Embodiments of the disclosure relate generally to coated particles, methods of forming coated particles, and methods of forming polycrystalline compacts from coated particles. Specifically, embodiments of the disclosure relate to particles of superhard material that have nanoparticles coated thereon.
Superhard materials have proven to be useful in a wide variety of applications. For example, cutting elements used in earth-boring tools often include a polycrystalline diamond (PCD) material, which may be used to form polycrystalline diamond cutters (often referred to as “PDCs”). Such polycrystalline diamond cutting elements are conventionally formed by sintering and bonding together relatively small diamond grains or crystals under conditions of high temperature and high pressure in the presence of a catalyst (e.g., cobalt, iron, nickel, or alloys and mixtures thereof) to form a layer of polycrystalline diamond material on a cutting element substrate. These processes are often referred to as high temperature/high pressure (or “HTHP”) processes. The cutting element substrate may comprise a cermet material (i.e., a ceramic-metal composite material) comprising a plurality of particles of hard material in a metal matrix, such as, for example, cobalt-cemented tungsten carbide. In such instances, catalyst material in the cutting element substrate may be drawn into the diamond grains or crystals during sintering and catalyze formation of a diamond table from the diamond grains or crystals. In other methods, powdered catalyst material may be mixed with the diamond grains or crystals prior to sintering the grains or crystals together in an HTHP process.
Earth-boring tools for forming wellbores in subterranean earth formations that may include a plurality of cutting elements secured to a body include, for example, fixed-cutter earth-boring rotary drill bits (also referred to as “drag bits”). Such fixed-cutter bits include a plurality of cutting elements that are fixedly attached to a bit body of the drill bit, conventionally in pockets formed in blades and other exterior portions of the bit body. Other earth-boring tools may include rolling cone earth-boring drill bits, which include a plurality of cutters attached to bearing pins on legs depending from a bit body. The cutters may include cutting elements (sometimes called “teeth”) milled or otherwise formed on the cutters, which may include hardfacing on the outer surfaces of the cutting elements, or the cutters may include cutting elements (sometimes called “inserts”) attached to the cutters, conventionally in pockets formed in the cutters. Cutting elements that include superhard materials increase the useful life of the earth-boring tools to which they are attached because the superhard materials increase the strength and abrasion resistance of the tools.
Some superhard materials have desirable properties that render them useful in still other applications. For example, the high strength and abrasion resistance of such materials renders them useful in grinding, polishing, and machining applications. Increased thermal conductivity of some superhard materials renders them useful as particles dispersed in lubricants, such as motor and pump oils, because such lubricants often serve to cool the parts they lubricate. Furthermore, increased electrical conductivity of some superhard materials renders them useful as fillers in polymers and elastomers, where increased electrical conductivity in at least some portion of the polymers and elastomers is desirable.
Some attempts have been made to enhance or alter the properties of superhard materials through layering other materials thereon. For example, Core-Shell Diamond as a Support for Solid-Phase Extraction and High-Performance Liquid Chromatigraphy, 82 Analytical Chem. 4448 (Jun. 1, 2010), by Gaurav Saini, David S. Jensen, Landon A. Wiest, Michael A. Vail, Andrew Dadson, Milton L. Lee, V. Shutthanandan, and Matthew R. Linford discloses, among other things, layer-by-layer deposition of an amine-containing polymer and nanodiamond on an amine functionalized microdiamond.
While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, various features and advantages of embodiments of the disclosure may be more readily ascertained from the following description of embodiments of the disclosure when read in conjunction with the accompanying drawings, in which:
The illustrations presented herein are not meant to be actual views of any particular particle, cutting element, or earth-boring tool, but are merely idealized representations that are employed to describe the embodiments of the disclosure. Thus, the drawings are not necessarily to scale and relative dimensions may have been exaggerated for the sake of clarity. Additionally, elements common between figures may retain the same or similar numerical designation.
Embodiments of the disclosure relate to particles of superhard material that have nanoparticles coated thereon. In some embodiments, a coating material comprising an amine terminated group may be successively interposed between the particles and/or the nanoparticles.
The terms “earth-boring tool” and “earth-boring drill bit,” as used herein, mean and include any type of bit or tool used for drilling during the formation or enlargement of a wellbore in a subterranean formation and include, for example, fixed-cutter bits, rolling cone bits, impregnated bits, core bits, eccentric bits, bicenter bits, hybrid bits as well as reamers, mills, and other drilling bits and tools known in the art.
As used herein, the term “polycrystalline material” means and includes any structure comprising a plurality of grains (i.e., crystals) of material (e.g., superhard material) that are bonded directly together by inter-granular bonds. The crystal structures of the individual grains of the material may be randomly oriented in space within the polycrystalline material.
As used herein, the terms “inter-granular bond” and “interbonded” mean and include any direct atomic bond (e.g., covalent, metallic, etc.) between atoms in adjacent grains of superabrasive material.
As used herein, the term “superhard material” means and includes any material having a Knoop hardness value of about 3,000 Kgf/mm2 (29,420 MPa) or more. Superhard materials include, for example, diamond and cubic boron nitride. Superhard materials may also be characterized as “superabrasive” materials.
As used herein, the terms “nanoparticle” and “nanoscale” mean and include any particle, such as, for example, a crystal or grain, having an average particle diameter of between about 1 nm and 500 nm.
As used herein, the term “tungsten carbide” means any material composition that contains chemical compounds of tungsten and carbon, such as, for example, WC, W2C, and combinations of WC and W2C. Tungsten carbide includes, for example, cast tungsten carbide, sintered tungsten carbide, and macrocrystalline tungsten carbide.
Referring to
An outer surface 102 of the core particle 100 may be modified by a surface treatment in some embodiments. For example, the outer surface 102 of the core particle 100 may be derivatized to exhibit a net negative charge or a net positive charge. Thus, a net charge may be imparted to the outer surface 102 of the core particle 100. Surface treatment may be accomplished using, for example, corona treatment, plasma treatment, chemical vapor treatment, wet etch, ashing, primer treatment (e.g., polymer-based or organosilane primer treatments), and other surface treatments known in the art.
Referring to
The coating material 104 may be disposed on the outer surface 102 of the core particle 100 by any of several well-known processes. For example, the coating material 104 may be disposed on the outer surface 102 of the core particle 100 by wet chemistry processes (e.g., dip coating, solid-gel processing, etc.), physical deposition processes (e.g., sputtering, also known as physical vapor deposition (PVD), etc.), chemical deposition processes (e.g., chemical vapor deposition (CVD), atomic layer deposition (ALD), etc.), or combinations of these. As a specific example, a plurality of core particles 100 that have been surface treated using a corona treatment to impart a net negative charge to the outer surfaces 102 of particles of the plurality of core particles 100 may be disposed in an aqueous solution of polyallylamine, which carries a net positive charge, and the polyallylamine may adhere to the outer surfaces 102 of particles of the plurality of core particles 100.
Referring to
Prior to being deposited onto the coating material 104, the plurality of nanoparticles 106 may be modified by a surface treatment in some embodiments. For example, an outer surface 108 of the plurality of nanoparticles 106 may be derivatized to exhibit a net charge opposite a net charge of the coating material 104, which may be a net negative charge or a net positive charge. Surface treatment may be accomplished using, for example, any of the surface treatments described previously in connection with the core particle 100 and other surface treatments known in the art. By alternating the net charge carried by the successive components of the coated core particle 100, each successive component (e.g., the core particle 100, the coating material 104, and the plurality of nanoparticles 106) may be adhered to its adjacent components using non-covalent intermolecular interactions (e.g., van der Waals forces) and mechanical interference.
The plurality of nanoparticles 106 may be disposed on the coating material 104 by, for example, dispersing the plurality of nanoparticles 106 in a continuous phase material to form a dispersion. The resulting dispersion may be, for example, a suspension, a colloid, or a solution, depending on the type of continuous phase material used and the material of the plurality of nanoparticles 106. As a specific example, the plurality of nanoparticles 106 may comprise carbon nanotubes suspended in water. The plurality of nanoparticles 106 shown disposed on the coating material 104 in
The plurality of nanoparticles 106 may impart desirable characteristics to the core particle 100. Where the core particle 100 comprises diamond and the plurality of nanoparticles 106 comprises nanographite, for example, the plurality of nanoparticles 106 may increase the ability to lubricate, increase the electrical insulation, and increase the thermal insulation of the resulting coated core particle 100 as compared to the core particle 100 without any nanoparticles 106 coated thereon. Such a combination of characteristics may be desirable in, for example, a lubricant in which the coated core particles 100 may be dispersed. Thus, the core particles 100, the coating materials 104, and the nanoparticles 106 used will depend on the application for which they are intended and the properties of each. In some embodiments, a single application of coating material 104 and nanoparticles 106 may be sufficient. In other embodiments, the coated core particle 100 may undergo subsequent processing.
Referring to
The second coating material 104′ may be disposed on the coated core particle 100 by any of several well-known processes. For example, the second coating material 104′ may be disposed on the coated core particle 100 by any of the processes described previously in connection with the underlying coating material 104. As a specific example, a plurality of coated core particles 100 having a coating material 104 interposed between and adhered to each core particle 100 and a plurality of nanoparticles 106 that have been surface treated using a corona treatment to impart a net negative charge to the outer surface 108 of the plurality of nanoparticles 106 may be disposed in an aqueous solution of polyallylamine, which carries a net positive charge, and the polyallylamine may thereby be disposed on and adhered to the outer surface 108 of the plurality of nanoparticles 106.
Referring to
Prior to being deposited onto the second coating material 104′, the second plurality of nanoparticles 106′ may be modified by a surface treatment in some embodiments. For example, an outer surface 110 of the second plurality of nanoparticles 106′ may be derivatized to exhibit a net charge opposite a net charge of the second coating material 104′, which may be a net negative charge or a net positive charge. Surface treatment may be accomplished using, for example, any of the surface treatments described previously in connection with the core particle 100 and other surface treatments known in the art. By alternating the net charge carried by the successive components of the coated core particle 100, each successive component (e.g., the core particle 100, the first coating material 104, the first plurality of nanoparticles 106, the second coating material 104′, and the second plurality of nanoparticles 106′) may be adhered to its adjacent components.
The second plurality of nanoparticles 106′ may be disposed on the second coating material 104′ by, for example, dispersing the second plurality of nanoparticles 106′ in a continuous phase material to form a dispersion. The resulting dispersion may be, for example, a suspension, a colloid, or a solution, depending on the type of continuous phase material used and the material of the second plurality of nanoparticles 106′. As a specific example, the second plurality of nanoparticles 106′ may comprise nanoscale particles of cobalt suspended in water. The second plurality of nanoparticles 106′ shown disposed on the second coating material 104′ in
Referring to
Referring to
Referring to
The third coating material 104″ may be disposed on the coated core particle 100 by any of several well-known processes. For example, the third coating material 104″ may be disposed on the coated core particle 100 by any of the processes described previously in connection with the first coating material 104. As a specific example, a plurality of coated core particles 100 having adhered thereto an outer second plurality of nanoparticles 106′ that have been surface treated using a corona treatment to impart a net negative charge to the outer surface 110 of the second plurality of nanoparticles 106′ may be disposed in an aqueous solution of polyallylamine, which carries a net positive charge, and the polyallylamine may thereby be disposed on and adhered to the outer surface 110 of the second plurality of nanoparticles 106′.
Referring to
Prior to being deposited onto the third coating material 104″, the third plurality of nanoparticles 106″ may be modified by a surface treatment in some embodiments. For example, an outer surface 112 of the third plurality of nanoparticles 106″ may be derivatized to exhibit a net charge opposite a net charge of the third coating material 104″, which may be a net negative charge or a net positive charge. Surface treatment may be accomplished using, for example, any of the surface treatments described previously in connection with the core particle 100 and other surface treatments known in the art. By alternating the net charge carried by the successive components of the coated core particle 100, each successive component (e.g., the core particle 100, the first coating material 104, the first plurality of nanoparticles 106, the second coating material 104′, the second plurality of nanoparticles 106′, the third coating material 104″, and the third plurality of particles 106″) may be adhered to its adjacent components.
The third plurality of nanoparticles 106″ may be disposed on the third coating material 104″ by, for example, dispersing the third plurality of nanoparticles 106″ in a continuous phase material to form a dispersion. The resulting dispersion may be, for example, a suspension, a colloid, or a solution, depending on the type of continuous phase material used and the material of the third plurality of nanoparticles 106″. As a specific example, the third plurality of nanoparticles 106″ may comprise nanoscale particles of BeO suspended in water. The third plurality of nanoparticles 106″ shown disposed on the third coating material 104″ in
Referring to
The fourth coating material 104′″ may be disposed on the coated core particle 100 by any of several well-known processes. For example, the fourth coating material 104′″ may be disposed on the coated core particle 100 by any of the processes described previously in connection with the first coating material 104. As a specific example, a plurality of coated core particles 100 having adhered thereto an outer third plurality of nanoparticles 106″ that has been surface treated using a corona treatment to impart a net negative charge to the outer surface 112 of the third plurality of nanoparticles 106″ may be disposed in an aqueous solution of polyallylamine, which carries a net positive charge, and the polyallylamine may thereby be disposed on and adhered to the outer surface 112 of the third plurality of nanoparticles 106″.
Successive deposition of pluralities of nanoparticles and coating materials, a process known in the art as layer-by-layer or “LbL” deposition, may continue for as many times as desired or practicable. For example, fourth, fifth, sixth, seventh, etc., pluralities of nanoparticles may be disposed on fourth, fifth, sixth, seventh, etc., coating materials. Such subsequent deposition of pluralities of nanoparticles and coating materials may comprise materials and may be accomplished using processes such as those described previously in connection with the first plurality of nanoparticles 106 and the first coating material 104 (
After a desired number of iterations of deposition of coating materials and pluralities of nanoparticles has occurred, the coating materials may be cross-linked. Cross-linking the coating materials may enhance the mechanical strength and stability of the coating materials. Cross-linking may be accomplished using, for example, addition of a cross-linking reagent, ultraviolet radiation, electron beam radiation, heat, or other processes for cross-linking known in the art.
The plurality of particles 116 may comprise at least one coated particle, such as any of those shown in
A substrate 120 comprising a hard material suitable for use in earth-boring applications may be disposed adjacent the plurality of particles 116 in the mold 114. The hard material of the substrate 120 may comprise, for example, a ceramic-metal composite material (i.e., a “cermet” material) comprising a plurality of hard ceramic particles dispersed throughout a metal matrix material. The hard ceramic particles may comprise carbides, nitrides, oxides, and borides (including boron carbide (B4C)). More specifically, the hard ceramic particles may comprise carbides and borides made from elements such as W, Ti, Mo, Nb, V, Hf, Ta, Cr, Zr, Al, and Si. By way of example and not limitation, materials that may be used to form hard ceramic particles include tungsten carbide, titanium carbide (TiC), tantalum carbide (TaC), titanium diboride (TiB2), chromium carbides, titanium nitride (TiN), aluminum oxide (Al2O3), aluminum nitride (AlN), and silicon carbide (SiC). The metal matrix material of the ceramic-metal composite material may include, for example, cobalt-based, iron-based, nickel-based, iron- and nickel-based, cobalt- and nickel-based, and iron- and cobalt-based alloys. The matrix material may also be selected from commercially pure elements such as cobalt, iron, and nickel. As a specific, non-limiting example, the hard material may comprise a plurality of tungsten carbide particles in a cobalt matrix, known in the art as cobalt-cemented tungsten carbide.
The plurality of particles 116, the optional catalyst material 118, and the substrate 120 may then be subjected to a high temperature/high pressure (HTHP) process. Although the exact operating parameters of HTHP processes will vary depending on the particular compositions and quantities of the various materials being sintered, the pressures in the heated press may be greater than about 5.0 GPa and the temperatures may be greater than about 1,400° C. The pressures in the heated press may be greater than about 6.5 GPa (e.g., about 6.7 GPa), and may even exceed 8.0 GPa in some embodiments. Furthermore, the materials being sintered may be held at such temperatures and pressures for a time period between about 30 seconds and about 20 minutes. If necessary or desirable, the temperature may be reduced to about 1,000° C. and held for up to about one hour, or more to assist in the in situ nucleation of grains of superhard material. Additionally, the temperature may be reduced and maintained at a temperature between about 400° C. and about 800° C. for at least about 30 minutes (e.g., up to about 24 hours or more) in a process similar to those known in the art of metallurgy as “re-crystallization annealing” process.
Referring to
Referring to
While the present invention has been described herein with respect to certain embodiments, those of ordinary skill in the art will recognize and appreciate that it is not so limited. Rather, many additions, deletions, and modifications to the embodiments described herein may be made without departing from the scope of the invention as hereinafter claimed, including legal equivalents. In addition, features from one embodiment may be combined with features of another embodiment while still being encompassed within the scope of the invention as contemplated by the inventor.
In some embodiments, coated particles comprise a core particle comprising a superhard material and having an average diameter of between 1 μm and 500 μm. A coating material is adhered to and covers at least a portion of an outer surface of the core particle, the coating material comprising an amine terminated group. A plurality of nanoparticles selected from the group consisting of carbon nanotubes, nanographite, nanographene, non-diamond carbon allotropes, surface modified nanodiamond, nanoscale particles of BeO, and nanoscale particles comprising a Group VIIIA element is adhered to the coating material.
In other embodiments, methods of coating a particle comprise at least partially coating a core particle comprising a superhard material and having an average diameter of between 1 μm and 500 μm with a coating material comprising an amine terminated group. The coating material adheres to an outer surface of the core particle. The at least partially coated core particle is disposed in a dispersion comprising a plurality of nanoparticles comprising a material selected from the group consisting of graphite, graphene, a non-diamond allotrope of carbon, surface modified diamond, BeO, and a Group VIIIA element dispersed in a continuous phase material. At least some nanoparticles of the plurality of nanoparticles adhere to the coating material.
In additional embodiments, methods of forming a polycrystalline compact comprise at least partially coating a plurality of core particles comprising a superhard material and having an average particle size of between 1 μm and 500 μm with a coating material comprising an amine terminated group. The coating material adheres to an outer surface of the plurality of core particles. The at least partially coated plurality of core particles is disposed in a dispersion comprising a plurality of nanoparticles comprising a material selected from the group consisting of graphite, graphene, a non-diamond allotrope of carbon, surface modified diamond, BeO, and a Group VIIIA element dispersed in a continuous phase material. At least some nanoparticles of the plurality of nanoparticles adhere to the coating material. At least some of the at least partially coated plurality of core particles are interbonded by subjecting them to a high temperature/high pressure process to form a polycrystalline material.
This application is a continuation of U.S. patent application Ser. No. 14/493,777, filed Sep. 23, 2014, now U.S. Pat. No. 9,611,699, issued Apr. 4, 2017, which is a continuation of U.S. patent application Ser. No. 13/166,557, filed Jun. 22, 2011, now U.S. Pat. No. 8,840,693, issued Sep. 23, 2014. The subject matter of this application is related to the subject matter of provisional U.S. Patent Application Ser. No. 61/408,382, which was filed Oct. 29, 2010 and is titled “Graphene-Coated Diamond Particles, Polycrystalline Compacts, Drill Bits, and Compositions of Graphene-Coated Diamond Particles, and Methods of Forming Same,” the disclosure of each of which is incorporated herein in its entirety by this reference. The subject matter of this application is also related to the subject matter of nonprovisional U.S. patent application Ser. No. 13/283,021, now U.S. Pat. No. 9,103,173, issued Aug. 11, 2015, which was filed Oct. 27, 2011, now U.S. Pat. No. 9,103,173, which issued Aug. 11, 2015, which claims the benefit of provisional U.S. Patent Application Ser. No. 61/408,382.
Number | Name | Date | Kind |
---|---|---|---|
3745623 | Wentorf, Jr. et al. | Jul 1973 | A |
4220455 | St. Pierre et al. | Sep 1980 | A |
4960643 | Lamelson | Oct 1990 | A |
5127923 | Bunting et al. | Jul 1992 | A |
5151107 | Cho | Sep 1992 | A |
5759216 | Kanada et al. | Jun 1998 | A |
5766394 | Anderson et al. | Jun 1998 | A |
5954147 | Overstreet et al. | Sep 1999 | A |
6372002 | D'Evelyn et al. | Apr 2002 | B1 |
8020621 | DiFoggio et al. | Sep 2011 | B2 |
8840693 | Chakraborty | Sep 2014 | B2 |
20040110005 | Choi et al. | Jun 2004 | A1 |
20040136892 | Davies et al. | Jul 2004 | A1 |
20040141865 | Keshavan et al. | Jul 2004 | A1 |
20070056778 | Webb et al. | Mar 2007 | A1 |
20080073126 | Shen et al. | Mar 2008 | A1 |
20080085407 | Cooley et al. | Apr 2008 | A1 |
20080127475 | Griffo | Jun 2008 | A1 |
20080202821 | McClain et al. | Aug 2008 | A1 |
20080302579 | Keshavan et al. | Dec 2008 | A1 |
20090139698 | Robinson | Jun 2009 | A1 |
20090218276 | Linford et al. | Sep 2009 | A1 |
20090277839 | Linford | Nov 2009 | A1 |
20090297854 | Lee et al. | Dec 2009 | A1 |
20100123746 | Wu | May 2010 | A1 |
20100151318 | Lopatin et al. | Jun 2010 | A1 |
20100203391 | Lopatin et al. | Aug 2010 | A1 |
20100213131 | Linford | Aug 2010 | A1 |
20100230174 | Scott et al. | Sep 2010 | A1 |
20110031034 | DiGiovanni et al. | Feb 2011 | A1 |
20110061942 | DiGiovanni et al. | Mar 2011 | A1 |
20110200825 | Chakraborty et al. | Aug 2011 | A1 |
20120037431 | DiGiovanni et al. | Feb 2012 | A1 |
20120102843 | Chakraborty et al. | May 2012 | A1 |
20120202067 | Chakraborty et al. | Aug 2012 | A1 |
20120324799 | Chakraborty et al. | Dec 2012 | A1 |
20150336801 | Chakraborty et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
101263083 | Sep 2008 | CN |
101324175 | Dec 2008 | CN |
101428786 | May 2009 | CN |
101463472 | Jun 2009 | CN |
101469417 | Jul 2009 | CN |
101772615 | Jul 2010 | CN |
2004040029 | May 2004 | WO |
Entry |
---|
Yao Tong et al: “Graphene based material and their composites as coatings”, Austin Journal of Nanomedicine & Nanotechnology, vol. 1, Dec. 31, 2013 (Dec. 31, 2013), p. 1003. |
Kuznetsov, V. L. et al. “Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon” Chem. Phys. Letters 336 (Mar. 23, 2001) pp. 397-404. |
European Office Action for European Application No. 11868188.1 dated Sep. 15, 2017, 4 pages. |
Chinese Office Action and Search Report for Chinese Application No. 201180072548.1 dated Apr. 3, 2015, 11 pages. |
Supplementary European Search Report and Opinion for European Application No. EP11868188, dated Jul. 8, 2016, 5 pages. |
Hwang, Kuo Chu et al., “Facile Surface Functionalization of Nanodiamonds”, American Chemical Society/Langmuir 26 (5) (2010) pp. 3685-3689. |
International Preliminary Report on Patentability for International Application No. PCT/US2011/057879, dated Dec. 23, 2013, 4 pages. |
International Search Report for International Application No. PCT/US2011/057879 dated May 30, 3012, 3 pages. |
International Written Opinion for International Application No. PCT/US2011/057879 dated May 30, 3012, 3 pages. |
Lee et al., Layer-by-Layer Assembly of All Carbon Nanotube Ultrthin Films for Electrochemical Applications, Jourtnal of the American Chemical Society (2009), Vo. 131, No. 2, pp. 671-679. |
Saini et al., Core-Shell Diamond as a Support for Solid-Phase Extraction and High-Performance Liquid Chromatigraphy, 82 Analytical Chem. 4448 (Jun. 1, 2010), pp. 4448-4456. |
Second Chinese Office Action for Chinese Application No. 201180072548.1 dated Dec. 4, 2015, 5 pages. |
Struers, Dia Duo Brochure, http://www.struers.com/resources/elements/12/164618/DiaDuo-2_BrochureEnglish.pdf , visited Oct. 6, 2010, 2 pages. |
Struers, DiaDuo-2 diamond suspension and cooling lubricant, http://www.struers.com/default.asp?top_id=2&main_id=58&doc_id=506 , visited Oct. 6, 2010, 1 page. |
Tong et al., Graphene Based Materials and Thier Composites as Coatings, Austin Jounal of Nanomedicine & Nanotechnology, vol. 1, Issue 1, (2013), 16 pages. |
Number | Date | Country | |
---|---|---|---|
20170191318 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14493777 | Sep 2014 | US |
Child | 15466602 | US | |
Parent | 13166557 | Jun 2011 | US |
Child | 14493777 | US |