Methods of identifying abundance and location of an analyte in a biological sample using second strand synthesis

Information

  • Patent Grant
  • 12209280
  • Patent Number
    12,209,280
  • Date Filed
    Tuesday, July 6, 2021
    3 years ago
  • Date Issued
    Tuesday, January 28, 2025
    11 days ago
Abstract
Provided herein are methods of identifying abundance and location of an RNA in a biological sample using an adaptor sequence and a primer. Also disclosed herein are kits, compositions, and systems that are used to perform the methods.
Description
REFERENCE TO SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jul. 6, 2021, is named 47706-0220001SEQ.txt and is 15,891 bytes in size.


STATEMENT REGARDING ELECTRONIC FILING OF A SEQUENCE LISTING

A Sequence Listing in ASCII text format, submitted under 37 C.F.R. § 1.821, entitled 47706-0220001_SL_ST26, 16,299 bytes in size, generated on Mar. 7, 2023 and filed via EFS-Web, is provided in lieu of a paper copy.


BACKGROUND

Cells within a tissue have differences in cell morphology and/or function due to varied analyte levels (e.g., gene and/or protein expression) within the different cells. The specific position of a cell within a tissue (e.g., the cell's position relative to neighboring cells or the cell's position relative to the tissue microenvironment) can affect, e.g., the cell's morphology, differentiation, fate, viability, proliferation, behavior, signaling, and cross-talk with other cells in the tissue.


Spatial heterogeneity has been previously studied using techniques that typically provide data for a handful of analytes in the context of intact tissue or a portion of a tissue (e.g., tissue section), or provide significant analyte data from individual, single cells, but fails to provide information regarding the position of the single cells from the originating biological sample (e.g., tissue).


RNA sequencing libraries generated from tissue samples can pose some challenges. A targeted approach to insert a sequencing adapter directly to the second-strand DNA which is synthesized on the cDNA previously generated directly on the spatial array would increase efficiency.


SUMMARY

RNA sequencing libraries generated from formalin-fixed paraffin-embedded tissue samples on spatial arrays are generally short and cDNA could be sequenced directly if it was possible to insert a second sequencing adaptor at the 3′-end of the cDNA. The methods provided herein provide for an efficient, targeted approach for inserting a sequencing adapter directly to the second-strand DNA which is synthesized using the cDNA previously generated directly on the spatial array as a template.


Provided herein are methods of determining abundance and/or location of an RNA molecule in a biological sample. In some instances, the methods include: (a) capturing the RNA molecule from the biological sample on an array comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises a capture domain and a spatial barcode; (b) extending an end of the capture probe using the RNA molecule as a template, thereby generating an extended capture probe hybridized to the RNA molecule; (c) contacting the extended capture probe with a primer comprising in a 5′ to a 3′ direction: (i) an adapter sequence and (ii) a sequence that specifically binds to the extended capture probe; (d) extending the 3′ end of the primer using the extended capture probe as a template, thereby generating a DNA molecule hybridized to the extended capture probe; and (e) determining (i) all or a part of the sequence of the DNA molecule or a complement thereof, or (ii) all or a part of the sequence of the spatial barcode or a complement thereof, and using the determined sequences of (i) and (ii) to identify the abundance and/or the location of the RNA molecule in the biological sample.


In some instances, the extending in step (b) comprises the use of a reverse transcriptase. In some instances, the methods further include, between steps (b) and (c), digesting the RNA molecule hybridized to the extended capture probe. In some instances, the digesting comprises use of RNAase H or a functional equivalent thereof. In some instances, the extending in step (e) comprises the use of a DNA polymerase.


In some instances, the methods further include releasing the DNA molecule from the extended capture probe, wherein the releasing the DNA molecule comprises heating the DNA molecule to de-hybridize the DNA molecule from the extended capture probe


In some instances, the determining in step (e) comprises sequencing (i) all or a part of the sequence of the RNA molecule or a complement thereof, or (ii) all or a part of the sequence of the spatial barcode or a complement thereof.


In some instances, the adaptor sequence comprises SEQ ID NO:1 (CCTTGGCACACCCGAGAATTCCA). In some instances, the primer sequence comprises a sequence that is complementary to the RNA molecule, or a complement thereof. In some instances, the RNA molecule is an mRNA molecule. In some instances, the capture domain comprises a poly(T) sequence. In some instances, the capture probe further comprises one or more functional domains, a unique molecular identifier, a cleavage domain, and combinations thereof.


In some instances, the capturing in step (a) comprises permeabilizing the biological sample using a permeabilization agent, wherein the permeabilization agent comprises proteinase K or pepsin, thereby releasing the RNA molecule from the biological sample.


In some instances, the biological sample is a tissue section. In some instances, the tissue section is a formalin-fixed paraffin-embedded tissue section. In some instances, the tissue section is a fresh frozen tissue section.


In some instances, the method further comprising imaging the biological sample.


In some instances, the primer is in a primer pool, wherein the primer pool is at a concentration of about 1 μM.


In some instances, the abundance of the RNA molecule is increased by at least about 10% compared to a method that does not utilize the primer.


Also provided herein are methods of identifying a location of an RNA in a biological sample that include: (a) capturing RNA from the biological sample on an array comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises a capture domain and a spatial barcode; (b) extending an end of the capture probe using the RNA specifically bound by the capture domain as a template, thereby generating an extended capture probe hybridized to the RNA; (c) digesting the RNA hybridized to the extended capture probe; (d) contacting the extended capture probe with a primer comprising in a 5′ to a 3′ direction: (i) an adapter sequence and (ii) a sequence that specifically binds to the extended capture probe; (e) extending the 3′ end of the primer using the extended capture probe as a template, thereby generating a DNA hybridized to the extended capture probe; (f) releasing the generated DNA from the extended capture probe, and (g) determining (i) all or a part of the sequence of the RNA bound by the capture domain or a complement thereof, or (ii) all or a part of the sequence of the spatial barcode or a complement thereof, and using the determined sequences of (i) and (ii) to identify the location of the RNA in the biological sample.


In some embodiments of any of the methods described herein, the extending in step (b) comprises the use of a reverse transcriptase. In some embodiments of any of the methods described herein, the digesting in step (c) comprises the use of RNAase H. In some embodiments of any of the methods described herein, the extending in step (e) comprises the use of a DNA polymerase. In some embodiments of any of the methods described herein, the determining in step (g) comprises sequencing (i) all or a part of the sequence of the RNA or a complement thereof, or (ii) all or a part of the sequence of the spatial barcode or a complement thereof.


In some embodiments of any of the methods described herein, the RNA is an mRNA molecule. In some embodiments of any of the methods described herein, the capture domain comprises a poly(T) sequence. In some embodiments of any of the methods described herein, the capture domain is positioned 3′ relative to the spatial barcode in the capture probe. In some embodiments of any of the methods described herein, the capture probe further comprises a unique molecular identifier. In some embodiments of any of the methods described herein, the capture probe further comprises a cleavage domain. In some embodiments of any of the methods described herein, the capturing in step (a) comprises permeabilizing the biological sample, thereby releasing the RNA from the biological sample.


In some embodiments of any of the methods described herein, the array is a slide. In some embodiments of any of the methods described herein, the slide comprises beads. In some embodiments of any of the methods described herein, the slide comprises wells.


In some embodiments of any of the methods described herein, the biological sample is a tissue sample. In some embodiments of any of the methods described herein, the tissue sample is a tissue section. In some embodiments of any of the methods described herein, the tissue section is a fixed tissue section. In some embodiments of any of the methods described herein, the fixed tissue section is a formalin-fixed paraffin-embedded tissue section. In some embodiments of any of the methods described herein, the tissue section is a fresh, frozen tissue section. Some embodiments of any of the methods described herein further include imaging the biological sample.


Also provided herein are reaction mixtures that include: an array comprising a plurality of capture probes, where a capture probe of the plurality comprises a capture domain that binds specifically to an RNA and a spatial barcode; a reverse transcriptase; RNAse H or a functional equivalent thereof, and a DNA polymerase. In some embodiments of any of the reaction mixtures described herein, the DNA polymerase is DNA polymerase I. Some embodiments of any of the reaction mixtures described herein further include an RNA from a biological sample.


In some embodiments of any of the reaction mixtures described herein, the array is a slide. In some embodiments of any of the reaction mixtures described herein, the slide comprises beads. In some embodiments of any of the reaction mixtures described herein, the slide comprises wells. Some embodiments of any of the reaction mixtures described herein, the reaction mixture further comprises a primer comprising in a 5′ to a 3′ direction: (i) an adapter sequence and (ii) a sequence or a complement thereof present in a 5′ region of the RNA that is specifically bound to the capture domain.


Also provided herein are compositions. In some instances, the compositions include one or more of the following (and any combination thereof): (a) an array comprising a plurality of capture probes, wherein a capture probe of the plurality comprises a capture domain that binds specifically to an RNA and a spatial barcode; (b) a reverse transcriptase enzyme; (c) RNAse H or a functional equivalent thereof, (d) a DNA polymerase; (e) a primer comprising in a 5′ to a 3′ direction: (i) an adapter sequence and (ii) a sequence or a complement thereof present in a 5′ region of the RNA molecule that is specifically bound to the capture domain; and (f) an RNA molecule from a biological sample.


Also provided herein are kits. In some instances, the kits include one or more of the following (and any combination thereof): (a) an array comprising a plurality of capture probes, wherein a capture probe of the plurality comprises a capture domain that binds specifically to an RNA and a spatial barcode; (b) a reverse transcriptase; (c) RNAse H or a functional equivalent thereof; (d) a DNA polymerase; (e) a primer comprising in a 5′ to a 3′ direction: (i) an adapter and (ii) a sequence or a complement thereof present in a 5′ region of the RNA molecule that is specifically bound to the capture domain; and (f) instructions for performing any of the methods described herein.


In some instances, the kits include: an array comprising a plurality of capture probes, where a capture probe of the plurality comprises a capture domain that binds specifically to an RNA and a spatial barcode; a reverse transcriptase; RNAse H or a functional equivalent thereof; and a DNA polymerase. In some embodiments of any of the kits described herein, the DNA polymerase is DNA polymerase I. In some embodiments of any of the kits described herein, the capture domain is positioned 3′ of the spatial barcode in the capture domain. In some embodiments of any of the kits described herein, the capture probe further comprises a unique molecular identifier. In some embodiments of any of the kits described herein, the capture probe further comprises a cleavage domain. Some embodiments of any of the kits described herein further include an RNA from a biological sample.


In some embodiments of any of the kits described herein, the array is a slide. In some embodiments of any of the kits described herein, the slide comprises beads. In some embodiments of any of the kits described herein, the slide comprises wells. Some embodiments of any of the kits described herein further include a primer comprising in a 5′ to a 3′ direction: (i) an adapter and (ii) a sequence or a complement thereof present in a 5′ region of the RNA that is specifically bound to the capture domain.


All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, patent application, or item of information was specifically and individually indicated to be incorporated by reference. To the extent publications, patents, patent applications, and items of information incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.


Where values are described in terms of ranges, it should be understood that the description includes the disclosure of all possible sub-ranges within such ranges, as well as specific numerical values that fall within such ranges irrespective of whether a specific numerical value or specific sub-range is expressly stated.


The term “each,” when used in reference to a collection of items, is intended to identify an individual item in the collection but does not necessarily refer to every item in the collection, unless expressly stated otherwise, or unless the context of the usage clearly indicates otherwise.


The singular form “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a cell” includes one or more cells, comprising mixtures thereof. “A and/or B” is used herein to include all of the following alternatives: “A”, “B”, “A or B”, and “A and B”.


Various embodiments of the features of this disclosure are described herein. However, it should be understood that such embodiments are provided merely by way of example, and numerous variations, changes, and substitutions can occur to those skilled in the art without departing from the scope of this disclosure. It should also be understood that various alternatives to the specific embodiments described herein are also within the scope of this disclosure.





DESCRIPTION OF DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.


The following drawings illustrate certain embodiments of the features and advantages of this disclosure. These embodiments are not intended to limit the scope of the appended claims in any manner. Like reference symbols in the drawings indicate like elements.



FIG. 1 is a schematic diagram showing an example of a barcoded capture probe, as described herein.



FIG. 2 is a schematic illustrating a cleavable capture probe, wherein the cleaved capture probe can enter into a non-permeabilized cell and bind to target analytes within the sample.



FIG. 3 is a schematic diagram of an exemplary multiplexed spatially-barcoded feature.



FIG. 4 is a schematic diagram of an exemplary analyte capture agent.



FIG. 5 is a schematic diagram depicting an exemplary interaction between a feature-immobilized capture probe 524 and an analyte capture agent 526.



FIGS. 6A-6C are schematics illustrating how streptavidin cell tags can be utilized in an array-based system to produce spatially-barcoded cells or cellular contents.



FIGS. 7A and 7B show a schematic illustrating an exemplary embodiment of the methods described herein. smRNA R2: R2 primer handle; UMI: unique molecular identifier; Spat Barcode: spatial barcode; TruSeq™ R1: R1 primer handle (e.g., RNA-seq library preparation primers).



FIGS. 8A and 8B show electrophoresis fragment sizes and library traces of Groups A-D.



FIG. 9 shows unique molecular identifiers (UMIs) for 20 targeted genes in a comparison of genome-wide expression results compared to targeted second strand results.



FIGS. 10A and 10B show electrophoresis fragment sizes and library traces of using hot-start amplification mix with and without template switching oligonucleotides.



FIG. 11 shows UMIs for targeted genes using second strand synthesis.



FIGS. 12A and 12B show library traces of using hot-start amplification mix with and without template switching oligonucleotides while increasing pre-second-strand synthesis and second-strand synthesis temperatures.



FIGS. 13A-13E shows UMIs for whole genome detection versus second strand synthesis of low, medium, and negative control analytes. FIG. 13D shows an enlarged version of the dotted subset of FIG. 13A. FIG. 13E shows an enlarged version of the dotted subset of FIG. 13B.



FIG. 14 shows UMIs in a comparison of genome-wide expression results compared to targeted second strand synthesis (TSS) results.



FIG. 15 shows UMIs in a comparison of target analytes versus non-target analytes when temperature is varied using hot-start amplification mix.



FIG. 16 shows spatial analysis of target genes (Tnnt1, Prkcd, Nr4a2, Hs3st2, and Cldn11) using whole genome detection methods versus targeted second strand synthesis (TSS) methods.





DETAILED DESCRIPTION
I. Introduction

Spatial analysis methodologies and compositions described herein can provide a vast amount of analyte and/or expression data for a variety of analytes within a biological sample at high spatial resolution, while retaining native spatial context. Spatial analysis methods and compositions can include, e.g., the use of a capture probe including a spatial barcode (e.g., a nucleic acid sequence that provides information as to the location or position of an analyte within a cell or a tissue sample (e.g., mammalian cell or a mammalian tissue sample) and a capture domain that is capable of binding to an analyte (e.g., a protein and/or a nucleic acid) produced by and/or present in a cell. Spatial analysis methods and compositions can also include the use of a capture probe having a capture domain that captures an intermediate agent for indirect detection of an analyte. For example, the intermediate agent can include a nucleic acid sequence (e.g., a barcode) associated with the intermediate agent. Detection of the intermediate agent is therefore indicative of the analyte in the cell or tissue sample.


Non-limiting aspects of spatial analysis methodologies and compositions are described in U.S. Pat. Nos. 10,774,374, 10,724,078, 10,480,022, 10,059,990, 10,041,949, 10,002,316, 9,879,313, 9,783,841, 9,727,810, 9,593,365, 8,951,726, 8,604,182, 7,709,198, U.S. Patent Application Publication Nos. 2020/239946, 2020/080136, 2020/0277663, 2020/024641, 2019/330617, 2019/264268, 2020/256867, 2020/224244, 2019/194709, 2019/161796, 2019/085383, 2019/055594, 2018/216161, 2018/051322, 2018/0245142, 2017/241911, 2017/089811, 2017/067096, 2017/029875, 2017/0016053, 2016/108458, 2015/000854, 2013/171621, WO 2018/091676, WO 2020/176788, Rodriques et al., Science 363(6434):1463-1467, 2019; Lee et al., Nat. Protoc. 10(3):442-458, 2015; Trejo et al., PLOS ONE 14(2):e0212031, 2019; Chen et al., Science 348(6233):aaa6090, 2015; Gao et al., BMC Biol. 15:50, 2017; and Gupta et al., Nature Biotechnol. 36:1197-1202, 2018; the Visium Spatial Gene Expression Reagent Kits User Guide (e.g., Rev D, dated October 2020), and/or the Visium Spatial Tissue Optimization Reagent Kits User Guide (e.g., Rev D, dated October 2020), both of which are available at the 10× Genomics Support Documentation website, and can be used herein in any combination. Further non-limiting aspects of spatial analysis methodologies and compositions are described herein.


Some general terminologies that may be used in this disclosure can be found in Section (I)(b) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. Typically, a “barcode” is a label, or identifier, that conveys or is capable of conveying information (e.g., information about an analyte in a sample, a bead, and/or a capture probe). A barcode can be part of an analyte, or independent of an analyte. A barcode can be attached to an analyte. A particular barcode can be unique relative to other barcodes. For the purpose of this disclosure, an “analyte” can include any biological substance, structure, moiety, or component to be analyzed. The term “target” can similarly refer to an analyte of interest.


Analytes can be broadly classified into one of two groups: nucleic acid analytes, and non-nucleic acid analytes. Examples of non-nucleic acid analytes include, but are not limited to, lipids, carbohydrates, peptides, proteins, glycoproteins (N-linked or O-linked), lipoproteins, phosphoproteins, specific phosphorylated or acetylated variants of proteins, amidation variants of proteins, hydroxylation variants of proteins, methylation variants of proteins, ubiquitylation variants of proteins, sulfation variants of proteins, viral proteins (e.g., viral capsid, viral envelope, viral coat, viral accessory, viral glycoproteins, viral spike, etc.), extracellular and intracellular proteins, antibodies, and antigen binding fragments. In some embodiments, the analyte(s) can be localized to subcellular location(s), including, for example, organelles, e.g., mitochondria, Golgi apparatus, endoplasmic reticulum, chloroplasts, endocytic vesicles, exocytic vesicles, vacuoles, lysosomes, etc. In some embodiments, analyte(s) can be peptides or proteins, including without limitation antibodies and enzymes. Additional examples of analytes can be found in Section (I)(c) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. In some embodiments, an analyte can be detected indirectly, such as through detection of an intermediate agent, for example, a connected probe (e.g., a ligation product) or an analyte capture agent (e.g., an oligonucleotide-conjugated antibody), such as those described herein.


A biological sample is typically obtained from the subject for analysis using any of a variety of techniques including, but not limited to, biopsy, surgery, and laser capture microscopy (LCM), and generally includes cells and/or other biological material from the subject. In some embodiments, a biological sample can be a tissue section. In some embodiments, a biological sample can be a fixed and/or stained biological sample (e.g., a fixed and/or stained tissue section). Non-limiting examples of stains include histological stains (e.g., hematoxylin and/or eosin) and immunological stains (e.g., fluorescent stains). In some embodiments, a biological sample (e.g., a fixed and/or stained biological sample) can be imaged. Biological samples are also described in Section (I)(d) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.


In some embodiments, a biological sample is permeabilized with one or more permeabilization reagents. For example, permeabilization of a biological sample can facilitate analyte capture. Exemplary permeabilization agents and conditions are described in Section (I)(d)(ii)(13) or the Exemplary Embodiments Section of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.


Array-based spatial analysis methods involve the transfer of one or more analytes from a biological sample to an array of features on a substrate, where each feature is associated with a unique spatial location on the array. Subsequent analysis of the transferred analytes includes determining the identity of the analytes and the spatial location of the analytes within the biological sample. The spatial location of an analyte within the biological sample is determined based on the feature to which the analyte is bound (e.g., directly or indirectly) on the array, and the feature's relative spatial location within the array.


A “capture probe” refers to any molecule capable of capturing (directly or indirectly) and/or labelling an analyte (e.g., an analyte of interest) in a biological sample. In some embodiments, the capture probe is a nucleic acid or a polypeptide. In some embodiments, the capture probe includes a barcode (e.g., a spatial barcode and/or a unique molecular identifier (UMI)) and a capture domain). In some embodiments, a capture probe can include a cleavage domain and/or a functional domain (e.g., a primer-binding site, such as for next-generation sequencing (NGS)).



FIG. 1 is a schematic diagram showing an exemplary capture probe, as described herein. As shown, the capture probe 102 is optionally coupled to a feature 101 by a cleavage domain 103, such as a disulfide linker. The capture probe can include a functional sequence 104 that is useful for subsequent processing. The functional sequence 104 can include all or a part of sequencer specific flow cell attachment sequence (e.g., a P5 or P7 sequence), all or a part of a sequencing primer sequence, (e.g., a R1 primer binding site, a R2 primer binding site), or combinations thereof. The capture probe can also include a spatial barcode 105. The capture probe can also include a unique molecular identifier (UMI) sequence 106. While FIG. 1 shows the spatial barcode 105 as being located upstream (5′) of UMI sequence 106, it is to be understood that capture probes wherein UMI sequence 106 is located upstream (5′) of the spatial barcode 105 is also suitable for use in any of the methods described herein. The capture probe can also include a capture domain 107 to facilitate capture of a target analyte. The capture domain can have a sequence complementary to a sequence of a nucleic acid analyte. The capture domain can have a sequence complementary to a connected probe described herein. The capture domain can have a sequence complementary to a capture handle sequence present in an analyte capture agent. The capture domain can have a sequence complementary to a splint oligonucleotide. Such splint oligonucleotide, in addition to having a sequence complementary to a capture domain of a capture probe, can have a sequence of a nucleic acid analyte, a sequence complementary to a portion of a connected probe described herein, and/or a capture handle sequence described herein.


The functional sequences can generally be selected for compatibility with any of a variety of different sequencing systems, e.g., Ion Torrent™ Proton or PGM (i.e., ion semiconductor sequencing), Illumina™ sequencing instruments (e.g., sequencing by synthesis), PacBio™ (e.g., HiFi sequencing), OXFORD NANOPORE, etc., and the requirements thereof. In some embodiments, functional sequences can be selected for compatibility with non-commercialized sequencing systems. Examples of such sequencing systems and techniques, for which suitable functional sequences can be used, include (but are not limited to) Ion Torrent™ Proton or PGM sequencing (i.e., ion semiconductor sequencing), Illumina™ sequencing (e.g., sequencing by synthesis), PacBio™ SMRT™ sequencing (e.g., HiFi sequencing), and OXFORD NANOPORE sequencing. Further, in some embodiments, functional sequences can be selected for compatibility with other sequencing systems, including non-commercialized sequencing systems.


In some embodiments, the spatial barcode 105 and functional sequences 104 are common to all of the probes attached to a given feature. In some embodiments, the UMI sequence 106 of a capture probe attached to a given feature is different from the UMI sequence of a different capture probe attached to the given feature.



FIG. 2 is a schematic illustrating a cleavable capture probe, wherein the cleaved capture probe can enter into a non-permeabilized cell and bind to analytes within the sample. The capture probe 201 contains a cleavage domain 202, a cell penetrating peptide 203, a reporter molecule 204, and a disulfide bond (—S—S—). 205 represents all other parts of a capture probe, for example a spatial barcode and a capture domain.



FIG. 3 is a schematic diagram of an exemplary multiplexed spatially-barcoded feature. In FIG. 3, the feature 301 can be coupled to spatially-barcoded capture probes, wherein the spatially-barcoded probes of a particular feature can possess the same spatial barcode, but have different capture domains designed to associate the spatial barcode of the feature with more than one target analyte. For example, a feature may be coupled to four different types of spatially-barcoded capture probes, each type of spatially-barcoded capture probe possessing the spatial barcode 302. One type of capture probe associated with the feature includes the spatial barcode 302 in combination with a poly(T) capture domain 303, designed to capture mRNA target analytes. A second type of capture probe associated with the feature includes the spatial barcode 302 in combination with a random N-mer capture domain 304 for gDNA analysis. A third type of capture probe associated with the feature includes the spatial barcode 302 in combination with a capture domain complementary to a capture handle sequence of an analyte capture agent of interest 305. A fourth type of capture probe associated with the feature includes the spatial barcode 302 in combination with a capture domain that can specifically bind a nucleic acid molecule 306 that can function in a CRISPR assay (e.g., CRISPR/Cas9). While only four different capture probe-barcoded constructs are shown in FIG. 3, capture-probe barcoded constructs can be tailored for analyses of any given analyte associated with a nucleic acid and capable of binding with such a construct. For example, the schemes shown in FIG. 3 can also be used for concurrent analysis of other analytes disclosed herein, including, but not limited to: (a) mRNA, a lineage tracing construct, cell surface or intracellular proteins and metabolites, and gDNA; (b) mRNA, accessible chromatin (e.g., ATAC-seq, DNase-seq, and/or MNase-seq) cell surface or intracellular proteins and metabolites, and a perturbation agent (e.g., a CRISPR crRNA/sgRNA, TALEN, zinc finger nuclease, and/or antisense oligonucleotide as described herein); (c) mRNA, cell surface or intracellular proteins and/or metabolites, a barcoded labelling agent (e.g., the MHC multimers described herein), and a V(D)J sequence of an immune cell receptor (e.g., T-cell receptor). In some embodiments, a perturbation agent can be a small molecule, an antibody, a drug, an aptamer, a miRNA, a physical environmental (e.g., temperature change), or any other known perturbation agents. See, e.g., Section (II)(b) (e.g., subsections (i)-(vi)) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. Generation of capture probes can be achieved by any appropriate method, including those described in Section (II)(d)(ii) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.


In some embodiments, more than one analyte type (e.g., nucleic acids and proteins) from a biological sample can be detected (e.g., simultaneously or sequentially) using any appropriate multiplexing technique, such as those described in Section (IV) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.


In some embodiments, detection of one or more analytes (e.g., protein analytes) can be performed using one or more analyte capture agents. As used herein, an “analyte capture agent” refers to an agent that interacts with an analyte (e.g., an analyte in a biological sample) and with a capture probe (e.g., a capture probe attached to a substrate or a feature) to identify the analyte. In some embodiments, the analyte capture agent includes: (i) an analyte binding moiety (e.g., that binds to an analyte), for example, an antibody or antigen-binding fragment thereof; (ii) analyte binding moiety barcode; and (iii) a capture handle sequence. As used herein, the term “analyte binding moiety barcode” refers to a barcode that is associated with or otherwise identifies the analyte binding moiety. As used herein, the term “analyte capture sequence” or “capture handle sequence” refers to a region or moiety configured to hybridize to, bind to, couple to, or otherwise interact with a capture domain of a capture probe. In some embodiments, a capture handle sequence is complementary to a capture domain of a capture probe. In some cases, an analyte binding moiety barcode (or portion thereof) may be able to be removed (e.g., cleaved) from the analyte capture agent.



FIG. 4 is a schematic diagram of an exemplary analyte capture agent 402 comprised of an analyte-binding moiety 404 and an analyte-binding moiety barcode domain 408. The exemplary analyte-binding moiety 404 is a molecule capable of binding to an analyte 406 and the analyte capture agent is capable of interacting with a spatially-barcoded capture probe. The analyte-binding moiety can bind to the analyte 406 with high affinity and/or with high specificity. The analyte capture agent can include an analyte-binding moiety barcode domain 408, a nucleotide sequence (e.g., an oligonucleotide), which can hybridize to at least a portion or an entirety of a capture domain of a capture probe. The analyte-binding moiety barcode domain 408 can comprise an analyte binding moiety barcode and a capture handle sequence described herein. The analyte-binding moiety 404 can include a polypeptide and/or an aptamer. The analyte-binding moiety 404 can include an antibody or antibody fragment (e.g., an antigen-binding fragment).



FIG. 5 is a schematic diagram depicting an exemplary interaction between a feature-immobilized capture probe 524 and an analyte capture agent 526. The feature-immobilized capture probe 524 can include a spatial barcode 508 as well as functional sequences 506 and UMI 510, as described elsewhere herein. The capture probe can also include a capture domain 512 that is capable of binding to an analyte capture agent 526. The analyte capture agent 526 can include a functional sequence 518, analyte binding moiety barcode 516, and a capture handle sequence 514 that is capable of binding to the capture domain 512 of the capture probe 524. The analyte capture agent can also include a linker 520 that allows the capture agent barcode domain to couple to the analyte binding moiety 522.



FIGS. 6A, 6B, and 6C are schematics illustrating how streptavidin cell tags can be utilized in an array-based system to produce a spatially-barcoded cell or cellular contents. For example, as shown in FIG. 6A, peptide-bound major histocompatibility complex (MHC) can be individually associated with biotin (β2m) and bound to a streptavidin moiety such that the streptavidin moiety comprises multiple pMHC moieties. Each of these moieties can bind to a TCR such that the streptavidin binds to a target T-cell via multiple MHC/TCR binding interactions. Multiple interactions synergize and can substantially improve binding affinity. Such improved affinity can improve labelling of T-cells and also reduce the likelihood that labels will dissociate from T-cell surfaces. As shown in FIG. 6B, a capture agent barcode domain 601 can be modified with streptavidin 602 and contacted with multiple molecules of biotinylated MHC 603 such that the biotinylated MHC 603 molecules are coupled with the streptavidin conjugated capture agent barcode domain 601, thereby forming a tetramerized MHC complex 604. The result is a barcoded MHC multimer complex 605. As shown in FIG. 6B, the capture agent barcode domain sequence 601 can identify the MHC as its associated label and also includes optional functional sequences such as sequences for hybridization with other oligonucleotides. As shown in FIG. 6C, one example oligonucleotide is capture probe 606 that comprises a complementary sequence (e.g., rGrGrG corresponding to C C C), a barcode sequence and other functional sequences, such as, for example, a UMI, an adapter sequence (e.g., comprising a sequencing primer sequence (e.g., R1 or a partial R1 (“pR1”), R2), a flow cell attachment sequence (e.g., P5 or P7 or partial sequences thereof)), etc. In some cases, capture probe 606 may at first be associated with a feature (e.g., a gel bead) and released from the feature. In other embodiments, capture probe 606 can hybridize with a capture agent barcode domain 601 of the MHC-oligonucleotide complex 605. The hybridized oligonucleotides (Spacer C C C and Spacer rGrGrG) can then be extended in primer extension reactions such that constructs comprising sequences that correspond to each of the two spatial barcode sequences (the spatial barcode associated with the capture probe, and the barcode associated with the MHC-oligonucleotide complex) are generated. In some cases, one or both of the corresponding sequences may be a complement of the original sequence in capture probe 606 or capture agent barcode domain 601. In other embodiments, the capture probe and the capture agent barcode domain are ligated together. The resulting constructs can be optionally further processed (e.g., to add any additional sequences and/or for clean-up) and subjected to sequencing. As described elsewhere herein, a sequence derived from the capture probe 606 spatial barcode sequence may be used to identify a feature and the sequence derived from spatial barcode sequence on the capture agent barcode domain 601 may be used to identify the particular peptide MHC complex 604 bound on the surface of the cell (e.g., when using MHC-peptide libraries for screening immune cells or immune cell populations).


Additional description of analyte capture agents can be found in Section (II)(b)(ix) of WO 2020/176788 and/or Section (II)(b)(viii) U.S. Patent Application Publication No. 2020/0277663.


There are at least two methods to associate a spatial barcode with one or more neighboring cells, such that the spatial barcode identifies the one or more cells, and/or contents of the one or more cells, as associated with a particular spatial location. One method is to promote analytes or analyte proxies (e.g., intermediate agents) out of a cell and towards a spatially-barcoded array (e.g., including spatially-barcoded capture probes). Another method is to cleave spatially-barcoded capture probes from an array and promote the spatially-barcoded capture probes towards and/or into or onto the biological sample.


In some cases, capture probes may be configured to prime, replicate, and consequently yield optionally barcoded extension products from a template (e.g., a DNA or RNA template, such as an analyte or an intermediate agent (e.g., a connected probe (e.g., a ligation product) or an analyte capture agent), or a portion thereof), or derivatives thereof (see, e.g., Section (II)(b)(vii) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663 regarding extended capture probes). In some cases, capture probes may be configured to form a connected probe (e.g., a ligation product) with a template (e.g., a DNA or RNA template, such as an analyte or an intermediate agent, or portion thereof), thereby creating ligations products that serve as proxies for a template.


As used herein, an “extended capture probe” refers to a capture probe having additional nucleotides added to the terminus (e.g., 3′ or 5′ end) of the capture probe thereby extending the overall length of the capture probe. For example, an “extended 3′ end” indicates additional nucleotides were added to the most 3′ nucleotide of the capture probe to extend the length of the capture probe, for example, by polymerization reactions used to extend nucleic acid molecules including templated polymerization catalyzed by a polymerase (e.g., a DNA polymerase or a reverse transcriptase). In some embodiments, extending the capture probe includes adding to a 3′ end of a capture probe a nucleic acid sequence that is complementary to a nucleic acid sequence of an analyte or intermediate agent specifically bound to the capture domain of the capture probe. In some embodiments, the capture probe is extended using reverse transcription. In some embodiments, the capture probe is extended using one or more DNA polymerases. The extended capture probes include the sequence of the capture probe and the sequence of the spatial barcode of the capture probe.


In some embodiments, extended capture probes are amplified (e.g., in bulk solution or on the array) to yield quantities that are sufficient for downstream analysis, e.g., via DNA sequencing. In some embodiments, extended capture probes (e.g., DNA molecules) act as templates for an amplification reaction (e.g., a polymerase chain reaction).


Additional variants of spatial analysis methods, including in some embodiments, an imaging step, are described in Section (II)(a) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. Analysis of captured analytes (and/or intermediate agents or portions thereof), for example, including sample removal, extension of capture probes, sequencing (e.g., of a cleaved extended capture probe and/or a nucleic acid molecule complementary to an extended capture probe), sequencing on the array (e.g., using, for example, in situ hybridization or in situ ligation approaches), temporal analysis, and/or proximity capture, is described in Section (II)(g) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. Some quality control measures are described in Section (II)(h) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.


Spatial information can provide information of biological and/or medical importance. For example, the methods and compositions described herein can allow for: identification of one or more biomarkers (e.g., diagnostic, prognostic, and/or for determination of efficacy of a treatment) of a disease or disorder; identification of a candidate drug target for treatment of a disease or disorder; identification (e.g., diagnosis) of a subject as having a disease or disorder; identification of stage and/or prognosis of a disease or disorder in a subject; identification of a subject as having an increased likelihood of developing a disease or disorder; monitoring of progression of a disease or disorder in a subject; determination of efficacy of a treatment of a disease or disorder in a subject; identification of a patient subpopulation for which a treatment is effective for a disease or disorder; modification of a treatment of a subject with a disease or disorder; selection of a subject for participation in a clinical trial; and/or selection of a treatment for a subject with a disease or disorder.


Spatial information can provide information of biological importance. For example, the methods and compositions described herein can allow for: identification of transcriptome and/or proteome expression profiles (e.g., in healthy and/or diseased tissue); identification of multiple analyte types in close proximity (e.g., nearest neighbor analysis); determination of up- and/or down-regulated genes and/or proteins in diseased tissue; characterization of tumor microenvironments; characterization of tumor immune responses; characterization of cells types and their co-localization in tissue; and identification of genetic variants within tissues (e.g., based on gene and/or protein expression profiles associated with specific disease or disorder biomarkers).


Typically, for spatial array-based methods, a substrate functions as a support for direct or indirect attachment of capture probes to features of the array. A “feature” is an entity that acts as a support or repository for various molecular entities used in spatial analysis. In some embodiments, some or all of the features in an array are functionalized for analyte capture. Exemplary substrates are described in Section (II)(c) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. Exemplary features and geometric attributes of an array can be found in Sections (II)(d)(i), (II)(d)(iii), and (II)(d)(iv) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.


Generally, analytes and/or intermediate agents (or portions thereof) can be captured when contacting a biological sample with a substrate including capture probes (e.g., a substrate with capture probes embedded, spotted, printed, fabricated on the substrate, or a substrate with features (e.g., beads, wells) comprising capture probes). As used herein, “contact,” “contacted,” and/or “contacting,” a biological sample with a substrate refers to any contact (e.g., direct or indirect) such that capture probes can interact (e.g., bind covalently or non-covalently (e.g., hybridize)) with analytes from the biological sample. Capture can be achieved actively (e.g., using electrophoresis) or passively (e.g., using diffusion). Analyte capture is further described in Section (II)(e) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.


In some cases, spatial analysis can be performed by attaching and/or introducing a molecule (e.g., a peptide, a lipid, or a nucleic acid molecule) having a barcode (e.g., a spatial barcode) to a biological sample (e.g., to a cell in a biological sample). In some embodiments, a plurality of molecules (e.g., a plurality of nucleic acid molecules) having a plurality of barcodes (e.g., a plurality of spatial barcodes) are introduced to a biological sample (e.g., to a plurality of cells in a biological sample) for use in spatial analysis. In some embodiments, after attaching and/or introducing a molecule having a barcode to a biological sample, the biological sample can be physically separated (e.g., dissociated) into single cells or cell groups for analysis. Some such methods of spatial analysis are described in Section (III) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663.


During analysis of spatial information, sequence information for a spatial barcode associated with an analyte is obtained, and the sequence information can be used to provide information about the spatial distribution of the analyte in the biological sample. Various methods can be used to obtain the spatial information. In some embodiments, specific capture probes and the analytes they capture are associated with specific locations in an array of features on a substrate. For example, specific spatial barcodes can be associated with specific array locations prior to array fabrication, and the sequences of the spatial barcodes can be stored (e.g., in a database) along with specific array location information, so that each spatial barcode uniquely maps to a particular array location.


Alternatively, specific spatial barcodes can be deposited at predetermined locations in an array of features during fabrication such that at each location, only one type of spatial barcode is present so that spatial barcodes are uniquely associated with a single feature of the array. Where necessary, the arrays can be decoded using any of the methods described herein so that spatial barcodes are uniquely associated with array feature locations, and this mapping can be stored as described above.


When sequence information is obtained for capture probes and/or analytes during analysis of spatial information, the locations of the capture probes and/or analytes can be determined by referring to the stored information that uniquely associates each spatial barcode with an array feature location. In this manner, specific capture probes and captured analytes are associated with specific locations in the array of features. Each array feature location represents a position relative to a coordinate reference point (e.g., an array location, a fiducial marker) for the array. Accordingly, each feature location has an “address” or location in the coordinate space of the array.


Some exemplary spatial analysis workflows are described in the Exemplary Embodiments section of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. See, for example, the Exemplary embodiment starting with “In some non-limiting examples of the workflows described herein, the sample can be immersed . . . ” of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663. See also, e.g., the Visium Spatial Gene Expression Reagent Kits User Guide (e.g., Rev D, dated October 2020), and/or the Visium Spatial Tissue Optimization Reagent Kits User Guide (e.g., Rev D, dated October 2020). In some embodiments, spatial analysis can be performed using dedicated hardware and/or software, such as any of the systems described in Sections (II)(e)(ii) and/or (V) of WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663, or any of one or more of the devices or methods described in Sections Control Slide for Imaging, Methods of Using Control Slides and Substrates for, Systems of Using Control Slides and Substrates for Imaging, and/or Sample and Array Alignment Devices and Methods, Informational labels of WO 2020/123320.


Suitable systems for performing spatial analysis can include components such as a chamber (e.g., a flow cell or sealable, fluid-tight chamber) for containing a biological sample. The biological sample can be mounted for example, in a biological sample holder. One or more fluid chambers can be connected to the chamber and/or the sample holder via fluid conduits, and fluids can be delivered into the chamber and/or sample holder via fluidic pumps, vacuum sources, or other devices coupled to the fluid conduits that create a pressure gradient to drive fluid flow. One or more valves can also be connected to fluid conduits to regulate the flow of reagents from reservoirs to the chamber and/or sample holder.


The systems can optionally include a control unit that includes one or more electronic processors, an input interface, an output interface (such as a display), and a storage unit (e.g., a solid state storage medium such as, but not limited to, a magnetic, optical, or other solid state, persistent, writeable and/or re-writeable storage medium). The control unit can optionally be connected to one or more remote devices via a network. The control unit (and components thereof) can generally perform any of the steps and functions described herein. Where the system is connected to a remote device, the remote device (or devices) can perform any of the steps or features described herein. The systems can optionally include one or more detectors (e.g., CCD, CMOS) used to capture images. The systems can also optionally include one or more light sources (e.g., LED-based, diode-based, lasers) for illuminating a sample, a substrate with features, analytes from a biological sample captured on a substrate, and various control and calibration media.


The systems can optionally include software instructions encoded and/or implemented in one or more of tangible storage media and hardware components such as application specific integrated circuits. The software instructions, when executed by a control unit (and in particular, an electronic processor) or an integrated circuit, can cause the control unit, integrated circuit, or other component executing the software instructions to perform any of the method steps or functions described herein.


In some cases, the systems described herein can detect (e.g., register an image) the biological sample on the array. Exemplary methods to detect the biological sample on an array are described in PCT Application No. 2020/061064 and/or U.S. patent application Ser. No. 16/951,854.


Prior to transferring analytes from the biological sample to the array of features on the substrate, the biological sample can be aligned with the array. Alignment of a biological sample and an array of features including capture probes can facilitate spatial analysis, which can be used to detect differences in analyte presence and/or level within different positions in the biological sample, for example, to generate a three-dimensional map of the analyte presence and/or level. Exemplary methods to generate a two- and/or three-dimensional map of the analyte presence and/or level are described in PCT Application No. 2020/053655 and spatial analysis methods are generally described in WO 2020/061108 and/or U.S. patent application Ser. No. 16/951,864.


In some cases, a map of analyte presence and/or level can be aligned to an image of a biological sample using one or more fiducial markers, e.g., objects placed in the field of view of an imaging system which appear in the image produced, as described in the Substrate Attributes Section, Control Slide for Imaging Section of WO 2020/123320, PCT Application No. 2020/061066, and/or U.S. patent application Ser. No. 16/951,843. Fiducial markers can be used as a point of reference or measurement scale for alignment (e.g., to align a sample and an array, to align two substrates, to determine a location of a sample or array on a substrate relative to a fiducial marker) and/or for quantitative measurements of sizes and/or distances.


II. Methods and Compositions for Analyte Detection in a Biological Sample
A. Introduction

RNA sequencing libraries generated from formalin-fixed paraffin-embedded (FFPE) tissue samples on spatial arrays are generally short and cDNA could be sequenced directly if it was possible to insert a second sequencing adaptor at the 3′-end of the cDNA. The methods provided herein provide for an efficient, targeted approach for inserting a sequencing adapter directly to the second-strand DNA which is synthesized using the cDNA previously generated directly on the spatial array as a template. However, the methods are not limited to FFPE tissues as the methods are equally amenable with other tissue types, such as fresh frozen samples or alternatively fixed samples (e.g., methanol, acetone, etc.). Thus, in some instances, the biological sample is taken from a sample fixed with formalin (e.g., an FFPE sample). In other instances, the biological sample is not fixed, and can be a freshly-obtained sample or a frozen sample.


In some workflows of spatial analyses, gene-specific primers containing a universal sequence are utilized in a targeted approach for second strand synthesis. An exemplary embodiment of the methods on FFPE tissue described herein is depicted in FIGS. 7A-7B. It is appreciated that the workflow would be similar on fresh frozen tissue. FIGS. 7A-7B depicts mRNA capture from a FFPE tissue sample (not shown) that is placed on a spatial array after permeabilizing the FFPE tissue sample to release the mRNA (e.g., mRNA1; mRNA2 as shown in FIG. 7A). After permeabilization, mRNA molecules are captured by capture probes on the spatial array (e.g., by hybridization of the poly(A) tail of the analyte to the poly(T) sequence of the capture probe). As shown in FIG. 7A, The capture probe sequence comprises a first sequencing adaptor proximal to the substrate, a spatial barcode, optionally a unique molecule identifier (UMI) sequence, and a capture domain, in this example the capture domain comprises a polyT sequence for mRNA capture. Capture domain(s) can be extended to generate first strand cDNA molecule(s) using the mRNA bound to capture domain(s) as a template. After cDNA synthesis, the RNA that was used as a template for cDNA synthesis is digested by RNase treatment. The extended capture probe(s) is/are single-stranded cDNA molecule(s), which is/are still attached to the spatial array. The extended capture probe(s) is/are then contacted with primer(s) comprising a second adapter sequence (e.g., a sequencing adapter sequence) and a sequence that specifically binds to the extended capture probe. The primer(s) is/are then extended using the extended capture probe(s) as a template, thereby generating a DNA(s) hybridized to the extended capture probe(s) (also called the “second strand(s)”). The second strand(s) can then be recovered and used to prepare libraries for subsequent processing and analysis (e.g., sequencing using any of the methods described herein, e.g., high throughput sequencing, e.g., Illumina™ sequencing (e.g., sequencing by synthesis)).


Provided herein are methods of identifying a location of an RNA in a biological sample that include: (a) contacting a biological sample (e.g., any of the exemplary biological samples described herein) with an array comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises a capture domain (e.g., any of the exemplary capture domains described herein), a spatial barcode and a first adaptor sequence (e.g., a first sequencing primer sequence); (b) extending an end of the capture probe using the captured RNA (e.g., any of the exemplary types of RNA described herein, e.g., mRNA) specifically bound by the capture domain as a template, thereby generating an extended capture probe hybridized to the RNA; (c) digesting the RNA hybridized to the extended capture probe; (d) contacting the extended capture probe with a primer comprising in a 5′ to a 3′ direction: (i) an adapter sequence (e.g., a second sequencing adapter sequence, e.g., a universal sequencing adapter sequence) and (ii) a sequence that specifically binds to (e.g., at least a portion of) the extended capture probe; (e) extending the 3′ end of the primer using the extended capture probe as a template, thereby generating a DNA hybridized to the extended capture probe; (f) releasing the generated DNA from the extended capture probe; and (g) determining (i) all or a part of the sequence of the RNA bound by the capture domain or a complement thereof, or (ii) all or a part of the sequence of the spatial barcode or a complement thereof, and using the determined sequences of (i) and (ii) to identify the location of the RNA in the biological sample.


B. Methods for Analyte Capture and Capture Probe Extension

In some instances, after preparing the biological sample for spatial analysis, the analyte (e.g., mRNA) is captured by a capture probe on an array. In some embodiments of any of the methods described herein, the capture domain comprises a poly(T) sequence. In some instances, the analyte hybridizes to the poly(T) sequence. In some embodiments, the capture domain does not comprise a poly(T) sequence. In some embodiments, the capture domain comprises a sequence that is substantially complementary to a contiguous sequence present in the RNA. The capture domain can be about 5 to about 40 nucleotides (e.g., about 5 to about 35 nucleotides, about 5 to about 30 nucleotides, about 5 to about 25 nucleotides, about 5 to about 20 nucleotides, about 5 to about 15 nucleotides, about 5 to about 10 nucleotides, about 10 to about 40 nucleotides, about 10 to about 35 nucleotides, about 10 to about 30 nucleotides, about 10 to about 25 nucleotides, about 10 to about 20 nucleotides, about 10 to about 15 nucleotides, about 15 to about 40 nucleotides, about 15 to about 35 nucleotides, about 15 to about 30 nucleotides, about 15 to about 25 nucleotides, about 15 to about 20 nucleotides, about 20 to about 40 nucleotides, about 20 to about 35 nucleotides, about 20 to about 30 nucleotides, about 20 to about 25 nucleotides, about 25 to about 40 nucleotides, about 25 to about 35 nucleotides, about 25 to about 30 nucleotides, about 30 to about 40 nucleotides, about 30 to about 35 nucleotides, or about 35 to about 40 nucleotides) in length. In some instances, one or more capture probes on the spatial array further include a spatial barcode and/or a unique molecular identifier (UMI).


In some embodiments of any of the methods described herein, the plurality of capture probes are affixed (i.e., attached) to an array. In some embodiments of any of the methods described herein, the array is a slide (e.g., a slide comprising beads or a slide comprising wells (e.g., microwells)). An array can also have one or more of any of the exemplary characteristics of arrays described herein.


In some embodiments, the capture domain is positioned 3′ relative to the spatial barcode in the capture probe. In some embodiments of any of the methods provided herein, the capture probe further includes a unique molecular identifier, a cleavage domain (e.g., any of the exemplary cleavage domains described herein), or both.


In some embodiments, after contacting a biological sample with a substrate that includes capture probes, a removal step can optionally be performed to remove all or a portion of the biological sample from the substrate. In some embodiments, the removal step includes enzymatic and/or chemical degradation of cells of the biological sample. For example, the removal step can include treating the biological sample with an enzyme (e.g., a proteinase, e.g., proteinase K) to remove at least a portion of the biological sample from the substrate. In some embodiments, the removal step can include ablation of the tissue (e.g., laser ablation).


In some embodiments, a biological sample is not removed from the substrate. For example, the biological sample is not removed from the substrate prior to releasing a capture probe (e.g., a capture probe bound to an analyte) from the substrate. In some embodiments, such releasing comprises cleavage of the capture probe from the substrate (e.g., via a cleavage domain). In some embodiments, such releasing does not comprise releasing the capture probe from the substrate (e.g., a copy of the capture probe bound to an analyte can be made and the copy can be released from the substrate, e.g., via denaturation). In some embodiments, the biological sample is not removed from the substrate prior to analysis of an analyte bound to a capture probe after it is released from the substrate. In some embodiments, the biological sample remains on the substrate during removal of a capture probe from the substrate and/or analysis of an analyte bound to the capture probe after it is released from the substrate. In some embodiments, the biological sample remains on the substrate during removal (e.g., via denaturation) of a copy of the capture probe (e.g., complement). In some embodiments, analysis of an analyte bound to capture probe from the substrate can be performed without subjecting the biological sample to enzymatic and/or chemical degradation of the cells (e.g., permeabilized cells) or ablation of the tissue (e.g., laser ablation).


In some embodiments, at least a portion of the biological sample is not removed from the substrate. For example, a portion of the biological sample can remain on the substrate prior to releasing a capture probe (e.g., a capture prove bound to an analyte) from the substrate and/or analyzing an analyte bound to a capture probe released from the substrate. In some embodiments, at least a portion of the biological sample is not subjected to enzymatic and/or chemical degradation of the cells (e.g., permeabilized cells) or ablation of the tissue (e.g., laser ablation) prior to analysis of an analyte bound to a capture probe from the substrate.


In some embodiments, after analyte capture, the capture probe can be extended (an “extended capture probe,” e.g., as described herein). In some embodiments, the capture probe is extended at the 3′ end. For example, extending a capture probe can include generating cDNA from a captured (hybridized) RNA. This process involves synthesis of a complementary strand of the hybridized nucleic acid, e.g., generating cDNA based on the captured RNA template (the RNA hybridized to the capture domain of the capture probe). Thus, in an initial step of extending a capture probe, e.g., the cDNA generation, the captured (hybridized) nucleic acid, e.g., RNA, acts as a template for the extension, e.g., reverse transcription, step.


In some embodiments, the capture probe is extended using reverse transcription. For example, reverse transcription includes synthesizing cDNA (complementary or copy DNA) from RNA, e.g., (messenger RNA), using a reverse transcriptase. In some embodiments, the capture probe is extended using fluorescently labeled nucleotides. In some embodiments, reverse transcription is performed while the tissue is still in place, generating an analyte library, where the analyte library includes the spatial barcodes from the adjacent capture probes. In some embodiments, the capture probe is extended using one or more DNA polymerases.


In some embodiments, digesting the RNA from the RNA:DNA hybrid comprises the use of an RNase that digests RNA from a RNA:DNA hybrid, for example, RNAse H or a functional equivalent thereof.


C. Methods and Compositions for Second Strand Synthesis

After extension of the capture probe and degradation of the analyte, target-specific primers are added to the sample. In some instances, a target-specific primer as described herein comprises a sequence that is complementary to the extended capture probe. In some instances, a target-specific primer comprises a sequence that is complementary to the extended capture probe at the sequence complementary to the analyte. Thus, in some instances, the primer includes a sequence that is specific for one or more targets of interest.


The sequence in the primer that specifically binds to (e.g., at least a portion of) the extended capture probe can about 15 to about 50 nucleotides (e.g., about 15 to about 45 nucleotides, about 15 to about 40 nucleotides, about 15 to about 35 nucleotides, about 15 to about 30 nucleotides, about 15 to about 25 nucleotides, about 15 to about 20 nucleotides, about 20 to about 50 nucleotides, about 20 to about 45 nucleotides, about 20 to about 40 nucleotides, about 20 to about 35 nucleotides, about 20 to about 30 nucleotides, about 20 to about 25 nucleotides, about 25 to about 50 nucleotides, about 25 to about 45 nucleotides, about 25 to about 40 nucleotides, about 25 to about 35 nucleotides, about 25 to about 30 nucleotides, about 30 to about 50 nucleotides, about 30 to about 45 nucleotides, about 30 to about 40 nucleotides, about 30 to about 35 nucleotides, about 35 to about 50 nucleotides, about 35 to about 45 nucleotides, about 35 to about 40 nucleotides, about 40 to about 50 nucleotides, about 40 to about 45 nucleotides, or about 45 to about 50 nucleotides) long. In some embodiments, the sequence in the primer that specifically binds to the extended capture probe comprises a sequence corresponding to a contiguous sequence present in the RNA that is specifically bound to the capture domain. For example, the sequence in the primer that specifically binds to the extended capture probe corresponds to a contiguous sequence in the RNA (that is specifically bound to the capture domain) that is about 20 to about 1,000 nucleotides (e.g., about 20 to about 1000 nucleotides, about 20 to about 900 nucleotides, about 20 to about 800 nucleotides, about 20 to about 700 nucleotides, about 20 to about 600 nucleotides, about 20 to about 500 nucleotides, about 20 to about 400 nucleotides, about 20 to about 300 nucleotides, about 20 to about 200 nucleotides, about 20 to about 150 nucleotides, about 20 to about 100 nucleotides, about 20 to about 80 nucleotides, about 20 to about 60 nucleotides, about 20 to about 40 nucleotides,) 5′ to the 3′ end of the RNA that is specifically bound to the capture domain.


Primers (and groups of primers) can be designed to be specific to only a few analytes (e.g., about 2 analytes to about 20 analytes) or more. The specificity of primers depends on the design of the sequence that hybridizes to the extended capture probe. In some instances, primers can be designed to target about 100 analytes, about 500 analytes, about 1000 analytes, and even the entire genome.


In some instances, at the 5′ end, the primer further includes an adaptor sequence. In some instances, the adapter sequence in the primer can include a sequencing adapter sequence (e.g., an adapter sequence that can be used to perform sequencing using any of the exemplary sequencing methods described herein). In some embodiments, the adapter sequence can be an Illumina™ sequencing adapter sequence (e.g., via sequencing by synthesis). In some embodiments, the adapter sequence can be about 15 to about 45 nucleotides (e.g., about 15 to about 45 nucleotides, about 15 to about 40 nucleotides, about 15 to about 35 nucleotides, about 15 to about 30 nucleotides, about 15 to about 25 nucleotides, or about 15 to about 20 nucleotides, about 20 to about 45 nucleotides, about 20 to about 40 nucleotides, about 20 to about 35 nucleotides, about 20 to about 30 nucleotides, about 20 to about 25 nucleotides, about 25 to about 45 nucleotides, about 25 to about 40 nucleotides, about 25 to about 35 nucleotides, about 25 to about 30 nucleotides, about 30 to about 45 nucleotides, about 30 to about 40 nucleotides, about 30 to about 35 nucleotides, about 35 to about 45 nucleotides, about 35 to about 40 nucleotides, or about 40 to about 45 nucleotides) long. In some embodiments, the adapter sequence comprises a sequence of CCTTGGCACACCCGAGAATTCCA (SEQ ID NO:1). In some embodiments, the adapter sequence can be a universal sequence.


In some embodiments, the step of extending the 3′ end of the primer using the extended capture probe as a template, thereby generating a DNA hybridized to the extended capture probe, includes the use of a DNA polymerase, e.g., DNA polymerase I or any of the other exemplary DNA polymerases described herein or known in the art.


In some embodiments, a full-length DNA (e.g., cDNA) molecule is generated. In some embodiments, a “full-length” DNA molecule refers to the whole of the captured nucleic acid molecule. However, if a nucleic acid (e.g., RNA) was partially degraded in the tissue sample, then the captured nucleic acid molecules will not be the same length as the initial RNA in the tissue sample. In some embodiments, the 3′ end of the extended probes, e.g., first strand cDNA molecules, is modified. For example, a linker or adaptor can be ligated to the 3′ end of the extended probes. This can be achieved using single stranded ligation enzymes such as T4 RNA ligase or Circligase™ (available from Lucigen, Middleton, WI). In some embodiments, template switching oligonucleotides are used to extend cDNA in order to generate a full-length cDNA (or as close to a full-length cDNA as possible). In some embodiments, a second strand synthesis helper probe (a partially double stranded DNA molecule capable of hybridizing to the 3′ end of the extended capture probe), can be ligated to the 3′ end of the extended probe, e.g., first strand cDNA, molecule using a double stranded ligation enzyme such as T4 DNA ligase. Other enzymes appropriate for the ligation step are known in the art and include, e.g., Tth DNA ligase, Taq DNA ligase, Thermococcus sp. (strain 9° N) DNA ligase (9° N™ DNA ligase, New England Biolabs), Ampligase™ (available from Lucigen, Middleton, WI), and SplintR (available from New England Biolabs, Ipswich, MA). In some embodiments, a polynucleotide tail, e.g., a poly(A) tail, is incorporated at the 3′ end of the extended probe molecules. In some embodiments, the polynucleotide tail is incorporated using a terminal transferase active enzyme.


In some embodiments of any of the methods described herein, the releasing of the generated DNA from the extended capture probe can be performed using heat and/or a solution (e.g., a solution having an increased salt concentration).


After release of the generated DNA molecule, the resulting generated DNA molecule—as shown in FIG. 7B—is single stranded and includes, without limitation, at least a primer adaptor (e.g. read 2 sequencing handle), a sequence complementary to the extended capture probe, a polyA sequence, a unique molecular identifier (UMI), a spatial barcode, a second primer sequence (e.g. read 1 sequencing handle), or some combination thereof.


In some instances, the methods of generating a DNA molecule from the extended capture probe comprises one or more steps of heating the samples. In some instances, the heating step is performed prior to second strand synthesis. In some instances, the heating step performed prior to second strand synthesis is performed at about 98° C. In some instances, the heating step performed prior to second strand synthesis is performed from about 80° C. to about 100° C. (e.g., about 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 100° C.). In some instances, the heating step is performed during second strand synthesis. In some instances, the temperature of the heating step during second strand synthesis is about 65° C. and can range from 50° C. to 80° C. (e.g., 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80° C.). In some instance, any of the heating steps can be performed from 1 to 30 minutes (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 minutes). In some instances, the buffer for second strand synthesis a Hot Start Master Mix (e.g., a Hot Start Taq 2X Master Mix; e.g., New England Biolabs®, Inc.


In some embodiments, the methods further include a determining (e.g., sequencing) step. In some instances, the determining step comprises determining the sequence of (i) all or a part of the sequence of generated DNA or a complement thereof, or (ii) all or a part of the sequence of the spatial barcode or a complement thereof. In some embodiments, the sequencing can be performed using any of the exemplary sequencing methods described herein (e.g., high throughput sequencing). In some instance, the generated DNA (e.g., the second strand molecule) can be amplified via PCR prior to library construction. The generated DNA can then be enzymatically fragmented and size-selected in order to optimize for amplicon size. P5 and P7 sequences directed to capturing the amplicons on a sequencing flowcell (Illumina™ sequencing instruments (e.g., sequencing by synthesis)) can be appended to the amplicons, i7, and i5 can be used as sample indexes, and TruSeq™ Read 2 (e.g., an RNA-seq library preparation primer) can be added via End Repair, A-tailing, Adaptor Ligation, and PCR. The cDNA fragments can then be sequenced using paired-end sequencing using TruSeq™ Read 1 and TruSeq™ Read 2 (e.g., an RNA-seq library preparation primers) as sequencing primer sites. The additional sequences are directed toward Illumina™ sequencing instruments (e.g., sequencing by synthesis) or sequencing instruments that utilize those sequences; however a skilled artisan will understand that additional or alternative sequences used by other sequencing instruments or technologies are also equally applicable for use in the aforementioned methods.


A wide variety of different sequencing methods can be used to analyze barcoded analyte. In general, sequenced polynucleotides can be, for example, nucleic acid molecules such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), including variants or derivatives thereof (e.g., single stranded DNA or DNA/RNA hybrids, and nucleic acid molecules with a nucleotide analog).


Sequencing of polynucleotides can be performed by various systems. More generally, sequencing can be performed using nucleic acid amplification, polymerase chain reaction (PCR) (e.g., digital PCR and droplet digital PCR (ddPCR), quantitative PCR, real time PCR, multiplex PCR, PCR-based single plex methods, emulsion PCR), and/or isothermal amplification. Non-limiting examples of methods for sequencing genetic material include, but are not limited to, DNA hybridization methods (e.g., Southern blotting), restriction enzyme digestion methods, Sanger sequencing methods, next-generation sequencing methods (e.g., single-molecule real-time sequencing, nanopore sequencing, and Polony sequencing), ligation methods, and microarray methods.


D. Biological Samples and Analytes

Methods disclosed herein can be performed on any type of sample (also interchangeably called “biological sample”). In some embodiments, the sample is a fresh tissue. In some embodiments, the sample is a frozen sample. In some embodiments, the sample was previously frozen. In some embodiments, the sample is a formalin-fixed, paraffin embedded (FFPE) sample.


Subjects from which biological samples can be obtained can be healthy or asymptomatic individuals, individuals that have or are suspected of having a disease (e.g., cancer) or a pre-disposition to a disease, and/or individuals that are in need of therapy or suspected of needing therapy. In some instances, the biological sample can include one or more diseased cells. A diseased cell can have altered metabolic properties, gene expression, protein expression, and/or morphologic features. Examples of diseases include inflammatory disorders, metabolic disorders, nervous system disorders, and cancer. In some instances, the biological sample includes cancer or tumor cells. Cancer cells can be derived from solid tumors, hematological malignancies, cell lines, or obtained as circulating tumor cells. In some instances, the biological sample is a heterogenous sample. In some instances, the biological sample is a heterogenous sample that includes tumor or cancer cells and/or stromal cells,


In certain embodiments, the cancer is squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, gastrointestinal cancer, Hodgkin's or non-Hodgkin's lymphoma, pancreatic cancer, glioblastoma, glioma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, breast cancer, colon cancer, colorectal cancer, endometrial carcinoma, myeloma, salivary gland carcinoma, kidney cancer, basal cell carcinoma, melanoma, prostate cancer, vulval cancer, thyroid cancer, testicular cancer, esophageal cancer, or a type of head or neck cancer. In certain embodiments, the cancer treated is desmoplastic melanoma, inflammatory breast cancer, thymoma, rectal cancer, anal cancer, or surgically treatable or non-surgically treatable brain stem glioma. In some embodiments, the subject is a human.


FFPE samples generally are heavily cross-linked and fragmented, and therefore this type of sample allows for limited RNA recovery using conventional detection techniques. In certain embodiments, methods of targeted RNA capture provided herein are less affected by RNA degradation associated with FFPE fixation than other methods (e.g., methods that take advantage of oligo-dT capture and reverse transcription of mRNA). In certain embodiments, methods provided herein enable sensitive measurement of specific genes of interest that otherwise might be missed with a whole transcriptomic approach.


In some instances, FFPE samples are stained (e.g., using H&E). The methods disclosed herein are compatible with H&E will allow for morphological context overlaid with transcriptomic analysis. However, depending on the need some samples may be stained with only a nuclear stain, such as staining a sample with only hematoxylin and not eosin, when location of a cell nucleus is needed.


In some embodiments, a biological sample (e.g. tissue section) can be fixed with methanol, stained with hematoxylin and eosin, and imaged. In some embodiments, fixing, staining, and imaging occurs before one or more probes are hybridized to the sample. Some embodiments of any of the workflows described herein can further include a destaining step (e.g., a hematoxylin and eosin destaining step), after imaging of the sample and prior to permeabilizing the sample. For example, destaining can be performed by performing one or more (e.g., one, two, three, four, or five) washing steps (e.g., one or more (e.g., one, two, three, four, or five) washing steps performed using a buffer including HCl). The images can be used to map spatial gene expression patterns back to the biological sample. A permeabilization enzyme can be used to permeabilize the biological sample directly on the slide.


In some embodiments, the FFPE sample is deparaffinized, permeabilized, equilibrated, and blocked before target probe oligonucleotides are added. In some embodiments, deparaffinization using xylenes. In some embodiments, deparaffinization includes multiple washes with xylenes. In some embodiments, deparaffinization includes multiple washes with xylenes followed by removal of xylenes using multiple rounds of graded alcohol followed by washing the sample with water. In some aspects, the water is deionized water. In some embodiments, equilibrating and blocking includes incubating the sample in a pre-Hyb buffer. In some embodiments, the pre-Hyb buffer includes yeast tRNA. In some embodiments, permeabilizing a sample includes washing the sample with a phosphate buffer. In some embodiments, the buffer is PBS. In some embodiments, the buffer is PBST.


The biological samples included herein comprise one or more analytes. Analytes can be broadly classified into one of two groups: nucleic acid analytes, and non-nucleic acid analytes.


Examples of non-nucleic acid analytes include, but are not limited to, lipids, carbohydrates, peptides, proteins, glycoproteins (N-linked or O-linked), lipoproteins, phosphoproteins, specific phosphorylated or acetylated variants of proteins, amidation variants of proteins, hydroxylation variants of proteins, methylation variants of proteins, ubiquitylation variants of proteins, sulfation variants of proteins, viral coat proteins, extracellular and intracellular proteins, antibodies, and antigen binding fragments. In some embodiments, the analyte can be an organelle (e.g., nuclei or mitochondria).


Examples of nucleic acid analytes also include RNA analytes such as various types of coding and non-coding RNA. Examples of the different types of RNA analytes include messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), microRNA (miRNA), and viral RNA. The RNA can be a transcript (e.g., present in a tissue section). The RNA can be small (e.g., less than 200 nucleic acid bases in length) or large (e.g., RNA greater than 200 nucleic acid bases in length). Small RNAs mainly include 5.8S ribosomal RNA (rRNA), 5S rRNA, transfer RNA (tRNA), microRNA (miRNA), small interfering RNA (siRNA), small nucleolar RNA (snoRNAs), Piwi-interacting RNA (piRNA), tRNA-derived small RNA (tsRNA), and small rDNA-derived RNA (srRNA). The RNA can be double-stranded RNA or single-stranded RNA. The RNA can be circular RNA. The RNA can be a bacterial rRNA (e.g., 16s rRNA or 23s rRNA).


Additional examples of analytes are disclosed in WO 2020/176788 and/or U.S. Patent Application Publication No. 2020/0277663, each of which is incorporated by reference in its entirety.


E. Methods for Preparing a Biological Sample for Spatial Analysis

(i) Imaging and Staining


Prior to analyte migration and capture, in some instances, biological samples can be stained using a wide variety of stains and staining techniques. In some instances, the biological sample is a section on a slide (e.g., a 10 μm section). In some instances, the biological sample is dried after placement onto a glass slide. In some instances, the biological sample is dried at 42° C. In some instances, drying occurs for about 1 hour, about 2, hours, about 3 hours, or until the sections become transparent. In some instances, the biological sample can be dried overnight (e.g., in a desiccator at room temperature).


In some embodiments, a sample can be stained using any number of biological stains, including but not limited to, acridine orange, Bismarck brown, carmine, coomassie blue, cresyl violet, DAPI, eosin, ethidium bromide, acid fuchsine, hematoxylin, Hoechst stains, iodine, methyl green, methylene blue, neutral red, Nile blue, Nile red, osmium tetroxide, propidium iodide, rhodamine, or safranin. In some instances, the methods disclosed herein include imaging the biological sample. In some instances, imaging the sample occurs prior to deaminating the biological sample. In some instances, the sample can be stained using known staining techniques, including Can-Grunwald, Giemsa, hematoxylin and eosin (H&E), Jenner's, Leishman, Masson's trichrome, Papanicolaou, Romanowsky, silver, Sudan, Wright's, and/or Periodic Acid Schiff (PAS) staining techniques. PAS staining is typically performed after formalin or acetone fixation. In some instances, the stain is an H&E stain.


In some embodiments, the biological sample can be stained using a detectable label (e.g., radioisotopes, fluorophores, chemiluminescent compounds, bioluminescent compounds, and dyes) as described elsewhere herein. In some embodiments, a biological sample is stained using only one type of stain or one technique. In some embodiments, staining includes biological staining techniques such as H&E staining. In some embodiments, staining includes identifying analytes using fluorescently-conjugated antibodies. In some embodiments, a biological sample is stained using two or more different types of stains, or two or more different staining techniques. For example, a biological sample can be prepared by staining and imaging using one technique (e.g., H&E staining and brightfield imaging), followed by staining and imaging using another technique (e.g., IHC/IF staining and fluorescence microscopy) for the same biological sample.


In some embodiments, biological samples can be destained. Methods of destaining or discoloring a biological sample are known in the art, and generally depend on the nature of the stain(s) applied to the sample. For example, H&E staining can be destained by washing the sample in HCl, or any other acid (e.g., selenic acid, sulfuric acid, hydroiodic acid, benzoic acid, carbonic acid, malic acid, phosphoric acid, oxalic acid, succinic acid, salicylic acid, tartaric acid, sulfurous acid, trichloroacetic acid, hydrobromic acid, hydrochloric acid, nitric acid, orthophosphoric acid, arsenic acid, selenous acid, chromic acid, citric acid, hydrofluoric acid, nitrous acid, isocyanic acid, formic acid, hydrogen selenide, molybdic acid, lactic acid, acetic acid, carbonic acid, hydrogen sulfide, or combinations thereof). In some embodiments, destaining can include 1, 2, 3, 4, 5, or more washes in an acid (e.g., HCl). In some embodiments, destaining can include adding HCl to a downstream solution (e.g., permeabilization solution). In some embodiments, destaining can include dissolving an enzyme used in the disclosed methods (e.g., pepsin) in an acid (e.g., HCl) solution. In some embodiments, after destaining hematoxylin with an acid, other reagents can be added to the destaining solution to raise the pH for use in other applications. For example, SDS can be added to an acid destaining solution in order to raise the pH as compared to the acid destaining solution alone. As another example, in some embodiments, one or more immunofluorescence stains are applied to the sample via antibody coupling. Such stains can be removed using techniques such as cleavage of disulfide linkages via treatment with a reducing agent and detergent washing, chaotropic salt treatment, treatment with antigen retrieval solution, and treatment with an acidic glycine buffer. Methods for multiplexed staining and destaining are described, for example, in Bolognesi et al., J. Histochem. Cytochem. 2017; 65(8): 431-444, Lin et al., Nat Commun. 2015; 6:8390, Pirici et al., J. Histochem. Cytochem. 2009; 57:567-75, and Glass et al., J. Histochem. Cytochem. 2009; 57:899-905, the entire contents of each of which are incorporated herein by reference.


In some embodiments, immunofluorescence or immunohistochemistry protocols (direct and indirect staining techniques) can be performed as a part of, or in addition to, the exemplary spatial workflows presented herein. For example, tissue sections can be fixed according to methods described herein. The biological sample can be transferred to an array (e.g., capture probe array), wherein analytes (e.g., proteins) are probed using immunofluorescence protocols. For example, the sample can be rehydrated, blocked, and permeabilized (3×SSC, 2% BSA, 0.1% Triton X, 1 U/μl RNAse inhibitor for 10 minutes at 4° C.) before being stained with fluorescent primary antibodies (1:100 in 3×SSC, 2% BSA, 0.1% Triton X, 1 U/μl RNAse inhibitor for 30 minutes at 4° C.). The biological sample can be washed, coverslipped (in glycerol+1 U/μl RNAse inhibitor), imaged (e.g., using a confocal microscope or other apparatus capable of fluorescent detection), washed, and processed according to analyte capture or spatial workflows described herein.


In some instances, a glycerol solution and a cover slip can be added to the sample. In some instances, the glycerol solution can include a counterstain (e.g., DAPI).


As used herein, an antigen retrieval buffer can improve antibody capture in IF/IHC protocols. An exemplary protocol for antigen retrieval can be preheating the antigen retrieval buffer (e.g., to 95° C.), immersing the biological sample in the heated antigen retrieval buffer for a predetermined time, and then removing the biological sample from the antigen retrieval buffer and washing the biological sample.


In some embodiments, optimizing permeabilization can be useful for identifying intracellular analytes. Permeabilization optimization can include selection of permeabilization agents, concentration of permeabilization agents, and permeabilization duration. Tissue permeabilization is discussed elsewhere herein.


In some embodiments, blocking an array and/or a biological sample in preparation of labeling the biological sample decreases nonspecific binding of the antibodies to the array and/or biological sample (decreases background). Some embodiments provide for blocking buffers/blocking solutions that can be applied before and/or during application of the label, wherein the blocking buffer can include a blocking agent, and optionally a surfactant and/or a salt solution. In some embodiments, a blocking agent can be bovine serum albumin (BSA), serum, gelatin (e.g., fish gelatin), milk (e.g., non-fat dry milk), casein, polyethylene glycol (PEG), polyvinyl alcohol (PVA), or polyvinylpyrrolidone (PVP), biotin blocking reagent, a peroxidase blocking reagent, levamisole, Carnoy's solution, glycine, lysine, sodium borohydride, pontamine sky blue, Sudan Black, trypan blue, FITC blocking agent, and/or acetic acid. The blocking buffer/blocking solution can be applied to the array and/or biological sample prior to and/or during labeling (e.g., application of fluorophore-conjugated antibodies) to the biological sample.


(ii) Preparation of Sample for Analyte Migration and Capture


In some instances, the biological sample is deparaffinized. Deparaffinization can be achieved using any method known in the art. For example, in some instances, the biological samples is treated with a series of washes that include xylene and various concentrations of ethanol. In some instances, methods of deparaffinization include treatment of xylene (e.g., three washes at 5 minutes each). In some instances, the methods further include treatment with ethanol (e.g., 100% ethanol, two washes 10 minutes each; 95% ethanol, two washes 10 minutes each; 70% ethanol, two washes 10 minutes each; 50% ethanol, two washes 10 minutes each). In some instances, after ethanol washes, the biological sample can be washed with deionized water (e.g., two washes for 5 minutes each). It is appreciated that one skilled in the art can adjust these methods to optimize deparaffinization.


In some instances, the biological sample is decrosslinked. In some instances, the biological sample is decrosslinked in a solution containing TE buffer (comprising Tris and EDTA). In some instances, the TE buffer is basic (e.g., at a pH of about 9). In some instances, decrosslinking occurs at about 50° C. to about 80° C. In some instances, decrosslinking occurs at about 70° C. In some instances, decrosslinking occurs for about 1 hour at 70° C. Just prior to decrosslinking, the biological sample can be treated with an acid (e.g., 0.1M HCl for about 1 minute). After the decrosslinking step, the biological sample can be washed (e.g., with 1×PBST).


In some instances, the methods of preparing a biological sample for analyte capture include permeabilizing the sample. In some instances, the biological sample is permeabilized using a phosphate buffer. In some instances, the phosphate buffer is PBS (e.g., 1×PBS). In some instances, the phosphate buffer is PBST (e.g., 1×PBST). In some instances, the permeabilization step is performed multiple times (e.g., 3 times at 5 minutes each).


In some instances, the methods of preparing a biological sample for analyte capture include steps of equilibrating and blocking the biological sample. In some instances, equilibrating is performed using a pre-hybridization (pre-Hyb) buffer. In some instances, the pre-Hyb buffer is RNase-free. In some instances, the pre-Hyb buffer contains no bovine serum albumin (BSA), solutions like Denhardt's, or other potentially nuclease-contaminated biological materials.


In some instances, the equilibrating step is performed multiple times (e.g., 2 times at 5 minutes each; 3 times at 5 minutes each). In some instances, the biological sample is blocked with a blocking buffer. In some instances, the blocking buffer includes a carrier such as tRNA, for example yeast tRNA such as from brewer's yeast (e.g., at a final concentration of 10-20 μg/mL). In some instances, blocking can be performed for 5, 10, 15, 20, 25, or 30 minutes.


Any of the foregoing steps can be optimized for performance. For example, one can vary the temperature. In some instances, the pre-hybridization methods are performed at room temperature. In some instances, the pre-hybridization methods are performed at 4° C. (in some instances, varying the timeframes provided herein).


III. Reaction Mixtures and Kits

Also provided herein are reaction mixtures that include: an array comprising a plurality of capture probes, where a capture probe of the plurality comprises a capture domain (e.g., any of the exemplary capture domains described herein or known in the art) that binds specifically to an RNA (e.g., any of the exemplary types of RNA described herein or known in the art) and a spatial barcode; a reverse transcriptase (e.g., any of the exemplary reverse transcriptases described herein or known in the art); RNAse H or a functional equivalent thereof, and a DNA polymerase (e.g., any of the exemplary DNA polymerases described herein or known in the art).


Also provided herein are kits that include: an array comprising a plurality of capture probes, where a capture probe of the plurality comprises a capture domain (e.g., any of the exemplary capture domains described herein or known in the art) that binds specifically to an RNA (e.g., any of the exemplary types of RNA described herein or known in the art) and a spatial barcode; a reverse transcriptase (e.g., any of the exemplary reverse transcriptases described herein or known in the art); RNAse H or a functional equivalent thereof, and a DNA polymerase (e.g., any of the exemplary DNA polymerases described herein or known in the art).


In some embodiments of any of the reaction mixtures or kits described herein, the capture domain can be any of the capture domains described herein. In some embodiments, the capture domain can comprise a poly(T) sequence. In some embodiments, the capture domain does not comprise a poly(T) sequence. In some embodiments, the capture domain comprises a sequence that is substantially complementary to a contiguous sequence present in the RNA. The capture domain can be about 5 to about 40 nucleotides (e.g., or any of the subranges of this range described herein) in length.


In some embodiments, the capture domain is positioned 3′ relative to the spatial barcode in the capture probe. In some embodiments of any of the reaction mixtures or kits provided herein, the capture probe further includes a unique molecular identifier, a cleavage domain (e.g., any of the exemplary cleavage domains described herein), or both.


In some embodiments of any of the reaction mixtures or kits described herein, the plurality of capture probes are affixed (i.e., attached) to an array. In some embodiments of any of the reaction mixtures or kits described herein, the array is a slide (e.g., a slide comprising beads or a slide comprising wells (e.g., microwells)). An array can also have one or more of any of the exemplary characteristics of arrays described herein.


Some embodiments of any of the reaction mixtures or kits described herein can further include a primer comprising in a 5′ to a 3′ direction: (i) an adapter sequence (e.g., any of the exemplary adapter sequences described herein) and (ii) a sequence or a complement thereof present in a 5′ region of the RNA that is specifically bound to the capture domain.


The sequence or complement thereof present in a 5′ region of the RNA that is specifically bound to the capture domain can be about 15 to about 50 nucleotides (e.g., or any of the subranges of this range described herein) long. In some embodiments, the sequence present in the 5′ region of the RNA (that is specifically bound to the capture domain) is about 20 to about 1,000 nucleotides (e.g., or any of the subranges of this range described herein) 5′ to the 3′ end of the RNA that is specifically bound to the capture domain.


Some embodiments of the kits described herein further include a solution that can be used to dissociate two strands of DNA (e.g., an extended capture probe and a DNA that is hybridized to the extended capture probe). In some embodiments, the solution that can be used to dissociate two strands of DNA can have an increased salt concentration.


In some embodiments of any of the reaction mixtures described herein, the reaction mixture can include an RNA from a biological sample (e.g., an mRNA or any of the other types of RNA described herein or known in the art).


In some embodiments of any of the kits or reaction mixtures described herein, the kit or reaction mixture can further include one or more permeabilization reagents (e.g., one or more of any of the permeabilization reagents described herein).


Some embodiments of any of the kits described herein can further include a staining agent. In some embodiments, a staining agent can include an optical label, e.g., a fluorescent, a radioactive, a chemiluminescent, a calorimetric, or a colorimetric detectable label. In some embodiments, a staining agent can be a fluorescent antibody directed to a target analyte (e.g., cell surface or intracellular proteins). In some embodiments, a staining agent can be a chemical stain, such as hematoxylin and eosin (H&E) or periodic acid-schiff (PAS).


Some embodiments of any of the kits described herein can further include instructions for performing any of the methods described herein.


It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.


EXAMPLES
Example 1: Adding an Adapter to a Second Strand Complementary to an Extended Capture Probe

An experiment was performed to demonstrate the performance of the methods described herein in determining the location of 20 exemplary RNA molecules in FFPE mouse brain tissue.


Briefly, a FFPE mouse brain tissue section was placed on a spatial array comprising a plurality of capture probes. The tissue section was permeabilized to release mRNA from the sample. After permeabilization, mRNA molecules were captured by capture probes via hybridization of the poly(A) tail of the mRNA to the poly(T) sequence of the capture probe. The capture probe was extended using a polymerase to generate a first strand cDNA molecule, using the mRNA bound to capture domain as a template. After cDNA synthesis, the RNA that was used as a template for first strand cDNA synthesis was digested by RNase H, leaving a single-stranded extended capture probe. The extended capture probes were contacted with primers comprising an adapter sequence (e.g., a second sequencing adapter sequence; e.g., SEQ ID NO:1 (CCTTGGCACACCCGAGAATTCCA)) and a sequence that specifically binds to the extended capture probe (e.g., binding to the target sequences shown in Table 2). The primers were extended using the extended capture probe as a template, thereby generating a DNA molecule that is hybridized to the extended capture probe and that is termed the second strand. The second strands were recovered and were used to prepare libraries for subsequent processing and analysis (e.g., sequencing using any of the methods described herein, e.g., high throughput sequencing, e.g., Illumina™ sequencing (e.g., sequencing by synthesis)).


Tables 1 and 2 show the list of the 20 exemplary RNA sequences and the sequences that specifically binds to the extended capture probe (“target sequence;” SEQ ID NOs: 2-21) using a primer sequence (e.g., one of SEQ ID NOs: 22-41) in Table 2. The captured sequences for each analyte are shown in Table 3 (SEQ ID NOs: 42-61).


All primers include sequences that correspond to sequences in the 3′ UTR of the target RNAs, except two primers which include a sequence that spans an exon and the 3′ UTR of the target RNA. The four groups of genes shown in Table 1 are based on varying levels of analyte expression and UMI detection, with Group 1 having the highest expression and abundance of detection. The primer sequences were blasted and checked for self-dimer and cross-primer dimers. The data in Table 1 demonstrate the ability of these methods to add a sequencing adapter to a 5′ end of a DNA that is complementary to the extended capture probe (“the second strand”), and the subsequent successful sequencing of the second strand. The 20 exemplary RNAs listed in Table 1 include mRNAs for the housekeeping genes of GAPDH, ACTB, B2M, and FGB.









TABLE 1







Targeted Analytes






















nt to
Primers









poly
on 3′


Analyte
Group
num_umis
num_barcodes_cells
num_reads_cells
num_umis_cells
Genomic location
A
UTR


















Mbp
1
405505
2858
1254340
381413
18:82558495-82558519
187
yes


Gapdh
1
395061
2858
962940
353511
6:125162022-
171
spanning








125162044




Plp1
1
275818
2854
768966
262333
X:136839533-
181
yes








136839556




Actb
1
190193
2855
390405
170617
5:142903261-
146
yes








142903285




Itm2c
1
105108
2856
271887
95619
1:85908500-85908524
154
yes


Vsnl1
1
91104
2841
234144
83811
12:11325402-11325425
161
yes


B2m
2
38662
2849
97390
34986
2:122152880-
179
yes








122152904




Plekhb1
2
34608
2800
102306
32596
7:100643054-
162
yes








100643078




Cldn11
2
27050
2561
59944
25186
3:31164143-31164167
160
yes


Ahi1
2
20613
2709
54378
18983
10:21080222-
188
yes








21080244




Pde1b
2
14315
2582
40455
13030
15:103529881-
149
yes








103529905




Adarb1
2
12245
2562
31584
11302
10:77290903-77290927
178
yes


Zcchc12
3
9886
2299
27061
8929
X:36198962-36198986
174
yes


Penk
3
6384
1735
16410
5645
4:4133699-4133723
171
yes


Nr4a2
3
4663
1571
12100
4389
2:57106954-57106978
126
yes


Gpr88
3
3090
980
8195
2756
3:116249856-
205
yes








116249881




Prkcd
3
3086
1018
5601
2931
14:30595537-30595561
184
yes


Hs3st2
3
2825
1094
7316
2573
7:121501604-
144
yes








121501628




Tnnt1
4
1173
521
2601
1108
7:4504739-4504761
172
spanning


Fgb
4
0
0
0
0
3:83040300-83040324
162
yes
















TABLE 2







Target Sequences and Primers














Target

Primer



Ensembl
Target
Sequence

Sequence



Identifier
Analyte
Identifier
Target Sequence
Identifier
Primer Sequence





ENSMUSG00000041607
Mbp
 2
ACTGACACTGGAA
22
CCTTGGCACCCGAGAATTCCAACTG





TAGGAATGTGAT

ACACTGGAATAGGAATGTGAT





ENSMUSG00000057666
Gapdh
 3
CTCCAAGGAGTAA
23
CCTTGGCACCCGAGAATTCCACTCC





GAAACCCTGG

AAGGAGTAAGAAACCCTGG





ENSMUSG00000031425
Plp1
 4
CTGCCCTCTGGGA
24
CCTTGGCACCCGAGAATTCCACTGC





TGGATCTATAG

CCTCTGGGATGGATCTATAG





ENSMUSG00000029580
Actb
 5
TTTTAATTTCTGAA
25
CCTTGGCACCCGAGAATTCCATTTT





TGGCCCAGGTC

AATTTCTGAATGGCCCAGGTC





ENSMUSG00000026223
Itm2c
 6
TCCTGCATGTTTTT
26
CCTTGGCACCCGAGAATTCCATCCT





ACTGATGTTCG

GCATGTTTTTACTGATGTTCG





ENSMUSG00000054459
Vsnl1
 7
CTGGAATTTGCAG
27
CCTTGGCACCCGAGAATTCCACTGG





AATGACTGGAAG

AATTTGCAGAATGACTGGAAG





ENSMUSG00000060802
B2m
 8
ATCATATGCCAAA
28
CCTTGGCACCCGAGAATTCCAATCA





CCCTCTGTACTT

TATGCCAAACCCTCTGTACTT





ENSMUSG00000030701
Plekhb1
 9
ACTGACAAAGCTG
29
CCTTGGCACCCGAGAATTCCAACTG





TACTGAGTATGA

ACAAAGCTGTACTGAGTATGA





ENSMUSG00000037625
Cldn11
10
GTCTCCATTCTGTT
30
CCTTGGCACCCGAGAATTCCAGTCT





AGAGACCATGA

CCATTCTGTTAGAGACCATGA





ENSMUSG00000019986
Ahi1
11
ATACAGGGTGGC
31
CCTTGGCACCCGAGAATTCCAATAC





ACTGAAAACTG

AGGGTGGCACTGAAAACTG





ENSMUSG00000022489
Pde1b
12
ACTGCCTCCTCCTC
32
CCTTGGCACCCGAGAATTCCAACTG





TCTTGTAAATA

CCTCCTCCTCTCTTGTAAATA





ENSMUSG00000020262
Adarb1
13
ATGAATGTAACTC
33
CCTTGGCACCCGAGAATTCCAATGA





AGCCAAGAAACG

ATGTAACTCAGCCAAGAAACG





ENSMUSG00000036699
Zcchc12
14
TCTACCTTGTGAA
34
CCTTGGCACCCGAGAATTCCATCTA





ACAATTGTCAGC

CCTTGTGAAACAATTGTCAGC





ENSMUSG00000045573
Penk
15
GTGGTCTAGATAA
35
CCTTGGCACCCGAGAATTCCAGTGG





CTACACTGCCTG

TCTAGATAACTACACTGCCTG





ENSMUSG00000026826
Nr4a2
16
ATTTCTAGTACGG
36
CCTTGGCACCCGAGAATTCCAATTT





CACATGAGATGA

CTAGTACGGCACATGAGATGA





ENSMUSG00000068696
Gpr88
17
TGGACCAAGAATG
37
CCTTGGCACCCGAGAATTCCATGGA





GTAAGAACATTTG

CCAAGAATGGTAAGAACATTTG





ENSMUSG00000021948
Prkcd
18
ATAGAAAGCATGT
38
CCTTGGCACCCGAGAATTCCAATAG





AGGAGACTGGTG

AAAGCATGTAGGAGACTGGTG





ENSMUSG00000046321
Hs3st2
19
GACGACGATATCT
39
CCTTGGCACCCGAGAATTCCAGACG





TTGAAAAGCACT

ACGATATCTTTGAAAAGCACT





ENSMUSG00000064179
Tnnt1
20
GAAGTGAGACTG
40
CCTTGGCACCCGAGAATTCCAGAAG





CCAGGACATGA

TGAGACTGCCAGGACATGA





ENSMUSG00000033831
Fgb
21
CCCTCAACTGTTC
41
CCTTGGCACCCGAGAATTCCACCCT





ACTCTTAGAACT

CAACTGTTCACTCTTAGAACT
















TABLE 3







Capture Analyte Sequences












Captured



Ensembl
Target
Sequence



Identifier
Analyte
Identifier
Captured Sequence of Each Analyte





ENSMUSG00000041607
Mbp
42
ACTGACACTGGAATAGGAATGTGATGGGCGTCGCACCCTC





TGTAAATGTGGGAATGTTTGTAACTTGTGTTTGTATCTAAT





GTCGATCCCCTTAGGTGGTTGTACTATAATTCATTTTTGTT





GTAAACTTCAGCCTAAGATAAATGTACATCTGCTTTTGTAT





GCACTCATTAAACATTGTAACAGACCAAAGATGGTGTACTA





ATTGC





ENSMUSG00000057666
Gapdh
43
CTCCAAGGAGTAAGAAACCCTGGACCACCCACCCCAGCAA





GGACACTGAGCAAGAGAGGCCCTATCCCAACTCGGCCCC





CAACACTGAGCATCTCCCTCACAATTTCCATCCCAGACCC





CCATAATAACAGGAGGGGCCTAGGGAGCCCTCCCTACTCT





CTTGAATACCATCAATAAAGTTCGCTGCACCC





ENSMUSG00000031425
Plp1
44
CTGCCCTCTGGGATGGATCTATAGATGGACTTTCCAAGCT





CTCAGAAGCTGAGAGCATCTCCAGTTTATCAATTGAGCCC





ATTGTTCTTAGCTCTCTCCCACATCATAAACCTTCTTTCTCT





GAACAGAAAAGAGCTCTCTTTGTACTCAGATCAGCTAAAAA





TTAAAATACAGCAGTGTAAACAAGAAATTTTCTTACAA





ENSMUSG00000029580
Actb
45
TTTTAATTTCTGAATGGCCGAGGTCTGAGGCCTCCCTTTTT





TTTGTCCCCCCAACTTGATGTATGAAGGCTTTGGTCTCCCT





GGGAGGGGGTTGAGGTGTTGAGGCAGCCAGGGCTGGCC





TGTACACTGACTTGAGACCAATAAAAGTGCACACCTTACCT





TACACAAACA





ENSMUSG00000026223
Itm2c
46
TCCTGCATGTTTTTACTGATGTTCGTGCTGGCTGCCCTCAG





CCCTGAGTCTGGGAGAGGCTTTGGTGCCTCGGGTCAGAC





TTGGGTGCTCCATGGTAGTGGAGCCCTTAAATGCTTTGTAT





ATTTTCTCTATTAGATCTCTTTTCAGAAGTGTCTGTAGAAAA





TTA AAAAAAAACA





ENSMUSG00000054459
Vsnl1
47
CTGGAATTTGCAGAATGACTGGAAGTGGGGAAAGTCACTG





TCCAACTTATCATCCAGCCCCTCCTTCCCCAAAGATCAATA





TGGCATGTAATATTTAAAGAAAACAGGAGATTTGTTCATTC





TGGAAAACAATGCTCATTATGTGACAATAAACTTTATCTCA





GTGTGACTTTGGTGCCAACAA





ENSMUSG00000060802
B2m
48
ATCATATGCCAAACCCTCTGTACTTCTCATTACTTGGATGC





AGTTACTCATCTTTGGTCTATCACAACATAAGTGACATACTT





TCCTTTTGGTAAAGCAAAGAGGCCTAATTGAAGTCTGTCAC





TGTGCCCAATGCTTAGCAATTCTCACCCCCAACCCTGTGG





CTACTTCTGCTTTTGTTACT TTTACTAAAAATAAAAAACT





ENSMUSG00000030701
Plekhb1
49
ACTGACAAAGCTGTACTGAGTATGACCATATGATATTAAGT





CGAGCAGAGGTCCCAGGAACCACAAGGCCAACCCTCCAA





GCATCTTCTCGCAGTACCTTTGTTTTCACCAACCTCTCTTG





TCATTTGTTGTGTCCTAATGCTACTTCTGAAGATAGCTGCA





CCAATAAAATCTATGGCCTGTGGTT





ENSMUSG00000037625
Cldn11
50
GTCTCCATTCTGTTAGAGACCATGAAGCAGTATTGTTTAAC





ATAAGTTGTACTGTTAAGTTTGGCTTCATGGGTGTAAACAC





CAATGGTCTGTCAGTGTCTAAGACTCTGGATACTGCAAGC





TCCGTCCGGTGCATTTGTTCAGGTAAAATCTGTGCAATAAA





ATAACAAAC TGTCTCCAAA





ENSMUSG00000019986
Ahi1
51
ATACAGGGTGGCACTGAAAACTGCTGAAGCCCACAGCCCT





CAGCCCCGAAGGCTCAGCGGCCAGTACCAGCGGCCTTGC





TGTGGTTGTGTGTCTGCGTCCCTGGCACACTTGGGCAGGC





AGCTCAGTCACTCTGAACTTGCTTCTCTTCTGTCTTGTGAG





TGTGCTGCTTGAGACAATGAAAAATAAAGCTGTGTTCCTAC





CCCTTCA





ENSMUSG00000022489
Pde1b
52
ACTGCCTCCTCCTCTCTTGTAAATACATGCATTTGTACAGT





GGGCCCTGTTCTTGTGAAGTCCATCTCCATGGTCATTAGA





CCTGCCACTCTGAACCGCATGTGACTCCCCCATGCTCTTG





GTCTCCCAGGCCCCTGCTATAGCCAGAGATCAATAAAGAA





GGGAGACCGGC





ENSMUSG00000020262
Adarb1
53
ATGAATGTAACTCAGCCAAGAAACGTGTTGCTAAGATACAA





TCCTCAGTGTTCTCTGTATGTATATTTCTGTATATACCACAT





GTTACAGCCTGCATGAGCTTCCTCACACCAAGCCCAGCCG





GCACTGAGCATGAGATGCTGTTACATGTAGACAAAGGACT





GAGATGTTCTCAATAAAGACTAAGACGTTTCACTATG





ENSMUSG00000036699
Zcchc12
54
TCTACCTTGTGAAACAATTGTCAGCCCTTTGGTGCCTATCC





TTCTAAATATTTCTCTATATCTGTGTTCCTAGATTAGAAATA





TGTATAGACGAAAGTGATCAAATAGAAGTGTTGTTCTATAT





GCTGTATTTTTTCACCAAAACGTATGTTGTGGCCTTCTTTG





TCAATAAATATATACATATATGTCAGCATCT





ENSMUSG00000045573
Penk
55
GTGGTCTAGATAACTACACTGCCTGAAAGCTGTGATTTTAG





GGTCTGTGTTCTTTTGAGTCTTGAAGCTCAGTATTGGTCTC





TTATGGCTATGTTGTTATCAATAGTTTGTTACCTCATCTCTC





CTGACGAAACATCAATAAATGCTTATTTGTATATAAATATAA





TAAACCCGTGACCCCAACTGCACAATG





ENSMUSG00000026826
Nr4a2
56
ATTTCTAGTACGGCACATGAGATGAGTCACTGCCTTTTTTT





CTATGGTGTACGACAGTTAGAGATGCTGATTTTTTTTTCCT





GATAAATTCTTTCTTTAAGAAAGACAATTTTAATGTTTACAA





CAATAAACCACGTAAATGAACAGAA





ENSMUSG00000068696
Gpr88
57
TGGACCAAGAATGGTAAGAAGATTTGTATTTTTGAAAAAAT





TGGGAGACACGGGAAACAGATATTTTATAGCAAGGCAAAA





TAAAATAAATATGTTTGTCACTAACAATACGTTGGCAGTCAT





GTCATTAACCAAACTGTGTGCATGTGTCATTTTTCTCTTAC





GAAGATTTCTTCTGTTTCCAGTTTCCTGGATTCAGATATTTA





ATTAAAGTTTCCATAATGCTTC





ENSMUSG00000021948
Prkcd
58
ATAGAAAGCATGTAGGAGACTGGTGATGTGTTGACCTTTTT





AAAAAAAAACATATGTATATGTGTGTATATATATATACACAC





ATATACATATATATGTGTATGTATGTACGTATGTATATATAT





ATGACCAAAAGAAAAGAAGAGCACAAGCTGTCTGAACCAC





AGGTTCTTTT ATGTGTGTCTAAATAAACACTGAATGGTACC





ENSMUSG00000046321
Hs3st2
59
GACGACGATATCTTTGAAAAGCACTCTGTGACTCTCCCTG





CTCCCTGCGGACAAAAGCACATAATCTGCTGTTACGGGTA





CTTTCTTCACGCGAGCTTTCATGTTCAGCATGCACGGGAT





CATGCTTGTCCATGTGAAATAAATATGGCTCTCTOGTGTCC





TTAACA





ENSMUSG00000064179
Tnnt1
60
GAAGTGAGACTGCCAGGACATGACOTGOTGTGTGGAGCC





CAGGAGCCACTGGAGCGTGTCCCATCTGTAACTCAAAATA





AAGTGCCCCCAGGCATCTGCTTAAGTTCTTCAGGGTTGTT





ATTATGTGGGTTGATCGACATCTCCATACTGCCTGGGAGA





GCCATCAACTGTCATTAAAGAGAGTTCAAGTTC





ENSMUSG00000033831
Fgb
61
CCCTCAACTGTTCACTCTTAGAACTTTCTAAAAGCCTAAGG





AAATTGCTCACATTTTGACAATGAATACTAGCCAACCATCT





GTTTTGCTTCCCTAAGAAGCATTTTTTTCAACTTTTATTCCA





GTCTGAGAAGCTTGTAATTTCTAAACATTGAATGAATAAAC





TCAAAGAATTGCCAATGCC









Example 2: Varying Conditions for Second Strand Synthesis

Given the ability to detect a cohort of genes from Example 1, optimal conditions for second strand synthesis were determined. After analyte capture, capture probe extension, and analyte digestion as described in Example 1, second strand cDNA synthesis was performed for 30 minutes on three-day old tissue sections. The amplification reaction was carried out for 22 cycles. Table 4 shows four experimental condition groups (Groups A-D) that were tested while varying the primer concentration and whether the tissue was removed.









TABLE 4







Experimental Conditions











Primer


Group
Tissue Removal
Concentration





A
Triton 0.5%, no tissue removal
 1 μM primer pool


B
Triton 0.5%, tissue removal
 1 μM primer pool


C
Triton 1%, no tissue removal
10 nM primer pool


D
Triton 1%, tissue removal
10 nM primer pool









As shown in FIGS. 8A-8B and FIG. 9, analytes were most readily detected in Group A (Triton 0.50%, no tissue removal; 1 μM primer pool). Consistent with these data, Table 5 shows the results of the experiment, indicating that the highest number of detected genes occurred in Group A, in which (i) no tissue was removed from the array and (ii) the primer pool concentration was 1 μm.









TABLE 5







Groups A-D Results
















Number of










Spots
Mean
Median




Total



under
Reads
Genes
Number of
Valid
Valid
Seq
Genes


Group
Tissue
per Spot
per Spot
Seq Reads
Barcodes
UMIs
Saturation
Detected


















A
2944
5338
3
15,714,831
94.80%
99.90%
97.00%
2119


B
2933
2923
2
8,574,525
  67%
99.90%
98.20%
1710


C
2892
3803
2
10,998,407
95.50%
99.80%
89.60%
316


D
2848
1099
0
3,131,081
88.30%
98.90%
96.80%
262









These data demonstrate a proof of concept that one can optimize the conditions (e.g., with or without tissue removal; primer concentration) to increase analyte detection. Because of the results in Group A, additional analysis was performed on this Group. In particular, a sequencing comparison was performed looking at detection of the original cDNA compared to detection of the targeted second strand (TSS). As shown in Tables 6 and 7, sequencing results for the targeted second strand indicated that Group A (compared to the original cDNA) had an increase in sequencing saturation, an increase in reads mapped confidently to intergenic regions, an increase in cDNA PCR Duplication, and a decrease in the fraction of UMI counts that were mapped to ribosomal protein. Taken together, these data provide proof of concept that the methods using second strand amplification using an adaptor and a primer as disclosed herein readily target and detect sequences of interest.









TABLE 6







Group A Results with and without Second Strand Synthesis using Adaptor and Primer





















Reads










Mapped
Reads
Reads



Mean



Reads
Confidently
Mapped
Mapped



Reads
Reads Mapped


Mapped
to
Confidently
Confidently



per
Confidently to
Number
Sequencing
to
Intergenic
to Intronic
to Exonic


Name
Cell
Transcriptome
of Reads
Saturation
Genome
Regions
Regions
Regions


















V10J14_005_A
69207
28.80%
203606932
72.20%
60.70%
14.00%
10.00%
29.60%


(“cDNA”)










V10J14_005_A_TSS
5338
3.50%
15714831
97.00%
54.20%
34.40%
6.10%
4.00%


(“Targeted Second










Strand”)
















TABLE 7







Group A Results with and without Second Strand Synthesis using Adaptor and Primer
















cDNA PCR



Fraction





Duplication


Median
Ribosomal




Fraction
(5k raw
Median
Total
UMI
Protein
Fraction



reads
reads per
Genes
Genes
Counts
UMI
Mitochondrial


Name
unmapped
cell)
per Cell
Detected
per Cell
Counts
UMI Counts

















V10J14_005_A
39.30%
19.30%
1922
18355
4680
1.60%
23.20%


(“cDNA”)









V10J14_005_A_TSS
45.80%
96.90%
3
2119
3
0.40%
25.30%


(“Targeted Second









Strand”)









Example 3: Using Hot-Start AMP Mix to Increase Priming Specificity of Second Strand Synthesis

Using a fresh mouse brain tissue sample, parameters were adjusted to test whether using Hot Start Taq DNA Polymerase would affect target-specific detection using a primer comprising an adaptor as described herein. Briefly, a fresh mouse brain tissue sample was sectioned and placed on an array comprising a plurality of capture probes. After permeabilization, analyte capture, capture probe extension, and second strand synthesis was performed for 15 minutes followed by 22 cycles of PCR.


Second strand synthesis was performed using either second strand mix (i.e., the same buffer from Examples 1 and 2), or using Hot Start AMP Mix Buffer. See Table 7. As shown in FIGS. 10A-10B, analyte detection was observed in the group treated with second strand mix (i.e., the same condition from Examples 1 and 2), but was not readily detected in any group using Hot Start AMP Mix Buffer. Further, detection of UMIs from each group treated with second strand (with or without TSO) showed consistent detection. See FIG. 11.









TABLE 8







Hot Start














With or


With or




without


without


Sample
Condition
TSO
Sample
Condition
TSO





A1
Second
TSO
A2
Hot Start
TSO



Strand Mix


AMP Mix



B1
Second
TSO
B2
Hot Start
TSO



Strand Mix


AMP Mix



C1
Second
No TSO
C2
Hot Start
No TSO



Strand Mix


AMP Mix



D1
Second
No TSO
D2
Hot Start
No TSO



Strand Mix


AMP Mix









The experimental settings were modified to adjust the temperature either before extension (to 98° C.) or during extension (to 65° C.). See Table 9.









TABLE 9







Hot-Start Conditions












Sample
Condition
Buffer
Sample
Condition
Buffer





A1
Pre-heat
Hot-
A2
Thermo
Hot-



98° C.;
start

mixer
start



65° C.
Amp mix

98° C.;
Amp



extension


3′-65° C.
mix


B1
Pre-heat

B2
Thermo




98° C.;


mixer




65° C.


98° C.;




extension


3′-65° C.



C1
65° C.
Second-






extension
strand





D1
65° C.
reagent






extension









As shown in FIGS. 12A-12B, analyte detection was observed in the groups pre-heated to 98° C. (A1, B1, and A2) while samples without Hot-Start Amp Mix displayed very little analyte detection. Further, FIGS. 13A-13E and 14 show only minor variance when comparing analytes detected using second strand synthesis (TSS) compared to whole genome detection (cDNA). In addition, as shown in FIG. 15 and in Tables 10 and 11 below, using Hot-Start Amp Mix resulted in an increases in UMIs specific to targeted genes, confidently mapped reads, and sequencing saturation as well as a decrease in detection of off-target ribosomal protein analytes. Finally, the spatial patterns of particular targeted genes (Tnnt1, Prkcd, Nr4a2, Hs3st2, and Cldn11) were determined, showing specific expression using the second-synthesis methods described herein compared to methods detection of analytes without second-strand synthesis. See FIG. 16.


Taken together, these data show that using a Hot-Start Amp Mix Buffer while increasing the temperature before and during second strand synthesis can increase specific detection of target analytes while decreasing off-target capture.









TABLE 10







Hot-Start Amp Mix Results






















Reads
Reads
Reads





Reads


Reads
Mapped
Mapped
Mapped




Mean
Mapped


Mapped
Confidently
Confidently
Confidently




Reads
Confidently


Confidently
to
to
to
Fraction



per
to
Number of
Sequencing
to
Intergenic
Intronic
Exonic
reads


Sample
Cell
Transcriptome
Reads
Saturation
Genome
Regions
Regions
Regions
unmapped



















95_A_cDNA
30149
32.90%
93.521.696
63.60%
60.90%
16.70%
10.50%
33.80%
33.50%


95_B_cDNA
38731
31.90%
121.537.022
70.90%
60.30%
16.20%
11.20%
32.80%
34.20%


95_A_TSS
16348
81.80%
49.879.158
99.90%
86.10%
1.40%
2.10%
82.60%
11.10%


95_B_TSS
9593
79.10%
29.269.288
99.90%
84.40%
1.60%
2.90%
80.00%
12.50%
















TABLE 11







Hot-Start Amp Mix Results




















Median
Median





cDNA PCR



genes per
UMI





Duplication


Median
cell (5k
counts
Fraction




(5k raw
Median
Total
UMI
raw
per cell
ribosomal
Fraction



reads per
Genes
Genes
Counts
reads per
(5k raw
protein
mitochondrial


Sample
cell)
per Cell
Detected
per Cell
cell)
reads per cell)
UMI counts
UMI counts


















95_A_cDNA
24.00%
1308
17676
2990
531
1034
1.60%
22.70%


95_B_cDNA
26.20%
1366
17789
3158
530
1032
1.60%
24.00%


95_A_TSS
99.80%
4
761
10
4
7
0.10%
0.20%


95_B_TSS
99.90%
2
571
5
2
4
0.30%
0.20%









OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims
  • 1. A method of determining abundance and/or location of an RNA molecule in a biological sample, the method comprising: (a) capturing the RNA molecule from the biological sample on an array comprising a plurality of capture probes, wherein a capture probe of the plurality of capture probes comprises a capture domain and a spatial barcode;(b) extending an end of the capture probe using the RNA molecule as a template, thereby generating an extended capture probe hybridized to the RNA molecule;(c) delivering a plurality of primers to the array, wherein each primer of the plurality of primers comprises in a 5′ to a 3′ direction: (i) a sequencing adaptor comprising SEQ ID NO:1 and (ii) a gene-specific sequence that binds to the extended capture probe;(d) extending a 3′ end of the primer from the plurality of primers bound to the extended capture probe using the extended capture probe as a template, thereby generating a DNA molecule hybridized to the extended capture probe; and(e) determining (i) all or a part of the sequence of the DNA molecule or a complement thereof, and (ii) the sequence of the spatial barcode or a complement thereof, and using the determined sequences of (i) and (ii) to identify the abundance and/or the location of the RNA molecule in the biological sample.
  • 2. The method of claim 1, wherein the extending in step (b) comprises contacting the capture probe hybridized to the RNA molecule with a reverse transcriptase.
  • 3. The method of claim 1, further comprising, between steps (b) and (c), digesting the RNA molecule hybridized to the extended capture probe.
  • 4. The method of claim 3, wherein the digesting comprises contacting the RNA molecule with a RNAase H or a functional equivalent thereof.
  • 5. The method of claim 1, wherein the extending in step (d) comprises contacting the primer bound to the extended capture probe with a DNA polymerase.
  • 6. The method of claim 1, further comprising releasing the DNA molecule from the extended capture probe, wherein the releasing the DNA molecule comprises heating the DNA molecule to de-hybridize the DNA molecule from the extended capture probe.
  • 7. The method of claim 1, wherein the determining in step (e) comprises sequencing (i) all or a part of the sequence of the DNA molecule or a complement thereof, and (ii) the spatial barcode or a complement thereof.
  • 8. The method of claim 1, wherein the RNA molecule is an mRNA molecule.
  • 9. The method of claim 1, wherein the capture domain comprises a poly(T) sequence.
  • 10. The method of claim 1, wherein the capture probe further comprises one or more of a functional domain, a unique molecular identifier, and a cleavage domain.
  • 11. The method of claim 1, wherein the capturing in step (a) comprises permeabilizing the biological sample using a permeabilization agent, wherein the permeabilization agent comprises proteinase K or pepsin, thereby releasing the RNA molecule from the biological sample.
  • 12. The method of claim 1, wherein the biological sample is a tissue section.
  • 13. The method of claim 12, wherein the tissue section is a formalin-fixed paraffin-embedded tissue section or a fresh frozen tissue section.
  • 14. The method of claim 1, wherein the method further comprises imaging the biological sample.
  • 15. The method of claim 1, wherein the plurality of primers is a primer pool, wherein the primer pool is at a concentration of 1 μM.
  • 16. The method of claim 1, wherein the abundance of the RNA molecule is increased by at least 10% compared to the method of claim 1 that does not utilize the plurality of primers of step (c).
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 63/048,584, filed on Jul. 6, 2020, the contents of which are incorporated herein by reference in its entirety.

US Referenced Citations (873)
Number Name Date Kind
4683195 Mullis Jul 1987 A
4683202 Mullis Jul 1987 A
4800159 Mullis Jan 1989 A
4883867 Lee Nov 1989 A
4965188 Mullis Oct 1990 A
4988617 Landegren et al. Jan 1991 A
5002882 Lunnen Mar 1991 A
5130238 Malek Jul 1992 A
5308751 Ohkawa May 1994 A
5321130 Yue Jun 1994 A
5410030 Yue Apr 1995 A
5436134 Haugland Jul 1995 A
5455166 Walker Oct 1995 A
5494810 Barany et al. Feb 1996 A
5503980 Cantor Apr 1996 A
5512439 Hornes Apr 1996 A
5512462 Cheng Apr 1996 A
5582977 Yue Dec 1996 A
5599675 Brenner Feb 1997 A
5641658 Adams Jun 1997 A
5648245 Fire et al. Jul 1997 A
5658751 Yue Aug 1997 A
5695940 Drmanac et al. Dec 1997 A
5750341 Macevicz May 1998 A
5763175 Brenner Jun 1998 A
5830711 Barany et al. Nov 1998 A
5837832 Chee et al. Nov 1998 A
5854033 Lizardi Dec 1998 A
5863753 Haugland Jan 1999 A
5871921 Landegren et al. Feb 1999 A
5912148 Eggerding Jun 1999 A
5925545 Reznikoff et al. Jul 1999 A
5928906 Koester et al. Jul 1999 A
5958775 Wickstrrom Sep 1999 A
5962272 Chenchik et al. Oct 1999 A
5965443 Reznikoff et al. Oct 1999 A
6013440 Lipshutz Jan 2000 A
6027889 Barany et al. Feb 2000 A
6054274 Sampson et al. Apr 2000 A
6060240 Kamb et al. May 2000 A
6130073 Eggerding Oct 2000 A
6143496 Brown Nov 2000 A
6153389 Haarer Nov 2000 A
6159736 Reznikoff et al. Dec 2000 A
6165714 Lane et al. Dec 2000 A
6210891 Nyren Apr 2001 B1
6210894 Brennan Apr 2001 B1
6214587 Dattagupta Apr 2001 B1
6251639 Kurn Jun 2001 B1
6258568 Nyren Jul 2001 B1
6266459 Walt Jul 2001 B1
6268148 Barany et al. Jul 2001 B1
6274320 Rothberg Aug 2001 B1
6291180 Chu Sep 2001 B1
6291187 Kingsmore et al. Sep 2001 B1
6300063 Lipshutz et al. Oct 2001 B1
6309824 Drmanac Oct 2001 B1
6323009 Lasken et al. Nov 2001 B1
6344316 Lockhart Feb 2002 B1
6344329 Lizardi et al. Feb 2002 B1
6355431 Chee Mar 2002 B1
6368801 Faruqi Apr 2002 B1
6401267 Drmanac Jun 2002 B1
6404907 Gilchrist Jun 2002 B1
6432360 Church et al. Aug 2002 B1
6503713 Rana Jan 2003 B1
6506561 Cheval et al. Jan 2003 B1
6534266 Singer Mar 2003 B1
6544732 Chee Apr 2003 B1
6573043 Cohen et al. Jun 2003 B1
6579695 Lambalot Jun 2003 B1
6620584 Chee Sep 2003 B1
6632641 Brennan Oct 2003 B1
6737236 Pieken et al. May 2004 B1
6770441 Dickinson Aug 2004 B2
6773886 Kaufman Aug 2004 B2
6787308 Balasubramanian Sep 2004 B2
6797470 Barany et al. Sep 2004 B2
6800453 Labaer Oct 2004 B2
6812005 Fan et al. Nov 2004 B2
6828100 Ronaghi Dec 2004 B1
6833246 Balasubramanian Dec 2004 B2
6852487 Barany et al. Feb 2005 B1
6859570 Walt Feb 2005 B2
6864052 Drmanac Mar 2005 B1
6867028 Janulaitis Mar 2005 B2
6872816 Hall et al. Mar 2005 B1
6875572 Prudent et al. Apr 2005 B2
6890741 Fan et al. May 2005 B2
6897023 Fu May 2005 B2
6913881 Aizenstein et al. Jul 2005 B1
6942968 Dickinson et al. Sep 2005 B1
7011944 Prudent et al. Mar 2006 B2
7057026 Barnes Jun 2006 B2
7083980 Reznikoff et al. Aug 2006 B2
7115400 Adessi Oct 2006 B1
7118883 Inoue Oct 2006 B2
7166431 Chee et al. Jan 2007 B2
7192735 Lambalot Mar 2007 B2
7211414 Hardin May 2007 B2
7255994 Lao Aug 2007 B2
7258976 Mitsuhashi Aug 2007 B2
7282328 Kong et al. Oct 2007 B2
7297518 Quake Nov 2007 B2
7329492 Hardin Feb 2008 B2
7358047 Hafner et al. Apr 2008 B2
7361488 Fan et al. Apr 2008 B2
7378242 Hurt May 2008 B2
7393665 Brenner Jul 2008 B2
7405281 Xu Jul 2008 B2
7407757 Brenner Aug 2008 B2
7473767 Dimitrov Jan 2009 B2
7499806 Kermani et al. Mar 2009 B2
7537897 Brenner May 2009 B2
7563576 Chee Jul 2009 B2
7579153 Brenner Aug 2009 B2
7582420 Oliphant et al. Sep 2009 B2
7601498 Mao Oct 2009 B2
7608434 Reznikoff et al. Oct 2009 B2
7611869 Fan Nov 2009 B2
7635566 Brenner Dec 2009 B2
7666612 Johnsson Feb 2010 B2
7674752 He Mar 2010 B2
7709198 Luo et al. May 2010 B2
7776547 Roth Aug 2010 B2
7776567 Mao Aug 2010 B2
7803943 Mao Sep 2010 B2
7888009 Barany et al. Feb 2011 B2
7892747 Barany et al. Feb 2011 B2
7910304 Drmanac Mar 2011 B2
7914981 Barany et al. Mar 2011 B2
7955794 Shen et al. Jun 2011 B2
7960119 Chee Jun 2011 B2
7985565 Mayer et al. Jul 2011 B2
8003354 Shen et al. Aug 2011 B2
8076063 Fan Dec 2011 B2
8092784 Mao Jan 2012 B2
8148068 Brenner Apr 2012 B2
8206917 Chee Jun 2012 B2
8268554 Schallmeiner Sep 2012 B2
8288103 Oliphant Oct 2012 B2
8288122 O'Leary et al. Oct 2012 B2
8383338 Kitzman Feb 2013 B2
8431691 McKernan et al. Apr 2013 B2
8460865 Chee Jun 2013 B2
8481257 Van Eijk Jul 2013 B2
8481258 Church et al. Jul 2013 B2
8481292 Casbon Jul 2013 B2
8481698 Lieberman et al. Jul 2013 B2
8507204 Pierce et al. Aug 2013 B2
8519115 Webster et al. Aug 2013 B2
8551710 Bernitz et al. Oct 2013 B2
8568979 Stuelpnagel et al. Oct 2013 B2
8586310 Mitra Nov 2013 B2
8597891 Barany et al. Dec 2013 B2
8603743 Liu et al. Dec 2013 B2
8604182 Luo et al. Dec 2013 B2
8614073 Van Eijk Dec 2013 B2
8624016 Barany et al. Jan 2014 B2
8685889 Van Eijk Apr 2014 B2
8741564 Seligmann Jun 2014 B2
8741606 Casbon Jun 2014 B2
8771950 Church et al. Jul 2014 B2
8785353 Van Eijk Jul 2014 B2
8790873 Namsaraev et al. Jul 2014 B2
8809238 Livak et al. Aug 2014 B2
8815512 Van Eijk Aug 2014 B2
8835358 Fodor Sep 2014 B2
8865410 Shendure Oct 2014 B2
8906626 Oliphant et al. Dec 2014 B2
8911945 Van Eijk Dec 2014 B2
8936912 Mitra Jan 2015 B2
8951726 Luo et al. Feb 2015 B2
8951728 Rasmussen Feb 2015 B2
8986926 Ferree et al. Mar 2015 B2
9005891 Sinicropi et al. Apr 2015 B2
9005935 Belyaev Apr 2015 B2
9023768 Van Eijk May 2015 B2
9062348 Van Eijk Jun 2015 B1
9080210 Van Eijk Jul 2015 B2
9194001 Brenner Nov 2015 B2
9201063 Sood et al. Dec 2015 B2
9273349 Nguyen et al. Mar 2016 B2
9290808 Fodor Mar 2016 B2
9290809 Fodor Mar 2016 B2
9328383 Van Eijk May 2016 B2
9334536 Van Eijk May 2016 B2
9371563 Geiss et al. Jun 2016 B2
9371598 Chee Jun 2016 B2
9376716 Van Eijk Jun 2016 B2
9376717 Gao et al. Jun 2016 B2
9376719 Eijk Jun 2016 B2
9416409 Hayden Aug 2016 B2
9447459 Van Eijk Sep 2016 B2
9453256 Van Eijk Sep 2016 B2
9493820 Van Eijk Nov 2016 B2
9506061 Brown et al. Nov 2016 B2
9512422 Barnard et al. Dec 2016 B2
9574230 Van Eijk Feb 2017 B2
9593365 Frisen et al. Mar 2017 B2
9598728 Barany et al. Mar 2017 B2
9624538 Church et al. Apr 2017 B2
9644204 Hindson et al. May 2017 B2
9657335 Van Eijk May 2017 B2
9670542 Van Eijk Jun 2017 B2
9694361 Bharadwaj Jul 2017 B2
9702004 Van Eijk Jul 2017 B2
9714446 Webster et al. Jul 2017 B2
9714937 Dunaway Jul 2017 B2
9727810 Fodor et al. Aug 2017 B2
9745627 Van Eijk Aug 2017 B2
9777324 Van Eijk Oct 2017 B2
9783841 Nolan et al. Oct 2017 B2
9790476 Gloeckner et al. Oct 2017 B2
9816134 Namsaraev Nov 2017 B2
9834814 Peter et al. Dec 2017 B2
9850536 Oliphant et al. Dec 2017 B2
9856521 Stevens et al. Jan 2018 B2
9868979 Chee et al. Jan 2018 B2
9879313 Chee et al. Jan 2018 B2
9896721 Van Eijk Feb 2018 B2
9898576 Van Eijk Feb 2018 B2
9898577 Van Eijk Feb 2018 B2
9902991 Sinicropi et al. Feb 2018 B2
9909167 Samusik et al. Mar 2018 B2
9938566 Shepard et al. Apr 2018 B2
9957550 Yeakley et al. May 2018 B2
10002316 Fodor et al. Jun 2018 B2
10023907 Van Eijk Jul 2018 B2
10030261 Frisen et al. Jul 2018 B2
10035992 Gloeckner et al. Jul 2018 B2
10041949 Bendall et al. Aug 2018 B2
10059989 Giresi et al. Aug 2018 B2
10059990 Boyden et al. Aug 2018 B2
10095832 Van Eijk Oct 2018 B2
10144966 Cantor Dec 2018 B2
10208982 Bannish et al. Feb 2019 B2
10227639 Levner et al. Mar 2019 B2
10266876 Cai et al. Apr 2019 B2
10273541 Hindson et al. Apr 2019 B2
10308982 Chee Jun 2019 B2
10357771 Bharadwaj Jul 2019 B2
10370698 Nolan et al. Aug 2019 B2
10415080 Dunaway et al. Sep 2019 B2
10465235 Gullberg et al. Nov 2019 B2
10472669 Chee Nov 2019 B2
10480022 Chee Nov 2019 B2
10480029 Bent et al. Nov 2019 B2
10494667 Chee Dec 2019 B2
10495554 Deisseroth et al. Dec 2019 B2
10501777 Beechem et al. Dec 2019 B2
10501791 Church et al. Dec 2019 B2
10510435 Cai et al. Dec 2019 B2
10544403 Gloeckner et al. Jan 2020 B2
10550429 Harada et al. Feb 2020 B2
10590244 Delaney et al. Mar 2020 B2
10633648 Seelig et al. Apr 2020 B2
10640816 Beechem et al. May 2020 B2
10640826 Church et al. May 2020 B2
10669569 Gullberg et al. Jun 2020 B2
10724078 Van Driel et al. Jul 2020 B2
10725027 Bell Jul 2020 B2
10774372 Chee et al. Sep 2020 B2
10774374 Frisen et al. Sep 2020 B2
10787701 Chee Sep 2020 B2
10815519 Husain et al. Oct 2020 B2
10829803 Terbrueggen et al. Nov 2020 B2
10844426 Daugharthy et al. Nov 2020 B2
10858698 Church et al. Dec 2020 B2
10858702 Lucero et al. Dec 2020 B2
10913975 So et al. Feb 2021 B2
10914730 Chee et al. Feb 2021 B2
10927403 Chee et al. Feb 2021 B2
10961566 Chee Mar 2021 B2
11001879 Chee May 2021 B1
11008607 Chee May 2021 B2
11046996 Chee et al. Jun 2021 B1
11067567 Chee Jul 2021 B2
11104936 Zhang et al. Aug 2021 B2
11118216 Koshinsky et al. Sep 2021 B2
11156603 Chee Oct 2021 B2
11162132 Frisen et al. Nov 2021 B2
11208684 Chee Dec 2021 B2
11286515 Chee et al. Mar 2022 B2
11293917 Chee Apr 2022 B2
11299774 Frisen et al. Apr 2022 B2
11313856 Chee Apr 2022 B2
11332790 Chell et al. May 2022 B2
11352659 Frisen et al. Jun 2022 B2
11352667 Hauling et al. Jun 2022 B2
11359228 Chee et al. Jun 2022 B2
11365442 Chee Jun 2022 B2
11371086 Chee Jun 2022 B2
11384386 Chee Jul 2022 B2
11390912 Frisen et al. Jul 2022 B2
11401545 Chee Aug 2022 B2
11407992 Dadhwal Aug 2022 B2
11408029 Katiraee et al. Aug 2022 B2
11434524 Ramachandran Iyer et al. Sep 2022 B2
11459607 Terry et al. Oct 2022 B1
11479809 Frisen et al. Oct 2022 B2
11479810 Chee Oct 2022 B1
11492612 Dadhwal Nov 2022 B1
11501440 Weisenfeld et al. Nov 2022 B2
11505828 Chell et al. Nov 2022 B2
11512308 Gallant et al. Nov 2022 B2
11519022 Chee Dec 2022 B2
11519033 Schnall-Levin et al. Dec 2022 B2
11519138 Meier Dec 2022 B2
11530438 Persson et al. Dec 2022 B2
11535887 Gallant et al. Dec 2022 B2
11542543 Chee Jan 2023 B2
11549138 Chee Jan 2023 B2
11560587 Chee Jan 2023 B2
11560592 Chew et al. Jan 2023 B2
11560593 Chell et al. Jan 2023 B2
11592447 Uytingco et al. Feb 2023 B2
11608498 Gallant et al. Mar 2023 B2
11608520 Galonska et al. Mar 2023 B2
11613773 Frisen et al. Mar 2023 B2
11618897 Kim et al. Apr 2023 B2
11618918 Chee et al. Apr 2023 B2
11624063 Dadhwal Apr 2023 B2
11624086 Uytingco et al. Apr 2023 B2
11634756 Chee Apr 2023 B2
11649485 Yin et al. May 2023 B2
11661626 Katiraee et al. May 2023 B2
11680260 Kim et al. Jun 2023 B2
11692218 Engblom et al. Jul 2023 B2
11702693 Bharadwaj Jul 2023 B2
11702698 Stoeckius Jul 2023 B2
11732292 Chee Aug 2023 B2
11732299 Ramachandran Iyer Aug 2023 B2
11732300 Bava Aug 2023 B2
11733238 Chee Aug 2023 B2
11739372 Frisen et al. Aug 2023 B2
11739381 Chew et al. Aug 2023 B2
11753673 Chew et al. Sep 2023 B2
11753674 Chee et al. Sep 2023 B2
11753675 Ramachandran Iyer Sep 2023 B2
11761030 Chee Sep 2023 B2
11761038 Stoeckius Sep 2023 B1
11767550 Chee Sep 2023 B2
11768175 Kim et al. Sep 2023 B1
11773433 Gallant et al. Oct 2023 B2
11781130 Dadhwal Oct 2023 B2
11788122 Frisen et al. Oct 2023 B2
11795498 Frisen et al. Oct 2023 B2
11795507 Chell et al. Oct 2023 B2
11808769 Uytingco et al. Nov 2023 B2
11821024 Chee et al. Nov 2023 B2
11821035 Bent et al. Nov 2023 B1
11827935 Ramachandran Iyer et al. Nov 2023 B1
11835462 Bava Dec 2023 B2
11840687 Gallant et al. Dec 2023 B2
11840724 Chew et al. Dec 2023 B2
11845979 Engblom et al. Dec 2023 B2
11859178 Gallant et al. Jan 2024 B2
11866767 Uytingco et al. Jan 2024 B2
11866770 Chee Jan 2024 B2
11873482 Kim et al. Jan 2024 B2
11891654 Alvarado Martinez et al. Feb 2024 B2
11898205 Bava Feb 2024 B2
11926822 Gohil et al. Mar 2024 B1
11926863 Boutet Mar 2024 B1
11926867 Yin et al. Mar 2024 B2
11933957 Tentori et al. Mar 2024 B1
11952627 Stoeckius Apr 2024 B2
11959076 Kim et al. Apr 2024 B2
11959130 Galonska et al. Apr 2024 B2
11965213 Williams Apr 2024 B2
11970739 Chew et al. Apr 2024 B2
11981958 Galonska May 2024 B1
11981960 Lin et al. May 2024 B1
11981965 Chell et al. May 2024 B2
20010055764 Empendocles et al. Dec 2001 A1
20020040275 Cravatt Apr 2002 A1
20020051986 Baez et al. May 2002 A1
20020055100 Kawashima May 2002 A1
20020058250 Firth May 2002 A1
20020086441 Baranov et al. Jul 2002 A1
20020164611 Bamdad Nov 2002 A1
20030017451 Wang et al. Jan 2003 A1
20030022207 Balasubramanian Jan 2003 A1
20030064398 Barnes Apr 2003 A1
20030092624 Wang et al. May 2003 A1
20030138879 Lambalot Jul 2003 A1
20030148335 Shen et al. Aug 2003 A1
20030162216 Gold Aug 2003 A1
20030165948 Alsmadi et al. Sep 2003 A1
20030211489 Shen et al. Nov 2003 A1
20030224419 Corcoran Dec 2003 A1
20030232348 Jones et al. Dec 2003 A1
20030232382 Brennan Dec 2003 A1
20030235854 Chan et al. Dec 2003 A1
20040033499 Ilsley et al. Feb 2004 A1
20040067492 Peng et al. Apr 2004 A1
20040082059 Webb et al. Apr 2004 A1
20040096853 Mayer May 2004 A1
20040106110 Balasubramanian Jun 2004 A1
20040235103 Reznikoff et al. Nov 2004 A1
20040248325 Bukusoglu et al. Dec 2004 A1
20040259105 Fan et al. Dec 2004 A1
20050003431 Wucherpfennig Jan 2005 A1
20050014203 Darfler et al. Jan 2005 A1
20050037393 Gunderson et al. Feb 2005 A1
20050048580 Labaer Mar 2005 A1
20050064460 Holliger et al. Mar 2005 A1
20050095627 Kolman et al. May 2005 A1
20050100900 Kawashima et al. May 2005 A1
20050130173 Leamon et al. Jun 2005 A1
20050136414 Gunderson et al. Jun 2005 A1
20050164292 Farooqui Jul 2005 A1
20050170373 Monforte Aug 2005 A1
20050191656 Drmanac et al. Sep 2005 A1
20050191698 Chee et al. Sep 2005 A1
20050202433 Van Beuningen Sep 2005 A1
20050227271 Kwon Oct 2005 A1
20050239119 Tsukada et al. Oct 2005 A1
20050260653 LaBaer Nov 2005 A1
20050266417 Barany et al. Dec 2005 A1
20060041385 Bauer et al. Feb 2006 A1
20060046313 Roth Mar 2006 A1
20060084078 Zhao Apr 2006 A1
20060105352 Qiao et al. May 2006 A1
20060154286 Kong et al. Jul 2006 A1
20060188901 Barnes et al. Aug 2006 A1
20060199183 Valat et al. Sep 2006 A1
20060211001 Yu et al. Sep 2006 A1
20060216775 Burkart et al. Sep 2006 A1
20060240439 Smith et al. Oct 2006 A1
20060263789 Kincaid Nov 2006 A1
20060275782 Gunderson et al. Dec 2006 A1
20060281109 Barr Ost et al. Dec 2006 A1
20070020640 McCloskey et al. Jan 2007 A1
20070020669 Ericsson Jan 2007 A1
20070026430 Andersen et al. Feb 2007 A1
20070054288 Su et al. Mar 2007 A1
20070087360 Boyd Apr 2007 A1
20070099208 Drmanac et al. May 2007 A1
20070128624 Gormley et al. Jun 2007 A1
20070128656 Agrawal Jun 2007 A1
20070134723 Kozlov et al. Jun 2007 A1
20070161020 Luo et al. Jul 2007 A1
20070166705 Milton et al. Jul 2007 A1
20070172873 Brenner et al. Jul 2007 A1
20070207482 Church et al. Sep 2007 A1
20070254305 Paik et al. Nov 2007 A1
20070269805 Hogers Nov 2007 A1
20080003586 Hyde et al. Jan 2008 A1
20080009420 Schroth et al. Jan 2008 A1
20080108082 Rank et al. May 2008 A1
20080108804 Hayashizaki et al. May 2008 A1
20080132429 Perov et al. Jun 2008 A1
20080160580 Adessi et al. Jul 2008 A1
20080220434 Thomas Sep 2008 A1
20080261204 Lexow Oct 2008 A1
20080286795 Kawashima et al. Nov 2008 A1
20080293046 Allawi et al. Nov 2008 A1
20090005252 Drmanac et al. Jan 2009 A1
20090006002 Honisch et al. Jan 2009 A1
20090018024 Church et al. Jan 2009 A1
20090026082 Rothberg et al. Jan 2009 A1
20090036323 van Eijk et al. Feb 2009 A1
20090082212 Williams Mar 2009 A1
20090099041 Church et al. Apr 2009 A1
20090105959 Braverman et al. Apr 2009 A1
20090117573 Fu et al. May 2009 A1
20090127589 Rothberg et al. May 2009 A1
20090155781 Drmanac et al. Jun 2009 A1
20090170713 van Eijk et al. Jul 2009 A1
20090202998 Schlumpberger et al. Aug 2009 A1
20090233802 Bignell et al. Sep 2009 A1
20090253581 van Eijk et al. Oct 2009 A1
20090270273 Burns et al. Oct 2009 A1
20090283407 Van Eijk Nov 2009 A1
20090291854 Weisinger-Mayr et al. Nov 2009 A1
20090312193 Kim et al. Dec 2009 A1
20100035249 Hayashizaki et al. Feb 2010 A1
20100069263 Shendure et al. Mar 2010 A1
20100105052 Drmanac et al. Apr 2010 A1
20100120097 Matz et al. May 2010 A1
20100120098 Grunenwald et al. May 2010 A1
20100129874 Mitra et al. May 2010 A1
20100145037 Brive et al. Jun 2010 A1
20100173384 Johnsson et al. Jul 2010 A1
20100184618 Namsaraev et al. Jul 2010 A1
20100210475 Lee et al. Aug 2010 A1
20100227329 Cuppens Sep 2010 A1
20100273219 May et al. Oct 2010 A1
20110028685 Purkayastha et al. Feb 2011 A1
20110033854 Drmanac et al. Feb 2011 A1
20110045462 Fu et al. Feb 2011 A1
20110059436 Hardin et al. Mar 2011 A1
20110111409 Sinicropi et al. May 2011 A1
20110152111 Fan et al. Jun 2011 A1
20110245101 Chee et al. Oct 2011 A1
20110245111 Chee Oct 2011 A1
20110287435 Grunenwald et al. Nov 2011 A1
20120021930 Schoen et al. Jan 2012 A1
20120046175 Rodesch et al. Feb 2012 A1
20120046178 Van Den Boom et al. Feb 2012 A1
20120065081 Chee Mar 2012 A1
20120135871 van Eijk et al. May 2012 A1
20120202698 van Eijk et al. Aug 2012 A1
20120202704 Fan et al. Aug 2012 A1
20120220479 Ericsson et al. Aug 2012 A1
20120245053 Shirai et al. Sep 2012 A1
20120252702 Muratani et al. Oct 2012 A1
20120258871 Kozlov et al. Oct 2012 A1
20120289414 Mitra et al. Nov 2012 A1
20120301925 Belyaev Nov 2012 A1
20130005594 Terbrueggen et al. Jan 2013 A1
20130005600 Olek Jan 2013 A1
20130023433 Luo et al. Jan 2013 A1
20130035239 Kong et al. Feb 2013 A1
20130040842 Lim et al. Feb 2013 A1
20130065768 Zheng et al. Mar 2013 A1
20130079232 Kain et al. Mar 2013 A1
20130171621 Luo et al. Jul 2013 A1
20130244884 Jacobson et al. Sep 2013 A1
20130261019 Lin et al. Oct 2013 A1
20130302801 Asbury et al. Nov 2013 A1
20130338042 Shen et al. Dec 2013 A1
20140066318 Frisen et al. Mar 2014 A1
20140121118 Warner May 2014 A1
20140270435 Dunn Sep 2014 A1
20140274731 Raymond et al. Sep 2014 A1
20140323330 Glezer et al. Oct 2014 A1
20140342921 Weiner Nov 2014 A1
20140378350 Hindson et al. Dec 2014 A1
20150000854 Gann-Fetter et al. Jan 2015 A1
20150292988 Bharadwaj et al. Oct 2015 A1
20150344942 Frisen et al. Dec 2015 A1
20160019337 Roberts et al. Jan 2016 A1
20160024576 Chee Jan 2016 A1
20160041159 Labaer et al. Feb 2016 A1
20160060687 Zhu et al. Mar 2016 A1
20160108458 Frei et al. Apr 2016 A1
20160122817 Jarosz et al. May 2016 A1
20160138091 Chee et al. May 2016 A1
20160145677 Chee et al. May 2016 A1
20160194692 Gore et al. Jul 2016 A1
20160201125 Samuels et al. Jul 2016 A1
20160253584 Fodor et al. Sep 2016 A1
20160289740 Fu et al. Oct 2016 A1
20160298180 Chee Oct 2016 A1
20160305856 Boyden et al. Oct 2016 A1
20160333403 Chee Nov 2016 A1
20160376642 Landegren et al. Dec 2016 A1
20170009278 Söderberg et al. Jan 2017 A1
20170016053 Beechem et al. Jan 2017 A1
20170029875 Zhang et al. Feb 2017 A1
20170058339 Chee Mar 2017 A1
20170058340 Chee Mar 2017 A1
20170058345 Chee Mar 2017 A1
20170067096 Wassie et al. Mar 2017 A1
20170088881 Chee Mar 2017 A1
20170089811 Tillberg et al. Mar 2017 A1
20170159109 Zheng et al. Jun 2017 A1
20170166962 van Eijk et al. Jun 2017 A1
20170220733 Zhuang et al. Aug 2017 A1
20170233722 Seelig et al. Aug 2017 A1
20170241911 Rockel et al. Aug 2017 A1
20170283860 Kool et al. Oct 2017 A1
20170335297 Ha et al. Nov 2017 A1
20170335410 Driscoll et al. Nov 2017 A1
20170342405 Fu et al. Nov 2017 A1
20170349940 Morin et al. Dec 2017 A1
20180051322 Church et al. Feb 2018 A1
20180057873 Zhou et al. Mar 2018 A1
20180080019 Blainey et al. Mar 2018 A1
20180094316 Oliphant et al. Apr 2018 A1
20180112261 Van Driel et al. Apr 2018 A1
20180127817 Borchert et al. May 2018 A1
20180163265 Zhang et al. Jun 2018 A1
20180179591 van Eijk Jun 2018 A1
20180201925 Steemers et al. Jul 2018 A1
20180201980 Chee et al. Jul 2018 A1
20180208967 Larman et al. Jul 2018 A1
20180216161 Chen et al. Aug 2018 A1
20180216162 Belhocine et al. Aug 2018 A1
20180237864 Imler et al. Aug 2018 A1
20180245142 So et al. Aug 2018 A1
20180247017 van Eijk et al. Aug 2018 A1
20180291427 Edelman Oct 2018 A1
20180291439 van Eijk et al. Oct 2018 A1
20180305681 Jovanovich et al. Oct 2018 A1
20180312822 Lee et al. Nov 2018 A1
20180320226 Church et al. Nov 2018 A1
20180334670 Bharadwaj et al. Nov 2018 A1
20190055594 Samusik et al. Feb 2019 A1
20190064173 Bharadwaj et al. Feb 2019 A1
20190071656 Chang et al. Mar 2019 A1
20190085383 Church et al. Mar 2019 A1
20190119735 Deisseroth et al. Apr 2019 A1
20190135774 Orbai May 2019 A1
20190145982 Chee et al. May 2019 A1
20190161796 Hauling et al. May 2019 A1
20190177777 Chee Jun 2019 A1
20190177778 Chee Jun 2019 A1
20190177789 Hindson et al. Jun 2019 A1
20190177800 Boutet et al. Jun 2019 A1
20190194709 Church et al. Jun 2019 A1
20190203275 Frisen et al. Jul 2019 A1
20190218276 Regev et al. Jul 2019 A1
20190218608 Daugharthy et al. Jul 2019 A1
20190233878 Delaney et al. Aug 2019 A1
20190233880 Mir Aug 2019 A1
20190249226 Bent et al. Aug 2019 A1
20190262831 West et al. Aug 2019 A1
20190264268 Frisen et al. Aug 2019 A1
20190271028 Khafizov et al. Sep 2019 A1
20190271030 Chee Sep 2019 A1
20190271031 Chee Sep 2019 A1
20190300943 Chee et al. Oct 2019 A1
20190300944 Chee et al. Oct 2019 A1
20190300945 Chee et al. Oct 2019 A1
20190309353 Chee Oct 2019 A1
20190309354 Chee Oct 2019 A1
20190309355 Chee Oct 2019 A1
20190323071 Chee Oct 2019 A1
20190323088 Boutet et al. Oct 2019 A1
20190330617 Church et al. Oct 2019 A1
20190338353 Belgrader et al. Nov 2019 A1
20190360034 Zhou et al. Nov 2019 A1
20190360043 Pham et al. Nov 2019 A1
20190367969 Belhocine et al. Dec 2019 A1
20190367982 Belhocine et al. Dec 2019 A1
20190367997 Bent et al. Dec 2019 A1
20200002763 Belgrader et al. Jan 2020 A1
20200010891 Beechem et al. Jan 2020 A1
20200024641 Nolan et al. Jan 2020 A1
20200047010 Lee et al. Feb 2020 A1
20200048690 Chee Feb 2020 A1
20200063191 Kennedy-Darling et al. Feb 2020 A1
20200063195 Chee Feb 2020 A1
20200063196 Chee Feb 2020 A1
20200071751 Daugharthy et al. Mar 2020 A1
20200080136 Zhang et al. Mar 2020 A1
20200109443 Chee Apr 2020 A1
20200123597 Daniel Apr 2020 A1
20200140920 Pierce et al. May 2020 A1
20200173985 Dong et al. Jun 2020 A1
20200199565 Chen et al. Jun 2020 A1
20200199572 Kuersten et al. Jun 2020 A1
20200224244 Nilsson et al. Jul 2020 A1
20200239874 Mikkelsen Jul 2020 A1
20200239946 Dewal Jul 2020 A1
20200256867 Hennek et al. Aug 2020 A1
20200277663 Iyer Sep 2020 A1
20200277664 Frenz Sep 2020 A1
20200283852 Oliphant et al. Sep 2020 A1
20200299757 Chee et al. Sep 2020 A1
20200325531 Chee Oct 2020 A1
20200362398 Kishi et al. Nov 2020 A1
20200370095 Farmer et al. Nov 2020 A1
20200399687 Frisen et al. Dec 2020 A1
20200407781 Schnall-Levin Dec 2020 A1
20210010068 Chee et al. Jan 2021 A1
20210010070 Schnall-Levin et al. Jan 2021 A1
20210017587 Cai et al. Jan 2021 A1
20210095331 Fan et al. Apr 2021 A1
20210115504 Cai et al. Apr 2021 A1
20210123040 Macosko et al. Apr 2021 A1
20210130881 Cox May 2021 A1
20210140982 Uytingco et al. May 2021 A1
20210150707 Weisenfeld et al. May 2021 A1
20210155982 Yin et al. May 2021 A1
20210158522 Weisenfeld et al. May 2021 A1
20210172007 Chee et al. Jun 2021 A1
20210189475 Tentori et al. Jun 2021 A1
20210190770 Delaney et al. Jun 2021 A1
20210198741 Williams Jul 2021 A1
20210199660 Williams et al. Jul 2021 A1
20210207202 Chee Jul 2021 A1
20210214785 Stoeckius Jul 2021 A1
20210222235 Chee Jul 2021 A1
20210222241 Bharadwaj Jul 2021 A1
20210222242 Ramachandran Iyer Jul 2021 A1
20210222253 Uytingco Jul 2021 A1
20210223227 Stoeckius Jul 2021 A1
20210230584 Mikkelsen et al. Jul 2021 A1
20210230681 Patterson et al. Jul 2021 A1
20210230692 Daugharthy et al. Jul 2021 A1
20210237022 Bava Aug 2021 A1
20210238581 Mikkelsen et al. Aug 2021 A1
20210238664 Bava et al. Aug 2021 A1
20210238675 Bava Aug 2021 A1
20210238680 Bava Aug 2021 A1
20210247316 Bava Aug 2021 A1
20210255175 Chee et al. Aug 2021 A1
20210262018 Bava et al. Aug 2021 A1
20210262019 Alvarado Martinez et al. Aug 2021 A1
20210269864 Chee Sep 2021 A1
20210270822 Chee Sep 2021 A1
20210285036 Yin et al. Sep 2021 A1
20210285046 Chell et al. Sep 2021 A1
20210292748 Frisen et al. Sep 2021 A1
20210292822 Frisen et al. Sep 2021 A1
20210317510 Chee et al. Oct 2021 A1
20210317524 Lucero et al. Oct 2021 A1
20210324457 Ramachandran Iyer et al. Oct 2021 A1
20210332424 Schnall-Levin Oct 2021 A1
20210332425 Pfeiffer et al. Oct 2021 A1
20210348221 Chell et al. Nov 2021 A1
20220002791 Frisen et al. Jan 2022 A1
20220003755 Chee Jan 2022 A1
20220010367 Ramachandran Iyer et al. Jan 2022 A1
20220017951 Ramachandran Iyer et al. Jan 2022 A1
20220025446 Shah Jan 2022 A1
20220025447 Tentori et al. Jan 2022 A1
20220033888 Schnall-Levin et al. Feb 2022 A1
20220049293 Frenz et al. Feb 2022 A1
20220064630 Bent et al. Mar 2022 A1
20220081728 Williams Mar 2022 A1
20220090058 Frisen et al. Mar 2022 A1
20220090175 Uytingco et al. Mar 2022 A1
20220090181 Gallant et al. Mar 2022 A1
20220098576 Dadhwal Mar 2022 A1
20220098661 Chew et al. Mar 2022 A1
20220106632 Galonska et al. Apr 2022 A1
20220106633 Engblom et al. Apr 2022 A1
20220112486 Ramachandran Iyer et al. Apr 2022 A1
20220112545 Chee Apr 2022 A1
20220119869 Ramachandran Iyer et al. Apr 2022 A1
20220127659 Frisen et al. Apr 2022 A1
20220127666 Katiraee et al. Apr 2022 A1
20220127672 Stoeckius Apr 2022 A1
20220145361 Frenz et al. May 2022 A1
20220154255 Chee et al. May 2022 A1
20220170083 Khaled et al. Jun 2022 A1
20220195422 Gallant et al. Jun 2022 A1
20220195505 Frisen et al. Jun 2022 A1
20220196644 Chee Jun 2022 A1
20220213526 Frisen et al. Jul 2022 A1
20220220544 Ach et al. Jul 2022 A1
20220241780 Tentori et al. Aug 2022 A1
20220267844 Ramachandran Iyer et al. Aug 2022 A1
20220282329 Chell et al. Sep 2022 A1
20220290217 Frenz et al. Sep 2022 A1
20220290219 Chee Sep 2022 A1
20220298560 Frisen et al. Sep 2022 A1
20220325325 Chee et al. Oct 2022 A1
20220326251 Uytingco et al. Oct 2022 A1
20220333171 Chee Oct 2022 A1
20220333191 Mikkelsen et al. Oct 2022 A1
20220333192 Uytingco Oct 2022 A1
20220333195 Schnall-Levin et al. Oct 2022 A1
20220334031 Delaney et al. Oct 2022 A1
20220348905 Dadhwal Nov 2022 A1
20220348992 Stoeckius et al. Nov 2022 A1
20220356464 Kim et al. Nov 2022 A1
20220364163 Stahl et al. Nov 2022 A1
20220389491 Chee Dec 2022 A1
20220389503 Mikkelsen et al. Dec 2022 A1
20220389504 Chew et al. Dec 2022 A1
20220403455 Ramachandran Iyer et al. Dec 2022 A1
20220404245 Chell et al. Dec 2022 A1
20230002812 Stoeckius et al. Jan 2023 A1
20230014008 Shastry Jan 2023 A1
20230017773 Kim et al. Jan 2023 A1
20230416807 Chee Jan 2023 A1
20230416808 Sukovich et al. Jan 2023 A1
20230033960 Gallant et al. Feb 2023 A1
20230034039 Shahjamali Feb 2023 A1
20230034216 Bava Feb 2023 A1
20230040363 Chee Feb 2023 A1
20230042088 Chee Feb 2023 A1
20230042817 Mignardi Feb 2023 A1
20230047782 Tentori et al. Feb 2023 A1
20230056549 Dadhwal Feb 2023 A1
20230064372 Chell et al. Mar 2023 A1
20230069046 Chew et al. Mar 2023 A1
20230077364 Patterson et al. Mar 2023 A1
20230080543 Katiraee et al. Mar 2023 A1
20230081381 Chew et al. Mar 2023 A1
20230100497 Frisen et al. Mar 2023 A1
20230107023 Chee Apr 2023 A1
20230111225 Chew et al. Apr 2023 A1
20230113230 Kim et al. Apr 2023 A1
20230126825 Nagendran et al. Apr 2023 A1
20230129552 Ramachandran Iyer Apr 2023 A1
20230135010 Tentori et al. May 2023 A1
20230143569 Iyer et al. May 2023 A1
20230145575 Gallant et al. May 2023 A1
20230147726 Hadrup et al. May 2023 A1
20230151412 Chee May 2023 A1
20230159994 Chee May 2023 A1
20230159995 Iyer et al. May 2023 A1
20230160008 Chell et al. May 2023 A1
20230175045 Katsori et al. Jun 2023 A1
20230183785 Frisen et al. Jun 2023 A1
20230194469 Tentori et al. Jun 2023 A1
20230194470 Kim et al. Jun 2023 A1
20230203478 Kim et al. Jun 2023 A1
20230183684 Gallant et al. Jul 2023 A1
20230212650 Chew et al. Jul 2023 A1
20230212655 Chee Jul 2023 A1
20230220368 Kim Jul 2023 A1
20230220454 Bent et al. Jul 2023 A1
20230220455 Galonska et al. Jul 2023 A1
20230227811 Dadhwal Jul 2023 A1
20230228762 Uytingco et al. Jul 2023 A1
20230242973 Frisen et al. Aug 2023 A1
20230242976 Tentori et al. Aug 2023 A1
20230265488 Gohil et al. Aug 2023 A1
20230265489 Uytingco et al. Aug 2023 A1
20230265491 Tentori et al. Aug 2023 A1
20230267625 Tentori et al. Aug 2023 A1
20230279474 Katiraee Sep 2023 A1
20230279477 Kvastad et al. Sep 2023 A1
20230279481 Marrache et al. Sep 2023 A1
20230287399 Gallant et al. Sep 2023 A1
20230287475 Chell et al. Sep 2023 A1
20230287481 Katsori et al. Sep 2023 A1
20230295699 Sukovich et al. Sep 2023 A1
20230295722 Bharadwaj Sep 2023 A1
20230304072 Gohil et al. Sep 2023 A1
20230304074 Chee et al. Sep 2023 A1
20230304078 Frisen et al. Sep 2023 A1
20230313279 Giacomello et al. Oct 2023 A1
20230323340 Dadhwal Oct 2023 A1
20230323434 Yin et al. Oct 2023 A1
20230323436 Chee Oct 2023 A1
20230323447 Schnall-Levin et al. Oct 2023 A1
20230323453 Stoeckius Oct 2023 A1
20230332138 Kim et al. Oct 2023 A1
20230332211 Chee Oct 2023 A1
20230332212 Chew et al. Oct 2023 A1
20230332227 Ramachandran Iyer Oct 2023 A1
20230332247 Singh et al. Oct 2023 A1
20230351619 Tentori et al. Nov 2023 A1
20230358733 Chee Nov 2023 A1
20230366008 Chew et al. Nov 2023 A1
20230383285 Kim et al. Nov 2023 A1
20230383344 Stoeckius Nov 2023 A1
20230392204 Chell et al. Dec 2023 A1
20230393071 Bava Dec 2023 A1
20230407404 Baumgartner et al. Dec 2023 A1
20230416850 Singh et al. Dec 2023 A1
20240002931 Bava Jan 2024 A1
20240011081 Chee Jan 2024 A1
20240011090 Chew et al. Jan 2024 A1
20240018572 Mignardi Jan 2024 A1
20240018575 Gallant et al. Jan 2024 A1
20240018589 Schnall-Levin et al. Jan 2024 A1
20240026445 Ramachandran Iyer et al. Jan 2024 A1
20240033743 Tentori et al. Feb 2024 A1
20240035937 Cox et al. Feb 2024 A1
20240043908 Chew et al. Feb 2024 A1
20240043925 Bent et al. Feb 2024 A1
20240052343 Gallant et al. Feb 2024 A1
20240053351 Uytingco et al. Feb 2024 A1
20240060115 Chee et al. Feb 2024 A1
20240067953 Mikkelsen et al. Feb 2024 A1
20240068016 Frisen et al. Feb 2024 A1
20240068017 Lundeberg et al. Feb 2024 A1
20240076723 Mignardi Mar 2024 A1
20240080346 Engblom et al. Mar 2024 A1
20240084365 Frisen et al. Mar 2024 A1
20240084366 Chee Mar 2024 A1
20240084383 Ramachandran Iyer et al. Mar 2024 A1
20240093274 Frisen et al. Mar 2024 A1
20240093290 Stahl et al. Mar 2024 A1
20240110228 Uytingco et al. Apr 2024 A1
20240124933 Chell et al. Apr 2024 A1
20240125772 Delaney et al. Apr 2024 A1
20240141327 Kim et al. May 2024 A1
20240158838 Alvarado Martinez et al. May 2024 A1
20240175080 Galonska et al. May 2024 A1
20240182968 Bava Jun 2024 A1
20240191286 Boutet et al. Jun 2024 A1
Foreign Referenced Citations (250)
Number Date Country
2003200718 Oct 2006 AU
1273609 Nov 2000 CN
1537953 Oct 2004 CN
1680604 Oct 2005 CN
1749752 Mar 2006 CN
1898398 Jan 2007 CN
101142325 Mar 2008 CN
101221182 Jul 2008 CN
101522915 Sep 2009 CN
107849606 Mar 2018 CN
108949924 Dec 2018 CN
1782737 May 2007 EP
1910562 Apr 2008 EP
1923471 May 2008 EP
1929039 Jun 2008 EP
2002017 Dec 2008 EP
2292788 Mar 2011 EP
2302070 Mar 2011 EP
2580351 Apr 2013 EP
2881465 Jun 2015 EP
3013984 May 2016 EP
3511423 Jul 2019 EP
3541956 Sep 2019 EP
2520765 Jun 2015 GB
2007-014297 Jan 2007 JP
2007-074967 Mar 2007 JP
2009-036694 Feb 2009 JP
WO 1989010977 Nov 1989 WO
WO 1991006678 May 1991 WO
WO 1993004199 Mar 1993 WO
WO 1995023875 Sep 1995 WO
WO 1995025116 Sep 1995 WO
WO 1995035505 Dec 1995 WO
WO 1997031256 Aug 1997 WO
WO 1998044151 Oct 1998 WO
WO 2000017390 Mar 2000 WO
WO 2000063437 Oct 2000 WO
WO 2001006012 Jan 2001 WO
WO 2001009363 Feb 2001 WO
WO 2001012862 Feb 2001 WO
WO 2001042796 Jun 2001 WO
WO 2001046402 Jun 2001 WO
WO 2001059161 Aug 2001 WO
WO 2001090415 Nov 2001 WO
WO 2001096608 Dec 2001 WO
WO 2002040874 May 2002 WO
WO 2002059355 Aug 2002 WO
WO 2002059364 Aug 2002 WO
WO 2002077283 Oct 2002 WO
WO 2003002979 Jan 2003 WO
WO 2003008538 Jan 2003 WO
WO 2003010176 Feb 2003 WO
WO 2003102233 Dec 2003 WO
WO 2004015080 Feb 2004 WO
WO 2004067759 Aug 2004 WO
WO 2004081225 Sep 2004 WO
WO 2005007814 Jan 2005 WO
WO 2005010145 Feb 2005 WO
WO 2005026387 Mar 2005 WO
WO 2005042759 May 2005 WO
WO 2005113804 Dec 2005 WO
WO 2006020515 Feb 2006 WO
WO 2006124771 Nov 2006 WO
WO 2006137733 Dec 2006 WO
WO 2007037678 Apr 2007 WO
WO 2007041689 Apr 2007 WO
WO 2007060599 May 2007 WO
WO 2007073171 Jun 2007 WO
WO 2007076726 Jul 2007 WO
WO 2007139766 Dec 2007 WO
WO 2007145612 Dec 2007 WO
WO 2008069906 Jun 2008 WO
WO 2008093098 Aug 2008 WO
WO 2009032167 Mar 2009 WO
WO 2009036525 Mar 2009 WO
WO 2009137521 Nov 2009 WO
WO 2009152928 Dec 2009 WO
WO 2010019826 Feb 2010 WO
WO 2010027870 Mar 2010 WO
WO 2010126614 Nov 2010 WO
WO 2010127186 Nov 2010 WO
WO 2011008502 Jan 2011 WO
WO 2011062933 May 2011 WO
WO 2011068088 Jun 2011 WO
WO 2011127006 Oct 2011 WO
WO 2011155833 Dec 2011 WO
WO 2012049316 Apr 2012 WO
WO 2012061832 May 2012 WO
WO 2012071428 May 2012 WO
WO 2012129242 Sep 2012 WO
WO 2012159089 Nov 2012 WO
WO 2013123442 Aug 2013 WO
WO 2013131962 Sep 2013 WO
WO 2013138510 Sep 2013 WO
WO 2013142389 Sep 2013 WO
WO 2013150082 Oct 2013 WO
WO 2013150083 Oct 2013 WO
WO 2014044724 Mar 2014 WO
WO 2014060483 Apr 2014 WO
WO 2014071361 May 2014 WO
WO 2014130576 Aug 2014 WO
WO 2014144713 Sep 2014 WO
WO 2014152397 Sep 2014 WO
WO 2014210223 Dec 2014 WO
WO 2014210353 Dec 2014 WO
WO 2015031691 Mar 2015 WO
WO 2015069374 May 2015 WO
WO 2015161173 Oct 2015 WO
WO 2016077763 May 2016 WO
WO 2016138496 Sep 2016 WO
WO 2016138500 Sep 2016 WO
WO 2016162309 Oct 2016 WO
WO 2016166128 Oct 2016 WO
WO 2016168825 Oct 2016 WO
WO 2016172362 Oct 2016 WO
WO 2017019456 Feb 2017 WO
WO 2017019481 Feb 2017 WO
WO 2017075293 May 2017 WO
WO 2017096158 Jul 2017 WO
WO 2017143155 Aug 2017 WO
WO 2017156336 Sep 2017 WO
WO 2017184984 Oct 2017 WO
WO 2017192633 Nov 2017 WO
WO 2018023068 Feb 2018 WO
WO 2018026873 Feb 2018 WO
WO 2018045181 Mar 2018 WO
WO 2018064640 Apr 2018 WO
WO 2018085599 May 2018 WO
WO 2018089550 May 2018 WO
WO 2018091676 May 2018 WO
WO 2018136397 Jul 2018 WO
WO 2018136856 Jul 2018 WO
WO 2018144582 Aug 2018 WO
WO 2018175779 Sep 2018 WO
WO 2018209398 Nov 2018 WO
WO 2019023214 Jan 2019 WO
WO 2019032760 Feb 2019 WO
WO 2019068880 Apr 2019 WO
WO 2019113457 Jun 2019 WO
WO 2019126313 Jun 2019 WO
WO 2019140201 Jul 2019 WO
WO 2019165318 Aug 2019 WO
WO 2019213254 Nov 2019 WO
WO 2019213294 Nov 2019 WO
WO 2019241290 Dec 2019 WO
WO 2020028194 Feb 2020 WO
WO 2020047002 Mar 2020 WO
WO 2020047010 Mar 2020 WO
WO 2020053655 Mar 2020 WO
WO 2020056381 Mar 2020 WO
WO 2020061064 Mar 2020 WO
WO 2020061066 Mar 2020 WO
WO 2020061108 Mar 2020 WO
WO 2020076979 Apr 2020 WO
WO 2020099640 May 2020 WO
WO 2020112604 Jun 2020 WO
WO 2020117914 Jun 2020 WO
WO 2020123301 Jun 2020 WO
WO 2020123305 Jun 2020 WO
WO 2020123311 Jun 2020 WO
WO 2020123316 Jun 2020 WO
WO 2020123317 Jun 2020 WO
WO 2020123318 Jun 2020 WO
WO 2020123319 Jun 2020 WO
WO 2020123320 Jul 2020 WO
WO 2020160044 Aug 2020 WO
WO 2020167862 Aug 2020 WO
WO 2020176788 Sep 2020 WO
WO 2020176882 Sep 2020 WO
WO 2020190509 Sep 2020 WO
WO 2020198071 Oct 2020 WO
WO 2020206285 Oct 2020 WO
WO 2020240025 Dec 2020 WO
WO 2020243579 Dec 2020 WO
WO 2020254519 Dec 2020 WO
WO 2021041974 Mar 2021 WO
WO 2021067246 Apr 2021 WO
WO 2021067514 Apr 2021 WO
WO 2021091611 May 2021 WO
WO 2021092433 May 2021 WO
WO 2021097255 May 2021 WO
WO 2021102003 May 2021 WO
WO 2021102005 May 2021 WO
WO 2021102039 May 2021 WO
WO 2021116715 Jun 2021 WO
WO 2021119320 Jun 2021 WO
WO 2021133842 Jul 2021 WO
WO 2021133845 Jul 2021 WO
WO 2021133849 Jul 2021 WO
WO 2021142233 Jul 2021 WO
WO 2021168261 Aug 2021 WO
WO 2021168278 Aug 2021 WO
WO 2021207610 Oct 2021 WO
WO 2021216708 Oct 2021 WO
WO 2021225900 Nov 2021 WO
WO 2021236625 Nov 2021 WO
WO 2021236929 Nov 2021 WO
WO 2021237056 Nov 2021 WO
WO 2021237087 Nov 2021 WO
WO 2021242834 Dec 2021 WO
WO 2021247543 Dec 2021 WO
WO 2021247568 Dec 2021 WO
WO 2021252499 Dec 2021 WO
WO 2021252576 Dec 2021 WO
WO 2021252591 Dec 2021 WO
WO 2021252747 Dec 2021 WO
WO 2021263111 Dec 2021 WO
WO 2022025965 Feb 2022 WO
WO 2022060798 Mar 2022 WO
WO 2022060953 Mar 2022 WO
WO 2022061150 Mar 2022 WO
WO 2022061152 Mar 2022 WO
WO 2022087273 Apr 2022 WO
WO 2022099037 May 2022 WO
WO 2022103712 May 2022 WO
WO 2022109181 May 2022 WO
WO 2022132645 Jun 2022 WO
WO 2022140028 Jun 2022 WO
WO 2022147005 Jul 2022 WO
WO 2022147296 Jul 2022 WO
WO 2022164615 Aug 2022 WO
WO 2022178267 Aug 2022 WO
WO 2022198068 Sep 2022 WO
WO 2022212269 Oct 2022 WO
WO 2022221425 Oct 2022 WO
WO 2022226057 Oct 2022 WO
WO 2022015913 Nov 2022 WO
WO 2022236054 Nov 2022 WO
WO 2022243303 Nov 2022 WO
WO 2022226372 Dec 2022 WO
WO 2022256503 Dec 2022 WO
WO 2022271820 Dec 2022 WO
WO 2023287765 Jan 2023 WO
WO 2023018799 Feb 2023 WO
WO 2023034489 Mar 2023 WO
WO 2023044071 Mar 2023 WO
WO 2023076345 May 2023 WO
WO 2023086880 May 2023 WO
WO 2023102118 Jun 2023 WO
WO 2023150098 Aug 2023 WO
WO 2023150163 Aug 2023 WO
WO 2023150171 Aug 2023 WO
WO 2023215552 Nov 2023 WO
WO 2023225519 Nov 2023 WO
WO 2023229988 Nov 2023 WO
WO 2023250077 Dec 2023 WO
WO 2024015578 Jan 2024 WO
WO 2024035844 Feb 2024 WO
WO 2024081212 Apr 2024 WO
WO 2024086167 Apr 2024 WO
Non-Patent Literature Citations (406)
Entry
Sharma et. al. Melanopsichium pennsylvanicum 4 genomic scaffold, scaffold SCAFFOLD32. GenBank:HG529673.1. Ecology and Evolution, Biodiversity and Climate Research Center. 2016. [retrieved on Jun. 15, 2023]. Retrieved from the Internet <URL:https://www.ncbi.nlm.nih.gov/nuccore/hg529673> (Year: 2016).
Jiang et. al. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 15:182, 2014, 1-12. [online], [retrieved on Jun. 15, 2023]. Retrieved from the Internet <URL:https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-15-182> (Year: 2014).
“Trimming adapter sequences—is it necessary?” ecSEQ Bioinformatics. 2016. [online] [retrieved on Jul. 15, 2023]. Retrieved from the Internet <URL:https://www.ecseq.com/support/ngs/trimming-adapter-sequences-is-it-necessary> (Year: 2016).
Appella, “Non-natural nucleic acids for synthetic biology,” Current Opinion in Chemical Biology, Dec. 2009, 13(5-6): 687-696.
Bunt et al., “FRET from single to multiplexed signaling events,” Biophys Rev. Apr. 2017, 9(2): 119-129.
Grünweller et al., “Locked Nucleic Acid Oligonucleotides,” BioDrugs, Jul. 2007, 21(4): 235-243.
Gu et al., “Multiplex single-molecule interaction profiling of DNA-barcoded proteins,” Nature, Sep. 21, 2014, 515:554-557.
Ma et al., “Isothermal amplification method for next-generation sequencing,” PNAS, Aug. 12, 2013, 110(35):14320-14323.
Orenstein et al., “γPNA FRET Pair Miniprobes for Quantitative Fluorescent In Situ Hybridization to Telomeric DNA in Cells and Tissue,” Molecules, Dec. 2, 2017, 22(12):2117, 15 pages.
Marx, “Method of the Year: spatially resolved transcriptomics,” Nature Methods, 2021, 18(1):9-14.
Altschul et al., “Basic local alignment search tool,” J. Mol. Biol., Oct. 5, 1990, 215(3):403-410.
Arslan et al., “Engineering of a superhelicase through conformational control (Supplementary Materials),” Science, Apr. 17, 2015, 348(6232):344-347, 18 pages.
Arslan et al., “Engineering of a superhelicase through conformational control,” Science, Apr. 17, 2015, 348(6232):344-347.
Baner et al., “Signal amplification of padlock probes by rolling circle replication,” Nucleic Acids Res., 1998, 26(22):5073-5078.
Borm et al., “High throughput Human embryo spatial transcriptome mapping by surface transfer of tissue RNA,” Abstracts Selected Talks, Single Cell Genomics mtg, (SCG2019), 2019, 1 pages (Abstract Only).
Bychkov et al., “Deep learning based tissue analysis predicts outcome in colorectal cancer,” Scientific Reports, Feb. 21, 2018, 8:3395, 12 pages.
Chen et al., “Efficient in situ barcode sequencing using padlock probe-based BaristaSeq,” Nucleic Acids Res., 2018, 46(4): e22, 11 pages.
Codeluppi et al., “Spatial organization of the somatosensory cortex revealed by osmFISH,” Nature Methods, Nov. 2018, 15:932-935.
Dean et al., “Rapid Amplification Of Plasmid And Phage DNA Using Phi29 DNA Polymerase And Multiply-Primed Rolling Circle Amplification,” Genome Research, Jun. 2001, 11:1095-1099.
Eng et al., “Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+,” Nature, Apr. 2019, 568(7751):235-239, 37 pages.
Faruqi et al., “High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification,” BMC Genomics, Aug. 2001, 2:4, 10 pages.
Gao et al., “A highly homogeneous expansion microscopy polymer composed of tetrahedron-like monomers,” bioRxiv, Oct. 22, 2019, 23 pages (Preprint).
Georgieva et al., “Optimization of DMD-based independent amplitude and phase modulation: a spatial resolution and quantization,” arXiv:2010.00955v1, Oct. 2, 2020, 16 pages.
Gilar et al., “Study of phosphorothioate-modified oligonucleotide resistance to 3′-exonuclease using capillary electrophoresis,” J Chromatogr B Biomed Sci Appl., Aug. 28, 1998, 714(1):13-20.
Goh et al., “Highly Specific Multiplexed RNA Imaging In Tissues With Split-FISH,” Nat Methods, Jun. 15, 2020, 17(7):689-693, 21 pages.
Goransson et al., “A single molecule array for digital targeted molecular analyses,” Nucleic Acids Res., Nov. 25, 2009, 37(1):e7, 9 pages.
Li et al., “A new GSH-responsive prodrug of 5-aminolevulinic acid for photodiagnosis and photodynamic therapy of tumors,” European Journal of Medicinal Chemistry, Nov. 2019, 181:111583, 9 pages.
Liu et al., “High-Spatial-Resolution Multi-Omnics Sequencing via Deterministic Barcoding in Tissue,” Cell, Nov. 13, 2020, 183(6):1665-1681, 36 pages.
Liu et al., “Spatial transcriptome sequencing of FFPE tissues at cellular level,” bioRxiv 788992, Oct. 14, 2020, 39 pages.
Mignardi et al., “Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ,” Nucleic Acids Research, Aug. 3, 2015, 43(22):e151, 12 pages.
Mohsen et al., “The Discovery of Rolling Circle Amplification and Rolling Circle Transcription,” Acc Chem Res., Nov. 15, 2016, 49(11):2540-2550, 25 pages.
Schweitzer et al., “Immunoassays with rolling circle DNA amplification: A versatile platform for ultrasensitive antigen detection,” Proc. Natl Acad. Sci. USA, May 22, 2000, 97:10113-119.
Takei et al., “Integrated Spatial Genomics Reveals Global Architecture Of Single Nuclei,” Nature, Jan. 27, 2021, 590(7845):344-350, 53 pages.
Chen et al., “Large field of view-spatially resolved transcriptomics at nanoscale resolution,” bioRxiv, Jan. 19, 2021, retrieved from URL <https://www.biorxiv.org/node/1751045.abstract>, 37 pages.
Cho et al., “Seq-Scope: Submicrometer-resolution spatial transcriptomics for single cell and subcellular studies,” bioRxiv, Jan. 27, 2021, retrieved from URL <https://www.biorxiv.org/node/1754517.abstract>, 50 pages.
Ergin et al., “Proteomic Analysis of PAXgene-Fixed Tissues,” J Proteome Res., 2010, 9(10):5188-96.
Mathieson et al., “A Critical Evaluation of the PAXgene Tissue Fixation System: Morphology, Immunohistochemistry, Molecular Biology, and Proteomics,” Am J Clin Pathol., Jul. 8, 2016, 146(1):25-40.
Nallur et al., “Signal amplification by rolling circle amplification on DNA microarrays,” Nucleic Acids Res., Dec. 1, 2001, 29(23):e118, 9 pages.
Raj et al., “Imaging individual mRNA molecules using multiple singly labeled probes,” Nature Methods, Oct. 2008, 5(10):877-879, 9 pages.
Xia et al., “Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression”, Proceedings of the National Academy of Sciences, Sep. 2019, 116(39):19490-19499.
[No Author Listed], “Chromium Next GEM Single Cell 3′ Reagent Kits v3.1—User Guide,” 10x Genomics, Document No. CG000204, Nov. 2019, 58 pages.
[No Author Listed], “Chromium Next GEM Single Cell 3′ Reagent Kits v3.1 (Dual Index)—User Guide,” 10x Genomics, Mar. 2021, Document No. CG000315, 61 pages.
[No Author Listed], “HuSNP Mapping Assay User's Manual,” Affymetrix Part No. 90094 (Affymetrix, Santa Clara, Calif.), GeneChip, 2000, 104 pages.
[No Author Listed], “Microarray technologies have excellent possibilities in genomics-related researches,” Science Tools From Amersham Pharmacia Biotech, 1998, 3(4): 8 pages (with English Translation).
[No Author Listed], “Proseek® Multiplex 96×96 User Manual,” Olink Proteomics, Olink Bioscience, Uppsala, Sweden, 2017, 20 pages.
10xGenomics.com, [online], “Visium Spatial Gene Expression Reagent Kits—Tissue Optimization—User Guide,” Jul. 2020, retrieved on May 25, 2021, retrieved from URL<https://assets.ctfassets.net/an68im79xiti/5UJrN0CH17rEk0UXwd19It/e54d99fb08a8f1500aba503005a04a56/CG000238_VisiumSpatialTissueOptimizationUserGuide_RevD.pdf>, 42 pages.
10xGenomics.com, [online], “Visium Spatial Gene Expression Reagent Kits—Tissue Optimization,” Nov. 2019, retrieved on Jan. 25, 2022, retrieved from URL<https://assets.ctfassets.net/an68im79xiti/4q03w6959AJFxffSw5lee9/6a2ac61cf6388a72564eeb96bc294967/CG000238_VisiumSpatialTissueOptimizationUserGuide_Rev_A.pdf>, 46 pages.
10xGenomics.com, [online], “Visium Spatial Gene Expression Reagent Kits—Tissue Optimization,” Oct. 2020, retrieved on Dec. 28, 2021, retrieved from URL<https://assets.ctfassets.net/an68im79xiti/5UJrN0CH17rEk0UXwd19It/e54d99fb08a8f1500aba503005a04a56/CG000238_VisiumSpatialTissueOptimizationUserGuide_RevD.pdf>, 43 pages.
10xGenomics.com, [online], “Visium Spatial Gene Expression Reagent Kits—User Guide,” Jun. 2020, retrieved on May 25, 2021, retrieved from URL<https://assets.ctfassets.net/an68im79xiti/3GGIfH3RWpd1bFVha1pexR/8baa08d9007157592b65b2cdc7130990/CG000239_VisiumSpatialGeneExpression_UserGuide_RevD.pdf>, 69 pages.
10xGenomics.com, [online], “Visium Spatial Gene Expression Reagent Kits—User Guide,” Oct. 2020, retrieved on Dec. 28, 2021, retrieved from URL<https://assets.ctfassets.net/an68im79xiti/3GGIfH3RWpd1bFVha1pexR/8baa08d9007157592b65b2cdc7130990/CG000239_VisiumSpatialGeneExpression_UserGuide_RevD.pdf>, 70 pages.
Adessi et al., “Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms,” Nucl. Acids Res., 2000, 28(20):E87, 8 pages.
Adiconis et al., “Comparative analysis of RNA sequencing methods for degraded or low-input samples, ” Nat Methods, Jul. 2013, 10(7):623-9.
Affymetrix, “GeneChip Human Genome U133 Set,” retrieved from the Internet: on the World Wide Web at affymetrix.com/support/technical/datasheets/hgu133_datasheet.pdf, retrieved on Feb. 26, 2003, 2 pages.
Affymetrix, “Human Genome U95Av2,” Internet Citation, retrieved from the internet: on the World Wide Web affymetrix.com, retrieved on Oct. 2, 2002, 1 page.
Alam, “Proximity Ligation Assay (PLA),” Curr Protoc Immunol., Nov. 2018, 123(1):e58, 8 pages.
Albretsen et al., “Applications of magnetic beads with covalently attached oligonucleotides in hybridization: Isolation and detection of specific measles virus mRNA from a crude cell lysate,” Anal. Biochem., 1990, 189(1):40-50.
Allawi et al., “Thermodynamics and NMR of Internal GâT Mismatches in DNA,” Biochemistry, 1996, 36(34):10581-10594.
Amidzadeh et al., “Assessment of different permeabilization methods of minimizing damage to the adherent cells for detection of intracellular RNA by flow cytometry,” Avicenna J Med Biotechnol., Jan. 2014, 6(1):38-46.
Andresen et al., “Helicase-dependent amplification: use in OnChip amplification and potential for point-of-care diagnostics,” Expert Rev Mol Diagn., Oct. 2009, 9(7):645-650.
Aran et al., “xCell: digitally portraying the tissue cellular heterogeneity landscape,” Genome Biol., Nov. 2017, 18(1):220, 14 pages.
Archer et al., “Selective and flexible depletion of problematic sequences from RNA-seq libraries at the cDNA stage,” BMC Genomics, May 2014, 15(1):401, 9 pages.
Armani et al., “2D-PCR: a method of mapping DNA in tissue sections,” Lab Chip, 2009, 9(24):3526-34.
Asp et al., “Spatially Resolved Transcriptomes-Next Generation Tools for Tissue Exploration,” Bioessays, Oct. 2020, 42(10):e1900221, 16 pages.
Atkinson et al., “An Updated Protocol for High Throughput Plant Tissue Sectioning,” Front Plant Sci, 2017, 8:1721, 8 pages.
Atkinson, “Overview of Translation: Lecture Manuscript,” U of Texas, 2000, DD, pp. 6.1-6.8.
Bains et al., “A novel method for nucleic acid sequence determination,” Journal of Theoretical Biology, 1988, 135(3), 303-7.
Balakrishnan et al., “Flap endonuclease 1,” Annu Rev Biochem., Jun. 2013, 82:119-138.
Barnes, “PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates,” Proc. Natl. Acad. Sci USA, 1994, 91(6):2216-2220.
Barnett et al., “ATAC-Me Captures Prolonged DNA Methylation of Dynamic Chromatin Accessibility Loci during Cell Fate Transitions,” Mol Cell., Mar. 2020, 77(6):1350-1364.e6.
Bartosovic et al., “Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues,” Nat Biotechnol., Jul. 2021, 39(7):825-835, Abstract.
Baugh et al., “Quantitative analysis of mRNA amplification by in vitro transcription,” Nucleic Acids Res., 2001, 29(5):e29, 9 pages.
Beattie et al., “Advances in genosensor research,” Clin Chem., May 1995, 41(5):700-6.
Beechem et al., “High-Plex Spatially Resolved RNA and Protein Detection Using Digital Spatial Profiling: A Technology Designed for Immuno-oncology Biomarker Discovery and Translational Research,” Methods Mol Biol, 2020, Chapter 25, 2055:563-583.
Bell, “A simple way to treat PCR products prior to sequencing using ExoSAP-IT,” Biotechniques, 2008, 44(6):834, 1 page.
Bentley et al., “Accurate whole human genome sequencing using reversible terminator chemistry,” Nature, 2008, 456(7218):53-59.
Bergenstråhle et al., “Seamless integration of image and molecular analysis for spatial transcriptomics workflows,” BMC Genomics, Jul. 2020, 21(1):482, 7 pages.
Berger et al., “Universal bases for hybridization, replication and chain termination,” Nucleic Acid Res., Aug. 2000, 28(15):2911-2914.
Birney et al., “Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project,” Nature, 2007, 447(7146):799-816.
Blair et al., “Microarray temperature optimization using hybridization kinetics,” Methods Mol Biol., 2009, 529:171-96.
Blanchard et al., “High-density oligonucleotide arrays,” Biosensors & Bioelectronics, 1996, 11(6-7):687-690.
Blanco et al., “A practical approach to FRET-based PNA fluorescence in situ hybridization,” Methods, Dec. 2010, 52(4):343-51.
Blokzijl et al., “Profiling protein expression and interactions: proximity ligation as a tool for personalized medicine,” J Intern. Med., 2010, 268(3):232-245.
Blow, “Tissue Issues,” Nature, 2007, 448(7156):959-962.
Bolognesi et al., “Multiplex Staining by Sequential Immunostaining and Antibody Removal on Routine Tissue Sections,” J. Histochem. Cytochem., Aug. 2017, 65(8):431-444.
Bolotin et al., “MiXCR: software for comprehensive adaptive immunity profiling,” Nat Methods., May 2015, 12(5):380-1.
Boulé et al., “Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides,” J Biol Chem., Aug. 2001, 276(33):31388-93.
Brandon et al., “Mitochondrial mutations in cancer,” Oncogene, 2006, 25(34):4647-4662.
Brenner et al., “Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays,” Nat. Biotech., 2000, 18(6):630-634.
Brenner et al., “In vitro cloning of complex mixtures of DNA on microbeads: physical separation of differentially expressed cDNAs,” Proc. Natl. Acad. Sci. USA, 2000, 97(4):1665-1670.
Brow, “35—The Cleavase I enzyme for mutation and polymorphism scanning,” PCR Applications Protocols for Functional Genomics, 1999, pp. 537-550.
Brown et al., “Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein,” Proc Natl Acad Sci USA, Apr. 1989, 86(8):2525-9.
Buenrostro et al., “Transposition of native chromatin for multimodal regulatory analysis and personal epigenomics,” Nat Methods, Dec. 2013, 10(12):1213-1218.
Bullard et al., “Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4,” Biochem. J. 2006, 398(1):135-144.
Burgess, “A space for transcriptomics,” Nature Reviews Genetics, 2016, 17(8):436-7.
Burgess, “Finding structure in gene expression,” Nature Reviews Genetics, 2018, 19(5):249, 1 page.
Burgess, “Spatial transcriptomics coming of age,” Nat Rev Genet., Jun. 2019, 20(6):317, 1 page.
Ertsey et al., “Coverslip Mounted-Immersion Cycled in Situ RT-PCR for the Localization of mRNA in Tissue Sections,” Biotechniques, 1998, 24(1):92-100.
Caliari et al., “A practical guide to hydrogels for cell culture,” Nat Methods., Apr. 2016, 13(5):405-14.
Cha et al., “Specificity, efficiency, and fidelity of PCR,” Genome Res., 1993, 3(3):S18-29.
Chandra et al., “Cell-free synthesis-based protein microarrays and their applications,” Proteomics, 2009, 5(6):717-30.
Chatterjee et al., “Mitochondrial DNA mutations in human cancer. Oncogene,” 2006, 25(34):4663-4674.
Chen et al., “DNA hybridization detection in a microfluidic Channel using two fluorescently labelled nucleic acid probes,” Biosensors and Bioelectronics, 2008, 23(12):1878-1882.
Chen et al., “Expansion microscopy,” Science, 2015, 347(6221):543-548.
Chen et al., “Nanoscale imaging of RNA with expansion microscopy,” Nat Methods, Aug. 2016, 13(8):679-84.
Chen et al., “Parallel single nucleotide polymorphism genotyping by surface invasive cleavage with universal detection,” Anal Chem., Apr. 2005, 77(8):2400-5.
Chen et al., “RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells,” Science, Apr. 2015, 348(6233):aaa6090, 21 pages.
Chen et al., “Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's Disease,” Cell, Aug. 2020, 182(4):976-991.
Chen et al., “uCB-seq: microfluidic cell barcoding and sequencing for high-resolution imaging and sequencing of single cells,” Lab Chip, Nov. 2020, 20(21):3899-3913.
Chester et al., “Dimethyl sulfoxide-mediated primer Tm reduction: a method for analyzing the role of renaturation temperature in the polymerase chain reaction,” Anal Biochem, Mar. 1993, 209(2):284-90.
Chrisey et al., “Covalent attachment of synthetic DNA to self-assembled monolayer films,” Nucleic Acids Res., Aug. 1996, 24(15):3031-9.
Ciaccio et al., “Systems analysis of EGF receptor signaling dynamics with microwestern arrays,” Nat Methods, Feb. 2010, 7(2):148-55.
Constantine et al., “Use of genechip high-density oligonucleotide arrays for gene expression monitoring,” Life Science News, Amersham Life Science, 1998, pp. 11-14.
Corces et al., “An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues,” Nat. Methods, 2017, 14(10):959-962.
Credle et al., “Multiplexed analysis of fixed tissue RNA using Ligation in situ Hybridization,” Nucleic Acids Research, 2017, 45(14):e128, 9 pages.
Crosetto et al., “Spatially resolved transcriptomics and beyond,” Nature Review Genetics, 2015, 16(1):57-66.
Cruz et al., “Methylation in cell-free DNA for early cancer detection,” Ann Oncol., Jun. 2018, 29(6):1351-1353.
Cujec et al., “Selection of v-Abl tyrosine kinase substrate sequences from randomized peptide and cellular proteomic libraries using mRNA display,” Chemistry and Biology, 2002, 9(2):253-264.
Czarnik, “Encoding methods for combinatorial chemistry,” Curr Opin Chem Biol., Jun. 1997, 1(1):60-6.
Dahl et al., “Circle-to-circle amplification for precise and sensitive DNA analysis,” Proc. Natl. Acad. Sci., 2004, 101(13):4548-4553.
Dalma-Weiszhausz et al., “The affymetrix GeneChip platform: an overview,” Methods Enzymol., 2006, 410:3-28.
Darmanis et al., “ProteinSeq: High-Performance Proteomic Analyses by Proximity, Ligation and Next Generation Sequencing,” PLos One, 2011, 6(9):e25583, 10 pages.
Daubendiek et al., “Rolling-Circle RNA Synthesis: Circular Oligonucleotides as Efficient Substrates for T7 RNA Polymerase,” J. Am. Chem. Soc., 1995, 117(29):7818-7819.
Davies et al., “How best to identify chromosomal interactions: a comparison of approaches,” Nat. Methods, 2017, 14(2):125-134.
Deamer et al., “Characterization of nucleic acids by nanopore analysis,” Acc Chem Res., Oct. 2002, 35(10):817-25.
Dean et al., “Comprehensive human genome amplification using multiple displacement amplification,” Proc Natl. Acad. Sci. USA, 2002, 99(8):5261-66.
Deng et al., “Spatial Epigenome Sequencing at Tissue Scale and Cellular Level,” BioRxiv, Mar. 2021, 40 pages.
Dressman et al., “Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations,” Proc. Natl. Acad. Sci. USA, 2003, 100(15):8817-8822.
Drmanac et al., “CoolMPS™: Advanced massively parallel sequencing using antibodies specific to each natural nucleobase,” BioRxiv, 2020, 19 pages.
Druley et al., “Quantification of rare allelic variants from pooled genomic DNA,” Nat. Methods, 2009, 6(4):263-65.
Duncan et al., “Affinity chromatography of a sequence-specific DNA binding protein using Teflon-linked oligonucleotides,” Anal. Biochem., 1988, 169(1):104-108.
Eberwine, “Amplification of mRNA populations using aRNA generated from immobilized oligo(dT)-T7 primed cDNA,” BioTechniques, 1996, 20(4):584-91.
Eguiluz et al., “Multitissue array review: a chronological description of tissue array techniques, applications and procedures,” Pathology Research and Practice, 2006, 202(8):561-568.
Eldridge et al., “An in vitro selection strategy for conferring protease resistance to ligand binding peptides,” Protein Eng Des Sel., 2009, 22(11):691-698.
Ellington et al., “Antibody-based protein multiplex platforms: technical and operational challenges,” Clin Chem, 2010, 56(2):186-193.
Eng et al., “Profiling the transcriptome with RNA SPOTs,” Nat Methods., 2017, 14(12):1153-1155.
Evers et al., “The effect of formaldehyde fixation on RNA: optimization of formaldehyde adduct removal,” J Mol Diagn., May 2011, 13(3):282-8.
Fire et al., “Rolling replication of short DNA circles,” Proc. Natl. Acad. Sci., 1995, 92(10):4641-4645.
Flanigon et al., “Multiplex protein detection with DNA readout via mass spectrometry,” N. Biotechnol., 2013, 30(2):153-158.
Fluidigm, “Equivalence of Imaging Mass Cytometry and Immunofluorescence on FFPE Tissue Sections,” White Paper, 2017, 12 pages.
Fodor et al., “Light-directed, spatially addressable parallel chemical synthesis,” Science, 1995, 251(4995):767-773.
Forster et al., “A human gut bacterial genome and culture collection for improved metagenomic analyses,” Nature Biotechnology, 2019, 37(2):186-192.
Frese et al., “Formylglycine aldehyde Tag—protein engineering through a novel post-translational modification,” ChemBioChem., 2009, 10(3):425-27.
Fu et al., “Counting individual DNA molecules by the stochastic attachment of diverse labels,” PNAS, 2011, 108(22):9026-9031.
Fu et al., “Repeat subtraction-mediated sequence capture from a complex genome,” Plant J., Jun. 2010, 62(5):898-909.
Fu et al., “Continuous Polony Gels for Tissue Mapping with High Resolution and RNA Capture Efficiency,” bioRxiv, 2021, 20 pages.
Fullwood et al., “Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses,” Genome Res., 2009, 19(4):521-532.
Ganguli et al., “Pixelated spatial gene expression analysis from tissue,” Nat Commun., Jan. 2018, 9(1):202, 9 pages.
Gansauge et al., “Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase,” Nucleic Acids Res., Jun. 2017, 45(10):e79, 10 pages.
Gao et al., “Q&A: Expansion microscopy,” BMC Biology, 15:50, 9 pages, 2017.
Gene@arrays[online], BeadArray Technology, available on or before Feb. 14, 2015, via Internet Archive: Wayback Machine URL <https://web.archive.org/web/20150214084616/http://genearrays.com/services/microarrays/illumina/beadarray-technology/>, [retrieved on Jan. 30, 2020], 3 pages.
Gerard et al., “Excess dNTPs minimize RNA hydrolysis during reverse transcription,” Biotechniques, Nov. 2002, 33(5):984, 986, 988, 990.
Gill et al., “Nucleic acid isothermal amplification technologies: a review,” Nucleosides Nucleotides Nucleic Acids, Mar. 2008, 27(3):224-43.
Glass et al., “SIMPLE: a sequential immunoperoxidase labeling and erasing method,” J. Histochem. Cytochem., Oct. 2009, 57(10):899-905.
Gloor, “Gene targeting in Drosophila,” Methods Mol Biol., 2004, 260:97-114.
Gnanapragasam, “Unlocking the molecular archive: the emerging use of formalin-fixed paraffin-embedded tissue for biomarker research in urological cancer,” BJU International, 2009, 105(2):274-278.
Goldkorn et al., “A simple and efficient enzymatic method for covalent attachment of DNA to cellulose. Application for hybridization-restriction analysis and for in vitro synthesis of DNA probes,” Nucleic Acids Res., 1986, 14(22):9171-9191.
Goryshin et al., “Tn5 in vitro transposition,” J Biol Chem., Mar. 1998, 273(13):7367-74.
Gracia Villacampa et al., “Genome-wide Spatial Expression Profiling in FFPE Tissues,” bioRxiv, 2020, pp. 38 pages.
Grokhovsky, “Specificity of DNA cleavage by ultrasound,” Molecular Biology, 2006, 40(2):276-283.
Gu et al., “Protein tag-mediated conjugation of oligonucleotides to recombinant affinity binders for proximity ligation,” N Biotechnol., 2013, 30(2):144-152.
Gunderson et al., “Decoding randomly ordered DNA arrays,” Genome Research, 2004, 14(5):870-877.
Guo et al., “Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports,” Nucleic Acids Res., Dec. 1994, 22(24):5456-65.
Gupta et al., “Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells,” Nature Biotechnol., Oct. 2018, 36:1197-1202.
Hafner et al., “Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing,” Methods, Jan. 2008, 44(1):3-12.
Hahnke et al., “Striptease on glass: validation of an improved stripping procedure for in situ microarrays,” J Biotechnol., Jan. 2007, 128(1):1-13.
Hamaguchi et al., “Direct reverse transcription-PCR on oligo(dT)-immobilized polypropylene microplates after capturing total mRNA from crude cell lysates,” Clin Chem., Nov. 1998, 44(11):2256-63.
Hanauer et al., “Separation of nanoparticles by gel electrophoresis according to size and shape,” Nano Lett., Sep. 2007, 7(9):2881-5.
Hardenbol et al., “Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay,” Genome Res., Feb. 2005, 15(2):269-75.
Hardenbol et al., “Multiplexed genotyping with sequence-tagged molecular inversion probes,” Nature Biotechnol., Jun. 2003, 21(6):673-678.
Hayes et al., “Electrophoresis of proteins and nucleic acids: I-Theory,” BMJ, Sep. 1989, 299(6703):843-6.
He et al., “In situ synthesis of protein arrays,” Current Opinion in Biotechnology, 2008, 19(1):4-9.
He et al., “Printing protein arrays from DNA arrays,” Nature Methods, 2008, 5(2):175-77.
He, “Cell-free protein synthesis: applications in proteomics and biotechnology,” New Biotechnology, 2008, 25(2-3):126-132.
Healy, “Nanopore-based single-molecule DNA analysis,” Nanomedicine (Lond), Aug. 2007, 2(4):459-81.
Hejatko et al., “In situ hybridization technique for mRNA detection in whole mount Arabidopsis samples,” Nature Protocols, 2006, 1(4):1939-1946.
Hessner et al., “Genotyping of factor V G1691A (Leiden) without the use of PCR by invasive cleavage of oligonucleotide probes,” Clin Chem., Aug. 2000, 46(8 Pt 1):1051-6.
Hiatt et al., “Parallel, tag-directed assembly of locally derived short sequence reads,” Nature Methods, 2010, 7(2):119-25.
Ho et al., “Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains,” PNAS, Oct. 2002, 99(20):12709-14.
Ho et al., “Characterization of an ATP-Dependent DNA Ligase Encoded by Chlorella Virus PBCV-1,” Journal of Virology, Mar. 1997, 71(3):1931-1937.
Hoffman et al., “Formaldehyde crosslinking: a tool for the study of chromatin complexes,” J Biol Chem., Oct. 2015, 290(44):26404-11.
Hsuih et al., “Novel, Ligation-Dependent PCR Assay for Detection of Hepatitis C Virus in Serum,” Journal of Clinical Microbiology, Mar. 1996, 34(3):501-507.
Hu et al., “High reproducibility using sodium hydroxide-stripped long oligonucleotide DNA microarrays,” Biotechniques, Jan. 2005, 38(1):121-4.
Hughes et al., “Microfluidic Western blotting,” PNAS, Dec. 2012, 109(52):21450-21455.
Hycultbiotech.com, [online], “Immunohistochemistry, Paraffin” Apr. 2010, retrieved on Apr. 16, 2020, retrieved from URL<https://www.hycultbiotech.com/media/wysiwyg/Protocol_Immunohistochemistry_Paraffin_2.pdf>, 3 pages.
Ichikawa et al., “In vitro transposition of transposon Tn3,” J Biol. Chem., Nov. 1990, 265(31):18829-32, Abstract.
Illumina.com [online], “Ribo-Zero® rRNA Removal Kit Reference Guide,” Aug. 2016, retrieved on Apr. 26, 2022, retrieved from URL<https://jp.support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/ribosomal-depletion/ribo-zero/ribo-zero-reference-guide-15066012-02.pdf>, 36 pages.
Jamur et al., “Permeabilization of cell membranes.,” Method Mol. Biol., 2010, 588:63-66.
Jemt et al., “An automated approach to prepare tissue-derived spatially barcoded RNA-sequencing libraries,” Scientific Reports, 2016, 6:37137, 10 pages.
Jensen et al., “Zinc fixation preserves flow cytometry scatter and fluorescence parameters and allows simultaneous analysis of DNA content and synthesis, and intracellular and surface epitopes,” Cytometry A., Aug. 2010, 77(8):798-804.
Jucá et al., “Effect of dimethyl sulfoxide on reverse transcriptase activity,” Braz. J. Med. Biol. Res., Mar. 1995, 28(3):285-90.
Kalantari et al., “Deparaffinization of formalin-fixed paraffin-embedded tissue blocks using hot water instead of xylene,” Anal Biochem., Aug. 2016, 507:71-3.
Kap et al., “Histological assessment of PAXgene tissue fixation and stabilization reagents,” PLoS One, 2011, 6:e27704, 10 pages.
Kapteyn et al., “Incorporation of non-natural nucleotides into template-switching oligonucleotides reduces background and improves cDNA synthesis from very small RNA samples,” BMC Genomics, Jul. 2010, 11:413, 9 pages.
Karmakar et al., “Organocatalytic removal of formaldehyde adducts from RNA and DNA bases,” Nature Chemistry, Aug. 3, 2015, 7(9):752-758.
Kaya-Okur et al., “CUT&Tag for efficient epigenomic profiling of small samples and single cells,” Apr. 2019, 10(1):1930, 10 pages.
Ke et al., “In situ sequencing for RNA analysis in preserved tissue and cells,” Nat Methods., Sep. 2013, Supplementary Materials, 29 pages.
Kennedy-Darling et al., “Measuring the Formaldehyde Protein-DNA Cross-Link Reversal Rate,” Analytical Chemistry, 2014, 86(12):5678-5681.
Kent et al., “Polymerase θ is a robust terminal transferase that oscillates between three different mechanisms during end-joining” Elife, Jun. 2016, 5:e13740, 25 pages.
Kirby et al., “Cryptic plasmids of Mycobacterium avium: Tn552 to the rescue,” Mol Microbiol., Jan. 2002, 43(1):173-86.
Kleckner et al., “Tn10 and IS10 transposition and chromosome rearrangements: mechanism and regulation in vivo and in vitro,” Curr Top Microbiol Immunol., 1996, 204:49-82.
Korbel et al., “Paired-end mapping reveals extensive structural variation in the human genome,” Science, 2007, 318(5849):420-426.
Kozlov et al., “A highly scalable peptide-based assay system for proteomics,” PLoS One, 2012, 7(6):e37441, 10 pages.
Kozlov et al., “A method for rapid protease substrate evaluation and optimization,” Comb Chem High Throughput Screen, 2006, 9(6):481-87.
Kristensen et al., “High-Throughput Methods for Detection of Genetic Variation,” BioTechniques, Feb. 2001, 30(2):318-332.
Krzywkowski et al., “Chimeric padlock and iLock probes for increased efficiency of targeted RNA detection,” RNA, Jan. 2019, 25(1):82-89.
Krzywkowski et al., “Fidelity of RNA templated end-joining by chlorella virus DNA ligase and a novel iLock assay with improved direct RNA detection accuracy,” Nucleic Acids Research, Oct. 2017, 45(18):e161, 9 pages.
Kumar et al., “Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry,” J Am Chem Soc., May 2007, 129(21):6859-64.
Kurz et al., “cDNA—protein fusions: covalent protein—gene conjugates for the in vitro selection of peptides and proteins,” ChemBioChem., 2001, 2(9):666-72.
Kwok, “High-throughput genotyping assay approaches,” Pharmocogenomics, Feb. 2000, 1(1):95-100.
Lage et al., “Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH,” Genome Research, 2003, 13(2):294-307.
Lahiani et al., “Enabling Histopathological Annotations on Immunofluorescent Images through Virtualization of Hematoxylin and Eosin,” J Pathol Inform., Feb. 2018, 9:1, 8 pages.
Lampe et al., “A purified mariner transposase is sufficient to mediate transposition in vitro,” EMBO J., Oct. 1996, 15(19):5470-9.
Landegren et al., “Reading bits of genetic information: methods for single-nucleotide polymorphism analysis,” Genome Res., Aug. 1998, 8(8):769-76.
Langdale et al., “A rapid method of gene detection using DNA bound to Sephacryl,” Gene, 1985, 36(3):201-210.
Larman et al., “Sensitive, multiplex and direct quantification of RNA sequences using a modified RASL assay,” Nucleic Acids Research, 2014, 42(14):9146-9157.
Lee et al., “Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues,” Nature Protocols, 2015, 10(3):442-458.
Lee et al., “Improving the efficiency of genomic loci capture using oligonucleotide arrays for high throughput resequencing,” BMC Genomics, Dec. 2009, 10:646, 12 pages.
Leriche et al., “Cleavable linkers in chemical biology,” Bioorganic & Medicinal Chemistry, 2012, 20:571-582.
Li et al., “A photocleavable fluorescent nucleotide for DNA sequencing and analysis,” Proc. Natl. Acad. Sci., 2003, 100(2):414-419.
Li et al., “An activity-dependent proximity ligation platform for spatially resolved quantification of active enzymes in single cells,” Nat Commun, Nov. 2017, 8(1):1775, 12 pages.
Li et al., “RASL-seq for Massively Parallel and Quantitative Analysis of Gene Expression,” Curr Protoc Mol Biol., Apr. 2012, 4(13):1-10.
Li et al., “Review: a comprehensive summary of a decade development of the recombinase polymerase amplification,” Analyst, Dec. 2018, 144(1):31-67.
Lin et al., “Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method,” Nat Commun., Sep. 2015, 6:8390, 7 pages.
Linnarsson, “Recent advances in DNA sequencing methods—general principles of sample preparation,” Experimental Cell Research, 2010, 316(8):1339-1343.
Liu et al., “High-Spatial-Resolution Multi-Omics Atlas Sequencing of Mouse Embryos via Deterministic Barcoding in Tissue,” BioRxiv, 2019, 55 pages.
Lizardi et al., “Mutation detection and single-molecule counting using isothermal rolling-circle amplification,” Nat. Genet., 1998, 19(3):225-232.
Lou et al., “A review of room temperature storage of biospecimen tissue and nucleic acids for anatomic pathology laboratories and biorepositories,” Clin Biochem., Mar. 2014, 47(4-5):267-73.
Lovatt et al., “Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue,” Nature Methods, 2013, 11(2):190-196.
Lund et al., “Assessment of methods for covalent binding of nucleic acids to magnetic beads, Dynabeads, and the characteristics of the bound nucleic acids in hybridization reactions,” Nucleic Acids Res., 1988, 16(22):10861-80.
Lundberg et al., “High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus,” Gene, 1991, 108(1):1-6.
Lundberg et al., “Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood,” Nucleic Acids Res., 2011, 39(15):e102, 8 pages.
Lundberg et al., “Multiplexed homogeneous proximity ligation assays for high-throughput protein biomarker research in serological material,” Mol Cell Proteomics, 2011, 10(4):M110.004978, 11 pages.
Lundin et al., “Increased throughput by parallelization of library preparation for massive sequencing,” PLoS One, Apr. 2010, 5(4):e10029, 7 pages.
Lyamichev et al., “Invader assay for SNP genotyping,” Methods Mol Biol., 2003, 212:229-40.
Lyamichev et al., “Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes,” Nat Biotechnol., Mar. 1999, 17(3):292-6.
Lyck et al., “Immunohistochemical markers for quantitative studies of neurons and glia in human neocortex,” J Histochem Cytochem, 2008, 56(3):201-21.
Lykidis et al., “Novel zinc-based fixative for high quality DNA, RNA and protein analysis,” Nucleic Acids Res., Jun. 2007, 35(12):e85, 10 pages.
MacBeath et al., “Printing proteins as microarrays for high-throughput function determination,” Science, Sep. 2000, 289(5485):1760-1763.
MacIntyre, “Unmasking antigens for immunohistochemistry.,” Br J Biomed Sci., 2001, 58(3):190-6.
McCloskey et al., “Encoding PCR products with batch-stamps and barcodes,” Biochem. Genet., 2007, 45(11-12):761-767.
Meers et al., “Improved CUT&RUN chromatin profiling tools,” Elife, Jun. 2019, 8:e46314, 16 pages.
Merritt et al., “Multiplex digital spatial profiling of proteins and RNA in fixed tissue,” Nat Biotechnol, May 2020, 38(5):586-599.
Metzker, “Sequencing technologies—the next generation,” Nature Reviews Genetics, 2010, 11(1):31-46.
Miele et al., “Mapping cis- and trans-chromatin interaction networks using chromosome conformation capture (3C),” Methods Mol Biol., 2009, 464:105-21.
Miller et al., “Basic concepts of microarrays and potential applications in clinical microbiology,” Clinical Microbiology Reviews, 2009, 22(4):611-633.
Miller et al., “Chapter 11—Solid and Suspension Microarrays for Microbial Diagnostics,” Methods in Microbiology, 2015, 42:395-431.
Miner et al., “Molecular barcodes detect redundancy and contamination in hairpin-bisulfite PCR,” Nucleic Acids Res., Sep. 2004, 32(17):e135, 4 pages.
Mishra et al., “Three-dimensional genome architecture and emerging technologies: looping in disease,” Genome Medicine, 2017, 9(1):87, 14 pages.
Mitra et al., “Digital genotyping and haplotyping with polymerase colonies,” Proc. Natl. Acad. Sci. USA, May 2003, 100(10):5926-5931.
Miura et al., “Highly efficient single-stranded DNA ligation technique improves low-input whole-genome bisulfite sequencing by post-bisulfite adaptor tagging,” Nucleic Acids Res., Sep. 2019, 47(15):e85, 10 pages.
Mizusawa et al., “A bacteriophage lambda vector for cloning with BamHI and Sau3A,” Gene, 1982, 20(3):317-322.
Morlan et al., “Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue,” PLoS One, Aug. 2012, 7(8):e42882, 8 pages.
Motea et al., “Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase,” Biochim Biophys Acta., May 2010, 1804(5):1151-66.
Mulder et al., “CapTCR-seq: hybrid capture for T-cell receptor repertoire profiling,” Blood Advances, Dec. 2018, 2(23):3506-3514.
Nadji et al., “Immunohistochemistry of tissue prepared by a molecular-friendly fixation and processing system,” Appl Immunohistochem Mol Morphol., Sep. 2005, 13(3):277-82.
Nandakumar et al., “How an RNA Ligase Discriminates RNA versus DNA Damage,” Molecular Cell, 2004, 16:211-221.
Nandakumar et al., “RNA Substrate Specificity and Structure-guided Mutational Analysis of Bacteriophage T4 RNA Ligase 2,” Journal of Biological Chemistry, Jul. 2004, 279(30):31337-31347.
Ncbi.nlm.nih.gov, [online], “Molecular Inversion Probe Assay,” available on or before Oct. 14, 2014, via Internet Archive: Wayback Machine URL<https://web.archive.org/web/20141014124037/https://www.ncbi.nlm.nih.gov/probe/docs/techmip/>, retrieved on Jun. 16, 2021, retrieved from URL<https://www.ncbi.nlm.nih.gov/probe/docs/techmip/>, 2 pages.
Ng et al., “Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation,” Nature Methods, 2005, 2(2):105-111.
Nichols et al., “RNA Ligases,” Curr Protoc Mol Biol., Oct. 2008, 84(1):3.15.1-3.15.4.
Niedringhaus et al., “Landscape of next-generation sequencing technologies,” Anal Chem., Jun. 2011, 83(12):4327-41.
Nikiforov et al., “The use of 96-well polystyrene plates for DNA hybridization-based assays: an evaluation of different approaches to oligonucleotide immobilization,” Anal Biochem, May 1995, 227(1):201-9.
Niklas et al., “Selective permeabilization for the high-throughput measurement of compartmented enzyme activities in mammalian cells,” Anal Biochem, Sep. 2011, 416(2):218-27.
Nilsson et al., “RNA-templated DNA ligation for transcript analysis,” Nucleic Acids Res., Jan. 2001, 29(2):578-81.
Nowak et al., “Entering the Postgenome Era,” Science, 1995, 270(5235):368-71.
Ohtsubo et al., “Bacterial insertion sequences,” Curr Top Microbiol Immunol., 1996, 204:1-26.
Olivier, “The Invader assay for SNP genotyping,” Mutat. Res., Jun. 2005, 573(1-2):103-110.
Ozsolak et al., “Digital transcriptome profiling from attomole-level RNA samples,” Genome Res., Apr. 2010, 20(4):519-25.
Pandey et al., “Inhibition of terminal deoxynucleotidyl transferase by adenine dinucleotides. Unique inhibitory action of Ap5A,” FEBS Lett., Mar. 1987, 213(1):204-8.
Park et al., “Single cell trapping in larger microwells capable of supporting cell spreading and proliferation,” Microfluid Nanofluid, 2010, 8:263-268.
Passow et al., “RNAlater and flash freezing storage methods nonrandomly influence observed gene expression in RNAseq experiments,” bioRxiv, Jul. 2018, 28 pages.
PCT International Preliminary Report on Patentability in International Appln. No. PCT/EP2016/057355, dated Oct. 10, 2017, 7 pages.
PCT International Preliminary Report on Patentability in International Appln. No. PCT/US2019/048434, dated Mar. 2, 2021, 15 pages.
PCT International Preliminary Report on Patentability in International Appln. No. PCT/US2021/018795, dated Sep. 1, 2022, 10 pages.
PCT International Preliminary Report on Patentability in International Appln. No. PCT/US2021/018816, dated Sep. 1, 2022, 9 pages.
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2020/066681, dated Apr. 14, 2021, 17 pages.
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2021/012659, dated Apr. 16, 2021, 15 pages.
PCT International Search Report and Written Opinion in International Appln. No. PCT/US2022/028071, dated Aug. 25, 2022, 13 pages.
Pellestor et al., “The peptide nucleic acids (PNAs), powerful tools for molecular genetics and cytogenetics,” Eur J Hum Genet., Sep. 2004, 12(9):694-700.
Pemov et al., “DNA analysis with multiplex microarray-enhanced PCR,” Nucl. Acids Res., Jan. 2005, 33(2):e11, 9 pages.
Penno et al., “Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage,” Nucleic Acids Res., Sep. 2017, 45(17):10143-10155.
Perler et al., “Intervening sequences in an Archaea DNA polymerase gen,” Proc Natl Acad Sci USA, Jun. 1992, 89(12):5577-5581.
Perocchi et al., “Antisense artifacts in transcriptome microarray experiments are resolved by actinomycin D,” Nucleic Acids Res., 2007, 35(19):e128, 7 pages.
Petterson et al., “Generations of sequencing technologies,” Genomics, 2009, 93(2):105-111.
Picelli et al., “Full-length RNA-seq from single cells using Smart-seq2,” Nat Protoc., Jan. 2014, 9(1):171-81.
Picelli et al., “Tn5 transposase and tagmentation procedures for massively scaled sequencing projects,” Genome Res., Dec. 2014, 24(12):2033-40.
Pipenburg et al., “DNA detection using recombination proteins,” PLoS Biol., Jul. 2006, 4(7):e204, 7 pages.
Pirici et al., “Antibody elution method for multiple immunohistochemistry on primary antibodies raised in the same species and of the same subtypem,” J. Histochem. Cytochem., Jun. 2009, 57(6):567-75.
Plasterk, “The Tcl/mariner transposon family,” Curr Top Microbiol Immunol., 1996, 204:125-43.
Plongthongkum et al., “Advances in the profiling of DNA modifications: cytosine methylation and beyond,” Nature Reviews Genetics, Aug. 2014, 15(10):647-661.
Polsky-Cynkin et al., “Use of DNA immobilized on plastic and agarose supports to detect DNA by sandwich hybridization,” Clin. Chem., 1985, 31(9):1438-1443.
Porreca et al., “Polony DNA sequencing,” Curr Protoc Mol Biol., Nov. 2006, Chapter 7, Unit 7.8, pp. 7.8.1-7.8.22.
U.S. Appl. No. 61/267,363, filed Dec. 7, 2009, 33 pages.
Qiu et al., “Combination probes with intercalating anchors and proximal fluorophores for DNA and RNA detection,” Nucleic Acids Research, Sep. 2016, 44(17):e138, 12 pages.
Raab et al., “Human tRNA genes function as chromatin insulators,” EMBO J., Jan. 2012, 31(2):330-50.
Ranki et al., “Sandwich hybridization as a convenient method for the detection of nucleic acids in crude samples,” Gene, 1983, 21(1-2):77-85.
Reinartz et al., “Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms,” Brief Funct Genomic Proteomic, Feb. 2002, 1(1):95-104.
Reznikoff, “Tn5 as a model for understanding DNA transposition,” Mol Microbiol., Mar. 2003, 47(5):1199-206.
Ristic et al., “Detection of Protein-Protein Interactions and Posttranslational Modifications Using the Proximity Ligation Assay: Application to the Study of the SUMO Pathway,” Methods Mol. Biol., 2016, 1449:279-90.
Rodriques et al., “Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution,” Science, 2019, 363(6434):1463-1467.
Ronaghi et al., “A sequencing method based on real-time pyrophosphate,” Science, Jul. 1998, 281(5375):363-365.
Ronaghi et al., “Real-time DNA sequencing using detection of pyrophosphate release,” Analytical Biochemistry, Nov. 1996, 242(1):84-89.
Ronaghi, “Pyrosequencing sheds light on DNA sequencing,” Genome Res, Jan. 2001, 11(1):3-11.
Roy et al., “Assessing long-distance RNA sequence connectivity via RNA-templated DNA-DNA ligation,” eLife, 2015, 4:e03700, 21 pages.
Salmén et al., “Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling in mammalian tissue sections,” Nature Protocols, Oct. 2018, 13(11):2501-2534.
Saxonov et al., “10x Genomics, Mastering Biology to Advance Human Health,” PowerPoint, 10x, 2020, 41 pages.
Schena et al., “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, Oct. 1995, 270(5235):467-470.
Schouten et al., “Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification,” Nucleic Acids Res., Jun. 2002, 30(12):e57, 13 pages.
Schweitzer et al., “Multiplexed protein profiling on microarrays by rolling-circle amplification,” Nature Biotechnology, Apr. 2002, 20(4):359-365.
Schwers et al., “A high-sensitivity, medium-density, and target amplification-free planar waveguide microarray system for gene expression analysis of formalin-fixed and paraffin-embedded tissue,” Clin. Chem., Nov. 2009, 55(11):1995-2003.
Shalon et al., “A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization,” Genome Res., Jul. 1996, 6(7):639-45.
Shelbourne et al., “Fast copper-free click DNA ligation by the ring-strain promoted alkyne-azide cycloaddition reaction,” Chem. Commun., 2011, 47(22):6257-6259.
Shendure et al., “Accurate multiplex polony sequencing of an evolved bacterial genome,” Science, 2005, 309(5741):1728-1732.
Simonis et al., “Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C),” Nat Genet., Nov. 2006, 38(11):1348-54.
Singh et al., “High-throughput targeted long-read single cell sequencing reveals the clonal and transcriptional landscape of lymphocytes,” Nat Commun., Jul. 2019, 10(1):3120, 13 pages.
Skene et al., “An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites,” Elife, Jan. 2017, 6:e21856, 35 pages.
Slomovic et al., “Addition of poly(A) and poly(A)-rich tails during RNA degradation in the cytoplasm of human cells,” Proc Natl Acad Sci USA, Apr. 2010, 107(16):7407-12.
Sountoulidis et al., “SCRINSHOT, a spatial method for single-cell resolution mapping of cell states in tissue sections,” PLoS Biol., Nov. 2020, 18(11):e3000675, 32 pages.
Spiess et al., “A highly efficient method for long-chain cDNA synthesis using trehalose and betaine,” Anal. Biochem., Feb. 2002, 301(2):168-74.
Spitale et al., “Structural imprints in vivo decode RNA regulatory mechanisms,” Nature, 2015, 519(7544):486-90.
Stahl et al., “Visualization and analysis of gene expression in tissue sections by spatial transcriptomics,” Science, Jul. 2016, 353(6294):78-82.
Stahl et al., “Visualization and analysis of gene expression in tissue sections by spatial transcriptomics,” Supplementary Materials, Science, Jul. 2016, 353(6294):78-82, 41 pages.
Stimpson et al., “Real-time detection of DNA hybridization and melting on oligonucleotide arrays by using optical wave guides,” Proc Natl Acad Sci USA, Jul. 1995, 92(14):6379-83.
Stoddart et al., “Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore,” PNAS USA., May 2009, 106(19):7702-7707.
Strell et al., “Placing RNA in context and space—methods for spatially resolved transcriptomics,” The FEBS Journal, 2019, 286(8):1468-1481.
Stroh et al., “Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo,” Nat Med., Jun. 2005, 11(6):678-82.
Sutherland et al., “Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions,” J. Mass Spectrom., Jun. 2008, 43(6):699-715.
Taylor et al., “Mitochondrial DNA mutations in human disease,” Nature Reviews Genetics, May 2005, 6(5):389-402.
Tentori et al., “Detection of Isoforms Differing by a Single Charge Unit in Individual Cells,” Chem. Int. Ed., 2016, 55(40):12431-5.
Tian et al., “Antigen peptide-based immunosensors for rapid detection of antibodies and antigens,” Anal Chem, 2009, 81(13):5218-5225.
Tijssen et al., “Overview of principles of hybridization and the strategy of nucleic acid assays” in Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes, 1993, 24(Chapter 2), 65 pages.
Tolbert et al., “New methods for proteomic research: preparation of proteins with N-terminal cysteines for labeling and conjugation,” Angewandte Chemie International Edition, Jun. 2002, 41(12):2171-4.
Toubanaki et al., “Dry-reagent disposable biosensor for visual genotyping of single nucleotide polymorphisms by oligonucleotide ligation reaction: application to pharmacogenetic analysis,” Hum Mutat., Aug. 2008, 29(8):1071-8.
Trejo et al., “Extraction-free whole transcriptome gene expression analysis of FFPE sections and histology-directed subareas of tissue,” PLoS One, Feb. 2019, 14(2):e0212031, 22 pages.
Tu et al., “TCR sequencing paired with massively parallel 3′ RNA-seq reveals clonotypic T cell signatures,” Nature Immunology, Dec. 2019, 20(12):1692-1699.
Twyman et al., “Techniques Patents for SNP Genotyping,” Pharmacogenomics, Jan. 2003, 4(1):67-79.
Ulery et al., “Biomedical Applications of Biodegradable Polymers,” J Polym Sci B Polym Phys., Jun. 2011, 49(12):832-864.
U.S. Appl. No. 60/416,118 Fan et al., Multiplex Nucleic Acid Analysis Using Archived or Fixed Samples, filed Oct. 3, 2002, 22 pages.
Van Gelder et al., “Amplified RNA synthesized from limited quantities of heterogeneous cDNA,” Proc. Natl. Acad. Sci. USA, 1990, 87(5):1663-1667.
Vandenbroucke et al., “Quantification of splice variants using real-time PCR,” Nucleic Acids Research, 2001, 29(13):e68, 7 pages.
Vandernoot et al., “cDNA normalization by hydroxyapatite chromatography to enrich transcriptome diversity in RNA-seq applications,” Biotechniques, Dec. 2012, 53(6):373-80.
Vasiliskov et al., “Fabrication of microarray of gel-immobilized compounds on a chip by copolymerization,” Biotechniques, Sep. 1999, 27(3):592-606.
Vázquez Bernat et al., “High-Quality Library Preparation for NGS-Based Immunoglobulin Germline Gene Inference and Repertoire Expression Analysis,” Front Immunol., Apr. 2019, 10:660, 12 pages.
Velculescu et al., “Serial analysis of gene expression,” Science, Oct. 1995, 270(5235):484-7.
Vickovic et al., “High-definition spatial transcriptomics for in situ tissue profiling,” Nat Methods, Oct. 2019, 16(10):987-990.
Vickovic et al., “SM-Omics: An automated Platform for High-Throughput Spatial Multi-Omics,” bioRxiv, Oct. 2020, 40 pages.
Vincent et al., “Helicase-dependent isothermal DNA amplification,” EMBO Rep., Aug. 2004, 5(8):795-800.
Viollet et al., “T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis,” BMC Biotechnol., Jul. 2011, 11:72, 14 pages.
Vogelstein et al., “Digital PCR,” Proceedings of the National Academy of Sciences, Aug. 1999, 96(16):9236-9241.
Waichman et al., “Functional immobilization and patterning of proteins by an enzymatic transfer reaction,” Analytical chemistry, 2010, 82(4):1478-85.
Walker et al., “Strand displacement amplification—an isothermal, in vitro DNA amplification technique,” Nucleic Acids Research, 1992, 20(7):1691-1696.
Wang et al., “Concentration gradient generation methods based on microfluidic systems,” RSC Adv., 2017, 7:29966-29984.
Wang et al., “Imaging-based pooled CRISPR screening reveals regulators of lncRNA localization,” Proc Natl Acad Sci USA, May 2019, 116(22):10842-10851.
Wang et al., “Optimization of Process Conditions for Infected Animal Tissues by Alkaline Hydrolysis Technology,” Procedia Environmental Sciences, 2016, 31:366-374.
Wang et al., “Tagmentation-based whole-genome bisulfite sequencing,” Nature Protocols, Oct. 2013, 8(10):2022-2032.
Wang et al., “High-fidelity mRNA amplification for gene profiling,” Nature Biotechnology, Apr. 2000, 18(4):457-459.
Wang, “RNA amplification for successful gene profiling analysis,” J Transl Med., Jul. 2005, 3:28, 11 pages.
Weinreich et al., “Evidence that the cis Preference of the Tn5 Transposase is Caused by Nonproductive Multimerization,” Genes and Development, Oct. 1994, 8(19):2363-2374.
Wiedmann et al., “Ligase chain reaction (LCR)—overview and applications,” PCR Methods Appl., Feb. 1994, 3(4):S51-64.
Wilson et al., “New transposon delivery plasmids for insertional mutagenesis in Bacillus anthracis,” J Microbiol Methods, Dec. 2007, 71(3):332-5.
Wohnhaas et al., “DMSO cryopreservation is the method of choice to preserve cells for droplet-based single-cell RNA sequencing,” Scientific Reports, Jul. 2019, 9(1):10699, 14 pages.
Wolf et al., “Rapid hybridization kinetics of DNA attached to submicron latex particles,” Nucleic Acids Res, 1987, 15(7):2911-2926.
Wong et al., “Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase,” J. Am. Chem Soc., 2008, 130(37):12456-64.
Worthington et al., “Cloning of random oligonucleotides to create single-insert plasmid libraries,” Anal Biochem, 2001, 294(2):169-175.
Wu et al., “Detection DNA Point Mutation with Rolling-Circle Amplification Chip,” IEEE, 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Jun. 2010, 4 pages.
Wu et al., “RollFISH achieves robust quantification of single-molecule RNA biomarkers in paraffin-embedded tumor tissue samples,” Commun Biol., Nov. 2018, 1:209, 8 pages.
Yasukawa et al., “Effects of organic solvents on the reverse transcription reaction catalyzed by reverse transcriptases from avian myeloblastosis virus and Moloney murine leukemia virus,” Biosci Biotechnol Biochem., 2010, 74(9):1925-30.
Yeakley et al., “Profiling alternative splicing on fiber-optic arrays,” Nature biotechnology, 2002, 20:353-358.
Yeakley et al., “A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling,” PLoS One, May 2017, 12(5):e0178302, 22 pages.
Yershov et al., “DNA analysis and diagnostics on oligonucleotide microchips,” Proc. Natl. Acad. Sci. USA, May 1996, 93(10):4913-4918.
Yin et al., “Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase,” PNAS, 2005, 102(44):15815-20.
Zhang et al., “Archaeal RNA ligase from Thermoccocus kodakarensis for template dependent ligation,” RNA Biol., Jan. 2017, 14(1):36-44.
Zhang et al., “Assembling DNA through Affinity Binding to Achieve Ultrasensitive Protein Detection,” Angew Chem Int Ed Engl., 2013, 52(41):10698-705.
Zhang et al., “Binding-induced DNA assembly and its application to yoctomole detection of proteins,” Anal Chem, 2012, 84(2):877-884.
Zhang et al., “Genome-wide open chromatin regions and their effects on the regulation of silk protein genes in Bombyx mori,” Sci Rep., Oct. 2017, 7(1):12919, 9 pages.
Zhang et al., “Multiplex ligation-dependent probe amplification (MLPA) for ultrasensitive multiplexed microRNA detection using ribonucleotide-modified DNA probest,” Chem. Commun., 2013, 49:10013-10015.
Zhao et al., “Isothermal Amplification of Nucleic Acids,” Chemical Reviews, Nov. 2015, 115(22):12491-12545.
Zheng et al., “Origins of human mitochondrial point mutations as DNA polymerase gamma-mediated errors,” Mutat. Res., 2006, 599(1-2):11-20.
Zhou et al., “Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases,” ACS Chemical Biol., 2007, 2(5):337-346.
Zhu et al., “Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction,” Biotechniques, Apr. 2001, 30(4):892-897.
Goldmeyer et al., “Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection,” Journal of Molecular Diagnostics, American Society for Investigative Pathology and the Association for Molecular Pathology, Nov. 1, 2007, 9(5):639-644.
Zahra et al., “Assessment of Different Permeabilization Methods of Minimizing Damage to the Adherent Cells for Detection of Intracellular RNA by Flow Cytometry,” Avicenna Journal of Medical Biotechnology, Jan. 1, 2014, 6(1):38-46.
Belaghzal et al., “Hi—C 2.0: An Optimized Hi-C Procedure for High-Resolution Genome-Wide Mapping of Chromosome Conformation,” Methods, Jul. 1, 2017, 123:56-65, 20 pages.
Belton et al., “Hi—C: A comprehensive technique to capture the conformation of genomes,” Methods, Nov. 2012, 58(3):268-276, 16 pages.
Bentzen et al., “Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes,” Nat Biotechnol., Oct. 2016, 34(10):1037-1045, 12 pages.
Bibikova et al., “Quantitative gene expression profiling in formalin-fixed paraffin-embedded tissues using universal bead arrays,” The American Journal of Pathology, Nov. 1, 2004, 165(5):1799-1807.
Chen et al. “Arrayed profiling of multiple glycans on whole living cell surfaces.” Analytical chemistry, Oct. 15, 2013, 85(22):11153-11158.
Choi et al., “Multiplexed detection of mRNA using porosity-tuned hydrogel microparticles,” Analytical chemistry, Sep. 28, 2012, 84(21):9370-9378.
Fan et al., “A versatile assay for high-throughput gene expression profiling on universal array matrices,” Genome Research, May 1, 2004, 14(5):878-885.
Fan et al., “Illumina Universal Bead Arrays,” Methods in Enzymology, 2006, 410:57-73.
Hadrup et al., “Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers,” Nat. Methods., Jul. 2009, 6(7), 520-526.
Hobro et al., “An evaluation of fixation methods: Spatial and compositional cellular changes observed by Raman imaging,” Vibrational Spectroscopy, Jul. 2017, 91:31-45.
Landegren et al., “A Ligase-Mediated Gene Detection Technique,” Science, 1988, 241(4869):1077-1080.
Mamedov et al., “Preparing unbiased T-cell receptor and antibody cDNA libraries for the deep next generation sequencing profiling,” Frontiers in Immunol., Dec. 23, 2013, 4(456):1-10.
Oksuz et al., “Systematic evaluation of chromosome conformation capture assays,” Nature Methods, Sep. 2021, 18:1046-1055.
Rohland et al., “Partial uracil-DNA-glycosylase treatment for screening of ancient DNA,” Phil. Trans. R. Soc. B, Jan. 19, 2015, 370(1660): Jun. 24, 2013, 11 pages.
Schmidl et al., “ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors,” Nature Methods, Oct. 2015, 12:963-965.
Su et al., “Restriction enzyme selection dictates detection range sensitivity in chromatin conformation capture-based variant-to-gene mapping approaches,” bioRxiv, Dec. 15, 2020, 22 pages.
Sun et al., “Statistical Analysis of Spatial Expression Pattern for Spatially Resolved Transcriptomic Studies,” Nature Methods, Jan. 27, 2020, 17(2): 193-200.
Svensson et al., “SpatialDE: identification of spatially variable genes,” Nature Methods, May 2018, 15:343-346, 15 pages.
Howell et al., “iFRET: An Improved Fluorescence System for DNA-Melting Analysis,” Genome Research, 2002, 12:1401-1407.
Nam et al., “Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins,” Science, Sep. 26, 2003, 301(5641):1884-1886.
Redmond et al., “Single-cell TCRseq: paired recovery of entire T-cell alpha and beta chain transcripts in T-cell receptors from single-cell RNAseq,” Genome Med, 2016, 8:80, 12 pages.
Asp et al., “A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart,” Cell, Dec. 12, 2019, 179(7):1647-1660.
Lubeck et al., “Single-cell in situ RNA profiling by sequential hybridization,” Nature Methods, Apr. 2014, 11(4):360-361, 2 pages (Supplemental Materials).
Kuhn et al., “A novel, high-performance random array platform for quantitative gene expression profiling,” Genome Res, 2004, 14:2347-2356.
Provisional Applications (1)
Number Date Country
63048584 Jul 2020 US