As microelectronic technology advances for higher performance, device dimensions are shrinking, which becomes a challenge when fabricating device features for optimal performance. For example, dimensional scaling increases the contact resistance of a polysilicon resistor due to generational reduction of the contact area. High contact resistance can induce more resistance variation, and reduced temperature coefficient of resistance (TCR) of the polysilicon resistor. Additionally, as device architecture becomes more vertical, such as in the case of three dimensional transistor structures, such as FINFET, or other multi-gate transistor devices, the scaling of the contact area for resistor structures becomes more important.
While the specification concludes with claims particularly pointing out and distinctly claiming certain embodiments, the advantages of these embodiments can be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings in which:
In the following detailed description, reference is made to the accompanying drawings that show, by way of illustration, specific embodiments in which the methods and structures may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the embodiments. It is to be understood that the various embodiments, although different, are not necessarily mutually exclusive. For example, a particular feature, structure, or characteristic described herein, in connection with one embodiment, may be implemented within other embodiments without departing from the spirit and scope of the embodiments. In addition, it is to be understood that the location or arrangement of individual elements within each disclosed embodiment may be modified without departing from the spirit and scope of the embodiments. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the embodiments is defined only by the appended claims, appropriately interpreted, along with the full range of equivalents to which the claims are entitled. In the drawings, like numerals may refer to the same or similar functionality throughout the several views.
Methods and associated structures of forming and utilizing microelectronic structures, such as device structures comprising strained source/drain structures, are described. Those methods/structures may include forming an opening in a resistor material adjacent source/drain openings on a device substrate, forming a dielectric material between the resistor material and the source/drain openings, and modifying the resistor material, wherein a temperature coefficient resistance (TCR) of the resistor material is tuned by the modification. The modifications include adjusting a length of the resistor, forming a compound resistor structure, and forming a replacement resistor. A contact material adjacent the resistor and in the source/drain openings may then be formed. The embodiments herein enable tuning of a TCR which enable precision resistors with zero TCR values.
The device 100 may further comprise a gate structure 105, which may comprise a portion of a transistor gate structure 105, such as planar, multi-gate, or a nanowire transistor structure. The gate structure 105 may comprise undoped polysilicon, in an embodiment. The gate structure 105 may further comprise source/drain openings 112 that are disposed adjacent the gate structure 105. Source/drain regions 110 may be disposed in the substrate 108, and may be adjacent the gate structure 105.
The source/drain regions 110 may comprise doped portions of the substrate 108, and may couple with the source/drain openings 112. In an embodiment, a mask, such as a hard mask material 102, may cover a resistor material 104 during an etching process 122 to form the source/drain openings 112. In an embodiment, the resistor material 104 may comprise an undoped polysilicon 104. In an embodiment, the gate structure 105 and an isolation region 115 may comprise polysilicon. In an embodiment, an isolation material, such as a dielectric material, may be disposed between the resistor material 104 and the substrate 108.
The resistor material 104 may be patterned and etched using a photoresist material 101, and the resistor material may be doped to form a doped resistor material 103 (
In an embodiment, the doped resistor material 103 may comprise a boron doped resistor material, although the resistor material 104 may be doped with any suitable doping element, according to the particular application. In an embodiment, a resistivity of the doped resistor material 103 may be established by the type and quantity of the dopant, as well as additional process parameters of the doping process. In an embodiment, a temperature coefficient of resistance (TCR) for the doped resistor material 103 may comprise about 200 ppm/° C. In some cases, the TCR may comprise about 100 ppm/° C. to about 300 ppm/° C., in other cases, the TCR of the doped resistor material 103 may comprise a negative TCR.
In an embodiment, a dielectric material 114 may be formed on the doped resistor material 103 in the recess and in the source drain openings 112 (
The undoped poly material 104 adjacent the doped resistor 103 may be removed exposing resistor contact openings 113 (
In an embodiment, a contact material 116, 117 may be formed in the source/drain openings 112 and adjacent the doped resistor 103 (
The device 200 may further comprise a gate structure 205, which may comprise a portion of a transistor gate structure 205, such as planar, multi-gate, or a nanowire transistor structure. The gate structure 205 may comprise undoped polysilicon, in an embodiment. The gate structure 205 may further comprise source/drain openings 212 that are disposed adjacent the gate structure 205. Source/drain regions 210 may be disposed in the substrate 208, and may be adjacent the gate structure 205.
The source/drain regions 210 may comprise doped portions of the substrate 208, and may couple with the source/drain openings 212. In an embodiment, a mask, such as a hard mask material 202, may cover a resistor material 204 during an etching process 222 to form the source/drain openings 212. In an embodiment, the resistor material 204 may comprise an undoped polysilicon 204. In an embodiment, the gate structure 205 and an isolation region 215 may comprise polysilicon. In an embodiment, an isolation material, such as a dielectric material, may be disposed between the resistor material 204 and the substrate 208.
The resistor material 204 may be patterned and etched using a photoresist material 201, and the resistor material may be doped to form a doped resistor material 203 (
In an embodiment, the doped resistor material 203 may comprise a boron doped resistor material, although the resistor material 204 may be doped with any suitable doping element, according to the particular application. In an embodiment, a resistivity of the doped resistor material 203 may be established by the type and quantity of the dopant, as well as additional process parameters of the doping process. In an embodiment, a temperature of coefficient of resistance (TCR) for the doped resistor material 203 may comprise about 200 ppm/° C. In some cases, the TCR may comprise about 100 ppm/° C. to about 300 ppm/° C., in other cases, the TCR of the doped resistor material 203 may comprise a negative TCR.
In an embodiment, a dielectric material 214 may be formed on the doped resistor material 203 in the recess and in the source/drain openings 212 (
The undoped poly material 204 adjacent the doped resistor 203 may be removed exposing resistor contact openings 213, and the source/drain openings 212 may be exposed (
In an embodiment, a contact material 216, 217 may be formed in the source/drain openings 212 and adjacent the doped resistor 203 (
In an embodiment, the thickness of the contact material disposed over the doped resistor 203 may depends upon the TCR of the doped resistor 203 and contact material 218. In an embodiment, the contact material 218 formed on the top portion of the doped resistor 203 may serve to tune the TCR of the doped resistor 203, and may comprise a tuneable resistor structure 219. In an embodiment, the tuneable resistor structure 219 may comprise a TCR of about zero. In other cases, the TCR may be tuned by adjusting the thickness of the contact metal 218 to a desired TCR for the particular application.
In an embodiment, the contact material may be formed simultaneously adjacent the doped resistor 203 and in the source/drain openings 212 to form resistor contacts 216 and source/drain 217. In an embodiment, the contact material 216, 217 may comprise the same material for the resistor contacts and the source/drain contacts, in other embodiments, the contact material may be different for resistor and source/drain contacts. In an embodiment, conductive interconnect structures 220 may be formed to connect with the resistor contacts 216 and the source/drain contacts 217 (
The device 300 may further comprise a gate structure 305, which may comprise a portion of a transistor gate structure 305, such as planar, multi-gate, or a nanowire transistor structure. The gate structure 305 may comprise undoped polysilicon, in an embodiment. The gate structure 305 may further comprise source/drain openings 312 that are disposed adjacent the gate structure 305. Source/drain regions 310 may be disposed in the substrate 308, and may be adjacent the gate structure 305.
The source/drain regions 310 may comprise doped portions of the substrate 308, and may couple with the source/drain openings 312. In an embodiment, a mask, such as a hard mask material 302, may cover a resistor material 304 during an etching process 322 to form the source/drain openings 312. In an embodiment, the resistor material 304 may comprise an undoped polysilicon 304. In an embodiment, the gate structure 305 and an isolation region 315 may comprise polysilicon. In an embodiment, an isolation material, such as a dielectric material, may be disposed between the resistor material 304 and the substrate 308.
The resistor material 304 may be patterned and etched using a photoresist material 301, and the resistor material may be doped to form a doped resistor material 303 (
In an embodiment, the doped resistor material 303 may comprise a boron doped resistor material, although the resistor material 304 may be doped with any suitable doping element, according to the particular application. In an embodiment, a resistivity of the doped resistor material 303 may be established by the type and quantity of the dopant, as well as additional process parameters of the doping process. In an embodiment, a temperature of coefficient of resistance (TCR) for the doped resistor material 303 may comprise about 300 ppm/° C. In some cases, the TCR may comprise about 100 ppm/° C. to about 300 ppm/° C., in other cases, the TCR of the doped resistor material 303 may comprise a negative TCR.
In an embodiment, a high TCR material 324 may be disposed on the doped resistor 303 (
In an embodiment, a dielectric material 314 may be formed on the high TCR material 326 and in the source drain openings 312 (
The undoped poly material 304 adjacent the doped resistor 303 may be removed exposing resistor contact openings 313, and the source/drain openings 312 may be exposed (
In an embodiment, a contact material 316, 317 may be formed in the source/drain openings 312 and in the resistor contact openings 313 (
The device 400 may further comprise a gate structure 405, which may comprise a portion of a transistor gate structure 405. The gate structure 405 may comprise undoped polysilicon, in an embodiment. The gate structure 405 may further comprise source/drain openings 412 that are disposed adjacent the gate structure 405. Source/drain regions 410 may be disposed in the substrate 408, and may be adjacent the gate structure 405.
The source/drain regions 410 may comprise doped portions of the substrate 408, and may couple with the source/drain openings 412. In an embodiment, a mask, such as a hard mask material 402, may cover a resistor material 404 during an etching process 422 to form the source/drain openings 412. In an embodiment, the resistor material 404 may comprise an undoped polysilicon 404. In an embodiment, the gate structure 405 and an isolation region 415 may comprise polysilicon. In an embodiment, an isolation material, such as a dielectric material, may be disposed between the resistor material 404 and the substrate 408.
The resistor material 404 may be patterned and etched using a photoresist material 401 (
In an embodiment, a dielectric material 414 may be formed on the resistor material 404 and in the source drain openings 412 (
The undoped poly material 404 adjacent the resistor 404 may be removed, and the undoped resistor material underneath the dielectric material 414 may be removed, exposing resistor openings 413. (
In an embodiment, a contact material 416, 417 may be formed in the source/drain openings 412 and in the resistor contact openings 413 (
In an embodiment, the devices of the embodiments herein may comprise circuitry elements such as transistor structures including planar, trigate and nanowire transistor structures, and any other suitable circuitry elements. The circuitry elements may comprise logic circuitry for use in a processor die, for example. Metallization layers and insulative material may be included in the device 100, as well as conductive contacts/bumps that may couple metal layers/interconnects to external devices. The type of elements included in the device 100 may comprise any suitable type of circuit elements, according to the particular application.
In an embodiment, the devices of the embodiments may be coupled with any suitable type of package structures capable of providing electrical communications between a microelectronic device, such as a die and a next-level component to which the package structures may be coupled (e.g., a circuit board). In another embodiment, the device may be coupled with a package structure that may comprise any suitable type of package structures capable of providing electrical communication between a die and an upper integrated circuit (IC) package coupled with the device layer.
The device described in the various Figures herein may comprise a portion of a silicon logic die or a memory die, for example, or any type of suitable microelectronic device/die. In some embodiments the device of the embodiments may further comprise a plurality of dies, which may be stacked upon one another, depending upon the particular embodiment. In some cases the device may be located/attached/embedded on either the front side, back side or on/in some combination of the front and back sides of a package structure. In an embodiment, the device may be partially or fully embedded in a package structure.
The various embodiments of the resistor structures herein enable the tuning of a TCR for a resistor structure. In embodiments, the resistor structures may be tuned to a zero TCR value. The resistor structures herein provide for consistent resistance regardless of operating temperature of the particular device they in which they are utilized. The embodiments herein enable the integration of the precision resistor embodiments into 3D FINFET structures, nanowire and nanoribbon devices, system on chip (SoC) and other types of 3D architectures. The methods and resistor structures herein provide for a greatly widened resistor material choice, flexibility in resistivity targeting, as well as in TCR targeting.
Turning now to
System 500 may comprise any type of computing system, such as, for example, a hand-held or mobile computing device (e.g., a cell phone, a smart phone, a mobile internet device, a music player, a tablet computer, a laptop computer, a nettop computer, etc.). However, the disclosed embodiments are not limited to hand-held and other mobile computing devices and these embodiments may find application in other types of computing systems, such as desk-top computers and servers.
Mainboard 510 may comprise any suitable type of circuit board or other substrate capable of providing electrical communication between one or more of the various components disposed on the board. In one embodiment, for example, the mainboard 510 comprises a printed circuit board (PCB) comprising multiple metal layers separated from one another by a layer of dielectric material and interconnected by electrically conductive vias. Any one or more of the metal layers may be formed in a desired circuit pattern to route—perhaps in conjunction with other metal layers—electrical signals between the components coupled with the board 510. However, it should be understood that the disclosed embodiments are not limited to the above-described PCB and, further, that mainboard 310 may comprise any other suitable substrate.
In addition to the package structure 540, one or more additional components may be disposed on either one or both sides 512, 514 of the mainboard 510. By way of example, as shown in the figures, components 501a may be disposed on the first side 512 of the mainboard 510, and components 501b may be disposed on the mainboard's opposing side 514. Additional components that may be disposed on the mainboard 510 include other IC devices (e.g., processing devices, memory devices, signal processing devices, wireless communication devices, graphics controllers and/or drivers, audio processors and/or controllers, etc.), power delivery components (e.g., a voltage regulator and/or other power management devices, a power supply such as a battery, and/or passive devices such as a capacitor), and one or more user interface devices (e.g., an audio input device, an audio output device, a keypad or other data entry device such as a touch screen display, and/or a graphics display, etc.), as well as any combination of these and/or other devices.
In one embodiment, the computing system 500 includes a radiation shield. In a further embodiment, the computing system 500 includes a cooling solution. In yet another embodiment, the computing system 500 includes an antenna. In yet a further embodiment, the assembly 500 may be disposed within a housing or case. Where the mainboard 510 is disposed within a housing, some of the components of computer system 500—e.g., a user interface device, such as a display or keypad, and/or a power supply, such as a battery—may be electrically coupled with the mainboard 510 (and/or a component disposed on this board) but may be mechanically coupled with the housing.
In an embodiment, the electronic system 600 is a computer system that includes a system bus 620 to electrically couple the various components of the electronic system 600. The system bus 620 is a single bus or any combination of busses according to various embodiments. The electronic system 600 includes a voltage source 630 that provides power to the integrated circuit 610. In some embodiments, the voltage source 630 supplies current to the integrated circuit 610 through the system bus 620.
The integrated circuit 610 is electrically, communicatively coupled to the system bus 620 and includes any circuit, or combination of circuits according to an embodiment, including the package/device structures of the various embodiments included herein. In an embodiment, the integrated circuit 610 includes a processor 612 that can include any type of packaging structures including vertical passive structures according to the embodiments herein. As used herein, the processor 612 may mean any type of circuit such as, but not limited to, a microprocessor, a microcontroller, a graphics processor, a digital signal processor, or another processor. In an embodiment, the processor 612 includes any of the embodiments of the package structures disclosed herein. In an embodiment, SRAM embodiments are found in memory caches of the processor.
Other types of circuits that can be included in the integrated circuit 610 are a custom circuit or an application-specific integrated circuit (ASIC), such as a communications circuit 614 for use in wireless devices such as cellular telephones, smart phones, pagers, portable computers, two-way radios, and similar electronic systems. In an embodiment, the processor 612 includes on-die memory 616 such as static random-access memory (SRAM). In an embodiment, the processor 612 includes embedded on-die memory 616 such as embedded dynamic random-access memory (eDRAM).
In an embodiment, the integrated circuit 610 is complemented with a subsequent integrated circuit 611. In an embodiment, the dual integrated circuit 611 includes embedded on-die memory 617 such as eDRAM. The dual integrated circuit 611 includes an RFIC dual processor 613 and a dual communications circuit 615 and dual on-die memory 617 such as SRAM. The dual communications circuit 615 may be configured for RF processing.
At least one passive device 680 is coupled to the subsequent integrated circuit 611. In an embodiment, the electronic system 600 also includes an external memory 640 that in turn may include one or more memory elements suitable to the particular application, such as a main memory 642 in the form of RAM, one or more hard drives 644, and/or one or more drives that handle removable media 646, such as diskettes, compact disks (CDs), digital variable disks (DVDs), flash memory drives, and other removable media known in the art. The external memory 640 may also be embedded memory 648. In an embodiment, the electronic system 600 also includes a display device 650, and an audio output 660. In an embodiment, the electronic system 600 includes an input device such as a controller 670 that may be a keyboard, mouse, touch pad, keypad, trackball, game controller, microphone, voice-recognition device, or any other input device that inputs information into the electronic system 600. In an embodiment, an input device 670 includes a camera. In an embodiment, an input device 670 includes a digital sound recorder. In an embodiment, an input device 670 includes a camera and a digital sound recorder.
Although the foregoing description has specified certain steps and materials that may be used in the methods of the embodiments, those skilled in the art will appreciate that many modifications and substitutions may be made. Accordingly, it is intended that all such modifications, alterations, substitutions and additions be considered to fall within the spirit and scope of the embodiments as defined by the appended claims. In addition, the Figures provided herein illustrate only portions of exemplary microelectronic devices and associated package structures that pertain to the practice of the embodiments. Thus the embodiments are not limited to the structures described herein.
This patent application is a U.S. National Phase application under 35 U.S.C. 371 of International Application No. PCT/US2013/062164 filed Sep. 27, 2013.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/062164 | 9/27/2013 | WO | 00 |