament compartment 18, an insert 34 is inserted into the opening 32. The insert 34 has a tapering flow pathway 36 and acts to funnel the mixed medicament components toward the needle and hub assembly 14 (i.e., forwardly and inwardly) when the automatic injector is activated. The tapered insert 34 also includes a flange portion 38 that forms a seal between the opening 32 and the needle and hub assembly 14. In other filling processes, a needle and hub assembly may be directly sealed over the opening 32 without an insert or other directing structure within the cartridge 12. The diameter of opening 32 may range from 0.280″ to 0.500″.
Traditionally, a needle and hub assembly for this type of cartridge would be formed by staking a needle in an aluminum hub. Generally, a 20 to 24 gauge stainless steel needle would be staked into a 0.010″ to 0.015 thick aluminum extruded shell, which opens to cover an opening in the cartridge having an outside diameter of 0.25″ to 0.30″. In the case of an opening as wide as the opening 32 (e.g., 0.472″), it is difficult to make a traditional extruded aluminum hub that can hold the needle securely and attach it to the cartridge 12. In order to solve this problem, the needle and hub assembly 14 of the present invention includes both traditional extruded components and injection molded components, and is preferably made by a multi-step injection molding process, as will be explained below.
Specifically, the hub and needle assembly 14 comprises a rigid cap or skirt 40, which may be formed of a metal, a first molded hub portion 42, a second molded hub portion 44, a needle 46, and a needle sheath 48. If the skirt 40 is formed of a metal, it would typically be extruded, although it could also be cast or otherwise formed. Although the first and second molded hub portions 42, 44 are described separately in some of the paragraphs below so as to facilitate description, they are preferably fused together during manufacture and function as a single component, as will be explained. Additionally, although the skirt 40 is described as being formed of a metal, it may also be formed of a plastic material having sufficient rigidity.
The components of the needle and hub assembly 14 can be more clearly seen in
As is shown in the views of
The first molded hub portion 42 is positioned along the interior surface 50a of the needle-supporting end 50 of the skirt 40 such that a flange portion 54 of the first molded hub portion 42 is adjacent to the needle-supporting end 50 of the skirt 40 and a forward portion 56 of the first molded hub portion extends through hole 52 in the needle-supporting end 50 of the skirt 40. The needle 46 is mounted within a central channel 58 of the first molded hub portion 42 just beyond the hole 52 in the skirt 40. The needle 46 extends to a stop 58a, shown in
As can be seen in
It should be understood that the chamber 60 and filter 62 are optional components and need not be included in embodiments of the invention. Moreover, as will be readily understood by those skilled in the art, the first molded hub portion 42 may include whatever contours or structural features are necessitated by the interior arrangement of the automatic injector with which it is designed to be used. In general, the structural features of the first molded hub portion 42 inside of the skirt 40 are not critical to the invention, provided that the first molded hub portion 42 includes structures of sufficient extent to retain it in position within the skirt 40 and to reinforce the skirt 40.
The second molded hub portion 44 is disposed on the outside of the needle-supporting end 50 of the skirt 40. It abuts the exterior surface 50b of the needle-supporting end 50 and creates a meltzone 64 where the pieces 42 and 44 are permanently joined. During formation of hub portion 44, the first molded hub portion 42 is remelted so that the portions 42 and 44 are joined together. As can be seen most clearly in
The needle assembly 14 according to the present invention is most advantageously manufactured using a several step injection-molding process. The first and second molded hub portions 42, 44 may be made of ABS, polyethylene, polypropylene, or another well known medical grade polymer. The injection molding process for the needle assembly 14 will be explained below with respect to
Manufacturing process 100 for the needle and hub assembly 14 begins at S102. Before the actual molding process begins, the user would prepare the equipment and provide appropriate mold parts for the components. The process continues at S104. At S104, the user injects heated fluid plastic material into a mold component having a cavity that defines the shape of the first molded hub portion 42. The fluid plastic cools within the mold cavity to become the first molded hub portion 42, as shown in
When the second molded hub portion 44 is overmolded in S110 of process 100, the second molded hub portion 44 fuses with the first molded hub portion 42 along melt zone 64 as it cools, forming an integral, fused component. For this reason, it is typically advantageous to mold the first and second molded hub portions 42, 44 of the same material so that they can fuse together effectively. However, any two thermally compatible materials may be used for the first and second molded hub portions 42, 44.
Process 100 also provides certain other advantages over more conventional methods of manufacturing a needle and hub assembly. For example, although the components illustrated in the Figures could be molded separately, assembled, and bonded, welded, or fit together, process 100 provides much tighter tolerances than would exist if any of those more conventional processes were used.
Although the invention has been described with respect to certain embodiments, those embodiments are intended to be exemplary only, and should not be construed as limiting. Modifications and variations to the invention as described herein may be made within the scope of the appended claims.
This is a division of U.S. patent application Ser. No. 10/797,565, filed Mar. 11, 2004, now U.S. Pat. No. 7,544,189, which is a CIP of U.S. patent application Ser. No. 10/690,987 filed on Oct. 23, 2003, now U.S. Pat. No. 7,621,887, which is a CIP of U.S. patent applications Ser. No. 09/972,202, filed on Oct. 9, 2001, now U.S. Pat. No. 6,770,052, and 09/897,422, filed on Jul. 3, 2001, now U.S. Pat. No. 6,641,561, both of which claim the benefit of U.S. Provisional Application No. 60/238,458, the '422 application also claiming the benefit of U.S. Provisional Application Nos. 60/238,448 and 60/238,447, all filed on Oct. 10, 2000. The content of each is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2745403 | Goldberg | May 1956 | A |
2941531 | Stevens | Jun 1960 | A |
3063450 | Myerson et al. | Nov 1962 | A |
3406686 | Keller | Oct 1968 | A |
3592245 | Schneller | Jul 1971 | A |
3736932 | Satchell | Jun 1973 | A |
3757779 | Rovinski | Sep 1973 | A |
3863624 | Gram | Feb 1975 | A |
RE28713 | Stevens et al. | Feb 1976 | E |
3938513 | Hargest | Feb 1976 | A |
3974832 | Kruck | Aug 1976 | A |
4043335 | Ishikawa | Aug 1977 | A |
4060082 | Lindberg et al. | Nov 1977 | A |
4215701 | Raitto | Aug 1980 | A |
4266557 | Merry | May 1981 | A |
4306554 | Schwartz et al. | Dec 1981 | A |
4413991 | Schmitz et al. | Nov 1983 | A |
4529403 | Kamstra | Jul 1985 | A |
4568336 | Cooper | Feb 1986 | A |
4599082 | Grimard | Jul 1986 | A |
4613326 | Szwarc | Sep 1986 | A |
4755169 | Sarnoff et al. | Jul 1988 | A |
4792329 | Schreuder | Dec 1988 | A |
4822340 | Kamstra | Apr 1989 | A |
4861335 | Reynolds | Aug 1989 | A |
4874381 | Vetter | Oct 1989 | A |
4898580 | Crowley | Feb 1990 | A |
4983164 | Hook et al. | Jan 1991 | A |
4986820 | Fischer | Jan 1991 | A |
4994043 | Ysebaert | Feb 1991 | A |
5015229 | Meyer et al. | May 1991 | A |
5017191 | Yamada et al. | May 1991 | A |
5041088 | Ritson et al. | Aug 1991 | A |
5080649 | Vetter | Jan 1992 | A |
5281198 | Haber et al. | Jan 1994 | A |
5295965 | Wilmot | Mar 1994 | A |
5298024 | Richmond | Mar 1994 | A |
5354286 | Mesa et al. | Oct 1994 | A |
5364369 | Reynolds | Nov 1994 | A |
5391151 | Wilmot | Feb 1995 | A |
5397048 | Konno et al. | Mar 1995 | A |
5429603 | Morris | Jul 1995 | A |
5465727 | Reinhold, Jr. | Nov 1995 | A |
5472422 | Ljungquist | Dec 1995 | A |
5522804 | Lynn | Jun 1996 | A |
5569192 | Van der Wal | Oct 1996 | A |
5620421 | Schmitz | Apr 1997 | A |
5637087 | O'Neil et al. | Jun 1997 | A |
5704918 | Higashikawa | Jan 1998 | A |
5713857 | Grimard et al. | Feb 1998 | A |
5725777 | Taylor | Mar 1998 | A |
5735825 | Stevens et al. | Apr 1998 | A |
5785683 | Szapiro et al. | Jul 1998 | A |
5795337 | Grimard | Aug 1998 | A |
5807344 | Iwasaki | Sep 1998 | A |
RE35986 | Ritson et al. | Dec 1998 | E |
5865798 | Grimard et al. | Feb 1999 | A |
5902277 | Jentzen | May 1999 | A |
5971953 | Bachynsky | Oct 1999 | A |
6053895 | Kolberg et al. | Apr 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6142977 | Kolberg et al. | Nov 2000 | A |
6149628 | Szapiro et al. | Nov 2000 | A |
6368303 | Caizza | Apr 2002 | B1 |
6379328 | MacClay | Apr 2002 | B1 |
6511459 | Fago | Jan 2003 | B1 |
6641561 | Hill et al. | Nov 2003 | B1 |
6656150 | Hill et al. | Dec 2003 | B2 |
7544189 | Griffiths | Jun 2009 | B2 |
20020049407 | Hill et al. | Apr 2002 | A1 |
20030040701 | Dalmose | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
1 691 166 | Jul 1970 | DE |
0 112 574 | Jul 1984 | EP |
0 361 668 | Apr 1990 | EP |
0 405 320 | Jan 1991 | EP |
0 511 183 | Oct 1992 | EP |
2 245 381 | Apr 1975 | FR |
2 604 363 | Apr 1988 | FR |
2 741 810 | Jun 1997 | FR |
WO 9409839 | May 1994 | WO |
WO 9601135 | Jan 1996 | WO |
WO 0193925 | Dec 2001 | WO |
WO 04000398 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20090205744 A1 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
60238458 | Oct 2000 | US | |
60238447 | Oct 2000 | US | |
60238448 | Oct 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10797565 | Mar 2004 | US |
Child | 12431850 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10690987 | Oct 2003 | US |
Child | 10797565 | US | |
Parent | 09972202 | Oct 2001 | US |
Child | 10690987 | US | |
Parent | 09897422 | Jul 2001 | US |
Child | 09972202 | US |