The present disclosure relates to variable transmission windows and in particular to methods of forming polarized panes for variable transmission windows.
Variable transmission windows are used in a variety of structures, particularly those having a living space (e.g., houses, buildings, cars, boats, etc.) to control the amount of light and heat that enters the living space from the outside environment and to provide privacy.
One type of variable transmission window uses two parallel polarized panes, with one or both panes being linearly translatable relative to the other. The relative shift between the polarized panes defines the window transmission. It is usually preferred that the polarized panes each have a polarization pattern such that a relatively small translation of one pane produces a substantial change in the overall transmission of the variable transmission window.
Unfortunately, the quality and performance of the variable transmission of variable transmission windows is wanting. Further, their manufacturing cost tends to be relatively high.
An aspect of the disclosure is a method of forming a polarized pane for a window having a variable transmission. The method includes brushing a surface of a transparent plate to create a brushed surface having a brushing pattern, wherein the brushing pattern has at least one period and varies continuously in a select direction within each period. The method also includes depositing a polarizable material on the brushed surface to form a polarization pattern in the polarizable material substantially following the brushing pattern.
Another aspect of the disclosure is a method of forming a polarized pane for a variable transmission window. The method includes brushing a surface of a transparent plate while using a mask to continuously vary an amount of exposed surface to create a brushing pattern that varies continuously in a select direction for each of one or more periods. The method also includes depositing a layer of polarizable material on the brushed plate surface to create a polarization pattern substantially matching the brushing pattern.
Another aspect of the disclosure is a method of forming a polarized pane using a glass plate having a surface. The method includes brushing the surface to form a brushing pattern that varies continuously in a select direction for each of multiple periods, wherein the brushing pattern in each period is substantially identical. The method also includes coating the brushed surface with a polarizable material to create a polarization pattern having the same number of multiple periods as and being substantially identical to the brushing pattern.
Another aspect of the disclosure is a method forming a variable transmission window. The method includes forming first and second polarized panes using the methods disclosed herein. The method further includes arranging the first and second polarized panes in a frame adapted to allow for at least one of the first and second polarized panes to linearly translate relative to the other polarized pane to define a variable transmission.
Additional features and advantages will be set forth in the Detailed Description that follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and claims thereof, as well as the appended drawings. It is to be understood that both the foregoing general description and the following Detailed Description are merely exemplary and are intended to provide an overview or framework for understanding the nature and character of the claims.
The accompanying drawings are included to provide a further understanding and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiment(s) and together with the Detailed Description serve to explain the principles and operation of the various embodiments. As such, the disclosure will become more fully understood from the following Detailed Description, taken in conjunction with the accompanying Figures.
Reference is now made in detail to various embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Whenever possible, the same or like reference numbers and symbols are used throughout the drawings to refer to the same or like parts. The drawings are not necessarily to scale, and one skilled in the art will recognize where the drawings have been simplified to illustrate the key aspects of the disclosure.
The claims as set forth below are incorporated into and constitute a part of this
The entire disclosure of any publication or patent document mentioned herein is incorporated by reference, including U.S. Pat. Nos. 6,414,790; 2,260,220; 2,281,112; 4,123,141; and 5,164,856; and U.S. Pub. No. 2012/0169950.
Cartesian coordinates are shown in some of the Figures for the sake of reference and are not intended to be limiting as to direction or orientation. Likewise, reference to brushing patterns and polarization patterns with orientations that vary over a given angular range, e.g., from 0° to 180° is not intended as being limiting to absolute vertical or horizontal but is intended to include a relative measurement of relative orientations (e.g., from −90° to +90°, from 20° to 200°, etc.). The brush patterns 24 and polarization patterns 34 described below are shown in a select orientation relative to sides of plate 20 to facilitate the discussion and should not so limit the claims appended herewith.
In the description below, in some instances a reference number has an added letter A or B to distinguish between different ones of the same type of component or element. Thus, for example, two polarized panes 10 as discussed below are referred to as polarized pane 10A and polarized pane 10B in the context of a variable transmission window 6 that uses two polarized panes.
The transparent plate 20 of pane 10 can be any transparent material preserving a brushing pattern as described below. Here, “brushing pattern” means a pattern caused by brushing that serves to define a polarization pattern in a polarization material (coating) deposited on the brush surface, wherein the polarization pattern substantially matches the brushing pattern. As noted below, the brushing pattern is generally not visible. Exemplary materials for plate 20 include, but are not limited to, glass, acrylic or plastic.
The polarized panes 10A and 10B include respective polarization coatings 30A and 30B. The polarization coatings 30A and 30B are shown as residing on front surfaces 22A and 22B of panes 20A and 20B, though the polarization coatings can also be on back surfaces 23A and 23B or on one front surface and one back surface.
In an example, polarization coatings 30A and 30B can be formed from a polarizable material, such as, but not limited to, a POLARCOAT polarizable coating (hereinafter, “POLARCOAT”), a registered trademark of Corning, Inc., Corning, N.Y. It should be noted that while many embodiments described herein refer to POLARCOAT, the claims appended herewith should not be so limited. The polarization coatings 30A and 30B each have a substantially continuously varying change in polarization in the direction of translation (e.g., the X-direction as shown) over each of one or more polarization pattern periods p. The method of patterning of polarization coatings 30A and 30B to generate a continuously varying polarization pattern over each of one or more periods p is discussed in greater detail below. In an example, the polarizable material making up polarization coatings 30A and 30B can be spin-coated onto transparent plates 20A and 20B, respectively.
In this manner, the varying polarization pattern in polarization coatings 30A and 30B allows for a linear translation of pane 10A relative to pane 10B to adjust the transmission of variable transmission window 6. The attenuation effect over the translation range can be optimum when polarization coatings 30A and 30B have a continuous variation in polarization orientation of polarization pattern 34 over each period p in the direction of translation.
A benefit of having a continuous variation in polarization pattern 34 undesirable visual artifacts that appear in variable transmission window 6 having discrete polarization regions 32A and 32B can be substantially reduced or eliminated. When discrete polarization regions 32A and 32B are not properly aligned, visible stripes alternating between darker stripes and lighter stripes can occur. The difference in darkness and lightness can be fairly significant even with relatively small polarization angle differences (e.g., up to 17% with a 10° polarization difference). The difference in darkness and lightness varies with the absolute lightness/darkness over variable transmission window 6. The difference can be generally smallest when the window is near its darkest and lightest states and can be generally greatest when halfway between these states.
It should be noted that polarization P varies continuously in a selection direction within a given period p but can jump between adjacent periods. This apparent discontinuity is not problematic because panes 10A and 10B are shifted relative to each other over a single period. Also, it should be noted that polarization P can be substantially the same as P+180° so there can effectively be polarization continuity even between adjacent periods p.
It should also be noted that an exemplary range over which the polarization orientation (i.e., polarization P) varies within a given period can be 180°, e.g., between the limits of 0° and 180° as shown in
Another exemplary range for polarization P can be 90°. This is because polarized panes 10A and 10B when used in variable transmission window 6 need only provide relative polarization orientations between 0° (i.e., parallel and thus maximum transmission) and 90° (i.e., crossed and thus minimum transmission). So in an exemplary embodiment, the range of polarization P within a given period can be at least 90°.
Generally, the range over which polarization P varies can be any range consistent with a desired attenuation range for variable transmission window 6. In some exemplary variable transmission windows 6, the transmission need not vary from close to 0% to close to 100% and can vary over much smaller ranges, e.g., 0% to 25%, or 25% to 75%, etc.
The brushing pattern 24 is generally not visible and, without intending to be bound by theory, is believed to be a result of an electrostatic effect imparted to the dielectric plate 20. Thus, in an exemplary embodiment, one method of measuring brushing pattern 24 can be to use POLARCOAT and then measure the resulting polarization pattern 34.
The brushing system 90 includes a brushing device 100 residing above mask 60. In an example, brushing device 100 includes a belt 110 having a continuous outer surface 112. The belt 110 rotates in a fixed direction, such as the Y-direction as shown. In an example, belt 110 can be made of foam-brush material, such as polyether foam, DA/JP/30TF, 30 kg/m3. In an example, the length and width of belt 110 can be such that it at least covers the diagonal of plate 20. Of course, other brushing devices 100 can be employed, e.g., one where belt 110 can be replaced by a pad that vibrates back and forth and the claims appended herewith should not be so limited.
With reference to
At this point, plate front surface 22 can be coated with an exemplary polarizable coating, e.g., a POLARCOAT polarization coating 30, which responds to brushing pattern 24 by taking on polarization pattern 34, which substantially follows brushing pattern 24. The resulting polarized pane 10 is shown in
This general method of forming polarized pane 10 by brushing front surface 22 of plate 20 and then applying the POLARCOAT polarization coating 30 can be carried out for any reasonable number of periods p, with the movement of mask 60 during rotation determining the number of periods. In an example, the smallest practical width (in the X-direction) of a period p can be about 1 inch. Widths below 1 inch can be used, but it can take increasingly more time to generate high-quality patterns that ensure good transmission uniformity when used in variable transmission window 6. Thus, in an example, the width of the smallest period p can be about 1 inch.
In an exemplary embodiment, the number of periods p can be determined by how much displacement of one polarized pane 10A relative to another polarized pane 10B can be required to achieve a desired variation in light transmission for variable transmission window 6. This can be because a displacement of one period p corresponds to a transition from lowest to highest transmission. It is should be noted that for a given amount of displacement size, one of the polarized panes 10A and 10B should be made larger than the other (or half the displacement amount if both panes are translatable), and frame 40 should accommodate the required displacement.
An exemplary method of forming polarization pattern 34 in polarization coating 30 thus involves brushing plate front surface 22 while exposing different portions of the plate front surface. In some methods, the brushing direction of brushing device 100 can be continuously changed while mask 60 and plate 20 are held stationary to achieve the same polarization patterning effect. Also, different types of masks 60 can be used. In one example, mask 60 has an aperture that changes size. In another embodiment, mask 60 includes multiple apertures so multiple periods of brushing pattern 24 can be defined for a single 180° rotation. In another example, two masks 60 can be employed: one for even periods p and one for odd periods.
As discussed above, polarized pane 10 can have any reasonable number of periods p suitable for the intended application. In an example, one or more full rotations of turntable 50 can be used to generate brushing pattern 24. In an example, two full rotations can be used, wherein the first full rotation can be used to define odd-numbered columns and the second full rotation can be used to define even-numbered columns. During the first full rotation, mask 60 slowly closes the original aperture and reveals what had been previously covered. During the second full rotation, the original aperture remains covered as the second mask 60 slowly covers the apertures that were open after the first full rotation. The result can be multiple columns, wherein each column has a brushing direction (angle) changing continuously and representing one period p of the overall brushing pattern 24.
It will be apparent to those skilled in the art that various modifications to the preferred embodiments of the disclosure as described herein can be made without departing from the spirit or scope of the disclosure as defined in the appended claims. Thus, the disclosure covers the modifications and variations, provided they come within the scope of the appended claims and the equivalents thereto.
Number | Name | Date | Kind |
---|---|---|---|
2260220 | Martin | Oct 1941 | A |
2281112 | Ryan | Apr 1942 | A |
2398506 | Rogers | Apr 1946 | A |
2617329 | Dreyer | Nov 1952 | A |
2977345 | Fischer | Mar 1961 | A |
2977845 | Boone | Apr 1961 | A |
3218926 | Boone | Nov 1965 | A |
3563130 | Elliott | Feb 1971 | A |
3658616 | Dreyer | Apr 1972 | A |
3943573 | Budmiger | Mar 1976 | A |
4123141 | Schuler | Oct 1978 | A |
4285577 | Schuler | Aug 1981 | A |
4364375 | Younghouse | Dec 1982 | A |
4902112 | Lowe | Feb 1990 | A |
5033829 | Faroughy | Jul 1991 | A |
5164856 | Zhang et al. | Nov 1992 | A |
5686975 | Lipton | Nov 1997 | A |
5739296 | Gvon et al. | Apr 1998 | A |
5901967 | Morisaki | May 1999 | A |
5999316 | Allen et al. | Dec 1999 | A |
6161607 | de Kimpe et al. | Dec 2000 | A |
6174394 | Gvon et al. | Jan 2001 | B1 |
6414790 | Bennett | Jul 2002 | B1 |
7162136 | Pertl et al. | Jan 2007 | B1 |
8308293 | Watanabe et al. | Nov 2012 | B2 |
8310757 | McLeod et al. | Nov 2012 | B2 |
8508681 | Tatzel et al. | Aug 2013 | B2 |
20020039628 | Ogawa | Apr 2002 | A1 |
20060193046 | Yellin | Aug 2006 | A1 |
20070097503 | Tsuji | May 2007 | A1 |
20070146599 | Uchida | Jun 2007 | A1 |
20070163732 | Konstantin et al. | Jul 2007 | A1 |
20100053751 | McLeod | Mar 2010 | A1 |
20110037943 | Watanabe et al. | Feb 2011 | A1 |
20120169950 | Tatzel et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
2224260 | Apr 1996 | CN |
2280764 | May 1998 | CN |
2714767 | Aug 2005 | CN |
200999574 | Jan 2008 | CN |
201110111 | Sep 2008 | CN |
201206411 | Mar 2009 | CN |
4327095 | Jul 1994 | DE |
19835490 | Feb 2000 | DE |
19835490 | Feb 2000 | DE |
2154268 | Sep 1985 | GB |
2154268 | Sep 1985 | GB |
2270104 | Mar 1994 | GB |
2270104 | Mar 1994 | GB |
62050222 | Mar 1987 | JP |
62050222 | Mar 1987 | JP |
3144093 | Jun 1991 | JP |
3262890 | Nov 1991 | JP |
7305448 | Nov 1995 | JP |
8165866 | Jun 1996 | JP |
10238255 | Sep 1998 | JP |
11218609 | Aug 1999 | JP |
2000170465 | Jun 2000 | JP |
2001526406 | Dec 2001 | JP |
2010084483 | Apr 2010 | JP |
2011010017 | Jan 2011 | KR |
122682 | Nov 2009 | RO |
2167989 | May 2001 | RU |
WO9410621 | May 1994 | WO |
WO 9410621 | May 1994 | WO |
Entry |
---|
J. Cognard, “Alignment of nematic liquid crystals and their mixtures”, Molecular Crystals and Liquid Crystals, Gordon and Breach, GB, vol. 1, Jan. 1, 1981, pp. 1-77. |
PCT Application No. PCT/US2014/047351, filed Jul. 21, 2014, PCT Search Report dated Oct. 24, 2014. |
Number | Date | Country | |
---|---|---|---|
20150026951 A1 | Jan 2015 | US |