The invention relates to methods of making prodrug compounds useful against HIV, and in particular, to methods of making the prodrug 1-benzoyl-4-[2-[4-methoxy-7-(3-methyl-1H-1,2,4-triazol-1-yl)-1-[(phosphonooxy)methyl]-1H-pyrrolo[2,3-c]pyridin-3-yl]-1,2-dioxoethyl]-piperazine, as well certain intermediates thereof, using novel alkylation, amidation, chlorination, and phosphate installation strategies. The invention also relates to the compounds obtained by the processes herein set forth.
The HIV attachment inhibitor prodrug compound identified as 1-benzoyl-4-[2-[4-methoxy-7-(3-methyl-1H-1,2,4-triazol-1-yl)-1-[(phosphonooxy)methyl]-1H-pyrrolo[2,3-c]pyridin-3-yl]-1,2-dioxoethyl]-piperazine, and having the structural formula:
has been set forth and described in U.S. Pat. No. 7,745,625, which is incorporated herein in its entirety. This compound is the phosphate prodrug of the basic compound having the structural formula:
which is set forth and described in U.S. Pat. No. 7,354,924, also incorporated herein in its entirety. Both this compound and the prodrug identified above have so far demonstrated excellent prowess against HIV.
During scale-up procedures for the production of the phosphate prodrug compound, two compounds were utilized in an alkylation process between phosphonic acid, P-(chloromethyl)-, bis(1,1-dimethylethyl) ester and 1-(4-benzoylpiperazin-1-yl)-2-(4-methoxy-7-(3-methyl-1H-1,2,4-triazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione. However, these compounds have proved to be difficult to process, or unstable and difficult to procure on scale. Furthermore, the yields of the alkylation reaction using these compounds has diminished as the reaction was scaled up.
What is now needed in the art are new processes for making the HIV prodrug compound 1-benzoyl-4-[2-[4-methoxy-7-(3-methyl-1H-1,2,4-triazol-1-yl)-1-[(phosphonooxy)methyl]-1H-pyrrolo[2,3-c]pyridin-3-yl]-1,2-dioxoethyl]-piperazine, as well as intermediate compounds. These new processes should utilize distinct alkylation, amidation, chlorination and phosphate installation procedures. Also needed are new compounds and intermediates which are generated as a result of the novel processes.
In a first embodiment, the invention provides a method for making the compound of Formula I:
with the chemical name 2-amino-2-(hydroxymethyl)propane-1,3-diol-(3-(2-(4-benzoylpiperazin-1-yl)-2-oxoacetyl)-4-methoxy-7-(3-methyl-1H-1,2,4-triazol-1-yl)-1H-pyrrolo[2,3-c]pyridin-1-yl)methyl phosphate which comprises:
(a) brominating the compound
to yield the compound
and
(b) nitrating compound 2 to yield the compound
and
(c) converting the amine group on compound 3 to a methoxy group to yield compound
and
(d) then converting compound 4 to the compound
and
(e) converting compound 5 to the compound
and
(f) forming a bicyclic structure from compound 6 to yield
and
(g) then chlorinating compound 7 to produce
and
(h) thereafter adding a triazolyl moiety to the compound 8 to yield
and
(i) converting compound 9 to the structure
and
(j) modifying compound 10 to yield the compound
and
(k) reacting compound 11 to produce the compound
and
(l) then converting the compound 12 to the compound
and
(m) then reacting the compound 13 to produce the compound
and
(n) then reacting the compound 14 to produce the compound
and
(o) then converting the compound 15 to the compound of Formula I.
In a further embodiment of the invention, there is provided a method of making the compound of Formula I:
which comprises:
(i) reacting the compound
in the presence of TMG, NMP and NaI or K2CO3, MeCN and TBAI to yield the compound.
and
(ii) reacting compound 11 with
to produce the compound
and
(iii) then converting the compound 12 to the compound
(iv) and then reacting compound 13 to produce
and
(v) then reacting the compound 14 to produce the compound
and
then converting the compound 15 to the compound of Formula I.
Also provided herein is a method for making the compound of formula (14):
which comprises:
to yield the compound
and
and
The invention is also directed to the more general chemical transformation of converting a thio ether to the corresponding chloride using a chlorinating agent.
wherein R can be, but is not limited to alkyl, cycloalkyl, phenyl, substituted and polysubstituted phenyl rings, heteroaromatic rings, substituted and polysubstituted heteroaromatic rings. The chlorinating agent employed in this transformation can be, but is not limited to, chlorine gas, sulfuryl chloride, hexachlorethane, dichlorotriphenylphosphorane, N,N-dichloro-4-methylbenzenesulfonamide, trichloroisocyanuric acid, N-Chlorosuccinimide, 2-chloroisoindoline-1,3-dione or N-chlorosaccharin.
The invention is also directed to the novel compounds
The invention is directed to these and other important ends, hereinafter described.
The invention provides methods for the production of the compound of Formula I:
as well as certain intermediates. The overall reaction scheme may be summarized and set forth as follows:
Thus, in a first embodiment the compound
is utilized as starting material. This compound is reacted with acetic anhydride (Ac2O) and then bromine to produce
Next, this compound is reacted with nitric acid and sulfuric acid to produce
Thereafter, this compound is then reacted with sodium nitrite (NaNO2) and trimethylsilyl chloride (TMS-Cl) in methanol (MeOH) to yield
Then this compound is reacted with
to produce
which is then reacted with a mixture of NaOMe/MeOH, CuI and NH4Cl in tetrahydrofuran (THF) and methyl propionate to produce
This compound is then reacted with 1% Pd/C under a hydrogen gas (H2) atmosphere in ethyl acetate (EtOAc) to yield
which is further reacted with POCl3 to produce
This resultant compound is in turn reacted with three (3) equivalents of
in 4-Me-2-pentanol to produce
This compound is then reacted with
in iPrMgC1 and THF to get
Next, this compound is reacted with
and tetramethylguanidine (TMG) in N-methylpyrrolidone (NMP) or K2CO3 in MeCN to obtain
This compound is then reacted with
in Ti(OnBu)4 and MeTHF to yield
Next, this compound is chlorinated using chlorine gas (Cl2) to yield
Next, this compound is reacted with dichloromethane (DCM) in water to produce
This compound is then further reacted with
to obtain
Finally, there is a further reaction with acetone in water, and then tromethamine to produce the prodrug
In a further embodiment of the invention, the compound of Formula I above is produced utilizing
as a starting material. This compound may be synthesized according to the procedures detailed above, or may be obtained according to the processes set forth and described in U.S. 20060293304, 28 Dec. 2006, which is incorporated herein by reference in its entirety. In this embodiment,
is first reacted with
in the presence of TMG, NMP and NaI or K2CO3, MeCN and TBAI to yield the compound
Next, this compound is reacted with
to produce the compound
This compound is then converted to the compound
using chlorine (Cl2) gas. Thereafter, this compound is converted to
using dichloromethane in water. This compound is then reacted to produce the compound
using
and finally, this compound is then converted to the compound of Formula I with acetone in water, and then tromethamine.
In a further embodiment of the invention, the compound of formula (14) is made using the compound of formula (10) as starting material. This process involves reacting the compound
to yield the compound
and then reacting compound 11 to produce the compound
Next, compound 12 is converted to the compound
Thereafter, compound 13 is converted to the compound
Compounds 11, 12, 13 and 14 thus constitute further embodiments of the invention.
The following Example sets forth a preferred method of the invention, but should not be construed as limiting the scope thereof:
In this Example, the compound
was used as the starting material. (see U.S. 20060293304, 28 Dec. 2006 for producing Compound 10). Below is the summary of the procedure for converting compound 10 to compound 11:
If conversion is not greater than 90%, heating is continued.
was allowed to cool to room temperature.
over 1 hour. The flask was then rinsed with 0.18 L of NMP which was also added to the solution of
over 2 minutes.
Analytical data: m.p. 127.0-128.8° C. 1H-NMR (Acetic Acid, d4) (δ, ppm): 9.01 (s, 1H), 8.06 (s, 1H), 7.93 (s, 1H), 7.25 (d, J=8.5 Hz, 2H), 7.07 (d, J=8.5 Hz, 2H), 5.60 (s, 2H), 4.10 (s, 3H), 3.95 (s, 3H), 2.58 (s, 3H). 13C-NMR (Acetic Acid, d4) (δ, ppm): 181.4, 165.1, 162.0, 152.1, 147.4, 142.7, 136.3 (3C), 130.6, 130.4 (2C), 129.9, 127.9, 126.8, 122.8, 114.3, 57.3, 56.7, 53.3, 13.3. HRMS: Calcd for C21H19O4N5CIS [M+1]+ 472.0841 found 472.0841. Elemental Analysis: C, 53.44; H, 3.84; N, 14.84, S, 6.79, Cl, 7.51. found: C, 53.53; H, 3.55; N, 14.63, S, 6.98, Cl, 7.73.
The process was then continued as follows, with a summary of the conversion of compound 11 to compound 12 set forth below:
Analytical Data: m.p. 162° C. 1H-NMR (CDCl3) (8, ppm): 2.54 (s, 3H), 3.52 (bs, 4H), 3.74 (bs, 4H), 4.08 (s, 3H), 5.52 (s, 2H), 6.96 (d, J=8.2 Hz, 2H), 7.2 (d, J=8.8 Hz, 2H), 7.44 (bs, 5H), 7.62 (s, 1H), 7.91 (s, 1H), 8.62 (s, 1H): 13C-NMR (CDCl3) (8, ppm): 13.91, 41.6, 45.9, 56.5, 56.8, 114.3, 122.3, 125.1, 126.7, 127.0, 128.64, 129.5, 129.6, 129.8, 130.2, 134.9, 135.2, 135.7, 140.8, 145.5, 150.6, 161.9, 165.9, 170.6, 184.4; HRMS; cacld for C31H29ClN7O4S [M+1]+: 630.1685; found: 630.1688. Elemental Analysis: C, 59.09; H, 4.47; N, 15.56, S, 5.08, Cl, 5.62. found: C, 59.05; H, 4.28; N, 15.57, S, 5.07, Cl, 5.66.
The process was then continued as follows, with a summary of the process for the conversion of compound 12 to compound 14 set forth below:
Analytical data for 13: m.p. 121° C. 1H-NMR (d7-DMF) (δ, ppm): 11.17 (br s, 1H), 9.18 (s, 1H), 8.88 (s, 1H), 8.19 (s, 1H), 7.52-7.54 (m, 5H), 6.44 (s, 2H), 4.19 (s, 3H), 3.67-3.84 (m, 8H), 2.55 (s, 3H); 13C-NMR (d7-DMF) (δ, ppm): 185.4, 169.9, 166.2, 161.3, 151.1, 146.6, 142.3, 136.1, 129.9, 129.5, 128.6, 127.3, 127.2, 124.7, 123.4, 116.1, 57.7, 56.9, 45.9, 41.7, 13.1; HRMS calcd for C25H25ClH7O4 [M-Cl]+: 522.1578 found 522.1648. Elemental analysis: C, 53.77; H, 4.51; N, 17.55, Cl, 12.69. found: C, 53.05; H, 4.68; N, 17.20, Cl, 12.56.
Analytical data for 14: m.p. 211° C. 1H-NMR (CDCl3) (δ, ppm): 8.59 (s, 1H), 8.14 (s, 1H), 7.91 (s, 1H), 7.41 (s, 5H), 6.09 (s, 2H), 4.04 (s, 3H), 3.40-4.00 (m, 8H), 2.51 (s, 3H); 13C-NMR (CDCl3) (δ, ppm): 184.4, 170.6, 165.7, 162.1, 150.6, 145.6, 140.8, 134.8, 130.1, 129.6, 128.6, 127.0, 126.7, 125.1, 122.9, 116.1, 57.1, 56.8, 45.9, 41.7, 13.9; HRMS: calcd for C25H25ClH7O4 [M+H]+:522.1578, found 522.1653. Elemental analysis: C, 57.52; H, 4.64; N, 18.78, Cl, 6.79. found C, 57.26; H, 4.60; N, 18.44, Cl 7.14.
The process was then continued as follows, with a summary of the process for the conversion of compound 14 to compound 15 set forth below:
Analytical data for 2: m.p. 198° C. 1H-NMR (CDCl3) (δ, ppm): 8.51 (s, 3H), 8.17 (s, 3H), 7.88 (s, 3H), 7.39 (m, 5H), 5.92 (d, J=14 Hz, 2H), 4.03 (s, 3H), 3.30-3.80 (m, 8H), 2.47 (s, 3H), 1.25 (s, 18H); 13C-NMR (CDCl3) (6, ppm): 184.6, 170.5, 166.8, 161.4, 150.7, 145.3, 141.8, 134.9, 130.1, 129.5, 128.5, 127.5, 127.0, 124.6, 122.6, 115.1, 83.7 (d, J=7.4 Hz), 73.55 (d, J=6.6 Hz), 56.8, 45.9, 41.6, 29.5 (d, J=4.4 Hz), 13.8; 31P-NMR (CDCl3) (δ, ppm): −10.0; HRMS: calcd for C33H43N7O8P [M+H]+: 696.2832 found 696.2885. Elemental analysis: C, 56.97; H, 6.08; N, 14.09. found C, 57.00; H, 6.04; N, 14.13.
The above process may then be continued as herein set forth in the description to yield the compound of Formula I.
The compound of Formula I, once synthesized, may be utilized in compositions to treat HIV infection as set forth and described in U.S. Pat. Nos. 7,745,625, 7,354,924 and 7,776,863, by way of non-limiting examples.
The foregoing description is merely illustrative and should not be understood to limit the scope or underlying principles of the invention in any way. Indeed, various modifications of the invention, in addition to those shown and described herein, will become apparent to those skilled in the art from the following examples and the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.
This non-provisional application claims the benefit of U.S. Provisional Application Ser. No. 61/437,821 filed Jan. 31, 2011.
Number | Date | Country | |
---|---|---|---|
61437821 | Jan 2011 | US |