1. Field of the Invention
Generally, the present disclosure relates to the manufacture of semiconductor devices, and, more specifically, to various methods of forming metal silicide regions on semiconductor devices using an organic chelating material during a metal etch process.
2. Description of the Related Art
The fabrication of advanced integrated circuits, such as CPUs, storage devices, ASICs (application specific integrated circuits) and the like, requires a large number of circuit elements to be formed on a given chip area according to a specified circuit layout, wherein field effect transistors represent one important type of circuit element that substantially determines performance of the integrated circuits. Generally, a plurality of process technologies are currently practiced, wherein, for many types of complex circuitry, including field effect transistors, MOS technology is currently one of the most promising approaches due to the superior characteristics in view of operating speed and/or power consumption and/or cost efficiency. During the fabrication of complex integrated circuits using, for instance, MOS technology, millions of transistors, e.g., N-channel transistors (NMOS) and/or P-channel transistors (PMOS), are formed on a substrate including a crystalline semiconductor layer. A field effect transistor, irrespective of whether an NMOS transistor or a PMOS transistor is considered, typically comprises so-called PN junctions that are formed by an interface of highly doped regions, referred to as drain and source regions, with a slightly doped or non-doped region, such as a channel region, disposed adjacent to the highly doped regions.
Device designers are under constant pressure to increase the operating speed and electrical performance of transistors and integrated circuit products that employ such transistors. Given that the gate length (the distance between the source and drain regions) on modern transistor devices may be approximately 30-50 nm, and that further scaling is anticipated in the future, device designers have employed a variety of techniques in an effort to improve device performance, e.g., the use of high-k dielectrics, the use of metal gate electrode structures, the incorporation of work function metals in the gate electrode structure and the use of channel stress engineering techniques on transistors (create a tensile stress in the channel region for NMOS transistors and create a compressive stress in the channel region for PMOS transistors). Stress engineering techniques typically involve the formation of specifically made silicon nitride layers that are selectively formed above appropriate transistors, i.e., a layer of silicon nitride that is intended to impart a tensile stress in the channel region of a NMOS transistor would only be formed above the NMOS transistors. Such selective formation may be accomplished by masking the PMOS transistors and then blanket depositing the layer of silicon nitride, or by initially blanket depositing the layer of silicon nitride across the entire substrate and then performing an etching process to selectively remove the silicon nitride from above the PMOS transistors. Conversely, for PMOS transistors, a layer of silicon nitride that is intended to impart a compressive stress in the channel region of a PMOS transistor is formed above the PMOS transistors. The techniques employed in forming such nitride layers with the desired tensile or compressive stress are well known to those skilled in the art.
In a field effect transistor, metal silicide regions are typically formed in the source/drain regions of a transistor to reduce the resistance when a conductive contact is formed to establish electrical connection to the source/drain regions. Such metal silicide regions may also be formed on a portion of a gate structure of the transistor prior to forming a gate contact. Metal silicide regions may be made using a variety of different refractory metals, e.g., nickel, platinum, cobalt, etc., or combinations thereof, and they may be formed using techniques that are well known to those skilled in the art. The typical steps used to form metal silicide regions are: (1) depositing a layer of refractory metal, performing an initial heating process causing the refractory metal to react with underlying silicon-containing material; (2) performing an etching process to remove unreacted portions of the layer of refractory metal; and (3) performing an additional heating process to form the final phase of the metal silicide. The formation of metal silicide regions is becoming even more important as device dimensions decrease with the associated incorporation of very shallow source/drain regions in advanced devices. More specifically, in newer generation devices, it is important to accurately control the thickness and location of the metal silicide regions to avoid problems such as so-called spiking and piping whereby electrical short circuits can occur, which may lead to reduced device performance or, in a worst case, complete device failure.
One refractory metal alloy used to form silicide layers is nickel-platinum (NiPt). The NiPt alloy improves the thermal and morphological stability of the silicide (NiPtSi). A difficulty with the process for forming NiPtSi is the etching process performed to remove unreacted portions of the NiPt alloy. A conventional silicide process flow for forming NiPtSi (10% Pt) includes forming a NiPt alloy layer over an exposed silicon surface, forming a cap layer (e.g., TiN) over the NiPt alloy layer, performing a first rapid thermal anneal (RTA1) process to react the alloy layer with the silicon, performing a first etch process to remove the cap layer, performing a second rapid thermal anneal (RTA2) process to convert the NiPtSi to a low resistivity state, and performing a second etch process to remove the unreacted NiPt residues. Aqua regia is known to be effective for removing the platinum residues. However, aqua regia is not selective toward other metals in the device, such as aluminum or TiN commonly used in metal gate electrode structures, so these other metal structures can be damaged during the aqua regia strip. The problems with the residue removal etch process are exacerbated when the platinum contribution in the alloy is increased (e.g., 15%). Damage to the other metal structures can cause reduced performance or faults in the devices.
The present disclosure is directed to various methods of forming metal silicide regions on semiconductor devices.
The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an exhaustive overview of the invention. It is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
Generally, the present disclosure is directed to various methods of forming silicide layers. A method includes forming a refractory metal alloy layer above a silicon-containing material, performing a first heating process to form a metal silicide region in at least a portion of the silicon-containing material using the refractory metal alloy layer, and removing at least a first portion of an unreacted portion of the refractory metal alloy layer using a first solution comprising a solvent and an organic chelator.
A method includes forming a refractory metal alloy layer above a silicon-containing material, performing a first heating process to form a metal silicide region in at least a portion of the silicon-containing material using the refractory metal alloy layer, and removing at least a first portion of an unreacted portion of the refractory metal alloy layer using a first solution comprising a solvent and acetic acid.
A method includes forming a refractory metal alloy layer above a silicon-containing material, forming a cap layer above the refractory metal alloy layer, performing a first heating process to form a metal silicide region in at least a portion of the silicon-containing material using the refractory metal alloy layer, removing the cap layer and at least a first portion of an unreacted portion of the refractory metal alloy layer using a first solution comprising a first solvent and an organic acid prior to removing the first portion, removing at least a second portion of the unreacted portion using a second solution comprising a second solvent and an organic chelator, and performing a second heating process to convert the metal silicide region to a low resistivity state.
The disclosure may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:
While the subject matter disclosed herein is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Various illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The present subject matter will now be described with reference to the attached figures. Various structures, systems and devices are schematically depicted in the drawings for purposes of explanation only and so as to not obscure the present disclosure with details that are well known to those skilled in the art. Nevertheless, the attached drawings are included to describe and explain illustrative examples of the present disclosure. The words and phrases used herein should be understood and interpreted to have a meaning consistent with the understanding of those words and phrases by those skilled in the relevant art. No special definition of a term or phrase, i.e., a definition that is different from the ordinary and customary meaning as understood by those skilled in the art, is intended to be implied by consistent usage of the term or phrase herein. To the extent that a term or phrase is intended to have a special meaning, i.e., a meaning other than that understood by skilled artisans, such a special definition will be expressly set forth in the specification in a definitional manner that directly and unequivocally provides the special definition for the term or phrase.
The present disclosure is directed to various methods of forming metal silicide regions on semiconductor devices by using an organic chelating material during a metal strip etch process while reducing or perhaps eliminating at least some of the problems discussed in the background section of this application. In some cases, the methods and devices may include a high-k dielectric material (k value greater than 10) and a metal-containing electrode material. As will be readily apparent to those skilled in the art upon a complete reading of the present application, the present method is applicable to a variety of technologies, e.g., NMOS, PMOS, CMOS, etc., and is readily applicable to a variety of devices, including, but not limited to, logic devices, memory devices, resistors, conductive lines, etc. With reference to
At the point of fabrication depicted in
Also as depicted in
Next, as shown in
Next, as shown in
Then, as shown in
As shown in
As shown in
During the process flow depicted in
Thereafter, various additional processing operations may be performed to complete the fabrication of the device 100. Such processing operations include the formation of conductive contacts (not shown) and the formation of various metallization layers and structures (not shown) above the device 100.
The techniques for forming silicide layers described herein provide more complete removal of the unreacted portions of the refractory metal alloy layer 150. More specifically, in the case of increased platinum concentration alloy layers (≧15% Pt), the use of the organic chelator/solvent solution facilitates platinum removal while reducing damage to the other metal structures, such as the metal gate electrodes 130. Thus, using the techniques disclosed herein, the defects in the device 100 arising from unremoved platinum or damaged metal structures may be reduced.
The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. For example, the process steps set forth above may be performed in a different order. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.