Methods of making mud motors

Information

  • Patent Grant
  • 6543132
  • Patent Number
    6,543,132
  • Date Filed
    Thursday, December 17, 1998
    26 years ago
  • Date Issued
    Tuesday, April 8, 2003
    22 years ago
Abstract
The present invention provides methods of forming mud motors. In one method, rollers are urgingly stroked against a tubular member having a mandrel therein that has an outer profile which is the inverse of the desired profile of the stator. In another method, rollers are urged and rotated radially on the tubular member with the mandrel disposed in the tubular member. In yet another method, dies are pressed against the tubular member having a mandrel with a desired outer profile. In another method, a molten metal is deposited over a mandrel with an outer lobed surface that is substantially the inverse of the desired inner profile of the stator housing. The mandrel is then removed, leaving a metallic longitudinal member having an inner profile defined by the outer profile of the mandrel. In each of these methods, the inner surface of the resulting member has the profile defined by the outer profile of the mandrel. The inner surface of the resulting member then may be coated or lined with a suitable material for the stator. A suitable rotor is then disposed in the stator to form the drilling motor.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates generally to drilling or mud motors used for drilling wellbores and more particularly to methods of making such motors.




2. Description of the Related Art




To obtain hydrocarbons such as oil and gas, boreholes or wellbores are drilled by rotating a drill bit attached to a drill string end. A substantial proportion of the current drilling activity involves directional drilling, i.e., drilling deviated and horizontal boreholes, to increase the hydrocarbon production and/or to withdraw additional hydrocarbons from the earth's formations. Modern directional drilling systems generally employ a drill string having a drill bit at the bottom that is rotated by a motor (commonly referred to in the oilfield as the “mud motor” or the “drilling motor”).




Positive displacement motors are commonly used as mud motors. U.S. Pat. No. 5,135,059, assigned to the assignee hereof, which is incorporated herein by reference, discloses one such mud motor. A typical mud motor includes a power section which contains a stator and a rotor disposed in the stator. The stator typically includes a metal housing which is lined inside with a helically contoured or lobed elastomeric material. The rotor is usually made from a suitable metal, such as steel, and has an outer lobed surface. Pressurized drilling fluid (commonly known as the “mud” or “drilling fluid”) is pumped into a progressive cavity formed between the rotor and stator lobes. The force of the pressurized fluid pumped into the cavity causes the rotor to turn in a planetary-type motion. A suitable shaft connected to the rotor via a flexible coupling compensates for eccentric movement of the rotor. The shaft is coupled to a bearing assembly having a drive shaft (commonly referred to as the “drive sub”) which in turn rotates the drill bit attached thereto. Other examples of the drilling motors are disclosed in U.S. Pat. Nos. 4,729,675, 4,982,801 and 5,074,681.




As noted above, both the rotor and stator are lobed. The rotor and stator lobe profiles are similar, with the rotor having one less lobe than the stator. The difference between the number of lobes on the stator and rotor results in an eccentricity between the axis of rotation of the rotor and the axis of the stator. The lobes and helix angles are designed such that the rotor and stator lobe pair seal at discrete intervals. This results in the creation of axial fluid chambers or cavities which are filled by the pressurized circulating fluid. The action of the pressurized circulating fluid causes the rotor to rotate and precess within the stator.




The rotor typically is made of a material such as steel and has an outer contoured surface which is relatively easily to manufacture with precision. The stator, however, has an inner lobed surface and is made of an elastomeric material, typically by an injection molding process. The thickness of the elastomer varies with the contour of the lobes. Manufacturing of stators requires detailed attention to elastomer composition, consistency, bond integrity and lobe profile accuracy. The stators of relatively large mud motors can be several feet long. Because of the stator's physical characteristics (length, lobe profile, etc.) and the precision required, stators are frequently made by joining smaller sections. Such manufacturing processes are time consuming, expensive and offer few flexibilities. Also, since the elastomeric layer is typically non-uniform, it exhibits uneven heat dissipation and wear characteristics.




Stators with relatively thin and uniform elastomeric layers tend to perform better and have longer operating lives than those of non-uniform elastomeric stators described above. In some applications, completely metallic stators or having a non-elastomeric layer, such as a ceramic layer, may be preferred.




The present invention addresses certain problems with the prior art methods of making mud motors and provides methods for manufacturing mud motors, wherein the stator is made as a continuous member with inner surface having a desired profile, which is then lined with a substantially uniform layer of a suitable material such as an elastomeric or ceramic material. The methods of the present invention are efficient and cost effective.




SUMMARY OF THE INVENTION




The present invention provides methods of manufacturing mud motors. The motor includes a stator and a rotor which is rotatably disposed in the stator. In one method, to form the stator, a mandrel whose outer surface substantially corresponds to the inverse of the desired inner profile of the stator is disposed inside a metal tubular member. The mandrel has a slightly tapered end for easy retrieval from the tubular member. The metal tubular member with the mandrel therein is placed between at least two rollers disposed on opposite sides of the tubular member. The rollers, while urging against the tubular member, rotate in opposite directions (one clockwise and the other counter-clockwise), thereby moving on the tubular member in the same direction. These rollers rotate back and forth thereby stroking over the tubular member. This stroking motion reduces the outer dimensions of the tubular member. The tubular member is rotated about its longitudinal axis while the rollers stroke. The process is continued until the inside of the tubular member attains the profile defined by the outer profile of the mandrel. After a section of the tubular member is formed, the tubular member is moved axially to form the next section The inside of the tubular member is then lined with a suitable material, such as an elastomer or a ceramic material. A suitable rotor having a desired outer lobed surface is then rotatably disposed in the stator to form the motor.




In an alternative method for manufacturing the mud motor, the stator is formed by compressing a tubular member by a plurality of continuously rolling rollers. A mandrel whose outer surface corresponds to the inverse of the desired inner profile of the stator is placed inside a metal tubular member. The mandrel has a slightly tapered surface for easy retrieval from the tubular member. A plurality of rollers are urged against the tubular member while rotating in a common direction, thereby rotating the tubular member in the direction opposite that of the rollers. This rolling action reduces the outer dimensions of the tubular member. The process is continued until the inside of the tubular member attains the desired profile.




In yet another method of forming a stator, a tubular member having therein a mandrel with an outer contoured surface is alternately pressed with a plurality of dies disposed around the tubular member's outer surface, thereby reducing the outside dimensions of the tubular member. The process is continued until the inside surface of the tubular member attains the profile defined by the mandrel. The tubular member inside is lined with a suitable elastomer.




In still another method of making a mud motor, a mandrel is formed with a contoured outer surface that substantially corresponds to the inverse of the desired inner profile of the stator. The contoured outer surface of the mandrel is made of a frangible material, such as ceramic. The mandrel is designed to account for the load and shrinkage of the formed section of the stator. The mandrel is sprayed with a suitable metal to a desired thickness to form a tubular member. The mandrel is then removed from the tubular member. The resulting tubular member has the desired inside profile of the stator which is then lined with an elastomeric material.




In each of the methods described above, the elastomeric material is preferably injection molded over the inner surface of the tubular member. Alternatively, the rotor may have an outer elastomeric or ceramic layer or both the rotor and stator may have metal-to-metal contacting surfaces.




Examples of the more important features of the invention thus have been summarized rather broadly in order that the detailed description thereof that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject of the claims appended hereto.











BRIEF DESCRIPTION OF THE DRAWINGS




For detailed understanding of the present invention, reference should be made to the following detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings, in which like elements have been given like numerals and wherein:





FIGS. 1A and 1B

show a longitudinal cross-section of a mud motor.





FIGS. 2A and 2B

show elevational views of a preferred system for making the stator housing according to one method of the present invention.





FIG. 3

shows a cross-section of the stator housing made by the methods of the present invention.





FIG. 4

show an elevational view of a rotary system for making the stator housing according to one method of the present invention.





FIG. 5

shows an elevational view of a swaging process for making the stator housing according to one method of the present invention.





FIG. 6

shows an elevational view of a spraying process for making the stator housing according to one method of the present invention.





FIG. 6A

is a cross-section of a mandrel for use in the process of FIG.


6


.





FIG. 6B

is a cross-section of a mandrel for use in the process of FIG.


6


.











DESCRIPTION OF THE PREFERRED EMBODIMENT




The present invention provides methods of making mud motors. In general, the stator is made according to the methods of this invention. A suitable rotor is disposed in the stator to form the mud motor. Before describing the methods of making the mud motors according to the present invention, it is considered helpful to first describe an example of a commonly utilized mud motor for drilling oilfield wellbores.





FIGS. 1A-1B

show a cross-sectional elevation of a positive displacement motor


10


having a power section


1


and a bearing assembly


2


. The power section


10


contains an elongated metal housing


4


, having therein an elastomeric member


5


which has a helically-lobed (lobed) inner surface


8


. The elastomeric member


6


is secured inside the housing


4


, usually by bonding the elastomeric member


5


within the interior of the housing


4


. For the purposes of this disclosure, the combination


6


or the assembly of the elastomeric member


5


and the housing


4


is referred to herein as the “stator.”




A rotor


11


, preferably made from steel, having a helically-lobed outer surface


12


, is rotatably disposed inside the stator


6


. The rotor


11


preferably has a non-through bore


14


that terminates at


16


below the upper end


18


of the rotor


11


as shown in FIG.


1


A. The bore


14


remains in fluid communication with the drilling mud


40


below the rotor


11


via a port


20


. Both the rotor lobe


12


and the stator lobe


8


profiles are similar, with the rotor


11


having one less lobe than the stator


6


. The rotor lobes


12


and the stator lobes


8


and their helical angles are such that the rotor


11


and the stator


6


seal at discrete intervals resulting in the creation of axial fluid chambers or cavities


26


which are filled by the pressurized drilling fluid


40


.




The action of the pressurized circulating drilling mud


40


flowing from the top


30


to the bottom


32


of the power section


1


, as shown by arrow


34


, causes the rotor


11


to rotate within the stator


6


. Modification of lobe numbers and geometry provide for variation of motor


10


input and output characteristics to accommodate different drilling operations requirements. The rotor


6


is coupled to a flexible shaft


50


, which connects to a rotatable drive shaft


52


in the bearing assembly


2


that carries the drill bit (not shown) in a suitable bit box


54


.




The methods of making mud motors according to the present invention will now be described with reference to

FIGS. 2A-6A

.

FIG. 2A

shows a method of making a stator by what is referred to herein as the “short stroke” rolling process or method


110


.

FIG. 2B

shows a method of making a stator by what is referred to herein as the “long stroke” rolling process or method


150


. To make a stator, such as stator


6


of

FIG. 1A

, a rigid mandrel


132


is disposed in a tubular member


130


made from a suitable material, such as steel. Tubular member


130


has initial outside and inside diameters of d


o


and d


i


respectively. The mandrel


132


has an outer contoured surface


134


, which corresponds to the inverse of the desired contour of the finished stator housing


140


. The mandrel


132


is tapered from the front end


138


to the terminating end


136


, with the outer dimensions at the end


136


being less than those at the end


138


. Tapered mandrel


132


enables easy removal of the mandrel


132


from the finished stator housing


140


.




To form the stator housing


140


, the tubular member


130


with the mandrel


132


suitably disposed therein is placed between rollers


115




a


and


115




b


of the system


110


. The rollers


115




a


and


115




b


are substantially identical and, therefore, the construction of only the roller


115




a


is described herein. The roller


115




a


includes a roller die


112




a


that strokes or reciprocates in the directions shown by the arrow


108




a.


The roller


115




a


urges against the tubular member


130


as it strokes over the tubular member


130


. A caliper section


125




a


defines the travel (depth) of the roller die


112




a


toward the tubular member


130


. The clearance


126




a


between the roller die


112




a


and the periphery


127




a


of the caliper section


125




a


increases from the roller die end


128




a


to the roller die end


129




a,


which enables the roller die


112




a


to travel to a greater depth at the end


128




a


than the end


129




a.


Element


149




a


defines the axis


147


of the movement of the roller die


112




a.


As noted above, the roller


115




b


is identical to the roller


115




a,


in that it has a roller die


112




b,


a roller caliper section


125




b,


and a pivot


118




b.


The roller


115




b


reciprocates along the pivot


116




b


in the directions shown by the arrows


108




b


in the same direction as the die


112




a.






In operations, the roller dies


112




a


and


112




b


urge against the tubular member


130


and respectively reciprocate (or stroke) over the tubular member


130


along the longitudinal axis


131


of the tubular member


130


. The roller dies


112




a


and


112




b


travel to greater depths when they stroke toward ends


128




a


and


128




b


respectively compared to the ends


129




a


and


129




b.


The stator housing


140


therefore finishes toward the right side of FIG.


2


A. The tubular member


130


also step wise rotates about its longitudinal axis


131


as shown by arrows


135


. The roller dies


112




a


and


112




b


compress the tubular member


130


toward the mandrel


132


. As this process continues, the inside of the tubular member


130


presses against the mandrel


132


and starts to acquire the lobed contour


134


of the mandrel


132


. Continuing the process causes the tubular member inside


134


to attain the lobed contour with diameter d


i


′. The outer surface


130




a


retains a tubular form with the diameter d


o


′, which is less than the original diameter d


o


of the tubular member


130


. As a portion of the tubular member


130


is formed to the required dimensions, the tubular member


130


is advanced to continue forming the remaining portion of the tubular member


130


into the desired form. A continuous stator housing


140


of any suitable length can be made by this method. The process


110


may be hot-rolled or cold-rolled. Relatively precise stators can be formed with the cold-rolled process. Such stator housings


140


require relatively little or no further machining.





FIG. 2B

is a schematic illustrating the long stroke method


150


of making the stator housing


140


. The process


150


of

FIG. 2B

differs from the process shown in

FIG. 2A

in that the roller dies


152




a


and


152




b


have longer strokes compared to the strokes of the roller dies


112




a


and


112




b


of FIG.


2


A. As seen in

FIG. 2B

the stroke of the roller die


152




a


is defined by the distance between points


154




a


and


154




a


′ while the stroke of the roller die


152




b


is defined by the distance between


154




b


and


154




b


′. Otherwise the process


150


of

FIG. 2A

is similar to that of the process


110


of FIG.


2


A. After the stator housing


140


has been formed to a sufficient length, it is cut to the desired length.





FIG. 3

shows the cross-section of an exemplary stator housing


250


made according to the processes shown in

FIGS. 2A and 2B

. The stator housing


250


is shown to have a desired inner contoured profile. The stator housing


250


is then lined with a suitable elastomeric material


254


, preferably by a suitable injection molding process. Due to the relatively uniform inner profile


252


of the stator, the elastomeric liner


252


is of uniform thickness (relatively) compared to the varying thickness elastomeric liner


5


shown in FIG.


1


A. Relatively thin uniform thickness stator liners allow uniform heat dissipation. Metals, such as steel, utilized for making the stator housing


250


, are excellent heat dissipators compared to elastomers.





FIGS. 4

shows a rolling process


300


for forming a stator housing


310


having an inner lobed profile


312


according to one of the methods of the present invention. The system


300


includes a plurality of radially disposed rollers


320




a,




320




b


and


320




c.


Each such roller is adapted to rotate in a common direction, i.e., clockwise or counterclockwise. As an example, the rollers


320




a


-


320




c


are shown rotating counterclockwise as shown by the arrows


322


. To form the stator housing


310


, a tubular member


305


with initial desired inner and outer diameters, is fed between the rollers


320




a


-


320




c.


Each roller


320


-


320




c


urges against or exerts pressure on the tubular member


310


as shown by arrows


326


while the rollers


320




a


-


320




c


rotate. A mandrel


315


having a lobed outer surface


316


is disposed in the tubular member


305


. The profile of the surface


312


is reverse of the desired inner profile of the finished stator housing


310


. The mandrel


315


is tapered as described above with reference to

FIG. 1A

for easy retrieval of the mandrel


315


from the finished stator housing


310


.




To form the stator housing


310


, the metallic tubular member


305


containing the metallic mandrel


315


is placed between the rollers


320




a


-


320




c.


The rollers


320




a


-


320




c


rotate in the direction


322


while urging against the tubular member


305


in the direction


326


. The action of the rotors


320




a


-


320




c


rotates the tubular member


305


in the direction


328


and gradually reduces the overall diameter of the tubular member


305


. This action causes the inside of the tubular member


305


to attain a profile defined by the outer profile


312


of the mandrel


315


. When a portion of the tubular member


305


attains the desired inner profile and the outer dimensions, the tubular member


305


is advanced with the mandrel remaining at its position to continue the process of forming the stator housing


310


. Accordingly, the method


300


enables transforming a continuous tubular member


305


into a stator housing of any desired length. The stator housing


310


is then cut to the desired length and lined with a suitable elastomeric material as described above with respect to FIG.


3


. The rolling process


300


of

FIG. 4

is continuous. It may be a cold-rolled or hot-rolled process. The cold-rolled process is preferred because it can be controlled to produce relatively precision-finished stator housings


310


, which usually do not require additional machining steps. The hot-rolled process utilizes a hot tubular member. This process is faster than the cold-rolled process, but it is more difficult to control and, in certain cases, the finished stator housing


310


may require additional machining operations.





FIG. 5

shows an elevational view of a rotary swaging process


370


for making the stator housing according to one method of the present invention. A tubular member


350


having a mandrel


352


with a desired outer profile


354


is placed between a plurality of conforming blocks


360




a


-


360




d.


Each of the blocks


360




a


-


360




c


has corresponding concave interior surfaces


362




a


-


362




c.


To form the stator housing, the blocks


360




a


-


360




c


are alternately urged against the tubular member


350


, i.e., in the directional shown by arrows


364


and moved away from the tubular member


350


. The tubular member


350


or the blocks


360




a


-


360




c


or both may be rotated as desired. As this process continues, the outside and inside diameters of the tubular member


350


continue to reduce, eventually causing the inside


350




a


of the tubular member


350


to attain the profile defined by the outer profile


354


of the mandrel


352


. When a section of the tubular member


350


is formed into the desired shape, the tubular member


350


is advanced (moved forward) and the process continued. The mandrel is tapered for easy removal from the tubular member. The finished stator housing is then lined inside with an elastomeric material as described above with respect to FIG.


3


.





FIG. 6

shows an elevational view of a spray forming process for making the stator housing


420


according to one method of the present invention. A mandrel


410


with a predetermined length “L” and an outer profile


414


is fabricated by any known method. The mandrel


414


is made from a frangible material such as ceramic. Alternatively, the mandrel


414


may be made of any stiff material with an outer layer made from a frangible material. The mandrel


414


is then uniformly sprayed with a suitable metal material


418


until it attains a desired diameter “d”


422


. In the preferred method, a gas-atomized stream


419


of a suitable molten metal is sprayed on the rotating and advancing mandrel


410


. The sprayed metal


418


rapidly solidifies. The stator housings


420


made by the spray forming process


400


are usually fine grained and substantially free from segregation effects.




The spray forming process


400


is preferably achieved by gas-atomizing the molten metal


418


from a source


434


thereof into a spray


419


and depositing the spray


419


on the mandrel


410


. The deposition rate of the spray


429


is preferably controlled by a vacuum system


430


. This allows forming a layer of semi-solid/semi-liquid metal of controlled thickness. After the stator housing


420


has been formed, the mandrel is dislodged from within the stator housing


420


by discarding the frangible material. The inner surface


414


of the stator housing


410


is then lined with a suitable material as described in reference to FIG.


3


. The material


418


may be sprayed in the form of layers, wherein adjacent layers having the same or different material. For example the first layer may be of tungsten carbide and the next layer may be of steel. The choice of materials will depend upon the physical characteristics desired of the finished product, such as ductility and strength.




Alternatively, the mandrel


410


may be made as a hollow liner


440


having the inner dimensions and profile


442


desired of the finished stator housing


420


.

FIG. 6A

shows a cross-section of a hollow mandrel


450


for use in the spray method


400


of FIG.


6


. The mandrel


450


has an inner surface


452


that defines the contour of the stator inside. The outer surface


454


may be of any type. The mandrel thickness


456


may be relatively small.

FIG. 6B

shows a cross-section of a mandrel


460


that has the inner profile


462


that defines the inner profile of the stator and has a tubular outer profile


464


. The mandrels


450


and


460


are relatively inexpensive and easy to make. The inside surface of the mandrels


450


and


460


may be made in the finished form of the stator inside prior to or after the spraying of the mandrels with the suitable material. This may be lined with a suitable elastomer or may be a metallic surface.




The stator housing made by any of the methods of the present invention may be coated or lined with any suitable material, including an elastomeric material, a thermo-plastic material, a ceramic material, and a metallic material. Any suitable method or process may be utilized to apply such materials to the stator housing. The processes utilized may include a galvanic deposition process, (ii) an electrolytic deposition process, (iii) a molding process, (iv) a baking process, (v) a plasma spray process, and (vi) a thermo-set process. The process utilized will depend upon the type of the material selected. The rotor may also be lined with a suitable material or rotor and stator may have metal-to-metal contacting surfaces.




The foregoing description is directed to a particular embodiment of the present invention for the purpose of illustration and explanation. It will be apparent, however, to one skilled in the art that many modifications and changes to the embodiment set forth above are possible without departing from the scope and the spirit of the invention. It is intended that the following claims be interpreted to embrace all such modifications and changes.



Claims
  • 1. A method of making a stator housing having a desired inner profile and with a substantially uniform outer diameter for use in drilling wellbores, comprising:(a) providing a metallic hollow tubular member that is to be transformed to a stator housing having an inner surface and the desired inner profile along an axial direction of the metallic hollow tubular member, the desired profile including at least one lobe: (b) placing a mandrel inside the metallic hollow tubular member, said mandrel having an outer contoured surface that corresponds to the desired inner profile of the stator housing; and (c) applying compressive force on the outside an outer surface of the metallic hollow tubular member by at least two rollers to compress the metallic hollow tubular member toward the mandrel to reduce the overall outer diameter of the metallic hollow tubular member until the inner surface of the metallic hollow tubular member attains the profile defined by the outer profile of the mandrel and the outer surface is substantially uniform in diameter.
  • 2. The method of claim 1 further comprising applying on the inner surface of the stator housing a secondary material that is different from the material of the metallic hollow tubular member.
  • 3. The method of claim 1, wherein the at least two rollers stroke over the metallic hollow tubular member along the axial direction.
  • 4. The method of claim 3, wherein each said roller travels a varying distance toward the hollow metallic tubular member during each said stroke.
  • 5. The method of claim 4 further comprising rotating the metallic hollow tubular member while said at least two rollers are applying compressive force on the metallic hollow tubular member.
  • 6. The method of claim 2 wherein applying the secondary material includes selecting the secondary material from a group consisting of (i) a ceramic material, and (ii) a metallic material.
  • 7. The method of claim 2 wherein applying the secondary material includes applying said secondary material on the inner surface of the stator housing by one of (i) a galvanic deposition process, (ii) an electrolytic deposition process, and (iii) a plasma spray process.
  • 8. The method of claim 2 wherein applying the secondary material includes applying at least two layers.
  • 9. The method of claim 8 wherein one of said at least two layers is a resin material for bonding said secondary material to the stator housing.
  • 10. The method of claim 2 wherein said applying on the inner surface includes applying said secondary material of substantially uniform in thickness.
  • 11. The method of claim 1, further comprising disposing a rotor having an outer contoured surface within said stator to form a drilling motor.
  • 12. The method of claim 1, wherein said at least two rollers rotate in same direction radially over the metallic hollow tubular member.
  • 13. The method of claim 1 further comprising rotating the tubular member while a plurality of rollers compress the tubular member.
  • 14. A method of making a stator for a drilling motor for drilling wellbores, comprising:(a) defining an inner profile having a lobe; (b) defining an outer profile having a substantially uniform outer diameter; (c) placing a mandrel inside a hollow tubular member having an inner and outer surface, the mandrel having an outer contoured outer surface that corresponds to the inner profile; and (d) compressing the outer surface of the hollow tubular member toward the mandrel until the inner surface of the tubular member attains substantially the defined inner profile and the outer surface of the tubular member attains a substantially uniform outer diameter, a stator thereby being formed.
  • 15. The method of claim 14 further comprising applying on the inner surface of the stator a secondary material that is different from a material forming the hollow tubular member.
  • 16. The method of claim 15 wherein the second material is selected from a group consisting of (i) an elastomeric material, (ii) a thermo-plastic material, (iii) a ceramic material, and (iv) a metallic material.
  • 17. The method of claim 14, wherein a plurality of force application members stroke over the hollow tubular member along a longitudinal axis of the hollow tubular member to compress the outer surface of the hollow tubular member.
  • 18. The method of claim 17, wherein said force application members include rollers that travel a varying distance toward the hollow tubular member during each stroke.
  • 19. The method of claim 14, further comprising disposing a rotor having an outer contoured surface within the stator to form the drilling motor.
  • 20. The method of claim 14 wherein a plurality of swaging devices substantially simultaneously urge against the outer surface of said hollow metallic tubular member to compress the hollow tubular member toward the mandrel to form the stator housing.
CROSS-REFERENCE TO RELATED APPLICATION

This application takes priority from U.S. Patent Application Serial No. 60/068,090, filed on Dec. 18, 1997.

US Referenced Citations (22)
Number Name Date Kind
3263474 Pentland Aug 1966 A
3416346 Arrington Dec 1968 A
3590622 Elge et al. Jul 1971 A
3606780 Nagahara Sep 1971 A
4030862 Larsson Jun 1977 A
4428220 Rammesten Jan 1984 A
4852380 Haldric et al. Aug 1989 A
4909337 Kochnev et al. Mar 1990 A
4991292 Bostel Feb 1991 A
5075966 Mantkowski Dec 1991 A
5096004 Ide Mar 1992 A
5145342 Gruber Sep 1992 A
5171138 Forrest Dec 1992 A
5221197 Kochnev et al. Jun 1993 A
5318416 Hantschk et al. Jun 1994 A
5405176 Babel et al. Apr 1995 A
5501873 Ferralli Mar 1996 A
5638600 Rao et al. Jun 1997 A
5692889 Tateno et al. Dec 1997 A
5832604 Johnson et al. Nov 1998 A
6030371 Pursley Feb 2000 A
6170572 Fulbright et al. Jan 2001 B1
Foreign Referenced Citations (3)
Number Date Country
41 11 166 Apr 1991 DE
2.155.827 Oct 1971 FR
2.299.533 Jan 1975 FR
Provisional Applications (1)
Number Date Country
60/068090 Dec 1997 US