The present invention relates to methods and systems used to deliver a prosthetic valve to a heart. More specifically, the present invention relates to methods and apparatus for surgically replacing a heart valve without opening the chest cavity and with or without placing the patient on bypass, the latter being termed “off-pump.”
Heart valve replacement may be indicated when there is a narrowing of the native heart valve, commonly referred to as stenosis, or when the native valve leaks or regurgitates, such as when the leaflets are calcified. When replacing the valve, the native valve may be excised and replaced with either a biologic or a mechanical valve. Mechanical valves require lifelong anticoagulant medication to prevent blood clot formation, and clicking of the valve often may be heard through the chest. Biologic tissue valves typically do not require such medication. Tissue valves may be obtained from cadavers or may be porcine or bovine, and are commonly attached to cloth-covered synthetic rings and/or leaflet support frames that are secured to the patient's heart valve annulus.
Conventional heart valve surgery is an open-heart procedure conducted under general anesthesia. An incision is made through the patient's sternum (sternotomy), and the patient's heart is stopped while blood flow is rerouted through a heart-lung “cardiopulmonary” bypass machine. Valve replacement surgery is a highly invasive operation with significant concomitant risks include bleeding, infection, stroke, heart attack, arrhythmia, renal failure, adverse reactions to the anesthesia medications, as well as sudden death. Fully 2-5% of patients die during surgery. Post-surgery, patients temporarily may be confused due to emboli and other factors associated with the heart-lung machine. The first 2-3 days following surgery are spent in an intensive care unit where heart functions can be closely monitored. The average hospital stay is between 1 to 2 weeks, with several more weeks to months required for complete recovery.
In recent years, advancements in “minimally-invasive” surgery and interventional cardiology have encouraged some investigators to pursue percutaneous replacement of the aortic heart valve. Percutaneous Valve Technologies (“PVT”), formerly of Fort Lee, N.J. and now part of Edwards Lifesciences of Irvine, Calif., has developed a plastically- or balloon-expandable stent integrated with a bioprosthetic valve. The stent/valve device, now called the Edwards Sapien™ Heart Valve, is deployed across the native diseased valve to permanently hold the valve open, thereby alleviating a need to excise the native valve. The Edwards Sapien™ Heart Valve is designed for delivery in a cardiac catheterization laboratory under local anesthesia using fluoroscopic guidance, thereby avoiding general anesthesia and open-heart surgery. The Sapien™ Heart Valve may be inserted transfemorally with the RetroFlex™ delivery system, or transapically with the Ascendra™ delivery system. A description of the Ascendra™ delivery system is provided in U.S. Patent Publication No. 2007-0112422 to Dehdashtian.
Other prior art minimally-invasive heart valves use self-expanding stents as anchors. In the percutaneous/endovascular aortic valve replacement procedure, accurate placement of the prosthetic valve relative to the coronary ostia is critical. Though the proximal end of the stent is not released from the delivery system until accurate placement is verified by fluoroscopy, the self-expanding stent may still jump once released. It is therefore often difficult to know where the ends of the stent will be with respect to the native valve and surrounding structures.
U.S. Pat. No. 6,425,916 to Garrison et al. describes a two-piece device for replacement of the aortic valve that is adapted for delivery through a patient's aorta. A stent is endovascularly placed across the native valve, then a replacement valve is positioned within the lumen of the stent and connected thereto. By separating the stent and the valve during delivery, a so-called “two-stage” approach, the profile of the delivery system can be reduced. Both the stent and a frame of the replacement valve may be balloon- or self-expandable.
Some researchers propose implanting prosthetic heart valves at the aortic annulus through a ventricular approach. For instance, Christoph H. Huber of the Brigham and Women's Hospital of Harvard Medical School, and others, have proposed a procedure in which a self-expanding valve stent is implanted at the aortic position using a direct-access transapical approach. (E.g., Huber, et al. Direct-access valve replacement a novel approach for off-pump valve implantation using valved stents. J Am Coll Cardiol 2005; 46:366-70). The clinical studies by Huber, et al. recommend use of the procedure only for animals with normal, noncalcified leaflets. More recently, Bergheim in U.S. Patent Publication No. 2005/0240200 discloses another transapical approach in which either a balloon- or self-expanding valve may be implanted, and also proposes removing or decalcifying stenotic valves. Such direct-access or “port access” techniques though less invasive than conventional open heart surgery are not called, “minimally-invasive,” as that term is now primarily used to refer to valves delivered using elongated catheters via the vasculature (i.e., endovascularly).
In view of drawbacks associated with previously known techniques for replacing a heart valve without open-heart surgery or cardiopulmonary bypass, i.e., minimally-invasive procedures, improved methods and apparatuses that are more robust and even less invasive are needed.
Preferred embodiments of the present invention provide a heart valve delivery system for delivery of a prosthetic (i.e., replacement) heart valve to a native valve site without an open chest procedure. The delivery system includes a valve delivery catheter having a steerable section to facilitate positioning of the valve.
In accordance with one embodiment of the present application, a medical catheter introducer includes an elongated tubular sheath extending distally from a proximal housing and containing at least one introducer valve for fluidly sealing around a catheter. The sheath has a proximal segment with a first stiffness extending a length L of at least one half the length of the sheath, and a distal section with a second stiffness less than the first stiffness and having a length l. Desirably, the length l of the distal section ranges between about 4-12 cm. In one embodiment, the length L of the proximal segment is at least 24 cm, and the length l of the distal section ranges between about 6-9 cm. Also, the tubular sheath may have an inner liner and a reinforcing coil that both extend the entire length, and at least two sections of outer tubes in series having different durometers that create the differing stiffnesses of the sheath.
Another aspect disclosed herein is a medical introducer and heart valve delivery catheter combination comprising a delivery catheter having a distal balloon of sufficient diameter to expand a crimped heart valve thereon. An introducer that receives the delivery catheter therethrough has an elongated tubular sheath extending distally from a proximal housing. The proximal housing contains at least one introducer valve for fluidly sealing around a proximal length of the delivery catheter. The sheath further includes a proximal segment with a first stiffness extending a length L of at least one half the length of the sheath, and a distal section with a second stiffness different than the first stiffness and a length l. A tubular loader defines a throughbore that receives a distal portion of the delivery catheter, the tubular loader having structure for engaging mating structure on a proximal end of the introducer housing and a distal nose that extends through and opens the introducer valve and facilitates passage therethrough of the balloon of the delivery catheter.
A still further feature of the present application is a medical introducer and heart valve delivery catheter combination, comprising a delivery catheter having a distal balloon of sufficient diameter to expand a crimped heart valve thereon. The catheter includes a marker band at a proximal end of the balloon, and a tubular valve pusher that moves longitudinally with respect to the balloon and has a distal marker band. An introducer having an elongated tubular sheath extending distally from a proximal housing contains at least one introducer valve for fluidly sealing around a proximal length of the delivery catheter. The introducer sheath has a throughbore for passage of the delivery catheter and a marker dot array around its distal tip to distinguish the distal tip from the marker bands of the balloon and the pusher.
In accordance with a still further aspect, a medical introducer and heart valve delivery catheter combination comprises a delivery catheter, an introducer, and a tubular loader therebetween. The delivery catheter has a distal balloon of sufficient diameter to expand a crimped heart valve thereon. The introducer has an elongated tubular sheath extending distally from a proximal housing which contains at least one introducer valve for fluidly sealing around a proximal length of the delivery catheter. Finally, the tubular loader includes a throughbore that receives a distal portion of the delivery catheter, structure for engaging mating structure on a proximal end of the introducer housing, and a distal nose that extends through and opens the introducer valve, facilitating passage therethrough of the balloon of the delivery catheter. The loader also has a proximal housing with a seal for fluidly sealing around the introducer sheath, and a single-handed vent for aspirating air from within the loader.
A heart valve delivery catheter of the present application includes a catheter tube having a distal balloon thereon of sufficient diameter to fully expand a crimped heart valve from within. The balloon is disposed on the end of a deflectable portion of the catheter tube actuated by a deflection pull wire. The delivery catheter further includes a tubular valve pusher that slides over the catheter tube and moves longitudinally with respect to the balloon. The delivery catheter also has a proximal control handle on which are mounted both a deflection actuator for deflecting the deflectable portion of the catheter tube and a pusher actuator for displacing the valve pusher. Preferably, the delivery catheter includes a plurality of concentric tubes extending from within the control handle, and at least one passive seal within the handle for sealing around one of the tubes without preventing its movement.
Another benefit of the present application is a medical introducer and heart valve delivery catheter combination that comprises a delivery catheter having a catheter tube with a distal balloon thereon of sufficient diameter to fully expand a crimped heart valve from within. An introducer has an elongated tubular sheath extending distally from a proximal housing which contains at least one introducer valve for fluidly sealing around a proximal length of the delivery catheter. A tubular loader defines a throughbore that receives a distal portion of the delivery catheter, and includes structure for engaging mating structure on a proximal end of the introducer housing and a distal nose that extends through and opens the introducer valve and facilitates passage therethrough of the balloon of the delivery catheter. The loader has a proximal housing with a loader seal for fluidly sealing around the introducer sheath, and a single-handed vent for aspirating air from within the loader.
A heart valve delivery catheter and heart valve combination disclosed herein features an expandable prosthetic heart valve having a crimped configuration and proximal and distal ends. A delivery catheter includes a catheter tube with a distal balloon thereon of sufficient diameter to fully expand the crimped heart valve from within. The balloon has a length greater than the length of the heart valve so as to have proximal and distal exposed portions, and the balloon is folded in a manner that leaves only longitudinal fold lines to contrast with the ends of the heart valve under echocardiography.
A heart valve delivery catheter of the present application a delivery catheter having a catheter tube with a distal balloon thereon of sufficient diameter to fully expand the crimped heart valve from within, the balloon being disposed on the end of a deflection tube actuated by a deflection pull wire, the deflectable portion comprising a braided structure and the deflection wire extending along its length up to a distal coil to which the deflection wire attaches, the deflectable portion having a dimension no greater than 8 French.
A further understanding of the nature and advantages of the present invention are set forth in the following description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numerals.
Features and advantages of the present invention will become appreciated as the same become better understood with reference to the specification, claims, and appended drawings wherein:
The heart is a hollow muscular organ of a somewhat conical form; it lies between the lungs in the middle mediastinum and is enclosed in the pericardium. The heart rests obliquely in the chest behind the body of the sternum and adjoining parts of the rib cartilages, and projects farther into the left than into the right half of the thoracic cavity so that about one-third is situated on the right and two-thirds on the left of the median plane. The heart is subdivided by septa into right and left halves, and a constriction subdivides each half of the organ into two cavities, the upper cavity being called the atrium, the lower the ventricle. The heart therefore consists of four chambers; the right and left atria, and right and left ventricles.
As seen in
In a preferred embodiment of the present invention, a surgeon implants a prosthetic heart valve over the existing native leaflets, which are typically calcified. There are procedures and devices for removing calcified leaflets, but the risks associated therewith, including a release of calcific material into the bloodstream, are not insignificant. Therefore, a heart valve replacement procedure that installs the prosthetic heart valve directly over and contains the native leaflets is preferred.
Those skilled in the art will recognize that it may be necessary to pre-dilate the leaflets and annulus of the stenotic aortic valve before deploying a prosthetic valve within the aortic valve.
As indicated in
With reference now to
Furthermore, the present procedure may be performed as a first time valve implant or to supplement a previous implant. A relatively large proportion of recipients of prosthetic heart valves are older, typically older than 60. Over time, prosthetic heart valves have been known to show reduced performance and even failure. Re-operating on septegenarians and even octogenarians is problematic. However, a port access procedure such as disclosed herein eliminates open-heart surgery and potentially cardiopulmonary bypass, and is therefore more desirable for the aging patient. Therefore, the present invention contemplates transapical implantation of a prosthetic heart valve over an existing prosthetic valve implant. In such a case, a pre-dilation step is typically not necessary, though it is conceivable.
Prior to a discussion of the procedure itself, it should be noted that a preferred delivery system of the present invention will be described in greater detail below with reference to
The prosthetic heart valve implantation procedure described herein may be performed in conjunction with cardiopulmonary bypass, or without bypass in a so-called off-pump procedure. The necessity for bypass depends on a number of factors, including the patient's age, vulnerability to such a procedure, and viability of the native leaflets. Ideally, the implantation procedure is performed off-pump.
The surgeon or cardiologist first sizes the aortic valve using a physical sizer, or with echocardiography. The physician or operating room staff then crimps an expandable prosthetic valve 50 over the balloon 52 of a balloon catheter 54 (some of the elements presently described can be seen in the procedure drawings of
The same purse-string sutures 44 that were used for the pre-dilation procedure may also be used to seal the ventricular tissue around the introducer sheath 70. In the absence of the pre-dilation procedure, the purse-string sutures 44 are pre-implanted prior to formation of the initial puncture. As before, the surgeon places a first line of purse-string sutures generally in a first circle in one direction, and then places a second line of purse-string sutures generally in a circle concentric to the first circle but in an opposite direction. The result is two concentric circles of separate purse-string sutures 44 defining a periphery within which the puncture is formed, and which seal around the introducer sheath 70.
Furthermore, the dilator 74 that expands the inner diameter of the puncture 32 and rides over the guidewire 60 may be inserted prior to or with the introducer sheath 70. Preferred dilator diameters range between 12 and 22 French. The introducer sheath 70 comprises the distal end of an introducer that will be described below. Introducer sheath diameters of no greater than 24 French, and desirably 22 or 24 Fr are preferred.
Again, the precise positioning of the prosthetic heart valve 50 may be accomplished by locating radiopaque markers on its distal and proximal ends, or in-between, for example at a midpoint. Desirably, the surgeon can adjust the position of the valve 50 by actuating a steering or deflecting mechanism within the balloon catheter 54, as will be described below. Furthermore, the rotational orientation of the valve 50 can be adjusted relative to the cusps and commissures of the native aortic valve by twisting the balloon catheter 54 from its proximal end and observing specific markers on the valve (or balloon catheter) under fluoroscopy. One of the coronary ostia 80 opening into one of the sinuses of the ascending aorta is shown, and those of skill in the art will understand that it is important not to occlude the two coronary ostia with the prosthetic valve 50. It should also be noted that although the native leaflets of the aortic valve AV are shown coapting in
A number of devices are available to assist in anchoring the prosthetic valve 50 into the aortic annulus, such as barbs and the like. A preferred configuration of prosthetic heart valve 50 for use with the present invention is disclosed in co-pending U.S. patent application Ser. No. 12/480,603 to Hariton, filed Jun. 8, 2009, which disclosure is expressly incorporated herein by reference. Another valve is disclosed in U.S. Pat. No. 7,276,078 to Spenser, filed Jun. 30, 2004, which disclosure is also expressly incorporated herein by reference. Of course, the valve 50 can take a variety of different forms but generally comprises an expandable stent portion that supports a valve structure. The stent portion has sufficient radial strength to hold the valve at the treatment site and resist recoil of the stenotic valve leaflets. Additional details regarding preferred balloon expandable valve embodiments can be found in U.S. Pat. Nos. 6,730,118 and 6,893,460, both to Spenser and both of which are expressly incorporated herein by reference. The preferred prosthetic heart valve 50 includes sufficient irregularity on its outer surface such that it may be anchored in the aortic annulus without the use of barbs or other tissue piercing structure.
Once the valve 50 is properly implanted, as seen in
It is important to recognize that the heart valve delivery system of the present invention is particularly well-suited for the antegrade, left ventricular apex, “transapical,” approach. More particularly, the mini-thoracotomy approach requires relatively short instruments. Therefore, the portion of the introducer sheath 70 that extends into the body is desirably no more than about 8 inches (20 cm) long, and the length of the balloon catheter 54 that may extend into the introducer sheath 70, i.e., the “working length,” is desirably no more than about 24 inches (61 cm). Further specifics on the relatively short length of the balloon catheter 54 and introducer sheath 70 will be provided below. The short length of the prosthetic heart valve delivery system described herein is also well-suited for other anatomical approaches, including through the carotid or subclavian arteries. The short length of the system is desirable because it enhances controllability and steerability of the distal end, relative to longer systems, which helps improve accuracy and reduced time for valve positioning.
The delivery system of the present invention essentially comprises an introducer 100, the balloon catheter 54, and attendant couplers and operating structures, including a loader 140 between the introducer and balloon catheter as seen in
As seen in
As seen best in
A side port tube 130 extends at an angle away from the introducer housing 102 and terminates in a three-way stopcock 132. This permits the user to infuse medicaments or other fluids through the lumen of the introducer 100 even if devices such as the balloon catheter 54 are present therein.
By providing a more flexible distal section 134, movement of the heart muscle surrounding the introducer sheath 70 (such as in the position of
The liner 136 provides a smooth inner surface through which the balloon catheter with heart valve may pass without hindrance, and the coil 137 provides hoop strength to the tubular structure to prevent kinking. The sheath 70 may be fabricated using a number of tube forming techniques, such as extrusion.
In one embodiment, the free length L of the sheath 70 is between about 20-24 cm, while the distal section 134 has a length (of between about 4 cm and one half the free length L. More preferably the distal section 134 has a length l of between about 6-9 cm, and most preferably about 9 cm. The length l should be sufficient to permit the floppy portion of the sheath 70 to extend at least 4 cm into the heart wall.
In an exemplary embodiment, the inner liner 136 and exterior tubes 138, 139 are formed of the same material for better melding, while the coil 137 is metallic. One particular combination is the liner 136 and exterior tubes 138, 139 made of a nylon block copolymer sold under the tradename PEBAX®, while the coil 137 is stainless steel. The commercial PEBAX polymers consist of polyether blocks separated by polyamide blocks. The polyether blocks may be based upon polyethylene glycol, polypropylene glycol, or polytetramethylene ether glycol. The polyamides are usually based upon nylon-11 but may be based upon nylons 6 of nylon-6,6 or even a copolymer such as nylon-6/nylon-11. The polymers range in hardness as measured in durometer from Shore A 60 to Shore D72, and the proximal exterior tube 139 has a greater durometer than the distal exterior tube 138. A selection of PEBAX compositions and their respective physical properties are provided on the website, www.pebax.com, in particular under the link, “Medical Applications.” PEBAX® is a registered trademark of Arkema Inc. of Paris, France, with U.S. Corporate offices in Philadelphia, Pa.
As mentioned, the present application discloses an advantageous visualization system for the distal tip 72 of the introducer sheath 70. Specifically, at least one marker band will be provided on the proximal end of the balloon 52, and also on a distal end of the pusher body 158. The axial proximity of the distal end of the pusher body 158 and the proximal end of the balloon 52 can therefore be easily seen to facilitate their engagement. In addition, the circular array of marker dots 73 at the distal tip 72 of the introducer sheath 70 clearly contrasts with the marker bands on the balloon catheter 54 and the pusher body 158, and helps the surgeon ensure that the introducer has been retracted far enough at the time of valve positioning and balloon expansion.
Prior to a detailed description of the exemplary balloon catheter 54, its interaction with the introducer 100 via the loader 140 will be explained. As seen in
A loader seal, seen exploded in
Prior to balloon expansion as seen in
The various components of the balloon catheter 54 will now be described with respect to
The handle 150 includes a number of control components and is shown in section in
Still with reference to
The balloon inflation tube 196 extends through the lumen of the balloon deflection tube 160 (third smallest) which has a proximal end anchored by a collar 200 fixed within a cavity of the handle 150. The balloon deflection tube 160 has a particular construction that enables flexing along its length without kinking, and has a deflectable distal tip. More particularly, the balloon deflection tube 160 desirably includes a braided tube along its length to prevent kinking, a coil structure at its distal tip for deflection, and a deflection wire 202 that extends from the proximal end to the coil.
The deflection wire 202 also includes a plug 204 fixed on its proximal end acted on by a rail 206 that slides longitudinally within the handle 150. Specifically, the deflection wire 202 passes through an aperture of a finger 208 on the rail 206, which aperture is smaller than the plug 204. The plug 204 is desirably cylindrical and may be constrained within a small guide sleeve 210 held within a cavity of the handle 150. The rail 206 forms part of a trigger assembly and moves with the trigger 154. Pulling the trigger 154 to the left from its position in
The construction of the deflection tube 160 enables a size reduction from prior designs that ultimately enables a size reduction of the valve 50 and balloon 52. In one embodiment, the deflection tube 160 has a dimension no greater than 8 French. The braided proximal portion provides flexibility and column strength, while the distal coil enables the deflection only at the distal end. The distal tip 212 having the coil structure desirably has a length of about 4 cm. This construction also facilitates manufacture, as the braided proximal portion and coil with attached deflection wire 202 are easily combined using welding or the like.
The second largest tube is the pusher body 158, which is tubular until an outwardly flared sleeve 220 on its distal end (see
Moreover, the design of the handle 150 facilitates one-handed operation of the two primary movements of the balloon catheter 54—deflection of the distal tip and linear movement of the pusher body 58. The handle 150 preferably includes ergonomic ribs 230 on its underside, as seen in
The pusher body 158 slides over the balloon deflection tube 160 as well as inside of the stationary protective sleeve 162 (the largest tube). As seen in
The inner tube 194 passes through the balloon 52 and terminates at a distal end that is capped by the aforementioned soft tip 144. The soft tip 144 facilitates introduction of the balloon catheter 54 and reduces trauma to surrounding tissue. This is particularly important in the preferred procedure of the present invention where the catheter enters the apex of the left ventricle and travels through the aortic valve into the ascending aorta. As was seen in
The balloon 52 includes a first cone portion 240, a main cylindrical portion 242, and a second cone portion 244. The prosthetic heart valve 50 desirably crimps around the main cylindrical portion 242 for even cylindrical expansion, such as shown in phantom in
The balloon 52 is folded in a way that enhances visualization of the valve during implant. Specifically, certain conventional folding techniques resulted in wrinkling of the balloon 52. For example, a common way to fold a catheter balloon is to first form a trifold and then wrapping the leaves of the trifold around the balloon catheter axis. Folding techniques like this often leave wrinkles or ripples even if done carefully. Such irregularities show up on echocardiography, which can interfere with precise location of the proximal and distal ends of the valve 50 relative to the implant site. The balloon 52 of the present invention on the other hand is folded in a manner that reduces if not eliminates irregularities that show up on echocardiography, thus enhancing the ability to properly locate the heart valve 50 at the aortic annulus.
In use, the present invention provides a novel and effective way for implanting a prosthetic heart valve 50 in the aortic annulus. The steps of the procedure have been described above with respect to
First, as mentioned above, the physician determines the size of the patient's annulus. This can be done physically by creating the incision 20 and puncture 32 (
Next, the balloon catheter 54, introducer 100, loader 140, and prosthetic heart valve 50 are selected, and prepared for use by removing them from any packaging and rinsing or sterilizing as needed. A pre-dilation step as described above with respect to
The process of crimping the prosthetic heart valve 50 over the balloon 52 may be accomplished in a number of ways, and there are suitable devices on the market for crimping balloon-expanding stents over balloons. In a preferred embodiment, a device having a compressing mechanism that works like the aperture iris of a camera is utilized. In such a device, multiple continuous segments around the periphery of the prosthetic heart valve 50 close separately but in concert so that uniform inward pressure is exerted on the heart valve. The devices typically operate manually.
Subsequently, the aforementioned pusher body 158 and flared sleeve 220 are advanced distally over the proximal end of the balloon 52, such as seen in
At this point, or at the same time as balloon catheter preparation, the introducer 100 is positioned within the left ventricle as seen in
The pusher body 158 and pusher sleeve 220, as well as the stationary protective sleeve 162, facilitate advancement of the deflecting segment 212 and attached balloon 52 having the valve 50 crimped thereon through the introducer sheath 70 and its valves 106, 110, 112. In particular, the flared pusher sleeve 220 surrounds the deflecting segment 212 and a proximal portion of the balloon 52 during passage through the introducer sheath 70. The pusher sleeve 220 secures the crimped valve from movement relative to the balloon 52. Eventually, proximal retraction of the pusher body 158 relative to the balloon deflection tube 160 frees the deflecting segment 212 for angled movement, and the balloon 52 for expansion.
The physician then distally advances the balloon catheter 54 with respect to the loader 140 and introducer 100 into a position such as that shown in
The physician then retracts the pusher sleeve 220 from the deflecting segment 212 and the proximal portion of the balloon 52, as seen in
The physician may further advance and angle the balloon 52 until it reaches the position shown in
As mentioned above, the deflection wire 202 (
Ultimately, the valve 50 is positioned correctly as in
Subsequently, radiographic contrast medium may be injected from the proximal luer connection 142 of the balloon catheter 54 to egress through the distal soft tip 144 and test the efficacy of the just-implanted prosthetic valve 50. If the valve is properly functioning, the balloon catheter 54 is withdrawn into the introducer sheath 70, which is removed from the puncture 32. The purse-string sutures 44 are closed up to seal the puncture 32.
Once again, the delivery system described herein is particularly well-suited for an antegrade, transapical approach, partly because of its relatively short length. With reference to
While the invention has been described in its preferred embodiments, it is to be understood that the words which have been used are words of description and not of limitation. Therefore, changes may be made within the appended claims without departing from the true scope of the invention.
The present application is a continuation of U.S. application Ser. No. 15/662,021, filed Jul. 27, 2017, now U.S. Pat. No. 10,500,044, which is a continuation of U.S. application Ser. No. 14/610,982, filed Jan. 30, 2015, now U.S. Pat. No. 9,717,594, which is a continuation of U.S. application Ser. No. 13/922,129, filed Jun. 19, 2013, now U.S. Pat. No. 8,945,208, which is a continuation of U.S. application Ser. No. 12/835,546, filed Jul. 13, 2010, now U.S. Pat. No. 8,475,522, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional application No. 61/225,510 filed Jul. 14, 2009, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3755823 | Hancock | Sep 1973 | A |
4035849 | Angell et al. | Jul 1977 | A |
4378224 | Nimni et al. | Mar 1983 | A |
4473067 | Schiff | Sep 1984 | A |
4553974 | Dewanjee | Nov 1985 | A |
4573470 | Samson et al. | Mar 1986 | A |
4582181 | Samson | Apr 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4605002 | Rebuffat | Aug 1986 | A |
4647283 | Carpentier et al. | Mar 1987 | A |
4648881 | Carpentier et al. | Mar 1987 | A |
4753652 | Langer et al. | Jun 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4944740 | Buchbinder et al. | Jul 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4994077 | Dobben | Feb 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5059186 | Yamamoto et al. | Oct 1991 | A |
5125895 | Buchbinder et al. | Jun 1992 | A |
5188636 | Fedotov | Feb 1993 | A |
5192297 | Hull | Mar 1993 | A |
5282847 | Trescony et al. | Feb 1994 | A |
5304184 | Hathaway et al. | Apr 1994 | A |
5306234 | Johnson | Apr 1994 | A |
5318587 | Davey | Jun 1994 | A |
5320632 | Heidmueller | Jun 1994 | A |
5350361 | Tsukashima et al. | Sep 1994 | A |
5364408 | Gordon | Nov 1994 | A |
5368601 | Sauer et al. | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5374275 | Bradley et al. | Dec 1994 | A |
5403329 | Hinchcliffe | Apr 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5417700 | Egan | May 1995 | A |
5425737 | Burbank et al. | Jun 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5458572 | Campbell et al. | Oct 1995 | A |
5527322 | Klein et al. | Jun 1996 | A |
5537322 | Denz et al. | Jul 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5558644 | Boyd et al. | Sep 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5591195 | Taheri et al. | Jan 1997 | A |
5599305 | Hermann et al. | Feb 1997 | A |
5607464 | Trescony et al. | Mar 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5639276 | Weinstock et al. | Jun 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5713951 | Garrison et al. | Feb 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5792152 | Klein et al. | Aug 1998 | A |
5792172 | Fischell et al. | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5800508 | Goicoechea et al. | Sep 1998 | A |
5810850 | Hathaway et al. | Sep 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5860990 | Nobles et al. | Jan 1999 | A |
5891159 | Sherman et al. | Apr 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
5972005 | Stalker et al. | Oct 1999 | A |
6013092 | Dehdashtian et al. | Jan 2000 | A |
6027525 | Suh et al. | Feb 2000 | A |
6033378 | Lundquist et al. | Mar 2000 | A |
6071273 | Euteneuer et al. | Jun 2000 | A |
6083257 | Taylor et al. | Jul 2000 | A |
6106540 | White et al. | Aug 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6143004 | Davis et al. | Nov 2000 | A |
6146325 | Lewis et al. | Nov 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6206893 | Klein et al. | Mar 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6231563 | White et al. | May 2001 | B1 |
6245079 | Nobles et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6302906 | Goecoechea et al. | Oct 2001 | B1 |
6358258 | Arcia et al. | Mar 2002 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6419643 | Shimada et al. | Jul 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6454777 | Green | Sep 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6506339 | Girardot et al. | Jan 2003 | B1 |
6517553 | Klein et al. | Feb 2003 | B2 |
6527979 | Constantz | Mar 2003 | B2 |
6540782 | Snyders | Apr 2003 | B1 |
6551331 | Nobles et al. | Apr 2003 | B2 |
6558418 | Carpentier et al. | May 2003 | B2 |
6562052 | Nobles et al. | May 2003 | B2 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6591472 | Noone | Jul 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6663666 | Quiachon et al. | Dec 2003 | B1 |
6716207 | Farnholtz | Apr 2004 | B2 |
6726717 | Alfieri et al. | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733509 | Nobles et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6749630 | McCarthy et al. | Jun 2004 | B2 |
6767362 | Schreck | Jul 2004 | B2 |
6805710 | Bolling et al. | Oct 2004 | B2 |
6821297 | Snyders | Nov 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6858039 | McCarthy | Feb 2005 | B2 |
6878162 | Bales et al. | Apr 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6899704 | Sterman et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6911034 | Nobles et al. | Jun 2005 | B2 |
6976991 | Hebert et al. | Dec 2005 | B2 |
7004952 | Nobles et al. | Feb 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7078163 | Torrianni | Jul 2006 | B2 |
7090686 | Nobles et al. | Aug 2006 | B2 |
7100614 | Stevens et al. | Sep 2006 | B2 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7294148 | McCarthy | Nov 2007 | B2 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7323004 | Parihar | Jan 2008 | B2 |
7373207 | Lattouf | May 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7377926 | Topper et al. | May 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7510572 | Gabbay | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7513908 | Lattouf | Apr 2009 | B2 |
7534260 | Lattouf | May 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7611535 | Woolfson et al. | Nov 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7655034 | Mitchell et al. | Feb 2010 | B2 |
7780723 | Taylor | Aug 2010 | B2 |
7785366 | Maurer et al. | Aug 2010 | B2 |
7803167 | Nobles et al. | Sep 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7905892 | Nobles et al. | Mar 2011 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8167932 | Bourang | May 2012 | B2 |
8449606 | Eliasen et al. | May 2013 | B2 |
8475522 | Jimenez et al. | Jul 2013 | B2 |
8945208 | Jimenez | Feb 2015 | B2 |
9717594 | Jimenez | Aug 2017 | B2 |
20010001812 | Valley et al. | May 2001 | A1 |
20020026094 | Roth | Feb 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020138135 | Duerig et al. | Sep 2002 | A1 |
20020173835 | Bourang et al. | Nov 2002 | A1 |
20020177840 | Farnholtz | Nov 2002 | A1 |
20030004460 | Bedell | Jan 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030085373 | Dehdashtian | May 2003 | A1 |
20030100939 | Yodfat et al. | May 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030158597 | Quiachon et al. | Aug 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20040116956 | Duchamp et al. | Jun 2004 | A1 |
20040133263 | Dusbabek et al. | Jul 2004 | A1 |
20040186563 | Iobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040199240 | Dorn | Oct 2004 | A1 |
20040215139 | Cohen | Oct 2004 | A1 |
20040260309 | Packard | Dec 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050043791 | McCarthy et al. | Feb 2005 | A1 |
20050049698 | Bolling et al. | Mar 2005 | A1 |
20050070844 | Chow et al. | Mar 2005 | A1 |
20050075729 | Nguyen et al. | Apr 2005 | A1 |
20050096736 | Osse et al. | May 2005 | A1 |
20050131533 | Alfieri et al. | Jun 2005 | A1 |
20050137499 | Sheets et al. | Jun 2005 | A1 |
20050148997 | Valley et al. | Jul 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050228407 | Nobles et al. | Oct 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050251251 | Cribier | Nov 2005 | A1 |
20060004439 | Spenser et al. | Jan 2006 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060149350 | Patel et al. | Jul 2006 | A1 |
20060178675 | Hamman | Aug 2006 | A1 |
20060195065 | Sakal et al. | Aug 2006 | A1 |
20060195120 | Nobles et al. | Aug 2006 | A1 |
20060212056 | Salvadori et al. | Sep 2006 | A1 |
20060217803 | Ingle et al. | Sep 2006 | A1 |
20060276889 | Chambers et al. | Dec 2006 | A1 |
20060282102 | Nobles et al. | Dec 2006 | A1 |
20060293745 | Carpentier et al. | Dec 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070010829 | Nobles et al. | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070021828 | Krolik et al. | Jan 2007 | A1 |
20070043385 | Nobles et al. | Feb 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070123979 | Perier et al. | May 2007 | A1 |
20070149987 | Wellman et al. | Jun 2007 | A1 |
20070203479 | Auth et al. | Aug 2007 | A1 |
20070203503 | Salahieh et al. | Aug 2007 | A1 |
20070203506 | Sibbitt et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070208550 | Cao et al. | Sep 2007 | A1 |
20070225659 | Melsheimer | Sep 2007 | A1 |
20070250106 | Kim | Oct 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20070276413 | Nobles | Nov 2007 | A1 |
20070276414 | Nobles | Nov 2007 | A1 |
20080004597 | Lattouf et al. | Jan 2008 | A1 |
20080033459 | Shafi et al. | Feb 2008 | A1 |
20080033476 | Greene | Feb 2008 | A1 |
20080058839 | Nobles et al. | Mar 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080114442 | Mitchell et al. | May 2008 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080188873 | Speziali | Aug 2008 | A1 |
20080269786 | Nobles et al. | Oct 2008 | A1 |
20080294230 | Parker | Nov 2008 | A1 |
20080312681 | Ansel et al. | Dec 2008 | A1 |
20090005757 | Taber | Jan 2009 | A1 |
20090069887 | Righini et al. | Mar 2009 | A1 |
20090099578 | Heneveld et al. | Apr 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090240264 | Tuval et al. | Sep 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090287182 | Bishop et al. | Nov 2009 | A1 |
20090287183 | Bishop et al. | Nov 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20100030242 | Nobles et al. | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100198347 | Zakay et al. | Aug 2010 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20130023985 | Khairkhahan et al. | Jan 2013 | A1 |
20130317598 | Rowe et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
2936803 | Nov 2009 | CA |
19532846 | Mar 1997 | DE |
19546692 | Jun 1997 | DE |
19857887 | Jul 2000 | DE |
19907646 | Aug 2000 | DE |
0103546 | Mar 1984 | EP |
0597967 | May 1994 | EP |
0592410 | Oct 1995 | EP |
0815805 | Jan 1998 | EP |
0850607 | Jul 1998 | EP |
0941698 | Sep 1999 | EP |
1356793 | Oct 2003 | EP |
1447111 | Aug 2004 | EP |
1570790 | Sep 2005 | EP |
1796597 | Jun 2007 | EP |
2114318 | Nov 2009 | EP |
2120794 | Nov 2009 | EP |
2788217 | Jul 2000 | FR |
2815844 | May 2002 | FR |
1271508 | Nov 1986 | SU |
9117720 | Nov 1991 | WO |
9301768 | Feb 1993 | WO |
9413211 | Jun 1994 | WO |
9503742 | Feb 1995 | WO |
9513021 | May 1995 | WO |
9630073 | Oct 1996 | WO |
9640347 | Dec 1996 | WO |
9829057 | Jul 1998 | WO |
9903904 | Jan 1999 | WO |
9940964 | Aug 1999 | WO |
9947075 | Sep 1999 | WO |
0041652 | Jul 2000 | WO |
0108050 | Feb 2001 | WO |
0126724 | Apr 2001 | WO |
0149213 | Jul 2001 | WO |
0154625 | Aug 2001 | WO |
0162189 | Aug 2001 | WO |
0047139 | Sep 2001 | WO |
0164137 | Sep 2001 | WO |
0176510 | Oct 2001 | WO |
0222054 | Mar 2002 | WO |
0236048 | May 2002 | WO |
0247575 | Jun 2002 | WO |
03047468 | Jun 2003 | WO |
2005034801 | Apr 2005 | WO |
2005034812 | Apr 2005 | WO |
2005084595 | Sep 2005 | WO |
2005102015 | Nov 2005 | WO |
2006019798 | Feb 2006 | WO |
2006023676 | Mar 2006 | WO |
2006041505 | Apr 2006 | WO |
2006091597 | Aug 2006 | WO |
2006111391 | Oct 2006 | WO |
2006127765 | Nov 2006 | WO |
2006138173 | Dec 2006 | WO |
2007002920 | Jan 2007 | WO |
2007047488 | Apr 2007 | WO |
2007067942 | Jun 2007 | WO |
2007097983 | Aug 2007 | WO |
2008005405 | Jan 2008 | WO |
2008058519 | May 2008 | WO |
2008091515 | Jul 2008 | WO |
2008138584 | Nov 2008 | WO |
2009033469 | Mar 2009 | WO |
2009091509 | Jul 2009 | WO |
2010121076 | Oct 2010 | WO |
Entry |
---|
Lutter, M.D., et al., Percutaneous Valve Replacement: Current State and Future Prospects, Ann Thorac Sur 2004; 78:2199-2206. |
Shanebrook, PhD., et al., Hemodynamics of Left Ventricular Apex-Aortic Valved Conduits, Cardiovascular Diseases, Bulletin of the Texas Heart Institute, vol. 6, No. 4, Dec. 1979. |
Zhou, et al., Self-Expandable Valved Stent of Large Size: Off-Bypass Implantation in Pulmonary Position, European Journal of Cardio-Thoracic Surgery 24 (2003) 212-216. |
Brodsky, Adam M., Percutaneous Approaches to Aortic Valve Replacement, SCAI, <http://www.scai.org/pdf/AR_12-04_SCAI_Brodsky.pdf>, Dec. 2004. |
Todd M. Dewey, et al., Feasibility of a Trans-Apical Approach for Aortic Valve Implantation Using a Device Delivered Valve, AbstractPresentation at ISMICS 8.sup.th Annual Meeting , Jun. 1-4, 2005 New York (pp. 1-2—of flier also attached). |
Liang Ma, et al., Double-crowned valved stents for off-pump mital valve repalcement, European Journal of Cardio-Thoracic Surgery 28 (2005) pp. 194-199. |
F. L. Wellens, How Long Will the Heart Still Beat?, Texas Heart Institute Journal, vol. 32, No. 2, 2005, pp. 126-129. |
Christoph H. Huber, et al., Direct-Access Valve Replacement a Novel Approach for Off-Pump Valve Implantation Using Valved Stents, JACC, vol. 46, No. 2, 2005, pp. 366-370, www.content.onlinejacc.org By Susan Porter on Sep. 27, 2005. |
Kevin A. Greer, et al., Skeletal Muscle Ventricles, Left Ventricular Apex-to-Aorta Configuration: 1-11 Weeks in Circulation, Circulation 95: 497-502. |
Ferrari, M., et al., Transarterial Aortic Valve Replacement With a Self-Expanding Stent in Pigs. Heart 2004 90: 1326-1331. |
Pioneering Techniques in Cardiac Surgery, The Fourth in the Series, Program Flyer, Heart Center Leipzig Auditorium, Leipzig, German, Dec. 1-2, 2005. |
H.R. Andersen, et al. “Transluminal Implantation of Artificial Heart Valve. Description of a New Expandable Aortic Valve and Initial Results with implantation by Catheter Technique in Closed Chest Pig,” European Heart Journal, No. 13. pp. 704-708. 1992. |
H.R. Andersen “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009. |
Pavcnik, et al. “Development and initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology, vol. 183, No. 1. pp. 151-154. 1992. |
Bailey, S. “Percutaneous Expandable Prosthetic Valves,” Textbook of Interventional Cardiology vol. 2, 2nd Ed. pp. 1268-1276. 1994. |
Al-Khaja, et al. “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, vol. 3. pp. 305-311. 1989. |
Ross, “Aortic Valve Surgery,” At a meeting of the Council on Aug. 4, 1966. pp. 192-197. |
Sabbah, et al. “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4. pp. 302-309. 1989. |
Wheatley, “Valve Prostheses,” Operative Surgery, 4th ed. pp. 415-424. 1986. |
Uchida, “Modifications of Gianturco Expandable Wire Stents,” American Journal of Roentgenology, vol. 150. pp. 1185-1187. 1986. |
Number | Date | Country | |
---|---|---|---|
20200100896 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
61225510 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15662021 | Jul 2017 | US |
Child | 16703695 | US | |
Parent | 14610982 | Jan 2015 | US |
Child | 15662021 | US | |
Parent | 13922129 | Jun 2013 | US |
Child | 14610982 | US | |
Parent | 12835546 | Jul 2010 | US |
Child | 13922129 | US |